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Real-time virtualization with Xvisor

Abstract

Embedded virtualization has gained attention in recent years due to increas-
ing usage of embedded systems in cyber-physical systems and the Industry 4.0
revolution. Especially in combination with multi-core embedded systems, virtu-
alization reduces the number of embedded systems and simultaneously delivers
a secure and separated environment in each virtualized system. Applications in
such cyber-physical systems often require real-time guarantees with hard dead-
lines. To guarantee those real-time constraints in virtualization, both hypervisor
and guest operating system must support real-time scheduling. Selecting the
optimal scheduling algorithm on both scheduling levels is hard and is only opti-
mal for the analysed application. Due to the multiple scheduling levels, a set of
scheduling algorithm combinations must be analysed which is too costly without
analysis on higher abstraction levels. By using an analysis methodology to find
this optimal combination using higher abstraction levels analysis, we reduce the
set at every abstraction level. In this paper, we present a real-time hypervisor,
based on Xvisor, for multi-core embedded systems. We modified the hypervisor
to support real-time scheduling and the compositional schedulability analysis
and validated the analysis methodology using this embedded hypervisor.

1. Introduction

Embedded systems are widely used in today’s mechatronic systems, largely
due to decreasing cost of resources such as computing power and communication
bandwidth. Trends indicate an evolution towards more powerful embedded
systems in the mechatronic context. This evolution has two main drivers:

1. The shift from mechanical control towards more powerful electronic con-
trol;

2. The merger of cyber-physical systems (CPS) and the Internet-of-Things
(IoT).

This evolution fits with what is referred to as the next industrial revolution:
Industry 4.0 [1]. In the present-day environment, everything is being connected
to the internet to collect and share data. This connection to other devices
and/or clouds will result in improved efficiency, accuracy and economic benefits.
Smart cities, smart grids, autonomous vehicles are just a few examples of the
high potential of this connected world. However, CPSs are often designed as a
closed system, particularly when real-time and deterministic behaviour must be
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guaranteed. By closed system we mean that every event scenario is taken into
account in the design and every component must be engineered to guarantee
a pre-defined behaviour. IoT, on the other hand, is an open world where the
environment changes dynamically and components are added and removed at
run-time. Combining both platforms in a safe and reliable manner is difficult
and challenging with current technologies.

In this context, complexity becomes a dominant issue in designing embedded
systems. In an attempt to handle increased complexity, techniques for general
purpose computing are adopted: (1) multi-core processing increases the comput-
ing power on a single chip; (2) virtualization enables multiple operating systems
to run on the same hardware simultaneously and independently.

The requirements of a personal computer or cloud infrastructures differ from
those of embedded systems. The former are optimized towards the average
computing performance while for the latter (hard) real-time behaviour is the key
concern.! Real-time behaviour requires that the execution of a task must not
only be functionally correct; the output has to be produced within a predefined
amount of time, i.e. before a deadline. The determinism of the system results
in a controllable execution of the task.

Real-time scheduling on an embedded system with a multi-core processor is
supported by real-time operating systems (RTOS). However, real-time schedul-
ing in virtualization software for embedded systems has very limited support.
Especially for virtualization software with multiple virtual machines (VMs) run-
ning applications with real-time constraints on an embedded system.

In this paper we discuss the development of a real-time embedded hypervisor
Xvisor-RT that supports multiple VMs with real-time tasks. The focus of the
new hypervisor is on scheduling a set virtual processors (VCPUs) with real-time
constraints on a multi-core embedded system. The hypervisor is based on Xvisor
hypervisor [3]. The key modifications relate to the scheduling mechanism to
support real-time scheduling. We have also added scheduling algorithms for the
virtual processors. To evaluate the hypervisor, we have measured the overhead
of the scheduler and have analysed applications with real-time tasks scheduled
on multiple real-time VMs.

The remainder of the paper will be structured as follows: first, the related
work on real-time virtualization and embedded hypervisor is summarized in
Section 2. The schedulability analysis for real-time scheduling in virtualization
together with the architecture of Xvisor are explained in detail in Section 3. We
explain our analysis methodology in Section 4. The implementation of the real-
time scheduling structure of Xvisor-RT is described in Section 5. The evaluation
of analysis methodology, including Xvisor-RT, is performed in Section 6.

1Some cloud applications, such as edge computing [2], on-line gaming, multimedia appli-
cations, offer highly responsive cloud services with low end-to-end latencies.



2. Related Work

Real-time and embedded virtualization are both active research topics. How-
ever, most research on hypervisors focusses on only one of those topics. Few
papers consider the link between both.

Oikawa et al. [4] presented the Gandalf hypervisor for the x86 CPU archi-
tecture. It supports para-virtualization and can host multiple RT'OSes together
with Linux. However, no VCPU or VM scheduling is discussed in their work.

Kanda et al. [5] presented SPUMONE, an embedded hypervisor, and imple-
mented it on the SH-4A CPU. SPUMONE is designed for single-core architec-
tures and supports an RTOS and a general purpose OS. The guest uses uITRON
as RTOS and Linux as is the general purpose OS [6]. However, only one RTOS
can be executed with one VCPU. The VMs are scheduled with a fixed priority
algorithm in which the VCPU of the RTOS has the highest priority. Whenever
the RTOS is idle, the general purpose OS executes.

The Proteus hypervisor of Baldwin and Kerstan [7] for the PowerPC CPU
architecture is the first embedded hypervisor that supports full virtualization,
and para-virtualization and the combination of both. It provides deterministic
VCPU scheduling for real-time applications. The hypervisor is limited to one
PCPU. Gilles et al. [8] extended the Proteus hypervisor towards multi-core
processors (PowerPC) with support for global VCPU scheduling. When a PCPU
is shared between multiple VCPUs, the fixed time slice approach is applied.

SParK is an hypervisor also for the PowerPC architecture [9]. However, it
uses para-virtualization and is limited to single-core platforms. It supports mul-
tiple real-time VMs and provides a schedulability analysis for the fixed priority-
based scheduling algorithm in an hierarchical scheduling structure.

The NOVA hypervisor [10] is designed via a microkernel-like hypervisor with
the focus on virtualization on a multi-core system with the x86 architecture.
The small and simple design minimizes the code size of the hypervisor in root
mode. However, parts of the hypervisor are replicated on each core in the user
mode which increases overhead. The VCPUs, and threads, are scheduled with
a priority-based round robin scheduling algorithm.

The OKL4 microvisor [11] is a combination of a microkernel and a hypervi-
sor. It supports both para-virtualization and hardware-assist virtualization for
ARM to be able to support a wide range of embedded systems. However, the
hypervisor is not open-source.

Xen [12] is an open-source hypervisor developed in 2003 and is deployed
in many servers. Because its architecture separates the scheduling mechanism
and the scheduling algorithm, it lends itself to the design of new scheduling
algorithms. RT-Xen is a real-time patch for the Xen hypervisor [13, 14]. It adds
the G-EDF and G-RM algorithms to Xen with support for per VCPU parameter
assignment. However, the support for embedded systems of Xen is limited. Its
code size is extensive due to the initial target platform (x86 architecture in
server environments). Masrur et al. [15] modified the SEDF scheduler of Xen
to support real-time VMs by adding priority based scheduling. A real-time
VM gets higher priority compared to the general purpose VMs. Between the



real-time VMs, a preemptive fixed priority algorithm is used. However, a real-
time VM is limited to one real-time task to guarantee correct timing behaviour.
Masrur et al. [16] has lifted that limitation. In this case the VMs are limited to
one VCPU and not allowed to migrate between PCPUs.

Kernel-based Virtual Machine (KVM) is a virtualization infrastructure built
into in the Linux kernel [17]. It enables Linux to be used as a hypervisor. The
combination of KVM and real-time behaviour is an popular topic in research.
Multiple papers have been published about real-time scheduling [18, 19, 20] and
latency in VMs [21]. However, without adjusting the scheduling algorithms or
using real-time extensions, real-time behaviour is hard to realize. Secondly, most
research about these topics focusses on general-purpose systems. KairosVM [22]
is a latency-bounded real-time extension to the Linux KVM module. It focusses
on the real-time scheduling extension. The extension supplies for the com-
munication between the guest-OS and KVM without modifying the guest OS.
KairosVM is evaluated on a x86 architecture multi-core platform.

The current embedded hypervisors do not support real-time scheduling on
multi-core systems with VCPU sharing between VMs. With our new embedded
hypervisor, we try to fill this gap and the gap between the schedulability analysis
techniques for virtualization and the implementation of real-time virtualization
on embedded systems. Both sides are not compatible and thereby tend to fail
to analyse real-time applications from the schedulability analysis until actual
deployment on the target platform.

3. Background

In the virtualization technology two scheduling levels exists, together both
levels create a hierarchical scheduling structure. In order to guarantee real-
time scheduling, both levels must support real-time scheduling. To analyse the
schedulability of such a system, compositional schedulability analysis can be
used. Before modifying the existing Xvisor hypervisor, we give an overview
of its architecture. More specifically this section will focus on: the schedul-
ing structure in virtualization, the compositional scheduling analysis and the
architecture of Xvisor.

3.1. Scheduling in virtualization

Virtualization introduces an hierarchical scheduling structure with two lev-
els. In order to schedule real-time tasks, both levels must support real-time
scheduling. The physical CPU (PCPU) of the hardware platform is presented
to the VMs as a VCPU. These VCPUs are scheduled by the hypervisor to be ex-
ecuted on the PCPUs. Each VM operating system includes a task scheduler that
schedules the real-time workload on the VCPUs. The two levels of scheduling,
system-level scheduler and task-level scheduler, define an hierarchical scheduling
structure, see Figure 1.

In order to analyse such an hierarchical structure for schedulability, vari-
ous analysis techniques exist. The common one is compositional schedulability
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Figure 1: Visual representation of a hierarchical scheduling structure on a multi-core platform.

analysis (CSA). Component-based design decomposes a system into compo-
nents allowing the reduction of a single complex system design problem into
multiple single system designs. Each component is analysed separately and rep-
resented by a component interface that abstracts and hides the internal com-
plexity. These interfaces are used for composing the system for the system
analysis [23].

Real-time systems can benefit from component-based design, if components
are assembled without violating timing properties. This requires that the com-
ponent interfaces include all the timing information. Component-based real-
time systems often involve hierarchical scheduling frameworks that support re-
source sharing among components under different scheduling algorithms. These
frameworks can be represented as a tree of nodes, where each node denotes a
component comprising a real-time workload and a scheduling policy [24]. In
other words, the component-based design can be used to perform schedulability
analysis for hierarchical structures.

3.2. Xvisor

The Xvisor hypervisor [3] has been developed for embedded target platforms
via a modular design. It is a monolithic kernel, designed for one purpose: em-
bedded virtualization. All the functionality of the hypervisor runs in root mode,
whereas the VMs execute in user mode. Because Xvisor is designed for virtual-
ization, only the necessary functionality has been added to the hypervisor. This
results in lightweight hypervisor with little overhead and a small memory foot-
print. It supports full virtualization (hardware-assist) and para-virtualization
guest systems.

Figure 2 displays the architecture of Xvisor. All core components (CPU
virtualization, guest IO emulation, Management Terminal) are located in one
software layer at the highest privilege mode. In Xvisor, the guest OS config-
uration is given in a device tree structure (DTS) [25]. The DTS contains a
data structure that describes the hardware configuration of the guest system.
It contains CPU information, memory banks, buses and other device informa-
tion. The OS is able to parse the DTS at boot time in order to configure the
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Figure 2: The Xvisor architecture [3]

kernel and load the right device drivers. Figure 3 displays an example of the
VCPUs configuration of a guest OS. Xvisor contains two types of VCPUs: nor-
mal and orphan VCPUs. The first are the guest OS’s VCPUs. The latter are
not connected to a guest OS and are used for background processing such as the
device drivers and management functions. In Xvisor each VCPU has a priority
level; a higher priority will be scheduled before the lower priority. VCPUs at the
same priority level are scheduled according to the scheduling algorithm. Those
priorities can also be changed at the DTS.

vepus {
wvepuld {

device_type "wepu”;
compatible "armvia,cortex—ali";
start_pc = <0x00000000>;
gentimer wirt_irg <27>;
gentimer_phys_irg <30>;
time_slice <15000000>;
periodicity <Z20000000>;
deadline <20000000>;
priority <3>;

b
wvepul {
device_type "wepu”;
compatible "armvia,cortex-als";

start_pc = <0x00000000>;
gentimer wirt_irg <2T7>;
gentimer_ phys_irg <30>;
time_slice <13000000>;
periodicity <Z20000000>;
deadline <20000000>;
priority <3>;

}i
}i

Figure 3: DTS example of guest OS with two VCPUs



3.3. Xvisor scheduler

The default scheduler in Xvisor has a partitioned scheduling mechanism with
a load balancer to spread the VCPUs over the PCPUs to balance utilization
across the PCPUs. However, since version 0.2.9 this load balancer has become
optional. When a multi-core hardware platform is used to host Xvisor, the
VCPUs (orphans and normal) are assigned to a PCPU. A new VCPU is assigned
to PCPU with the lowest utilization. This assignment is static and will not
change during run-time unless the user intervenes. For each PCPU, an idle
VCPU is created. An idle VCPU has the lowest priority and is only scheduled
when there is no other candidate VCPU in the run queue of the associated
PCPU. The default scheduling algorithm, used on each PCPU, is a priority
round-robin [26]. Because of the partitioned scheduling structure, a run queue
is created for each PCPU and priority level. The scheduler loops over the run
queues of PCPU’s. When a VCPU is available in a queue, the scheduler selects
this VCPU and schedules the VCPU for 10 ms. When the timer expires or
the VCPU changes state, the VCPU is inserted at the back of the appropriate
run queue and the same steps are executed again. When a VCPU becomes
available and is inserted into a run queue, the scheduler checks if a preemption
is necessary: when the new VCPU has a higher priority compared to the running
VCPU. Xvisor provides also for each VCPU a PCPU affinity. It indicates on
which PCPU the VCPU is allowed to execute.

Xvisor splits the scheduler into two parts: the scheduling mechanism and
the functionality related to the scheduling algorithm and run queues. The first
part initializes the parameters for the PCPUs, creates the idle VCPUs, switches
VCPUs for execution and changes states of VCPUs if required. This part also
interacts with other components of Xvisor and is the only part that can access
the functionality of the scheduling algorithm. The second part includes the
scheduling algorithm and the run queues because these are only accessed in
this part and their order is dependent on the scheduling algorithm. Adding
or selecting a VCPU from the run queue depends on the scheduling algorithm.
This separation makes it possible to switch between scheduling algorithms from
the configuration of Xvisor. It also facilitates the introduction of new scheduling
algorithms.

4. Analysis methodology

The goal of this analysis methodology is to reduce the candidate scheduling
techniques to analyse on the target platform. At the highest levels a formal
analysis calculates the schedulability of candidate techniques using an abstract
system and application description. This often leads to a strong reduction in
the number of candidates. At the second level simulation is used to evaluate
deadline behaviour of the candidates. Again a fraction of candidates are elimi-
nated. At the lowest level, at the final stages of the design process, scheduling
techniques implemented on the target platform are analysed for the given ap-
plications. The analysis methodology selects a scheduling technique based on:



1) whether it meets all the deadlines on the available resources and 2) the mini-
mal PCPU and VCPU usage. If a scheduling technique requires more resources
than the available resources on the target platform, this technique is excluded
as candidate. Otherwise, if multiple scheduling techniques require less resources
than the available resources, we first compare the number PCPUs. When two
scheduling techniques need to same minimum number of PCPUs, we compare
on the load of the VCPUs. This analysis has to be done for each application
context separately. The context includes the task set, scheduling levels, the
target platform and other environmental parameters. The real-time hypervisor,
Xvisor-RT, fits at the lowest abstraction level to analyse the application at the
target platform.

4.1. The Formal Analysis

At the highest abstraction level, the schedulability of a scheduling technique
can be formally proven by the mathematical model. The formal proof compares
the demand of computing resources for the given task set and a certain schedul-
ing technique, with the supply of computing resources from the available the
target platform. There are two major methods to calculate the demand of a task
set. The first method is based on schedulability tests. These tests compare the
utilization of the task set with the maximum utilization of the scheduling algo-
rithm. These tests are commonly used for uniprocessor scheduling algorithms.

The second method is the parameter-based schedulability test. This test
uses all the parameters of the tasks (execution time, period and deadline) to
calculate the exact demand of the task set. This test is used if there does
not exist a schedulability test for the scheduling algorithm or the result of the
schedulability test is not decisive. The parameter-based method compares the
worst-case demand of the task set, with the worst-case supply which the system
delivers in a specific time interval. This method gives us more specific results,
however the method is task-set-depended. For a hierarchical scheduling struc-
ture, the schedulability tests are non existing. The analysis methodology uses
parameter-based schedulability tests to analyse each scheduling algorithm com-
bination.

To apply the formal analysis for the set of scheduling algorithm combina-
tions, we integrated and adapted the Compositional Analysis of Real-Time Sys-
tems (CARTS) [27] tool for calculating the parameters of the PCPUs and VC-
PUs. CARTS implemented the CSA formulas from Easwaran and Lee [28]. We
added the option to select the optimal period for the VCPUs to minimize the
gap between the task set utilization of the VM and the utilization of the VC-
PUs. Depending on the scheduling technique the period can be set per VCPU or
per VM. The output of CARTS contains the interfaces and VCPU parameters,
calculated with CSA theory, which we use to set the VCPU parameters for each
VM in the lower analysis levels.



4.2. Simulation-based analysis

At the second abstraction level, the schedulability is proven based on simu-
lation of the scheduling technique. This requires a system model and task set
model to analyse the behaviour of a scheduling algorithm. At every point in
time, the state of a job in the task set can be examined. In this manner, timing
information about each job of each task reveals jobs which do not meet their
deadline. Based on these data, a task set is deemed schedulable if all of its jobs
meet their deadline.

The behaviour of the simulation-based analysis is more related with the
deployment-based analysis compared to behaviour of the formal analysis. This
gives us the opportunity to modify the simulation parameters to be able to
create an almost identical setting compared to the deployment-based analysis.
This results into a more trustworthy simulation-based analysis and thereby it
will be possible to make a more thoughtful choice for the optimal scheduling
algorithm at this abstraction level.

For the simulation-based analysis, we modified the hsSim simulation soft-
ware of [29]. hsSim is an extensible interoperable object-oriented hierarchical
scheduling simulator. The simulator has a number of scheduling algorithms, for
single and multi-core processors. They can be used at each level to schedule
tasks or VCPUs. The major changes that we have introduced are:

e Compatibility with the CSA theory: the ability to set a period II
and a budget © calculated by the CARTS tool for each VCPU. These
parameters can be set for each VCPU individual, which makes it possible
to simulate the calculated interfaces from the formal schedulability proof.

e Partitioned Scheduling Algorithms: we implemented the partitioned
scheduling technique in hsSim to be able to select the partitioned EDF
and partitioned deadline monotonic (DM) scheduling algorithm.

¢ Compatible output interface: to evaluate the results of the simulation,
the timing information is logged. A set of different logging formats are
provided by hsSim; we added a new format to make it possible to analyse
the data from each level using the same tools.

Together these modifications make hsSim usable in our analysis methodol-
ogy.

4.8. Deployment-based analysis

The behaviour of the scheduling algorithms at this level is the most accurate
to perform the schedulability experiments. At this level it is possible to analyse
the scheduling algorithm on a variety of evaluation criteria. These evaluations,



however, are platform specific. Which means that for every hardware platform
1) a RTOS must exist which support the selected hardware platform, and 2) the
scheduling algorithms must be implemented in the RTOS. This makes it hard
to evaluate scheduling algorithms on a number of different hardware platforms.
At this analysis level, and due to the fact the applications have hard real-time
constrains, a scheduling algorithm or a combination of scheduling algorithms is
only successful if each job of the task set meet its deadline at all time, and this
on the computational resources calculated by the formal analysis level.

For the implementation of this analysis level, we modified Xvisor to our
needs. These modifications are elaborated in Section 5

5. Xvisor-RT

In this section we discuss the modifications and enhancements, aimed at
support for real-time scheduling and the CSA theory, from Xvisor to Xvisor-
RT. We used Xvisor as starting point because of its small code base and wide
range of the supported embedded hardware platforms. However (see section
3.2) the default scheduler and scheduling algorithm do not support real-time
scheduling. So, new scheduling algorithms were added for real-time scheduling.
The partitioned scheduling approach and the round-robin scheduling algorithm
make Xvisor incompatible with the CSA theory. In order to be compatible, the
Xvisor partitioned scheduler must be replaced by a global scheduler with one
set of run queues, one for each priority, for all PCPUs.

5.1. Run queues

Xvisor creates a set of run queues for each PCPU and assigns a VCPU
statically to a PCPU. To enable global scheduling algorithms, a global structure
is needed. We introduce a single set of run queues for all PCPUs. When a VCPU
is added to a run queue, each PCPU can select it to execute. Besides sharing
run queues in each PCPU, the PCPUs must share a synchronization object
(spinlock) so that only a single PCPU at a time can make changes at the run
queues.

Because of the shared run queues, a concurrency problem was created in
the scheduling mechanism: the functions of the scheduling algorithm, which are
called from the scheduler, are already controlled by spinlocks. However, the
sequence of functions of choosing between picking a new VCPU or keeping the
current VCPU needed to be altered. In Xvisor, the current VCPU is added
again in the run queue. If it is selected again, no context switch is necessary.
However, with a global run queue, when the current VCPU is added to the
run queue, it could be selected by another PCPU and cause a system failure.
In Xvisor-RT, the current VCPU is passed as an argument to the scheduling
algorithm. This makes it possible to check if the current VCPU still has the
highest priority, without having it in the run queue. If, after the scheduling
decision, the current VCPU is not selected to be executed, the VCPU is added
to the run queue again after the context switch.
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5.2. Scheduling algorithms

Because of the above changes, the implementation of the current schedul-
ing algorithm had to be replaced. We implemented the Earliest Deadline First
(EDF) and the Deadline Monotonic (DM) algorithm, because they are rather
straightforward to implement. However, we decided to keep the priority levels
of the original Xvisor scheduler to separate the normal VCPUs from lower and
higher priority orphan VCPUs when needed. Each VCPU has a set of param-
eters in the DTS that are needed for the scheduling algorithms: a period, a
deadline and a time slice (see Figure 3). These parameters are static and can be
accessed by both parts of the scheduler. The time slide parameter of a VCPU
in the DTS is the budget of the VCPU, calculated in the interface of the VM in
the CSA theory. The parameters that change over time, are stored in the ad-
ditional VCPU information and can only be accessed by the second part of the
scheduler. In order to implement the EDF algorithm, we added three parame-
ters as dynamic parameters: the absolute deadline, a timestamp of the VCPU’s
last start and the remaining budget. The absolute deadline of an instance of a
VCPU is the moment in time when the budget must be consumed to complete
without a deadline miss. In order to keep track when the VCPU is selected to
be scheduled, the timestamp of that moment is saved in the laststart parameter
of the VCPU. When the VCPU is added back to the run queue the budget gets
consumed with the time difference between the current time and the timestamp
in the laststart parameter. The remaining budget is saved at the respectively
parameter of the VCPU.

In the vmm_schedalgo_rq_dequeue function, the budget of the current VCPU
is consumed. Next, we check whether the deadline information on all VCPUs in
the run queue is up to date. If the absolute deadline is in the past, the VCPU
is removed from the run queue, a new deadline is calculated and the VCPU is
added to the run queue again. For the EDF algorithm, a run queue is sorted
based on the absolute deadline of the VCPUs with a common priority. Thus
the first VCPU of a run queue will have the shortest deadline. A VCPU is
scheduled on a PCPU for a maximum time quantum. When the PCPU’s timer
expires, the next VCPU is selected. Each VCPU is compared with the current
VCPU. Because each priority has its own run queue, we iterate from the highest
priority run queue to the lowest priority run queue. Following parameters are
checked in the given order (cur_VCPU is the current VCPU and iter_VCPU is
the next VCPU in the run queue):

1. The affinity of iter _'VCPU: if iter _VCPU is not allowed to run on the
PCPU, it can not be selected.
2. The remaining budget of iter_VCPU: if iter_'VCPU has no budget
left, it can not be selected.
3. The priority of iter VCPU:
(a) If the priority of iter_'VCPU is higher than the priority of cur_-VCPU,
iter_-VCPU is the next VCPU.
(b) If the priority of iter_VCPU is equal to the priority of cur_-VCPU and
the current has no budget left, iter_'VCPU is the next VCPU.
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(c) If the priority of iter_-VCPU is equal to the priority of cur_-VCPU and
iter_VCPU has a shorter absolute deadline, iter_'VCPU is the next
VCPU. If not, cur_VCPU is the next VCPU.

(d) If the priority of iter _VCPU is lower than the priority of cur . VCPU
and cur_-VCPU has no budget left, iter_-VCPU is the next VCPU. If
cur_VCPU has budget left, it is the next VCPU.

4. When there are no candidate VCPUs, including cur_-VCPU, the next
VCPU is the idle_-VCPU.

If the next VCPU is the current VCPU, no context switch is necessary and
the scheduler will schedule the current VCPU again for 1 ms. Otherwise, the
context of the current VCPU is saved, the new VCPU is switched with the
current VCPU and the new VCPU is scheduled. There is one exception to this:
when a PCPU is booted and has no VCPU running. At the first selection of
the next VCPU for a PCPU, the scheduler just has to select the highest priority
VCPU in the run queue.

We implemented the global scheduler together with the EDF, DM, which au-
tomatically includes the Rate-Monotonic (RM) algorithm? and the McNaughton
algorithm [30, 31, 32].

6. Experiments

With Xvisor-RT we can analyse scheduling algorithms on embedded systems.
To evaluate the Xvisor-RT real-time scheduling performance we measured the
system for overhead in terms of context switches and PCPU migrations. As a
second experiment, we analyse a set of scheduling algorithms or combinations
of scheduling algorithms for two applications.

6.1. Experimental setup

We performed the experiments on a Raspberry Pi 2 Model B (RPI2). It is
an embedded system with four ARM Cortex-A7 cores (PCPUs), each clocked
at a frequency of 900 MHz, and 1 GB of RAM. We installed Xvisor-RT on
the SD-card and booted the hypervisor with the U-Boot bootloader [33]. We
selected a 1 ms interval between each scheduler decision for each PCPU. A higher
quantum would result into higher delays between VCPU events and scheduling
decision. A smaller quantum causes a bigger overhead because the scheduler is
called at a higher frequency. As guest OS, Xvisor recommends a Linux kernel in
combination with a busybox ramdisk as file system to provide a minimal set of
executables [34]. We patched the linux kernel, version 4.1, with the LITMUSRT
patch [35]. LITMUSRT provides the ability to do real-time scheduling in a
Linux OS. Beside the real-time patch, LITMUSET comes with a set of real-time

2The gEDF, gRM and gDM can be easily transformed towards the partitioned variant by
setting the affinity of the each VCPU to only one of the PCPUs
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scheduling algorithms, a library (liblitmus) to create periodic tasks (without a
workload) and tracing tools to trace the periodic tasks.

We used CARTS to calculate for each VM the number of VCPUs and the
budget and period of each VCPU [27]. Based on the output of CARTS, the
DTS file is generated with the correct number of VCPUs and parameters. The
application and scheduling algorithm are simulated by the modified version of
hsSim [29].

To analyse an application with Xvisor-RT to find the optimal scheduling
algorithms, tasks are needed to create a system load. In both experiments we
use periodic tasks. Such a task has a task model 7 with three parameters: the
worst-case execution time (WCET) C, the period T' and the relative deadline
D. Each task has a deadline D which is equal to its period T. To generate the
tasks and the load of a task, we use a taskset-generator (reference removed for
authors). This taskset-generator creates for each task a sequence of benchmark
programs from the TACLeBench benchmark suite to generate computational
load for the processors [36].

6.2. Scheduling overhead

Each scheduler consumes resources to calculate the next task to run. This
translates into an execution period during which the CPU is not available to
schedule tasks of the application. This is called the scheduling overhead. Xvisor-
RT is a quantum-based scheduler; every quantum the scheduler checks if the
current VCPU has not consumed all of its budget and it is still the task with the
highest priority. If not, the scheduler selects the next task which is available.
Each quantum the scheduler needs some CPU resources and causes an overhead.
For Xvisor-RT we measured this overhead by measuring difference between the
timestamp when Xvisor-RT enters the scheduler and the timestamp when it
exits. This is measured during the execution of a workload to create a realistic
situation where multiple VCPUs are in the run queue. The scheduling decisions
resulted in an overhead of between 2.5 — 3%.

To include this overhead into the analysis of the scheduling algorithm at the
formal and simulation-based level, a periodic task is added to the taskset of each
VM. The period of this task is equal to the quantum and the execution time is
equal to the overhead of the scheduler.

6.3. Experiment

In this experiment, we used the analysis methodology with Xvisor-RT on two
applications to determine the optimal scheduling technique for the respective
application. Each application has a real-time workload divided over three virtual
machines. For each application context we calculated the interfaces via CARTS.
We ran CARTS for each combination of scheduling algorithms we have available
at all analysis levels:

e Task-level scheduler: Global EDF, Partitioned EDF and Partitioned
DM.

13



e System-level scheduler: Global EDF, Global DM, Mc- Naughton, Par-
titioned EDF and Partitioned DM.

The first application has a taskset containing 32 tasks and a total utilization
of 2.88 (U =3I, $&, with n the number of tasks, C the WCET and T the
period of the task). The taskset is spread over three VMs with an utilization
and number of tasks of respectively 0.95 with 14 tasks, 0.55 with 6 tasks and
1.38 with 12 tasks. The second application has a taskset containing 24 tasks
and a total utilization of 3.80. The taskset is spread over three VMs with a
utilization and number of tasks of respectively 1.20 with 8 tasks, 1.21 with 9
tasks and 1.39 with 7 tasks. The first application has an unbalanced workload
across the VMs which will show to advantage of VCPU sharing to schedule the
workload. This will have an impact on the system-level scheduler. In the second
application the workload of the VMs is more balanced. However the workload
inside a VM is unbalanced. This will challenge the task-level scheduler to handle
this type of workload.

Table 1 & 2 shows the load of the VCPUs and number of PCPUs for each
combination of scheduling algorithms needed to schedule the applications. If
the number PCPUs exceed to maximum number of 4 PCPUs, the application
is not schedulable with the selected combination of scheduling algorithms.

Table 1: Load of the VCPUs and PCPUs for application context 1 for each combination of
scheduling algorithms

Task-level Scheduler

G-EDF P-EDF P-DM
U= 2.9 U=295 U= 44l
G-EDF PCPUs =4 PCPUs=j PCPUs=6
. DM U =29 U=295  U=44l
g PCPUs =4 PCPUs=j PCPUs=6
z
NN U = 2.97 ) ,
- McNaughton PCPUs — 3 n.a. n.a.
5
g U =29 U =295 U =441
z PEDE  popys =y pepus=4  poPUs =5
7]
=2 — 9 05 —
- U =29 U=295 U= 44l

PCPUs =4 PCPUs=,/ PCPUs=35

For the first application the combination of the McNaughton and the global
EDF scheduling algorithms is the most promising. The application can be sched-
uled on 3 PCPUs by using this combination. Most of the other combinations
can be scheduled on the platform. However, with the partitioned DM algorithm
as system-level scheduler, the application is not schedulable on our hardware
platform. We selected the McNaughton & GEDF and the combinations which
requires 4 PCPUs to analyse at the next analysis level, the simulation-based
analysis.
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Table 2: Load of the VCPUs and PCPUs for application context 1 for each combination of
scheduling algorithms

Task-level Scheduler

G-EDF P-EDF P-DM
) GEDF ot ppn s s perue g
% 5 — g
EE G-DM Plc]*P: Uj ' i?6 PgP: Uf‘ id 6 sz; UL:' i4 6
@
E McNaughton PC[']P?]s&:] 6 n.a. n.a.
i P-EDE PlC]'P: Uj ' i?6 P[éP:Ujsz5 4 P[C]‘P: Uf' i4 6

P-DM U =4.83 U =3.85 U =238

PCPUs =6 PCPUs=5 PCPUs=¢6

Table 2 shows that for application 2 the combination of the partitioned
EDF algorithm and partitioned EDF algorithm is the most promising one. It
is the only combination which can schedule the application on 4 PCPUs. The
other combinations of scheduling algorithms need 5 or 6 PCPUs to schedule
the application. We selected P-EDF & P-EDF combination together with the
combinations which require 5 PCPUs to schedule the application to analyse at
simulation-based analysis.

Figures 4a and 4b display the results of the simulation-based analysis of
the selected combinations of scheduling algorithms for both applications. For
application 1 the McNaughton & GEDF combination has no deadline misses
on 3 PCPUs as proven in the formal analysis. The other combinations have
deadlines misses when scheduled on 3 PCPUs and have no deadline misses on 4
PCPUs. For the second application, we simulated the selected combinations of
scheduling algorithms with maximum 4 PCPUs. It is clear that only the P-EDF
& P-EDF combination can schedule the application on the available resources.
The other selected combinations have deadline misses when using all resources
and can not be a candidate for the selection of scheduling algorithm for this
application. For both applications, the simulation-based analysis validates the
results of the formal analysis.

At the lowest abstraction level, the deployment-based analysis, we deployed
both applications on the target platform using Xvisor-RT. For both applications
we analysed the most promising combination of scheduling algorithms and the
combination of scheduling algorithms which has the lowest number of deadline
misses. For the first application we analysed the McNaughton & P-EDF and
the P-DM & P-EDF combinations; for the second application the P-EDF &
P-EDF and the P-DM & P-EDF combinations.

For each application, we generated the executable tasks to be deployed on
the VMs. We configured each VCPU with their period and budget. We executed
the tasks for 30 seconds on the target platform. Figures 4c and 4d display the
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Figure 4: In Figures a & b the results are displayed from the simulation-based analysis for

respectively application 1 & 2. Figures c & d display the results of the analysis with Xvisor-RT
for the selected scheduling algorithms.
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results of the experiments on Xvisor-RT. For both applications, the optimal
combination has no deadline misses with the calculated interfaces of the formal
analysis. Notice that for all scheduling algorithm combinations the deadline
misses are lower compared to the simulation-based analysis. The reason is that
the task execution time is shorter than the WCET of the task.

7. Conclusion

In this paper we presented Xvisor-RT, a real-time hypervisor for multi-core
embedded systems. We modified the existing embedded hypervisor Xvisor to
support the compositional schedulability analysis theory for global and parti-
tioned scheduling algorithms. Xvisor already supports a wide variety of ar-
chitectures and platforms, which Xvisor-RT inherits. We also added a set of
scheduling algorithms in Xvisor-RT. Those algorithms can be selected to sched-
ule applications with real-time tasks. We included Xvisor-RT in our analysis
methodology to analyse real-time applications. This makes it possible to anal-
yse an application for embedded systems from the highest abstraction level to
the lowest abstraction level, compare the results between each abstraction level
and select the combinations of scheduling algorithms for the next abstraction
level.

In the experiments we focussed the two objectives of this paper. Firstly,
we confirmed that Xvisor-RT can schedule a real-time workload by analysing
the schedulability of two applications with the calculated VCPU parameters.
Both applications had no deadline misses during the experiments. Secondly,
we analysed both applications with the analysis methodology using Xvisor-RT.
The consecutive steps in the analysis pare down the set of candidate scheduling
algorithms. Consequently, only a few candidate combinations of scheduling
algorithms must be analysed at the lowest abstraction level. This reduces the
time and cost of the design process.
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