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Abstract

The quantum electrostatic heterostructure (QEH) model allows for efficient compu-

tation of the dielectric screening properties of layered van der Waals bonded heterostruc-

tures in terms of the dielectric functions of the individual two-dimensional (2D) layers.

Here, we extend the QEH model by including: (1) Contributions to the dielectric func-

tion from infrared active phonons in the 2D layers, (2) screening from homogeneous

bulk substrates, and (3) intraband screening from free carriers in doped 2D semicon-

ductor layers. We demonstrate the potential of the extended QEH model by calculat-

ing the dispersion of coupled phonons in multilayer stacks of hexagonal boron-nitride

(hBN), the strong hybridization of plasmons and optical phonons in graphene/hBN

heterostructures, the effect of substrate screening on the exciton series of monolayer

MoS2, and the properties of hyperbolic plasmons in a doped phosphorene sheet. The

new QEH code is distributed as a Python package with a simple command line inter-

face and a comprehensive library of dielectric building blocks for the most common 2D

materials, providing an efficient open platform for dielectric modeling of realistic vdW

heterostructures.

Introduction

Artificially created van der Waals (vdW) heterostructures composed of stacked two-dimensional

(2D) crystals have opened new opportunities for designing layered materials with chemical

composition and electronic properties sharply defined on a sub-nanometer length scale. A

number of novel materials, devices, and physical phenomena based on this concept have

already been demonstrated, including light emitting diodes in band structure engineered

hBN/graphene/MoS2 structures,1 ultrafast photo detectors made of few-layer WSe2 stacks,2

atomically thin solar cells based on MoS2/WSe2 heterobilayers,3 vertical tunneling tran-

sistors,4,5 van der Waals quantum wells composed of multilayer MoS2 structures,6 Mott

insulating- and unconventional superconducting states in twisted bilayer graphene,7,8 and
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much more. In addition, encapsulation in atomically flat hBN has become a standard method

to improve the electronic quality of active 2D layers.9 Consequently, a proper account of the

ubiquitous interlayer (or substrate-) interactions has become an essential ingredient in the

theoretical modeling of 2D materials for almost any application.

In determining a material’s response to electromagnetic fields, as well as for calculating

elementary excitations such as plasmons, phonons, excitons, and quasiparticles, the dielectric

function, ǫ(r, r′, ω), plays a fundamental role.10 Furthermore, it is a well established fact

that dielectric properties of 2D materials are extremely sensitive to their environment, e.g.

embedding layers or substrates.11–13 This is due to the long range nature of the Coulomb

interaction and the weak intrinsic screening of the 2D material itself.14,15 These circumstances

make the determination of the dielectric function of embedded or supported 2D materials

a critical prerequisite for a realistic description of their electronic and optical properties.

However, conventional first-principles schemes are challenged by the incommensurable nature

of most 2D/2D or 2D/substrate interfaces. Due to the weakness of the dispersive layer-layer

bonds, the crystal structure at such heterointerfaces can be highly complex, with either no

or very large periodicity due to in-plane lattice mismatch or rotational misalignment. For all

but the simplest heterostructures, this implies the use of supercells with many hundreds or

thousands of atoms,7,8,16,17 which makes the problem intractable for standard first-principles

methods.

The previously introduced quantum electrostatic heterostructure (QEH) model18 over-

comes the problem of large interface supercells and enables an efficient calculation of the

dielectric function of general vdW structures containing hundreds of layers. The fundamen-

tal assumption behind the QEH scheme is the additivity of the independent polarizabilities

of the individual layers. This approximation, which has proved surprisingly accurate, is triv-

ially fulfilled in the case of zero hybridization between the wave functions on neighboring

layers. Recent work19 has shown that even in the presence of interlayer hybridization the

requirement of additivity can still be valid, thus lending extra credibility to the results of

3
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the QEH model even for systems where hybridization is known to be significant.

In a nutshell, the QEH model takes as input a low-dimensional representation of the

density response function, χ(r, r′, ω), for each isolated 2D layer of the heterostructure. These

quantities are calculated from first principles and are referred to as dielectric building blocks

(DBB). The dielectric function of the entire vdW heterostructure is subsequently calculated

by solving a Dyson-like equation which couples the DBBs via the Coulomb interaction.

Computational times are typically on the order of seconds or minutes and scales linearly

with the number of momentum and frequency-points at which the response function of the

heterostructure should be evaluated.

In the original QEH model, the DBBs were calculated from first principles density func-

tional theory (DFT) including screening from electronic transitions at the level of the random

phase approximation (RPA). In this work, we extend the model in three important ways.

First, we include the contribution of optical phonons to the dielectric screening. The screen-

ing response from phonons governs the dielectric response of polar crystals in the infrared

frequency regime. This new feature thus extends the applicability of the QEH model to a

new type of materials and frequency regimes. Our implementation uses an analytical model

for the lattice dielectric function that depends on the optical phonon frequencies and the

Born charges of the atoms both of which are obtained from first principles DFT. Secondly,

we add the possibility of accounting for screening from a bulk substrate. This is a rather

straightforward but highly useful feature, as most experiments on 2D materials are performed

on substrates, such as quartz, fused silica, or SiO2. The implementation uses the method

of image charges and takes the (local) frequency dependent bulk dielectric constant of the

substrate as input. The latter can either be taken from experiments or calculated ab-initio

in the case of crystalline substrates. Finally, while the original QEH model only included

electronic screening due to interband transitions (for semiconducting layers), the new model

can account for intraband screening due to free carriers in the valence or conduction bands.

This is important, since 2D semiconductors under most experimental conditions are doped
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(intentionally or unintentionally). The method is implemented using a temperature depen-

dent RPA model for the dielectric function of the free carriers in 2D with effective masses

obtained from DFT.

In this paper we outline the theory, document the implementation of the new QEH model

and illustrate its potential by a number of examples of relevance to recent experiments. For

details on the implementation we refer the reader to the supplementary material.

Theory

Basics of the QEH Model

We begin by summarizing the main idea behind the QEH model. More details can be found

in Ref.18 and the associated supplementary material. In general, the (inverse) dielectric

function is related to the interacting density response function, χ, via

ǫ−1(r, r′, ω) = δ(r− r′) +

∫

1

|r− r̄|
χ(r̄, r′, ω)dr̄. (1)

The QEH model calculates the density- and dielectric response functions of the heterostruc-

ture in two steps. First, the in-plane averaged density response function of each isolated

2D layer of the heterostructure, χi(z, z
′,q‖, ω) (i is the layer index), is calculated. For the

electronic response we use the random phase approximation (RPA) with DFT-PBE orbitals

and energies, but this is not essential and other schemes could be employed. From χi we can

obtain the density induced by an external potential of the general form

φ(z,q‖, ω) = f(z) exp(ir‖ · q‖) exp(iωt), (2)

In the QEH model we specialize to potentials of the form fα(z) = (z − zi)
α where zi is the

center of layer i and α = 0, 1. The two values of α correspond to potentials that are either

constant or vary linearly across the layer and we refer to them as monopole and dipole terms,

5
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respectively.

The potentials in Eq. (2) induce monopole (α = 0) or dipole (α = 1) charge densities

in the layer. We have found that the z-profile of the induced densities do not vary much

with ω while the magnitude can vary significantly. To separate the two effects we define the

z-profile as

ρiα(z,q‖) = C0

∫

χi(z, z̄,q‖, ω = 0)fα(z̄)dz̄ (3)

where C0 is a normalization factor (see below), and the response functions

χiα(q‖, ω) =

∫

fα(z)χi(z, z̄,q‖, ω)fα(z̄)dzdz̄. (4)

The normalization factor C0 is then determined by requiring

χiα(q‖, ω = 0)ρiα(z,q‖) =

∫

χi(z, z̄,q‖, ω = 0)fα(z̄)dz̄. (5)

The data set {χiα(q‖, ω), ρiα(z,q‖)} for α = 0, 1 constitutes the dielectric building block

(DBB) of layer i. For isotropic 2D materials, q‖ is sampled on a 1D grid. For anisotropic

materials, the q‖-dependence is represented by sampling on two 1D grids along two orthog-

onal directions in reciprocal space. It should be clear that the DBB allows us to compute

the induced density due to a general external potential of the form (2) by performing a first

order Taylor expansion of f around the center of the layer.

In the second step, the density response function of the vdWH is obtained by solving a

Dyson equation that couples the DBBs together via the Coulomb interaction. The Dyson

equation for the density response function of the heterostructure reads (omitting the q‖ and

ω variables for simplicity):

χiα,jβ = χiαδiα,jβ + χiα

∑

k 6=i,γ

Viα,kγ χkγ,jβ (6)

6
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where the Coulomb matrices are defined as

Viα,kγ(q‖) =

∫

ρiα(z,q‖)Φkγ(z,q‖)dz (7)

and Φkγ is the potential created by the density profile, ρkγ. We obtain Φkγ by solving a 1D

Poisson equation with open boundary conditions. Note that we leave out the self-interaction

terms in Eq. (6) since the intralayer Coulomb interaction is already accounted for in χiα.

Finally, the (inverse) dielectric function of Eq. (1) in the monopole/dipole basis becomes

ǫ−1
iα,jβ(q‖, ω) = δiα,jβ +

∑

kγ

Viα,kγ(q‖)χkγ,jβ(q‖, ω). (8)

We emphasize that the calculated heterostrucuture response function is that of an isolated

heterostructure (or a heterostructure on a substrate - see later). In particular, we do not

apply periodic boundary conditions in the out-of-plane direction when solving the Dyson

equation (8). Therefore, there is no need to correct for interactions with periodically repeated

images as required in supercell approaches. This is, however, important to consider when

calculating the response function, χiα, of the isolated 2D layers.20,21 Since we use periodic

supercell calculations to obtain the latter we employ an out-of-plane truncated Coulomb

interaction to avoid the interaction with periodic images.18

The QEH method has been benchmarked against experimental exciton binding energies

in the original paper.18 Furthermore, the method has been used to compute EELS spectra

of multilayer MoS2 obtaining good agreement with experiments both for excitons and plas-

mons.22 This concludes our summary of the original implementation of the QEH model. A

description of the various extensions to the QEH model now follows.
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Lattice polarizability

In addition to the electronic response (corresponding to frozen nuclei), polar materials also

respond to external fields via lattice deformations. The contribution from the lattice polar-

ization can be significant for frequencies below or comparable to the optical phonons of the

system and can lead to non-trivial effects when coupled to electronic transitions in the same

frequency regime. The QEH model has been extended to include this effect.

The lattice contribution to the DBB is obtained from the Born effective charges and Γ-

point phonon modes of the isolated 2D material. The Born charges are defined as derivatives

of the macroscopic polarization density, P(E, {ua}), with respect to atomic displacements

under the condition of vanishing macroscopic electric field, E, (defined as the total electric

field averaged over a unit cell of the material).23,24 The latter condition ensures that the

electron system remains in the ground state during the atomic displacement and is automat-

ically satisfied in a calculation with periodic boundary conditions on the unit cell. When

a cell of in-plane area Acell is used to represent the 2D layer, the expression for the Born

charges becomes

Zi,aj =
e

Acell

∂Pi

∂uaj

∣

∣

∣

E=0

where a denotes an atom and ij are cartesian coordinates. The 2D polarization density, Pi,

is obtained following the Berry phase formalism of the modern theory of polarization23,24

using a finite difference evaluation of the derivative. We have implemented the method in

the open source electronic structure code GPAW25 and used it to compute the Born charges

of all the 2D materials in the Computational 2D Materials Database (C2DB)26 with a finite

band gap (around 1000 monolayers). The details of the implementation will be published

elsewhere.

The lattice polarizability of a 2D material in the optical limit (q = 0) takes the form (see

8
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appendix for a derivation)

αlat
ij (ω) =

e2

Acell

∑

ak,bl

Zi,ak

[

(C−M(ω2 − iγω))−1
]

ak,bl
Zj,bl. (9)

where C is the force constant matrix in the optical limit, M is a diagonal matrix containing

the atomic masses, and γ is a relaxation rate. We emphasise that the polarizability in Eq.

(9) is local, i.e. q‖-independent. In general we expect this to be an excellent approximation

due to a rather weak q‖-dependence of optical phonons (note that the dispersion of the

phonon-polaritons in Fig. 1 is driven by the macroscopic polarization field in the absence of

which the phonons show no dispersion in the considered wave vector range).

To make contact to the QEH formalism we must consider the polarization (per area)

induced by a potential, φ, of the form (2). Writing E = ∇φ and using that ∇ ·P equals the

induced electron density, we can obtain the total monopole and dipole components of the

DBB of layer i,

χtot
i0 (q‖, ω) = χel

i0(q‖, ω)− q2‖α
lat
‖ (ω) (10)

χtot
i1 (q‖, ω) = χel

i1(q‖, ω)− αlat
zz (ω) (11)

where αlat
‖ denotes the 2× 2 in-plane submatrix of αlat. When these DBBs are used in Eqs.

(6) and (8) we obtain the dielectric response function of the vdWH including both electron

and phonon contributions.

In addition to the Born charges, we have calculated the Γ-point phonon modes (includ-

ing the force constant matrix C) for all materials in the C2DB. From these data sets, it is

straightforward to obtain the lattice polarizability in Eq. (9). We have compiled the full

DBBs for a set of 34 semiconducting transition metal dichalcogenides, graphene, phospho-

rene, and hexagonal boron-nitride, based on data from the C2DB. These DBBs are also freely

available and can be found here in Ref.27 Compared to the lattice part, the electronic DBB

is computationally more demanding, as it requires ab-initio linear response calculations as

9
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function of q‖ and ω.

Bulk substrates

The inclusion of substrate screening is implemented by the method of image charges. In the

absence of a substrate, we obtain the potential generated by an induced density in layer i

by solving the 1D Poisson equation (ω- and q‖-variables omitted)

∂2

∂z2
Φiα(z)− q2‖Φiα(z) = −4πρiα(z). (12)

with open boundary conditions (as usual, α denotes the monopole/dipole index). In the

presence of a substrate, situated a distance d below the layer, we must add the potential

from the image charge distribution (see supplementary material). The latter is given by28

ρimage
iα (z) = −

ǫsub(ω)− ǫ0
ǫsub(ω) + ǫ0

ρiα(−z − 2d), (13)

where ǫsub is the frequency-dependent (but wave vector independent) bulk dielectric con-

stant of the substrate. The potential corresponding to ρimage
iα is obtained by a similar scal-

ing/reflection operation on Φiα. Finally, the image charge potential is then included in the

Coulomb interaction that enters the Dyson equation for the heterostructure Eq. (6).

Doped semi-conductors and graphene

Moving on, the QEH model has been extended to improve its descriptions of doped graphene.

It is well known that electronic properties of (doped) graphene are extremely difficult to de-

scribe accurately by pure ab-initio methods because of its highly dispersive linear bands29

that require exceedingly dense k-point grids. As detailed in Sec. S2, to overcome this prob-

lem, we construct a DBB for graphene by complementing the ab-initio calculated induced

density profiles Eq. (3) (which are not k-point sensitive) by an analytical model of the den-

10
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sity response function. In practice, we construct a hybrid graphene DBB by combining the

analytical result for the density response function with the induced density obtained from

the ab-initio response function, see Eq. (3). The latter is well defined even for relatively

coarse k-point grids and can easily be interpolated to an arbitrarily fine q-point grid. The

above considerations apply to the monopole component of the DBB. As it turns out, the

dipole component is not very sensitive to the employed k-point grid and does not require

special treatment. The calculations for the plasmon-phonon coupling in graphene/hBN het-

erostructures presented in Fig. 2 employed a hybrid graphene DBB.

Finally, the QEH model has been extended to account for doping in 2D semi-conductors.

Dielectric building blocks for intrinsic 2D semiconductors can be generated straightforwardly

from the ab-initio response function. Here we have generalized the applicability of the QEH

model to doped semiconductors by including contributions from intraband transitions due

to the free carriers in the conduction band (for n-type doping) or valence band (for p-type

doping) assuming parabolic bands with some effective mass, see Sec. S3. Effective masses,

evaluated from the PBE band structure with spin-orbit interaction, are available in the

C2DB26 for around 1000 2D semiconductors.

Results and Discussion

Phonon polaritons in hBN multilayers

As an initial example we consider the hybridization of the longitudinal optical (LO) phonons

in a 10-layer film of hBN. It is well known that the dielectric function exhibits poles in

the (complex) ω-plane at the excitation energies of the system. To unravel the excitation

spectrum we calculate the loss function30

S(q‖, ω) = −Im
(

Trǫ−1(q‖, ω)
)

(14)

11
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where ǫ−1 is the dielectric matrix defined by Eq. (8) and the trace is taken over layer- and

monopole/dipole indices. The loss function of the hBN slab is shown in Fig. 1(a). The

intensity of the spectral peaks is a measure for how strongly the excitation couples to a local

potential of the form (2). Due to the large band gap of hBN, the electronic contribution to

the dielectric function reduces to a real constant, ǫ∞, over the considered frequency regime,

and consequently the dielectric response is governed solely by the lattice vibrations. We

focus on the energy range of the optical in-plane phonon modes (the dipole carrying out-of-

plane optical modes appear in the spectrum just below 100 meV, see flat yellow line in Fig.

2(b-d)). There are ten in-plane TO modes and ten in-plane LO modes. The TO modes are

all degenerate with energy, h̄ωTO and show no dispersion (see discussion below). We note

that these modes are not seen in the spectrum because they do not couple to fields of the

form (2).

In polar bulk crystals the longitudinal- and transverse optical phonon modes (LO and

TO) will be split for q‖ → 0 due to the finite macroscopic polarization of the LO mode.

However, in a 2D material the LO-TO splitting vanishes for q‖ → 0 because the electric field

produced by the finite macroscopic polarization vanishes in this limit.31 This effect is clearly

seen in Figure 1. At finite q‖, however, the electric field produced by the polar LO phonons

leads to significant coupling between them, resulting in the formation of phonon-polariton

subbands. The standing wave profile of the subband modes is sketched in Fig. 1(b).

It should be stressed that the observed hybridization of LO phonon modes is an effect of

the macroscopic electric field set up by the polar lattice vibrations. It would therefore not

be captured by a conventional DFT phonon calculation that doesn’t explicitly include the

macroscopic electric field, which would yield ten degenerate pairs of LO-TO phonon modes.

In the DFT description, the dispersion of the modes would be governed by short-range

electrostatic and quantum mechanical hybridization effects, while the long range macroscopic

field effects would be missed. On the other hand, short-range electrostatics and the quantum

mechanical interlayer hybridization is not accounted for by the QEH model. Fortunately,
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this type of short-range interlayer phonon coupling is usually very weak in vdW bonded

materials32 and can be safely ignored for the purpose of modeling the dielectric properties.

q	

1	 2	 3	

2	
1	

3	

10	layers	hBN	

(a)	 (b)	

Figure 1: (a) Loss function, cf. Eq. (14), of a 10-layer hBN stack reveals the formation of
subbands of longitudinal in-plane phonon-polaritons. The white dashed lines correspond to
the in-plane TO and LO frequencies of bulk hBN. The well known breakdown of the LO-TO
splitting in the q → 0 for 2D materials is clearly seen. The strong hybridization of the LO
sheet phonons leading to the subband formation is due to the macroscopic polarization field
created by the phonons. Numbers label the electric field profile of each subband as sketched
in (b).

Phonon-plasmon coupling in graphene/hBN

As another example we consider the coupling of graphene plasmons with the optical phonons

in hBN. Experiments have reported that the strong coupling between graphene plasmons and

polar phonons can create new hybrid modes with significantly altered dispersion curves.33–37

The effect has been reproduced theoretically using semi-classical models.38 In contrast, the

approach presented here is fully ab-initio subject to the approximations underlying the QEH

model; in particular, it is completely parameter free.

In Fig. 2 we show the calculated loss function (14) of four different graphene/hBN

heterostructures. For all structures, the graphene sheets are n-doped with a carrier concen-

tration corresponding to EF = 0.4 eV (to obtain an accurate description of the plasmon in

13



(b)

(d)

(a)

(c)

(a) (b)

(c) (d)

SiO2

Figure 2: Loss function, cf. Eq. (14), of freestanding and supported graphene/hBN het-
erostructures. (a) Two doped graphene sheets separated by 3 layers of hBN. Only the
electronic response is included in the dielectric building blocks. (b) Same as (a) but with
the phonon contribution included in the hBN building blocks as indicated by a blurring of
the atoms. (c) Same as (b) but with 18 layers of hBN added below the heterostructure. (d)
Same as (c) but with the entire heterostructure placed on a SiO2 substrate.

the doped graphene layer we employ a hybrid analytical/ab-initio DBB as described in Sec.

S2). Panel (a) refers to a structure composed by two graphene sheets separated by 3 layers of

hBN. For this case phonons are not included in the DBB of the hBN layers. The plasmon dis-

persion presents two branches, corresponding to out-of-plane symmetric and anti-symmetric

combinations of the graphene sheet plasmons.

In Fig. 2(b), the phonon contribution is included in the hBN building block. This leads

to an anti-crossing where the symmetric plasmon intersects the hBN in-plane LO phonon.

The faint line just below 100 meV represents the optical out-of-plane phonons of the hBN

sheet. The out-of-plane phonons also couple to the plasmon, but the anti-crossing is very

weak and can hardly be seen on this scale, consistent with previous literature showing that

the out-of-plane response is generally weak.39 In Fig. 2(c), we added 18 layers of hBN

below the heterostructure. This leads to a stronger phonon response, and consequently an

enhancement of the anti-crossings with the plasmon. Finally, we place the entire structure
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on top of a SiO2 substrate (see below for details). Despite the fact that the graphene sheets

are separated from the substrate by an 18-layer thick hBN film, there is a significant effect

on the loss spectrum. In particular, new regions of anti-crossings appear where the plasmon

dispersion intersects the three SiO2 phonon resonances at 55 meV, 98 meV, and 140 meV,

respectively.

In the example discussed above, cf. Fig. 2(d), the SiO2 substrate was included via its

dielectric function40–42

ǫSiO2
(ω) = ǫ∞ +

3
∑

j=1

fj
ω2
TO,j

ω2
TO,j − ω2

, (15)

where ǫ∞ is the electronic dielectric constant and ωTO,j is the frequency of the jth transverse

optical phonon with ǫ∞ = 2.4ǫ0, fj = (0.7514, 0.1503, 0.6011) and ωTO,j = (0.055, 0.098, 0.140)

eV. Comparing to Eq. (9), the dimensionless term fj can be interpreted as an effective Born

charge of the jth mode.

Substrate screening of excitons in MoS2

As another illustration of the importance of substrate screening, we consider a monolayer of

MoS2 placed on top of an hBN substrate. We compare two different models for treating the

substrate: In model 1, the substrate is represented by 100 layers of hBN building blocks. In

model 2, the substrate is represented as a homogeneous bulk dielectric using the method of

image charges as described in the theory section. The two models are sketched in Fig. 3(a).

To account for the anisotropy of the hBN substrate, we use the geometric mean of the in-

and out-of-plane dielectric constants ǫ(ω) =
√

ǫz(ω)ǫ||(ω).43 The bulk dielectric constants

are obtained from RPA calculations employing the same parameter settings as used for the

DBBs. We stress that we do not include phonons in these calculations, even though it would

be straightforward to do so. The image plane of the bulk substrate is set at −d relative to

the center of the MoS2 layer, where d denotes the interlayer spacing in bulk MoS2.

In Fig. 3(b) we compare the dielectric function of the supported MoS2 obtained with the
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two substrate models, which shows good agreement for large q > 0.1 Å−1. For q > 0.005

Å−1 (see inset) the two models show good agreement except for a constant offset of about

5% most likely originating from the inclusion of hybridization in the bulk RPA calculation.

For small q < 0.005 Å−1 (see inset) model 1 reproduces the 2D limit ǫ(q = 0) = 1 because

the substrate is in fact a 2D film (albeit not atomically thin).11 In contrast, with a bulk

substrate the dielectric function converges to (1 + ǫhBN,bulk)/2 for q → 0.

In Fig. 3(c) we compare the binding energies of the lowest bright exciton in the MoS2

layer obtained with the two different substrate models. The exciton energies were calculated

from the Mott-Wannier model as described in Latini et al. 44 . Again, the two models are

generally in good agreement. The small difference between the binding energies calculated

with model 1 and model 2 originates from the 5% difference in dielectric functions and is

not essential. The inclusion of a substrate predicts lower binding energies compared to free

standing MoS2, also in agreement with literature.45 Increasing the number of hBN layers in

the thin film substrate (model 1), the exciton binding energies converge towards a value very

close to that obtained with the bulk substrate (model 2), see Fig. 3(d).

Hyperbolic plasmons in doped phosphorene

As a final example of the new implementation, we calculate the loss function of a single

layer black phosphorus, see Fig. 4. It is well-known that the in-plane structural anisotropy

of phosporene is significantly reflected in the electronic and optical properties,46,47 meaning

that the employed effective mass would be anisotropic as well (see Sec. S4 for details). The

calculations employed a DBB with the effect of the free carriers described by the 2DEG

response function with a doping concentration corresponding to EF = 0.05 eV, temperature

of 300 K, and effective masses m∗
y = 0.17m0 and m∗

x = 1.12m0 (Sec. S3). The anisotropy

is clearly seen in Fig. 4(a) where the different effective masses lead to different plasmon

dispersion relations in the x and y directions, respectively. The white dashed lines indicate

the limits of the Landau damping regions where the plasmons decay into electron-hole pairs.
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(a)

(c) (d)

(b)

hBN

Figure 3: Effect of substrate screening on excitons in MoS2. (a) We consider two different
models for the substrate, namely n layers of hBN dielectric building blocks (model 1) and
a homogeneous bulk dielectric (model 2). (b) Comparison of the dielectric function of the
supported MoS2 layer obtained with the two different substrate models. The dielectric
function of freestanding MoS2 is shown for comparison. The inset shows the screening for
small values of q. (c) Binding energies of the lowest five s excitons in MoS2. (d) Exciton
binding energies for the lowest exciton in MoS2 as function of the number of hBN layers
included in model 1.
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The anisotropy of phosphorene leads to hyperbolic isofrequency contours48,49 as shown

in Figure 4(b). The isofrequency contours are plotted at two frequencies that lie inside and

outside the hyperbolic frequency regime of 0.15 eV < h̄ω < 0.35 eV, respectively. In these

plots the size of the markers indicate the normalized plasmon propagation lengths (Sec.

S5) showing that larger losses appear for the high momentum modes as they approach the

Landau damped regions. Crucially, the inclusion of spatial non-locality limits the extend

of the asymptotes, which would otherwise extend infinitely, and renormalizes the plasmonic

density of states. An equivalent effect is observed in bulk metamaterials.50

Figure 4: (a) Loss function of n-doped monolayer black phosphorus. The in-plane structural
anisotropy is reflected by the different plasmon dispersion curves in the x and y directions.
Dashed white lines indicate the Landau damped regions. (b) Isofrequency contours evaluated
for h̄ω = 0.1eV and h̄ω = 0.2eV corresponding to the normal and hyperbolic frequency
regimes, respectively.

Conclusions

In summary, we have introduced an extension of the quantum electrostatic heterostructure

(QEH) model for calculating dielectric properties of 2D van der Waals heterostructures. The

QEH model combines first-principles derived properties (electronic susceptibilities, phonons,
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Born charges, effective masses) of the individual 2D layers with an efficient classical scheme

to couple the layers via the Coulomb interaction, thereby avoiding the technical issues re-

lated to the full quantum mechanical description of lattice mismatched interfaces. The

new developments allow for inclusion of screening from (polar) phonons, homogeneous bulk

substrates/capping layers, and free carriers in the conduction or valence bands of doped semi-

conducting layers. The importance of including these screening sources for realistic modeling

of plasmons, polar phonons and excitons was illustrated by several examples. The exten-

sions significantly expand the applicability of the QEH model towards more experimentally

relevant systems.

The basic structure of the QEH model remains unchanged and the new developments

only affect the construction of the dielectric building blocks of the individual layers. The new

QEH model is available as a standalone package written entirely in Python and comes with

an improved user interface and a library of dielectric building blocks for the most common

2D materials. The QEH code and library is available at https://pypi.org/project/qeh.

Methods

Supporting information

Contents of supporting information:

• Sec. S1: Including lattice polarizability in the QEH formalism

• Sec. S2: Analytical dielectric building block for doped graphene

• Sec. S3: Inclusion of doped semiconductors in the QEH formalism

• Sec. S4: Density response function of anisotropic 2D semi-conductors

• Sec. S5: Plasmon propagation lengths in the QEH formalism
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• Sec. S6: Inclusion of substrates in the QEH formalism

• Sec. S7: Technical details for Ab-Initio calculations
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