
Ontological Analysis of the Evolvability of the
Network Firewall Rule Base

Geert Haerens1,2

1 Antwerp University, Antwerp 2000, Belgium
2 Engie , Simon Bolivarlaan 34, 1000 Brussels, Belgium

geert.haerens@engie.com

Abstract. The TCP/IP based firewall is a notorious non-evolvable sys-
tem. Changes to the firewall often result in unforeseen side effects, re-
sulting in the unavailability of network resources. The root cause of these
issues lies in the order sensitivity of the rule base. It is not only essential
to define the correct rule. The rule must be placed at the right location
in the rule base. As the rule base becomes more extensive, the prob-
lem increases. According to Normalized Systems, this is a Combinatorial
Effect. This paper studies the ontology of a rule base and its implemen-
tation in an actual firewall. Based on this study, we explain why existing
firewalls do not prevent evolvability issues. A new ontological model and
implementation are proposed, using Normalized Systems, which drasti-
cally increases the firewall rule base’s evolvability.

Keywords: Ontology · Evolvability · Normalized Systems · Firewall
Rule Base.

1 Introduction

The TCP/IP based firewall has been and will continue to be an essential network
security component in protecting network-connected resources from unwanted
traffic. The increasing size of corporate networks and the need for connectivity
have resulted in firewall rule bases increasing considerably. Large rule bases
have a nasty side effect. It becomes increasingly difficult to add the right rule at
the correct location in the firewall. Anomalies start appearing in the rule base,
resulting in the erosion of the firewall’s security policy or incorrect functioning.
Making changes to the firewall rule base becomes more complex as the size of the
system grows. An observation shared by Forrester [1] and the firewall security
industry [2] [3].

Normalized Systems theory (NS) [4] defines a Combinatorial Effect (CE) as
the effect that occurs when the impact of a change is proportional to the nature
of the change and the system’s size. According to NS, a system that suffers
from CE is considered unstable under change. A firewall suffers from CE. The
evolvability issues are the root cause of the growing complexity of the firewall
as time goes by.



2 G. Haerens

The order sensitivity plays a vital role in the evolvability issues of the rule
base. The necessary condition to remove the order sensitivity is known, being
non-overlapping or disjoint rules. However, firewall rule bases don’t enforce that
condition, leaving the door open for misconfiguration.

Issues with evolvability of the firewall rule base induce business risks. The
first is the risk of technical communication paths not being available to execute
business activities properly. The second is that flaws in the rule base may result
in security risks, making the business vulnerable for malicious hacks resulting in
business activities’ impediment.

The topic presented in this paper is technical. Using domain-specific knowl-
edge and instruments of Enterprise Engineering, such as DEMO [5] for the on-
tological analyses and NS [4] to study stability under change, we propose a
scientifically sound solution to the problem of firewall rule base evolvability.

Design Science [6] has been used to come up with a solution for the problem
at hand, and the paper is structured according to the Design Science process [7].
Section 2 introduces the basic concepts of firewalls and Normalized Systems. In
Section 3 we will explain why the current ontological model and implementation
model of the firewall rule base gives rise to evolvability issues. In Section 4 we will
list the requirements for a solution to the problem and introduce an artifact that
results in the creation of an evolvable rule base. In Section 5, we will see that the
usage of this artifact puts forward a new ontological model and implementation
model for the firewall rule base. In Section 6, we discuss our findings and wrap-up
with a conclusion in Section 7.

2 Introduction to firewalls and Normalized Systems

This section starts by explaining the basic concepts of the firewall and continues
with the introduction of NS.

2.1 Firewall concepts

Firewall basics: An IP4 TCP/IP based firewall, located in the network path
between resources, can filter traffic between the resources, based on the Layer
3 (IP address) and Layer 4 (TCP/UDP ports) properties of those resources
[8]. Filtering happens by making use of rules. A rule is a tuple containing the
following elements: <Source IP, Destination IP, Protocol, Destination Port, Ac-
tion>. IP stands for IP address and is a 32-bit number that uniquely identifies
a networked resource on a TCP/IP based network. The protocol can be TCP
or UDP. Port is a 16-bit number (0 - 65.535) representing the TCP or UDP
port on which a service is listening on the 4th layer of the OSI-stack [9]. When
a firewall sees traffic coming from a resource with IP address =<Source IP>,
going to resource =<Destination IP>, addressing a service listening on Port =
<Destination port>, using Protocol = <Protocol>, the firewall will look for the
first rule in the rule base that matches Source IP, Destination IP, Protocol and
Destination Port, and will perform an action = <Action>, as described in the



Ontological Analysis of the Evolvability of the Network Firewall Rule Base 3

Fig. 1. Firewall concepts

matched rule. The action can be “Allow” or “Deny”. See Figure 1 for a graphical
representation of the explained concepts.

A firewall rule base is a collection of order-sensitive rules. The firewall starts
at the top of the rule base until it encounters the first rule that matches the
traffic. In a firewall rule, <Source IP>, <Destination IP>, <Destination Port>
and <Protocol> can be one value or a range of values. In the remainder of this
paper, protocol and port are grouped together in service (for example, TCP port
58 or UDP port 58 are 2 different services).

Firewall group objects: Rules containing IP addresses for source/destination
and port numbers, are difficult to interpret by humans. Modern firewalls allow
the usage of firewall objects, called groups, to give a logical name to a source, a
destination, or a port, which is more human-friendly. Groups are populated with
IP addresses or ports and can be nested. The groups are used in the definition
of the rules. Using groups should improve the manageability of the firewall.

2.2 Normalized Systems concepts

Normalized Systems [4] [10] originates from the field of software development.
The Normalized Systems Theory takes the concept of system theoretic stabil-

ity from the domain of classic engineering to determine the necessary conditions
a modular structure of a system must adhere to in order for the system to exhibit
stability under change. Stability is defined as Bounded Input equals Bounded
Output (BIBO). Transferring this concept to software design, one can consider
bounded input as a certain amount of functional changes to the software and the
bounded output as the number of effective software changes. If the amount of
effective software changes is not only proportional to the amount of functional
changes but also the size of the existing software system, then NS states that
the system exhibits a CE and is considered unstable under change.

Normalized Systems Theory proves that, in order to eliminate CE, the soft-
ware system must have a certain modular structure, were each module respects
four design rules. Those rules are:



4 G. Haerens

– Separation of Concern (SoC): a module should only address one concern or
change driver.

– Separation of State (SoS): a state should separate the use of a module by
another module during its operation.

– Action Version Transparency (AVT): a module, performing an action should
be changeable without impacting modules calling this action.

– Data Version Transparency (DVT): a module performing a certain action on
a data structure, should be able to continue doing this action, even is the
data structures has undergone change (add/remove attributes).

NS can be used to study evolvability in any system, which can be seen as a
modular system and derive design criteria for the evolvability of such a system
[11] [12].

3 Problem Description

This section investigates the root cause of evolvability issues in firewall rule
bases, being relationships between rules. We will create an ontological model
of a firewall rule base by analyzing the DEMO FACT model that is associated
with the “create firewall rule” transaction. We continue by reverse-engineering
the relational model used in a firewall rule base, based on a rule base’s export.
We conclude this section by investigating the rule relationships, firewall ontology
model, and firewall implementation model with the NS principles.

3.1 Relationships between firewall rules

In [13], the following relations are defined between rules:

– Disjoint: Two rules R1 and R2 are disjoint (completly or partially), if they
have at least one criterion (source, destination, port) that has completely
disjoint values (= no overlap or match).

– Exactly Matching: Two rules R1 and R2 are exactly matched, if each
criterion (source, destination, port) of the rules match exactly.

– Inclusively Matching: A rule R1 is a subset, or inclusively matched to
another rule R2, if there exists at least one criterion (source, destination,
port) for which R1’s value is a subset of R2’s value and for the remaining
attributes, R1’s value is equal to R2’s value.

– Correlated: Two rules R1 and R2 are correlated, if R1 and R2 are not
disjoint, but neither a subset of the other.

Figure 2 represents the differnet relations in a graphical manner. Exactly match-
ing, inclusively matching and correlated rules can result in the following firewall
anomalies [13]:

– Shadowing Anomaly : A rule R1 is shadowed by another rule R2 if R2
precedes R1 in the policy, and R2 can match all the packets matched by
R1. The result is that R1 is never activated.



Ontological Analysis of the Evolvability of the Network Firewall Rule Base 5

Fig. 2. Possible relationships between rules (from [14])

– Correlation Anomaly : Two rules R1 and R2 are correlated if they have
different filtering actions and R1 matches some packets that match R2 and
R2 matches some packets that R1 matches.

– Redundancy Anomaly : A redundant rule R1 performs the same action on
the same packets as another rule R2 so that if R1 is removed the security
policy will not be affected.

A fully consistent rule base should only contain disjoint rules. In that case, the
order of the rules in the rule base is of no importance, and the anomalies de-
scribed above will not occur [13] [15] [16]. However, due to several reasons such
as unclear requirements, a faulty change management process, lack of organiza-
tion, manual interventions, and system complexity [13], the rule base will include
correlated, exactly matching, and inclusively matching rules, and thus resulting
in evolvability issues. With this paper, we add to the list of reasons that the im-
plicit ontology and implementation model are not helping to reduce these issues.

3.2 Ontological model

The analysis of a firewall rule base’s ontology will be done with a DEMO FACT
model [5]. It is a simple, straightforward ontological modeling method that suf-
ficiently reveals the issues we want to surface.

In the scope of a security department that manages the firewalls, the “create
firewall rule” transaction is considered an ontological transaction. During the re-
quest phase, information must be provided to the executor, corresponding with
the filtering objective: source, destination, service, and action. The ontology of
a rule base can be expressed in a DEMO FACT model, as shown in Figure 3.
For simplicity reasons, details about value types and the transactions related
to the coming about the facts and products are omitted. Note that a host has
the dual notion of a source and destination. There are multiple ways to iden-
tify a source or a destination, depending on whether the network resource(s)
are identified by their IP address(es) (IPRESOURCE, IPRESOURCEGROUP)



6 G. Haerens

Fig. 3. Ontological FACT model of a firewall rule base

or by their logical name(s) (HOST, HOSTGROUP). SOURCE and DESTINA-
TION are a generalization of those different resource identifications. A similar
reasoning holds for SERVICERESOURCE and SERVICERESOURCEGROUP.
A SERVICERESOURCE is the aggregation/cartesian product of PROTOCOL
and PORTRANGE. A RULE is the aggregation/cartesian product of the differ-
ent entity types making up a rule.

3.3 Reverse-engineerd implementation model from a firewall

Firewall vendors do not share or publish the firewall’s internal data model ex-
plicitly. We will reverse-engineer the implemented data model based on a firewall
configuration export.

Firewall export Two exports were made from firewalls inside the Engie net-
work. One firewall is used to protect data center resources in Belgium, the other
firewall is used to interconnect an Azian branch of the Tractebel Engie business
entity to the Tractebel network. Both firewalls are from PaloAlto. The firewall
configuration contains the following information: the Service objects, Service-
Group objects, Address objects, AddressGroup objects, and Rule objects.

Service objects The Services objects export contains a data definition header.
The relevant fields of this header are: Name (reference name), Protocol (TCP or
UDP), and Destination Port (one or more ports or port ranges). Analysing the
different objects, the following observations are made:

– The naming of the Services: No formal naming convention. The name ex-
plains the usage and meaning of the service or repeats the service content.

ServiceGroup objects The ServicesGroup objects export contains a data def-
inition header. The relevant fields of this header are: Name (reference name)



Ontological Analysis of the Evolvability of the Network Firewall Rule Base 7

and Services (one or more Service objects) Analysing the different objects, the
following observations are made:

– The naming of the ServiceGroups: No formal naming convention. The name
includes the usage of a grouping of Service objects.

– Uniqueness/overlap: The ServiceGroups overlap
– As ServiceGroups are an aggregation of services, ServiceGroup and Service

objects are by design overlapping.

Address objects The Address objects export contains a data definition header.
The relevant fields of this header are: Name (reference name), Type (a Fully
Qualified Domain Name (= DNS resolvable name) or IP Netmask (/32 for a
single IP or a /x for a range of IP addresses) or an IP range (from a.b.c.d to
a.b.c.f)) and Address (the address according to one of the three type). Analysing
the different objects, the following observations are made:

– Naming: No formal naming convention. The name includes the IP Mask, the
FQDN, the hostname (different from FQDN), or a logical name for an IP
range.

– Uniqueness/overlap: Multiple Address objects were found containing the
same information of existing Address objects. The Address objects are not
unique.

AddressGroup objects The AddressGroup objects export contains a data
definition header. The relevant fields of this header are: Name (reference name),
Address (an Address Object). Analysing the different objects, the following ob-
servations are made:

– Naming: No formal naming convention. The name includes the function of
the AdressGroup.

– Uniqueness/overlap: AddressGroups overlap.
– As AddressGroups are an aggregation of addresses, AddressGroup and Ad-

dress objects are by design overlapping.

Rule objects The Rule objects export contains a data definition header. The
relevant fields of this header are: Nr (location in the rule base (1 = top)), Name
(reference name), SourceAddress (an Address object and/or a AddressGroup
object referenced via its Name), DestinationAddress (An Address object and/or
a AddressGroup object referenced via its Name), Services (a Services object
and/or ServiceGroup object referenced via its Name), Action (Allow or Deny).
Analysing the different objects, the following observations are made:

– Source- and DestinationAddress: Source- and Destination Address contains
AddressGroup objects and/or Address objects.

– Source- and DestinationAddress: AddressGroup objects or Address objects
can be used for both SourceAddress and DestinationAddress.



8 G. Haerens

– The rule base contains both allow and deny rules, mixing a whitelist (rule
base only contains ”allow” rules and a default ”deny” rule at the end) and
blacklist (rule base only contains ”deny” rules and a default allow rule at
the end) approach.

3.4 Reverse-engineered implementation model

An ontology is an implementation independent model and needs to be translated
towards a technology implementable solution. Certain design decisions need to
be made during this conversion. The FACT model shown in Figure 3 contains
generalization relations or (inverse) inheritance relations. The way inheritance
relations are translated towards an implementation can profoundly impact the
evolvability of the implementation model [17].

Fig. 4. Implementation model of a firewall rule base

Based on the firewall export, we can reverse-engineer the implementation
model. We can see that Source, SourceGroup, Destination, and Destination-
Group are not present in the implementation model. Only the notion of Ad-
dress and AddressGroup exists. The Address object represents both a Host,
IPResource, and IPResourceGroup (in the form of an IP Mask or an IP Range).
The AddressGroup object represents a HosGroup. IPResources/IPResourceGroups
cannot be added directly to the Rule SourceAddress or Rule DestinationAddress.
Only an Address or an AddressGroup can be added. IPResources/IPResourceGroups
cannot be added directly to a rule. Similar principles hold for the services. Rule
Services can only be populated by either Service objects or ServiceGroup object,
not by ServcieResource/ServiceResourceGroups directly. Figure 4 shows the de-
rived implementation model as a set of tables and relationships between the
tables. The different objects found in the firewall export map to rows in these
tables.



Ontological Analysis of the Evolvability of the Network Firewall Rule Base 9

3.5 Looking at the evolvability issues with NS

According to NS, a modular structure will be free of CE regarding a set of
anticipated changes if each module respects the 4 NS theorems – SoC, SoS,
AvT, and DvT.

From Section 3.2 we can deduce that a source, a destination, and a service
can be specified in multiple ways as they are a generalization of other types.
At instantiation time, the same logical concept of a network resource can be
represented by different objects, thus resulting in overlap. These overlaps could
lead to non-disjoint rules. The ontology does not contain restrictions that would
favor the creation of non-disjoint rules. If the implementation follows this ontol-
ogy, it is expected that no restrictions will be present to avoid the creation of
non-disjoint rules.

From Section 3.3 we can deduce that SoC between the different rule base
objects is not respected. Service and ServiceGroup objects manage the same
concern, being a protocol/port(s) pair combination. The same reasoning hold
for Address and AddressGroup. The same network resource can be represented
in three ways: IP Mask, IP Range, or FQDN. The three representations are
generalized in the Address and AddressGroup objects.

From the observation made in Section 3.3 we conclude that SoC is violated
for Address and AddressGroup. The same concern, being either a source or
a destination, are combined into Address and AddressGroup. A considerable
amount of changes would need to be made to the rule base’s design if a source
would require new attributes and actions compared to a destination. An example
could be integrating identity-based filtering (the user using the source) into the
filtering actions. It would require a redesign of the rule base model, effectively
representing a CE. The fact that identity-based filtering is not a simple ”add-on”
to an existing IP-based filtering firewall demonstrates the point.

We are more concerned about different relations that can exist between fire-
wall rules. Those relations represent a form of coupling inside the rule base
that only becomes visible when the design model is being instantiated. These
couplings result in evolvability issues at runtime.

The namings of the Service, ServiceGroup, Address, AddressGroup objects
are independent of the objects’ content. They are considered as two concerns
that can evolve independently from each other. Like the naming of variables in
programming should be anthropomorphic with respect to what they represent,
so should the naming of the rule-based objects be anthropomorphic to their
content. If name and content deviate from each other, incorrect objects can be
chosen to make rules, thus creating incorrect rules. The separation of naming
and content result in objects with different names, representing the same thing.
Changes to the resource, like a new IP, need to be propagated to all objects
representing that resource. As you cannot deduce this from the design of the
objects, it means that at runtime, you will need to search through the rule base
objects to determine the impact. The change will ripple through the system and
is a function of the size of the system; thus, it is a CE.



10 G. Haerens

The implemented rule base’s design violates SoC in 2 ways - combine different
concerns - introducing additional coupling - and decompose concerns - violating
cohesion. As changes to names, IP Masks, IP ranges, ports, protocols will happen
over time, violation of SoC will lead to ripple effects in the configuration of the
firewall rule base. They can result in non-disjoint rules and become CE with
respect to the addition and deletion of rules in the rule base.

Given the above, we can conclude at this point that neither the ontological
model nor the implementation model facilitates the creation of disjoint rules.

4 Solution

4.1 Requirements

An evolvable rule base should only contain disjoint rules. From the previous
section, we know that the current ontological and implementation model of a rule
base contains insufficient inherent restrictions to create disjoint rule components
and thus disjoint rules. We require a systematic approach that tells us how to
create the rule components and how to combine them into rules. Applying such
an approach would mean introducing a more restrictive ontology for a rule base,
one that supports disjoint rules. In the next subsection we present an artifact,
a method, to create an evolvable rule base by applying a strict design for rule
components and rules.

4.2 Artifact for an evolvalbe rule basel

In previous work [19], the combinatorics involved when creating a rule base are
discussed. For a given network N, containing Cj sources and Hj destinations,
offering 217 services (protocol/port), and having a firewall F between the sources
and the destinations, it can be shown that fj is the number of possible rules that
can be defined on the firewall F:

fj = 2.

(
Hj∑
a=1

(
Cj

a

))
.

(
Hj∑
a=1

(
Hj

a

))
.

 217∑
k=1

(
217

k

) (1)

where Cj and Hj are function of N: Cj = fc(N) and Hj = fh(N)

A subset of those rules will respresent the intended security policy and only
a subset of that subset will be the set of rules that are disjoint. The maximum
size of the disjoint set of “allow” rules (aka a while list) is:

fdisjoint = Hj.2
17 (2)

with Hj is the number of hosts connected to the network. Hj = fh(N) and 217

the max amount of services available on a host.



Ontological Analysis of the Evolvability of the Network Firewall Rule Base 11

The probability that a firewall administrator will always pick rules from the
disjoint set is low if there is no conscious design behind the selection of rules.

In previous work [19] an artifact is being proposed to create a rule base free
of CE for a set of anticipated changes. The artifact takes the “Zero Trust” [21]
[20] design criteria into account as well, meaning that access is given to the strict
minimum: in this case, the combination of host and service.

1. Starting from an empty firewall rule base F. Add as first rule the default
deny rule F[1]= Rdefault deny with
– Rdefault deny.Source = ANY,
– Rdefault deny.Destination=ANY,
– Rdefault deny.Service= ANY,
– Rdefault deny.Action = “Deny”.

2. For each service offered on the network, create a group. All service groups
need to be completely disjoint from each other: the intersection between
groups must be empty.
Naming convention to follow:
– S service.name,
– with service.name as the name of the service.

3. For each host offering the service defined in the previous step, a group must
be created containing only one item (being the host offering that specific
service).
Naming convention to follow:
– H host.name S service.name,
– with host.name as the name of the host offering the service

4. For each host offering a service, a client group must be created. That group
will contain all clients requiring access to the specific service on the specific
host.
Naming convention to follow:
– C H host.name S service.name

5. For each S service.name,H host.name S service.name combination, create
a rule R with:
– R.Source =C H host.name S service.name
– R.Destination = H host.name S service.name
– R.Service= S service.name
– R.Action = “Allow”

Add those rules to the firewall rule base F.
The default rule Rdefault should always be at the end of the rule base.

5 Evaluation

The artifact’s application leads to a CE-Free rule base with respect to a large set
of anticipated changes. Adding rules to the rule base due to the activation of a
new host, the activation of a new service on a host, the addition of a new client
requiring access to a service on a host becomes free of CE when the artifact is



12 G. Haerens

used. Removal of rules due to removing a host, or a service, is also free of CE.
Formal proof can be found in [19].

The section shows that applying such an artifact is enforcing a new ontology
for the firewall rule base. Applying a more restrictive ontology will also mean
that the implementation model will be more restrictive.

5.1 Impact on the ontological

A DEMO FACT model taking those restrictions into account can be found in
Figure 5. As the model is the basis for the implementation mode, the restrictions
will be present there as well and will favor the usage of disjoint components and
rules.

Fig. 5. Ontology of an evolvable rule base

5.2 Impact on the implemenation model

The artifact enforces an implementation model that is shown in Figure 6. The
necessary restriction to ensure disjoint rules are put in place. If a firewall were
to use this implementation mode, it would favor the usage of disjoint rules and
be evolvable under change.

6 Discussion and further research

This paper refines previous work [19] done around the evolvability of the firewall
rule base. We demonstrated that the data model used in the firewall opens the
door for configuring a non-evolvable rule base. When the proposed artifact is
used to create a new rule base, the evolvability issues can be drastically reduced.



Ontological Analysis of the Evolvability of the Network Firewall Rule Base 13

Fig. 6. Implementation model of an evolvable rule base

The result of applying the artifact is a fine-grained rule base. For each
host/service pair, there is a rule. As those pairs are disjoint, the rule base is
evolvable. A fine-grain rule base results in a large rule base. This could result in
a performance issue as a firewall is sized for a certain max number of rules. If
a disjoint rule base is used, horizontal scaling of the rule base becomes possible
and even dynamic adjustments of the rule base, putting more frequently used
rules at the top. Formal proof and information on the mechanism to apply for
horizontal scaling, can be found in previous work [19].

Making the rules manually is not a good idea. Errors or the urge to aggre-
gate could result in loss of evolvability. For this reason, the rule base should be
managed and expanded in a tool sitting next to the firewall. The tools should
expand the rules according to the artifact and push them to the firewall. Adding,
removing, changing rules may no longer happen directly on the firewall, as the
internal data model opens the door for non-evolvable design. Creating a tool
enforcing the artifact on the firewall configuration is the subject of further re-
search and work. Introducing such a tool in an enterprise would require changes
in the current operational procedures. The firewall would no longer be managed
directly, but indirectly.

The initial ontological model and implementation model are reverse-engineered.
The model mimics the behavior of firewalls. This study was performed with data
coming from a PaloAlto firewall. Additional verification should happen with
other firewalls such as CheckPoint, Fortinet, and Cisco. Firewall administrators
who helped with this study expect similar implementation for firewalls of other
firewall vendors. Explicit validation is required.



14 G. Haerens

The artifact assumes that we start from an empty rule base. A method must
be put in place to convert an existing rule base into a rule base that only contains
disjoint rules. At that point, the firewall can be managed according to the arti-
fact. Tooling for this transformation is the subject of future research and work.
A prototype based on an iterated local search heuristic algorithm is being built
and provides promising results. Being able to “normalize” an existing rule base
will also bring more clarity on the size of an evolvalbe rule base. It is expected
that the size will increase but unknown how much.

This paper does not include an explicit literature study as this has been done
extensively in previous work [19].

7 Conclusion

We started by identifying the evolvability issues of the firewall rule base. We
looked at the problem from the point of view of relationships between rules, from
the point of view of an ontological DEMO FACT model and a reverse-engineered
firewall rule-based implementation model. We learned that the current ontology
and implementation of a firewall rule base have insufficient restrictions and guar-
antees that only disjoint rules will be created. NS has been used to create an
artifact that has been discussed in previous research. The artifact will enforce
a set of restrictions on how to create rules. It effectively implements a more
restrictive ontology of the firewall rule base.

Acknowledgment

The author would like to thank Philippe Hendrickx and Jean-François Brison of
Engie for providing the firewall export.

References

1. Shel, H., Spiliotes, A.: The State of Network Security: 2017 to 2018’. Forrester
Research November 2017

2. Firemon whitepaper: 2018 State of the firewall , URL
https://www.firemon.com/resources/, [retrieved: October, 2020]

3. Algosec whitepaper: Firewall Management - 5 challenges every company must ad-
dress, URL https://www.algosec.com/resources/ [retrieved: October, 2020]

4. Mannaert, H., Verelst, J., De Bruyn,P.: Normalized Systems Theory: From Founda-
tions for Evolvable Software Toward a General Theory for Evolvable Design, ISBN
978-90-77160-09-1, 2016

5. Dietz, J., Mulder, H.: Enterprise Ontology: A Human-Centric Approach to Under-
standing the Essence of Organisation, ISBN 978-3-030-38854-6, Springer, 2020

6. Hevner, A. R., March, S. T., Park, J.,Ram, S.: Design Science in Information Sys-
tems Research. MIS Quarterly, pp. 75..105, Volume 38, Issue 1, 2004

7. P. Johannesson and E. Perjons, An Introduction to Design Science, ISBN
9783319106311, 2014



Ontological Analysis of the Evolvability of the Network Firewall Rule Base 15

8. Stevens, W.R.: TCP/IP Illustrated, Volume 1, the Protocols, Addison-Wesley Pub-
lishing Company, ISBN 0-201-63346-9, 1994

9. Zimmermann, H., Day, J.D.: The OSI reference model. Proceedings of the IEEE,
Volume 71, Issue 12, Dec 1983

10. Mannaert, H., Verelst, J., Ven, K.: The transformation of requirements into soft-
ware primitives: Studying evolvability based on systems theoretic stability. Science
of Computer Programming : Volume 76, Issue 12 pp. 1210-1222, 2011

11. Huysmans, P., Oorts, G., De Bruyn,P., Mannaert, H., Verelst, J.: Positioning the
normalized systems theory in a design theory framework. Lecture notes in business
information processing, ISSN 1865-1348 - 142, pp. 43-63, 2013

12. Haerens, G.: Investigating the Applicability of the Normalized Systems Theory on
IT Infrastructure Systems, Enterprise and Organizational Modeling and Simulation.
In: 14th International workshop (EOMAS) 2018, pp. 23-137, June 2018

13. Abedin, M. et al.: Detection and Resolution of Anomalies in Firewall Policy Rules.
In: Proceedings of the IFIP Annual Conference Data and Applications Security and
Privacy, 2006, LNCS 4127, pp. 15–29

14. Al-Shaer, E., Hamed, H.: Design and Implementation of firewall policy advisor
tools. Technical Report CTI - techrep0801, School of Computer Science Telecom-
munications and Information Systems, DePaul University, August 2002

15. Al-Shaer, E., Hamed, H.: Taxonomy of conflicts in network security policies. IEEE
Communications Magazine, 44(3), March 2006

16. Al-Shaer, E., Hamed, H.: Boutaba, R., Hasan, M.: Conflict classification and anal-
ysis of distributed firewall policies. IEEE Journal on Selected Areas in Communi-
cations (JSAC), 23(10), October 2005

17. Suchanek, M. and Pergl, R.: Evolvability Evaluation of Conceputal-Level Inheri-
tance Implemtation Patterns. In: The 11th International Conferences on Pervasive
Patterns and Applications (EMPAT), pp. 1-6, May 2019

18. Hinrichs, S.: Policy-based management: Bridging the gap. In: Proceedings of the
15th Annual Computer Security Applications Conference, Phoenix, Arizona, De-
cember 1999, IEEE Computer Society Press.

19. Haerens, G., Mannaert, H.: Investigating the Creation of an Evolvable Firewall
Rule Base and Guidance for Network Firewall Architecture, using the Normalized
Systems Theory. International Journal on Advances in Security, pp. 1-16, 2020 vol
13 nr. 1&2

20. Bennet,M.: Zero Trust Security - A CIO’s Guide to Defending Their Business From
Cyberattacks. Forrester Research June 2017

21. Cunningham, C., Pollard, J.: The Eight Business and Security Benefits of Zero
Trust. Forrester Reseach November 2017


