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BIQUATERNION DIVISION ALGEBRAS

OVER RATIONAL FUNCTION FIELDS

KARIM JOHANNES BECHER

Abstract. Let E be a field of characteristic different from 2 which is the
center of a quaternion division algebra and which is not euclidean. Then there
exists a biquaternion division algebra over the rational function field E(t) which
does not contain any quaternion algebra defined over E. The proof is based
on the study of Bezoutian forms developed in [1].

Keywords: Milnor K-theory, quadratic form, valuation, ramification, Be-
zoutian form

Classification (MSC 2010): 12E30, 12G05, 12Y05, 19D45

1. Introduction

Let E be a field of characteristic different from 2. Let E(t) denote the rational
function field over E, where t is a variable. It is easy to show that there exists
a quaternion division algebra over E(t) if and only if E has some field extension
of even degree. The purpose of this article is to provide sufficient conditions for
the existence of a biquaternion division algebra over E(t) which does not contain
any quaternion algebra defined over E.
In [6, Corollary 5.3] it was shown that, given a quaternion division algebra Q

over E and a, b ∈ E× such that a, b, ab /∈ E×2, the biquaternion algebra

QE(t) ⊗ (t, a(t− b))

over E(t) is a division algebra. Hence, under very mild conditions on the ground
field E we obtain biquaternion division algebras over E(t). However, these exam-
ples contain a quaternion algebra which is defined over E. Examples of biquater-
nion algebras over E(t) which do not contain any quaternion algebra defined over
E were given in [7] and [4, Sections 3 and 4] for the special case where E is a
non-dyadic local field.

The main result of the present article is the following stronger statement, lead-
ing to the same conclusion under very mild hypotheses on the base field E, in
particular not relying on the existence of a discrete valuation on E.

Date: 11 December, 2019.
This work was supported by the FWO Odysseus programme (project Explicit Methods in

Quadratic Form Theory).
1



2 KARIM JOHANNES BECHER

Theorem. Assume that E is not real euclidean and that there exists a non-split

quaternion algebra over E. Then there exists a biquaternion division algebra over

E(t) which does not contain any quaternion algebra defined over E.

Recall that E is real euclidean if the set of squares in E is an ordering of E.
The simplest example of a real euclidean field is the field of real numbers R,
and one easily sees that the conclusion of the theorem fails for E = R: every
quaternion algebra over R(t) splits over C(t) and therefore is of the form (−1, f)
for some f ∈ R[t], so every biquaternion algebra over R(t) has zero divisors.

As a consequence of the Theorem one obtains that the existence of a biquater-
nion division algebra over E(t) is equivalent to the existence of a biquaternion
algebra over E(t) which does not contain any quaternion algebra defined over E.

The technique applied here to obtain examples of such biquaternion algebras
as in the Theorem relies on the study of ramification sequences via associated
Bezoutian forms developed in [1].

For a, b ∈ E× consider the biquaternion algebra

B =
(

t2 + (a+ 1)t+ a, a
)

⊗
(

t2 + at+ a, ab
)

over E(t). We will obtain by Theorem 4.2 that, if the E-quaternion algebra
(a, b) is non-split and ab, (a − 4)b /∈ E×2, then B is a division algebra and the
ramification of B (with respect to the valuations on E(t) that are trivial on E)
differs from the ramification of any quaternion algebra over E(t), which implies
that B has Faddeev index 4 in the terminology of [4].

Note finally that the converse of the Theorem does not hold. It was shown in [2]
that one can construct a field E of characteristic 0 and cohomological dimension
1 – hence in particular such that every E-quaternion algebra is split – and such
that there exists an anisotropic pair (q1, q2) of quadratic forms in 5 variables over
E; by the Amer-Brumer Theorem this implies that the 5-dimensional quadratic
form q1+tq2 over E(t) is anisotropic, and since E(t) has cohomological dimension
2, it follows that q1 + tq2 does not represent its determinant, so that the even
Clifford algebra of q1 + tq2 is a biquaternion division algebra over E(t).

2. Preliminaries

For an E-algebra A and a field extension F/E, we denote by AF the F -algebra
A⊗E F . Recall that an E-algebra A is central simple if and only if AF ≃ Mn(F )
for some field extension F/E and a positive integer n; we say that A is split

if one can take F = E, that is if A ≃ Mn(E). Any central simple algebra is
finite-dimensional and in particular it either has zero divisors or it is a division
algebra. An E-quaternion algebra is a 4-dimensional central simple E-algebra.
Recall that E is assumed to have characteristic different from 2. For a, b ∈ E×

an E-quaternion algebra denoted (a, b)E or just (a, b) is obtained by endowing
the vector space

E ⊕ Ei⊕ Ej ⊕ Ek
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with the multiplication given by the rules i2 = a, j2 = b and ij = k = −ji.
Any E-quaternion algebra is isomorphic to (a, b)E for certain a, b ∈ E×. Any
quaternion algebra is either split or a division algebra.

An E-biquaternion algebra is an E-algebra which is isomorphic to Q ⊗E Q′

for two E-quaternion algebras Q and Q′. In particular, biquaternion algebras
are central simple. Given an E-biquaternion algebra B and an E-quaternion
subalgebra Q of B, we can decompose B ≃ Q ⊗E Q′ with the E-quaternion
algebra Q′ given as the centralizer of Q in B.

For our analysis of quaternion and biquaternion algebras over E and over E(t),
we will work in the second Milnor K-group modulo 2 of a field.

For n ∈ N we denote by knE the nth Milnor K-group of E modulo 2; this
is the abelian group generated by symbols {a1, . . . , an} with a1, . . . , an ∈ E×

which are subjected to the defining relations that the map (E×)n → knE given
by (a1, . . . , an) �→ {a1, . . . , an} is multilinear and further that {a1, . . . , an} = 0
whenever ai ∈ E×2 for some i � n or ai + ai+1 = 1 for some i < n. Note that
k1E ≃ E×/E×2. Here we only consider knE (and knE(t)) for n = 1, 2. The group
k2E is in tight relation to the Brauer group.
We denote by Br(E) the Brauer group of E and by Br2(E) its 2-torsion part.

Recall that there is a unique homomorphism

k2E → Br2(E)

that sends any symbol {a, b} with a, b ∈ E× to the Brauer equivalence class of
the E-quaternion algebra (a, b)E. Merkurjev’s Theorem asserts that this is in
fact an isomorphism. We only need special instances of this fact. For a, b ∈ E×

we have {a, b} = 0 in k2E if and only if the E-quaternion algebra (a, b)E is split.
Furthermore, for a, b, c, d ∈ E× the E-biquaternion algebra (a, b)⊗E (c, d) has zero
divisors if and only if {a, b} + {c, d} = {e, f} for certain e, f ∈ E×. These two
facts can be proven by elementary means, without using Merkurjev’s Theorem.

For the study of k2E(t) one uses an exact sequence. To explain it we first need
to define the tame symbol map ∂v with respect to a Z-valuation v.

Let F be a field. By a Z-valuation on F we mean a valuation with value group
Z. Given a Z-valuation v on F we denote by Ov its valuation ring and by κv its
residue field. For a ∈ Ov let a denote the natural image of a in κv. By [5, (2.1)],
for a Z-valuation v on F , there is a unique homomorphism ∂v : k2F → k1κv such
that

∂v({f, g}) = v(f) · {g} in k1κv

for f ∈ F× and g ∈ O×
v . For f, g ∈ F× we obtain that f−v(g)gv(f) ∈ O×

v and

∂v({f, g}) =
{

(−1)v(f)v(g)f−v(g)gv(f)
}

in k1κv .

We turn to the case where F = E(t). Let P denote the set of monic irreducible
polynomials in E[t]. Any p ∈ P determines a Z-valuation vp on E(t) which is
trivial on E and with vp(p) = 1. There is furthermore a unique Z-valuation v∞
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on E(t) which is trivial on E and such that v∞(t) = −1. We set P ′ = P ∪ {∞}.
For p ∈ P ′ we write ∂p for ∂vp and we denote by Ep the residue field of vp. Note
that Ep is naturally isomorphic to E[t]/(p) for p ∈ P and that E∞ is naturally
isomorphic to E. We call

∂ =
⊕

p∈P ′

∂p : k2E(t) →
⊕

p∈P ′

k1Ep

the ramification map. For p ∈ P ′, the norm map of the finite extension Ep/E
yields a group homomorphism k1Ep → k1E. Summation over these maps for all
p ∈ P ′ yields a homomorphism

N :
⊕

p∈P ′

k1Ep → k1E .

By [3, (7.2.4) and (7.2.5)] we obtain an exact sequence

0 → k2E → k2E(t)
∂
→

⊕

p∈P ′

k1Ep
N
→ k1E → 0 .(2.1)

Let R2(E) denote the kernel of N, which is equal to the image of ∂. The elements
of R2(E) are called ramification sequences.
For a finite set S ⊆ P ′ we call

∑

p∈S[Ep : E] the degree of S and denote it by

deg(S). For ρ = (ρp)p∈P ′ ∈
⊕

p∈P ′ k1Ep we set Supp(ρ) = {p ∈ P ′ | ρp �= 0} and

abbreviate deg(ρ) = deg(Supp(ρ)), and we call this the support and the degree

of ρ. We say that ρ ∈ R2(E) is represented by ξ ∈ k2E(t) if ∂(ξ) = ρ.

3. Bezoutians

We use standard terminology from quadratic form theory. For n ∈ N and
a1, . . . , an ∈ E× we denote the n-fold Pfister form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 by
〈〈a1, . . . , an〉〉. The Witt ring of E is denoted by WE. For a nondegenerate
quadratic form ϕ over E we denote by [ϕ] its class in WE and we set c · [ϕ] = [cϕ]
for c ∈ E×. For c ∈ E× we abbreviate [c] = [〈c〉].
Consider a square-free polynomial g ∈ E[t]. We set Eg = E[t]/(g) and denote

by θ the class of t in Eg. For n = deg(g), let sg : Eg → E be the E-linear form
such that sg(θ

i) = 0 for 0 � i � n− 2 and sg(θ
n−1) = 1. By [1, Proposition 3.1],

any f ∈ E[t] coprime to g gives rise to a nondegenerate quadratic form over E
given by

q : Eg → E, x �→ sg(f(θ)x
2) ,

which is called the Bezoutian of f modulo g. We denote by

B

(

f

g

)

the class in WE given by the Bezoutian of f modulo g.
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Bezoutians satisfy some useful computation rules. First of all, it follows from
the definition that, for f, h ∈ E[X] coprime to g such that h is a square modulo
g, we have

B

(

fh

g

)

= B

(

f

g

)

.

3.1. Proposition. For f, g1, g2 ∈ E[t] pairwise coprime and with g1 and g2 monic

and square-free, we have

B

(

f

g1g2

)

= B

(

fg2
g1

)

+B

(

fg1
g2

)

.

Proof. See [1, Proposition 3.5]. �

3.2. Theorem. Let f, g ∈ E[t] be monic, square-free and coprime. Then

B

(

f

g

)

+B

(

g

f

)

=

{

0 if deg(f) ≡ deg(g) mod 2,
[1] if deg(f) �≡ deg(g) mod 2.

Proof. See [1, Theorem 3.8]. �

These two rules will be used without explicit mention in the sequel.

3.3. Lemma. Let g1, g2 ∈ E[t] monic of even degree, coprime and such that g1t
is a square modulo g2. Let a1, a2 ∈ E× and f ∈ E[t] such that aif is a square

modulo gi for i = 1, 2. Then

B

(

f

g1g2

)

= [a1〈〈a1a2, g2(0)〉〉] .

Proof. We have that

B

(

f

g1g2

)

= B

(

fg2
g1

)

+B

(

fg1
g2

)

.

As aif is a square modulo gi for i = 1, 2, we have that

B

(

fg1
g2

)

= a1B

(

g1
g2

)

and B

(

fg2
g1

)

= a2B

(

g2
g1

)

= −a2B

(

g1
g2

)

.

As g1t is a square modulo g2, we obtain that

B

(

g1
g2

)

= B

(

t

g2

)

= [1]−B

(

g2
t

)

= [1]− [g2(0)] = [〈〈g2(0)〉〉] .

Hence

B

(

f

g1g2

)

= −a2[〈〈g2(0)〉〉] + a1[〈〈g2(0)〉〉] .

Since 〈−a2, a1〉 is isometric to a1〈〈a1a2〉〉, the statement follows. �
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4. Ramification sequences not representable by one symbol

In [1, Section 5] Bezoutians are related to ramification sequences and it is shown
in [1, Theorem 5.12] that a non-trivial Bezoutian can present an obstruction for
the representability of a ramification sequence by a single symbol. This will be
used here to obtain ramification sequences of degree 4 that do not correspond to
a symbol.

4.1. Proposition. Let g1, g2 ∈ E[t] monic of even degree, coprime and such

that g1t is a square modulo g2. Let a1, a2 ∈ E× be such that the quadratic form

〈1,−a1a2〉 over E does not represent g2(0) and for i = 1, 2 one has ai /∈ E×2
p for

any irreducible factor p of gi. Then

∂ ({g1, a1}+ {g2, a2}) �= ∂ (σ)

for any symbol σ in k2E(t).

Proof. We set ρ = ∂ ({g1, a1}+ {g2, a2}) in R2(E). Note that ρ∞ = 0 and
Supp(ρ) = {p ∈ P | p divides g1g2}. In particular deg(ρ) = deg(g1) + deg(g2),
which is even. Suppose there exists a symbol σ in k2E(t) with ∂(σ) = ρ. It fol-
lows by [1, Proposition 4.1] that there exist f, g, h ∈ E[t] square-free and pairwise
coprime with g = g1g2 and σ = {f, gh}. Note that ∂∞({f, gh}) = ρ∞ = 0. By
[1, Lemma 4.2] we obtain that

B

(

f

g

)

= 0 .

For i = 1, 2, we obtain for any p ∈ P dividing gi that {ai} = ρp = ∂p(σ) = {f}
in k1Ep. Hence aif is a square modulo gi for i = 1, 2. By Lemma 3.3, it follows
that

[a1〈〈a1a2, g2(0)〉〉] = B

(

f

g

)

= 0 .

Thus 〈〈a1a2, g2(0)〉〉 is hyperbolic. Hence g2(0) is represented over E by the qua-
dratic form 〈1,−a1a2〉, which contradicts the hypothesis. �

We are ready to prove the statements in terms of symbols which were formu-
lated in the introduction in terms of quaternion algebras. The translation of these
results to quaternion algebras is immediate, using only the fact that the rami-
fication map ∂ : k2E(t) →

⊕

p∈P ′ k1Ep factors over the natural homomorphism

k2E(t) → Br2(E(t)).

4.2. Theorem. Let a, b ∈ E× with a �= 4 and a, ab, (a − 4)b /∈ E×2. Then the

following are equivalent:

(i) {a, b} = 0 in k2E.

(ii) There exists a symbol σ ∈ k2E(t) with

∂
({

t2 + (a+ 1)t+ a, a
}

+
{

t2 + at+ a, ab
})

= ∂(σ) .
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Proof. Set g1 = t2 + (a + 1)t + a, g2 = t2 + at + a. The polynomials g1 and g2
are coprime, and we have g2(0) = a and g1t ≡ t2 mod g2. The discriminant of
g2 is a(a − 4). The hypothesis implies that a different from 0 and 4 and that
ab /∈ E×2∪a(a−4)E×2. Hence g2 is separable and ab is a non-square modulo any
irreducible factor of g2. Moreover a is a non-square modulo the two irreducible
factors of g1 = (t + 1)(t + a). Set ρ = ∂ ({g1, a}+ {g2, ab}). We obtain that
Supp(ρ) = {p ∈ P | p divides g1g2} and deg(ρ) = 4.
If {a, b} �= 0, then 〈1,−b〉 does not represent a = g2(0), and we conclude by

Proposition 4.1 that ρ �= ∂(σ) for any symbol σ in k2E(t).
Assume now that {a, b} = 0. Then 〈〈a, b〉〉 is hyperbolic. We choose f ∈ E[t]

such that f ≡ a mod g1 and f ≡ ab mod g2. By Lemma 3.3, then B

(

f

g1g2

)

= 0.

By [1, Theorem 6.1] this implies that ρ = ∂(σ) for a symbol σ in k2E(t). �

In order to apply Theorem 4.2, we need to be able to satisfy its hypotheses.
Recall that the field E is pythagorean if every sum of squares in E is a square.

4.3. Lemma. Let σ be a nonzero symbol in k2E. Then either σ = {−1,−1}
and E is real pythagorean, or σ = {a, b} for certain a, b ∈ E× with a �= 4 and

a, ab, (a− 4)b /∈ E×2.

Proof. Suppose first that σ = {−1, x} for some x ∈ E×. Since σ �= 0, it follows
that −1, x /∈ E×2. Set a = −9

4
. Then −a, 4 − a ∈ E×2 and σ = {a, x}. Hence,

if −x /∈ E×2, then we choose b = x to satisfy the claim. Assume now that
−x ∈ E×2. Then σ = {−1,−1}. If E is not pythagorean, then we can choose
b ∈ E× such that −b is a sum of two squares but not a square in E and obtain
that σ = {−1,−1} = {−1, b} = {a, b}. If E is pythagorean, then as −1 /∈ E×2,
it follows that E is real.

Suppose now that σ �= {−1, x} for any x ∈ E×. In this case we take any
representation σ = {a, b} with a, b ∈ E×. Clearly a /∈ E×2, and furthermore
σ = {−ab, b} �= {−1, b}, whereby ab /∈ E×2. Finally {a, b} = σ �= {−1, a},
whence {ab,−b} = {a,−b} �= 0, whereby (a− 4)b is not a square. �

Note that k2E = 0 if and only if every E-quaternion algebra is split. Hence
the next statement covers the Theorem in the introduction.

4.4. Theorem. Assume that k2E �= 0 and that E is not euclidean. Then the

following hold:

(a) There exists ρ ∈ R2(E) with deg(ρ) = 4 and such that ρ �= ∂(σ) for every

symbol σ in k2E(t).
(b) There exists an E(t)-biquaternion division algebra B such that B ⊗E(t) Q is

not defined over E for any E(t)-quaternion algebra Q. In particular, B does

not contain any E-quaternion algebra.

Proof. Note first that, if E is real pythagorean but not euclidean, then there
exists an element c ∈ E× � (E×2 ∪−E×2), and then {−1, c} is a nonzero symbol
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in k2E different from {−1,−1}. Hence, by hypothesis and by Lemma 4.3, there
exist a, b ∈ E× with a /∈ E×2, b /∈ aE×2 ∪ (a− 4)E×2 and such that {a, b} �= 0 in
k2E. By Theorem 4.2, the ramification sequence

ρ = ∂({t2 + (a+ 1)t+ a, a}+ {t2 + at+ a, ab})

then satisfies the claim in (a).
To show (b), we consider the corresponding E(t)-biquaternion algebra

B = (t2 + (a+ 1)t+ a, a)⊗E(t) (t
2 + at+ a, ab) .

For any f, g ∈ E(t)× such that B⊗E(t)(f, g) can be defined over E, we obtain that
ρ = ∂({f, g}), in contradiction to (a). Therefore there exists no E(t)-quaternion
algebra Q such that B ⊗E(t) Q can be defined over E. In particular, B does not
contain any E-quaternion algebra Q′, as otherwise the centraliser of Q′

E(t) in B is

an E(t)-quaternion algebra Q such that B⊗E(t)Q is defined over E. In particular
B does not contain M2(E). Hence B is a division algebra. �
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[4] B.È. Kunyavskǐı, L.H. Rowen, S.V. Tikhonov, V.I. Yanchevskǐı. Bicyclic algebras of prime
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