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Abstract

Introduction: The Advancing Research and Treatment in Frontotemporal Lobar

Degeneration and Longitudinal Evaluation of Familial Frontotemporal Dementia Sub-

jects longitudinal studies were designed to describe the natural history of familial-

frontotemporal lobar degeneration due to autosomal dominant mutations.

Methods:We examined cognitive performance, behavioral ratings, and brain volumes

from the first time point in 320 MAPT, GRN, and C9orf72 family members, including

102 non–mutation carriers, 103 asymptomatic carriers, 43 mildly/questionably symp-

tomatic carriers, and 72 carriers with dementia.

Results: Asymptomatic carriers showed similar scores on all clinical measures com-

pared with noncarriers but reduced frontal and temporal volumes. Those with

mild/questionable impairment showed decreased verbal recall, fluency, and Trail Mak-

ing Test performance and impaired mood and self-monitoring. Dementia was associ-

ated with impairment in all measures. All MAPT carriers with dementia showed tem-

poral atrophy, but otherwise, therewas no single cognitive test or brain region that was

abnormal in all subjects.

Discussion: Imaging changes appear to precede clinical changes in familial-

frontotemporal lobar degeneration, but specific early clinical and imaging changes

vary across individuals.

K EYWORD S

C9ORF72, Familial, Frontotemporal lobar degeneration, Genetic,GRN,MAPT



OLNEY ET AL. 51

1 INTRODUCTION

Frontotemporal lobar degeneration (FTLD) is a progressive, currently

incurable, neurodegenerative disease that is most commonly associ-

ated with central nervous system accumulation of one of two proteins:

tau or transactive response DNA-binding protein 43.1 Most efforts to

develop treatments for FTLD are focusing on clearing and/or decreas-

ing formation of these proteins.2 Studies of such treatments will be

more challenging because of the clinical heterogeneity of FTLD, which

can present with a variety of syndromes.3 Increasing evidence indi-

cates that prediction of the specific FTLD protein based on the clini-

cal syndrome can be unreliable.3 This problem has fueled interest in

cohorts of patients with FTLD in whom the protein pathology is pre-

dictable.

Up to 40% of FTLD cases present as a dominantly inherited famil-

ial disorder (f-FTLD). Mutations in three genes account for over 50%

of f-FTLD: microtubule-associated tau (MAPT), progranulin (GRN), and

chromosome 9 open reading frame 72 (C9orf72). Treatment stud-

ies in f-FTLD are particularly important because each mutation is

highly predictive of a specific proteinopathy.4 In addition, because f-

FTLD participants can be identified before symptoms begin, studies

can evaluate the effect of a treatment in the earliest phases of ill-

ness and also test whether a treatment delays or prevents onset of

symptoms.

These considerations led to the creation of the Longitudinal Eval-

uation of Familial Frontotemporal Dementia Subjects (LEFFTDS) and

Advancing Research and Treatment in Frontotemporal Lobar Degen-

eration (ARTFL) studies, which were designed to understand the natu-

ral history of f-FTLD by longitudinally following up both symptomatic

and asymptomatic mutation carriers. To maximize generalizability of

the findings, the studies aremostly focusing on families withmutations

in the genes most commonly associated with f-FTLD:MAPT, GRN, and

C9orf72.

The current analysis presents data collected at the first time point

from this cohort. We compared cognitive performance, behavioral rat-

ings, and brain volumes across groups of asymptomatic and symp-

tomatic carriers to identify the measures that might mark the early

development of symptoms. One of the problems with group anal-

ysis, however, is that the findings may not apply to all individuals.

This is a critical issue in f-FTLD, where each mutation affects the

brain differently, and a person with a given mutation can present

with a variety of symptoms.1 Relying on a single test for all carri-

ers may delay recognition of oncoming symptoms. To examine this

issue, we quantified the frequency in which participants in each group

showed abnormal performance in each cognitive measure and brain

region.

2 METHODS

Participants were recruited at one of 18 centers that are part of

the ARTFL (https://www.rarediseasesnetwork.org/cms/artfl/) and/or

LEFFTDS (https://clinicaltrials.gov/show/NCT02372773) networks

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources (e.g., PubMed) and meeting

abstracts and presentations.

2. Interpretation: Our results indicate that imaging abnor-

malities can serve as early indicators of oncoming func-

tional deterioration in frontotemporal lobar degener-

ation. However, the specific brain regions and clinical

abnormalities that herald the onset of functional change

likely vary across individuals.

3. Future directions: The study lays the groundwork for

future longitudinal studies to determine the timing

between imaging and clinical changes and to define the

best combination of imaging abnormalities and clinical

measures for predicting functional changes.

and included in this analysis if there was a confirmed mutation in

the MAPT, GRN, or C9orf72 genes in at least one family member.

Clinicians were blinded to each participant’s mutation status unless

the participant had learned their mutation status.

2.1 Clinical assessment

Participants had a uniform multidisciplinary assessment that includes

neurological history and examination, collateral source interview,

and neuropsychological testing. Most of the clinical measures come

from the third version of the NIH National Alzheimer’s Coordinat-

ing Center’s (NACC) Uniform Data Set neuropsychological battery

([5]; www.alz.washington.edu), which includes a module for assess-

ment of FTLD. The Uniform Data Set neuropsychological battery neu-

ropsychological tasks included the Montreal Cognitive Assessment

(MoCA), measures of verbal episodic memory (the Craft story recall

task, which is similar to the Wechsler Memory Scale logical mem-

ory task), visual episodic memory (ten-minute recall for the Benson

complex figure), visuospatial function (copy of the Benson figure),

naming (the Multilingual Naming Test [MINT]), lexical fluency (gen-

eration of words beginning with the letters “F” and “L”, each in one

minute), category fluency (generation of animal and vegetable names,

each in one minute), attention (forward digit span, Trail Making Test

part A), working memory (backward digit span), and set shifting (Trail

Making Test part B). Additional tasks included the short form of the

California Verbal Learning Test.6 Measures to characterize socioe-

motional behavior included the short version of the Neuropsychi-

atric Inventory (NPI-Q7), the Revised Self-Monitoring Scale (RSMS8),

and the Behavioral Inhibition Scale.9 Mood was quantified with the

Geriatric Depression Scale (GDS10). Motor function was quantified

with the Unified Parkinson’s Disease Rating Scale11 motor examina-

tion. General functional state was characterized using an expanded

https://www.rarediseasesnetwork.org/cms/artfl/
https://clinicaltrials.gov/show/NCT02372773
http://www.alz.washington.edu
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version of the Clinical Dementia Rating Scale (which is now known

as the CDR R© Staging Instrument and will be abbreviated as CDR R©

hereafter12). The CDR R© provides a categorical rating of severity in

six domains, with scores ranging from 0 (clinically normal) to 0.5

(mild/questionable symptoms not affecting daily function) and to lev-

els 1, 2, or 3 (all indicating significant impairment consistent with

dementia) for each domain. To broaden the utility of the CDR R©

into FTLD spectrum disorders, behavior/comportment/personality,

and language domains have been added to the CDR R© to form the

8-domain “FTLD-CDR”,13 and these additional behavior and language

domain ratings are implemented by the NACC. This 8-domain rating

is now abbreviated as the “CDR R© plus NACC FTLD”. The Progressive

Supranuclear Palsy Rating Scale14 quantifies a combination of motor,

behavior, and cognitive features relevant to progressive supranuclear

palsy.

2.2 Genetic testing

Each participant had genetic testing to identify the presence or

absence of specific mutations associated with FTLD. Details of the

procedures and results of genetic testing are described in a sepa-

rate publication (Ramos et al., this issue). Although all participants are

offered the opportunity to undergo clinical genetic testing, most of the

asymptomatic persons have chosen to refrain from clinical testing thus

far. However, each participant undergoes research genetic testing (to

which the clinicians remain blind and the results are not shared with

participants), and therefore, themutation status is determined for each

participant.

2.3 Image acquisition

Participants were scanned on 3 Tesla MRI scanners from one of three

vendors: Philips Medical Systems, Siemens, or General Electric Med-

ical Systems. A standard imaging protocol was used, managed, and

reviewed for quality by a core group at theMayoClinic, Rochester. The

current analysis used the T1 weighted images, which were acquired

as magnetization prepared rapid gradient echo images using the fol-

lowing parameters: 240 × 25 6 × 256 matrix; about 170 slices; voxel

size= 1.05× 1.05× 1.25mm3; flip angle, echo time and repetition time

varied by vendor.

2.4 Image processing

Image processing was accomplished using SPM12 (http://www.

fil.ion.ucl.ac.uk/spm) and previously published procedures.15 Magnetic

resonance imaging (MRI) scans were processed to create individu-

alized voxel-wise maps quantifying the degree of atrophy for each

individual. Volume loss at each voxelwas quantified as aw-score,which

represents the graymatter content at that voxel as the number of stan-

dard deviations away from the expectedmean for a cognitively normal

reference group after accounting for age, total intracranial volume, and

scanner platform.16 Reference images for creation of atrophy maps

were obtained from 270 control subjects, including 115 noncarrier

family members from ARTFL/LEFFTDS, 63 who enrolled in prior stud-

ies of neuroimaging in FTLD at University of California San Francisco

(AG03230617), 34 from non–mutation carriers from the Dominantly

Inherited Alzheimer’s Network (NCT00869817; dian.wustl.edu), and

72 who participated in the Parkinson’s Progression Markers Initiative

(NCT01141023; www.ppmi-info.org).

Cortical volumes for the frontal and temporal lobes for each indi-

vidual were also calculated by transforming a brain parcellation atlas18

into the study-specific brain space and summing all modulated gray

matter within the frontal and temporal lobes. Peak coordinates for

imaging findings are provided in the coordinates of the International

Consortium for BrainMapping brain template.19

Additional details on the acquisition, quality control, and image-

processing procedures are provided in the SupplementaryMaterials.

2.5 Creation of groups for analysis

The group was divided into four categories based on mutation status

and clinical severity, as measured by the CDR R© plus NACC FTLD.

The groups were asymptomatic non–mutation carriers (−mFTLD-

CDR = 0), asymptomatic mutation carriers (+mFTLD-CDR = 0),

mildly/questionably symptomatic mutation carriers (+mFTLD-

CDR = 0.5), and symptomatic mutation carriers (+mFTLD-CDR ≥

1). Consistent with the established approach for assigning these

ratings, clinicians used a combination of direct patient observation

and informant report to categorize each patient, and there was no

formal incorporation of neuropsychological data. Because the CDR R©

does not include categories for language and behavior, there is no

established algorithm for creating an overall rating that includes the

outcomes of these additional ratings. Consequently, patients may have

subtle impairment due to language or behavioral problems and still

be rated as 0 on the CDR R©. Therefore, we created an algorithm to

integrate ratings for all eight categories into a global rating for each

individual. The rules were as follows:

1. If all domains are 0, the global CDR R© plus NACC FTLD score is 0.

2. If the maximum domain score is 0.5, the global CDR R© plus NACC

FTLD score is 0.5.

3. If the maximum domain score is above 0.5 in any domain, then the

following applies:

A. If the maximum domain score is 1 and all other domains are 0,

the global CDR R© plus NACC FTLD score is 0.5.

B. If themaximumdomain score is 2 or 3 and all other domains are

0, the global CDR R© plus NACC FTLD score is 1.

C. If the maximum domain score occurs only once and there is

another rating besides zero, the global CDR R© plus NACC FTLD

score is one level lower than the level corresponding to maxi-

mum impairment (e.g., if maximum = 2 and there is another rat-

ing besides zero, the global CDR R© plus NACC FTLD score is 1;

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://dian.wustl.edu
http://www.ppmi-info.org
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if maximum = 1 and there is another rating besides zero, the

global CDR R© plus NACC FTLD score is 0.5).

D. If the maximum domain score occurs more than once (e.g., 1 in

2 domains, 2 in 2 domains), then the global CDR R© plus NACC

FTLD score is that maximum domain score.

2.6 Group comparisons

Changesoccurringwithdisease stagewere examinedby comparing the

mean value across groups for all clinical variables and for the frontal

and temporal lobes using linear regression, treating each variable as

an outcome and disease stage as a categorical predictor, and includ-

ing age, sex, and education as covariates. For models where the effect

of group was statistically significant (P < .05), we conducted targeted

post-hoc analyses by comparing each mutation carrier group with the

−mFTLD-CDR = 0 group as well as with the lower stages of disease

(e.g., +mFTLD-CDR ≥ 1 was compared with −mFTLD-CDR = 0 and

+mFTLD-CDR = 0.5). To maximize statistical power, these analyses

were performed with all three types of mutations together. Statistical

analysis was performed using R (www.R-project.org).

2.7 Consistency of abnormalities across individuals

One of the intended uses of these measures would be to indicate

that a previously healthy mutation carrier is entering a new phase

of illness where function is beginning to be affected. While changes

in mean values with disease stage are informative for understanding

which measures might mark these transitions, it is also important to

understand how well these group observations apply to each individ-

ual. One way to examine this is to quantify the proportion of indi-

viduals that show abnormalities in each variable at each stage. The

ARTFL/LEFFTDS team recently implemented a procedure for trans-

forming each individual’s neuropsychological scores into age- and

education-corrected standardized scores based on the normative data

provided by the NACC. The details of the procedure are published

elsewhere,20 and the procedure has not been implemented for all

variables, but for those that have these transformations available, we

examined the percent of individuals at each stage that were abnor-

mal using a cutoff of z = −1.5. We took a similar approach with the

imaging data by creating maps showing the proportion of individuals

that had w-scores lower than −1.5 at every voxel. For these analyses,

the data are presented separately for each mutation type to provide

information about variability in specific symptoms across mutation

types.

3 RESULTS

Data were available for 320 individuals whose genotyping had

been completed. They fell into the planned groups as follows:

asymptomatic non–mutation carriers (−mFTLD-CDR = 0, n = 102),

asymptomatic mutation carriers (+mFTLD-CDR = 0, n = 103),

mildly/questionably symptomatic mutation carriers (+mFTLD-

CDR = 0.5, n = 43), and overtly symptomatic mutation carriers

(+mFTLD-CDR≥1: n=72). Demographics for each group are shown in

Table 1.

3.1 Mean values across levels of severity

Linear models grouped by levels of severity combined across muta-

tion carriers revealed statistically significant effects of group for nearly

every variable examined (Table 1). Post-hoc testing revealed that this

was largely driven by the +mFTLD-CDR ≥ 1 group, which showed

significant impairments in all clinical variables and decreased frontal

and temporal brain volumes compared with the −mFTLD-CDR = 0,

+mFTLD-CDR = 0, and +mFTLD-CDR = 0.5 groups. The +mFTLD-

CDR = 0.5 group showed significant differences on the MoCA, Craft

Delayed Recall, California Verbal Learning Test-Delay, Benson-Delay,

vegetable fluency, trails A and B, NPI-Q, GDS, and RSMS, on frontal

and temporal volumes compared with the −mFTLD-CDR = 0 group,

and decreases in vegetable fluency, “F” word fluency, NPI-Q, GDS, and

RSMS compared with the +mFTLD-CDR = 0 group. In the +mFTLD-

CDR = 0 group, there were no clinical variables that were significantly

different compared with the −mFTLD-CDR = 0 group, but frontal

and temporal volumes were statistically significantly decreased in the

+mFTLD-CDR= 0 group. T-scores andmore precise P values for these

comparisons are provided in Supplementary Table 1 in the Supplemen-

taryMaterials.

3.2 Frequency of impairment on cognitive testing

Data on the percentage of participants showing impairment in each

cognitive test are shown in Fig. 1, with data for each mutation type

and level of severity plotted in colored bars relative to the proportion

of −mFTLD-CDR = 0 showing abnormality in that measure, plotted in

gray bars. Additional details are shown in Supplementary Tables 2–5

in the SupplementaryMaterials including howmany in each group had

any abnormal test, howmany had abnormal performance for each test,

and, for each test, how many had abnormal performance on only that

test. Seventy percent of individuals in the −mFTLD-CDR = 0 group

showed abnormal performance for at least one score, with the most

commonly abnormal test being the MoCA (22%; Fig. 1, gray bars; Sup-

plementary Table 2), and the second most common being the MINT

(20%).

For eachmutation, abnormalities were sometimesmore common in

carriers compared with noncarriers in the FTLD-CDR = 0 stage, but

the frequency of abnormalities increased along with overall disease

severity (Fig. 1). For instance, the MoCA was abnormal in 22% of the

−mFTLD-CDR = 0 group, and abnormal MoCA scores were more fre-

quent in +mFTLD-CDR = 0 MAPT carriers, at 29% but less common

in +mFTLD-CDR = 0 carriers of GRN (18%) and C9orf72 (15%). Over-

all, about 70% to 80% of +mFTLD-CDR = 0 and +mFTLD-CDR = 0.5

http://www.R-project.org
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TABLE 1 Demographics, cognitive performance, and lobar volumes (cc’s) across groups

−mFTLD-CDR= 0 +mFTLD-CDR= 0 +mFTLD-CDR= 0.5 +mFTLD-CDR≥ 1

Demographics

Number 102 103 43 72

Mean age* 47.53 [44.96, 50.1]†,‡ 43.95 [41.22, 46.68]‡,§ 55.44 [52.03, 58.85]†,§ 60.17 [57.96, 62.38]†,§

M/F¶ 44/58 49/54 22/21 30/42

Mean education 15.41 [14.93, 15.9] 15.78 [15.29, 16.27] 15.07 [14.26, 15.88] 15.42 [14.82, 16.01]

Cognitive performance (mean [95%CI]) values across groups

MoCA* 27.23 [26.8, 27.66] 27.21 [26.78, 27.65] 25.12 [23.9, 26.34]§ 17.48 [15.56, 19.41]†,‡,§

Memory

Craft Immediate Recall* 22.5 [21.23, 23.77] 22.2 [20.95, 23.45] 19.61 [17.36, 21.86] 14.05 [11.83, 16.28]†,‡,§

Craft Delayed Recall* 20.74 [19.38, 22.1] 20.08 [18.79, 21.36] 16.71 [14.51, 18.91]§ 11.15 [8.89, 13.4]†,‡,§

CVLT-Max Learning* 8.14 [7.94, 8.34] 8.3 [8.12, 8.48] 7.59 [7.03, 8.14] 5.81 [5.2, 6.41]†,‡,§

CVLT-Delay* 7.38 [7.05, 7.7] 7.24 [6.9, 7.58] 6.33 [5.46, 7.19]§ 3.85 [3.03, 4.66]†,‡,§

BensonDelay* 12.91 [12.38, 13.44] 12.75 [12.26, 13.25] 11.05 [9.97, 12.12]§ 7.97 [6.8, 9.13]†,‡,§

Visuospatial

Benson Copy* 15.88 [15.64, 16.13] 15.76 [15.56, 15.97] 15.1 [14.28, 15.91] 13.97 [13.07, 14.87]†,‡,§

Language

MINT* 30.03 [29.68, 30.38] 29.9 [29.44, 30.36] 28.86 [28, 29.71] 23.56 [21.62, 25.5]†,‡,§

Fluency Animals* 22.83 [21.73, 23.93] 23 [21.9, 24.1] 21.02 [19.22, 22.83] 12.28 [10.5, 14.07]†,‡,§

Fluency Vegetables* 14.44 [13.7, 15.18] 14.8 [14.06, 15.53] 12.17 [10.97, 13.37]†,§ 8.39 [7.1, 9.68]†,‡,§

Fluency “L” words* 13.83 [13.01, 14.65] 14.17 [13.26, 15.09] 13.14 [11.63, 14.66] 6.27 [5.07, 7.46]†,‡,§

Fluency “F” words* 14.79 [13.88, 15.71] 15.67 [14.66, 16.68] 13.21 [12.05, 14.38]† 6.98 [5.81, 8.16]†,‡,§

Executive

Digits Forward* 9.21 [8.72, 9.69] 8.78 [8.29, 9.26] 8.43 [7.78, 9.07] 6.03 [5.49, 6.58]†,‡,§

Digits Backward* 7.96 [7.48, 8.44] 8.21 [7.73, 8.7] 7.43 [6.73, 8.12] 4.31 [3.75, 4.86]†,‡,§

Trails A* 23.7 [22.17, 25.23] 23.6 [21.35, 25.86] 32.51 [28.68, 36.34]§ 60.27 [50.6, 69.93]†,‡,§

Trails B* 59.32 [54.24, 64.41] 60.7 [56.31, 65.09] 83.56 [69.31, 97.8]§ 154.69 [126.71, 182.67]†,‡,§

Behavior/mood

NPI-Q* 1.02 [0.64, 1.41] 1.46 [0.9, 2.03] 5.78 [4, 7.55]†,§ 9.19 [7.59, 10.79]†,‡,§

GDS* 1.81 [1.34, 2.28] 1.48 [1.1, 1.85] 3.07 [2.06, 4.08]†,§ 2.73 [2.07, 3.39]†,§

BIS 17.05 [16.19, 17.92] 17.07 [16.27, 17.86] 17.51 [16.33, 18.7] 16.66 [15.6, 17.72]

RSMS* 48.11 [46.3, 49.92] 47.23 [45.13, 49.32] 39.51 [35.73, 43.3]†,§ 20.66 [17.3, 24.01]†,‡,§

Motor 1.02 [0.64, 1.41] 1.46 [0.9, 2.03] 5.78 [4, 7.55] 9.19 [7.59, 10.79]

UPDRS* 0.1 [0, 0.2] 0.28 [0.04, 0.53] 2.24 [0.78, 3.69] 7.76 [4.36, 11.16]†,‡,§

PSPRS* 0.38 [0.09, 0.67] 0.37 [0.14, 0.6] 2.06 [0.83, 3.29] 8.9 [5.98, 11.81]†,‡,§

Brain volumes

Frontal* 101.19 [98.65, 103.73] 98.17 [95.2, 101.14]§ 90.7 [85.86, 95.53]§ 72.08 [66.55, 77.6]†,‡,§

Temporal* 83.92 [81.99, 85.85] 81.82 [79.61, 84.02]§ 76.38 [72.45, 80.31]§ 61.01 [57.05, 64.98]†,‡,§

Abbreviations: MoCA, Montreal Cognitive Assessment; M, male; F, female; CI, confidence interval; MINT, Multilingual Naming Test; CVLT, California Verbal

Learning Test; NPI-Q, Neuropsychiatric Investment Questionnaire; GDS, Geriatric Depression Scale; BIS, Behavioral Inhibition Scale; RSMS, Revised Self-

Monitoring Scale; UPDRS, Unified Parkinson’s Disease Rating Scale; PSPRS, Progressive Supranuclear Palsy Rating Scale.
∗P< .05 for effect of group in regressionmodel.
†P< .05 comparedwith the+mFTLD-CDR0 group.
‡P< .05 comparedwith the+mFTLD-CDR0.5 group.
§P< .05 comparedwith the−mFTLD-CDR0 group.
¶M/F comparisons used Chi-squared calculations.
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F IGURE 1 Proportion of individuals in each groupwith abnormal performance (z < −1.5) on each cognitive test with available norms (colored
bars) superimposed on proportion of noncarriers with abnormal performance on that test. Bars extend to indicate largest observed proportion, so
that bars where colors extend beyond gray indicate thatmutation carrier group showed higher proportion (denoted by rightward extent of colored
bar from the y-axis line) than noncarriers (whose proportion is denoted by rightward extent of gray bars from y-axis line). Abbreviations: MoCA,
Montreal Cognitive Assessment; MINT,Multilingual Naming Test; MAPT, microtubule associated tau; GRN, progranulin; C9orf72, chromosome 9
open reading frame 72

carriers had at least one abnormal test, whereas nearly 100% had at

least one abnormal test in the +mFTLD-CDR ≥ 1 group (Supplemen-

tary Tables 3–5). TheMoCAwas a commonly abnormal test (most com-

mon or second most common in nearly all groups), and the MINT was

frequently abnormal. In particular, theMINT was the most common or

secondmost commonly abnormal test at each level of severity inMAPT

carriers, who had the most consistent pattern of abnormalities across

levels of severity (Fig. 1; Supplementary Table 3). Among GRN carri-

ers, abnormal performance on the Craft story recall task was relatively

common, along with Trail Making Test and “F” word fluency (Fig. 1,

Supplementary Table 4). In C9orf72 carriers, there appeared to be the

least consistency across levels of severity beyond the MoCA (Fig. 1,

Supplementary Table 5). There was no group in whom the same test

was abnormal in 100% of participants, and in all mutation types, there

was a substantial number of individuals who had only one abnormal

test that was not the most common test. For instance, in the +mFTLD-

CDR = 0 C9orf72 group (Supplementary Table 5), the most common

abnormal task was the MINT (9 people, 23% of participants), but 20

(50% of people) performed normally on the MINT but abnormally on

another task and 12 people (30%) were abnormal on only one test that

was not theMINT.

3.3 Regional volume loss across individuals

In every group, there was at least one voxel that was more than 1.5

w-score units below normal (Fig. 2). In the −mFTLD-CDR = 0 group,

the maximum proportion of individuals with abnormal gray matter at

any voxel reached about 0.3. In theMAPT and GRN +mFTLD-CDR = 0

groups, there were a number of regions that reached a proportion of

about 0.5, including the insula and medial temporal regions in MAPT

carriers and the posterior temporal and parietal regions in GRN car-

riers. In the C9orf72 +mFTLD-CDR = 0 group, the maximum propor-

tion reached about 0.7, and this occurred in the thalamus on the right

and the periinsular region on the left. Regions with proportions of

about 0.6–0.8were seen in the+mFTLD-CDR= 0.5 groups in all muta-

tion types, located in the temporal region inMAPT carriers, the frontal

region in GRN carriers, and in the thalamus and patchy regions in the

frontal and temporal lobes in C9orf72 carriers. The +mFTLD-CDR ≥ 1

MAPT groupwas the only onewhere the proportion reached 1, and this

was in the temporal regions bilaterally. The+mFTLD-CDR≥1GRN and

C9orf72 groups both showed fairly diffuse regions of overlap includ-

ing thalamus, bilateral insula, and medial parietal regions, with a few

regions affecting nearly all participants in each group. Coordinates in
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F IGURE 2 Proportion of individuals in each groupwith reduced
graymatter volume (w-score< −1.5) at each graymatter voxel.
Increasing color from blue to yellow in “heat map” indicates higher
proportion of individuals in that group showed reduced volume at that
location. Left hemisphere is displayed on the left in coronal images.
Abbreviations: MAPT, microtubule associated tau; GRN, progranulin;
C9orf72, chromosome 9 open reading frame 72

the International Consortium for Brain Mapping space and anatomical

labels for peak regions in each hemisphere in each group are provided

in Supplementary Table 6 in the SupplementaryMaterials.

4 DISCUSSION

The goal of this analysis was to characterize cognitive performance,

behavioral ratings, and brain volumes in a large group of f-FTLD fam-

ily members. In group comparisons, asymptomatic mutation carriers

showed nearly identical scores on all clinical measures compared with

noncarriers but reduced frontal and temporal lobe volumes. The group

with mild/questionable impairment showed decreased story recall,

word list recall, verbal fluency, processing speed, and set-shifting per-

formance and impaired mood and self-monitoring. With development

of dementia, all scores were abnormal compared with scores in less

symptomatic groups. Looking at performance across individuals, the

MoCAwas frequently abnormal in all mutations, but this was also true

in many noncarriers. The effects of MAPT mutations on brain volume

and cognition weremost consistent across individuals and stages, with

naming impairment and temporal volume loss being present in a high

proportion of carriers. Memory disorders were prominent in GRN, but

C9orf72 did not show a consistent pattern of impairment in the early

stages, and both GRN and C9orf72 showed lower levels of overlap in

regional volume loss thanMAPT.

These findings have important implications for research and ther-

apy in f-FTLD, which is a critical context for testing treatments in the

earliest phases of disease and also for testing whether treatments can

prevent onset of symptoms.With regard to prevention, our finding that

neuroimaging changes appear to precede clinical changes is consis-

tent with multiple studies demonstrating brain volume loss and other

brain imaging abnormalities in asymptomatic mutation carriers21 and

findings froma comprehensive study in a similar large cohort called the

Genetic FTD Initiative (GENFI), which suggested that imaging findings

precede symptom onset by more than 10 years.22 These observations

support the idea that imaging can serve as a leading indicator of clini-

cal changes and that mutation carriers with imaging abnormalities will

be important candidates for prevention studies. Additionalworkwill be

required to quantify the degree of abnormality that serves as an early

marker, to quantify the timing until symptoms develop, and to assess

the value of additional imaging techniques such as diffusion MRI and

functionalMRI.23

Ideally, sensitivity for early detection of disease should improve if

monitoring could be targeted at brain regions and clinical features

that are most likely to be affected first in each mutation. InMAPT, we

found very frequent involvement of the temporal lobe, which is also

the regionmost associatedwithMAPTmutations inprior studies.24 The

consistency of this finding supports a strategy ofmonitoring early tem-

poral lobe changes inMAPT carriers. However, the findings in our GRN

and C9orf72 cohorts suggest that focusing on a specific brain region in

these groups would not capture early changes well in all individuals,

although thalamic changes seemed to be fairly consistent in C9orf72

carriers. Similarly, our clinical data do not point to one particular cogni-

tive score that reliably marks early symptoms, even inMAPT. Although

our finding that naming impairment is frequent in early MAPT carri-

ers is similar to observations from GENFI,22 there were many asymp-

tomatic and mildly/questionably symptomaticMAPTmutation carriers

who showed impairment in other tasks but not in naming. Consistency

across GRN and C9orf72mutation carriers appeared to be even lower,

although abnormal trail making and fluency scores were relatively fre-

quent in both groups, consistent with the frontoparietal involvement

in both mutation types. This is in-line with prior observations that

patientswith FTLDmutations can presentwith a variety of clinical syn-

dromes, even with the samemutation in the same family.1

One approach for dealing with the heterogeneity in mutation carri-

erswould be to track larger portions of the brain such as the frontal and

temporal lobes. Similarly, one could use composite measures of cogni-

tion that represent function across multiple domains. The fact that the

MoCAwas one of the most frequently abnormal tests in carriers, even

in the asymptomatic andmildly/questionably symptomatic groups, sug-

gests that this might be a fruitful strategy. However, many noncarriers

also showed abnormal performance on theMoCA, which suggests that

relyingonanarbitrary threshold to identify oncoming symptomswould

limit the accuracy of the approach. Thus, additional longitudinal work

will have to be done to empirically define performance thresholds that

reliably predict development of functional changes. Another approach

would be to use a multiple-predictor strategy to identify combinations

of cognitive tests and behavioral measures from a battery such as the

oneused in this project topredict onset of symptoms. Suchanapproach

could identify multiple patterns of impairment with predictive value

and thus apply to a variety of clinical presentations. A similar approach

can be used for brain imaging (see the article by Staffaroni et al.25 in

this issue for example).

These data illustrate the importance and promise of large longitu-

dinal studies of f-FTLD such as LEFFTDS, GENFI, and similar efforts.
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While our findings reinforce the complexity and heterogeneity of

FTLD, even in the context of disease-causing mutations, they suggest

that early changes in imaging, cognitive performance, and behavioral

ratings may be able to serve as early predictors of functional impair-

ment and help to identify suitable candidates for prevention and early-

stage treatment trials. As longitudinal data from these cohorts emerge,

they will provide invaluable information about the earliest signs of

FTLD and neurodegenerative disease in general.
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