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Abstract

Design models for multiproduct batch plants define the optimal size and number of batch equip-
ment needed to produce predetermined product quantities over a strategic planning horizon, and
such for every stage of the production process. However, although these design models incorporate
realistic equipment costs and process information, a realistic spread of product deliveries over the
(long) planning horizon, is mostly not considered. In single period design models, product deliveries
are not modelled: it is assumed that finished products can be stored (for free) until delivery, or are
delivered directly after production. Multiperiod plant design models assume in general that product
quantities are delivered at the end of every repetitive (short) production period, but the influence of
a variable delivery scheme has barely been investigated.

The aim of this paper is to study the design of a batch plant for a periodic delivery scheme with
variable product quantities, and compare the results for two modes of operation: single product and
mixed product campaigns, both in a multiperiod context. Additionally, we will evaluate the impact
of (limited) storage capacity for finished products and variable product mixes over the periods. All
appropriate batch plant design models are solved with mixed integer techniques. The objective is to
minimise capital and startup costs, while inventory holding costs are calculated ex post.

From the exploratory study performed, it appears that the cost of periodic deliveries with vari-
able product quantities, seems not that high, especially when end-of-period inventory is allowed.
Concerning the mode of operation, the mixed product campaign mode turns out to be very com-
plex to calculate, especially in a multiperiod context, without distinct cost advantages for the plant.
Therefore we conclude that, if feasible for the production process, producing in multiperiod single
product campaigns is often the cheapest way to operate a batch plant that allows a variable delivery
scheme.

1 Introduction

Specialty chemicals, such as food additives, agrichemicals and lubricants (Sharratt, 1997), represent
more than 25 % of the EU chemical sales in 2017 (Cefic, 2018) and are preferably produced in batch
plants. The construction of such batch plants gives rise to the strategic Batch Plant Design Problem
(BPDP) which entails the determination of the optimal number and size of equipment units for every
production stage, as well as the associated operational planning guidelines, such as the dedication of
products to specific equipment and the optimal batch sizes. The aim of most BPDP is to minimise total
costs, while satisfying both demand and design related constraints that state that the designed plant
should be large enough to produce the given product quantities within a given (long) production horizon.

*corresponding author: trijntje.cornelissens@uantwerpen.be
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Important to realise is that, to solve the BPDP, the operational use of the plant must always be incor-
porated, usually denoted as the mode of operation. In academic literature, three modes of operation are
introduced: Single Product Campaign (SPC), Mixed-Product Campaigns (MPC) and Network planning
(modelled as Resource-task (RTN) or State-task network (STN)). A visualisation of all three modes
is included in Appendix A. In case of SPC (Verbiest et al. (2017, 2019a)), the total quantity of each
product is produced in one single production run over the whole horizon, before switching to another
product. This SPC mode of operation is based on an approximation of the process cycle time for every
product, and needs no explicit sequencing nor specific start and end times of the production batches
(Applequist et al., 1997). Though, producing every single product only once over a strategic planning
horizon might be inappropriate from an inventory or delivery point of view. Also the MPC mode relies
upon approximated process cycle times, but a mixed product campaign consists of a combination of
batches of different products, which is repeated cyclically over the planning horizon. Because of these
mixed campaigns, and in case of minor changeover times, machine idle times can be reduced, meaning
smaller and cheaper plant designs can sometimes be achieved (Birewar and Grossmann, 1989; Biegler
et al., 1997; Fumero et al., 2011). Furthermore, since products are no longer made in one single run,
a more steady supply of products over the planning horizon is assured. Note that only in few BPDP
mentioned above, changeover costs or times are taken into account, since explicit scheduling of batches
is avoided. Finally, the network planning mode of operation is the most detailed one (Barbosa-Póvoa
and Macchietto, 1994; Pinto-Varela, 2015). It includes (detailed) modelling of the exact process times
and is closely related to scheduling. As a consequence, when applying a network mode for the design
(and scheduling) of multiproduct batch plants (Verbiest et al. (2019b); Van Den Heever and Grossmann
(1999)), accurate solutions and efficient resource usage are obtained, but the models become rapidly very
large and intractable to solve.

In all aforementioned papers, it is assumed that the total amount required for every product needs to
be fulfilled by the end of a given strategic (long) production horizon. In fact, the production horizon is
assumed to be one period, which is why these design problems are denoted as single period models for
which a delivery scheme over the horizon is simply not considered. As this assumption is inappropriate
from a logistic and customer service point of view, we prefer multiple periods models (illustrated in
Figure 1). In multiperiod BPDPs, the entire production horizon is divided into multiple periods with,
at the end of every period, a delivery point at which specific amounts of products are guaranteed to be
ready. In addition, specific production planning characteristics that arise in a multiperiod context, such
as allowing inventory from one period to the next, can be taken into account.

H
Single period - 1 delivery point

Hh h h
Multiperiod - 3 delivery points

Figure 1: Schematic overview single and multiperiod problems

Multiperiod optimisation models for different modes of operation have been introduced in the batch plant
design literature since the 1990s. However, most papers focussed on the modelling and solution methods,
rather than on the impact of the multi-periodicity on the design. Varvarezos et al. (1992) used an MINLP
model for the multiperiod BPDP in SPC mode and proposed a decomposition technique to tackle com-
putational complexity. They also compared the impact of optimising all periods simultaneously versus
solving only the period with lowest or highest demand. Van Den Heever and Grossmann (1999) looked
into multiperiod planning of general chemical process systems and investigated the use of disjunctive
programming to improve the computational efficiency. More recently, Moreno et al. (2007) formulated
a novel MILP model for the design and planning of multiperiod batch plants with semi-continuous
equipment and intermediate storage. Garćıa-Ayala et al. (2012) investigated capacity expansions and
retrofitting of existing plants under a multiperiod scenario. In order to keep the problem tractable, they

2



introduced a disjunctive programming model and solution strategies such as priority branching. Re-
garding the multiperiod BPDP operating in MPC mode, Fumero et al. (2016) proposed an MILP model
but, also in this case, the focus was not on the effect of applying an MPC mode, nor on the operational
characteristics. Last but not least, multiperiod BPDPs operating in the network planning mode have
only been studied to a limited extent, i.e., by assuming the same demand and repeated operations for
every period, thus simplifying the operation of such batch plants (Pinto-Varela, 2015). To conclude,
even though design models have been addressed, the above overview shows that the impact on the plant
design of the mode of operation (SPC, MPC, network) in a multiperiod context has barely been studied,
neither as variable delivery schemes.

In this paper, we investigate the plant design for a multiperiod SPC- or MPC mode of operation, denoted
M-SPC and M-MPC respectively, as opposed to S-SPC and S-MPC for single period BPDPs. On top
of this, the impact of the following multiperiod characteristics are studied: (1) variability of the product
delivery quantities at the end of every period; (2) availability of end-of-period inventory, allowing to
keep stock of products at the end of every period; and (3) existence of product mix restrictions that
indicate if every product has to be produced in every period. The network planning mode is not further
investigated, as the calculations in a multiperiod setting become (too) arduous.

The remainder of this paper is organised as follows: in Section 2, a general description of the multiperiod
BPDP and multiperiod characteristics is provided. In Section 3 the mathematical models for both
multiperiod SPC and MPC mode of operation are defined. In Section 4, an exploratory study investigates
the influence on the plant design of the M-SPC and M-MPC mode and the impact of the different
multiperiod characteristics is evaluated. Finally, we conclude with a discussion and conclusion in Sections
4.5 and 5.

2 Problem description and assumptions

In this section, first a general description of the multiperiod BPDP is given. Next, the different multi-
period characteristics are explained.

2.1 Multiperiod BPDP

Irrespective of the number of periods and the mode of operation, all models assume that the batch plant
to be designed consists of J stages j, necessary to produce P products i. The total quantity for every
product (Qi) to be fulfilled by the end of the total planning horizon (H) is known upfront. When we
consider a multiperiod context, this horizon H is divided into Np number of periods h with equal period
lengths Lp. Also the amounts to be delivered of every product at the end of every period (Qih) are known
but can be different, together adding up to the given total quantity (Qi). The size factors (Sij) and
batch processing times (τij) are known for every product i at every stage j and identical in all periods.
Size factors correspond to the equipment volume needed at stage j to produce a unit mass of product i.
The batch processing times are assumed to be independent of the product batch size. For the detailed
nomenclature, we refer to Appendix B.

Further general assumptions, as essentially already specified by Voudouris and Grossmann (1992), are:

1. Production process/recipes are known upfront;

2. Unlimited access to raw materials;

3. Only batch equipment is explicitly considered since this is most expensive;

4. Zero-wait policy between the batch stages, meaning a batch is immediately transferred from one
stage to the next;
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5. Overlapping mode of operation to eliminate idle times (no need to wait until one batch has com-
pletely passed through all stages);

6. At most N identical parallel equipment per stage, operating out-of-phase, i.e. batches are supplied
from the previous stage shifted in time (see App. A for an illustration);

7. Discrete set of S equipment sizes vs for all stages j to choose from.

Within this setting, our multiperiod BPDP determines for every stage the optimal number and size of
equipment units to be installed (and kept over all periods). Simultaneously the operational planning
guidelines per period, such as number of batches and batch sizes per product, are determined. The aim
is still to minimise the total cost, while satisfying design and demand constraints in every period. In this
paper, the total cost is the sum of capital and startup costs. The capital costs represent the one-time
acquisition and installation cost of the batch equipment units, whereas the startup costs represent the
costs for preparing equipment units for a new production run (a sequence of batches of the same product),
summed over the periods. Finally, in this paper, the inventory holding costs of finished products, during
and at the end of every period, are calculated ex post, since optimising them is arduous. A detailed
discussion of the cost function is presented in Section 3.

Last but not least, different additional assumptions are needed for SPC- and MPC mode. As stated in
the introduction, an SPC mode of operation implies that, in every period, all batches of one product are
produced before switching to another product. In addition, product cycle times are used to calculate
the fulfilment of the constraints in every period. These product cycle times correspond to the longest
stage cycle time over all stages for every product:1 max

j=1,...,J
τij/Nj (Voudouris and Grossmann, 1992). In

a MPC mode of operation, on the other hand, batches of various products are produced in a mixed
campaign according to a certain sequence, which may vary over the periods. These campaigns are
cyclically repeated over the length of every period. The additional assumptions, as specified by Fumero
et al. (2013), are: (1) instead of product cycle times, campaign cycle times are defined. These correspond
to the longest stage cycle time over all stages for an entire campaign; (2) for every product i a maximum
number of batches in a campaign (NBCUBi ) is specified upfront; and (3) a slot-based continuous time
formulation is used to account for starting- and finishing times of batches in every campaign in every
period. These slots correspond to time intervals of variable unknown length, to which batches are
assigned. Note that as the computational performance strongly depends on the number of slots allowed
for each equipment unit, an upper bound E =

∑
iNBC

UB
i is specified. E is an upper bound, since in

the extreme case of a single equipment unit per stage and the number of batches per campaign for every
product corresponding to their maximum,

∑
iNBC

UB
i time slots are needed.

2.2 Multiperiod characteristics

As announced earlier, the multiperiod characteristics considered in this paper are: Variability of delivery
quantities, End-of-period inventory and Product mix restriction.

The first characteristic, Variability of delivery quantities, defines if the amounts to deliver of every prod-
uct at the end of the periods are equal or not, with the latter accounting for (deterministic) demand
variations. To be able to compare the different scenarios per example instance, the sum of the delivery
quantities per period will be equal for all scenarios for each product.

1The time it takes a product i to pass through a stage j is denoted as the stage cycle time. This time is given by
τij/Nj , since each unit is charged in turn by batches from the preceding stage (out-of-phase operation - assumption 6).
Additionally, since an overlapping mode of operation is assumed (assumption 5), the time interval between two successive
batches of a product is determined by the stage having the longest stage cycle time. This is referred to as the cycle time
of a product and, hence, corresponds to the time necessary to produce one batch (omitting the begin- and end effects of
production).
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Next, we assume that all products are delivered at the end of a period, but the characteristic End-of-
period inventory defines if it is allowed to keep stock for the next periods or not. However, to avoid an
unrealistic accumulation of products over the periods, an upper bound on the amount stored per product
during the periods is imposed (see Sec. 3). Storage tanks are not explicitly modelled.

Finally, the characteristic Product mix restriction indicates whether or not there are restrictions on the
product mix in a period. A ”fixed product mix” means that every product should be made in every
period, whereas for a ”variable product mix” the number of products made in every period can be
optimised.

3 Mathematical models

In this section, the mathematical descriptions of the multiperiod BPDP for the different modes of oper-
ation, incorporating the multiperiod characteristics, are given.

The multi-period model for SPC mode (M-SPC) is mainly based on the MILP model proposed by Moreno
et al. (2007), while for an MPC mode (M-MPC), the MILP model is adopted from Fumero et al. (2016).
However, in both cases we adapted their models: the aim of our BPDPs is to minimise total costs
while deterministic delivery quantities for every product need to be ready at the end of every period.
In Moreno et al. (2007) and Fumero et al. (2016), on the contrary, the amounts to be delivered may
vary between lower and upper bounds, while the aim is to maximise profit by considering variations in
prices, costs and availability of raw materials over the periods. Also, we are only concerned with the
batch equipment, whereas Moreno et al. (2007) model semi-continuous equipment (i.e. pipelines) and
short-term intermediate storage tanks as well.

Hereafter, in order to avoid extended mathematical descriptions, only the constraints representing the
multiperiod characteristics, the objective function and the expression to calculate the ex post inventory
holding costs are described. The description of the complete mathematical MILP models for both
modes of operation are given in Appendices C and D. Note that the characteristic Variability of delivery
quantities does not need a specific constraint formulation, but is tested by using different data sets.

3.1 M-SPC

3.1.1 Constraints taking into account the multiperiod characteristics

The design constraints, horizon constraints and boundaries for the multiperiod BPDP that do not de-
pend on multiperiod characteristics can be found in Appendix C, as well as the linearisation constraints.
The remaining constraints are described hereafter.

End-of-period inventory

Batch equipment constraints
If end-of-period inventory is allowed, the amount produced of product i in period h must no longer be
equal to the amount to deliver (Qih) but is a variable that needs to be determined. Hence, for every
stage j, the size of the equipment units vs should be large enough to hold the batches of every product
i in every period h, multiplied by the size factor Sij . Eq. (1) is obtained by using the expression qih/nih
to represent the batch size of product i in period h, with nih the number of batches and qih the amount
produced.

nih >
S∑
s=1

qihSij
vs

ujs ∀i, j, h (1)
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If end-of-period inventory is not allowed, qih = Qih and Eq. (1) can be replaced by Eq. (2).

nih >
S∑
s=1

QihSij
vs

ujs ∀j, i, h (2)

Inventory constraints
For every product i the delivery quantity required at the end of every period h can be fulfilled through
the production in that period and the inventory kept at the end of the previous period (Eq. (3)). Con-
sequently, the inventory at the end of every period h equals the sum of the inventory from the previous
period and the amount produced in this period minus the amount delivered in this period (Eq. (4)).
Eq. (5) limits the total amount to be stored at the end of every period, just before delivery, to the
maximum amount required over all periods, with QUBi = maxh(Qih). The starting inventory for every
product i (Ii0) is set to zero (Eq. (6)).

Ii(h−1) + qih > Qih ∀i, h (3)

Iih = Ii(h−1) + qih −Qih ∀i, h (4)

Ii(h−1) + qih 6 QUBi ∀i, h (5)

Ii0 = 0 ∀i (6)

As stated in Section 2, storage tanks are not explicitly modelled.

Characteristic Product mix restriction

When the product mix is fixed, every product needs to be produced in every period. This generates the
following additional constraints: Eq. (7) forces the production of at least one batch of every product i
in every period h, whereas Eq. (8) sets a lower bound on the amount produced per period. The lower
bounds are given by QLBi = (QiT

min
i )/H and Tmini = maxj τij/N

2.

nih > 1 ∀i, h (7)

qih > QLBi ∀i, h (8)

3.1.2 Objective function

Capital costs
The capital costs, associated with the acquisition or installation of equipment, depend on the number of
equipment units installed (indicated by the binary variable zjn) and the size of these units (indicated by
the binary variable ujs and discrete size option vs). The value of the capital cost increases non-linearly
with increasing size of the equipment unit, where αj and βj are stage dependent cost parameters and βj
is typically smaller than one (Sparrow et al., 1975). This one time capital expenditure is assumed to be
converted to a uniform cost over the horizon, so that it can be correctly added up with the other cost
components. (Jelen et al., 1983)

J∑
j=1

S∑
s=1

N∑
n=1

αjv
βj
s zjnujs (9)

Startup costs
These costs account for the preparation of the equipment units at the start of every series of batches of
product i in every period h. It is modelled as follows:

P∑
i=1

J∑
j=1

N∑
n=1

Np∑
h=1

Cstart zjn tih

2This lower bound is derived from
∑

i(QiTi)/Bi 6 H, so for every product i: (QiT
min
i )/Bi 6 H applies. Reordering

this equation gives (QiT
min
i )/H 6 Bi and the minimum is the used lower bound.
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where Cstart is a stage and product independent startup cost and tih indicates whether or not product
i is produced in period h. Hence, these costs are affected by the number of products made in a period,
as well as the number of equipment units installed in parallel per stage (given by zjn). Note that it is
assumed that this cost does not depend on the size of the units.

Finally, the binary variable tih is linked via the following constraints to the number of batches made of
product i in period h, where NBUBi is a specified upper bound on the number of batches:

tih 6 nih ∀i, h (10)

tihNB
UB
i > nih ∀i, h (11)

Inventory holding costs
In a multiperiod context the delivery dates are end-of-period, meaning that all products are stored until
the end-of-period. Hence, the cost of this product accumulation should be taken into account. Since this
calculation generates a non-convex objective function that makes the optimisation arduous, the calcula-
tion of this cost is done ex post.

However, a small correction term is included in the objective function to penalise and avoid excess
end-of-period inventory that is not asked for:

Np∑
h=1

P∑
i=1

InvCorrIih (12)

with InvCorr ∈]0, 0.001] a given correction coefficient.

The ex post inventory is calculated according to the inventory patterns visualised in Figure 2, which
shows two periods in which two products are produced:

Lp 2Lp

Q

T21

B21

θ21

Q21(= q21)

T11 B11

θ11

Q11
q11

I11

T12
B12 q12

Q12

θ12

B22

T22

θ22

Q22

Legend: Product 1

Product 2

Figure 2: Schematic representation of the ex post inventory calculations for M-SPC

Hence, this cost becomes:

Np∑
h=1

P∑
i=1

((nih − 1)θih − Tih(
nih(nih − 1)

2
))Bih︸ ︷︷ ︸

I

+ (Lp−
i∑
k

θkh)qih︸ ︷︷ ︸
II

+Lp Ii(h−1)︸ ︷︷ ︸
III

 InvCost
(13)
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with InvCost the inventory holding cost per unit of product per time. The first term (I) corresponds
to the production part for every product in every period, in which the batches of every product i are
produced. The second term (II) corresponds to that part of the period length in which the total amount
produced of every product is waiting to be delivered. Since the SPC mode of operation does not give a
sequence in which products are produced, it is assumed that products are produced in increasing order
of production quantities. As such, the product with the largest amount produced is kept in inventory the
shortest time (as InvCost is considered the same for all products). Lastly, the third term III represents
the end-of-period inventory kept when going from one period to the other.

Remark that the first and second term (I and II) are zero in case a product is not produced in a certain
period. Indeed, if the inventory stored at the end of the previous period is large enough to meet the
delivery quantity in the next period, no production is needed and no batches of this product are made
(qih, nih = 0).

3.2 M-MPC

3.2.1 Constraints of multiperiod characteristics

Also for the models in M-MPC mode, the main batch equipment design, horizon, scheduling, timing and
necessary linearisation constraints are included in Appendix D. Only the constraints reflecting specific
multiperiod characteristics are defined here.

End-of-period inventory

Batch equipment design constraint:
For every stage j, the size of the equipment units vs should again be large enough to hold a batch of
every product i, multiplied by its size factor Sij . A batch of product i in period h can be written as
the amount produced of product i in period h (qih) divided by the number of batches produced of that
product in that period. Moreover, it is assumed that the number of batches of product i produced in one
campaign in period h, i.e.nih, can be written as the selection of one option m via the binary variable
cimh. Consequently, the total number of batches of product i produced in a period h corresponds to the
number of batches produced in one campaign (

∑
mmcimh) times the number of campaign repetitions

in that period (NNh). Rearranging all the previous information, gives Eq. (14). Note that the amount
produced of product i in period h (qih) is a decision variable, since end-of-period inventory is allowed in
this model. Hence the constraint to determine the size of the equipment units becomes:

NNh >
S∑
s=1

NBCUB
i∑

m=1

Sijqih
vsm

ujscimh ∀i, j, h (14)

Demand and inventory constraints:
Similar as in the M-SPC context, deliveries of specified amounts of every product are promised at the
end of every period. Additionally, end-of-period inventory is allowed so that the amount produced of
product i in period h does no longer need to be equal to the amount required. To incorporate these
features, Eqs. (3)-(6) from the M-SPC model are included.

Finally, Eqs. (15)-(16) enforce that if no amount of product i is produced in period h, no batches are
made and vice versa.

1− ci0h 6 qih ∀i, h (15)

QUBi (1− ci0h) > qih ∀i, h (16)
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No end-of-period inventory

In case no end-of-period inventory is allowed, Iih = 0, qih = Qih ∀i, h. Hence, Eqs. (3)-(6) are again
substantially simplified. Moreover, Eq. (14) becomes Eq. (17), as qih is replaced with Qih.

NNh >
S∑
s=1

NBCUB
i∑

m=1

SijQih
vsm

ujscimh ∀i, j (17)

Fixed product mixes

When the product mix is fixed, every product needs to be produced in every period. This generates the
following additional constraints: Eq. (18) forbids to produce zero batches of a product, whereas Eq. (19)
forces to produce at least one batch of every product i in a campaign in every period h. Finally, Eq. (20)
sets a lower bound on the amount produced per period. The lower bound QLBi is formulated similarly
as for the M-SPC case. Hence, we set QLBi = (QiT

min
i )/H and Tmini = maxj τij/N .

ci0h = 0 ∀i, h (18)

NBCUB
i∑

m=1

cimh = 1 ∀i, h (19)

qih > QLBi ∀i, h (20)

3.2.2 Objective function

Similar as for the M-SPC model, the aim of the multiperiod M-MPC BPDP is to minimise the total
cost, which consists here of capital plus startup costs. The inventory holding costs are calculated ex post.

Capital costs:
The capital costs are the same as for the M-SPC models and correspond to Eq. (9).

Startup costs:
Comparable as for the M-SPC models, in which a fixed startup cost is incurred every time a series of
batches of one product (i.e. a run) starts, the startup costs are formulated as a fixed cost per campaign
per equipment unit installed. Hence, it is assumed that it is not necessary to setup within the campaign,
but always at the beginning of a new campaign.

The formulation of this cost is:

J∑
j=1

N∑
n=1

B∑
b=1

Np∑
h=1

CstartBBbNNRbh zjn (21)

with
∑B
b=1BBbNNRbh the choice for a specific number of campaign repetitions (BBb) in period h, out

of a discrete set of repetitions.

Ex post inventory holding costs:
To illustrate the calculation of this ex post inventory holding cost, the inventory pattern of two products
is first shown in Figure 3 for a single period context (S-MPC), assuming that all products are kept in
inventory until the end of the production horizon.
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Q

p2
p1

B1

B2
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...
p1

p2

p1

Q1
Q2

Legend: Product 1
Product 2

Figure 3: Schematic representation of the ex post inventory calculations for S-MPC

Given this pattern, the inventory holding cost calculations are the following:

P∑
i=1

(niCTC −
N∑
n=1

E∑
e=1

(TFJen − TIJefirstn)yiJen)BiNN︸ ︷︷ ︸
I

+ pi((NN − 1)H − CTC(
NN(NN − 1)

2
))︸ ︷︷ ︸

II

 InvCost
(22)

with InvCost a known product independent inventory holding cost. The first term (I) corresponds to
the production part: as can be seen on Figure 3, different products may be produced alternately and,
consequently, batches of one product can be made throughout the entire campaign length. Hence, for
every batch, the finishing time on the final stage J is used to mark the point at which a step of size Bi is
taken. Note that these finishing times are shifted over the starting time of the first batch of a campaign
on this stage, as these begin effects are not taken into account. The second term (II) corresponds to
that part of the horizon in which the amount produced is waiting to be delivered, with pi the amount
produced of product i per campaign and NN the number of campaign repetitions.

The calculation of this cost for a multiperiod context is fairly similar to that for the single period one
and an illustration of the inventory pattern of two products over two periods is shown in Figure 4.
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Figure 4: Schematic representation of the ex post inventory calculations for M-MPC

Consequently, the cost expression is given by:

Np∑
h=1

P∑
i=1

(nihCTCh −
N∑
n=1

E∑
e=1

((TFJenh − TIJefirstnh)yiJenh))BihNNh︸ ︷︷ ︸
I

+ pih((NNh − 1)Lp− CTCh(
NNh(NNh − 1)

2
))︸ ︷︷ ︸

II

+Lp Ii(h−1)︸ ︷︷ ︸
III

 InvCost

(23)

Terms I and II are the same as in the S-MPC expression, except for the inclusion of the extra dimension
of periods h and the substitution of the horizon H by the period length Lp. Moreover, these terms can
be discarded if product i is not produced in period h (Bih, pih = 0). Finally, term III is included to
account for the possibility of having inventory over the periods with Iih the amount of end-of-period
inventory.

Correction terms
Finally, to deal with some degrees of freedom present in the problem, two correction terms are included
in the optimisation: an inventory correction term and an initialisation correction term.

As in the M-SPC model, the inventory correction term avoids the accumulation of inventory without
demand. This is done via:

Np∑
h=1

P∑
i=1

InvCorrIih (24)

with InvCorr ∈]0, 0.001] a given coefficient.

To enforce the M-MPC campaign timings to start at zero, an initialisation correction term is given by:

J∑
j=1

N∑
n=1

E∑
e=1

Np∑
h=1

InitCorr TFjenh (25)
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with InitCorr ∈]0, 0.001] a small, known parameter.

4 Examples

4.1 Data

The impact on the batch plant design of the mode of operation and different combinations of multiperiod
characteristics, is analysed for 5 examples. The dimensions of these examples are shown in Table 1. For
all examples, the planning horizon is set to 4 periods of 1 month each (20 days per month, 24 h per day).
Delivery quantities of every product are specified for every period. In case of variable delivery quantities,
for every product the lowest delivery quantity required over the periods is assumed to be less than half
of the highest delivery quantity, but it is also possible that products are not required in a period. This
highest delivery quantity is also the upper bound for the amounts stored per period. Finally, regarding
the objective function, on top of the capital costs, two magnitudes of startup costs are tested for every
example: low and high, with high assuming the same order of magnitude for the total capital and startup
costs. More detailed information on the input data is given in Tables E.1-E.3 in Appendix E.

Table 1: Dimensions of the examples

Products (P ) Stages (ST ) Sizes (S) Max par. equip. (N)

Example 1 3 3 8 3
Example 2 3 4 5 3
Example 3 3 4 6 4
Example 4 4 3 5 3
Example 5 6 4 7 4

4.2 Scenarios

First all 5 examples are solved in a single period context for the two modes of opeartion (S-SPC and
S-MPC), using the models from Voudouris and Grossmann (1992) and Fumero et al. (2013) respectively.
Next, all examples are solved in a multiperiod context (M-SPC and M-MPC) for different combinations of
Variability of delivery quantities (equal or variable), End-of-period inventory (inv or no inv) and Product
mix restriction (fix or var). If end-of-period inventory is not allowed, the product mix restriction is not
imposed, as indicated in Table 2, since for equal deliveries the product mix is automatically fixed, and in
case of variable delivery quantities the product mix is fixed, except if a product is not required in a period.

Each example is optimised for 3 different objective functions: (1) capital costs, (2) capital and low
startup costs and (3) capital and high startup costs. For all solutions, the inventory holding costs are
calculated ex post. This means that for every example, 6 single period + 36 multiperiod = 42 models are
solved (see Tab. 2). Combined with/without ex post calculation, this leads to 84 scenarios per example
or 84× 5 = 420 instances in total.

All MILP optimisations use the Gurobi Optimiser 7.0 (library for C++) with a time limit set to 21 h,
executed on an Intel(R) Core(TM) i7-4790 CPU, 3.60 GHz and 16 GB of RAM under a windows op-
erating system. Within this time limit, 87 % of the instances were solved to optimality and for 64 % of
the remaining instances the optimality gap is lower than 5 %, and for 82 % lower than 10 %. The latter
happens merely for the models in MPC mode.
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Table 2: Scenarios tested for every example in a multiperiod context

Modelling options # Possibilities

Mode of operation 2 SPC or MPC

Characteristics of the multiperiod context:

- Variability of delivery qty 2 equal or variable
- End-of-period inventory & product mix 3 no inv, inv-fix, inv-var

Objective function 3 (1a) cap.
(2a) cap.+ startup(low)
(3a) cap.+ startup(high)

Objective function + Ex post calculations 3 (1b) cap.+ expost inv. (no startup cost included)
(2b) cap.+ startup(low)+ expost inv.
(3b) cap.+ startup(high)+ expost inv.

Total scenarios per example 36
Total scenarios incl. ex post calculations per example 36

4.3 General results

In the next subsections, we review in depth the impact of multiperiodicy and mode of operations on
respectively the capital costs, startup costs and ex post inventory holding costs. Note that caution must
be applied when generalising the results: they are based on 5 examples and not statistically tested (yet).
Notwithstanding these limitations, an attempt to analyse trends found over all examples is made.

As the examples have different dimensions and the resulting costs can have a different order of magnitude,
in the following sections normalised costs are used to assess the implications of the mode of operation
and multiperiod characteristics. For every example, the solutions for all scenarios are first related to
the solution of the single period scenario in SPC mode (S-SPC) with minimised capital costs. Then, an
average of the relative solutions over all examples per scenario is taken to give an idea of the trends.

Detailed results for 3 examples are given in the next section.

4.3.1 Impact of mode of operation and multiperiod characteristics on the total cost of the
plant design, for different objectives

For each mode of operation, the relative impact of the multiperiod characteristics on the total cost of the
plant design is depicted in Tables 3 and 4 respectively. For both the multiperiod models in SPC mode
and MPC mode, we observe that producing according to equal delivery quantities is most efficient for all
objectives, ”capital cost”, ”capital + low startup cost”, as well as ”capital + high startup cost”. When
including variability in the delivery quantities, the total cost increases, but can partially be avoided by
allowing end-of-period inventory. Of course, when adding the ex post inventory holding cost (“a”-cases
versus “b”-cases), the total cost is always higher, and increases more spectacular for the single than for
the multiperiod models.
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Table 3: Average relative total costs over 5 examples in SPC mode, with S-SPC as reference point

Avg. rel. total cost in SPC mode: S-SPC M-SPC

Equal delivery qty Variable delivery qty

a) Minimised objective single no inv inv inv no inv inv inv
b) Incl. ex post inv. holding costs period fix mix var mix fix mix var mix

(1a) cap. 1 1.0181 1.0181 1.0181 1.1912 1.0338 1.0338
(1b) cap.+expost inv. 2.4011 1.3557 1.3557 1.3557 1.5030 1.4114 1.4104
(2a) cap.+startup(low) 1.0326 1.1485 1.1485 1.1485 1.3108 1.1553 1.1509
(2b) cap.+startup(low)+expost inv. 2.4298 1.4842 1.4842 1.4842 1.6575 1.5313 1.5240
(3a) cap.+startup(high) 1.1366 1.5475 1.5475 1.5475 1.7002 1.5470 1.5271
(3b) cap.+startup(high)+expost inv. 2.5441 1.8824 1.8824 1.8824 2.0503 1.9243 1.9086

Table 4: Average relative total costs over 5 examples in MPC mode, with S-SPC as reference point

Avg. rel. total cost in MPC mode: S-MPC M-MPC

Equal delivery qty Variable delivery qty

a) Minimised objective single no inv inv inv no inv inv inv
b) Incl. ex post inv. holding costs period fix mix var mix fix mix var mix

(1a) cap. 1.0078 1.0078 1.0078 1.0078 1.1864 1.0248 1.0248
(1b) cap.+expost inv. 2.3609 1.3456 1.3456 1.3456 1.5391 1.4176 1.4074
(2a) cap.+startup(low) 1.1327 1.1816 1.1645 1.1645 1.3215 1.1914 1.1914
(2b) cap.+startup(low)+expost inv. 2.4845 1.5217 1.5198 1.5198 1.6454 1.5771 1.5701
(3a) cap.+startup(high) 1.5146 1.6952 1.6178 1.6178 1.7521 1.6788 1.6788
(3b) cap.+startup(high)+expost inv. 2.8935 2.0108 1.9619 1.9619 2.0780 2.0695 2.0670

In case of (1a) and (1b) startup costs are not taken into account, although they could be calculated ex
post.

4.3.2 Impact of the mode of operation and multiperiod characteristics on the capital cost
of the plant design, for different objectives

For all objectives, the relative impact of the mode of operation and multiperiod characteristics on the
capital cost is depicted in Tables 5 and 6. Since ex post inventory costs do not influence the capital cost,
the “b” scenarios are omitted.

Table 5: Average relative capital costs over 5 examples for SPC scenarios with 4 periods, with the single
period SPC scenario (S-SPC) as the point of reference

Avg. rel. capital cost in SPC mode: S-SPC M-SPC

Equal delivery qty Variable delivery qty

single no inv inv inv no inv inv inv
Minimised objective: period fix mix var mix fix mix var mix

(1a) cap. 1 1.0181 1.0181 1.0181 1.1912 1.0338 1.0338
(2a) cap.+startup(low) 1 1.0181 1.0181 1.0181 1.1912 1.0338 1.0338
(3a) cap.+startup(high) 1 1.0343 1.0343 1.0343 1.1912 1.0338 1.0338
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Table 6: Average relative capital costs over 5 examples for MPC scenarios with 4 periods, with the single
period SPC scenario (S-SPC) as the point of reference

Avg. rel. capital cost in MPC mode: S-MPC M-MPC

Equal delivery qty Variable delivery qty

single no inv inv inv no inv inv inv
Minimised objective: period fix mix var mix fix mix var mix

(1a) cap. 1.0078 1.0078 1.0078 1.0078 1.1864 1.0248 1.0248
(2a) cap.+startup(low) 1.0146 1.0146 1.0167 1.0167 1.1890 1.0248 1.0248
(3a) cap.+startup(high) 1.0677 1.0890 1.1056 1.1056 1.2024 1.1148 1.1148

,

Single period models for both modes of operation (S-SPC versus S-MPC): For single period models, the S-
MPC mode results on average in slightly more expensive designs than S-SPC, but the difference is small.
Indeed, for 2 examples lower capital costs are found in S-MPC, since the complementary processing times
allow to create a better “puzzle” of batches in a mixed campaign. An illustration of such a “puzzle” is
given in Figure 5. In SPC mode (Fig. 5a), idle time occurs mainly in stage 4 for product 1, whereas for
product 3 this is the most occupied stage. Stage 1, on the other hand, has a long processing time for
product 1 and the shortest for product 3. Through alternating production of these products (Fig. 5b),
less time is needed to produce the same number of batches. As a result, the total time can be used to
produce more but smaller batches, that fit in smaller equipment units.

Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1

Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2

Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3

Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4

Legend: P1, P2, P3

(a) Example S-SPC mode of operation for 3 products

Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1Stage 1

Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2Stage 2

Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3Stage 3

Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4Stage 4

Legend: P1, P2, P3

(b) Example S-MPC mode of operation for 3 products (visualisation of 1 campaign)

Figure 5: Comparison SPC- and MPC mode of operation for 3 products in a single period

However, for 1 example the same design (and capital cost) is found for S-SPC and S-MPC, and the
2 remaining examples show a more expensive design for S-MPC. This might be explained as follows:
firstly, without complementary processing times, the advantages of an interwoven MPC “puzzle” can
not be obtained. Secondly, the fixed proportion of the number of batches of every product in every
MPC-campaign, which means that the required production quantity is sometimes exceeded. Indeed, for
MPC mode the decision maker has to define upfront the upper bounds of the number of batches per
product per campaign. As stated in Section 2, this upper bound influences the maximum number of time
slots considered by the model. When this upper bound is too high, it makes the problem intractable to
solve, whereas a low value might miss the best campaign compositions. This upper bound also affects
the possible number of campaign repetitions considered. To our best knowledge, the importance of this
setting has not been stressed enough in the literature on MPC mode.
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When high startup costs are included in the objective, the difference in capital costs between models in
S-SPC and S-MPC mode becomes larger (rows 2 and 3 in Tabs. 5-6). This effect is discussed in the next
section.

Single versus multiperiod SPC (S-SPC versus M-SPC): When turning S-SPC into M-SPC, higher capital
costs are found on average over these 5 examples, as indicated by column 1 versus the other columns
in Table 5. This can partly be attributed to the more constrained problem in case of multiple periods.
Indeed, multiperiod models assume that at the end of every period, an integer number of batches needs
to be produced whereas in a single period model, only at the end of the production horizon, an inte-
ger number of batches is required. Furthermore, the multiple delivery points disrupt the optimal S-SPC
production runs of a product. The influence of the different multiperiod characteristics is discussed later.

Single versus multiperiod MPC (S-MPC versus M-MPC): Conversely, for all 5 examples, the M-MPC
models with no and low startup costs and equal delivery quantities, result in the same design as the
S-MPC models. A possible explanation lies in the fact that the S-MPC model already tends towards a
multiperiod model, since batches of every product are made in each MPC-campaign, which is repeated
over the horizon. Hence, single and multiperiod MPC models with equal deliveries are more alike, except
that in S-MPC models no intermediate deliveries are specified, and no changes in the MPC-campaign
composition may occur over the horizon. For high startup costs, however, this similarity in design is
no longer observed. However, it should be noted that, for all 5 examples, the campaign lengths in the
S-MPC models appeared to be shorter than the M-MPC period length. If S-MPC campaign lengths
are longer than the period length, it is possible to obtain more expensive designs for M-MPC models,
irrespective of the height of the startup costs.

Multiperiod models if only capital cost is optimised and startup costs is neglected : Overall, for these 5
examples, when minimising only capital costs, lower averages are obtained for M-MPC than M-SPC
models. However, when startup costs interact, this conclusion no longer holds, as explained in further
on and explicitly discussed in the next section.

Multiperiod models with equal delivery quantities (M-SPC and M-MPC): In case of equal delivery quan-
tities, no difference in design is observed between all modes and options, if only capital cost is optimised
(row (1a) of columns 2-4 in Tabs. 5-6). Indeed, if startup costs are neglected and the same amount of
every product needs to be produced in every period, there is no benefit in keeping inventory. Also, since
every product is requested in every period anyway, the restriction of fixed product mix is not limiting.
When (high) startup costs are included in the objective, this is no longer true.

Multiperiod models with variable delivery quantities (M-SPC and M-MPC): When variable delivery quan-
tities are required over the periods, more expensive designs are needed for both modes of operation.
However, if inventory is allowed, the increased design cost can be partially compensated for. Indeed,
from Tables 5 and 6, the increase of 19 and 18 % in capital cost seen in case of variable delivery quantities
in SPC and MPC mode (column 5 vs 2-4) respectively, is reduced to +1.6 and +1.7 % when end-of-period
inventory is allowed (columns 6-7 vs 2-4).

4.3.3 Impact on the capital cost of including startup costs in the objective function, for
different modes of operation and multiperiod characteristics

Including startup costs in single period models (S-SPC versus S-MPC): Not surprisingly, Tables 3 and 4,
show that startup costs are on average higher in MPC mode than in SPC mode, and even more apparent
for high startup costs (shown by rows 2 and 3). Consequently, the impact of startup costs on the design
(capital cost) is higher for all MPC models as well, as depicted in Tables 5 and 6. Note that in this paper
the startup costs are included per MPC-campaign. If additional startups were also required within an
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MPC-campaign, the startup costs for MPC mode would be even larger.

Including startup costs in multiperiod models (M-SPC and M-MPC): When evolving from a single to
a multiperiod SPC model, the impact of (high) startup costs is large, since there are more frequent
production run startups. Indeed, for equal delivery quantities (without end-of-period inventory and for
all product mix options), the startup costs are at least Np times higher (depending on the corresponding
design decisions). In MPC mode, on the contrary, the increase in startup costs is modest and even
not observed for all multiperiod models. After all, also in S-MPC mode, MPC-campaigns are already
repeated, and the difference in costs depends on the number of campaigns over a long horizon versus the
number of repeated campaigns over all periods.

Including startup costs in case of equal delivery quantities with/without end-of-period inventory: For
M-MPC models with equal delivery quantities (Tab. 4, columns 2-4), the total costs with and without
end-of-period inventory, are no longer the same. Indeed, by shifting part of the production to earlier pe-
riods and keeping it in inventory, the total number of batches, and consequently the number of campaign
repetitions, can be lowered. However, despite fewer startups, the accompanied design (capital cost) is
more expensive (Table 6, columns 2-4). These differences are not observed in the M-SPC models, as
shifts of the entire production run to another period are retained due to the restrictive upper bound on
the inventory.

Including startup costs in case of variable delivery quantities with/without product mix restrictions: When
delivery quantities vary over the periods, the influence of the fixed product mix restriction becomes ap-
parent for the M-SPC models when high startup costs are included (shown in the bottom rows of the
last two columns of Table 3). After all, it might be that not every product is required in every period.
For M-MPC models, however, no difference is observed between the fixed and variable product mix
cases: the total number of campaign repetitions was not altered and the product mix restriction was not
limiting regarding startup costs. If, as aforementioned, additional startups were required within a MPC
campaign, this would probably no longer be true.

4.3.4 Impact of mode of operation and multiperiod characteristics on the inventory hold-
ing cost of a plant design, for different objectives

As explained earlier, due to the non-linearity of the cost function, the inventory holding cost component
discussed hereafter is calculated ex post.

Inventory holding costs for single period versus multiperiod models: From Tables 3 and 4, it can be seen
that for both SPC- and MPC modes, the same conclusion holds: inventory holding costs are much higher
in a single period context, as we assume that products are accumulated in stock until the end of the
horizon. It appeared that S-MPC models have, on average, lower inventories than S-SPC models, but
this is not observed for all examples. Additionally, in the multiperiod context, when comparing M-MPC
to M-SPC, there is no clear sense of the impact of the mode of operation on the inventory holding costs.

Inventory holding costs for different multiperiod characteristics: When analysing M-SPC and M-MPC
models for the multiperiod characteristics, no conclusive distinctions can be observed. For example, in
case of equal delivery quantities without end-of-period inventory, the same inventory pattern occurs in
every period. In case of variable delivery quantities without end-of-period inventory, periods with lower
production are alternated with periods with higher production. Overall, there is no indication when to-
tal inventory holding costs will be higher. Also, depending on the delivery quantities and end-of-period
inventory allowed or not, not only the number of batches may change but also the product/campaign
cycle times. Finally, in case of varying delivery quantities, product mix restrictions result, on average
over these 5 examples, in small inventory holding cost increases.
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Inventory holding costs and startup costs: For M-MPC models with equal delivery quantities and startup
costs included, it was found that inventory holding costs were higher when end-of-period inventory
was allowed than without this inventory. As discussed in the previous section, it appeared that larger
designs were chosen to partially shift production in order to reduce startup costs. This shift is, however,
accompanied with an increase of the inventory holding costs that partly offset the advantage.

4.4 Detailed examples

In this section, we discuss three examples to illustrate some findings from the previous section in detail.
The first example concerns the impact of including startup costs in the objective. For the remaining
two examples, we only concentrate on some particularities. The input data of all examples are shown in
Appendix E (Tables E.1 and E.2). The results are depicted in Tables 7 - 14.

Example 1: 3 products over 3 stages with complementary processing times

Minimising only capital costs
From Table 7 (SPC mode), it can be seen that, for equal delivery quantities, single and multiple period
SPC models result in the same design, independently of inventory allowed or product mix restrictions.
Also for MPC mode (Table 8), single and multiperiod models with equal delivery quantities, obtain the
same design regardless of inventory and product mix. In fact, both modes of operation require more
expensive designs when delivery quantities vary over the periods, but these increases are (partly) avoided
when end-of-period inventory is allowed. Note that the product mix restriction is not limiting for this
example, neither for equal or variable delivery quantities, since every product is required in every period.

When comparing the capital costs for this example, producing in MPC mode is cheaper for all combi-
nations of characteristics (first row of Tables 7 and 8). In fact, for this case, the processing times of the
different products turn out to be complementary, hence a compact “puzzle” can be constructed so that
more but smaller batches are produced within the given production time, and smaller equipment units
can be chosen. Indeed, for S-MPC, the 3 products are produced in 50, 150 and 50 batches respectively,
while for S-SPC, 25, 116 and 33 batches are produced. Inventory holding costs, however, are higher for
all MPC models, outweighing the decrease in capital costs, and making MPC mode more expensive for
this example. Remember that startup costs are not taken into account in Table 7.

A special note must be made on the problem sizes and corresponding computation times: MPC calcula-
tions require much more computation time than SPC calculations, even more significantly when turning
an S-MPC model into an M-MPC one. Indeed, Van Den Heever and Grossmann (1999) showed already
that for multiperiod problems, implying that binary variables increase with every additional time period,
the computation times quickly become intractable.

18



Table 7: Example 1: 3 products - capital costs, ex post inventory holding costs and optimal design
decisions, for a plant operating in SPC mode when optimising only capital cost

Capital cost for Ex.1 in SPC mode: S-SPC M-SPC

Equal delivery qty Variable delivery qty

Objective: singlea no inv inv inv no inv inv invb

Minimise capital cost period fix mix var mix fix mix var mix

Capital costs 763 251 763 251 763 251 763 251 899 292 763 251 763 251
Expost inventory costs 1 066 084 244 318 244 318 244 318 249 339 275 209 275 209
Total costsc 1 829 335 1 007 569 1 007 569 1 007 569 1 148 631 1 038 460 1 038 460

Design decisions (written as size (number)):
stage 1 6200(1) 6200(1) 6200(2) 6200(1)
stage 2 7000(1) 7000(1) 7000(1) 7000(1)
stage 3 4800(2) 4800(2) 5100(2) 4800(2)

Total end-of-period inventory 0 0 0 0 0 78 766 78 766

aProblem size S-SPC: 149 variables (105 binary); 194 constraints, solved in 0.047 s
bProblem size M-SPC: 588 variables (105 binary); 1422 constraints, solved in 0.608 s
cIn monetary units

Table 8: Example 1: 3 products - capital costs, ex post inventory holding costs and optimal design
decisions, for a plant operating in MPC mode when optimising only capital cost

Capital cost for Ex.1 in MPC mode S-MPC M-MPC

Equal delivery qty Variable delivery qty

Objective: singlea no inv inv inv no inv inv invb

Minimise capital cost period fix mix var mix fix mix var mix

Capital costs 742 044 742 044 742 044 742 044 876 383 754 799 754 799
Expost Inventory costs 1 101 448 281 292 281 292 281 292 293 198 297 034 297 034
Total costsc 1 843 492 1 023 336 1 023 336 1 023 336 1 169 581 1 051 833 1 051 833

Design decisions (written as size (number)):
stage 1 4800(2) 4800(2) 6200(2) 5100(2)
stage 2 5700(1) 5700(1) 7000(1) 6200(1)
stage 3 3700(2) 3700(2) 4800(2) 3700(2)

Total end-of-period inventory 0 0 0 0 0 55 556 55 556

aProblem size S-MPC: 1341 variables (1054 binary); 6749 constraints, solved in 61.85 s
bProblem size M-MPC: 6459 variables (3877 binary); 31 229 constraints, after 21 h - gap of 1.7 %
cIn monetary units

Minimising capital and high startup costs
In the second part of this example, startup costs are included in the optimisation. The results are pre-
sented in Table 9 for SPC mode and in Table 10 for MPC mode.

When comparing Tables 7 and 8 with Tables 9 and 10, it is obvious that the impact of startup costs on
the optimal design is higher for MPC than for SPC mode. In MPC all but one model obtained a different
design, whereas in SPC mode no changes in the design decisions are made. Due to these more expensive
designs, the MPC mode is often not beneficial for this example with respect to capital costs. Due to the
campaign structure, the startup costs itself are much higher in MPC than in SPC mode. Especially in
S-MPC mode, these costs are 12 times higher than for the S-SPC case.

Also, from Table 10, it can be seen that the M-MPC cases with equal delivery quantities do not obtain
the same design for all options. It is beneficial to increase capital costs and use end-of-period inventory
in order to reduce startup costs. Inventory holding costs are higher due to these production shifts.
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Table 9: Example 1: 3 products - capital, startup, ex post inventory holding costs and optimal design
decisions, for a plant operating in SPC mode when optimising capital and (high) startup costs

Capital cost for Ex.1 in SPC mode: S-SPC M-SPC

Equal delivery qty Variable delivery qty

Objective: singlea no inv inv inv no inv inv invb

Minimise capital+startup cost period fix mix var mix fix mix var mix

Capital costs 763 251 763 251 763 251 763 251 899 292 763 251 763 251
Startup costs 60 000 240 000 240 000 240 000 300 000 240 000 240 000
Expost Inventory costs 1 066 084 244 318 244 318 244 318 249 339 275 209 275 209
Total costsc 1 889 335 1 247 569 1 247 569 1 247 569 1 448 631 1 278 460 1 278 460

Design decisions (written as size (number)):
stage 1 6200(1) 6200(1) 6200(2) 6200(1)
stage 2 7000(1) 7000(1) 7000(1) 7000(1)
stage 3 4800(2) 4800(2) 5100(2) 4800(2)

Total end-of-period inventory 0 0 0 0 0 78 766 78 766

aProblem size S-SPC: 149 variables (105 binary); 195 constraints, solved in 0.081 s
bProblem size M-SPC: 708 variables (225 binary); 1551 constraints, solved in 0.515 s
cIn monetary units

Table 10: Example 1: 3 products - capital, startup, ex post inventory holding costs and optimal design
decisions, for a plant operating in MPC mode when optimising capital and startup cost

Capital cost for Ex.1 in MPC mode: S-MPC M-MPC

Equal delivery qty Variable delivery qty

Objective: singlea no inv inv inv no inv inv invb

Minimise capital+startup cost period fix mix var mix fix mix var mix

Capital costs 839 347 791 145 876 383 876 383 876 383 817 543 817 543
Startup costs 600 000 1 000 000 750 000 750 000 875 000 875 000 875 000
Inventory costs 1 117 995 272 830 342 679 342 679 286 986 297 212 297 212

Total costsd 2 557 342 2 063 975 1 969 062 1 969 062 2 038 369 1 989 755 1 989 755

Design decisions (written as size (number)):
stage 1 7000(1) 5100(2) 6200(2) 6200(2) 5700(2)
stage 2 7000(1) 5100(1) 7000(1) 7000(1) 6200(1)
stage 3 5700(2) 4300(2) 4800(2) 4800(2) 4300(2)

Total end-of-period inventory 0 0 176 000 176 000 0 74 286 74 286

aProblem size S-MPC: 1593 variables (1306 binary); 7002 constraints, solved in 19.10 s
bProblem size M-MPC: 7251 variables (4669 binary); 32 022 constraints, solved in 4019 s
cex post inventory holding costs
din monetary units

Example 2: 3 products over 4 stages with products that are not required every period

Minimising capital and startup costs
For this example we only consider the case of optimised capital plus startup costs. The results are shown
in Table 11 for the SPC mode and Table 12 for MPC mode.

When looking at the capital costs, the same conclusions as in the first example hold for most of the
characteristics. But in this example, not all products are demanded in every period. Hence in M-SPC
mode, startup and inventory holding costs are higher when the product mix is fixed (Table 11). In
M-MPC mode, on the contrary, higher inventory holding costs were encountered, but no reduction of
the number of campaign repetitions.

When comparing Table 11 (SPC) with Table 12 (MPC), the same designs are obtained for S-SPC and
S-MPC and similar or better designs for M-MPC in comparison to M-SPC. Also, as expected, for the
M-MPC models with equal delivery quantities (Table 12), reductions in startup costs are achieved when
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end-of-period inventory was allowed. This is at the expense of slightly higher inventory holding costs,
but without an increase in design. Finally, the S-MPC model generates startup costs that are 4 times
higher than for the S-SPC model. Comparing the multiperiod models, startup costs are still higher in
MPC mode, but they differ less. We can conclude that for this example total costs are better in MPC
mode for most of the models, except for variable delivery quantities with end-of-period inventory.

Table 11: Example 2: 3 products - capital, startup, ex post inventory holding costs and optimal design
decisions, for a plant operating in SPC mode optimising capital and startup costs

S-SPC M-SPC

Equal delivery qty Variable delivery qty

Objective: singlea no inv inv inv no inv inv invb

Minimised capital+startup cost period fix mix var mix fix mix var mix

Capital costs 210 341 223 071 223 071 223 071 255 544 210 341 210 341
Startup costs 5400 21 600 21 600 21 600 19 800 21 600 19 800
Expost Inventory costs 287 910 70 918 70 918 70 918 69 924 84 409 83 393
Total costsc 503 651 315 589 315 589 315 589 345 268 316 350 313 534

Design decisions (written as size (number)):
stage 1 9000(1) 9000(1) 13500(1) 9000(1)
stage 2 6000(1) 9000(1) 6000(1) 6000(1)
stage 3 6000(1) 6000(1) 9000(1) 6000(1)
stage 4 9000(1) 9000(1) 135000(1) 9000(1)

Total end-of-period inventory 0 0 0 0 0 68 032 66 452

aProblem size S-SPC: 148 variables (92 binary); 223 constraints, solved in 0.158 s
bProblem size M-SPC: 731 variables (248 binary); 1583 constraints, solved in 0.593 s
cIn monetary units

Table 12: Example 2: 3 products - capital, startup, ex post inventory holding costs and optimal design
decisions, for a plant operating in MPC mode when optimising capital and startup costs

S-MPC M-MPC

Equal delivery qty Variable delivery qty

Objective: singlea no inv inv inv no inv inv invb

Minimised capital+startup cost period fix mix var mix fix mix var mix

Capital costs 210 341 210 341 210 341 210 341 252 037 210 341 210 341
Startup costs 21 600 28 800 25 200 25 200 19 800 30 600 30 600
Ex post Inventory costs 245 167 63 280 64 117 64 117 57 109 83 569 75 879

Total costsd 477 108 302 421 299 658 299 658 328 946 324 510 316 820

Design decisions (written as size (number)):
stage 1 9000(1) 9000(1) 13500(1) 9000(1)
stage 2 6000(1) 6000(1) 9000(1) 6000(1)
stage 3 6000(1) 6000(1) 9000(1) 6000(1)
stage 4 9000(1) 9000(1) 9000(1) 9000(1)

Total end-of-period inventory 0 0 2810 2810 0 55 328 41 242

aProblem size S-MPC: 3206 variables (2565 binary); 16004 constraints, solved in 832 s
bProblem size M-MPC: 12422 variables (7996 binary); 65882 constraints,

after 21 h - gap of 9.4 %, after 72 h - gap of 3.8 %
din monetary units

Example 3: 3 products over 4 stages with non complementary processing times
Minimising only capital costs
The results of minimising only capital costs are presented in Tables 13 and 14, for SPC and MPC mode
respectively. Overall, the same conclusions as for the first example can be drawn for the different char-
acteristics. Note again that fixed product mixes are never restrictive as every product is required in each
period.

However, conversely to the Example 1 at minimal capital cost, producing in MPC mode results in more
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expensive designs for the single period and most of the multiperiod models. When examining the input
data, we observe indeed no complementary processing times over the products, but, on the contrary,
for all products the first stage appeared to be the bottleneck. Therefore, we investigated if the upper
bounds on the number of batches per product per MPC-campaign are limiting, and increased them
to allow longer campaigns, but the same design as in SPC mode could not be reached. Lastly, when
investigating the optimal number of batches obtained in the SPC models, there is no fixed proportion
detected between the products. Hence, this might explain the higher capital costs.

Table 13: Example 3: 3 products - total capital costs and ex post inventory holding costs and optimal
design decisions, for a plant operating in SPC mode

S-SPC M-SPC

Equal delivery qty Variable delivery qty

Objective: singlea no inv inv inv no inv inv invb

Minimised capital cost period fix mix var mix fix mix var mix

Capital costs 54 108 54 369 54 369 54 369 65 965 58 750 58 750
Expost inventory costs 83 575 21 636 21 636 21 636 20 422 20 962 20 962
Total costsc 137 683 76 005 76 005 76 005 86 687 79 712 79 712

Design decisions (written as size (number)):
stage 1 1000(2) 1000(2) 2500(1) 2000(1)
stage 2 1000(1) 2000(1) 2000(1) 2000(1)
stage 3 2000(1) 1000(1) 2500(1) 2000(1)
stage 4 2000(1) 2000(1) 4000(1) 3000(1)

Total end-of-period inventory 0 0 0 9343 9343

aProblem size S-SPC: 164 variables (108 binary); 234 constraints, solved in 0.125 s
bProblem size M-SPC: 639 variables (108 binary); 1570 constraints, solved in 0.530 s
cIn monetary units

Table 14: Example 3: 3 products - total capital costs and ex post inventory holding costs and optimal
design decisions, for a plant operating in MPC mode

S-MPC M-MPC

Equal delivery qty Variable delivery qty

Objective: singlea no inv inv inv no inv inv invb

Minimised capital cost period fix mix var mix fix mix var mix

Capital costs 58 750 58 750 58 750 58 750 67 945 58 750 58 750
Expost inventory costs 81 631 20 305 20 305 20 305 22 601 23 900 23 900
Total costsc 140 381 79 055 79 055 79 055 90 546 82 650 82 650

Design decisions (written as size (number)):
stage 1 2000(1) 2000(1) 2500(1) 2000(1)
stage 2 2000(1) 2000(1) 3000(1) 2000(1)
stage 3 2000(1) 2000(1) 2000(1) 2000(1)
stage 4 3000(1) 3000(1) 4000(1) 3000(1)

Total end-of-period inventory 0 0 0 11 010 11 010

aProblem size S-MPC: 2210 variables (1688 binary); 12 317 constraints, solved in 54.09 s
bProblem size M-MPC: 8762 variables (5312 binary); 45 121 constraints, solved in 2822 s
cIn monetary units

4.5 Discussion

For our limited set of examples, we can derive the following conclusions on the impact on the plant design
by the mode of operation and the multiperiod characteristics.

Regarding capital cost and startup costs, single period batch plant design models yield, on average, the
cheapest solutions for both SPC and MPC. However, the assumption of a single delivery point at the
end of a long horizon makes these models inappropriate from a industrial point of view.
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Next, turning an S-SPC into an M-SPC model with equal delivery quantities per period, results on av-
erage for our 5 examples, in slightly more expensive designs. For each mode of operation, in case of pure
capital cost optimisation and equal delivery quantities, equal design solutions are obtained regardless
of end-of-period inventory or product mix restrictions. But for variable delivery quantities, the capital
costs increase with 17 and 18 % respectively for SPC and MPC mode, which can be avoided to a large
extent by allowing end-of-period inventory (+1.6% for SPC and +1.7 % for MPC mode).

Once startup costs are included in the optimisation, on average for these examples, the capital costs in-
crease only limited in SPC mode, whereas in MPC mode they increase substantially for all combinations
of characteristics. Furthermore, in MPC mode, shifting part of the production by keeping it in inventory
appeared beneficial, even when delivery quantities are equal over the periods.

Lastly, the inventory holding costs calculated ex post are incontestably very high for the single period
model. For the multiperiod cases, these costs are reasonable, but conclusions for the different multiperiod
characteristics are less clear. For example, the aforementioned production shift in M-MPC to reduce
startup costs is accompanied with an increase in inventory holding costs.

Comparing the two modes of operation, the following conclusions can drawn for our example set: pro-
ducing in MPC mode can be beneficial with respect to capital costs when complementary processing
times are present. However, once startup costs are included, the aforementioned advantage is negated,
and the SPC mode is more advantageous. Moreover, when additional startups would be included within
an MPC-campaign, the impact of the startup cost would be even larger.

Although producing in MPC mode does not have distinct advantages with respect to costs, in a single
period context it is a more appropriate mode from a commercial point of view than SPC, where a
product is made only once over a long horizon. In a multiperiod context, however, this argument looses
its strength, as also M-SPC is a realistic way of operating. Additionally, solving models in MPC mode is
very sensitive to the input parameters given by the decision maker, which affects their practical usability.
Finally M-MPC models become rapidly intractable from the moment the instances become larger.

5 Conclusion

In this paper, the multiperiod BPDP with a periodic delivery scheme is investigated. First, multi-
periodicity is introduced in the mathematical models to account for more frequent product delivery
points as opposed to single period models, and such for both the single product as the mixed product
campaign mode of operation. Next, the following delivery scheme characteristics are introduced into the
mathematical multiperiod BPDP models: variability in delivery quantities, end-of-period inventory and
product mix restrictions.

For 5 examples (datasets) we solved 36 multiperiod scenarios each, giving us a first insight into the
impact on the plant design of the operational mode and these multiperiod characteristics. It is found
that, for these examples, delivering equal quantities at the end of every period leads to the cheapest
design in terms of total costs. However, the extra cost to be more flexible towards customers’ needs,
translated in variable delivery quantities, is not that high. Moreover, allowing end-of-period inventory
and variable product mixes to accommodate for these variations, limits the extra costs.

Concerning the mode of operation, in a multiperiod context the advantages of the SPC mode are more
pronounced. Firstly, from the examples studied, it appeared that producing in MPC mode is more
expensive regarding startup, although it can be (slightly) beneficial for the capital cost if the different
products have complementary processes. Secondly, from a delivery perspective, a multiperiod SPC cam-
paign structure is as realistic as an MPC mode. Thirdly, MPC computation times increase very rapidly,
and the solutions strongly depend on MPC input parameters that need tuning themselves, such as the
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maximum number of batches for every product in an MPC campaign.

Finally, we are aware of the limited sample size used to come up with these conclusions, mainly due to
the arduousness of the MPC models. Therefore, before involving a more extended sample set, a detailed
analysis of the setting of the MPC parameters is needed. Besides, future research is needed to introduce
additional features to the design models, such as the cost of inventory equipment and, most difficult, a
way to account for the impact of sequence dependent changeover costs and times.
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A Terminology

A.1 Mode of operation

Stage 1 P1Stage 1 P1Stage 1 P1Stage 1 P1Stage 1 P1Stage 1 P1Stage 1 P2Stage 1 P2Stage 1 P2

Stage 2 P1Stage 2 P1Stage 2 P1Stage 2 P1Stage 2 P1Stage 2 P1Stage 2 P2Stage 2 P2Stage 2 P2

H

(a) SPC mode of operation

Stage 1 P1Stage 1 P2Stage 1 P1 ...Stage 1 P1Stage 1 P2Stage 1 P1

Stage 2 P1Stage 2 P2Stage 2 P1Stage 2 P1Stage 2 P2Stage 2 P1

H1 campaign

(b) MPC mode of operation

Stage 1 P1Stage 1 P2Stage 1 P1Stage 1 P1Stage 1 P1Stage 1 P2Stage 1 P1Stage 1 P1Stage 1 P2

Stage 2 P1Stage 2 P2Stage 2 P1Stage 2 P1Stage 2 P1Stage 2 P2Stage 2 P1Stage 2 P1Stage 2 P2

H

(c) Network planning mode of operation

Figure A.1: Overview modes of operation

A.2 Parallel equipment

Stage 1 P1Stage 1 P1Stage 1 P1Stage 1 P1

Stage 2 P1Stage 2 P1Stage 2 P1Stage 2 P1

Stage 3 P1Stage 3 P1Stage 3 P1Stage 3 P1

H

(a) No parallel equipment

Stage 1 P1Stage 1 P1Stage 1 P1Stage 1 P1

Stage 2a P1Stage 2a P1

Stage 2b P1Stage 2b P1

Stage 3 P1Stage 3 P1Stage 3 P1Stage 3 P1

H

(b) Parallel equipment installed in stage 2, operating out-of-phase

Figure A.2: Overview parallel equipment

B Nomenclature

B.1 M-SPC
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Table B.1: Nomenclature multiperiod BPDP - M-SPC

Indices

i products (P )
j stages (J)
s discrete sizes (S)
n number of equipment in parallel (N)
h periods (Np)

Parameters

Sij size factor of product i in stage j
τij processing time of product i in stage j
Qih amount of product i to be delivered at the end of period h
QUB

i upper bound on the amount of product i produced in period h,
with QUB

i = 5 maxh(Qih)
NBUB

i upper bound on the number of batches of product i in period h
QLB

i lower bound on the amount of product i produced in period h
H total production horizon
Lp length of every fixed, equal period h, with Lp = H/Np
vs equipment size s
Ii0 starting inventory of product i
αj , βj cost parameters of stage j
Cstart startup cost per product
InvCost a fixed cost per unit product held in inventory per time

Variables

Integer
nih number of batches produced of product i in period h
Binary
tih equals 1 if product i is produced in period h
ZTijnh product of zjn and tih (linearisation)
Continuous
qih amount of product i produced in period h
Iih amount of product i kept in inventory at the end of period h

(i.e. end-of-period inventory)
Tjih total time spent on product i on stage j in period h
θih total time spent on product i in period h
Bih batch size of product i in period h
Wijsh product of ujs and qih (linearisation)
Xjinh product of zjn and Tjih (linearisation)

B.2 M-MPC

Table B.2: Nomenclature multiperiod BPDP - M-MPC

Indices

i products (P )
j stages (J)
s discrete sizes (S)
n number of equipment in parallel (N)
e timeslots (E=

∑P
i=1NBC

UB
i )

m number of batches per campaign (NBCUB
i )

b discrete options for the number of mixed campaign repetitions (B)
h periods (Np)

Parameters

Sij size factor of product i in stage j
τij processing time of product i in stage j
Qi total amount to produce of product i
H horizon, total available production time
vs tank size s
BBb number of repetitions b
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Qih amount of product i to be delivered at the end of period h
QUB

i upper bound on the amount of product i produced in period h,
with QUB

i = maxh(Qih)
NBCUB

i upper bound on the number of batches per campaign of product i in period h
QLB

i lower bound on the amount of product i produced in period h
H total production horizon
Lp length of every fixed, equal period h, with Lp = H/Np
Ii0 starting inventory of product i
InvCost a fixed cost per unit product held in inventory per time
InitCorr a small, positive coefficient to tackle the degrees of freedom with respect to the timings
InvCorr a small, positive coefficient to tackle the degrees of freedom with respect to

end-of-period inventory

Variables

Continuous:
qih amount of product i produced in period h
Iih amount of product i kept in inventory at the end of period h

(i.e. end-of-period inventory)
TFjenh finishing time of slot e in equipment unit n of stage j in period h
TIjenh starting time of slot e in equipment unit n of stage j in period h
CTCh cycle time of a campaign in period h
Hh optimised period length of period h
Bih batch size of product i in period h
pih amount of product i produced per campaign in period h
WQijsmh product of qih and Wijsmh (linearisation)
WWbh product of NNRbh and CTCh (linearisation)
Binary:
cimh equals 1 if product i is produced in m batches in a campaign of period h
NNRbh equals 1 if a campaign is repeated BBb times in period h
yijenh equals 1 if product i is assigned to slot e and processed in equipment

unit n of stage j in period h
xjenh equals 1 if slot e of equipment unit n of stage j is used in period h
rieh equals 1 if product i is produced in slot e in period h
Wijsmh product of ujs and cimh (linearisation)
WXjnbh product of zjn and NNRbh (linearisation)
Integer:
nih number of batches of product i per campaign of period h
NNh number of times a campaign is repeated in period h

C Mathematical model - M-SPC

C.1 Constraints

C.1.1 End-of-period inventory

The MILP model for the multiperiod case with end-of-period inventory is presented below.

Batch equipment design constraints:
Eqs. (26)-(28) are related to the number and size of equipment units installed in every stage: Eq. (26)
states that at least one unit in every stage j should be installed. Eq. (27) indicates that equipment unit
n+ 1 of stage j can only be installed if equipment unit n already exists. Eq. (28) defines that for every
stage j one size s is to be chosen. Finally, for every stage j, the capacity of the equipment units vs should
be large enough to hold a batch of every product i in every period h, multiplied by its size factor Sij .
Eq. (29) is obtained through the incorporation of the discrete set of sizes and the expression qih/nih to
represent a batch of product i in period h, with qih the amount of product i produced in period h and
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nih the number of batches.

N∑
n=1

zjn > 1 ∀j (26)

zjn > zj(n+1) ∀j, n with n < N (27)

S∑
s=1

ujs = 1 ∀j (28)

nih >
S∑
s=1

qihSij
vs

ujs ∀i, j, h (29)

The incurred nonlinearity qihujs of Eq. (29) is addressed through the introduction of a continuous variable
Wijsh = qihujs and the following linearisation constraints:

Wijsh 6 qih ∀i, j, s, h (30)

Wijsh 6 QUBi ujs ∀i, j, s, h (31)

Wijsh > qih −QUBi (1− ujs) ∀i, j, s, h (32)

Wijsh > 0 ∀i, j, s, h (33)

with QUBi = maxh(Qih). Given this, Eq. (29) can be rewritten as Eq. (34).

nih >
S∑
s=1

WijshSij
vs

∀i, j, h (34)

Horizon constraints:
The total time spent on every product i on stage j in period h corresponds to the time spent per batch
(stage cycle time) multiplied by the number of batches in that period (Eq. (35)). Furthermore, the total
time spent on every product i in period h corresponds to the longest time spent on a stage, as given
by Eq. (36). Finally, total production time per period should not exceed the fixed period length Lp
(Eq. (37)).

N∑
n=1

zjnTjih = nihτij ∀j, i, h (35)

θih > Tjih ∀j, i, h (36)

P∑
i=1

θih 6 Lp ∀h (37)

The nonlinear Eq. (35), due to the product zjnTjih, is replaced by its linear equivalent Eq. (38) via the
continuous variable Xjinh = zjnTjih:

N∑
n=1

Xjinh = nihτij ∀i, j, h (38)

and via the following linearisation constraints:

Xjinh 6 Lp zjn ∀i, j, n, h (39)

Xjinh 6 Tjih ∀i, j, n, h (40)

Xjinh > Tjih − Lp(1− zjn) ∀i, j, n, h (41)

Xjinh > 0 ∀i, j, n, h (42)
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Demand and inventory constraints:
Since deliveries of specified amounts of every product are guaranteed at the end of every period, addi-
tional constraints are formulated in comparison to the single period context. Moreover, as end-of-period
inventory is allowed in this model, this needs to be accounted for as well.

The total delivery quantity required of every product i at the end of every period h can be fulfilled
through a combination of production in that period and inventory that was kept at the end of the
previous period (Eq. (43)). Consequently, the amount kept in inventory of every product i at the end
of every period h equals the sum of the amount in inventory from the previous period and the amount
produced in this period minus the amount required in this period (Eq. (44)). Eq. (45) limits the total
amount to be stored at the end of every period, just before delivery, to the maximum amount required
over all periods, with QUBi = maxh(Qih). Note that it is assumed that the amount held in inventory
per product, given its upper bound, will fit in a storage tank. As stated in Section 2, these tanks are not
explicitly modelled, since they represent a smaller cost in comparison to the batch equipment. Finally,
the starting inventory for every product i (Ii0) is set to zero (Eq. (46)).

Ii(h−1) + qih > Qih ∀i, h (43)

Iih = Ii(h−1) + qih −Qih ∀i, h (44)

Ii(h−1) + qih 6 QUBi ∀i, h (45)

Ii0 = 0 ∀i (46)

Boundaries:
Eqs. (47)-(50) pose an upper bound on the variables, with NBUBi the upper bound on the number of
batches. This is formulated as (QUBi Smaxi )/v1.

nih 6 NBUBi ∀i, h (47)

qih 6 QUBi ∀i, h (48)

Tjih 6 Lp ∀j, i, h (49)

θih 6 Lp ∀i, h (50)

C.1.2 Adaptations for different multiperiod characteristics

As already mentioned before, modifications are made to the mathematical model depending on the
combination of characteristics.

No end-of-period inventory In this case, no end-of-period inventory is allowed, resulting in Iih = 0
and qih = Qih ∀i, h. Hence, Eqs. (43)-(45) are considerably simplified. Moreover, Eq. (29) can be
replaced by the linear constraint Eq. (51) and the linearisation constraints (Eqs. (30)-(33)) can be omitted.

nih >
S∑
s=1

QihSij
vs

ujs ∀j, i, h (51)

Fixed product mixes When the product mix is fixed, every product needs to be produced in every
period. This generates the following additional constraints: Eq. (52) forces the production of at least one
batch of every product i in every period h, whereas Eq. (53) sets a lower bound on the amount produced
per period. The lower bounds are given by QLBi = (QiT

min
i )/H and Tmini = maxj τij/N

3.

nih > 1 ∀i, h (52)

qih > QLBi ∀i, h (53)

3This lower bound is derived from
∑

i(QiTi)/Bi 6 H, so for every product i: (QiT
min
i )/Bi 6 H applies. Reordering

this equation gives (QiT
min
i )/H 6 Bi and the minimum is the used lower bound.
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C.2 Objective function

Capital costs
The aim of this optimisation problem is to minimise capital costs. These costs are associated with the
acquisition or installation of equipment. As can be seen, the capital costs increase in a nonlinear manner
with increasing size of the equipment units, where αj and βj are stage dependent cost coefficients and βj
is typically smaller than one for every stage j (Sparrow et al., 1975). This one time capital expenditure
is assumed to be already converted to a uniform cost per horizon, so that it can be correctly added up
with the other cost components. (Jelen et al., 1983)

J∑
j=1

S∑
s=1

N∑
n=1

αjv
βj
s zjnujs (54)

The incurred nonlinearity zjnujs is tackled via the binary variable: Yjsn = zjnujs and the following
constraint:

Yjsn > zjn + ujs − 1 ∀j, s, n (55)

Yjsn ∈ {0, 1} ∀j, s, n (56)

Startup costs:
This cost accounts for the preparation of the equipment units at the start of every series of batches of
product i in every period h. It is modelled as follows:

P∑
i=1

J∑
j=1

N∑
n=1

Np∑
h=1

Cstart zjn tih

where Cstart is a stage and product independent startup cost and tih indicates whether or not product i
is produced in period h. This variable is accompanied with the following additional constraints to make
the link with the number of batches made of product i in period h:

tih 6 nih ∀i, h (57)

tihNB
UB
i > nih ∀i, h (58)

In order to linearise this startup cost, the binary variable ZTijnh = zjntih is introduced together with
the constraints below:

ZTijnh > zjn + tih − 1 ∀i, j, n, h (59)

ZTijnh ∈ {0, 1} ∀i, j, n, h (60)

Hence, the startup cost becomes:

P∑
i=1

J∑
j=1

N∑
n=1

Np∑
h=1

Cstarti ZTijnh (61)

Besides influencing the number of equipment units installed in parallel per stage (given by zjn), this cost
component may result in production shifts in a multiperiod context. After all, it may be beneficial to in-
crease production of one or more products in a certain period, and to keep it as end-of-period inventory, so
that in another period these products do not need to be made (tih = 0) and startup costs can be avoided.

Inventory holding costs
In the multiperiod context with specified delivery points, all products are kept in inventory until the
end-of-period delivery dates, hence, this product accumulation should be taken into account. Since
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this calculation generates a non-convex objective function that makes the optimisation arduous, the
calculation of this cost is done ex post and corresponds to:

Np∑
h=1

P∑
i=1

((nih − 1)θih − Tih(
nih(nih − 1)

2
))Bih︸ ︷︷ ︸

I

+ (Lp−
i∑
k

θkh)qih︸ ︷︷ ︸
II

+Lp Ii(h−1)︸ ︷︷ ︸
III

 InvCost
(62)

with InvCost the inventory holding cost per unit of product per time. The first term (I) corresponds
to the production part for every product in every period, in which the batches of every product i are
produced. The second term (II) corresponds to that part of the period length in which the total amount
produced of every product is waiting to be delivered. Since production in an SPC mode of operation
does not give a sequence in which products are produced, it is assumed that products are produced in
increasing order of production quantities. Hence, the product with the largest amount produced is kept
in inventory the shortest time. Lastly, the third term III represents the end-of-period inventory kept
when going from one period to the other.

Note that, apart from this ex post cost, a small correction term is included in the objective function to
avoid non-zero end-of-period inventory that is not asked for:

Np∑
h=1

P∑
i=1

InvCorrIih (63)

with InvCorr ∈]0, 0.001] a given correction coefficient.

D Mathematical model - M-MPC

D.1 Constraints

D.1.1 End-of-period inventory

The MILP model for the multiperiod context and a mixed-product campaign mode of operation with
end-of-period inventory is presented.

Batch equipment design constraints:
Eqs. (64)-(66) are related with the number and size of equipment units installed in every stage. These
constraints are, as stated, independent of the periods and similar to Eqs. (26)-(28) from the M-SPC
model. The number of batches of product i produced in a campaign in period h, i.e.nih, can be written
as the selection of one option m via the binary variable cimh (Eqs. (67)-(68)). Note that, in comparison
to a single period model, there is the possibility to choose zero batches. Finally, for every stage j, the
size of the equipment units vs should be large enough to hold a batch of every product i, multiplied by
its size factor Sij (Eq. (69)). As the amount produced of product i in period h is a decision variable now,
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the capacity constraint is nonlinear in three factors (ujs, cimh and qih).

N∑
n=1

zjn > 1 ∀j (64)

zjn > zj(n+1) ∀j, n with n < N (65)

S∑
s=1

ujs = 1 ∀j (66)

NBCUB
i∑

m=0

cimh = 1 ∀i, h (67)

nih =

NBCUB
i∑

m=0

mcimh ∀i, h (68)

NNh >
S∑
s=1

NBCUB
i∑

m=1

Sijqih
vsm

ujscimh ∀i, j, h (69)

Firstly, to overcome the product of two binary variables ujs and cimh, the binary variable Wijsmh =
ujscimh is introduced, together with the linearisation constraints:

Wijsmh 6 cimh ∀i, j, s,m, h (70)

Wijsmh 6 ujs ∀i, j, s,m, h (71)

Wijsmh > cimh + ujs − 1 ∀i, j, s,m, h (72)

Wijsmh ∈ {0, 1} ∀i, j, s,m, h (73)

With this, Eq. (69) becomes Eq. (74) which is still nonlinear (Wijsmh qih). Hence, secondly, the continuous
variable WQijsmh = Wijsmh qih is introduced together with constraints (75)-(78) to replace the nonlinear
expression Eq. (74) by Eq. (79). Note that QUBi is introduced as an upper bound on qih, with QUBi =
maxh(Qih).

NNh >
S∑
s=1

NBCUB
i∑

m=1

Sijqih
vsm

Wijsmh ∀i, j, h (74)

WQijsmh 6 QUBi Wijsmh ∀i, j, s,m, h (75)

WQijsmh 6 qih ∀i, j, s,m, h (76)

WQijsmh > qih −QUBi (1−Wijsmh) ∀i, j, s,m, h (77)

WQijsmh > 0 ∀i, j, s,m, h (78)

NNh >
S∑
s=1

NBCUB
i∑

m=1

Sij
vsm

WQijsmh ∀i, j, h (79)

Horizon constraints:
The product of the campaign cycle time CTCh and the number of campaign repetitions NNh in a period
can not exceed the given period length Lp (Eq. (80)).

CTChNNh 6 Lp (80)

To overcome the product of a continuous and an integer variable CTChNNh, the number of campaign
repetitions NNh is discretised via B options, and the selection of one option in every period is indicated
via the binary variable NNRbh and accompanying Eqs. (81)-(82), with:

NNRbh =

{
1 if the campaign is repeated BBb times in period h

0 otherwise
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B∑
b=1

NNRbh = 1 ∀h (81)

NNh =

B∑
b=1

BBbNNRbh ∀h (82)

By replacing NNh in Eq. (80) with Eq. (82), a product of a continuous and a binary variable remains
(CTChNNRbh). To overcome this, the continuous variable WWbh = CTChNNRbh is introduced
together with linearisation constraints Eqs. (83)-(86).

WWbh 6 LpNNRbh ∀b, h (83)

WWbh 6 CTCh ∀b, h (84)

B∑
b=1

WWbh = CTCh ∀h (85)

WWbh > 0 ∀b, h (86)

Eventually, Eq. (80) can be replaced by its linear equivalent Eq. (87).

B∑
b=1

BBbWWbh 6 Lp ∀h (87)

Scheduling constraints:
These constraints are used to obtain the assignment of product (batches) to equipment units. In order
to formulate the constraints, the following binary variables are introduced:

yijenh =


1 if product i is assigned to slot e and processed

in equipment unit n of stage j in period h

0 otherwise

xjenh =

{
1 if slot e of equipment unit n of stage j is used in period h

0 otherwise

rieh =

{
1 if product i is processed in slot e in period h

0 otherwise

If equipment unit n of stage j does not exist, then none of its slots can be used in any period (Eq. (88))
and no product batches can be assigned to it (Eq. (89)). If, on the other hand, this equipment unit
exists, then at least one of its slots must be occupied by a product in a period (Eq. (90)).

xjenh 6 zjn ∀j, e, n, h (88)

yijenh 6 zjn ∀i, j, e, n, h (89)

P∑
i=1

E∑
e=1

yijenh > zjn ∀j, n, h (90)

Eq. (91) states that if slot e on equipment unit n of stage j is used in period h, this slot can not be
occupied by the other equipment units of that stage in that period. Analogously, Eq. (92) indicates that
if that slot is occupied by product i in period h, that slot can not be occupied by the other equipment
units of that stage in that period to produce another product i′.

xjen′h 6 1− xjenh ∀j, e, h, n, n′ with n 6= n′ (91)

yi′jen′h 6 1− yijenh ∀i, i′, j, e, h, n, n′ with n 6= n′ (92)
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Eqs. (93)-(94), (95)-(96) and (97) define the relations among variables yijenh and respectively rieh, xjenh
and both. If slot e is not occupied by product i in period h, then no equipment unit n can use this slot
in period h to produce product i (Eq. (93)), whereas if slot e is used to produce product i in period h, it
must be produced on one of the equipment units n (Eq. (94)). If slot e of equipment unit n is not used
in period h, then no product can be assigned to it in that period (Eq. (95)). Conversely, if that slot is
used, then exactly one product is assigned to it (Eq. (96)). Finally, Eq. (97) states that product i is only
assigned to slot e of equipment unit n of stage j in period h if this slot is used both on equipment unit
n and by product i in period h.

yijenh 6 rieh ∀i, j, e, n, h (93)

N∑
n=1

yijenh = rieh ∀i, j, e, h (94)

yijenh 6 xjenh ∀i, j, e, n, h (95)

P∑
i=1

yijenh = xjenh ∀j, e, n, h (96)

yijenh > xjenh + rieh − 1 ∀i, j, e, n, h (97)

The total number of slots e used by product i in period h equals the number of batches per campaign of
this product in this period.

E∑
e=1

rieh = nih ∀i, h (98)

In order to reduce computational complexity, it is assumed that the time slots in every equipment unit
in every period are occupied in ascending order. Hence, Eq. (99) states that slot e is occupied before slot
e+ 1 can be occupied. Furthermore, Eq. (100) is included to avoid alternative solutions (i.e. a symmetry
breaking constraint), whereas Eq. (101) defines a preordering constraint: the products assigned to slots
follow the same order in all the stages per period.

P∑
i=1

rieh >
P∑
i=1

ri(e+1)h ∀h, e with e < E (99)

E∑
e=1

2exjenh >
E∑
e=1

2exje(n+1)h ∀j, h, n with n < N (100)

P∑
i=1

N∑
n=1

i yijenh =

P∑
i=1

N∑
n=1

i yij′enh ∀j, j′, e, h with j < j′ (101)

Timing constraints:
The timing constraints are given by Eqs. (102)-(107). Eq. (102) defines the finishing time of every slot
e on equipment unit n of stage j in period h (TFjenh), being equal to the starting time of that slot
(TIjenh) plus the processing time of the product assigned to that slot in that period. Eq. (103) forces
the finishing time of slot e of equipment unit n to be equal or earlier than the starting time of the next
slot e+ 1. Furthermore, Eq. (103), together with Eq. (104), state that if slot e+ 1 of equipment unit n is
not used in period h, then the finishing time of slot e and the starting time of slot e+ 1 coincide in that
period. Since a zero-wait policy is assumed, Eqs. (105) and (106) enforce the finishing time of a slot e
on a stage in a period to be equal to the starting time of that slot on the next stage, taken into account
the usage of the slots. Finally, to obtain the cycle time CTCh of a campaign in period h, the differences
between the finishing time of the last slot and the starting time of the first slot of every equipment unit
n are calculated. The longest stage cycle time gives the eventual value for the campaign cycle time per
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period. This is given by Eq. (107).

TFjenh = TIjenh +

P∑
i=1

τijyijenh ∀j, e, n, h (102)

TFjenh 6 TIj(e+1)nh ∀j, e, n, h with e < E (103)

TFjenh − TIj(e+1)nh > −Lpxj(e+1)nh ∀j, e, n, h with e < E (104)

TFjenh − TI(j+1)en′h > Lp (xjenh + x(j+1)en′h − 2) ∀j, e, n, n′, h with j < J (105)

− TFjenh + TI(j+1)en′h > Lp (xjenh + x(j+1)en′h − 2) ∀j, e, n, n′, h with j < J (106)

CTCh − TFj(E)nh + TIjenh > Lp((xjenh − 1)−
e−1∑
e′=1

xje′nh) ∀j, e, n, h (107)

Demand and inventory constraints:
In the multiperiod context, deliveries of specified amounts of every product are promised at the end
of every period. Additionally, if end-of-period inventory is allowed, the amount produced of product
i in period h does no longer need to be equal to the amount required. To incorporate these features,
additional constraints on the fulfilment of the delivery quantities are included.

The total delivery quantity required of every product i in every period h can be fulfilled through a
combination of production in that period and inventory that was kept at the end of the previous period
(Eq. (108)). Consequently, the amount kept in inventory of every product i at the end of every period h
equals the sum of the amount in inventory from the previous period and the amount produced in this
period minus the amount required in this period (Eq.(109)). Eq. (110) limits the total amount available
at the end of every period to the maximum amount required over all periods, with QUBi = maxhQih ∀i.
Similar to the previous chapter, it is assumed that this upper bound will fit in a storage tank. Eq. (111)
sets the starting inventory for every product i (Ii0) to zero.
Finally, Eqs. (112)-(113) enforce that if no amount of product i is produced in period h, no batches are
made and vice versa.

Ii(h−1) + qih > Qih ∀i, h (108)

Iih = Ii(h−1) + qih −Qih ∀i, h (109)

Ii(h−1) + qih 6 QUBi ∀i, h (110)

Ii0 = 0 ∀i (111)

1− ci0h 6 qih ∀i, h (112)

QUBi (1− ci0h) > qih ∀i, h (113)

D.1.2 Adaptations for other multiperiod characteristics

The modifications made to the mathematical model to account for different MPDF characteristics are
presented here.

No end-of-period inventory In case no end-of-period inventory is allowed, Iih = 0, qih = Qih ∀i, h.
Hence, Eqs. (108)-(110) are substantially simplified. Moreover, Eq. (69) becomes nonlinear in two binary
variables ujs and cimh, instead of in two binary variables and a continuous one (ujs, cimh and qih.

NNh >
S∑
s=1

NBCUB
i∑

m=1

SijQih
vsm

ujscimh ∀i, j (114)
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Fixed product mixes When the product mix is fixed, every product needs to be produced in every
period. This generates the following additional constraints: Eq. (115) forbids to produce zero batches of
a product, whereas Eq. (116) forces to produce at least one batch of every product i in a campaign in
every period h. Finally, Eq. (117) sets a lower bound on the amount produced per period. The lower
bound QLBi is formulated similarly as for the M-SPC case. Hence, we set QLBi = (QiT

min
i )/H and

Tmini = maxj τij/N .

ci0h = 0 ∀i, h (115)

NBCUB
i∑

m=1

cimh = 1 ∀i, h (116)

qih > QLBi ∀i, h (117)

D.2 Objective function

The aim of the multiperiod BPDP is to minimise the total cost. This cost consists of capital and startup
costs, whereas inventory holding costs are calculated ex post.

Capital costs:
The capital costs to be minimised are formulated similar as for the M-SPC models:

J∑
j=1

S∑
s=1

N∑
n=1

αjv
βj
s zjnujs (118)

The incurred nonlinearity of zjn and ujs is tackled through the introduction of the binary variable
Yjsn = zjnujs and the following constraints:

Yjsn > zjn + ujs − 1 ∀j, s, n (119)

Yjsn ∈ {0, 1} ∀j, s, n (120)

Startup costs:
Comparable as for the M-SPC models, in which a fixed startup cost is incurred every time a series of
batches of one product (i.e. a run) starts, the startup costs are formulated as a fixed cost per campaign.
Hence, it is assumed that it is not necessary to setup within the campaign, but always at the beginning
of a new campaign.

The formulation of this cost is:

J∑
j=1

N∑
n=1

B∑
b=1

Np∑
h=1

CstartBBbNNRbh zjn (121)

The product of NNRbh and zjn is addressed through the introduction of a binary variable: WXjnbh =
NNRbhzjn and the following constraints:

WXjnbh > NNRbh + zjn − 1 ∀j, n, b, h (122)

WXjnbh ∈ {0, 1} ∀j, n, b, h (123)

This results in:
J∑
j=1

N∑
n=1

B∑
b=1

Np∑
h=1

CstartBBbWXjnbh (124)
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Ex post inventory holding costs:
The ex post inventory holding cost expression is given by:

Np∑
h=1

P∑
i=1

(nihCTCh −
N∑
n=1

E∑
e=1

((TF(Jenh) − TI(Jefirstnh))yiJenh))BihNNh︸ ︷︷ ︸
I

+ pih((NNh − 1)Lp− CTCh(
NNh(NNh − 1)

2
))︸ ︷︷ ︸

II

+Lp Ii(h−1)︸ ︷︷ ︸
III

 InvCost

(125)

with InvCost a known product independent inventory holding cost. The first term (I) corresponds to
the production part: in an MPC mode of operation, different products may be produced alternately
and, consequently, batches of one product can be made throughout an entire campaign length. Hence,
for every batch, the finishing time on the final stage J in period h is used to mark the point at which
a step of size Bih is taken. Note that these finishing times are shifted over the starting time of the first
batch of a campaign on this stage in a period, as these begin effects are not taken into account. The
second term (II) corresponds to that part of the period length in which the amount produced is waiting
to be delivered, with pih the amount produced of product i per campaign per period h. Finally, term
III is included to account for the possibility of having inventory over the periods with Iih the amount
of end-of-period inventory.

Correction terms
Finally, to deal with some degrees of freedom present in the problem, two correction terms are included
in the optimisation: an inventory correction term and an initialisation correction term.

The inventory correction term avoids the accumulation of inventory without use. This is done via:

Np∑
h=1

P∑
i=1

InvCorrIih (126)

with InvCorr ∈]0, 0.001] a given coefficient.

To enforce the timings to start at zero, an initialisation correction term is given by:

J∑
j=1

N∑
n=1

E∑
e=1

Np∑
h=1

InitCorr TFjenh (127)

with InitCorr ∈]0, 0.001] a small, known parameter.

38



E Input data

Table E.1: Process and demand data - Ex.1-2

Process and demand data - Ex.1

Number of products: 3
Number of stages: 3
Max. number of parallel equip. per stage: 3

Total amount to be produced Q (in kg)
prod 1 prod 2 prod 3
215040 1152000 281600

Amount to be produced per period Qih (in kg)
variability

period 1 38400 288000 70600
period 2 69120 192000 103000
period 3 71680 384000 44000
period 4 35840 288000 64000

Processing time τij (in h)
stage 1 10.74 9.83 9.83
stage 2 2.0 4.85 13.20
stage 3 5.22 18.69 6.14

Size factors Sij (in l/kg)
stage 1 0.7 0.7 0.7
stage 2 0.6 0.6 0.65
stage 3 0.5 0.45 0.55

Set S of discrete sizes vs (in l) =
{3700, 4300, 4800, 5100, 5700, 6200, 6500, 7000}
Cost parameters α = {600, 600, 700}

and β={0.6, 0.6, 0.7}
Startup cost coefficients - low Cstart: 800
Startup cost coefficients - high Cstart: 5000
Inventory holding cost InvCost: 0.0007

Process and demand data - Ex.2

Number of products: 3
Number of stages: 4
Max. number of parallel equip. per stage: 3

Total amount to be produced Q (in kg)
prod 1 prod 2 prod 3
156000 78000 104000

Amount to be produced per period Qih (in kg)
variability

period 1 12000 20000 12000
period 2 60000 38000 20000
period 3 40000 0 32000
period 4 44000 20000 40000

Processing time τij (in h)
stage 1 6.4 6.8 1.0
stage 2 4.7 6.4 6.3
stage 3 8.3 6.5 4.4
stage 4 3.9 4.4 11.9

Size factors Sij (in l/kg)
stage 1 7.9 0.7 0.7
stage 2 2.0 0.8 2.6
stage 3 5.2 0.9 1.6
stage 4 4.9 3.4 3.6

Set S of discrete sizes vs (in l) =
{1000, 4000, 6000, 9000, 13500}

Cost parameters α = {250, 250, 250, 250}
and β={0.6, 0.6, 0.6, 0.6}

Startup cost coefficients - low Cstart: 450
Startup cost coefficients - high Cstart: 2500
Inventory holding cost InvCost: 0.00075
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Table E.2: Process and demand data - Ex.3-4

Process and demand data - Ex.3

Number of products: 3
Number of stages: 4
Max. number of parallel equip. per stage: 4

Total amount to be produced Q (in kg)
prod 1 prod 2 prod 3
77376 67968 61536

Amount to be produced per period Qih (in kg)
variability

period 1 24344 7992 13384
period 2 13344 13992 21384
period 3 23344 23992 19384
period 4 16344 21992 7384

Processing time τij (in h)
stage 1 9.3 8.5 9.7
stage 2 5.4 5.8 5.5
stage 3 4.2 4.1 4.3
stage 4 2.0 2.5 2.1

Size factors Sij (in l/kg)
stage 1 2.0 0.7 1.2
stage 2 1.6 1.3 1.5
stage 3 1.6 1.6 0.4
stage 4 2.6 2.7 1.6

Set S of discrete sizes vs (in l) =
{500, 1000, 2000, 2500, 3000, 4000}

Cost parameters α = {135, 148, 140, 150}
and β={0.6, 0.6, 0.6, 0.6}

Startup cost coefficients - low Cstart: 200
Startup cost coefficients - high Cstart: 750
Inventory holding cost InvCost: 0.0004

Process and demand data - Ex.4

Number of products: 4
Number of stages: 3
Max. number of parallel equip. per stage: 3

Total mount to be produced Q (in kg)
prod 1 prod 2 prod 3 prod 4
109714 131657 233143 329143

Amount to be produced per period Qih (in kg)
variability

period 1 0 20914 23285 37285
period 2 39571 37915 71286 100786
period 3 29571 26914 75286 76286
period 4 40572 45914 63286 114786

Processing time τij (in h)
stage 1 14.0 16.0 12.0 10.0
stage 2 25.0 5.0 15.0 5.0
stage 3 7.0 18.0 4.0 20.0

Size factors Sij (in l/kg)
stage 1 0.7 0.6 0.7 0.65
stage 2 0.6 0.7 0.65 0.7
stage 3 0.5 0.45 0.55 0.5

Set S of discrete sizes vs (in l) =
{3000, 5600, 6800, 8400, 9800}

Cost parameters α = {600, 600, 700}
and β={0.6, 0.6, 0.7}

Startup cost coefficients - low Cstart: 1000
Startup cost coefficients - high Cstart: 5000
Inventory holding cost InvCost: 0.0009

40



Table E.3: Process and demand data - Ex.5

Number of products: 6
Number of stages: 4
Max. number of parallel equip. per stage: 4

Total amount to be produced Q (in kg)
prod 1 prod 2 prod 3 prod 4 prod 5 prod 6
24000 48000 32000 38400 36800 32000

Amount to be produced per period Qih (in kg)
variability

period 1 6000 11000 10000 6000 12500 10000
period 2 8000 0 4000 9600 7000 5500
period 3 4000 22000 8000 12200 10500 11000
period 4 6000 15000 10000 10600 6800 6500

Processing time τij (in h)
stage 1 3.0 6.0 5.0 10.2 6.6 2.7
stage 2 9.2 2.6 8.0 5.5 3.5 4.3
stage 3 4.5 7.0 3.8 4.9 8.0 8.7
stage 4 7.0 3.0 7.3 6.3 5.0 2.9

Size factors Sij (in l/kg)
stage 1 0.9 1.6 1.4 1.35 0.8 1.14
stage 2 1.1 1.15 1.0 1.05 1.5 1.14
stage 3 1.3 0.7 1.0 1.05 1.32 1.14
stage 4 1.25 1.21 0.95 1.05 1.20 1.14

Set S of discrete sizes vs (in l) =
{1000, 1200, 1350, 1500, 1650, 1800, 2000}

Cost parameters α = {650, 720, 460, 500}
and β={0.65, 0.7, 0.65, 0.60}

Startup cost coefficients - low Cstart: 500
Startup cost coefficients - high Cstart: 1500
Inventory holding cost InvCost: 0.0017
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F Detailed results - Examples 4 & 5

Example 4: 4 products over 3 stages

Table F.1: Example 4: 4 products - total capital, startup and ex post inventory holding costs and optimal
design decisions, for a plant operating in SPC mode

S-SPC M-SPC

Equal delivery qty Variable delivery qty

Min. objective/ singlea no inv inv inv no inv inv invb

incl. inv. costsc period fix mix var mix fix mix var mix

Capital costs 520 336 533 486 533 486 533 486 608 661 533 486 533 486
Startup costs 12 000 48 000 48 000 48 000 45 000 48 000 45 000
Inventory costs 687 160 157 450 157 450 157 450 167 208 188 027 183 871

Total costsd 1 219 496 738 936 738 936 738 936 820869 769513 762357

Design decisions (written as size (number)):
stage 1 5600(1) 6800(1) 8400(1) 6800(1)
stage 2 6800(1) 6800(1) 8400(1) 6800(1)
stage 3 5600(1) 5600(1) 6800(1) 5600(1)

Total amount 0 0 0 0 0 42 771 61 486
end-of-period inventory

cex post inventory holding costs
din monetary units

Table F.2: Example 4: 4 products - total capital, startup and ex post inventory holding costs and optimal
design decisions, for a plant operating in MPC mode

S-SPC M-SPC

Equal delivery qty Variable delivery qty

Min. objective/ singlea no inv inv inv no inv inv invb

incl. inv. costsc period fix mix var mix fix mix var mix

Capital costs 520 336 520 336 533 486 533 486 608 661 533 486 533 486
Startup costs 15 000 60 000 36 000 36 000 36 000 48 000 48 000
Inventory costs 715 489 156 917 167 450 167 450 148 441 166 175 171 461

Total costsd 1 250 825 737 253 736 936 736 936 793 102 747 661 752 947

Design decisions (written as size (number)):
stage 1 5600(1) 5600(1) 6800(1) 8400(1) 6800(1)
stage 2 6800(1) 6800(1) 6800(1) 8400(1) 6800(1)
stage 3 5600(1) 5600(1) 5600(1) 6800(1) 5600(1)

Total amount 0 0 28 572 28 572 0 21 762 21 286
end-of-period inventory

cex post inventory holding costs
din monetary units
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Example 5: 6 Products over 4 stages

Table F.3: Example 5: 6 products - total capital, startup and ex post inventory holding costs and optimal
design decisions, for a plant operating in SPC mode

S-SPC M-SPC

Equal delivery qty Variable delivery qty

Min. objective/ singlea no inv inv inv no inv inv invb

incl. inv. costsc period fix mix var mix fix mix var mix

Capital costs 259 732 259 732 259 732 259 732 304 893 274 832 274 832
Startup costs 12 000 48 000 48 000 48 000 46 000 48 000 46 000
Inventory costs 352 048 82 839 82 839 82 839 89 760 89 136 88 696

Total costsd 623 780 390 571 390 571 390 571 440 653 411 968 409 528

Design decisions (written as size (number)):
stage 1 1500(1) 1500(1) 2000(1) 1500(1)
stage 2 1200(1) 1200(1) 1500(1) 1350(1)
stage 3 1200(1) 1200(1) 1500(1) 1350(1)
stage 4 1200(1) 1200(1) 1500(1) 1350(1)

Total amount 0 0 0 0 0 7 680 8 117
end-of-period inventory

cex post inventory holding costs
din monetary units

Table F.4: Example 5: 6 products - total capital, startup and ex post inventory holding costs and optimal
design decisions, for a plant operating in MPC mode

S-SPC M-SPC

Equal delivery qty Variable delivery qty

Min. objective/ singlea no inv inv inv no inv inv invb

incl. inv. costsc period fix mix var mix fix mix var mix

Capital costs 254 741 254 741 259 732 259 732 304 717 265 982 265 982
Startup costs 40 000 40 000 32 000 32 000 32 000 36 000 36 000
Inventory costs 345 162 86 818 107 352 107 352 79 854 102 667 102 667

Total costsd 639 903 381 559 399 084 399 084 416 571 404 649 404 649

Design decisions (written as size (number)):
stage 1 1350(1) 1350(1) 1500(1) 1800(1) 1500(1)
stage 2 1200(1) 1200(1) 1200(1) 1650(1) 1200(1)
stage 3 1200(1) 1200(1) 1200(1) 1500(1) 1350(1)
stage 4 1200(1) 1200(1) 1200(1) 1350(1) 1350(1)

Total amount 0 0 19 309 19 309 0 13 015 13 015
end-of-period inventory

cex post inventory holding costs
din monetary units
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