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Abstract

Keywords:

Introduction: Conventional Z-scores are generated by subtracting the mean and dividing by the
standard deviation. More recent methods linearly correct for age, sex, and education, so that these
“adjusted” Z-scores better represent whether an individual’s cognitive performance is abnormal.
Extreme negative Z-scores for individuals relative to this normative distribution are considered indic-
ative of cognitive deficiency.

Methods: In this article, we consider nonlinear shape constrained additive models accounting for
age, sex, and education (correcting for nonlinearity). Additional shape constrained additive models
account for varying standard deviation of the cognitive scores with age (correcting for heterogeneity
of variance).

Results: Corrected Z-scores based on nonlinear shape constrained additive models provide improved
adjustment for age, sex, and education, as indicated by higher adjusted-R2.

Discussion: Nonlinearly corrected Z-scores with respect to age, sex, and education with age-varying
residual standard deviation allow for improved detection of non-normative extreme cognitive scores.
© 2019 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Generalized additive models; Heterogenous variance modeling; Neuropsychological testing scores; Nonlinear
Z-score correction; Shape constrained additive models
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1. Introduction and background

The Advancing Research and Treatment for Frontotem-
poral Lobar Degeneration consortium and the Longitudinal
Evaluation of Familial Frontotemporal Dementia Subjects
are both generating data from families with either a strong
family history of frontotemporal dementia (FTD) or
mutations in genes known to be associated with FTD:
microtubule associated protein tau (MAPT), progranulin
(GRN), or chromosome 9 open reading frame 72
(CY90rf72). Both of these studies have the common goal of
identifying the most robust and reliable methods to track dis-
ease progression in familial dementia, so that clinical trials
of disease-modifying therapies can be designed appropri-
ately. To this end, it is important to identify indications of
a clinical change as early and accurately as possible.

A common approach to identifying cognitive deficits
based on neuropsychological test scores is to compare the
scores to those of a large set of cognitively normal
individuals. The scores are flagged as potentially cognitively
deficient if they are significantly worse than the scores
represented in the cognitively normal data set.

1.1. Naive (uncorrected) Z-score approach

The simplest approach to determine whether an individu-
al’s score is outside of the normal range is to calculate
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Z-scores. The method is to find the difference between the
individual’s obtained test score and the expected score
(which is the mean of the score for the normative sample)
and then divide that difference by the standard deviation
(SD) of the normative sample’s scores for that particular
measure. When calculating Z-scores, one should be mindful
of the fact that for some tests, a high score indicates good
performance, but for other tests (e.g., tests where time to
complete a task is the outcome being measured), a high score
indicates poor performance. Common practice is to reverse
the +/— Z-score sign in these cases such that a positive
Z-score indicates better-than-expected performance and a
negative score indicates poorer-than-expected performance.
If the individual’s Z-score is significantly below expectation
compared with the normative sample, then the individual is
flagged as being potentially cognitively deficient.

A major limitation of using a simple Z-score approach,
however, is that it does not account for an individual’s age,
sex, or education level. These factors are known to influence
what a “normal” score would be for a particular individual.
For example, in some tests, higher education gives the false
appearance of potentially protecting against dementia (a.k.a.
the “cognitive reserve hypothesis” [1]). That is, individuals
with higher education are less likely to show their early in-
dications of dementia because cognitively normal individ-
uals with higher education levels generally do better on the
tests and so they need to decline further to be detected
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relative to an uncorrected distribution of scores. Therefore,
longitudinal studies using norms that do not account for ed-
ucation may fail to appropriately detect decline in those that
are more highly educated or sometimes detect decline inap-
propriately among individuals who are less educated. (Note
that although these norms are applied to longitudinal data,
they are applied independently at each time point and not
to measures of change.) By generating Z-score distributions
specific to education levels (via modeling adjustments), we
can determine whether an individual has an extreme Z-score
relative to their own specific education level.

1.2. Z-score adjustment via linear regression

The Z-score approach to neurocognitive assessment has
been extended by multiple groups to consider linear correc-
tion for age, sex, and education [2,3]. However, the linear
assumption represents a strong constraint on the correction
approach because it imposes the assumption of a linear
relationship between each of age and education with the
neuropsychological outcome scores in the regression.
Furthermore, the standard linear model takes the
homogeneous variance estimated for the residuals of
the fitted regression and uses this constant value in the
denominator of the Z-score estimate for all individuals.
This use of constant SD in the Z-score estimates leads to
severe underestimation or overestimation of the magnitude
of the Z-score when the SD associated with a particular
age, sex, and education score differs drastically from that
of the mean SD of the linear regression residual errors.
Edland et al. [4] had previously examined nonlinear correc-
tion of cognitive scores for the Cognitive Abilities Screening
Instrument with respect to age, sex, and education. The au-
thors dealt with the nonlinearity through Box-Cox transfor-
mation of the outcomes.

1.3. Z-score adjustment via nonlinear regression

In this article, we propose a direct nonlinear modeling
approach for the Z-scores with respect to age, sex, and
education to allow for nonlinear relationships with the
neuropsychological outcomes examined. In addition, our
approach explicitly incorporates a secondary nonlinear
modeling of residual variance such that it can vary according
to the covariates. This leads to improved determination of
whether scores are extreme relative to the individual’s age,
sex, and education level.

2. Methods
2.1. Normative data

We used a slightly extended version of the National Alz-
heimer’s Coordinating Center (NACC) database Uniform
Data Set (UDS) of normal controls that was used by Wein-
traub et al. [3] (extended by additional data acquired by
the NACC after December 2016). Informed consent was ob-

tained by the NACC for all subjects in the study. Permission
from the NACC has been obtained by this study to perform
and publish this research on this data. These cross-sectional
data were acquired from 29 Alzheimer’s Disease Centers
and considered visits between March 2015 and May 2017.
The data set contained a total of 4287 individuals who
were each tested one time. We removed individuals with
missing education data and those who were aged 92 or
over (numbers were small and outcomes erratic beyond
this age), leaving 4193 individuals. We further restricted
our normative data set to the 3461 Caucasians because there
were only relatively small numbers for other racial groups,
which overly limits size for building normative tables for
those racial groups. Finally, we removed subjects that did
not perform testing in English leaving 3430 participants.

2.2. Preprocessing steps

The data were further restricted to an age range of 40 to 91
by considering all individuals less than age 40 as being
equivalent to individuals who are 40 years of age. The reason
for this age shift (translation) was that the number of individ-
uals was very small below age 40 and therefore sometimes led
to poor model fits below age 40. In addition, most neuropsy-
chological scores showed an approximately constant trend
across the younger ages of 40 to 50, and thus, a constant effect
for before 40 was thought to be a reasonable assumption on our
part. Similarly, education levels of less than 10 years were
mapped to 11 years of education and education levels above
21 years were counted as equivalent to 21 years due to the
small number of subjects in those ranges.

2.3. Shape constrained additive model

Our approach of extending to nonlinear models with
heterogeneous residual variance modeling is based on
additive models [5,6], and more specifically, shape
constrained additive models (SCAMs) [7]. Additive models
enable the fitting of smoothly varying functions that relate
the predictors to the outcome. SCAMs extend on additive
models by constraining the shape of the fitted functions to
be monotonically increasing or decreasing (they can also
be used to enforce convexity/concavity, but we do not use
that here). The monotonicity constraints are used to reflect
our scientific knowledge that the neuropsychological scores
that measure dementia generally decrease with age and
increase with education level (assuming higher scores are
good; the reverse is true for scores where higher scores imply
poorer performance).

The general form for an additive model is

i =By +filxu) +Hl0) + o+ () e

=By + éfk(xki)*'é’i

where the term y; represents the outcome value for individual
i. The term (3 is the intercept term for the model (i.e., the
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fitted value of the outcome when all predictors are set to
zero). The functions, f; (x), are smooth functions (i.e., not
containing sharp fluctuations) of the covariates, x;;, to be
determined from the data. The smoothness is commonly
imposed on the functions by defining them to be spline
functions, that is, suitably constrained combinations of poly-
nomial functions, and this is the approach taken here. The ¢;
terms are assumed to be independently and identically
distributed as normal with mean 0 and SD of o.

2.4. Model fitting

SCAMs were fit separately to each of the following out-
comes (variable names with capital letters are those used
in National Alzheimer’s Coordinating Center Uniform
Data Set Data Dictionary found at https://www.alz.
washington.edu/WEB/rdd_uds.pdf): Trail Making Test A
(TRAILA), Trail Making Test B (TRAILB), Letter fluency
F (UDSVERFC), Letter fluency L (UDSVERLC), Category
fluency—animals (ANIMALS), Category fluency—vegetables
(VEG), Multilingual Naming test-Test (or MINT) total
(MINTTOTS), Number Span longest digit forward (DIG-
FORSL), Number Span longest digit backward (DIG-
BACLS), Craft memory—immediate (CRAFTVRS), Craft
memory—delay (CRAFTDVR), Benson figure—copy (UDS-
BENTC), Benson figure-recall (UDSBENTD), Montreal
Cognitive Assessment (or MoCA) total (MOCATOTS),
Number Span forward total correct trials (DIGFORCT),
and Number Span backward total correct trials (DIG-
BACCT) [3].

Models were originally fit allowing nonlinear corrections
for age and education (each constrained to be monotonic),
along with an additive term for sex; we do not have a
nonlinear term for sex because it is a binary predictor
(male/female). For all models, the nonlinear education effect
was close to linear, so we refitted education in the SCAM as
a simple linear term.

For the neuropsychological outcomes, the form of the
SCAM we used was

Yi = 60 +f;lge(agei) + ﬁsexsexi + ﬁeduceduci+8i

The only term that has a nonlinear relationship with the
outcome in this model is age; the sex and education variables
both have linear multipliers G,,, and 8,4, respectively.

The residuals for each outcome were then extracted from
the corresponding fitted model, and the SD of the residuals at
each age was estimated using a sliding window of width
11 years centered at the age value being considered; the
SD at an age was estimated by the sample SD of all residuals
within the corresponding window. A second SCAM was then
fitted to the estimated SD as a function of age. (The choice of
an 11-year window was based on a compromise between
having enough data in each window vs. the risk of smoothing
out the change with age too much.) Note that the original
nonlinear model for the outcome was fitted using either a ho-

mogeneous SD assumption or occasionally modeling a
linear relationship of age with SD whenever it appeared to
lead to a better visual fit. The point at which we really cap-
ture the nonlinear component of the SD is in the second
nonlinear model for SD described below. (Note that we pro-
vide explicit details on whether the homogeneous variance
assumption was used along with other model settings for
each outcome in Supplementary Materials).

We observed changing variability of residuals with
increasing age. However, for education versus SD, we did
not see a clear relationship that warranted adjustment, and
so we did not consider the potential for varying SD with
education any further. For a few outcomes (Category
fluency—animals and Number Span longest digit forward),
the SD appeared to be clearly nonmonotonic with respect
to age, in which case we fit unconstrained additive models
rather than SCAMs.

The additive model for the SD therefore took the
following form:

SD; = B, + fi(age;) +&

where, i=1, ..., M, indexes the set of windowed SD esti-
mates (one estimate for each age).

A lookup table for each outcome was generated based on
these two SCAM/additive model fits. For each value of age,
sex, and education level, an adjusted Z-score was generated,
using the fitted mean and SD for that age, sex, and education
level from the fitted SCAM/additive models.

The fitting of the nonlinear models often required some
additional processing to the models or the data. For example,
the direction of monotonic relationships (i.e., whether
increasing or decreasing) or lack thereof needed to be spec-
ified; outliers were sometimes removed when they had a
large effect on the model fit; SD additive model fits were
sometimes weighted by the sample size (number of individ-
uals) in each age window, and sometimes were not. The
decisions as to the preferred modeling approach were
made in discussions with clinical investigators. Full details
of additional steps taken for each variable are given in
Supplementary Material with this article.

For comparison purposes, we also fitted linear models
corresponding to the models described in Weintraub et al.
[3]. That is, we fitted linear models with age, sex, and edu-
cation as additive predictors and with a constant residual
variance.

yi= 60+ﬂageagei+ﬂsexsexi+ﬁeduceduci+8i

Note that the results from these fitted linear models differ
from those for the UDS, version 3, calculator in the study by
Weintraub et al. because our snapshot of the data was taken
later than theirs and therefore includes more data.

Models were fitted using the R statistical programming
environment [8] along with the mgcv package for additive
models [6] and the scam package for SCAMs [7]. All models
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Table 1
Comparisons of adjusted-R* for linear versus additive models

Neuropsych measure

Adjusted-R? linear model

Adjusted-R? additive model Adjusted-R? SD additive model

Trail Making Test A 0.152
Trail Making Test B 0.161
Letter fluency F 0.050
Letter fluency L 0.061
Category fluency—animals 0.114
Category fluency—vegetables 0.137
Multilingual Naming Test (MINT) total 0.062
Number Span longest digit forward 0.021
Number Span longest digit backward 0.035
Craft Story memory—immediate 0.055
Craft Story memory—delay 0.062
Benson figure—copy 0.016
Benson figure—recall 0.084
MoCA total 0.140
Number Span forward total correct trials 0.027
Number Span backward total correct trials 0.040

0.164 0.983
0.183 0.989
0.055 0.302
0.066 0.000
0.120 0.863
0.145 0.000
0.069 0.716
0.021 0.911
0.035 0.935
0.062 0.022
0.068 0.177
0.017 0.984
0.086 0.959
0.149 0.996
0.027 0.732
0.040 0.360

NOTE. The adjusted-R? linear and adjusted-R? additive model columns indicate the adjusted-R for the respective models. Note that the results from the
linear models differ from those for the UDS, version 3, calculator in Weintraub et al. because it was based on fitting to a later (larger) snapshot of the data.
The final adjusted-R> SD additive model column represents the adjusted-R? for the second SCAM model fitting the SD across ages (i.e., comparing a model
that allows the SD to vary with a constant estimated SD across all the ages). Note that there is no comparison for the SD model because we are really comparing

against a constant SD model which would have an R? of zero.

Abbreviations: MoCA, Montreal Cognitive Assessment; UDS, Uniform Data Set; SD, standard deviation.

were fitted with the default parameters, except that the
SCAM package requires manual definition of the direction
of monotonicity.

3. Results

We focus the results to illustrate the model fits for two
outcomes: Trail Making Test B (TRAILS B), which is
measured in seconds taken to complete (max. 300), and total
number of animals (ANIMALS) named in 60 seconds (max.
77). Complete results for all remaining outcomes are pro-
vided between Supplementary Plots and Table 1.
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3.1. TRAILS B

Fig. 1 displays plots of (A) TRAILS B versus age (years)
and (B) TRAILS B versus education (years). SCAM-based
fitted lines are added to Fig. 1A based on males with 10,
15, and 20 years of education and to Fig. 1B based on males
of age 50, 60, 70, and 80. The (additive) sex effect was very
small by comparison to the (nonlinear) age and (linear) ed-
ucation effects (i.e., the predicted TRAILS B scores were
very close for the two sexes for a specific age and education
level). Plots showing sex differences are given in
Supplementary Materials for all outcomes and were actually

B o
g | — Age50
8 — - Age60
1= Age70
—  Age80
) [T Ao
3
(Y
a g | . :
g < 1 : |
8 : ; : :
- . ! H .
£ o . ; ; ;
5 21 - ' |
: i : ; !
2 . f
8o | I L
= 384 ; i | A
- —_————— —_———-—— i :
- - L. o = I e PR -oi
T R TR S | S [ :
. B R R N _— | :
817 I I B —
T A R
. !
T T ! ‘ ‘

Education (Years)

Fig. 1. (A) shows a plot of Trail Making Test B scores versus age in years (based on males with 10, 15, and 20 years of education), and (B) shows Trail Making
Test B scores versus education level measured in years (based on males of age 50, 60, 70, and 80). The small difference between ages 50 and 60 in the education
plot lines reflects the nonlinearity in the age plot where the lines are relatively flat at younger ages. The sex effects were very small in comparison with age and

education. Plots showing sex differences are given in Supplementary Materials.
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relatively small (compared with age and education effects)
for all outcomes. Note that, the small difference observed be-
tween age 50 and 60 in the education plot lines of Fig. 1B
reflects the nonlinearity of the age effect where the lines
can be seen in Fig. 1A to be relatively flat at younger ages.

There is clear nonlinearity in the relationship between age
and TRAILS B, with an increasing trend that accelerates
with increasing age. The SCAM model provided for an
adjusted-R? of 0.183 for the nonlinear model versus 0.161
for the corresponding linear correction model. (The
adjusted-R? is a version of R” that is adjusted to account
for the number of parameters in the model, the difference be-
ing to determine genuinely better fitting models from those
that simply explain more variance by overfitting to noise).
Note that although this observed increase in adjusted-R?
does not appear to be large, it does represent a 13% increase,
and this improvement is going to have its largest effect at the
age extremes where the linear fit of the mean function would
depart the most from the true mean. In particular, notice that
between age 40 and 55 (critical for FTLD assessment), the
mean score is very flat. A linear fit would severely underes-
timate the mean score in individuals under age 45 which
would lead to overcalling extreme Z-scores (based on high
test scores) in younger subjects. Note also that in these
data, the between-subject variability is actually very high
and that places an upper ceiling on what (adjusted) R* can
be attained even with a perfect mean function. Indeed, it is
this high variation in the scores of cognitively normal sub-
jects that we are trying to capture in the normative scores dis-
tributions, but with removal of bias due to age, sex, and
education.

Fig. 2 displays the window estimated SD versus age (blue
line) and the corresponding fitted SCAM model (red line).
Increasing SD was seen with age, and the SD increased by
a factor of approximately 3 between age 40 and age 90.
The nonlinear approach explicitly considers the age-

45
I

35
|

25

20

window smoothed Trail Making Test B std dev

15
I

|~e— windowed SD
|-~ SCAM fitted SD
T T T T T T
40 50 60 70 80 90

Age (Years)

Fig. 2. Plot of SD of residuals for Trail Making Test B model versus age in
years. Blue line shows raw SD curve based on sample SD estimates within
the 11-year window centered on each point. The red line shows the corre-
sponding SCAM model fit. Abbreviations: SCAM, shape constrained addi-
tive model; SD, standard deviation.

specific value of the SD, in contrast to the linear correction
approach, which assumes a constant SD. The large difference
in variability across ages has major implications because the
SD forms the denominator of the Z-score, thereby affecting
up to a factor of 3 difference in the Z-score. The adjusted-
R? of the nonlinear fit to SD when compared with assuming
a constant SD is 0.989. Note that the R* for a constant fit to a
varying SD is effectively 0 because none of the variation in
the SD is explained by a constant value.

3.2. ANIMALS

Fig. 3 displays plots of (A) ANIMALS versus age (years)
and (B) ANIMALS versus education (years). SCAM-based
fitted lines are added to Fig. 3A based on males with 10,
15, and 20 years of education and to Fig. 3B based on males
of age 50, 60, 70, and 80. The (additive) sex effect was small
by comparison to the (nonlinear) age and (linear) education
effects, and the interested reader can examine the (small) dif-
ferences in the curves between the sexes via the plots in
Supplementary Materials. No outliers were removed when
fitting the SCAM models for ANIMALS.

Nonlinearity in the relationship between age and ANI-
MALS is again clear, but this time with a decreasing trend
that accelerates with increasing age. The SCAM model pro-
vided for an adjusted-R* of 0.120 for the nonlinear model
versus 0.114 for the corresponding linear correction model.

Fig. 4 displays the window estimated SD versus age (blue
line) and the corresponding fitted SCAM model (red line).
The SD was seen to vary with age, but for this outcome,
the relationship did not appear to be monotonic, and so we
modeled with an unconstrained additive model. The
adjusted-R? of the fit when compared with assuming a con-
stant SD is 0.863.

Plots of nonlinear fits to the complete set of neuropsycho-
logical outcomes are available in Supplementary Materials.

3.3. Overall results

Table 1 shows the improvements in adjusted-R? obtained
by using nonlinear fitted models for all of the outcomes
considered. The improvements in fit for the nonlinear
models can be seen by noting that the adjusted-R? for the ad-
ditive models are always equal to or higher than the corre-
sponding adjusted-R*> for the linear models. The final
column shows the adjusted-R? in the second SCAM model
for the outcome of SD compared with a constant SD model
(i.e., by allowing it to vary with age rather than fixing to the
estimated mean SD across all the data). Note that there is no
comparison model for the SD model because we are really
comparing against a constant SD model which would have
an R? of zero. It can be seen that in many cases, the gains ob-
tained by nonlinearly fitting the SD are very high, indicating
a clear pattern of variation in the SD with age across many
outcomes. For some outcomes, the gains to fitting variable
SD are not as strong; in cases where the adjusted-R” for



804 J. Kornak et al. / Alzheimers & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 797-808

Category fluency - animals

—— 10YrsEd
= = 15YrsEd
© - -= 20YrsEd

T T T T T T
40 50 60 70 80 90

Age (Years)

B 3

Category fluency — animals

— Age 50
— - Age 60
- = Age70
o - . —  Age80

Education (Years)

Fig. 3. (A) shows a plot of Category fluency—animals versus age in years (based on males with 10, 15, and 20 years of education), and (B) shows Category
fluency—animals versus education level measured in years (based on males of age 50, 60, 70, and 80). The sex effects were small in comparison with age
and education. Plots showing sex differences are given in Supplementary Materials.

SD is essentially zero, the result is indicating that the data are
providing no indication of a consistent pattern of variation in
the SD with age and that fitting a constant SD across all ages
is adequate.

3.4. Comparison study

For illustrative purposes, a comparison was undertaken of
Animals and Trails B Z-scores based on the UDS calculator
[3], published normative data of Heaton et al. and Tombaugh
et al. [9,10], and the adjusted calculator utilizing the
nonlinear SCAM corrections. Z-scores were calculated for
young, middle-aged, and older (ages 40, 55, and 75) males
and females with varying degrees of education (10, 13, 16,
and 20 years). Total words correct for Animals was
randomly predetermined to be 18, and the time to complete
Trails B was set at 65 seconds to directly compare method-
ologies. Consistent improvements (i.e., relative to published
norms) in the interpretations of Z-scores were seen across
these neurocognitive measures when allowing for nonlinear
adjustment via SCAM fitting as compared with the NACC
linear model for calculating Z-scores [3]. Table 2 depicts
the Z-score comparisons between methods.

3.5. Case example

A 40-year-old male with 13 years of education presents
for evaluation because he has a family history of FTD and
has found out that he is a gene mutation carrier. He has no
complaints, and his informant expresses no concern. He
would like to establish a cognitive baseline. On testing, he
generates 18 words on the animal fluency task and completes
Trails B in 65 seconds. Utilizing the UDS norms, these
scores are found to be markedly abnormal (see Table 2),
Z = —2.64 and Z = —3.27, respectively. Similar scores
are obtained on other measures of attention, language, and
working memory, whereas the remainder of his cognitive

profile is relatively normal. In the context of his family his-
tory and gene status, he is told that he has cognitive impair-
ment consistent with FTD, that is, impairments in language
and executive functioning. He is referred for further diag-
nostic testing, which is time-consuming, logistically and
emotionally burdensome, and expensive. Ultimately, these
diagnostics are negative, but he is told that an evolving pro-
cess cannot be ruled out given his cognitive testing and gene
status, although having the mutation does not determine with
certainty that he will even develop the disease. He becomes
anxious and despondent. Alternatively, with nonlinear ad-
justments from the proposed SCAM models, which are
generally in agreement with well-established published
norms, this individual would be found to be functioning in
the low average range for animal fluency and within the
average range for Trails B and other measures. He would
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Fig. 4. Plot of SD of residuals for Category fluency—animals versus age in
years. Blue line shows raw SD curve based on sample SD estimates within
the 11-year window centered on each point. The red line shows the corre-
sponding SCAM model fit. Abbreviations: SCAM, shape constrained addi-
tive model; SD, standard deviation.
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Table 2
Normative data for Category fluency—animals (ANIMALS) and Trail Making Test B (TRAILB) based on different normative calculators
ANIMALS ANIMALS ANIMALS TRAILB TRAILB TRAILB
UDS Tombaugh Nonlinear UDS Heaton Nonlinear
Raw 18 Raw 18 Raw 18 Raw 65 Raw 65 Raw 65
Age Education Sex Words/Z Words/Z Words/Z Seconds/Z Seconds/Z Seconds/Z
1 40 10 M -1.90 —0.43 —0.73 —1.10 +0.10 —0.27
2 10 F —2.05 —0.43 —0.60 —0.85 0.00 —0.18
3 13 M —2.64 —0.72 —1.04 —-3.27 —0.50 —0.56
4 13 F -2.79 -0.72 -0.90 -3.03 —0.60 —0.48
5 16 M -3.39 -0.72 —1.35 —5.45 —0.80 —0.85
6 16 F —3.54 -0.72 —-1.21 —5.21 —0.90 =0.77
7 20 M —4.38 -0.72 -1.76 —8.35 —1.00 —1.24
8 20 F —4.53 -0.72 -1.62 —8.11 -1.10 —1.16
9 55 10 M —0.93 —0.43 —0.67 +2.73 +0.60 —0.24
10 10 F —1.08 —0.43 -0.55 +2.97 +0.50 —0.16
11 13 M —1.67 —0.72 —0.96 +0.55 0.00 —0.52
12 13 F -1.82 -0.72 -0.83 +0.80 —0.10 —0.44
13 16 M —2.42 -0.72 —1.25 —1.63 —0.30 —0.81
14 16 F —2.57 -0.72 —1.12 —1.38 —0.40 -0.73
15 20 M —3.41 -0.72 —1.63 —4.53 —0.50 —-1.19
16 20 F -3.56 -0.72 —1.50 —4.28 —0.60 —1.11
17 75 10 M +0.36 +0.37 -0.12 +7.83 +1.60 +0.67
18 10 F +0.21 +0.37 +0.00 +8.08 +1.50 +0.71
19 13 M —0.38 —0.05 —-0.42 +5.65 +0.90 +0.52
20 13 F —0.53 —0.05 -0.29 +5.90 +0.80 +0.56
21 16 M —-1.12 —0.05 -0.71 +3.48 +0.80 +0.37
22 16 F —-1.27 —0.05 —0.58 +3.72 +0.60 +0.42
23 20 M —2.11 —0.05 —1.11 +0.57 +0.60 +0.18
24 20 F —2.27 —0.05 —0.98 +0.82 +0.40 +0.22

NOTE. Z-scores in bold are impaired (> 1.5 SD below the mean); Z-scores in italics are > 1.5 SD above the mean.
Abbreviations: UDS, UDS Calculator; Tombaugh, Published Norms of Tombaugh et al. (stratified by age/education); Nonlinear, Adjusted Calculator (Kornak

et al.); Heaton, Published Norms of Heaton et al. (stratified by age/education/sex/Caucasian).

be counseled on the fact that just because he has the muta-
tion, it does not mean he will develop FTD, and his scores
at present are not concerning. It would be recommended
that he return for reevaluation in about a year, or sooner if
he started to show symptoms.

4. Discussion

In this article, we have described a nonlinear extension to
generating age-, sex-, and education-corrected cognitive
Z-scores. This nonlinear approach does a good job of
modeling potential nonlinearities between the predictors
(age, sex, and education) and the cognitive outcomes.
Specifically, age was seen to display clear nonlinearity
with respect to multiple cognitive outcomes. Furthermore,
the additional modeling of the nonlinear relationships
between age and SD has a high impact on determining
extreme scores; some individuals would be given Z-scores
that are too extreme (i.e., individuals in age ranges that
have high variance) and others would be given Z-scores
that are too conservative (i.e., individuals in age ranges
that have low variance).

As shown in Table 2, extreme Z-scores were much more
likely to be obtained using the NACC calculator without
nonlinear adjustments. Specifically, according to the
published norms for Animals, none of the Z-scores

calculated, regardless of age, sex, or education, were abnor-
mally low or abnormally high (i.e., > *=1.5 SD from the
mean) for a set point of 18 words generated. The same was
true for completing Trails B in 65 seconds. Nearly, all of
the Z-scores obtained from the NACC calculator for both
of these measures fell to one extreme or the other, most
frequently toward impairment (—1.67 to —4.53 for animals
and —1.63 to —8.35 for Trails B). In contrast, no Z-scores
for Trails B using the nonlinear (SCAM) adjusted model
were abnormally high or low. Only 4 of the 24 Z-scores
calculated for Animals using the nonlinear (SCAM) adjusted
model deviated from the norm, and for those that did, it was
only to a mild degree (range of —1.50 to —1.76).

4.1. Limitations

There are some limitations with our nonlinear modeling
approach.

First, we needed to occasionally manipulate data and var-
iables, such as removing outliers or changing the form of the
smoothing function (monotonic vs. nonmonotonic, etc.).
Invariably, nonlinear modeling has increased difficulties
over linear approaches with respect to linear approach and
often require user manipulation. Clearly, a fully automated
process for model estimation that provides completely accu-
rate results every time is the ideal. However, although we
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acknowledge the need for manipulation in model estimation
is as an issue, we argue that it is less problematic than when
performing statistical inference. The goal here is optimal
estimation of Z-scores, with optimal adjustment for vari-
ability, and not testing for statistically significant effects.
The concern about potential manipulation (with implicit
multiple comparison concerns) and possible overfitting are
less central to estimation. Future research should carefully
evaluate the generalizability of our models on Advancing
Research and Treatment for Frontotemporal Lobar Degener-
ation/Longitudinal Evaluation of Familial Frontotemporal
Dementia Subjects patient data over time.

Second, the SD windowing estimation approach is admit-
tedly ad hoc. To the best of our knowledge, existing method-
ology and software is not readily available for the
simultaneous estimation of nonlinear trend for both outcome
and residual SD with respect to a continuous predictor.
Future research could extend the methodology to simulta-
neous (joint) modeling for both the outcome and nonlinear
heterogeneous SD.

Third, there are clearly non-normally distributed errors
for many outcomes. Again, because statistical inference is
not the primary concern, the effects of this limitation are
mitigated. However, in our joint modeling of outcome and
SD methodology development, we plan to incorporate the
possibility of non-normal errors. Furthermore, there were a
couple of outcomes (i.e., Number Span longest digit forward
and longest digit backward) that were so heavily discretized
(integer scale of 3 to 9, and 2 to 8, respectively) that we do
not advocate performing any kind of corrected Z-score esti-
mation for these outcomes.

Fourth, we have less data near the edges of our age and
education ranges. Consequently, when considering individ-
uals with age and/or education close to or beyond the limits
of the data, it is important to be aware of the context of the
model predictions. Indeed, when interpreting scores for indi-
viduals with covariates that are associated with few data
points in the UDS, it would be important to report on the
additional model uncertainty involved.

Fifth, our modeling approach treats the effects from each
predictor as additive. Extension to nonadditive age and sex
are available within the additive model framework; these
extended models allow for arbitrary two-dimensional
smooth functions of pairs of predictors (and can be extended
to yet more dimensional predictors), allowing for complex
interactions between these predictors. Although the
extended modeling can provide improved fit in many cases
(internal validity), such models are more difficult to inter-
pret, and therefore there is a stronger need for external vali-
dation. This led to our decision to initially avoid such models
for our Z-score correction process.

Sixth, a side effect of the nonlinear fitting approach with
heterogeneous variance is that it is not always true that a
Z-score will improve with age (i.e., become less extreme)

for a constant value of a test score (which is what one might
initially expect given that you expect decline with age). For
example, if the SD is increasing with age at a faster rate than
the mean score that is declining with age, then a nonchang-
ing test score could become less extreme relative to the
normative distribution as age increases. Whether this is
viewed as a negative depends on your perspective, but
when the objective is to determine whether or not a score
is extreme given a specific age, it is the correct approach
to consider the variance specific to that individual’s age in
the calculation. Note also that this effect of a constant score
becoming less extreme with respect to the normative distri-
bution with increasing age might be exacerbated for out-
comes where the residuals are not normally distributed. In
particular, scores which have a limiting value at certain
ages (i.e., ceiling or floor effects) because the SD can change
radically over a short age range. The fact that our approach
accounts for this changing variance is positive relative to
conventional approaches in that we are still able to detect
which observations are extreme at a specific age. Further im-
provements might potentially be made on this front by
explicitly modeling the non-normality in the data.

Seventh, our data was only based on Caucasians. Norma-
tive tables should be developed in the future for other racial
groups as appropriate data become available.

Finally, we note that our nonlinear Z-score approach to
flagging individuals with cognitive deficiency is based
only on normative individuals, that is, we are examining
what are unusual scores for normal controls, who are from
different sites and in different settings. The conventional
method for identifying abnormal cognitive performance is
to compare an individual’s obtained cognitive scores to
scores from normative samples that are derived from studies
examining large numbers (usually) of healthy individuals at
one time point. These samples may or may not include indi-
viduals that at some point go on to demonstrate cognitive
impairment. This potentially mixed sample actually de-
creases the ability to detect early cognitive changes, partic-
ularly if normative data are derived from small samples.
Ideally, one would want a robust normative dataset that is
derived from cognitively normal individuals who are subse-
quently tracked longitudinally and shown to be stable over
time. Several studies have found superiority of robust norms
over conventional norms in identifying cognitive impair-
ment at baseline [11-13]. By utilizing robust norms,
comparison of test scores in individuals with scores that
decline over time to scores from those who remain
cognitively stable has greater diagnostic utility both in
terms of current status and predicting change over time.
Unfortunately, the current normative sample has not been
assessed longitudinally, so we do not have the capability to
develop robust norms at this time.

The changing of environments is a concern when exam-
ining normal controls because the distribution of cognitive
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scores will differ according to whether data are collected in
rural versus urban, multisite versus single site, hospital
versus specialty clinic settings, etc. Examining such differ-
ences between environments needs to be a focus of future
research as more data become available.

5. Conclusions

Allowing nonlinear model fitting via SCAM models pro-
vides improvement in fit for the relationship between the
predictors (age, sex, and education level) and neurocognitive
outcomes in control normal relative to linear models. The
nonlinear modeling thereby leads to adjusted Z-scores that
are more representative of the departures from cognitively
normal levels relative to their specific age, sex, and educa-
tion level.

Hence, adjusting Z-scores using nonlinear SCAM models
provides improved adjustment for age, sex, and education
level compared with linear adjustment.

The ultimate danger in basing judgments on inaccurate
and unreliable scores is misdiagnosing an individual, which
results not only in inadequate and/or inappropriate care but
also limits our ability to develop disease-modifying treat-
ments.
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RESEARCH IN CONTEXT

1. Systematic review: The Z-score approach to normal-
izing cognitive scores has had a long history using
the simple approach of subtracting the mean and
dividing by the standard deviation. More recently,
linear methods corrected for age, sex, and education
have been adopted, so that ensuing adjusted Z-scores
better represent whether a score is outside the ex-
pected, or “normal,” range.

2. Interpretation: Cognitive scores versus each of age
and education show clear nonlinear relationships
and varying residual standard deviation with age.
Adjusted Z-scores based on nonlinear shape con-
strained additive models (SCAMs) improve estima-
tion of the degree of departure from the norm more
precisely than linear or unadjusted Z-scores.

3. Future directions: Improved Z-score estimation al-
lows for improved assessment of cognitive decline
and treatment effects, leading to improved clinical
diagnosis and treatment planning. We will post the
nonlinear calculator on the National Alzheimer’s As-
sociation Uniform Data Set website: https://
www.alz.washington.edu/WEB/data_descript.html.
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