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Abstract 

In previous work of the first author, one could show that Benford’s law (describing the 

logarithmic distribution of the numbers 1, 2, ..., 9 as first digits of data in decimal form) 

is related to the classical law of Zipf with exponent 1. Work of Campanario and Coslado 

(Scientometrics 88, 421-432, 2011) however shows that Benford’s law does not always 

fit practical data in a statistical sense. In this article we use a generalization of Benford’s 

law related to the general law of Zipf with exponent  > 0. Using data from Campanario 

and Coslado, we apply nonlinear least squares to determine the optimal   and show that 

this generalized law of Benford fits the data better than the classical law of Benford. 

Introduction 

Benford’s law (Benford ,1938), originating from Newcomb (1881), determines the 

probability distribution of the first digits of numbers in decimal form. It reads as follows. 

The distribution ( )P d  of the numbers d  1, 2, ..., 9 as first digits of numbers in decimal 

form is 

 





 

d
dP

1
1log)( 10  (1) 
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It is easily seen that ( )P d  is indeed a distribution since the numbers ( )P d  for d  1, 

2, ..., 9 add up to 1. As a consequence of this, the numbers 1, 2, ..., 9 as first digits of data 

in decimal form are not uniformly distributed (contrary to what one might think): (1) 

shows that smaller digits are favored since (1) is a decreasing function of d . 

 

There are not many references to Benford’s law in the informetric literature: Brookes and 

Griffiths (1978) and Brookes (1984) do not use the name Benford but call it the 

“anomalous law of numbers”. In another paper – which does not mention Benford’s name 
either –, Brookes (1980) describes the logarithmic structure of information, i.e. that 

information quantities should be measured logarithmically, as is the case in Benford’s 
law. Brookes’s (1980) reasoning to a large extent builds on the law of Bradford, but his 

quest for the foundations of information science may also help to clarify why Benford’s 
law (as well as generalizations like the one used in this paper) seems applicable to 

informetric data. Quite recently we have the paper by Campanario and Coslado (2011) on 

which the present paper is based. 

 

Most explanations of Benford’s law are mathematical (based on probability theory or 

combinatorics). Egghe (2011) showed that there also exists a direct relation between 

Benford’s law and the simple law of Zipf 

 ( )
B

g r
r

  (2) 

 

where ( )g r  is the number of item densities in the source on rank density  1,r T  

(T = total  number of sources). This result constitutes a link between the law of Benford 

and the informetric laws. 

 

On a referee’s request we further explain the argument in Egghe (2011). For each number 

in a data set we consider it as being between 1 (included) and 10 (not included) by 

putting the decimal dot ‘.’ behind the first digit. This yields a set of numbers in the 

interval [1, 10[ (closed in 1 and open in 10). We assume (as was also done by Pietronero 

et al. (2001), as remarked to us by the second referee) that for these numbers Zipf’s law 

(2) is valid. Since all numbers with first digit r (r = 1, …, 9) belong to the interval 

[r, r + 1[ (closed in r and open in r + 1), the area under the curve (2) for abscissae 

between r and r + 1 is the frequency that the digit r occurs. Since the highest used 

abscissa is 9 + 1 = 10, we have here that T = 10. This explains the use of Zipf's law (2). 

 

Campanario and Coslado (2011) remark that Benford’s law does not always fit practical 

data. They examine the frequency of occurrence of first digits in articles, citations and 

impact factors. In some cases, Benford’s law fits and in some cases it does not (according 

to a 
2  goodness-of-fit test). This finding gave us the idea of deriving a generalized form 

of Benford’s law from the generalized form of the law of Zipf: 

 ( )
B

g r
r
  (3) 
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for 0  (see e.g. Egghe (2005)). Although we were not the first to do this (see 

Pietronero, Tosatti, Tosatti and Vespignani, 2001; Nigrini and Miller, 2007; Luque and 

Lacasa, 2009; see also Tao, 2009) we represent our reasoning for the sake of 

completeness and since it is short. Of course the ‘generalized law of Benford’ depends on 

the parameter  . In the third section we use the data found in Campanario and Coslado 

(2011); we apply nonlinear least squares to obtain the optimal   which gives us the best 

fit of the generalized law of Benford. In this way we obtain improvements of the fitting 

exercise in (Campanario and Coslado, 2011). This is also illustrated graphically. The 

conclusions are presented in the final section. 

The generalized law of Benford 

We use (3) (excluding 1   since this yields the classical law of Benford, see Egghe 

(2011)) and interpret the interval  , 1r d d   for d  1, 2, ..., 9 in (3) as the range where 

the digit d  occurs. Hence T  10 here. The same technique was used by Egghe (2011) in 

the proof of the classical law of Benford, using the simple law of Zipf (2). We first 

normalize (3) so that it becomes a distribution: 

 
10

1
( ) 1g r dr   (4) 

 

Using (3) this yields 

 1(10 1) 1
1

B 


  


 (5) 

 

from which we find 

 
1

1
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B 








 (6) 

 

and hence our Zipfian distribution equals 

 
1

1
( )

(10 1)
g r

r
 








 (7) 

 

With distribution (7) we can now calculate the generalized law of Benford as follows. 

The probability ( )P d  for digit d  to be the first digit of a number in decimal form is 

 
1

( ) ( )
d

d
P d g r dr


   (8) 

 

We obtain 

 1 1

1

1
( ) (( 1) )

10 1
P d d d

 


 
  


 (9) 

 

being the generalized law of Benford where d  1, 2, ..., 9 and where 0   but 1  . 

Note that (9) is again a distribution since  
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Since the law of Zipf (3) is explained (Egghe, 2005, 2010), the above yields an 

explanation of the generalized law of Benford and an introduction of it into the 

informetrics field. 

 

Note. Shi (2009) and Fu, Shi and Su (2007) propose the following generalization of 

Benford’s law (in the notation of P(d) above): 

 










q
ds

NdP
1

1log)( 10  (11) 

where N is a normalization factor; s and q are extra parameters that do not occur in 

Benford’s original law. In the original law, s = 0 and q = 1, yielding N = 1. The main 

difference between (9) and distribution (11) is that the latter is neither explained nor 

related to existing literature. Furthermore, it contains two parameters, instead of only one. 

For these reasons, we consider the law in (9) to be more important from – at least – a 

model-theoretic view. 

Practical results 

This section is based on the data collected by Campanario and Coslada (2011), as shown 

in their Tables 1–3. The data consists of the number of articles published, citations 

received and impact factors of all journals in the Science Citation Index between 1998 

and 2007. We refer to each of these in a specific year (e.g., the number of articles 

published in 2005) as a case study. 

 

We employed the following method. All data was read into the R software for statistical 

computing (http://www.r-project.org), along with the relevant formula (9). We then used 

the nls function to perform a nonlinear least squares estimate of the parameter   for each 

case study. Filling in this value in (9) allowed us to create plots to visually inspect the 

results, as well as to determine the predicted number of items N(d) for d = 1, 2, …, 9. 
Finally, we determined how well the predictions fitted the empirical data according to 

the
2  goodness-of-fit test. 

 

Figure 1 clearly illustrates that, for the case of articles published in 2003, the generalized 

law of Benford provides a better fit than the original one. In some cases, the differences 

are much smaller and visual inspection is not sufficient to state which of the two provides 

a better fit. 

 

The results are summarized in Table 1. As can be seen from the Table, optimal values for 

 range from 0.8838 to 1.113. In four cases, the nonlinear regression could not improve 

on the original of Benford – in these cases the optimal  is 1. We note that there is a 

remarkable difference between the three kinds of case studies. All article case studies 

have optimal   smaller than 1, whereas all impact factor cases have optimal  greater 

than or equal to 1. The citation case studies are a mixed group. 
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Figure 1. Comparison between original and generalized Benford for articles published in 2003 

 

The last two columns of Table 1 compare the results of the chi-square test for the original 

and the generalized Benford law, showing both 
2  and p values. Note that the 

2 distribution for the original law of Benford has 8 degrees of freedom, whereas we use 

the 
2 distribution with 7 degrees of freedom for the generalized law of Benford, because 

the latter contains one estimated parameter  . It can be seen that the number of 

statistically significant differences is much lower for generalized Benford. For instance, 

while all nine of the articles case studies have significantly different values (p < 0.01) 

compared to the ones predicted by Benford’s original law, this is only the case for one 

(p < 0.01) or four (p < 0.05) when compared to the values predicted by the generalized 

law of Benford. 

 

In some cases (most of them impact factors) we still find significant differences between 

empirical data and generalized Benford. Also, in some cases the generalized law of 

Benford yields predictions with slightly higher
2  values than the original law of 

Benford. The Gauss–Newton method used by R performs nonlinear regression by 
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optimizing the sum of least squares. Although this is highly correlated with chi-square, it 

is possible that optimizing for one has a negative effect on the other. This is the reason 

for this effect. 

 
Table 1. Results per case study 

Case study Optimal   Original Benford 
2  (p) 

Generalized Benford 
2  (p) 

1998 articles 0.9294  27.8 (0.001) ** 14.8 (0.039) * 

1999 articles 0.9279  27.4 (0.001) ** 17.1 (0.017) * 

2000 articles 0.9344  16.2 (0.039) * 6.5 (0.480) 

2001 articles 0.8962  38.1 (0.000) ** 10.7 (0.151) 

2002 articles 0.8974  57.9 (0.000) ** 28.9 (0.000) ** 

2003 articles 0.8838  43.5 (0.000) ** 9.6 (0.210) 

2004 articles 0.9103  31.3 (0.000) ** 10.7 (0.152) 

2005 articles 0.9037  41.5 (0.000) ** 16.8 (0.019) * 

2006 articles 0.8961  27.8 (0.001) ** 5.6 (0.588) 

2007 articles 0.8941  31.3 (0.000) ** 5.1 (0.645) 

1998 citations 0.9916  15.1 (0.056)  15.3 (0.033) * 

1999 citations 0.9627  7.1 (0.524)  4.1 (0.771) 

2000 citations 0.9798  4.5 (0.807)  3.3 (0.852) 

2001 citations 1 5.2 (0.732)  5.2 (0.632) 

2002 citations 1.003  3.1 (0.925)  3.2 (0.864) 

2003 citations 0.9783  3.5 (0.897)  2.3 (0.943) 

2004 citations 0.9858  3.0 (0.933)  2.0 (0.957) 

2005 citations 1 11.2 (0.192)  11.2 (0.131) 

2006 citations 1.019  9.7 (0.290)  9.4 (0.227) 

2007 citations 1.019  8.4 (0.397)  8.6 (0.281) 

1998 impact factor 1.016  6.6 (0.586)  6.9 (0.443) 

1999 impact factor 1.006  11.3 (0.184)  11.9 (0.103) 

2000 impact factor 1 22.2 (0.004) ** 22.2 (0.002) ** 

2001 impact factor 1 20.2 (0.010) ** 20.2 (0.005) ** 

2002 impact factor 1.003  24.9 (0.002) ** 25.3 (0.001) ** 

2003 impact factor 1.001  12.5 (0.130)  12.6 (0.082) 

2004 impact factor 1.059  16.7 (0.033) * 13.8 (0.054) 

2005 impact factor 1.035  16.3 (0.038) * 17.0 (0.017) * 

2006 impact factor 1.085  39.3 (0.000) ** 28.7 (0.000) ** 

2007 impact factor 1.113  40.4 (0.000) ** 14.7 (0.040) * 
* (**) denotes significant difference between observed and predicted values at p = 0.05 (p = 0.01) level. 

 

There is a declining tendency for   for article-based samples from 1998 to 2007 and a 

less definite increase for impact-based samples. Whatever the statistical significance of 

this may be, we can comment on this as follows. As proven in (Egghe, 2005, Corrolary 

IV.3.2.1.5, p. 204–205) increasing values of   stand for an increase of the inequality 

(concentration) of the g(r) values, as expressed by the increasing Lorenz curves L(g) of 

the rank-frequency distribution g. In the article-based examples this would mean a 
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decrease in the inequality between the g(r) values over the years 1998–2007. We do not 

have an informetric explanation for this. 

Using the same argument we can derive – since the article-based samples have a lower   

value than the impact-based samples – that the distribution of the first digits in the latter 

case is more skewed (less equal, more concentrated) than in the former case. We consider 

this an interesting finding, but we lack an informetric explanation for it. 

Conclusions 

In this article, we discussed and applied the generalized law of Benford, which can be 

derived from Zipf’s law. This new formula has the same parameter   as Zipf’s law. 

Since the law of Zipf has been explained in an informetric setting (Egghe, 2005, 2010), 

the generalized law of Benford is also relevant to informetrics and related fields. 

 

Empirical testing shows that the generalized law of Benford yields improved fits to 

practical data on the distribution of the digits d   1, 2, ..., 9 as first digits in numbers in 

decimal form. To a certain extent, this is to be expected, since we have an extra 

parameter.  

 

Our results suggest that the generalized law of Benford could be used heuristically to 

determine changes and differences in inequality. It would take, however, more research 

and much more data to see if this is really the case or just an accidental regularity in the 

data. 
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