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Abstract 

Spring phenology influences terrestrial ecosystem carbon, water and energy exchanges between 

the biosphere and atmosphere. Accurate prediction of spring phenology is therefore a 

prerequisite to foresee the impacts of climate warming on terrestrial ecosystems. In the present 

study, we studied the model performance of four widely used process-based models of spring 

leaf unfolding, including both a one-phase model (not considering a chilling phase: the Thermal 

Time model) and three two-phase models (all accounting for a required chilling period: the 

Parallel model, the Sequential model, the Unified model). Models were tested on five deciduous 

tree species occurring across Europe. We specifically investigated the divergence of their 

phenology predictions under future climate warming scenarios and studied the differences in the 

chilling periods. We found that, in general, the two-phase models performed slightly better than 

the one-phase model when fitting to the observed data, with all two-phase models performing 

similarly. However, leaf unfolding projections diverged substantially among the two-phase 
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models over the period 2070-2100. Furthermore, we found that the modeled end dates of the 

chilling periods in these models also diverged, with advances for both the Sequential and Parallel 

models during the period 2070-2100 (compared to the period 1980-2010), and delays in the 

Unified model. These findings thus highlight large uncertainty in the two-phase phenology 

models and confirm that the mechanism underlying the leaf unfolding process is not yet 

understood. We therefore urgently need an improved understanding of the leaf unfolding process 

in order to improve the representation of phenology in terrestrial ecosystem models. 

 

Keywords: climate warming, phenology models, leaf unfolding, chilling period, Europe, 

uncertainty 

 

1. Introduction 

Climate change has substantially affected terrestrial ecosystem structure and functions (Walter et 

al., 2002). The ecological effects of climate change are already clearly observed in phenology 

(Fu et al., 2015; Menzel et al., 2006a; Walther et al., 2002), but also in altered composition and 

population dynamics of ecosystems worldwide (Chuine, 2010; Diez et al., 2012; Migliavacca et 

al., 2012; Parmesan & Hanley, 2015; Scheffers et al., 2016; Vitasse et al., 2011). Spring 

phenology defines the onset and duration of growing season (Richardson et al., 2013; Schwartz, 

2013), thus strongly impacts on the primary productivity of terrestrial ecosystems (Piao et al., 

2007; Richardson et al., 2010), as well as their water balance (Lian et al., 2020). In addition, the 

timing of phenological events co-determines species distributions (Chuine, 2010), and the order 

of phenological timings among species determines the structure and composition in plant 
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communities (Cleland et al., 2007; Rathcke &  Lacey, 1985). Therefore, accurately predicting 

and assessing phenology dynamics is crucial to improve our understanding of ecosystem 

responses to the ongoing climate change (Piao et al., 2019).  

 

Many studies have shown that the period before leaf unfolding plays a determinant role in the 

leaf unfolding process, and this period during which plants respond strongly to warm 

temperatures is generally called ecodormancy (Lang et al., 1987; Badeck et al., 2004; Landsberg, 

1974; Menzel et al., 2006a; Sarvas, 1972; White et al., 1997). Based on this finding, the Thermal 

Time model, a so-called one-phase model, was developed and widely applied in dynamic global 

vegetation models (Botta et al., 2000; Richardson et al., 2013). This simple one-phase model 

supposed that the leaf unfolding is determined only by warm temperatures forcing bud break. 

Once the forcing temperatures have accumulated above a forcing threshold (the heat 

requirement), leaves start to unfold (Arnold, 1959; Cannell & Smith, 1983; Réaumur, 1735; 

Wang, 1960). However, many studies have found that other environmental variables, such as 

accumulation of cold temperatures (chilling) during winter, day-length, and precipitation also 

influence the heat requirement (Balser & Körner, 2012, 2014; Cannell & Smith 1983; Fu et al., 

2014b; Fu et al., 2015; Fu et al., 2019; Heide, 1993; Murray et al., 1989; Richardson et al., 

2013). Hence, the models involving other factors are often more accurate in reproducing 

observed phenology dynamics (Basler et al., 2016; Fu et al., 2012b; Vitasse et al., 2011). 

However, the mechanisms through which these other environmental factors co-regulate the leaf 

unfolding process remain unclear, mainly due to limited understanding of the dormancy process 

(Chuine et al., 2016; Hänninen, 2016). 
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During dormancy, the buds of trees first enter into a rest state, a phase that is called 

endodormancy (Lang et al., 1987). During this phase, the cells of the meristems switch to an 

offline state with no potential for growth, and become sensitive to low temperatures (hereafter 

called chilling). Chilling promotes the digestion of certain enzymes and reopens the pathways for 

cell-to-cell communication (Rinne et al., 2001). A certain amount of chilling (hereafter called the 

chilling requirement) results in the break of endodormancy, upon which the meristems enter into 

the ecodormancy phase. It is worth noting that there is a limited temperature range in which the 

chilling effect accumulates. If temperature is lower than the minimum value for chilling, 

meristem cells produce antifreeze proteins and modify membranes to tolerate the freezing 

temperature (Heber et al., 1979; Larcher, 2005; Vitasse et al., 2014; Wisniewski et al., 2014). 

Very low temperatures therefore do not contribute to fulfilling the chilling requirement. 

Considering that the temperature ranges for chilling vary among species and locations, and 

cannot be determined empirically, it is difficult to establish the day when the chilling 

requirement has been reached (Caffarra & Donnelly, 2011a; Falusi & Calamassi, 1990). 

Furthermore, even the sequence of the chilling and forcing phases is still equivocal. Some 

experimental studies have suggested that forcing temperatures do not start to accumulate until 

the chilling requirement has been fulfilled (Hänninen, 1990; Kramer, 1994), whereas other 

studies have shown that chilling and forcing temperatures accumulate in parallel (Hänninen, 

1990; Kramer, 1994; Landsberg, 1974). Based on these contrasting findings, different chilling-

forcing-based models, the so-called two-phase models, have been developed (Hänninen, 1990; 

Chuine, 2000). 
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Accurate projections of climate change require accurate assessment of vegetation feedbacks that, 

in turn, depend on accurate predictions of spring phenology to climate warming. Relevant 

questions arising are how spring phenology will change under different climate scenarios and 

how strongly do the various existing phenology models differ in their projected responses to 

climate warming? With these questions in mind, we fitted both one-phase and two-phase models 

to observations of leaf unfolding dates over the past three decades during which climate warmed 

substantially in Europe. Therefore, from this large available data pool, we selected 30% of the 

years (those with the warmest winters) to parameterize the models. After assessing the model 

performance under these warm winters in the current climate, we then investigated the 

divergence of their phenology predictions under future climate warming conditions. This study 

thus calibrates multiple phenology models to the observations under current day warm conditions 

and assesses to what degree their predictions of spring phenology and the end dates of chilling 

accumulation diverge in a future, warmer climate. 

 

2. Materials and method 

2.1 Phenological observations 

To test the model performances under current-day conditions, we collected a large set of 

phenological observations. First leaf unfolding dates (FLU) defined by the BBCH (Biologische 

Bundesanstalt, Bundessortenamt and Chemical Industry) code 11 (Meier, 1997) were obtained 

from the Pan European Phenology Database, which is an open and unrestricted-access database 

of 139 plant species and 33 growth stages across 30 European countries (http://www.pep725.eu/). 

We selected the following tree species because they had high data availability in the database: 
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Alnus glutinosa (mean FLU: 107±8), Betula pendula (108±6), Fagus sylvatica (116±6), 

Fraxinus excelsior (127±7), and Quercus robur (123±7). After excluding outliers of FLU later 

than June (180 DOY: day of the year) that may have been incorrectly recorded, in total 1208 

sites (Fig. A.1) and 4087 species-sites combinations were selected, each with at least 25 

observation years over the period 1980-2012. Note that these phenology observations were only 

from Central Europe, i.e. mainly Germany, Austria, Slovenia and Croatia.   

 

2.2 Climate data 

Daily mean air temperature data over the period 1979-2012 was collected from the WATCH 

Forcing Data methodology applied to ERA-Interim data (WFDEI). It is a bias-corrected re-

analysis dataset of meteorological variables, which covers global land including Antarctica with 

a spatial resolution of 0.5° by 0.5° (Piani et al., 2010; Weedon et al., 2014). In addition, a 

station-based climate dataset (1979-2012), i.e. European Climate Assessment & Dataset (ECAD, 

http://www.ecad.eu/), was also used to fit each phenology model. After excluding the phenology 

sites located more than 30 km from the nearest climate measurement site, 734 sites (~61% of 

1208 sites) remained to fit the phenology models. 86% of these phenology sites were less than 15 

km from the nearest climate measurement site. 

 

For the future phenology predictions over the period 2069-2100, we used three temperature 

datasets from the climate models participating to the fifth phase of Coupled Model 

Intercomparison Project (CMIP5), and two climate warming scenarios, i.e. the Representative 

Concentration Pathways 2.6 W/m2 (RCP2.6) and 8.5 W/m2 (RCP8.5). These three models were 
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CNRM-CM5, IPSL-CM5A-MR and NorESM1-M. CNRM-CM5 is jointly developed by CNRM-

GAME and CERFACS in France with a resolution of 1.5°×1.5° (Voldoire et al., 2013), while 

IPSL-CM5A-MR has a low resolution of 1.25°×2.5° (Dufresne et al., 2013). NorESM1-M is 

built by the virtual Norwegian Climate Centre with a horizontal resolution of approximately 

1.9°×2.5° (Bentsen et al., 2013). Each temperature dataset during 2069-2100 was calibrated by 

adding the difference between the mean annual temperature (MAT) from WFDEI during 1980-

2005 and the MAT from the corresponding CMIP5 models. 

 

2.3 Process-based phenology models 

Four process-based spring phenology models were used in this study, including one one-phase 

model and three two-phase models. The model structures and functions are provided in Table 1. 

The one-phase model, i.e., the Thermal Time model, only accounts for the ecodormancy phase 

(Cannell & Smith, 1983).  It assumes that the chilling requirement is always fulfilled before the 

start of forcing accumulation period (often set at January 1st). Leaves then unfold once the 

accumulated forcing reaches the required critical value Fcrit (Table 1). The forcing rate for 

development is a linear function of daily mean temperature, accumulating when daily 

temperature exceeds the critical temperature Tb (Table 1).  

 

The three two-phase models are the Sequential model (Sarvas, 1974), the Parallel model 

(Landsberg, 1974) and the Unified model (Chuine, 2000). The main difference between the 

Sequential model and the Parallel model is in the start of the forcing phase relative to the chilling 

phase (Table 1). For the Sequential model, the forcing phase begins only after the chilling 
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requirement is fulfilled, while in the Parallel model chilling and forcing start simultaneously, but 

the amount of accumulated chilling units influences the forcing accumulation function. The 

accumulation rate of chilling of both the Sequential and the Parallel model is a triangle function 

to the optimum temperature between minimum (Ta = -3.4 ℃) and maximum temperature (Tc = 

10.4 ℃) (Chuine, 2000; Sarvas, 1974). Chilling units are accumulated after a given starting date, 

which was set on 1st September following a previous study (Caffarra et al., 2011b). Forcing units 

for both these models followed a sigmoid temperature function (Table 1). The leaf unfolding 

date was defined as the day when the cumulated forcing units reached the required critical value 

Fcrit. 

 

The Unified model was developed as a general model for the one-phase and two-phase models, 

and combines the consecutive sequence of chilling and forcing phases (Chuine, 2000). However, 

the cost function for its flexible structure contains more parameters than the other models (Table 

1), which may result in internal correlation among parameters and in increased uncertainty in 

model predictions (Fu et al., 2012a). The chilling function of the Unified model is similar to the 

triangle function of the Sequential and Parallel models. Three parameters are needed: T1 controls 

the temperature range during which chilling is accumulated. T2 determines the maximum of 

chilling rate when temperature reaches T3 — the optimum temperature for chilling (Table 1). 

The rate of forcing is a sigmoid temperature function (Table 1). The Unified model also includes 

a negative exponential relationship between the state of chilling and the state of forcing, which 

becomes active after the chilling requirement reaches a critical value.              
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2.4 Optimization of the phenology models 

Because our main aim was to project FLU in a future, warmer world, we first needed to establish 

which models performed best under current-day warm conditions. We therefore parameterized 

the models using observations from the 30% warmest winters during 1980-2012 for each site. 

For each species, we used 80% of the observation site-years in warm winters for model 

parameterization, and 20% for model evaluation. The particle swarm optimization (PSO) 

algorithm was applied for parameters estimation (Roberts et al., 2015). The algorithm is based 

on the social behavior of bird flocks, and aims at searching the minimum value of the root mean 

square error (internal RMSE) between the predicted and observed phenology. In addition, a new 

performance criteria DIST between the predicted and observed phenology was also used to fit 

each phenology model, because it represented both spatial and temporal extremes of leaf 

unfolding dates across a region (Peaucelle et al., 2019). Firstly, several sets of initial values and 

ranges for parameters as particle swarm were chosen. Then, each particle adjusted its position in 

the search space according to its own inertia, the best location it passed by along its path, and the 

best location the other particles passed by with some random factors. Finally, the particle swarm 

moved close to the optimum location for the objective function-RMSE in the study (Poli et al., 

2007). Then, the external RMSE was calculated with the remaining 20% of the observations and 

simulations by running the models using parameters derived as described above and temperature 

data series. 

 

2.5 Map of tree species in Europe 
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To predict the spatially explicit changes of leaf unfolding date under future climate warming 

conditions, for each studied species, we used the European tree species distribution map (Brus et 

al., 2012) with a spatial resolution of 1×1 km, which was based on the National Forest 

Inventories (http://www.enfin.info/). For each pixel, the area percentage of forest was obtained 

by summing the percentages of all tree species in the pixel. We only considered the pixels where 

the forest area percentage was more than 25% and the latitude was less than 60° (Fig. A.2). The 

studied species were Alnus spp., Betula spp., Fagus spp., Fraxinus spp. and Quercus robur & 

Quercus petraea. Across Europe, Alnus spp., Fagus spp. and Fraxinus spp. are mainly 

represented by Alnus glutinosa, Fagus sylvatica, Fraxinus excelsior, respectively. As for Betula 

spp. (Fig. A.2), Betula pendula occurs more frequently than Betula pubescens across Betula’s 

distribution range (Beck et al., 2016). Therefore, we assumed that Betula pendula was 

representative for Betula spp. in this study. Quercus robur and Quercus petraea co-occur at 

many sites and often produce fertile hybrids (Eaton et al., 2016). Given their similar physiology, 

we pooled the Quercus petraea data with the more abundant Quercus robur. Then, FLU of these 

five tree species were estimated by the four phenology models across their distribution ranges. 

 

3. Results 

3.1 Model performance during 1980-2012 

For each tree species, parameter estimations are shown in Table A.1. Large differences occurred 

in the performance of the four models. According to the internal (using calibration data) and 

external (using only evaluation data) RMSEs, the two-phase models outperformed the one-phase 

model for Alnus glutinosa, Betula pendula, Fagus sylvatica and Fraxinus excelsior, while similar 
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model performances were obtained for Quercus robur (Table 2). And according to DIST, the 

two-phase models were still better than one-phase model across all tree species (Table A2). 

These results suggest that the two-phase models are also better suited for future projections. 

Across all species, when plotted against the observations, the simulated FLU were distributed 

around the 1:1 line (Fig. 1). More than 75% of year-site combinations exhibited an absolute 

difference between the observed and the internal simulated FLU less than the internal RMSE for 

each model, and this did not decline in the external simulation. The number of year-site 

combinations where the observed FLU was earlier than the simulated FLU was almost equal to 

that where it was later. The internal and external RMSEs for the four models were around 10-12 

days (Fig. 1 a-d), but again, the two-phase models performed better than the one-phase model 

(smaller RMSE values, i.e. 12 days vs. 10 days for the one- and two- phase models, respectively). 

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values also 

supported the conclusion that the two-phase models performed better than the one-phase model 

(Table A.3).  

 

In addition, a station-based climate dataset—ECAD was also used to fit each model. Consistent 

with results based on the gridded climate dataset, across all species, the internal and external 

RMSEs for the four models were around 11-15 days (Fig. A.3), and the two-phase models 

performed better than the one-phase model for each species, based on RMSEs, AIC and BIC 

(Table A.4, Table A.5). Therefore, in the remainder of this study, only results from the two-

phase models based on the gridded climate data are presented and discussed. In addition, to test 

the importance of photoperiod in our analysis, we assumed that latitude was a good proxy 

photoperiod. Hence, if the models do not exhibit different fits along the latitudinal gradient, 
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photoperiod would be irrelevant as a driver of FLU. When putting all tree species together, no 

significant differences in ΔFLU were found along the latitudinal gradient (Fig. A.5), suggesting 

that photoperiod does not explain additional variation in FLU. However, Betula pendula did not 

follow this overall pattern because in this species latitude did explain differences in ΔFLU in all 

models (Fig A.4).  

 

3.2 The modeled mean dates of FLU during 1980-2010 across Europe 

For each pixel dominated by one of the five study species, we modeled the FLU dates during 

1980-2010 using the three two-phase models. Figure 2(b1-b3) shows the spatial distribution of 

the mean dates of FLU across Europe from 1980 to 2010 (MFLU1980-2010) for the three two-phase 

models. Similar spatial patterns of the modeled MFLU1980-2010 were found among these three 

models.  Across the whole of Europe, mean values of MFLU1980-2010 were 127±14, 128±13 and 

127±12 for the Sequential model, Parallel model and Unified model, respectively (Fig. 2 b1-b3).  

 

3.3 Mean end dates of the chilling period during 1980-2010 across Europe 

The mean end dates of the chilling period (MEOC1980-2010) were calculated over the period 1980-

2010. We found that the mean end dates were substantially different between the Sequential and 

Parallel model. The MEOC1980-2010 calculated by the Parallel model (Fig. 2 c2) occurred about 1-

2 months later than that of the Sequential model (Fig. 2 c1). For the Sequential model, we found 

that the MEOC1980-2010 was in February to April (Fig. 2 c1). Compared with the other two-phase 
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models, MEOC1980-2010 became advanced, and across 79% of the pixels MEOC1980-2010 occurred 

in November and December of the previous year for the Unified model (Fig. 2 c3). 

 

3.4 Projected changes in mean dates of FLU (2070-2100 vs 1980-2010, ΔMFLU) 

Based on the two-phase models, which all performed equally under current-day conditions, we 

found that, under the RCP2.6 scenario, MFLU2070-2100 advanced compared to MFLU1980-2010 in 

75%, 73% and 78% of all pixels for the Sequential, Parallel and Unified models, respectively 

(Fig. 3 a1). On average across all the pixels, for the three two-phase models MFLU2070-2100 

advanced by 4 days compared to MFLU1980-2010 (Fig. 3 a1). However, for Alnus or Betula the 

mean dates of MFLU2070-2100 advanced 1-2 weeks, compared to MFLU1980-2010, thus much more 

than for the other three, later, species (all < 7 days) (Fig. 3 a2-a6). In addition, for each tree 

species advancement of MFLU2070-2100 were substantially different among the three two-phase 

models. Especially, for Fraxinus and Quercus spp the difference of ΔMFLU among the two-

phase models was around 5-8 days, larger than other three tree species (3-4 days). 

Under the RCP8.5 scenario, the absolute advancements of MFLU2070-2100 largely exceeded those 

under RCP2.6 (Fig. 4 a1). Across all pixels, the average advancement of MFLU was 18, 14 and 

17 days for the Sequential, Parallel and Unified models, respectively (Fig. 4 a1). For Alnus and 

Betula, 3-4 weeks advancement was found, while only 1-2 weeks advances were obtained for the 

other species (Fig. 4 a2-a6). However, the uncertainty of ΔMFLU among the three two-phase 

models was still large. For Fraxinus and Quercus spp, the uncertainty was as large as about two 

weeks (13-14 days), while for other species, it was about one week (6-7 days). 
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3.5 Changes in mean end dates of chilling (2070-2100 vs 1980-2010, ΔMEOC) 

Under the RCP2.6 scenario, we found that the mean MEOC2070-2100 for the Sequential and the 

Parallel model advanced in 84% of the area, while for the Unified model, the mean MEOC was 

delayed in 89% of the area (Fig. 3 b1). The averages of ΔMEOC were -9 days, -4 days and +7 

days (＋: delay, －: advance) for the Sequential -, Parallel - and Unified model, respectively (Fig. 

3 b1). The mean absolute values of ΔMEOC in Alnus and Betula (> 7 days) were larger than 

those of Fagus, Fraxinus and Quercus (< 7 days) (Fig. 3 b2-b6). Similar patterns were found 

under the RCP8.5 scenario, but the magnitudes of ΔMEOC were much larger than those under 

the RCP2.6 scenario. In detail, the mean ΔMEOC for the Sequential, Parallel and Unified models 

were -15, -14 and +19 days, respectively (Fig. 4 b1). Similar to RCP2.6, the mean absolute 

values of ΔMEOC in Alnus and Betula (~20 days) were larger than those of Fagus, Fraxinus and 

Quercus (~10 days) under RCP8.5 (Fig. 4 b2-b6).  

 

3.6 Projected changes in mean dates of FLU relative to changes in mean end dates of 

chilling (ΔMFLU/ΔMEOC) 

When MEOC was delayed by 1 day, on average across all the pixels, MFLU changed by ＋0.63 

(＋0.58), ＋1.02 (＋1.01), －0.71 (－0.98) days under the RCP2.6 (RCP8.5) scenario in the 

Sequential, Parallel and Unified model, respectively (Fig. 3 c1-c3, Fig. 4 c1-c3). In the Parallel 

model, under both climate scenarios, ΔMFLU/ΔMEOC remained confined (＞  90% of 

simulations) within [0.8-1.2] across the species distribution ranges (Fig. 3 c2, Fig. 4 c2). In 

contrast, high spatial heterogeneity in ΔMFLU/ΔMEOC occurred in the simulations with the 

Sequential and Unified model. Results obtained with the Sequential model yielded smaller 
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delays in FLU per day delay in MEOC than results obtained with the Parallel model, with Δ

MFLU/ΔMEOC values above 1 occurring in only 28% of the pixels under the RCP2.6 scenario, 

and 34% under the RCP8.5 scenario (Fig. 3 c1, Fig. 4 c1). In contrast to the Parallel and 

Sequential models, in the Unified model MFLU generally advanced when MEOC delayed by 1 

day, with 34% of the pixels exhibiting ΔMFLU/ΔMEOC less than -1 (advances by more than 

one day per day delay in MEOC) under the RCP2.6 scenario, increasing to 56% of the pixels 

under the RCP8.5 scenario (Fig. 3 c3, Fig. 4 c3).  

 

4. Discussion 

4.1 Model performance 

Previous model comparison studies have been inconclusive regarding which phenology model 

best simulates FLU dates. Some studies have suggested that the one-phase model, which only 

considers the ecodormancy phase, performed better than two-phase models, which consider both 

the endodormancy and ecodormancy phases (e.g. Fu et al., 2012b; Linkosalo et al., 2008). These 

studies suggested that chilling accumulation always sufficed to break endodormancy and 

therefore that the chilling status did not need to be considered in the phenology models. Other 

studies have found similar performance between one-phase and two-phase models, but suggested 

that the two-phase models are more appropriate for the prediction of leaf unfolding dates, 

especially under future climate warming conditions when the chilling requirement might become 

insufficient (e.g. Basler, 2016; Vitasse et al., 2011). Our study found that the two-phase models 

performed slightly better than the one-phase model under current-day warm conditions. This 

difference may be attributable to the recent occurrence of warm autumns and winters, with 
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insufficient chilling increasingly affecting the trees’ leaf unfolding dates (Cook et al., 2012). 

Therefore, the models including a chilling period performed better in this study. 

 

Under global warming the two-phase models that explicitly consider the chilling effect can be 

considered conceptually better than the one-phase model to predict future changes in leaf 

unfolding (Legave et al., 2008; Vitasse et al., 2011). Climate warming in autumn and winter 

slows the rate of chilling accumulation. As autumn and winter temperatures continue to increase, 

accounting for the impacts of chilling on leaf unfolding may increase in importance, because 

insufficient chilling could attenuate or even reverse the advancement of spring phenology (Cook 

et al., 2012; Guo et al., 2015; Morin et al., 2009). In addition, the local acclimation is important 

for phenology model calibration, since the effect size of warming could vary along with the 

interacting factor (e.g., chilling or photoperiod) when applying the models across a larger region 

(Montgomery et al., 2020; Peaucelle et al., 2019). Therefore, the local acclimation in key 

parameters, such as growing degree days, should be investigated to improve the model 

performance (Chuine & Régnière, 2017; Fu et al., 2014b; Peaucelle et al., 2019; Rea & Eccel, 

2006). 

 

Almost all spring phenology modules used in Land Surface models rely solely on temperature to 

simulate the date of leaf unfolding in spring. However, several studies have already convincingly 

shown that budburst phenology is also affected by other environmental factors, such as 

precipitation (Fu et al., 2014b), air humidity (Laube et al., 2014b) and photoperiod (Basler & 

Körner, 2014; Caffarra & Donnelly, 2011a; Fu et al., 2019). Among these factors, especially the 
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photoperiod effects have been widely discussed. Photoperiod provides a more stable signal than 

temperature, and may help trees reducing frost risks under warmer climates (Bennie et al., 2010; 

Way &  Montgomery, 2015) and help avoiding too late leaf unfolding (Caffarra & Donnelly, 

2011a; Pletsers et al., 2015; Fu et al., 2019). However, the photoperiod effect is species-specific 

and more prominent in warm-temperate than in northern climates (Heide, 1993; Laube et al., 

2014a; Zohner et al., 2016).  In our analysis, we did not find significant differences along the 

latitudinal gradient. It might be caused by averaging species at the regional level and low 

resolution climate datasets (Olsson & Jönsson, 2015). Therefore, the possible photoperiod effect 

could not be excluded at the species level.  

 

4.2 Differences in ΔMFLU among the two-phase models 

The patterns of modeled leaf unfolding dates (MFLU) during 1980-2010 in our study were 

consistent with spring phenology patterns based on remote sensing or processed-models in other 

studies (Bennie et al., 2010; Fu et al., 2014a; Wang et al., 2015). We further found, across the 

three two-phase models, that the MFLU2070-2100 advanced about one week and three weeks 

compared to MFLU1980-2010 under the RCP2.6 and RCP8.5 scenarios, although the amplitude was 

species-specific. The early unfolding species Alnus and Betula advanced more than the other 

three species. This confirms that pioneer species are more sensitive to climate warming than late 

successional species, which is in line with results from former studies (Menzel et al., 2006b; 

Morin et al., 2009). However, our results also highlight that this difference between early- and 

late successional species also remains under severe warming in the RCP 8.5 scenario. 
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Interestingly, we found that the projected leaf unfolding dates differed substantially among the 

three two-phase models. What’s more, the mean difference of ΔMFLU was as large as around 14 

days for Fraxinus spp. The divergent of the projected leaf unfolding dates would result in over or 

under-estimation of annual productivity by 13% (Richardson et al., 2011). In addition, it 

increased the uncertainty in spring or summer soil moisture and summer heatwaves (Lian et al., 

2020). However, these phenology models were still widely embedded in land surface models 

currently ((Kucharik, 2003; Sitch et al., 2003; Thornton et al., 2002), in which the phenology 

was triggered when accumulated growing degree days (GDD) exceeds a threshold GDDcrit. 

Therefore, it is crucial to improve the accuracy of phenology models for the sake of accurate 

projections of ecosystem gross productivity, which needs the accurate spring phenology 

determining growing season length, and climate changes, which require the accurate assessment 

of vegetation feedbacks. 

 

The divergent of the projected leaf unfolding dates must be related to the different assumptions 

regarding the impact of changes in the end dates of chilling (ΔMEOC) and in the associated 

chilling period. Recent studies have suggested that phenology models calibrated not only by 

observed leaf unfolding dates, but also by endodormancy break dates could improve the 

performance of phenology models (Chuine et al., 2016). However, the dynamics of the chilling 

period have been studied only rarely. Experimental results from Western European fruit trees 

suggested that the endodormancy break likely occurs between December and February (Chuine 

et al., 2016; Legave et al., 2013), which is consistent with our results from the Sequential and the 

Unified model. In contrast, the end dates of the chilling period in the Parallel model either were 

the date when endodormancy broke, or in case of incomplete chilling during very warm winters, 
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that date when leaves unfolded. Thus, the patterns of MEOC1980-2010 varied a lot among the three 

two-phase models. Without addressing the lack of understanding of the interactions between the 

endodormancy and the ecodormancy phases, this uncertainty will continue to exist. 

Experimentally determining exactly when the endodormancy breaks and how this affects spring 

phenology is thus a priority for making progress in predicting spring phenology changes in a 

future world (Chuine et al., 2016; Junttila & Hänninen, 2012; Leinonen, 1996). 

 

4.3 Opportunities for better calibration of EOC 

Current representation of chilling leads to overestimation of the advanced spring phenology by 

about 1-3 weeks (Wang et al., 2020). Therefore, a better interpretation of chilling and thus a 

better calibration of MEOC is indeed necessary to improve the spring phenology models. First, 

the start of the period during which buds accumulate chilling, the endodormancy phase, remains 

uncertain. In temperate tree species, the starting date of the chilling period is usually defined as a 

fixed date between September and November (Cannell & Smith, 1983; Landsberg, 1974), but 

these choices are based on little evidence. Second, the chilling accumulation at different cold 

temperatures also remains highly uncertain. Chilling was assumed to exert maximum effect 

between 0°C and 5°C (Cannell & Smith, 1983; Landsberg, 1974), but the effect of freezing 

temperature should not be ignored (Wang et al., 2020), rendering the effectiveness of freezing 

temperature for chilling remain to be explored. In addition, day and night temperature might 

exert different effects on the accumulation of chilling, given their different effects on spring 

phenology (Fu et al., 2016; Piao et al., 2015). Third, alternation of cold and warm days during 

endodormancy may be less effective for chilling accumulation than the same number of cold 

days in a continuous cold spell (Bailey & Harrington, 2006). Similarly, a warm spell during 
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endodormancy is typically ignored when accumulating warm temperatures, but this is not certain 

(Bailey & Harrington, 2006). Future research should aim at elaborating these unknowns 

regarding chilling accumulation. 

 

4.4 The importance of changes in chilling to leaf unfolding dates 

We evaluated the importance of changes in chilling relative to forcing in determining leaf 

unfolding dates, and determined to what extent ΔMEOC and changes in forcing period impacted 

on ΔMFLU. For the Sequential and the Parallel model, the advancements of MFLU could mainly 

be attributed to the advancements of MEOC. In contrast, for the Unified model, the advancement 

of MFLU was mainly attributable to the shortened forcing period. This difference is caused by 

the different representation of the chilling mechanism in the two-phase models, especially their 

different optimum temperatures for chilling accumulation. In our study region, mean winter 

temperature is projected to rise from around 3 °C (the optimum temperature for chilling in the 

Unified model) during 1980-2010 to around 5 °C (the optimum temperature for chilling in the 

Sequential model) during 2070-2100. Therefore, chilling accumulates increasingly faster in the 

Sequential model when going from the current climate to the future climate, while in the Unified 

model chilling accumulates increasingly slower. For the parallel model, the best fitting optimum 

temperature for chilling was generally below 0 °C, so the accumulation of chilling was typically 

too small to fulfill the chilling requirement. Therefore, in about 80% of the cases, chilling was 

not completely fulfilled in our simulations with the parallel model, which became even more 

frequent in a future, warmer climate.  
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5. Conclusions 

Our analysis has demonstrated that the two-phase phenology models perform slightly better than 

the one-phase model under current-day conditions. However, although all three two-phase 

models simulated advanced leaf unfolding in the period 2070-2100, projected leaf unfolding 

dates differed substantially among the two-phase models over the period 2070-2100, which was 

related to the different model assumptions regarding both chilling and forcing periods. We found 

that the modeled end dates of the chilling period advanced in both the Sequential and Parallel 

models during the period 2070-2100 compared to the period 1980-2010, but delayed in the 

Unified model. These findings reveal large uncertainty regarding the mechanism underlying the 

leaf unfolding process in the two-phase phenology models. We therefore claim an urgent need to 

improve our understanding of the leaf unfolding process in order to improve the representation of 

phenology in the terrestrial ecosystems in future. 
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Fig. 1 Relationship between observed dates of spring first leaf unfolding and dates simulated with four 

different phenology models: Thermal Time model (a and e); Sequential model (b and f); Parallel model (c 

and g); and Unified model (d and h). Data are shown for all years and species included in our analysis 

(see Methods section). The upper panels show the relationship between the model simulations and the 

data used to fit the model (internal simulations; a-d). The lower panels show the relationship between the 

model simulations and independent data that were not used to fit the model (external simulations; e-h). 

Colors indicate the numbers of occurrence. The black line in each figure is the 1:1 line. The numbers in 

the lower right corner indicate the root mean square error (RMSE). 
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Fig. 2 Spatial distributions of the observed mean dates of first leaf unfolding (MFLU, a1-a6) and the 

simulated MFLU and the mean end dates of the chilling period (MEOC) during the period 1980-2010 for 

the Sequential model (b1, c1), Parallel model (b2, c2) and Unified model (b3, c3).  
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Fig. 3 Histograms of the changes in mean unfolding dates (ΔMFLU, a2-a6) and end dates of chilling 

periods (ΔMEOC, b2-b6) for the five study species under the RCP2.6 scenario, relative to the current 

period 1980-2010 and the spatial patterns of ΔMEOC/ΔMFLU (c1-c3). Two subfigures (a1, b1) in the top 

left corner show the histograms of all tree species combined. QR & QP: Quercus robur & Quercus 

petraea. The numbers in parentheses indicate the mean of ΔMFLU and numbers in brackets indicate the 

standard deviation of ΔMFLU.  
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Fig. 4 Similar to Fig. 3, but under the RCP8.5 scenario. 
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 Table 1 Temperature response functions and structures of the four phenology models used in this study. i, 

j : the day of year. tf : the starting day of the forcing period. tc: 1
st September. Ti : mean temperature on ith 

day of year. Rci: rate of chilling on ith of year. Rfi: rate of forcing on ith day of year. Ta and Tc are the 

minimum and maximum temperature for chilling. Ta = -3.4 ℃, Tc = 10.4. Bold characters indicate to be 

fitted. TM: Thermal Time model; SM: Sequential model; PM: Parallel model; UM: Unified model.

  
Temperature response function 
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Table 2 Internal RMSE shows the root mean square error between observed dates of spring first leaf 

unfolding used to fit the model and the model simulations with four different phenology models for each 

tree species. External RMSE shows the root mean square error between independent observed data that 

were not used to fit the model and the model simulations. TM: Thermal Time model; SM: Sequential 

model; PM: Parallel model; UM: Unified model. 

  Phenological model/  

Tree Species 

Alnus 

glutinosa 

Betula 

pendula 

Fagus 

sylvatica 

Fraxinus 

excelsior  

Quercus 

robur  

R
M

SE
 (

da
ys

) 

One-phase TM Internal 15.7 11.1 12.2 10.3 9.9 

External 15.8 12.2 10.8 15.7 9.7 

Two-phase SM Internal 14.1 9.8 10.1 10.3 10 

External 14.7 10.1 8.6 9.6 11.6 

PM Internal 13.8 9.7 9.3 9.8 9.3 

External  14.2 9.5 9.6 9.7 9.8 

UM Internal 13.8 10.1 10 10 10 

External 13.5 9.7 9.6 10.8 8.6 
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Highlights: 

 When fitting to the observed dates in warm winter, two-phase phenology models performed 

slightly better than the one-phase model. 

 The projected leaf unfolding dates advanced but diverged substantially among the two-phase 

models over the period 2070-2100. 

 The end dates of chilling period advanced in the Sequential model and Parallel model during 

2070-2100 compared to 1980-2010, but delayed in the Unified model. 
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