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Abstract 

Introduction Digitally reconstructed radiographs (DRRs) represent valuable patient-specific pre-

treatment training data for tumor tracking algorithms. However, using current rendering methods, the 

similarity of the DRRs to real X-ray images is limited, requires time-consuming measurements and/or 

are computationally expensive. In this study we present RealDRR, a novel framework for highly 

realistic and computationally efficient DRR rendering. 

 

Materials and Methods RealDRR consists of two components applied sequentially to render a DRR. 

First, a raytracer is applied for forward projection from 3D CT data to a 2D image. Second, a conditional 

Generative Adverserial Network (cGAN) is applied to translate the 2D forward projection to a realistic 

2D DRR. 

The planning CT and CBCT projections from a CIRS thorax phantom and 6 radiotherapy patients (3 

prostate, 3 brain) were split in training and test sets for evaluating the intra-patient, inter-patient and 

inter-anatomical region generalization performance of the trained framework. Several image similarity 

metrics, as well as a verification based on template matching, were used between the rendered DRRs 

and respective CBCT projections in the test sets, and results were compared to those of a current state-

of-the-art DRR rendering method. 

 

Results When trained on 800 CBCT projection images from two patients and tested on a third unseen 

patient from either anatomical region, RealDRR outperformed the current state-of-the-art with 

statistical significance on all metrics (two-sample t-test, p < 0.05). Once trained, the framework is able 

to render 100 highly realistic DRRs in under two minutes. 

 

Conclusion A novel framework for realistic and efficient DRR rendering was proposed. As the 

framework requires a reasonable amount of computational resources, the internal parameters can be 

tailored to imaging systems and protocols through on-site training on retrospective imaging data. 

 

 



Introduction 

Stereotactic body radiotherapy (SBRT) has improved local control and overall survival for both primary 

and (oligo-)metastatic lung lesions [1-4]. A crucial factor in SBRT is geometrical accuracy, as high 

conformality and steep dose fall-off in the treatment plan are necessary to fulfill dose constraints on 

nearby organs at risk and avoid toxicity [5]. 

 

Respiratory induced motion, ranging from a few millimeters to several centimeters, can significantly 

degrade geometrical accuracy [6-8]. Multiple motion management strategies have therefore been 

developed, from dedicated treatment margins in the planning stage to real-time tumor tracking (RTTT) 

during treatment delivery [9-11]. A number of studies have highlighted the risk of passive motion 

management strategies in that they do not adapt to day-to-day and breath-to-breath variability [12-16]. 

Conversely, active strategies are able to adapt to this variability, but often have to rely on implanted 

fiducials for automatic target localization on planar X-ray images, a complication prone procedure [17-

20]. For this reason, fiducial free or ‘markerless’ methods have been developed. Clinically implemented 

markerless methods are currently limited to those of the Cyberknife system (Accuray Incorporated, 

Sunnyvale, CA, USA) and Vero/ExacTrac system (BrainLab AG, Munich, Germany and Mitsubishi 

Heavy Industry, Tokyo Japan) [21,22]. For direct target localization, both use an intensity-based 

template matching strategy between digitally reconstructed radiograph (DRR) templates rendered from 

the planning (4D-)CT and real-time X-ray images. As such, the accuracy of the DRRs, e.g. their 

similarity to the actual X-ray images, likely influences the localization accuracy.  

 

As DRRs provide pre-treatment information on the tumor location in different breathing phases pre-

treatment, they continue to play a crucial role in the majority of newly proposed markerless tracking 

methods in literature [23-28]. Especially for those tracking algorithms which require training, DRRs 

represent valuable pre-treatment and patient-specific training data containing the target location without 

the need for time demanding manual annotations [29]. Recently, Hirai S. et al [30] developed such a 

promising markerless tracking method in which a neural network is trained on patient specific DRRs. 

However, while tracking errors in training were promising, results decreased when applying the 



network to actual X-ray images, highlighting the importance of training on realistic and accurate DRR 

images [31].  

 

The formation of an X-ray image can generally be attributed to primary and secondary processes. 

Primary processes refer to the attenuation of primary photons in the object, while secondary processes 

include scatter, beam hardening, detector response characteristics and noise. Conventional methods to 

render DRRs are either based on raytracing to model the primary process and/or statistical methods 

such as Monte-Carlo simulation to model the primary and/or secondary processes [32-36]. While 

raytracing is robust and can be computationally efficient, a significant amount of image pre- and post-

processing is required to incorporate the effect of the X-ray source spectrum and secondary effects to 

render a realistic DRR. Statistical methods such as Monte-Carlo are able to render accurate virtual X-

ray images when the correct device specific parameters and source spectra are available, but are 

computationally expensive and slow, making them a sub-optimal candidate to render large amounts of 

training data for deep learning-based applications [37,38]. More recently, Unberath et al proposed 

‘DeepDRR’, a framework that aims to render realistic DRRs through sequential deep learning-based 

CT segmentation, forward projection, deep learning-based scatter estimation based on Monte-Carlo 

simulations and analytical noise injection [43,44]. A pre-trained network is available online with 

different source spectra and the possibility to tailor the framework to the local linear accelerator 

(LINAC) geometry.  

 

In this paper we propose a novel DRR rendering framework called ‘RealDRR’ for fast and robust 

rendering of highly realistic DRRs, using a combination of raytracing and deep learning based image-

to-image translation. The aim is to provide a DRR rendering framework which can be trained on site, 

requiring a reasonable amount of computational resources already available in most radiotherapy 

departments so the framework can be easily tailored to the local imaging systems and protocols to 

increase accuracy. 

 

 



Materials and Methods 

RealDRR Framework 

The RealDRR framework consists of two components applied sequentially to render a virtual X-ray 

image or DRR, schematically shown in Fig. 1.  

 

 

Figure 1: Schematic of the proposed RealDRR framework. 

 

First, the transformation from 3D CT data to 2D projection image for any imaging angle is performed 

using an in-house developed raytracer implemented using the CUDA platform (Nvidia, Santa Clara, 

CA, USA) for fast forward projection through parallel computation on the graphics processing unit 

(GPU). Taking into account the C-arm LINAC and on-board imaging system geometry, together with 

the selected isocenter in the planning CT, a 512x512 pixels 2D projection image is created through the 

summation of interpolated CT voxel values along rays traveling from the virtual X-ray source to each 

detector pixel. This results in a raw 2D DRR displaying the correct geometry, but with poor pixel 

intensity accuracy as the source spectrum, correct linear attenuation coefficients and secondary 

phenomena have not been taken into account yet, as seen in Fig. 1. 

 

As a second step, to take into account these effects in the intensity values, an image-to-image translation 

is performed using a U-net convolutional neural network architecture. The latter is part of a cGAN 

consisting of the previously mentioned U-net generator and a discriminator, as illustrated in 



Supplementary Fig. 1 and described in detail by Isola et al [39]. The input to the U-net generator is a 

2D forward projection image or raw DRR of size 512x512 pixels which is rescaled to 256x256 pixels, 

while the output is a realistic DRR of the same size, rescaled to 512x512 pixels. For training, the cGAN 

framework uses a structured loss function combining the GAN objective and a conventional L1-norm 

to obtain sharp and realistic results with minimal image artefacts [40,41]. 

 

Loss = GAN + 𝜆 . L1    (𝜆 = 50) 

 

Both the network topologies and hyperparameters were optimized for the specific application of 

realistic DRR rendering. Specifically, the number of layers and kernel sizes in the generator were 

adapted resulting in the network architectures illustrated in Supplementary Fig. 1. Optimization was 

performed using minibatch (size = 4) stochastic gradient descent (SGD) and Adam solver (learning rate 

= 0.0002, 𝛽1 = 0.9) through alternating gradient descent steps on the discriminator and generator, as 

described by Goodfellow et al [42]. While the original pix2pix framework applies the discriminator on 

an image patch level, in this study the full image was used as input to avoid tiling artifacts. A 𝜆 value 

of 50 empirically resulted in the best trade-off between image sharpness and absence of image artefacts 

related to the GAN objective.   

 

Data 

To develop, validate the hyperparameters and perform an initial evaluation of the RealDRR framework, 

imaging data from an anthropomorphic CIRS thorax phantom (CIRS, Norfolk, VA, USA) was used. 

This included a reconstructed 3D-CT as would be used for treatment planning, from which the DRRs 

are rendered (Toshiba system, 512x512x328 pixels, 1.07x1.07 mm2 in-plane resolution, 1 mm slice 

thickness) and 895 X-ray projection images from a single cone-beam CT (CBCT) acquired on a 

conventional RT system as the objective images (Varian Truebeam, full-fan mode, 1024x768 pixels, 

0.39x0.39 mm2 resolution, 100kV-15mA-20ms). Pre-processing of CBCT projection images consisted 

of cropping each image with respect to the image center to 512x512 pixels and image normalization 

between [0,1] using the minimum and maximum pixel intensities over the entire dataset. 



 

To evaluate the clinical performance of the RealDRR framework, imaging data from 6 patients treated 

with radiotherapy was used. Patients 1-3 were treated in the pelvic region and the data per patient 

included the 3D planning CT (Toshiba system, 512x512x119 pixels, 1.12x1.12 mm2 in-plane 

resolution, 3 mm slice thickness) and 895 CBCT projection images (Varian Truebeam, full-fan mode, 

1024x768 pixels, 0.39x0.39 mm2 resolution, 125:140kV-72:85mA-25ms) acquired during patient 

positioning on the radiotherapy treatment system. Patients 4-6 were treated with stereotactic 

radiotherapy (STX), wearing a thermoplastic fixation mask throughout treatment and image acquisition. 

Similarly, but with the use of different imaging protocols, the data per patient included the 3D planning 

CT (Toshiba system, 512x512x399 pixels, 0.78x0.78 mm2 in-plane resolution, 1 mm slice thickness) 

and 895 CBCT projection images (Varian Truebeam, full-fan mode, 1024x768 pixels, 0.39x0.39 mm2 

resolution, 100kV-15mA-20ms) acquired during patient positioning. For all patients, pre-processing of 

CBCT projection images was performed identical to the CIRS data.  

 

Training and evaluation 

The RealDRR network topologies and (hyper)parameters were optimized and the image-to-image 

translation network was trained using a training and validation set of 800 CBCT projection images from 

the CIRS dataset. The remaining 95 projection images were used as a test set to perform an initial 

evaluation of the framework performance.  

Next, keeping the optimized network topology and hyperparameters fixed, the framework was trained 

on 800 randomly selected CBCT projection images from patients 1-2 (pelvic), and tested on 100 unseen 

CBCT projection images from the same patients. The same trained network was also tested on 100 

randomly selected CBCT projection images of patient 3 (pelvic) and patients 4-6 (STX), respectively. 

Similarly, the framework was trained on 800 randomly selected CBCT projection images from patients 

4-5 (STX) and tested on 100 unseen projection images of the same patients, as well as on 100 projection 

images of patient 6 (STX) and patients 1-3 (pelvic), respectively. This to evaluate the intra-patient, 

inter-patient and inter-anatomical region (including different imaging protocols) generalization 

performance of the trained framework.  



 

Evaluating the quality of synthetic 2D images in terms of realistic appearance is a complex problem. 

Evaluation was performed by comparing the rendered DRR images to their respective ground-truth 

CBCT projection images using the mean absolute error (MAE), the normalized root-mean-square error 

(NRMSE), the structural similarity index (SSIM) and the peak signal-to-noise ratio (PSNR). Several of 

these metrics assume a perfectly identical anatomy between the DRRs, rendered from the planning-CT, 

and the CBCT projection images which are acquired on a different day. Therefore, pixel intensity 

profiles along the central horizontal and central vertical axis as well as intensity histograms of both 

rendered DRR images and corresponding ground-truth CBCT projection images were rendered for 

qualitative evaluation. The performance of the proposed framework was also evaluated through a 

template matching analysis between synthetic DRR templates and their ground-truth kV CBCT 

projections, explained in detail in Appendix A (supplementary material). Lastly, as the cGAN is not 

necessarily a spatially invariant transformation, the location of anatomical landmarks in images was 

evaluated before and after passing through the trained networks, as explained in Appendix B 

(supplementary material). 

All results were benchmarked against the state-of-the-art DRR rendering framework ‘DeepDRR’ 

proposed by Unberath et al [43,44]. The pre-trained network available online was implemented and 

tailored to the CBCT imaging system by selecting the best matching source spectra and implementing 

the correct LINAC and imaging system geometry. Per patient (1-6), 100 DRR images were rendered, 

cropped to 512x512 pixels and normalized between [0,1] using the minimum and maximum pixel 

intensities over the entire dataset. 

 

Results 

Training the image-to-image translation component of the RealDRR framework for 200 epochs 

(batchsize = 4) lasted 23h on a desktop PC equipped with an Nvidia GeForce GTX 1080/PCIe/SSE2 

GPU (Nvidia, Santa Clara, CA, USA), using a dataset of 800 raw DRR and CBCT projection image 

pairs. On the same desktop PC, rendering 100 realistic DRRs (512x512 pixels, 0.39x0.39 mm2 



resolution) from 100 different imaging angles through the RealDRR framework took on average 91.4s 

(raytracing: 82.6s, image-to-image translation: 8.8s). 

 

In an initial evaluation of the framework performance, after training on 800 images from the CIRS 

dataset and testing on 95 unseen images, the MAE ± 1SD, NRMSE, SSIM and PSNR equaled 0.01 ± 

0.01, 0.01, 0.98 and 39.70, respectively. Figure 2 shows a representative example of the performance 

during testing, including a 2D raw DRR rendered through raytracing which is used as input to the image-

to-image translation network, the respective RealDRR output and ground-truth CBCT projection image.  

 

 

Figure 2: A representative example of the RealDRR performance when applied on the CIRS test set, 

after training the image-to-image translation network on 800 CBCT projection images from the same 

phantom. 

 

Using clinical patient data, the performance of the RealDRR framework was evaluated in terms of intra- 

and inter-patient, as well as inter-anatomical region generalization. Table 1 comprises all quantitative 

performance results for the different test sessions, together with a comparison to the DeepDRR 

framework. The accuracy of the raw DRRs, rendered through raytracing but without image-to-image 

translation, are also included to show the added value of the image-to-image translation part of the 

framework. All evaluation was performed by comparing the rendered DRR images in each test set to 

their respective ground-truth CBCT projection images using several metrics. 

 

 



 

 

 
MAE ± 1SD [max] NRMSE SSIM PSNR 

Trained on patient 1-2 (pelvis)    

     Test patient 1-2 (pelvis) 0.01 ± 0.00 [0.28] 0.05 0.98 26.75 

     Test patient 3 (pelvis) 0.02 ± 0.02 [0.19] 0.03 0.96 31.03 

     Test patient 4-6 (STX) 0.05 ± 0.11 [0.75] 0.13 0.92 18.59 

Raw DRR patient 1-3 (pelvis) 0.27 ± 0.12 [0.65] 0.31 0.72 10.41 

DeepDRR patient 1-3 (pelvis) 0.06 ± 0.05 [0.48] 0.11 0.78 22.25 

Trained on patient 4-5 (STX)    

     Test patient 4-5 (STX) 0.01 ± 0.01 [0.36] 0.02 0.99 35.58 

     Test patient 6 (STX) 0.03 ± 0.04 [0.32] 0.05 0.93 26.89 

     Test patient 1-3 (pelvis) 0.02 ± 0.04 [0.69] 0.05 0.94 25.93 

Raw DRR patient 4-6 (STX) 0.38 ± 0.09 [0.71] 0.43 0.68 8.24 

DeepDRR patient 4-6 (STX) 0.23 ± 0.12 [0.75] 0.28 0.86 11.82 

Table 1: Quantitative results of the RealDRR framework and comparison to the raw DRRs and 

DeepDRR framework per anatomical region using the mean absolute error (MAE) ± 1 standard 

deviation (SD) [maximum MAE], the normalized root-mean-square error (NRMSE), the structural 

similarity index (SSIM) and the peak signal-to-noise ratio (PSNR). All image intensities were 

normalized between [0,1]. 

 

When the network is tested on unseen imaging data coming from the same patients of whom data was 

used for training, the RealDRR framework shows good (intra-patient) generalization performance. 

Taking into account that image intensities range between [0,1], pixel intensity accuracy is high with 

MAE ± 1SD equal to 0.01 ± 0.00 and 0.01 ± 0.01 for the pelvic and cranial region, respectively. Further, 

in both anatomical regions, the SSIM ranges between 98% and 99%.  

 

When trained and tested on different patients but representing the same anatomical region, MAE ± 1SD 

and SSIM equal 0.02 ± 0.02 and 96% for the pelvic region and 0.03 ± 0.04 and 93% for the cranial 



region. While the inter-patient generalization performance is slightly lower than intra-patient, the 

RealDRR framework shows better results compared to the DeepDRR framework for the respective 

anatomical regions with statistical significance on all metrics (two-sample t-test, p < 0.05). Fig. 3 shows 

a representative example of the inter-patient generalization performance of RealDRR for both the pelvic 

and cranial region. Per anatomical region, the figure includes a 2D forward projection image or raw 

DRR rendered through raytracing which is used as input to the image-to-image translation network, the 

respective RealDRR output and ground-truth CBCT projection image. 

 

The decrease in accuracy continues when evaluating the inter-anatomical region generalization 

performance, which also includes the generalization between different imaging protocols. MAE ± 1SD 

equal 0.05 ± 0.11 and 0.02 ± 0.04 when trained/tested on the pelvic/cranial and cranial/pelvic region, 

respectively. Nevertheless, for the respective anatomical regions, RealDRR continues to outperform the 

DeepDRR framework on all metrics with statistical significance (two-sample t-test, p < 0.05). 

 

 

Figure 3: A representative example of the RealDRR inter-patient generalization performance within 

the same anatomical region for the pelvic (top) and cranial (bottom) region.  

 



From the RealDRR and corresponding ground-truth CBCT projection images presented in Fig. 2 and 

Fig. 3, pixel intensity profiles along the central horizontal and central vertical axis are plotted in 

supplementary Fig. 2, while supplementary Fig. 3 includes the pixel intensity histograms of the same 

images.  

 

Table 2 contains the results of the template matching analysis. Using templates generated through the 

proposed RealDRR framework results in a significant improvement in matching accuracy with the 

ground-truth kV CBCT projections compared to raw DRR (two-sample t-test, p < 0.001) or DeepDRR 

(two-sample t-test, p < 0.05). 

 
50x50 55x55 60x60 65x65 

Pelvis      

     RealDRR  1.5 ± 3.1  1.3 ± 2.4 1.1 ± 1.5 1.0 ± 1.0 

     Raw DRR  48.6 ± 24.5 45.2 ± 43.2 44.1 ± 24.4 41.2 ± 26.0 

     DeepDRR  3.3 ± 6.5  2.4 ± 4.9 1.6 ± 1.4  1.7 ± 1.7 

Head      

     RealDRR 1.81 ± 1.2 1.9 ± 1.2 1.8 ± 1.1 1.9 ± 0.9 

     Raw DRR 65.7 ± 19.2 62.4 ± 19.6 59.2 ± 20.5 55.3 ± 22.1 

     DeepDRR 29.4 ± 4.0  16.7 ± 6.0 10.5 ± 5.7 11.5 ± 5.6 

Table 2: Results of the template matching analysis, performed between templates rendered from the 

synthetic images through raytracing (raw DRR), the proposed framework (RealDRR) and a state-of-

the-art method (DeepDRR) and the ground-truth kV CBCT projections. Results are presented as the 

MAE ± 1 SD in millimeter between the ground-truth location and matched template location averaged 

over the different locations and 100 images, for the different template sizes. 

 

Results of the spatial invariance analysis are included in the supplementary materials (Appendix B) 

and show that the geometrical location of anatomical landmarks is not always maintained when the 

network is trained on a single patient. This because the cGAN learns to correct for the anatomical 

differences between the planning CT and the CBCT acquisition several days later, and as such 



introduces geometrical changes. However, when trained on the combined data from two patients, 

geometrical locations remain stable. 

Discussion 

In this paper, a novel framework for realistic DRR rendering called RealDRR was proposed, consisting 

of a combination of fast raytracing and deep learning-based image-to-image translation. The 

experiments in this study have shown that training the framework to reach state-of-the-art results 

requires a reasonable amount of computational resources which are already available in most 

radiotherapy departments. This makes it feasible to train the framework on site and with retrospective 

on site imaging data to easily tailor the internal parameters to the local CT and CBCT imaging systems 

and imaging protocols, resulting in highly realistic DRRs. Once trained, the framework is able to render 

100 highly realistic DRRs in under two minutes, making it an ideal tool to render large amounts of 

patient-specific pre-treatment training data with automatic annotations. 

 

To evaluate the clinical performance of the RealDRR framework, imaging data from three diverse 

anatomical regions was used, including an anthropomorphic thorax phantom and 6 patients treated with 

radiotherapy in the pelvic and cranial region. Several experiments were performed to evaluate the intra-

patient, inter-patient and inter-anatomical region generalization performance. In all scenarios and for 

every anatomical region, the RealDRR framework rendered highly realistic DRRs, resulting in better 

performance both quantitatively and qualitatively compared to the current state-of-the-art. The results 

with highest accuracy were obtained when the framework was both trained and tested on imaging data 

coming from the same patients, but this solution is rather unpractical in a clinical setting. Therefore, 

training and applying the RealDRR framework is recommended per anatomical region to obtain the 

optimal balance between accuracy and practical applicability, as the framework can be tailored to 

common anatomy-specific protocols by training on retrospective imaging data from patients treated in 

the same anatomical region. Further, as it was shown that training the framework on a single patient is 

not spatially invariant as the cGAN learns to correct for possible anatomical differences between the 

planning CT and CBCT acquisition, it is highly recommended that the training set contains retrospective 

data from at least two patients. 



 

Previous studies have addressed the speed of DRR rendering when applying raytracing, taking 

advantage of the powerful parallel computation capability of the GPU as was done in this study [45-

49]. However, most of these studies aimed to render DRRs solely for 3D/2D image registration for 

patient positioning, focusing on the appearance of bony anatomy resulting in low soft tissue contrast 

and less realistic images. 

Other studies have specifically addressed the realistic appearance of DRR images. Moore et al [50] 

replaced the use of rays with 3D pencil beams to increase realness and avoid aliasing artefacts. Staub 

et al [51] aimed to render realistic DRRs solely based on first principles, e.g. the fundamental physical 

principles underlying image formation to replicate absolute image intensities. By first removing 

secondary effects such as scatter, beam hardening and veiling glare, a CT number to linear attenuation 

coefficient function was determined before applying forward raytracing. While both methods were able 

to render highly realistic DRRs, several phantom measurements were necessary to quantify the system-

specific secondary effects before they could be added in a post-processing step. With the RealDRR 

framework, these measurements are avoided completely by training the network with actual X-ray 

images so the framework learns how to correct for secondary effects by itself. Unberath et al [44] 

proposed one of the first DRR rendering frameworks using deep learning (DeepDRR) and provide the 

framework pre-trained online for fast and practical implementation without requiring expert knowledge. 

While the network is able to render realistic DRRs without requiring any measurements or training and 

is able to render a large number of DRRs in a reasonable time frame, the framework is not designed for 

detailed tailoring to on site imaging protocols and systems as it requires Monte Carlo simulations to 

render training data. As such, it renders more generic images resulting in less accurate intensity values 

compared to RealDRR, making it less appropriate to render tumor templates or pre-treatment training 

data for tracking algorithms. 

 

To evaluate the extent of realistic appearance, multiple metrics as well as qualitative comparisons using 

intensity profiles and histograms were used. The latter have shown improvements can be made 

regarding under- and overestimation of pixel intensity values, either through post-processing in case of 



fixed systematic deviations per anatomical region or by further improving the image-to-image 

translation part of the framework. To avoid interference due to anatomical changes between the 

planning CT and the CBCT projections, the use of CycleGANs and unpaired training could provide an 

interesting alternative [52].  

The performance of the proposed framework was also evaluated by applying the synthetic images in 

one of the intended applications, which highlighted the possible improvements the framework can 

accomplish. As the analysis in deep learning-based applications was outside the scope of this paper, the 

code of the RealDRR framework will be made publicly available so novel markerless tumor tracking 

methods can be trained and/or re-evaluated using RealDRR images. As DRRs provide valuable pre-

treatment and patient-specific information, we believe RealDRR will prove to be a helpful tool in 

facilitating a number of novel applications in the field of radiotherapy and personalized medicine. 
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Highlights 

- DRRs represent valuable patient-specific pre-treatment information and training data. 

- A novel framework for highly realistic and efficient DRR rendering is proposed, termed 

RealDRR. 

- RealDRR allows on-site training to tailor the parameters to local imaging systems and 

protocols. 

- RealDRR is able to render 100 highly realistic DRRs in under 2 minutes. 
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