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Solving the joint order batching and picker
routing problem, as a clustered vehicle

routing problem

Babiche Aerts Trijntje Cornelissens Kenneth Sörensen

�e Joint Order Batching and Picker Routing Problem (JOBPRP) is a very promis-
ing approach to minimize the order picking travel distance in a picker-to-parts
warehouse environment. We show that this JOBPRP can be modelled as a clus-
tered vehicle routing problem (CluVRP) by replacing vehicles by batches, clusters
by orders and customers by pick locations.

To solve this cluster-based model of the JOBPRP, we implement a two-level Vari-
able Neighborhood Search (2level-VNS) meta-heuristic as used earlier for the Clu-
VRP, and study which adaptations are required to perform e�ciently in a ware-
house environment. Additionally, we test if the Hausdor� distance used for the
CluVRP can serve as a valid clustering criterion for order batching. We imple-
ment the Hausdor� distance in two di�erent ways in our batching heuristic, and
compare the performance with the cumulative minimal aisles visited-criterion,
known as a well-performing batching metric in rectangular warehouses with par-
allel aisles.

Finally, we show that the CluVRP model solved by the 2level-VNS approach
performs well compared to state-of-the-art algorithms for the OBP in single-block
warehouses. Only a multi-start VNS approach published recently obtains slightly
be�er solutions. Concerning the Hausdor� distance, we must conclude that in
most experiments the minimum-aisles criterion retains a be�er �t in this ware-
house context.

1 Introduction

Order picking, the act of retrieving Stock Keeping Units (SKUs) from storage locations to ful�l
order requests, is the most costly operation in warehouse management, especially in picker-to-
parts systems where the pickers walk through aisles, search and pick items, and bring them to
a depot for further consolidation. Additionally, the advent of e-commerce caused a shi� from
unit-load (pallet) orders to customer orders consisting of various SKUs in small quantities,
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making it worthwhile to pick multiple orders in the same pick tour. However, certainly in
those e-commerce environments, walking remains by far the most time consuming (De Koster
et al., 2007) and minimisation of pickers’ travel distances remains a major objective.

�e order picker’s travel distance is a�ected by tactical decisions such as layout of the ware-
house (warehouse design), storage location of the items (storage assignment) and assignment of
pickers to speci�c picking areas (zoning). But at operational level, the act of clustering customer
orders into batches (batching) and sequencing the picking of the items in those batches (rout-
ing), have most impact (Yu and De Koster, 2009). Since large savings on the walking distance
can be made by optimising the batching and routing policy simultaneously (Van Gils et al.,
2018), we focus in this paper on modelling and solving the combined problem, also known as
the Joint Order Batching and Picker Routing Problem (JOBPRP). Although the order batching
problem (OBP) and picker routing problem (PRP) have been studied extensively as separate
problems, this joint problem is studied to a minor extent.

Just as the PRP bears large similarities with the travelling salesman problem (TSP), so does the
JOBPRP resemble the clustered VRP (CluVRP), a variant of the capacitated VRP. �e capacitated
VRP aims to assign the delivery packages for a group of customers to vehicles of a speci�c
capacity such that the total travel distance of the vehicles is minimised. �e CluVRP, introduced
by Sevaux et al. (2008), extends this problem by �rst partitioning customers into clusters based
on a prede�ned criteria (e.g. postal code), and subsequently assigns those clusters to vehicles
for which routes are determined. By replacing vehicles by batches, clusters by orders, and
customers by pick operations, the JOBPRP can be modelled as the clustered VRP. �is structural
overlap between vehicle routing and order picking was already highlighted in early literature
by Chisman (1975) who introduced the idea of a clustered TSP. Since then, further studies on the
cluster-based models are rather found within the VRP literature, apart from Lö�er et al. (2018)
who recently used the concept to plan the routing in AGV-assisted order picking systems.

In this paper, we model the JOBPRP as a CluVRP, and implement a similar two-level Variable
Neighborhood Search (2level-VNS) metaheuristic, as originally developed for the CluVRP by
Defryn and Sörensen (2017). �is two-level approach is achieved by alternating between a VNS
at order-level to compose the batches, and a VNS at picking operation-level to construct the
routes. A�er diversi�cation, the algorithm iterates over the two VNS levels until a stopping
criterion is met. In the original CluVRP, Defryn and Sörensen (2017) use the Hausdor� distance
as metric for the closeness of customer clusters, while the actual travel distance is not used until
the determination of the vehicles’ routings. We test whether this Hausdor� distance performs
equally well for the JOBPRP, although in contradiction to the CluVRP, in the JOBPRP the same
physical pick locations are o�en visited by di�erent batches.

�e remainder of this paper is organised as follows. In section 2 we describe in detail the
JOBPRP and highlight the similarities and di�erences with the CluVRP. Section 3 presents a
literature review on OBP, PRP, JOBPRP and CluVRP. In section 4, we introduce the Hausdor�
distance as used for the CluVRP, and suggest improvements to the implementation in case of
the JOBPRP. We compare the Hausdor�-based batching heuristics with the well-known mini-
mum aisles visited-criterion. In section 5 we describe the 2level-VNS algorithm in detail. �e
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experimental setup and computational results, as well as a comparison with other state-of-the-
art OBP algorithms, are discussed in section 6. We conclude and elaborate on future research
in section 7.

2 The joint order batching and picker routing problem

2.1 Problem description

In e-commerce environments, customer orders consist of one or multiple order lines that each
depict a particular item and its requested quantity. �ese items are stored at di�erent pick
locations, according to a prede�ned storage policy. Pickers are provided with a pick list with
all order lines that must be handled and the particular sequence of pick locations (= picking
route). To avoid additional sorting operations and associated costs at the depot, items that
belong to the same order are not distributed over di�erent pick lists but forced to be processed
together (order integrity rule). Consequently, a batch is de�ned as the set of complete orders
processed in the same pick tour. �e size of a batch is de�ned by the number of items that �t
into the batch size (to the example of Gibson and Sharp (1992), Zhang et al. (2017) and Scholz
and Wäscher (2017)). We hereby take into consideration the capacity of the carts that the
pickers use to collect the items. �e pick tours always start and end at the (single) depot.

Given the objective of minimizing the total travel distance, and knowing the batch size and all
orders that have to be picked, two sub-questions remain:

• Order batching (sub)problem (OBP): How are orders combined into batches?

• Picker routing (sub)problem (PRP): For each batch, in which sequence does the picker
visit the pick locations that store the requested items?

When solving the two (sub)problems simultaneously, the combined problem is known as the
JOBPRP.

2.2 Comparison with the clustered VRP

In the CluVRP, customers are clustered based on a speci�c criterion such as geography (e.g.
sharing the same postal code) or preference (e.g. preferring the same driver). Next, those
clusters are assigned to vehicles of a speci�c capacity. A cluster can only be assigned to a
vehicle if the total demand of all clustered customers �ts into the capacity of the vehicle. Once
all clusters are assigned, a route is constructed for each vehicle such that all customers are
served and the total travel distance is minimized (Defryn and Sörensen, 2017).

Barthélemy et al. (2010) introduced a heuristic approach to solve the CluVRP where all cus-
tomers of the same cluster are forced to be served before the vehicle moves on to the next
cluster. �is problem is referred to as the clustered VRP with strong cluster constraints. How-
ever, for distance purposes it could be be�er to relax this rule and allow vehicles to enter and
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(a) Clustered VRP with hard cluster constraints (b) Clustered VRP with so� cluster constraints

Figure 1: Representation of the clustered VRP with a) hard and b) so� cluster constraints. So� cluster constraints
allow to visit clusters multiple times if this leads to shorter routes, shown by the dashed line at the bo�om.

leave clusters multiple times. Customers of the same cluster however are still to be visited by
the same vehicle. Defryn and Sörensen (2017) introduced this variant as the clustered VRP with
so� cluster constraints. Both variants of the clustered VRP are illustrated in �g. 1a and �g. 1b.

Many properties of the clustered VRP with so� cluster constraints are recognized in the struc-
ture of the JOBPRP and both problems can be de�ned by the same mathematical model. Indeed,
the JOBRPR can be modeled on an undirected graph G = (V,E), where V represents the set
of picking operations to be executed. A picking operation Vi is characterized by an item re-
quested by a speci�c order. �e quantity of the item to be retrieved by the pick operation Vi
is denoted by qi. Items from the same storage location but requested by di�erent orders are
included as separate picking operations, and as such as separate nodes. Picking operation V0
refers to the visit of the depot, which is obligatory at the start and end of each pick route. For
each edge (i, j) ∈ E that connects two nodes (= pick operations), the distance dij is de�ned as
the shortest travel distance between the locations related to pick operation Vi and pick oper-
ation Vj . For pick operations Vi and Vj requesting the same item stored at the same location
but for di�erent orders, the distance dij is equal to 0.

K is a set of batches. Each batch has the same capacity Q, de�ned as the total number of items
that can be picked by a batch. �e set of orders is given by R. �e order r0 stands for visiting
the depot V0. �e set of pick operations to complete an order r is presented by Cr = {Vi ∈
V \V0 : ri = r}. Additionally S is any subset of V that is not equal to V, δ+(S) is the set of
outgoing edges (i, j) ∈ S × V \S and δ−(S) the set of incoming edges (i, j) ∈ V \S × S.

xijk =


1, if the route for batch k goes from the location to perform pick operation i to the

location to perform pick operation j
0, otherwise

yik =

{
1, if the pick operation i is performed by batch k
0, otherwise

�e objective function of the JOBPRP is modelled as
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Min
∑

(i,j)∈E

∑
k∈K

dijxijk (1)

Subject to ∑
k∈K

yik = 1 ∀i ∈ V \V0 (2)∑
k∈K

y0k =
∑

j∈V \V0

∑
k∈K

x0jk ≤ |K| (3)

∑
j∈V

xijk =
∑
j∈V

xjik = yik ∀k ∈ K,∀i ∈ V (4)

∑
i∈V \V0

qiyik ≤ Q ∀k ∈ K (5)

∑
i∈S

∑
j 6∈S

xijk ≥ yhk ∀S ⊆ V \V0,∀h ∈ S,∀k ∈ K (6)

∑
(i,j)∈δ+(Cr)

∑
k∈K

xijk =
∑

(i,j)∈δ−(Cr)

∑
k∈K

xijk ≥ 1 ∀r ∈ R (7)

yik = yjk ∀i, j ∈ Cr, ∀r ∈ R,∀k ∈ K (8)
xijk ∈ {0, 1} ∀i ∈ V,∀j ∈ V,∀k ∈ K (9)
yik ∈ {0, 1} ∀i ∈ V,∀k ∈ K (10)

�e objective function (1) is to minimize the total travel distance over all batches. Constraints
(2) guarantee that each pick operation is executed by one batch only. Constraint (3) forces all
batches, that perform at least one picking operation, to start their route at the depot. Con-
straints (4) ensure each location related to a speci�c pick operation to be entered and le� by
the same batch. Constraints (5) state that the number of items related to pick operations ex-
ecuted by the same batch, cannot exceed the capacity of that batch. �e subtour elimination
constraints are described by (6). Constraints (7) refer to the so� cluster constraints, which
no longer oblige to ful�l orders one a�er the other, but allow to complete orders of a batch
simultaneously. Lastly, the order integrity rule is represented by constraints (8).

Apart from terminology-based adaptations, the mathematical structure of the JOBPRP and the
CluVRP with so� cluster constraints is identical. �e di�erence between both problems is
context based and related to the number of visits possible for one location. For the CluVRP,
each customer is characterised by a unique location/address that is normally visited only once
by a vehicle. For the JOBPRP, there is no restriction on the number of batches that visit a
speci�c warehouse location, since multiple orders can require the same item (stored at the
same location). Of course, this number will be minimised for distance purposes, but it is not
restricted to one. However, in the mathematical formulation no constraint has to be adapted or
added to deal with this disparity. Instead, we de�ne V as the set of picking operations, where
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two picking operations can refer to the retrieval of the same item at the same location but for
di�erent orders, retrieved by the same or di�erent batches.

�e contextual dissimilarity is also re�ected in the data structure of both problems. �e CluVRP
starts with a list of customers, characterized by a demand and location. During a straightfor-
ward precomputation the clusters are created, based on a clustering criterion and the fact that
the total demand of a cluster should �t the vehicle’s capacity. For the JOBPRP however, the
orders are given as input data which already represent the clusters, independent of the storage
location of the order’s items. Only in a secondary phase information regarding the storage
locations of the items is integrated, based on the inventory available in the warehouse. �e
similarities and di�erences between CluVRP and JOBPRP are presented in table 1.

CluVRP with so� cluster constraints JOBPRP
Concepts
Vehicle ↔ Batch
Cluster ↔ Order
Customer ↔ Pick operation at item level
Input data & precomputation
List of customers with for each customer:
- Customer demand
- Customer address
- Customer postal code (or preferred driver)
Clusters created based on a criterion like postal
code (or preferred driver)

⇓
List of customer clusters with for each cluster: ↔ List of orders (each order = a cluster) with:
- Cluster demand = sum of customers demand - Order quantity = sum of requested item quantities
- Customers’ address - Item’s number/description
(A)symmetrical routing environment ↔ Symmetrical warehouse layout
- Available road network - Warehouse layout and item storage locations
Cluster - Assignment to vehicle / to batch
Clusters are combined and assigned to a vehicle = Orders are combined and assigned to a batch
Customers of same cluster visited by same vehicle = Order integrity rule
Each customer visited only once ↔ Items can reoccur in multiple orders
Cluster demand cannot exceed vehicle capacity = Order quantity cannot exceed batch capacity
Route construction for vehicle / for batch
Create route for each vehicle that minimizes the to-
tal travel distance

= Create route for each batch that minimizes the total
travel distance

Start and end route at depot = Start and end route at depot

Table 1: Comparison of the CluVRP with so� cluster constraints and JOBPRP.

3 Literature review

In section 3.1, we give a literature overview for the PRP and OBP is recapitulated. In next
sections, we recapitulate existent literature for the JOBPRP (section 3.2) and CluVRP (sec-
tion 3.3).
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3.1 Warehouse literature on the order batching and picker routing problem

For years the Order Batching Problem (OBP) and Picker Routing Problem (PRP) have been
studied as separate problems in warehouse literature. Following and Henn and Wäscher (2012)
and Scholz and Wäscher (2017), the OBP is de�ned as follows: assuming the storage allocation,
capacity of the picking device and routing policy to be known, how are orders combined into
batches such that the total travel distance is minimized? Sequentially, one solves the PRP
resulting for each batch. However, since both OBP and PRP aim to minimise the walking
distance for order pickers, these problems are strongly connected (Van Gils et al., 2018). Despite
the fact that studies on the joint problem are increasing in the last years (overview given in
next section), we observe the majority of experiments have focussed on only one problem. We
give an overview of existing research.

In case of a PRP in a rectangular warehouse with parallel aisles, proven to be NP-hard (Won
and Olafsson, 2005), the routing for one batch of items is o�en de�ned by heuristics dedicated
to the typical aisle-structure. Such heuristics give straightforward guidelines (e.g. ”traverse the
aisle if a pick location has to be visited”) which are considered easy to memorize and execute,
although they not always result in the best possible (i.e., shortest) route. Among them, the
s-shape (or traversal) (�g. 2a), largest gap (�g. 2b) and combined routing heuristic (�g. 2c) are
implemented most frequently. For a full description of these dedicated routing heuristics we
refer to De Koster et al. (2007).

(a) S-shape routing (b) Largest gap routing (c) Combined routing

Figure 2: Visulation of routing heuristics dedicated to warehouse layout, illustrated for a parallel warehouse layout.

Earlier, Ratli� and Rosenthal (1983) developed an exact algorithm to solve the PRP in a single-
block warehouse with parallel aisles, which was later extended to a two-block warehouse by
Roodbergen and Koster (2001). For larger multi-block layouts, Cambazard and Catusse (2018)
are able to solve the PRP in multi-block warehouses up to 8 cross-aisles using a dynamic pro-
gramming approach, although the complexity of the approach is exponential in the number of
cross-aisles. An alternative solution method is available as the PRP shares many similarities
with the well-studied Travelling Salesman Problem (TSP). Indeed, the Lin-Kernighan-Helsgaun
algorithm, considered one of the best heuristics to solve the TSP, outperforms the warehouse
dedicated routing heuristics and has proven to solve the PRP close to optimality (�eys et al.,
2010); (Van Gils et al., 2018).

Concerning the OBP, Gademann and Velde (2005) have proven that this problem is NP-hard
and polynomially solvable when batches consist of only two orders. As a consequence, a large
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share of warehouse literature is devoted to the study of heuristics to solve this batching problem
for realistic instances. �e few exact solution approaches been proposed are limited to small
problem instances (up to 32 orders) (Gademann and Velde, 2005). More recently, Öncan (2015)
introduced Mixed Integer Linear Programming (MILP) formulations in three variants, where
each variant considers another routing policy (s-shape, return and midpoint routing). Optimal
solutions were found for small size OBP instances (10 orders per instance).

Ongoing research proves that well-performing batching heuristics o�en make use of char-
acteristics of the warehouse layout and storage policies. An example is the minimum aisles
visited-criterion, used to combine orders with the aim to minimize the number of aisles to be
visited by the batch. In fact, the batching heuristics to solve the OBP can be distinguished into
�ve groups: priority rule-based algorithms (e.g. First-Come-First-Serve (FCFS) rule), seed al-
gorithms, savings algorithms, metaheuristics and data mining approaches. We refer the reader
to the detailed reviews of De Koster et al. (2007) and Henn and Wäscher (2012) and supplement
with further references if relevant for this paper.

Seed algorithms create batches one by one, by using speci�c batching criteria. �e seed order
of a batch is the �rst order selected according to a prede�ned criterion. Next, the same or
another criterion is used to assign the following order to the batch (De Koster et al., 2007).
�ese assignments are repeated until the batch is full or the remaining capacity is insu�cient
to include the smallest unassigned order of the instance. �e process continues with the next
batch until all orders are assigned. Ho et al. (2008) present an extensive study in which 11
seed-order criteria and 14 accompanying-order criteria were tested. Many of these batching
criteria make use of a metric that approximates the closeness between orders instead of taking
into account the actual distance between pick locations. Among them the minimum aisles
visited-criterion, explained earlier.

Seed algorithms can be implemented in two ways. In single mode, each order remains an in-
dividual order once added to a batch. Illustrated on the minimal aisles visited-criterion, this
means that the number of aisles to complete one order is added to the total, despite a potential
overlap of aisles. In cumulative mode, the seed order is renewed every time an order is added
to the batch. Both orders are merged and the value of the batching criterion is recalculated
for the batch as a whole, rather than accumulated for each order separately. �e frequent re-
calculations of the seed order make the cumulative mode more complex and time consuming,
but in general the cumulative information has a positive in�uence on the outcome. Ho and
Tseng (2006), Ho et al. (2008) and Van Gils et al. (2018) implemented the minimal aisles visited-
criterion in the cumulative mode which they prove to work well in comparison to other studied
batching criteria. Despite these arguments, De Koster et al. (1999) showed that the cumulative
mode hardly outperformed the single mode for some other batching criteria, e.g. the maximum
aisles visited-criterion.

Savings algorithms are based on the Clarke and Wright algorithm, originally developed to solve
VRPs. �e algorithm initially assigns each order to a separate batch. In a second stage, orders
are merged if a distance saving can be realised. �is move is evaluated using a savings matrix,
which is o�en only calculated once, referred to as the C&W(i) variant of the savings algorithm
(Van Gils et al., 2018). Instead of travel distance, the savings concept can be applied to other
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metrics, as illustrated by Rosenwein (1996). For example, in case of the minimum aisles visited-
criterion, the merge is considered bene�cial if the combination of two orders results in less
aisles to be visited in total.

Metaheuristics have been proposed to solve the OBP in warehouse literature since 2005. Many
of those heuristics start with an initial solution that is o�en created using the savings algo-
rithm discussed above (Henn and Wäscher, 2012). Given this initial solution, the metaheuris-
tic aims to improve the solution by means of neighborhoud exploration through which al-
ternative batch assignments are found and evaluated. Di�erent types of metaheuristics have
been proposed: genetic algorithms (Hsu et al., 2005), Variable Neighborhood Search algorithms
(Albareda-Sambola et al., 2009); (Menéndez et al., 2017), Tabu search algorithms (Öncan, 2015)
and A�ribute-Based Hill Climber algorithms (Henn and Wäscher, 2012). Among those, the
Multi-Start VNS approach by Menéndez et al. (2017), was able to outperform previous methods
and is considered a state of the art solution method for the OBP.

Most OBP metaheuristics have in common that they explore the neighborhood of the incum-
bent solution through the execution of moves which are generally accepted when the total
travel distance is improved. �is means that for each batch re-composition, the total travel dis-
tance must be recalculated to decide whether or not the incumbent solution is outperformed. To
solve the PRP for each newly composed batch, dedicated routing heuristics are used, for which
computational e�ort is limited. However, Roodbergen (2001) showed that the performance of
dedicated routing algorithms tends to deteriorate when altering the number of cross aisles. In-
deed, the majority of studies on the OBP that use dedicated routings, perform experiments for
a parallel single block warehouse (�g. 2), rather than multiple-block layouts (�g. 3).

Figure 3: Illustration of a parallel, two-block warehouse.

3.2 Literature on the JOBPRP

Even if much e�ort is devoted to the composition of good order batches, if these batches are
collected by less optimal routings, the shortest total travel distance will not be obtained. �ere-
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fore, it seems straightforward to solve the OBP and PRP in an integrated way, leading us to the
joint order batching and picker routing problem (JOBPRP). From our own research, we learned
there is a thin line beteen the JOBPRP and OBP. For the sake of clarity, we de�ne that the cru-
cial di�erence lies in the fact that in the JOBPRP no decision regarding the OBP or PRP is
considered to be given. �erefore, metaheuristics that assume a certain routing policy are not
found to be applicable for the JOBPRP. We hereby follow Henn and Wäscher (2012), Scholz and
Wäscher (2017) and Van Gils et al. (2018).

So far, a handful of metaheuristics have been proposed that solve the joint problem. Among
them we �nd Won and Olafsson (2005), who were among the �rst to address the joint prob-
lem. Kulak et al. (2012) use a tabu search algorithm to solve the order batching problem and
two TSP heuristics to solve the resulting routing problems. Batches are created using a route
similarity-regret value index (RS-RV) which de�nes the overlap in travel distances if two orders
would be merged. Tsai et al. (2008) present a multiple genetic algorithm approach, one to form
the batches, one to construct e�cient routes. Cheng et al. (2015) propose a hybrid approach
in which a particle swarm optimization is used for the order allocation, while an ant colony
optimization algorithm determines the route for each batch.

So far, Valle et al. (2017) are the only ones to develop an exact approach for the JOBPRP. By
means of a branch-and-cut algorithm, instances up to 20 instances were solved to optimality.
�e authors show that with the cuts presented in their work, computational results were sig-
ni�cantly improved. Scholz and Wäscher (2017) present an iterated local search approach in
the authors propose a routing heuristic derived from the exact solution approach presented
by Roodbergen and Koster (2001). �e authors conclude that it is worthwhile to integrate an
exact PRP solution instead of simple routing heuristics dedicated to warehouse layout. To our
knowledge, Briant et al. (2020) are the latest to contribute to the JOBPRP literature. �e au-
thors propose a heuristic based on column generation that provides lower and upper bounds
for JOBPRP instances that take place in a rectangular warehouse. �e authors state that the
PRP on itself can be easily solved to optimality by speci�cally making use of the properties re-
lated to the rectangular warehouse shape. Based on this observation, Briant et al. (2020) claim
that also the storage allocation decision could be integrated into the solution approach such
that multiple order picking operations can be solved all at once.

3.3 Literature on the CluVRP

A simpli�ed version of the CluVRP was early introduced by Chisman (1975) as the Clustered
TSP. �e author introduced the idea of clustering customers and assigning those clusters to
the vehicle instead of individual customers. He also showed that the same idea can be used
in a warehousing context and presented a MILP formulation which he tested for the clustered
PRP that results for a one batch-problem. �is study forces the so called stock numbers (pick
locations) of the same cluster to be visited before visiting the stock number of another cluster,
currently known as the strong cluster constraint variant of the problem (visualised in �g. 1a).
�e author pointed out that these strong cluster constraints might lead to unnecessary travels
if clusters contain the same stock number. By guaranteeing that the distance between the
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same stock numbers is set to 0, his algorithm forces clusters to be processed consecutively by
imposing the last visited stock number of cluster i is sequenced by the same stock number in
cluster i+1.

Other studies on the clustered TSP in the warehousing context remain limited to Lö�er et al.
(2018). �is study models the routing of pickers assisted by an AGV (Automated Guided Vehi-
cle) by means of a capacitated clustered TSP. �e AGV follows the picker and carries the items
retrieved by the picker. Once an order is completed, the AGV returns to the depot while the
picker resumes his pick tour, assisted by another, empty AGV. Similar to Chisman (1975), the
strong cluster constraints-variant of the problem is applicable (illustrated in �g. 1a). Since the
AGV is currently assumed to carry only one order at the time, it is not relevant to look into the
so� cluster constraints-variant of the problem.

�e majority of further studies on the clustered TSP and by extension the CluVRP are worked
out for the vehicle routing context, to begin with Barthélemy et al. (2010) who were the �rst
to approach the problem by means of a heuristic. For an overview of literature on the CluVRP
until 2017, we refer to Defryn and Sörensen (2017).

�e idea to solve the CluVRP with strong cluster constraints by a two-level VNS, was �rst
proposed by Defryn and Sörensen (2015). �e authors claim to reduce the complexity of the
problem by �rst solving the assignment of clusters to vehicles, next solving the routing of the
vehicles at customer level while respecting the strong cluster constraints, and �nally iterating
between those two levels. Indeed, starting from an initial cluster assignment to the vehicles, the
�rst VNS aims to �nd a local optimum (on a �rst-improvement basis) through swaps or reloca-
tions of clusters for which both inter and intra vehicle operators are implemented. Because the
calculation of the travel distance for each potential cluster reassignment is a computational
intensive process, the authors proposed the clusters’ Euclidean center as a measure for the
closeness of customer clusters. During the second VNS, in which the routings of the vehicles
are determined at customer-level, the same local search principle is followed, but the swaps
and relocations are driven by the travel distance rather than the clusters’ Euclidean centres.

�e idea of a two-level solution approach was continued by Expósito-Izquierdo et al. (2016)
who instead of a VNS propose a combination of the record-to-record travel algorithm using
the clusters’ Euclidean centres to solve the problem at vehicle-level and the LKH algorithm to
solve the problem at customer-level, while respecting the strong cluster constraints. Pop et al.
(2018) are the latest to our knowledge to solve the strong cluster constraints CluVRP by a two-
level approach. �e authors propose a genetic algorithm to solve the problem at cluster-level
and the TSP concorde solver (an online solver tool, available at http://www.math.uwaterloo.ca/
tsp/concorde.html) to determine the corresponding routes.

Both Defryn and Sörensen (2015) and Expósito-Izquierdo et al. (2016) initially propose the clus-
ters’ Euclidean center as an approximation for the closeness between customer clusters. Later
on, Defryn and Sörensen (2017) suggest the Hausdor� distance as closeness criterion between
clusters. �e Hausdor� distance is o�en used for object matching in the �eld op computer vi-
sion and object recognition (Sim et al., 1999), to measure how many similarities two non-empty
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sets in a metric space show, in respect of their position (Hung and Yang, 2004). �e Hausdor�
distance can be used for both Euclidean (e.g. VRP) and Manha�an distances (e.g. PRP).

All solution methods discussed so far tackle the CluVRP with strong cluster constraints. How-
ever, Defryn and Sörensen (2017) identi�ed practical arguments for relaxing these constraints
and introduced the so� cluster constraint-variant of the problem. By using the same two-level
VNS solution method with only minor adaptations, the authors obtained shorter travel dis-
tances for the same problem instances.

One of the latest additions to the CluVRP literature with so� cluster constraints, is the devel-
opment of an exact method by Hintsch and Irnich (2020), who worked out a branch-and-cut
algorithm able to optimally solve instances up to 400 customers or 50 clusters.

4 Proposed order batching heuristics

Defryn and Sörensen (2017) originally developed the two-level VNS approach with the aim
to integrate the cluster idea into the solution approach. �e authors proposed the Hausdor�
distance to approximate the closeness between clusters and used this criterion to combine
clusters into vehicles, for both the strong and so� cluster constraints-variant of the problem.
We will adopt this idea to solve the JOBPRP.

In section 4.1 we interpret the Hausdor� distance as implemented by Defryn and Sörensen
(2017), but applied for the case of the JOBPRP. In section 4.2, we adapt the way the Hausdor�
distance is used in the batching heuristic in order to align be�er with the so� cluster charac-
teristics of the JOBPRP. In section 4.3 we explain the minimal aisles visited-criterion that will
be used as benchmark for the Hausdor� distance.

4.1 Minimal general Hausdor� distance - as used in the CLuVRP

In case of the JOBPRP, the Hausdor� distance is calculated for each pair of orders (ri, rj) as fol-
lows: for each item of order ri, the closest item of order rj is selected based on a pre-calculated
distance matrix that holds the distance between each pair of pick locations. �e largest of these
distances is eventually selected as the Hausdor� distance between ri and rj (Hung and Yang,
2004).

We show an example for �ve orders, visualised in �g. 4. Each cell refers to a pick location,
the number in the cell indicates the order(s) that request an item stored at this pick location.
We illustrate the calculation of the Hausdor� distance between r1 (black coloured cells) and
r2 (cells with shaded pa�ern). For all locations to be visited for r1, the closest pick location of
r2 is presented by the thick full lines. Of these three distances, the longest walking distance (8
meters), indicated by H12, is the Hausdor� distance between r1 and r2.
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Figure 4: Illustration of the calculation for the general Hausdor� distance between order 1 and order 2. �e num-
bers in the cells represent the items of order 1 to order 5.

Although in a warehouse the distance to walk from location i to j is equal to the distance from
location j to i, this is not necessarily true for the Hausdor� distance between two orders. We
illustrate this by calculating the Hausdor� distance between r2 and r1. �e dashed lines in
�g. 4 show for each location to be visited for r2 the closest location of an item requested by
r1. Of these distances, the travel distance indicated by the mark H21 is the longest (11 m)
and di�ers from the 8 meter distance for H12. �e general Hausdor� distance is de�ned as the
maximum of both values, meaning 11 meters for the Hausdor� distance between r1 and r2,
irrespective of the direction between the orders (Hung and Yang, 2004). Any further use of the
Hausdor� measure in the current paper follows the general de�nition. �e general Hausdor�
distance between each pair of orders is saved in the symmetrical intercluster distance matrix
(see table 2). �e last column of table 2 indicates the number of (non-unique) items requested
by each order.

r0 r1 r2 r3 r4 r5 Nb requested items
r0 / 20,5 13,5 19,5 14,5 21,5
r1 20,5 / 11 12 8 15 4
r2 13,5 11 / 11 11 14 3
r3 19,5 12 11 / 15 15 3
r4 14,5 8 11 15 / 14 4
r5 21,5 15 14 15 14 / 3

Table 2: General Hausdor� intercluster distance matrix for the �ve order-example illustrated in �g. 4.

For the composition of batches using this Hausdor� distance, Defryn and Sörensen (2017) de-
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scribe the following procedure. Prior to the actual assignment, orders are sorted in decreasing
order based on size (number of requested items), without further distinction between orders
requesting the same amount of items. Given the example shown in table 2, orders are sorted as
follows: r4,r1,r5,r3,r2. At this stage, also the number of available batches is known and re�ects
the minimal number necessary to have all orders assigned to a batch (discussed in more detail
in section 5.1). For the �ve order-example, the number of batches is two, both with a capacity of
12 items. Both batches are considered when deciding to which batch an order will be assigned.
�e �rst order on the list, r4, is assigned to the batch of which the last added order is closest
to r4 (i.e. smallest general Hausdor� distance), and with su�cient (remaining) capacity. For
empty batches, the depot is considered as the last added order. In the following round, r1 is
added to Batch 1 since r1 is considered closer to r4 than to the depot (case for Batch 2). �e
procedure is repeated until all orders are assigned, leading to the batch composition presented
in table 3. �e heuristic described above will be denoted as HausOrig in the remaining of this
paper.

Order assignment Hausdor� distance of the batch
Batch 1 0 4 1 5 0 14,5 + 8 + 15 + 21,5 = 59 m
Batch 2 0 3 2 0 19,5 + 11 + 13,5 = 44 m

Total Hausdor� distance 103 m
Batch capacity = 12 items

Table 3: Order assignment for the example in �g. 4 in case of the HausOrig batching heuristic

Because the HausOrig heuristic assigns orders primarily on a size-based criterion, the full po-
tential of the Hausdor� distance as a batching criterion might not be fully exploited. Also, the
HausOrig implementation considers only the last order added to each batch when selecting
the batch for the next order. Since for the JOBPRP the sequence of orders added to the batch
should no longer ma�er, some opportunities are currently not exploited. Given these remarks,
we propose a variant of the HausOrig in the following section.

4.2 Minimal general Hausdor� distance - adapted to JOBPRP

Given the remarks in the previous section, we propose an alternative constructive heuristic
that aligns be�er with the so� cluster constraints-variant of the JOBPRP, from now denoted as
HausAdap. We continue to use the general Hausdor� distance.

A �rst modi�cation is to �ll batches one by one instead of considering all available batches at
once. Orders are added to the current batch as long as the smallest unassigned order �ts the
remaining capacity, aiming to use all available space in each batch (adopted from Gibson and
Sharp (1992), Ho et al. (2008)). Secondly, we drop the sorting operation and use the Hausdor�
distance as primary criterion to assign orders to batches, rather than size. However, in case of
a tie, preference goes to the largest order.
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�e third adjustment is to extend the pool of information to decide which order will be assigned
next to the current batch. Since the JOBPRP is a so� cluster constraints-variant of the CluVRP,
advantage of this property can be taken by considering the Hausdor� distance to all orders
already assigned to the batch, instead of considering only the last added order. �e depot
however is not considered. We argument that since for every batch the inclusion of the depot
is obliged anyway, it is more relevant to take into account only fellow orders. �e depot is only
considered when selecting the seed order.

Working out the HausAdap approach for the example of �g. 4, leads to the batch assignment
presented in table 4. r2 is assigned �rst because the Hausdor� distance to the depot is the
smallest. Given r2, there are three eligible orders to select next for Batch 1, all having the
same Hausdor� distance to r2. r1 will be selected since it requests the most items (i.e. the
largest order). Once r2 and r1 are assigned to Batch 1, we de�ne for both orders the closest
unassigned order, and choose the one with the overall smallest Hausdor�. r4, the order closest
to order 1, will be selected and is the last order added to Batch 1 as its remaining capacity
is now smaller than the smallest unassigned order. To return to the depot, and �nally de�ne
the total Hausdor� distance of Batch 1, di�erent possibilities were tested: adding the minimal
Hausdor� distance between any order in the batch and the depot, or the maximal Hausdor�
distance. Experiments were conducted and showed a clear preference for the la�er option. �e
procedure is repeated for the next batch and this until all orders are unassigned.

Order assignment Hausdor� distance of the batch
Batch 1 0 2 1 4 0 13,5 + 11 + 8 + 20,5 = 53 m
Batch 2 0 3 5 0 19,5 + 15 + 21,5 = 56 m

Total Hausdor� distance 109 m
Batch capacity = 12 items

Table 4: Order assignment for the example illustrated in �g. 4 in case of the HausAdap batching heuristic.

For the example visualised in �g. 4, HausOrig leads to a smaller total Hausdor� distance than
the HausAdap. �is is not always the case, and also irrelevant, it is simply a consequence of
the di�erent use of the Hausdor� distance.

We point out that both HausOrig and HausAdapt are performed in a single mode, meaning
each order remains an individual order. In the cumulative mode (explained in section 3.2), it is
unclear how to calculate and correctly interpret the Hausdor� distance of the �nal batch. Once
all orders are assigned, all orders in the batch are treated as one cumulative order. To de�ne the
�nal Hausdor� distance, the Hausdor� distance between this cumulative order and the depot
needs to be included which would be the travel distance between the farthest location visited
and the depot. All other visited locations and geographical similarities between orders would
not be considered, making the Hausdor� distance deviate from its original de�nition. Given
this argument and the former time-related calculation di�culties, we implement the Hausdor�
distance criterion in single mode.
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4.3 Minimal aisles visited

�e batching heuristic based on the minimum aisles visited-criterion, from now on denoted as
Aisles, is implemented as a seed-algorithm (batch by batch) in cumulative mode. �e customer
order for which the least number of aisles have to be visited, is selected as seed. Additional
orders are added to the batch such that a minimal number of additional aisles are visited. �is
batching criterion only takes into account the number of aisles; the distance between aisles is
not considered.

�e evolution of the intercluster distances in terms of minimum additional aisles to be visited,
is presented in table 5 for the example in �g. 4. Stage 1 shows for each order over how many
aisles the order is spread. A�er stage 1, orders collected in a batch are merged to one cumulative
order. �e intercluster ’distances’ for the unassigned orders, on the other hand, are recalculated
to represent the number of additional aisles to visit.

assigned\to add r0 r1 r2 r3 r4 r5
Stage 1 r0 / 3 3 2 4 3
Stage 2 r3 / 1 1 / 2 2
Stage 3 r3, r1 / / 1 / 1 2
Stage 4 r0 / / 3 / / 3

Table 5: �e intercluster distance in terms of the additional aisles to be visited, worked out for the example of �g. 4,
for three consecutive stages of the Aisles batching heuristic.

At the �rst stage no orders are assigned yet except the depot order r0. Based on the minimum
additional aisles required for each order separately, order r3 is selected as seed. In stage 2, the
additional aisles to be visited on top of those for order r3 are calculated for each unassigned
order. In case of a tie, preference goes to the largest order, which is currently order r1. In stage
3, orders r3 and r1 are now treated as one, and the same procedure is repeated. As Batch 1 has
insu�cient remaining capacity, we move to Batch 2 for the selection of a new seed (Stage 4).
�e �nal batch assignment according to this Aisles batching heuristic is presented in table 6.

Order assignment Number of aisles
Batch 1 0 3 1 4 0 4 aisles
Batch 2 0 2 5 0 4 aisles

Total number of aisles 8 aisles
Batch capacity = 12 items

Table 6: Order assignment for the example illustrated in �g. 4 in case of the Aisles batching heuristic.
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5 Metaheuristic approach for the order batching and picker
routing problem

We solve the order batching problem with the 2level-VNS approach as proposed by Defryn
and Sörensen (2017). VNS has proven to work e�ciently in solving vehicle routing prob-
lems (Hansen and Mladenović, 2014) and promising results have been reported for the OBP
by Albareda-Sambola et al. (2009) and Menéndez et al. (2017). However, in the la�er studies,
the VNS was limited to a single level in which batches are constructed and improved, driven
by the pickers’ travel distance. �is distance is obtained assuming a prede�ned routing policy,
as explained in section 3.1.

We apply a VNS at two levels, where the pickers’ travel instance is not considered until the
second level. A full description of the algorithm is given in the following sections.

5.1 Step 1: Precomputation

For each instance, the following information is known:

• Warehouse layout (e.g. parallel aisles), number and width of aisles, number and width
of cross-aisles, width and depth of pick locations, length of the rack

• Capacity of the batch: equal for all batches, expressed by number of items

• List of orders, with for each order the list of items and required quantity

• List of pick locations of the items: each pick location is dedicated to one SKU and each
SKU is located at a single pick location (no sca�ered storage).

During precomputation, the shortest travel distance between pick locations (including the de-
pot) is calculated and stored in a distance matrix. When the HausOrig or HausAdap heuristic is
used, the general Hausdor� distances between orders is determined, using the distance stored
in the distance matrix. When the Aisles heuristic is implemented, we compute the number of
aisles required to visit for each order separately (stage 1 de�ned in table 6).

Next, given the capacity of the batch and the total number of items requested, the minimum
number of batches is de�ned. De Koster et al. (1999) showed that the number of batches used
and the total travel distance are strongly related, and also Menéndez et al. (2017) con�rm that
less batches results in a shorter picking distance. In an a�empt to reduce the number of batches
from the start, we determine the number of batches K as followed:

K =

⌈
Total number of items

Capacity

⌉
(1)

K is clearly a minimum value, but does not guarantee that the order integrity rule is obeyed.
We describe in section 5.3 how K is updated if necessary .
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(a) Example of an inter batch swap (b) Example of an inter batch relocation

Figure 5: Illustrations of an inter batch swap and relocation during reassignment, in order to free capacity for an
order of �ve items.

5.2 Step 2: Construction phase

In the construction phase, an initial assignment of orders to batches is generated according to
the HausOrig (section 4.1), HausAdap (section 4.2) or Aisles batching heuristic (section 4.3 ).
A feasible solution is found if all orders are assigned to a batch.

5.3 Step 3: Redistribution phase

A�er the construction phase, it might occur that not all orders �t into the prede�ned number
of batches. �e redistribution function is called to free capacity for unassigned orders by swap-
ping two orders of di�erent batches (i.e., inter batch swap, visualised in �g. 5a) or to reallocate
an order to another batch (i.e., inter batch relocation, visualised in �g. 5b). Both operators are
listed in table 7.

Inter batch operators
Swap Swap two orders belonging to two di�erent batches.

Each order is added last in the sequence of the other batch
Complexity: O(n2)

Relocation Remove an order from one batch and add it last in the sequence of another batch
Complexity: O(n2)

Table 7: Moves at order level performed during redistribution.

During this reassignment, orders are reshu�ed in order to gain capacity. �e orders’ size
is the primary criterion to do so, the batching criterion does not ma�er in this stage. �e
move that leads to su�cient capacity release or to the largest capacity release (in case multiple
redistributions are required to create enough space in a batch) is executed. We remove the
respective order(s) from its current batch and add it last in the sequence of the other batch.
To avoid reassignment moves being reversed directly a�er execution, a simple tabu list is used
which prevents the last move to be undone.

A�er 10 consecutive reassignments with no improvement (= su�cient clearance of a batch
to �t the next order), the number of batches (K) is increased by one. In that case, all orders
are reverted back to the status ’unassigned’ since a be�er initial batch assignment might be
obtained with the additional batch on hand.
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Intra batch operators
Swap Swap the position of two orders in one batch’s sequence

Complexity: O(n2)
Relocate Remove an order from the batch’s sequence and insert it at another position in the same sequence

Complexity: O(n2)
Two-Opt Remove two edges from the batch’s sequence and replace them by two new edges

Complexity: O(n2)
Inter batch operators
Swap Swap two orders belonging to two di�erent batches

Complexity: O(n2)
Relocation Remove an order from one batch and insert it at a position in the sequence of another batch

Complexity: O(n2)

Table 8: Moves at order-level during intensi�cation phase in case of HausOrig.

5.4 Step 4: Intensification at order-level

�e initial batch assignment is based on a greedy heuristic that makes the best local choice
at each step rather than looking at the entire solution. During the intensi�cation phase, we
aim to improve this batch assignment by a Variable Neighborhood Search (VNS) approach at
order-level, based on the batching criterion chosen at the start.

For the original CluVRP approach, using the HausOrig heuristic, the sequence of orders in a
batch is of importance, although the characteristics of the JOBPRP suggest otherwise. �ere-
fore, it is relevant to explore inter batch moves (e.g. swapping orders between batches), but also
to consider intra batch moves that try to optimize the order sequence within a batch. Defryn
and Sörensen (2017) proposed �ve local search operators that explore inter and intra batch
neighbourhoods, as presented in table 8. Numerous combinations of those swaps and relo-
cations are possible, although the computational e�ort for the evaluation of these operations
remains acceptable. An example of one such a move is an inter batch relocation illustrated in
�g. 6, where the order positioned second in the sequence of Batch 1 will be relocated to the �rst
position in the sequence of Batch 2. �e di�erence in total Hausdor� distance, represented by
delta, is positive and gives a negative advice regarding this move.

However, to bene�t from the so� cluster constraints characteristics of the JOBPRP, we pro-
posed in section 4.2 an alternative constructive heuristic, HausAdap. When implementing this
HausAdap approach, we propose the following adaptations in the intensi�cation at order-level.
First, we omit the intra batch operators. We argue that the optimization of the orders’ sequence
has no in�uence on the routes of the batches composed a�erwards and computational e�ort
can be used elsewhere. Secondly, in line with the former argument, we no longer swap or re-
locate orders to a speci�c position in an order sequence, but always add them at the end. As
a consequence, the amount of moves to be evaluated for the HausAdap is reduced. However,
this time bene�t only partly compensates for the large complexity of the HausAdap implemen-
tation. Since all orders already assigned to a batch must be considered to de�ne the Hausdor�
distance of the batch, even the removal of one order can have a large impact.

�e operators performed at order-level for the HausAdap heuristic are shown in table 9. �e
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Figure 6: Illustration of an inter batch relocation in case of HausOrig.

Inter batch operators
Swap Swap orders that each belong to a di�erent batch and add last in sequence

Complexity: O(n2)
Relocation Remove an order from one batch and insert it at the last position in the sequence of another batch

Complexity: O(n)

Table 9: Moves at order-level performed during intensi�cation phase for HausAdap.

same operators are applicable for the Aisles heuristic for which the same arguments hold be-
cause it is implemented in cumulative mode.

In �g. 7 we illustrate an inter batch relocation of r1 from Batch 1 to Batch 2. r1 is removed and
added to the end of the sequence instead of inserting it at a speci�c position, which reduces
the possible relocations (before r3, before r5, last in the sequence) to only one. However, more
computational e�ort is devoted to the adaptation of the Hausdor� distance. For instance, to
return to the depot, the largest Hausdor� distance between the depot and any order included in
the batch is considered. For Batch 1, that was 21,5 m, equal to the Hausdor� distance between
the depot and r1. With the removal of r1, we will have to look for the largest Hausdor� distance
between the depot and any of the remaining orders in Batch 1.

During this intensi�cation phase, each move that leads to an improved value of the respective
batching metric is accepted. �e neighborhoods are checked in a random way by the algorithm.
For each neighborhood, all possible moves are evaluated and if no be�er solution is found, the
algorithm randomly picks one of the remaining neighborhoods. If an improvement is found,
the algorithm returns to the �rst neighborhood. �e intensi�cation at order-level stops when
all neighborhoods were consecutively checked with no improvement.
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Figure 7: Illustration of an inter batch relocation when HausAdap is implemented.

5.5 Step 5: Conversion from order to picking operation-level

For each batch constructed in the previous stage, a routing must be determined that visits all
pick locations for the orders included in the batch. �is routing problem is handled as a TSP by
means of a greedy heuristic: the pick location with the shortest travel distance to the previous
pick location is visited next. �e procedure is repeated until all pick locations to be visited are
included.

5.6 Step 6: Intensification at pick operation-level

�e intensi�cation process at pick operation-level aims to improve the routes composed in
the previous stage. �e VNS approach follows the same procedure as described in section 5.4.
Both intra and inter batch operators, described in table 10, are implemented, but moves are no
longer evaluated by the chosen batching criterion but by total travel distance. Again, when
all neighborhoods are consecutively checked with no improvement, the intensi�cation at pick
operation-level comes to an end.

Similar to the �rst VNS, Defryn and Sörensen (2017) make use of both intra and intra batch op-
erators in the VNS at pick operation-level. �is means that orders can be swapped or relocated
between batches if it leads to an improved total travel distance. In some way it seems strange
to include these moves since much a�ention already has been paid to the swap and relocation
of orders at order-level. However, those moves have been evaluated using the batching cri-
terion, while it is possible that further travel distance improvements can be found when the
information (position and walking distances) of pick locations is taking into account.
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Intra batch operators
Swap Swap the position of two pick locations in a single picking tour

Complexity: O(n2)
Relocate Remove a pick location and insert it at another position in the same picking tour

Complexity: O(n2)
Two-opt Remove the edges between two pick locations and replace them by two new edges

Complexity: O(n2)
Inter batch operators
Swap Swap orders that each belong to a di�erent batch for which one removes all pick

locations of the sequence that belong to these orders
Complexity: O(n2)

Relocation Remove an order’s pick locations from the batch’s sequence and insert them at a
position in the sequence of another batch
Complexity: O(n2)

Table 10: Description of moves performed during intensi�cation phase at pick operation-level

At this point the algorithm has produced an initial solution. �e total travel distance of the
solution, used to evaluate the performance of the algorithm, cumulates the travel distance of
all batches.

5.7 Step 7: Diversification phase and iterative loop

A�er the initial solution has been obtained, the algorithm performs a further exploration of
the solution space through diversi�cation. Part of the solution is destroyed and subsequently
repaired to comply with feasibility rules. Because of the strong order integrity rule, we perform
the perturbation at order-level to ensure orders remain complete. Depending on a prede�ned
parameter, currently �xed at 10%, a number of orders are removed from each batch and reas-
signed to batches randomly while meeting the capacity constraint. Redistribution (described
in section 5.3) is applied when no su�cient remaining capacity is available to �t all orders.

Steps 4 to 6 of the algorithm are repeated for the newly composed batches. In case a be�er
solution is found (i.e., shorter total travel distance), the incumbent solution is updated. We
currently use the same stopping criterion as Defryn and Sörensen (2017): the algorithm ends
a�er 1000 consecutive iterations without improvement.

6 Numerical experiments

In this section, we present the experimental results to evaluate the performance of the pro-
posed two-level VNS (2level-VNS). All experiments are conducted on the dataset developed by
Henn and Wäscher (2012). �e characteristics of this dataset are described in section 6.1. In
section 6.2, we report preliminary tests on the con�guration of our 2level-VNS algorithm, with
in particular adaptations required to obtain good results in an acceptable time period.

Finally, we analyse the outcome of the 2level-VNS approach in a twofold way:
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• We compare the results for the original Hausdor� (HausOrig), adapted Hausdor� (Hau-
sAdap) and Aisles approach to conclude which batching heuristic is superior, and whether
this depends on features such as the number of orders or batch size (section 6.3).

• We compare the performance of our approach with algorithms considered state-of-the-
art when solving the OBP. In line with Menéndez et al. (2017), we compare our results
with their Multi Start-VNS method and with the results of Albareda-Sambola et al. (2009)
and Henn and Wäscher (2012) (section 6.4).

Our 2level-VNS algorithm is implemented in C++ Visual Studio 17. All experiments are exe-
cuted on an Intel(R) Core i7-6820HQ CPU, 2.7 GHz laptop. For each batching criterion, exper-
iments are conducted three times and the average total travel distance is reported.

6.1 Instance description

All experiments are conducted on the instance set developed by Henn and Wäscher (2012).
�is set originally includes 5760 instances of which half follow an ABC storage policy (ABC)
and half a random distribution (Ran). As we did not explicitly include decisions related to the
storage allocation, we currently focus only on instances following a random distribution. Of
these 2880 instances, Menéndez et al. (2017) report the results for a limited set, which they
found to be a representative subset. �is set includes 32 instances, referred to as Ran 32.

In the Ran 32 dataset, half of the instances are originally labelled by Henn and Wäscher (2012)
as ’s-shape instances’, half as ’Largest gap instances’. When comparing both subsets in terms
of various parameters (number of orders, number of total items requested, number of unique
items requested), we were not able to explain in what way both instance groups di�er, apart
from their solution method which we do not value important during instance generation. In
further experiments, we make no distinction and report the accumulated results.

�e warehouse layout used in our experiments, is a single-block warehouse consisting of 10
aisles. Each aisle contains 90 pick locations, 45 on each side, leading to 900 pick locations in
total. Each pick location has a width of 1 meter. It takes 5 meter to move from one aisle to the
next. To travel from the depot (D) to the �rst pick location, it takes 1,5 meters (illustrated in
�g. 8.
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Figure 8: Warehouse layout considered for the instances of Ran 32.

Instances di�er in terms of the number of orders (n) and the capacity of the batch (C), ex-
pressed in the number of items. For all instances, the number of items per order are uniformly
distributed over the values in {5,6,…,25}. An overview of the values for n and C in the Ran 32
subsets can be found in table 11. Of each (n,C)-combination, two instances are included in
Ran 32.

Number of orders (n) Batch capacity (C)
40 30
60 45
80 60
100 75

Table 11: Overview of (n,C)-values represented in instances of Ran 32 dataset.

Although our 2level-VNS is currently tested for a one-block warehouse, we would like to note
that our algorithm can handle instances taking place in multi-block warehouses as well as
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layouts other than the o�en used parallel warehouse layout. All this information is re�ected
in the distance matrix, it does not change anything to the solution method.

6.2 Preliminary experiments for speeding up the algorithm

We test the 2level-VNS approach for the HausOrig, HausAdap and Aisles on the 32 instances
of Ran 32. In table 12 we report the average computation time (in seconds).

Average CPU (sec) for full algorithm
Nb of instances HausOrig HausAdap Aisles

Ran 32 32 687,72 576,51 486,07

Table 12: Average CPU time for the full 2level-VNS algorithm using HausOrig, HausAdap and Aisles respectively,
on set Ran 32

Regardless of the batching heuristic, we observe that the computation time is extremely high.
Since the JOBPRP is a problem at operational level, the instances should be solved in a realistic
time period. Adaptations to the full algorithm seem to be necessary to make it competitive
with available (J)OBP(RP) algorithms.

To improve the computation time of our full 2level-VNS algorithm without signi�cant deteri-
oration of the solution quality, we propose three adaptations:

• Omitting the inter batchmoves at routing level: a large share of computation time is
dedicated to the inter batch moves evaluated during the VNS at pick operation-level. Due
to the order integrity constraint, all pick operations of an order have to be deleted from
one route and put in the best possible position in the route of another batch. All possible
sequences are to be evaluated in each iteration, requiring a considerable amount of CPU.
Since similar moves have been evaluated during the VNS at order-level, although another
acceptance criterion was used, we test if inter batch operators at pick operation-level can
be omi�ed.

• Omitting the diversi�cation stage: in this stage, the batch assignments are decom-
posed and rebuild in a random manner, at least 1000 times. For each new batch com-
position, intensi�cation at batch- and routing-level are performed in an a�empt to �nd
a be�er solution. As much e�ort has been devoted to the creation of a good batching
criterion and routing heuristic, we will test whether the diversi�cation stage can be le�
out and stop once an initial solution is found.

• Adapt the stopping criterion: instead of omi�ing diversi�cation, the stopping crite-
rion could be adapted. �e current criterion of ’1000 consecutive iterations without im-
provement’ takes a lot of time while we question the added value once a certain amount
of iterations have been done. We propose to change to a time-based stopping criterion,
set to 60 seconds CPU-time for the entire algorithm. Time starts running once the con-
struction stage is initiated (section 5.2).
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Avg. gap total travel distance (% ) Avg. gap CPU-time (%)
HausOrig HausAdapt Aisles HausOrig HausAdap Aisles

1) Algorithm without inter batch moves at routing-level
Ran 32 3,63% 3,13% 3,10% -94,42% -93,81% -93,95%

2) Algorithm without diversi�cation stage
Ran 32 3,28% 2,70% 2,70% -99,92% -99,92% -99,92%

3) Algorithm with time-based stopping criterion (60 seconds)
Ran 32 0,48% 0,42% 0,44% -77,48% -78,97% -76,64%

Table 13: Evaluation of three alternatives to speed up the 2level-VNS. Values re�ect the average % gap in respect
of the solution and computation time realised by full 2level implemenation.

All adaptations were separately tested. In table 13 we show the average solution deviations
relative to the full implementation, together with the time improvement. All adaptations, in-
dependent of the batching heuristic, reduce the CPU-time signi�cantly, but for the time-based
stopping criterion the solution quality deteriorates only li�le. Hence, we conclude to continue
our experiments with the full algorithm, but with a time-based stopping criterion.

To conclude about the duration of the time-based stopping criterion, we performed additional
tests. In �g. 9 and �g. 10 the evolution in time of the solution’s objective is shown for a random
chosen instance, solved with HausOrig and HausAdap respectively. �e following observation
is independent of the chosen batching heuristic. Each mark refers to a point in time when an
improved total travel distance is found. On the y-axis one reads the solution’s improvement
(in %) compared to the initial solution, found before diversi�cation. We notice that for both ex-
amples, solution improvements are signi�cant during the �rst minute. �erea�er the solution
improves only li�le.
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Figure 9: Evolution in time of the solution’s objective for instance 40s-60-75-0 and the full implementation with
HausOrig. Each mark refers to a be�er solution, with on the y-axis the % improvement with respect to
the initial solution (before diversi�cation).
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Figure 10: Evolution in time of the solution’s objective for instance 40s-60-75-0 and the full implementation with
HausAdap. Each mark refers to a be�er solution, with on the y-axis the % improvement with respect to
the initial solution (before diversi�cation).

6.3 Two-level VNS - Comparison of batching heuristics

6.3.1 Validation on limited set, Ran 32

In this section, we analyse the results for the di�erent batching heuristics HausOrig, HausAdap
and Aisles for the instances of set Ran 32. In table 14 we compare these batching heuristics
pairwise and count for how many instances each of them was able to �nd the best solution,
that is the best of both results. �is number also includes instances for which both batching
heuristics obtained the same solution. For instances for which the criterion performs worse,
we calculate the average deviation in respect to the best found solution. In the last column, we
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report the average computation time (limited to 60 seconds), which seems to be fully needed
for these experiments. Detailed results are provided in Appendix A.

Of both Hausdor�-based batching rules, HausAdap clearly �nds the best solution for more in-
stances. Moreover, for the remaining instances the solution is on average only 0,14% worse in
contrast to 0,46% for HausOrig. �ese �ndings indicate that despite the large similarities be-
tween the CluVRP and JOBPRP, our adaptations to the original Hausdor� heuristic are helpful
to produce JOBPRP-�t solutions.

Despite these adaptations, we observe that the minimal aisles visited-criterion, included as
benchmark, still performs be�er than the adapted Hausdor� heuristic. �e Aisles heuristic
was able to �nd the best solution for 62,5% of the instances. For the remaining instances, the
Aisles implementation deviates on average 0,38% from the best found solution, while HausAdap
deviates slightly more, 0,54%. Before stating a clear preference, we validate our conclusions by
repeating the same pairwise comparisons on a larger dataset. �e results are provided in the
next section.

# best solution Avg. solution gap (%) CPU (sec)
Nb. Haus Haus Aisles Haus Haus Aisles Haus Haus Aisles
Inst. Orig Adap Orig Adap Orig Adap

Algorithm implementation with time-based stopping criterion (60 seconds)

Ran 32 60 60 60
HausOrig-HausAdap 32 13 20 0,46% 0,14%
HausOrig-Aisles 32 9 23 0,75% 0,45%
HausAdap-Aisles 32 12 20 0,54% 0,38%

Table 14: Pairwise comparison of HausOrig, HausAdap and Aisles batching heuristics for the two-level VNS algo-
rithm with time-based stopping criterion of 60 sec.

6.3.2 Validation on larger set of instances, Ran 1280

To validate prior observations we extend our analysis to a larger dataset. In Ran 32, each of the
16 possible (n,C)-combinations (table 110 was represented by two instances. Now, we extract
80 instances for each possible (n,C)-combination from the original set. As such,we obtain a set
of 1280 instances, referred to as Ran 1280.

We repeat the previous experiment for dataset Ran 1280, and display the results in table 15.
Based on these sets, which statistically include more variation than the small subset, we con�rm
that the HausAdap outperforms the HausOrig heuristic. Also between HausAdap and Aisles,
we �nd for these larger datasets more obvious preference for the Aisles heuristic, which is able
to �nd a be�er (or the same) solution for a double amount of instances than HausAdap.
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# best solutions Avg. gap (%) CPU (sec)
Nb. Haus Haus Aisles Haus Haus Aisles Haus Haus Aisles

Orig Adap Orig Adap Orig Adap

Algorithm implementation with time-based stopping criterion (60 seconds)
Ran 32 60 60 60
HausOrig-HausAdap 1280 454 840 0,51% 0,20%
HausOrig-Aisles 1280 298 990 0,85% 0,35%
HausAdap-Aisles 1280 412 879 0,63% 0,36%

Table 15: Pairwise comparison of HausOrig, HausAdap and Aisles batching heuristics for the two-level VNS algo-
rithm with time-based stopping criterion for datasets Ran 640.

Notwithstanding the results in favour of the Aisles heuristic, we do remark that a small subset
of instances (32.5%) seems to prefer the HausAdap heuristic. By decomposing the results by
number of orders and batch size, we �nd that especially the batch size in�uences these results.
�is decomposition is graphically presented in table 16. Each cell, summarizes the result for
one (n,C)-combination. �e bars represent the percentage of instances for which HausAdap
and Aisles implementation are able to �nd the best solution.

When the batch capacity is set at 30 items, we observe that the HausAdap heuristic o�en per-
forms be�er than the Aisles heuristic, except when the number of orders is rather small. How-
ever, the percentages remain too low to declare a clear preference for the HausAdap heuristic
for this particular set of instances. As the batch capacity grows, the superiority of the Aisles
heuristic increases.

We conclude this section by stating that the results we found for the Ran 32 subset align with
the results found for the extended dataset Ran 1280. We were able to con�rm that the HausOrig
heuristic is outperformed by the HausAdap and Aisles heuristic. Regarding the comparison
of the HausAdap and Aisles heuristic, we found evidence in the Ran 32 subset to speak of
a preference for the Aisles heuristic, which was validated by the larger set Ran 1280, with
in particular a larger absolute number of instances for which it performed be�er than the
HausAdap heuristic. However, the dominance of the Aisle heuristic is only visible for 69% of
the instances. We therefore continue further experiments with both the HausAdap and Aisles
criteria.

6.4 Two-level VNS approach - Comparison with state of the art algorithms

Our last set of experiments is devoted to the comparison of our 2level-VNS algorithm with the
following state of the art algorithms for the OBP:

• Variable Neighborhood Descent (VND) approach byAlbareda-Sambola et al. (2009)

• A�ribute-Based Hill Climbing approach with s-shape routing (AHBC + SS) by Henn and
Wäscher (2012)
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size. Each cell represents 80 instances.
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• A�ribute-Based Hill Climbing approach with largest gap routing (AHBC + LG) by Henn
and Wäscher (2012)

• Multi-Start Variable Neighborhood Search (MS-VNS) by Menéndez et al. (2017)

Our comparisons are based on the results made publicly by Menéndez et al. (2017) (available
at http://grafo.etsii.urjc.es/optsicom/obp/).

For the 32 instances of subset Ran 32, we report the results of the comparison between the
2level-VNS and the four algorithms mentioned above. �is comparison is once executed when
implementing the HausAdap version in the 2level-VNS, once executed with the Aisles heuristic
implemented. In table 17, we �rst report how many times each algorithm is able to �nd the
best solution out of the results obtained by the �ve di�erent algorithms. Next, we conduct a
pairwise comparison and report how many times the 2level-VNS is able to �nd the best result as
well as the average deviation with respect to the best solution (%). Next we report the average
improvement provided by the 2level VNS (%) for each algorithm, in cases where the 2level-VNS
performed be�er. Last but not least, we report the average computation time (in seconds).

In table 17 we show the results when the 2level-VNS is terminated a�er 60 seconds. Overall, the
2level-VNS performs quite well for both the HausAdap and Aisles batching heuristic. It outper-
forms the VND and ABHC+LG algorithms for all instances, with an average improvement up
to 6,20 and 10,53% respectively. Compared to the ABHC+SS method, the 2level-VNS is be�er
for 22 out of the 32 instances, and improves the ABHC+SS solution by 6,29% on average for
those 22 cases. Overall results are similar for the HausAdap and Aisles heuristic, although in
general, greater improvements were obtained with the Aisles heuristics. Di�erences however
are minor.

When comparing with the MS-VNS, the 2level-VNS performs be�er for only 8 out of 32 in-
stances. More speci�cally, from the detailed results in Appendix A, we derive that, independent
of the implemented batching heuristic, the 2level-VNS �nds regularly be�er solutions than the
MS-VNS method for instances with a smaller batch capacity (30 or 45 items). For larger batch
size (≥ 60 items) the MS-VNS consistently performs be�er.

Finally, in table 18 we provide a similar comparison of the 2level-VNS with the OBP algorithms
but used the original stopping criterion, which can be seen from the average CPU reported
in the bo�om rows. Overall, we �nd similar results and our conclusions based on table 17
remain valid, con�rming that the time-based criterion is a good approach to retain performing
solutions that are competitive with state of the art algorithms.

We conclude that for most instances, the 2level-VNS is able to outperform the VND, ABHC+SS
and ABHC+LG algorithms, but the results obtained by the MS-VNS remain out of our league,
although the solutions deviate to a minor extent. Concerning the batching criteria, we conclude
that when the two-level VNS is used, it is best to implement the aisle-based criterion.
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Ran 32

# inst. Algorithm 2level VNS
HausAdap

2level VNS
Aisles

Overall comparison
# best solutions 32 2level VNS 8 8

VND 0 0
ABHC+SS 7 7
ABHC+LG 0 0
MS-VNS 17 17

Pairwise comparison
# best solutions 32 VND 32 32

ABHC+SS 22 22
ABHC+LG 32 32
MS-VNS 8 8

Avg. gap (%) 2level-VNS VND - -
in respect of best found solution ABHC+SS 2,88% 2,60%

ABHC+LG - -
MS-VNS 1,81% 1,51%

Avg. improvement (%) VND -6,02% -6,20%
when 2level-VNS be�er ABHC+SS -6,14% -6,29%

ABHC+LG -10,37% -10,53%
MS-VNS -1,51% -1,38%

Avg. CPU (sec) 2level VNS 60 60
VND 0,66 0,66
ABHC+SS 13,45 13,45
ABHC+LG 61,57 61,57
MS-VNS 49,09 49,09

Table 17: Comparison of 2level-VNS with stopping criterion 60 seconds, for alternatively HausAdap and Aisles.
Results shown for Ran 32.
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Ran 32

# inst. Algorithm 2level VNS
HausAdap

2level VNS
Aisles

Overall comparison
# best solution 32 2level VNS 9 11

VND 0 0
ABHC+SS 0 0
ABHC+LG 0 0
MS-VNS 16 14

Pairwise comparison
# best solution VND 32 32

ABHC+SS 22 23
ABHC+LG 32 32
MS-VNS 10 11

Avg. gap (%) 2level-VNS VND - -
in respect of best found solution ABHC+SS 2,36% 2,30%

ABHC+LG - -
MS-VNS 1,43% 1,16%

Avg. improvement (%) VND -6,41% -6,61%
when 2level VNS be�er ABHC+SS -6,50% -6,38%

ABHC+LG -10,74% -10,93%
MS-VNS -1,36% -1,22%

Avg. CPU (sec) 2level VNS 576,51 486,07
VND 0,66 0,66
ABHC+SS 13,45 13,45
ABHC+LG 61,57 61,57
MS-VNS 49,09 49,09

Table 18: Comparison of state of the art algorithms for JOBPRP with two-level VNS without time-based stopping
criterion, with the HausAdap or Aisles heuristic. Results are shown for the Ran 32 set.
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7 Conclusion

We demonstrate that the Joint Order Batching and Picker Routing Problem (JOBPRP), studied
in the warehouse literature, and the Clustered Vehicle Routing Problem (CluVRP), studied in
the VRP literature, share many similarities. Despite the mathematical overlap of both prob-
lems, only limited a�empts have been found to use existing CluVRP algorithms to solve the
JOBPRP.

In this paper, we propose the two-level VNS presented by Defryn and Sörensen (2017) for the
CluVRP, as a metaheuristic approach to solve the JOBPRP in warehouse context. In contrary
to existing algorithms for the OBP and JOBPRP, this approach does not primarily assign orders
to batches based on the total travel distance, but makes use of the Hausdor� distance between
orders. However, next to the original implementation of the Hausdor�-based batching heuris-
tic (HausOrig), we developed an adapted version (HausAdap) that bene�ts from the fact that
the JOBPRP can be modelled as a CluVRP with so� cluster constraints. Both HausOrig and
HausAdap were compared with the Aisles batching heuristic, based on (a cumulative version
of) the minimum aisles visited-criterion, a well known criterion in warehouse context.

We consider the 2level-VNS with adapted Hausdor� batching heuristic as successful, since it
was able to �nd a be�er solution for twice the number of instances than the original Hausdor�-
based implementation. Overall, the aisle-based heuristic is able to �nd the best solution for 69%
of the instance set, in contrary to 32% when adapted Hausdor� is implemented. For the remain-
ing instances, the recorded average deviations are smaller for the aisle-based implementation.
We therefore conclude a preference for the la�er.

We compared the two-level VNS to state of the art OBP algorithms (VND algorithm (Albareda-
Sambola et al., 2009), AHBC + SS and ABHC + LG algorithm (Henn and Wäscher, 2012) and
MS-VNS algorithm (Menéndez et al., 2017)). Our two-level VNS outperformed three of the four
algorithms, with average improvements between 6% and 10%. However, the MS-VNS algorithm
maintains its superiority and performs best, especially for large batch sizes.

We note that these conclusions hold for the single-block warehouse with parallel aisles and
the instances characteristics used in this study. We acknowledge the need of further studies
on other warehouse layouts and other instances sets to validate the conclusions regarding the
performance of the Hausdor� heuristic and proposed metaheuristic in solving the JOBPRP.

In this paper, we have shown that more similarities can be found between the vehicle routing
context and warehouse environment besides the resemblances between the TSP and PRP. How-
ever, we do recommend to implement small adaptations to ensure a proper �t with the problem
under study. Given this remark, we encourage future experimentation of existing VRP algo-
rithms for warehousing problems that share similar structures with their VRP-counterparts.
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de Bretagne Sud, France.

Briant, O., Cambazard, H., Ca�aruzza, D., Catusse, N., Ladier, A.-L., and Ogier, M. (2020). An
e�cient and general approach for the joint order batching and picker routing problem. Eu-
ropean Journal of Operational Research.

Cambazard, H. and Catusse, N. (2018). Fixed-parameter algorithms for rectilinear steiner tree
and rectilinear traveling salesman problem in the plane. European Journal of Operational
Research, 270(2):419–429.

Cheng, C.-Y., Chen, Y.-Y., Chen, T.-L., and Yoo, J. J.-W. (2015). Using a hybrid approach based on
the particle swarm optimization and ant colony optimization to solve a joint order batching
and picker routing problem. International Journal of Production Economics, 170:805–814.

Chisman, J. A. (1975). �e clustered traveling salesman problem. Computers & Operations
Research, 2(2):115–119.

De Koster, R., Le-Duc, T., and Roodbergen, K. (2007). Design and control of warehouse order
picking: A literature review. European journal of operational research, 182(2):481–501.

De Koster, R., Van der Poort, E., and Wolters, M. (1999). E�cient orderbatching methods in
warehouses. International Journal of Production Research, 37(7):1479–1504.
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Appendix A. Detailed results

Appendix A shows the detailed results when comparing the 2level-VNS to other JOBPRP al-
gorithms and is complimentary to the data provided in section 6.4. We show the results when
alternatively the HausOrig, HausAdap or Aisles heuristic is used, if relevant. We show the total
travel distances obtained by the 2level-VNS (in meter), followed by the average deviation (%) in
respect of the outcome resulting from the VND, ABHC+SS, ABHC+LG or MS-VNS approach,
respectively, found at http://grafo.etsii.urjc.es/optsicom/obp/. Table 19 includes the results
when the 2level-VNS is implemented using the stopping criterion ’1000 iterations without im-
provement’. In table 20, we provide the results when the 2level-VNS is implemented using a
time-based stopping criterion. �e time for the entire algorithm is set to 60 seconds.
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Total travel Avg. deviation (%)
distance (m)

n C 2level-VNS VND ABHC+SS ABHC+LG MS-VNS
HausOrig 40 30 9390 -6,82% -6,40% -6,54% -1,87%

40 30 9826 -6,77% -12,00% -9,47% -1,94%
40 45 6239 -6,78% -1,52% -11,29% -0,06%
40 45 7257 -6,61% -8,06% -11,99% -1,36%
40 60 5674 -7,93% 2,75% -13,10% 0,76%
40 60 5034 -6,41% -5,41% -12,70% 0,72%
40 75 4433 -7,08% 2,15% -15,09% 1,09%
40 75 4071 -4,53% -5,76% -17,32% 1,07%
60 30 14825 -7,16% -5,77% -8,31% -0,90%
60 30 13660 -9,23% -13,87% -10,27% -2,49%
60 45 9628 -7,02% 0,15% -6,72% 0,02%
60 45 10458 -6,20% -4,69% -10,19% 1,78%
60 60 7844 -7,28% 0,40% -10,15% 1,08%
60 60 7448 -5,92% -4,21% -12,73% 1,71%
60 75 5562 -6,60% 1,48% -14,05% 1,63%
60 75 5590 -3,97% -3,04% -14,97% 0,88%
80 30 19223 -7,23% -9,76% -5,64% -2,31%
80 30 17533 -6,66% -14,10% -9,16% -0,14%
80 45 14204 -5,93% -0,83% -6,89% 1,44%
80 45 12045 -6,95% -5,94% -10,27% 1,40%
80 60 9990 -3,49% 3,15% -5,81% 2,11%
80 60 9977 -7,43% -4,14% -12,00% 1,74%
80 75 8149 -6,56% 3,88% -11,65% 1,74%
80 75 8199 -5,67% -3,13% -15,30% 1,52%

100 30 21017 -8,36% -7,99% -5,78% -0,52%
100 30 23068 -8,31% -12,63% -9,58% -1,97%
100 45 14756 -3,42% 1,21% -4,49% 2,29%
100 45 14664 -5,33% -5,87% -9,78% 1,67%
100 60 11796 -4,26% 5,34% -7,84% 3,32%
100 60 13434 -4,87% -4,62% -12,29% 1,75%
100 75 9635 -5,41% 5,55% -14,76% 2,55%
100 75 9970 -4,25% -0,61% -13,17% 4,37%

(continued on next page)
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Table 19 - Continued
Total travel Avg. deviation (%)
distance (m)

n C 2level-VNS VND ABHC+SS ABHC+LG MS-VNS
HausAdap 40 30 9395 -6,77% -6,35% -6,49% -1,82%

40 30 9821 -6,81% -12,05% -9,52% -1,99%
40 45 6249 -6,63% -1,37% -11,15% 0,10%
40 45 7263 -6,54% -7,98% -11,92% -1,28%
40 60 5645 -8,40% 2,23% -13,54% 0,25%
40 60 5010 -6,86% -5,86% -13,11% 0,24%
40 75 4431 -7,13% 2,11% -15,13% 1,05%
40 75 4078 -4,36% -5,60% -17,18% 1,24%
60 30 14817 -7,21% -5,83% -8,36% -0,96%
60 30 13673 -9,14% -13,78% -10,19% -2,40%
60 45 9626 -7,04% 0,12% -6,74% 0,00%
60 45 10322 -7,42% -5,93% -11,35% 0,46%
60 60 7824 -7,52% 0,14% -10,38% 0,82%
60 60 7442 -6,00% -4,28% -12,80% 1,63%
60 75 5560 -6,63% 1,44% -14,08% 1,59%
60 75 5583 -4,09% -3,16% -15,07% 0,76%
80 30 19229 -7,20% -9,73% -5,61% -2,28%
80 30 17532 -6,67% -14,10% -9,16% -0,15%
80 45 14223 -5,80% -0,70% -6,76% 1,57%
80 45 12072 -6,74% -5,72% -10,07% 1,62%
80 60 9952 -3,85% 2,76% -6,17% 1,72%
80 60 9979 -7,41% -4,12% -11,99% 1,76%
80 75 8129 -6,79% 3,62% -11,87% 1,49%
80 75 8212 -5,52% -2,98% -15,17% 1,68%

100 30 20914 -8,81% -8,44% -6,24% -1,01%
100 30 23125 -8,08% -12,41% -9,36% -1,73%
100 45 14785 -3,23% 1,41% -4,30% 2,50%
100 45 14645 -5,46% -6,00% -9,90% 1,54%
100 60 11693 -5,10% 4,42% -8,65% 2,42%
100 60 13430 -4,90% -4,65% -12,31% 1,72%
100 75 9618 -5,58% 5,37% -14,91% 2,37%
100 75 9832 -5,57% -1,98% -14,37% 2,92%

Aisles 40 30 9380 -6,92% -6,50% -6,64% -1,98%
40 30 9820 -6,82% -12,05% -9,53% -2,00%
40 45 6251 -6,60% -1,33% -11,12% 0,13%

(continued on next page)
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Table 19 - Continued
Total travel Avg. deviation (%)
distance (m)

n C 2level-VNS VND ABHC+SS ABHC+LG MS-VNS
40 45 7208 -7,24% -8,68% -12,59% -2,03%
40 60 5645 -8,40% 2,23% -13,54% 0,25%
40 60 4992 -7,19% -6,20% -13,42% -0,12%
40 75 4446 -6,81% 2,45% -14,84% 1,39%
40 75 4053 -4,95% -6,18% -17,69% 0,62%
60 30 14874 -6,85% -5,46% -8,01% -0,57%
60 30 13660 -9,23% -13,87% -10,27% -2,49%
60 45 9630 -7,00% 0,17% -6,70% 0,04%
60 45 10242 -8,14% -6,66% -12,04% -0,32%
60 60 7843 -7,29% 0,38% -10,16% 1,07%
60 60 7417 -6,32% -4,60% -13,09% 1,28%
60 75 5476 -8,04% -0,09% -15,38% 0,05%
60 75 5531 -4,98% -4,06% -15,87% -0,18%
80 30 19262 -7,05% -9,58% -5,44% -2,11%
80 30 17615 -6,22% -13,69% -8,73% 0,32%
80 45 14191 -6,01% -0,93% -6,97% 1,34%
80 45 12011 -7,22% -6,20% -10,53% 1,11%
80 60 9988 -3,51% 3,13% -5,83% 2,09%
80 60 9924 -7,92% -4,65% -12,47% 1,20%
80 75 8092 -7,21% 3,15% -12,27% 1,02%
80 75 8193 -5,74% -3,20% -15,36% 1,45%

100 30 21048 -8,22% -7,85% -5,64% -0,37%
100 30 23240 -7,63% -11,98% -8,91% -1,24%
100 45 14697 -3,80% 0,81% -4,87% 1,89%
100 45 14653 -5,40% -5,94% -9,85% 1,59%
100 60 11566 -6,13% 3,29% -9,64% 1,31%
100 60 13469 -4,62% -4,37% -12,06% 2,01%
100 75 9591 -5,84% 5,07% -15,15% 2,09%
100 75 9757 -6,29% -2,73% -15,02% 2,14%

Table 19: Detailed results for the full 2level-VNS method with stopping criterion ’1000 consecutive iterations with-
out improvement’ with HausOrig, HausAdap or Aisles heuristic implemented. Results are shown for the
Ran 32 instances.
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Total travel Avg. deviation (%)
distance (m)

n C 2level-VNS VND ABHC+SS ABHC+LG MS-VNS
HausAdap 40 30 9399 -6,73% -6,31% -6,45% -1,78%

40 30 9833 -6,70% -11,94% -9,41% -1,87%
40 45 6269 -6,33% -1,05% -10,86% 0,42%
40 45 7265 -6,51% -7,96% -11,90% -1,25%
40 60 5680 -7,84% 2,86% -13,00% 0,87%
40 60 5025 -6,58% -5,58% -12,85% 0,54%
40 75 4454 -6,64% 2,64% -14,69% 1,57%
40 75 4086 -4,17% -5,42% -17,02% 1,44%
60 30 14840 -7,06% -5,68% -8,22% -0,80%
60 30 13677 -9,12% -13,76% -10,16% -2,37%
60 45 9669 -6,62% 0,57% -6,33% 0,45%
60 45 10370 -6,99% -5,50% -10,94% 0,92%
60 60 7901 -6,61% 1,13% -9,50% 1,82%
60 60 7472 -5,62% -3,90% -12,44% 2,03%
60 75 5550 -6,80% 1,26% -14,23% 1,41%
60 75 5640 -3,11% -2,17% -14,21% 1,79%
80 30 19292 -6,90% -9,44% -5,30% -1,96%
80 30 17587 -6,37% -13,83% -8,88% 0,17%
80 45 14224 -5,80% -0,69% -6,76% 1,58%
80 45 12126 -6,33% -5,30% -9,67% 2,08%
80 60 9982 -3,56% 3,07% -5,88% 2,02%
80 60 10062 -6,64% -3,32% -11,25% 2,61%
80 75 8195 -6,03% 4,46% -11,16% 2,31%
80 75 8271 -4,84% -2,28% -14,56% 2,41%

100 30 20972 -8,55% -8,18% -5,98% -0,73%
100 30 23228 -7,68% -12,02% -8,95% -1,29%
100 45 14848 -2,81% 1,85% -3,89% 2,93%
100 45 14734 -4,88% -5,42% -9,35% 2,16%
100 60 11736 -4,75% 4,80% -8,31% 2,79%
100 60 13533 -4,17% -3,92% -11,64% 2,50%
100 75 9694 -4,83% 6,20% -14,24% 3,18%
100 75 9884 -5,07% -1,47% -13,92% 3,46%

Aisles 40 30 9371 -7,01% -6,59% -6,73% -2,07%
40 30 9809 -6,93% -12,15% -9,63% -2,11%
40 45 6277 -6,22% -0,92% -10,75% 0,54%
40 45 7234 -6,91% -8,35% -12,27% -1,67%
40 60 5634 -8,58% 2,03% -13,71% 0,05%
40 60 5007 -6,92% -5,92% -13,16% 0,18%
40 75 4485 -5,99% 3,35% -14,10% 2,28%
40 75 4062 -4,74% -5,97% -17,51% 0,84%

(continued on next page)
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Table 20 - Continued
Total travel Avg. deviation (%)
distance (m)

n C 2level-VNS VND ABHC+SS ABHC+LG MS-VNS
60 30 14938 -6,45% -5,06% -7,61% -0,15%
60 30 13696 -8,99% -13,64% -10,04% -2,23%
60 45 9675 -6,57% 0,63% -6,27% 0,51%
60 45 10318 -7,45% -5,97% -11,39% 0,42%
60 60 7897 -6,65% 1,08% -9,54% 1,77%
60 60 7446 -5,95% -4,23% -12,75% 1,68%
60 75 5517 -7,36% 0,66% -14,74% 0,80%
60 75 5553 -4,60% -3,68% -15,53% 0,22%
80 30 19302 -6,85% -9,39% -5,25% -1,91%
80 30 17713 -5,70% -13,21% -8,22% 0,88%
80 45 14259 -5,56% -0,45% -6,53% 1,83%
80 45 12044 -6,96% -5,94% -10,28% 1,39%
80 60 10050 -2,91% 3,77% -5,24% 2,72%
80 60 10035 -6,89% -3,58% -11,49% 2,34%
80 75 8151 -6,54% 3,90% -11,63% 1,76%
80 75 8240 -5,20% -2,65% -14,88% 2,03%

100 30 21103 -7,98% -7,61% -5,39% -0,11%
100 30 23348 -7,20% -11,57% -8,48% -0,78%
100 45 14799 -3,14% 1,51% -4,21% 2,59%
100 45 14725 -4,94% -5,48% -9,41% 2,09%
100 60 11623 -5,67% 3,80% -9,20% 1,80%
100 60 13546 -4,08% -3,83% -11,56% 2,60%
100 75 9609 -5,66% 5,27% -14,99% 2,28%
100 75 9801 -5,87% -2,29% -14,64% 2,60%

Table 20: Detailed results for the full 2level-VNS method with time-based stopping criterion, time set to 60 seconds,
with HausAdap or Aisles heuristic implemented. Results are shown for the Ran 32 instances.
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