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UnDIP: Hyperspectral Unmixing Using Deep Image

Prior
Behnood Rasti, Senior Member, IEEE, Bikram Koirala, Student Member, IEEE,

Paul Scheunders, Senior Member, IEEE, and Pedram Ghamisi, Senior Member, IEEE

Abstract—In this paper, we introduce a deep learning-based
technique for the linear hyperspectral unmixing problem. The
proposed method contains two main steps. First, the endmembers
are extracted using a geometric endmember extraction method,
i.e., a simplex volume maximization in the subspace of the dataset.
Then, the abundances are estimated using a deep image prior. The
main motivation of this work is to boost the abundance estimation
and to make the unmixing problem robust to noise. The proposed
deep image prior uses a convolutional neural network to estimate
the fractional abundances, relying on the extracted endmembers
and the observed hyperspectral dataset. The proposed method is
evaluated on simulated and three real remote sensing data for
a range of SNR values (i.e., from 20 to 50 dB). The results
show considerable improvements compared to state-of-the-art
methods. The proposed method was implemented in Python (3.8)
using PyTorch as the platform for the deep network and is
available online: https://github.com/BehnoodRasti/UnDIP.

Index Terms—Hyperspectral image, unmixing, convolutional
neural network, deep learning, deep prior, endmember extraction

I. INTRODUCTION

S
PECTRAL unmixing is one of the major hyperspectral

image analysis tasks. Hyperspectral cameras have the

ability to capture the spectral signature of materials. This

ability allows us to distinguish different materials within a

scene. However, due to the limited spatial resolution and

scattering of the light, a pixel spectrum is generally a complex

mixture of the pure spectra of its constituent materials, i.e. the

endmember spectra [1], [2]. Unmixing is the task of estimating

the fractional abundances of those endmembers within the

spectral pixels. From a modeling point of view, unmixing

techniques can be divided into two main groups: linear and

nonlinear unmixing [3], [4].

In linear unmixing, it is assumed that the light only interacts

with one pure material before reaching the sensor. In remote

sensing applications, hyperspectral images are of low spatial

resolution, and pixels typically contain large homogeneous
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regions of single materials. For this situation, the linear

mixture model is a good approximation [3]. In microscopic

scenarios (i.e. close-range scenarios), the pure materials are

intimately mixed within the pixel, and the light undergoes

multiple reflections by several materials. In these situations,

the linear approximation often fails and one has to apply

nonlinear models [3].

In this paper, we aim at remote sensing applications and

focus on the linear hyperspectral unmixing methods. The

linear unmixing methods can be categorized as unsupervised,

supervised, and semi-supervised. Unsupervised methods either

sequentially extract the endmembers from the image and

then estimate the fractional abundances, or simultaneously

estimate both endmembers and abundances from the image

(so-called blind unmixing). Supervised methods only estimate

the abundances from the image assuming that endmembers

are known a priori. If not known a priori, the endmembers

need to be extracted from a large endmember library and one

refers to semi-supervised (so-called sparse unmixing). In the

latter case, the number of endmembers need not to be known

a priori [1], [3].

Endmembers can be extracted from hyperspectral images

based on geometrical principles. This can be done by relying

on either the existence of pure spectra for each material,

located at the vertices of the data simplex or the existence

of sufficient spectra on the facets of the data simplex, to

allow to geometrically locate the vertices of the data simplex.

Approaches such as pixel purity index (PPI) [5], N-FINDR

[6], and the vertex component analysis (VCA) algorithm [7]

use geometrical concepts for endmember extraction. After

endmember extraction, the abundance fractions are generally

estimated by using optimization algorithms such as non-

negative constrained least-squares [8], satisfying the abun-

dance non-negativity constraint (ANC) or fully constrained

least-squares [9], satisfying both ANC and the abundance

sum-to-one constraint (ASC). This step is also referred to as

inversion in the literature [3].

In blind unmixing, both endmembers and abundances are

estimated simultaneously. Two major paradigms in blind un-

mixing are constrained penalized (or regularized) least squares

(CPLS) methods, such as [10] and statistical approaches such

as [11]. Examples of CPLS algorithms are minimum volume

simplex analysis [12], simplex identification via variable split-

ting and augmented Lagrangian (SISAL), and collaborative

nonnegative matrix factorization (CoNMF) [13]. They often

solve a penalized least-squares problem, subject to (either or

both) ASC and ANC. These algorithms often involve a data-
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fitting term and a minimum volume-based regularization term.

A major issue with these algorithms is that the regularization

parameter needs to be tuned. In [14], a geometrical constraint

(the squared of the simplex volume) was enforced as a

regularizer to the fully constrained least squares problem to

simultaneously estimate the abundances and endmembers. In

[15], the regularization parameter for the minimum volume-

based regularization term was automatically selected by de-

termining the simplex which encloses the whole data. The

statistical approaches often formulate the unmixing problem

in a Bayesian way and use different estimators, such as the

joint maximum a posteriori (MAP) estimator in [16]. It is

worth mentioning that both groups are related, as a CPLS

can be derived using a MAP estimator [17]. Due to the

inherent nonconvexity of blind unmixing methods, they are

highly vulnerable to the initialization and therefore they are

always initialized using a geometrical endmember extraction

approach.

In sparse unmixing, the fractional abundances are estimated

using sparse regression techniques. These methods describe

each spectrum as a sparse linear combination of the elements

of a rich library of pure spectra, a problem that can be

generally formulated using CPLS. This results in either a

convex or a non-convex problem, depending on the selected

sparsity promoting penalty to be applied on the abundances

[18]. Sparse unmixing by variable splitting and augmented

Lagrangian (SUnSAL), constrained SUnSAL (C-SUnSAL)

[19] and collaborative sparse unmixing [20] are examples

of sparse unmixing methods. Both SUnSAL and C-SUnSAL

apply an ℓ1 penalty on the fractional abundances. SUnSAL

utilizes ℓ2 for the fidelity term while C-SUnSAL assumes a

constraint to enforce the data fidelity. Collaborative sparse

unmixing is similar to SUnSAL, but applies ℓ2,1 (i.e., the

sum of ℓ2 on the abundances) to promote the sparsity on the

abundances. SUnSAL was improved in [21] by incorporating

spatial information through applying a total variation penalty

on the abundances (SUnSAL-TV).

The spectral variability of the endmembers (i.e. the intra-

class variability of the materials) is taken into account by

using a dictionary of endmember bundles, generated from the

data (as opposed to the above-mentioned sparse regression-

based techniques where the dictionary is made from spectral

libraries and does not rely on the data itself). When using end-

member bundles, four different penalties: the group LASSO

(Least Absolute Shrinkage and Selection Operator) [22], the

collaborative LASSO [23], the elitist LASSO [24], and the

fractional LASSO [25]) were proposed in the framework of

sparse regression in [25], where all take the ASC into account.

The main difference between those techniques is the selection

of the penalty term applied on the abundances.

Deep learning-based networks are state-of-the-art in ma-

chine learning and computer vision applications. Inevitably,

most of the remote sensing applications, involving machine

learning and image processing have been inspired by deep

networks [26]. Recently, a variety of deep neural networks

has been proposed for hyperspectral unmixing, mainly based

on variations of deep encoder-decoder networks, for which the

inputs are the spectra and the outputs are the abundances. The

abundances are then decoded to the spectra again using linear

layers, with the endmembers as the weights. EndNet [27],

SNSA [28], DAEN [29], DeepGUn [30], and uDAS [31] are a

few examples of such unmixing techniques. EndNet proposes

a loss function with several terms, including a Kullback-

Leibler divergence term, a SAD similarity, and a sparsity term

which makes the parameter selection very challenging. SNSA

utilizes a stack of nonnegative sparse autoencoders from which

the last one performs the task of unmixing and the others

are exploited to improve the robustness with respect to the

outliers. DAEN exploits a stacked autoencoder to initialize

a variational autoencoder which performs the unmixing task.

In [30], a variational autoencoder is used to generate the

endmembers. uDAS exploits an additional denoising constraint

on the decoder and a ℓ2,1 sparsity constraint on the decoder.

In all these methods, the spatial information is ignored.

The advantage of incorporating the spatial information for

spectral unmixing has been confirmed in the literature. Train-

ing a network based on a single spectrum at a time ignores the

spatial information. Therefore, patch-wise or cube-wise CNN

was proposed to utilize the spatial information. First, the image

was spatially divided into patches and then the convolution is

applied on small patches of spectra. In [32], it was shown that

cube-wise CNN outperforms pixel-wise CNN. In [33], spatial

information has been exploited for unmixing, by improving

the encoder-decoder architecture proposed in [34], by applying

parallel encoder-decoders on HSI patches. In [35], a CNN was

proposed based on a spatial-spectral model, which is trained

using HSI patches. Most recently, a convolutional autoencoder

was proposed for supervised hyperspectral unmixing in [36],

exploiting 3D convolutional filters. The patchwise approach

was found useful for endmember estimation since it supports

the idea of endmember bundles and captures the variability

of the spectra. However, it degrades (and blurs) the estimated

abundances [35], since small patches do not contain enough

structure for the convolutions (filters) to perform better than

merely a mean filter.

The supervised CNN exploited in the above-mentioned tech-

niques requires spectral signatures to train the CNN. In this

paper, we propose an unsupervised CNN that does not need

spectral signatures for training. The convolutional encoder-

decoder network proposed in this paper is a more general

network than the autoencoders often used in the literature, in

the sense that the input can have any distribution regardless

of the output.

A. Contributions and Novelties

The main motivation of this work is to improve the abun-

dance estimation and to make the unmixing problem robust

to noise. Hence, we propose a method called ”hyperspectral

unmixing using deep image prior” (UnDIP), which utilizes a

conventional geometrical approach for endmember extraction

and a new unmixing deep image prior using a deep convo-

lutional neural network for abundance estimation. The main

novelty of this paper is the introduction of a new unmixing

deep prior for the inversion task. Deep image prior (DIP) was

recently proposed for conventional inverse problems in the
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area of image processing, such as denoising, inpainting, and

super resolution [37], [38]. In [39], DIP was applied for hy-

perspectral image denoising, inpainting, and super resolution.

In this work, the DIP is adjusted to the unmixing problem

to generate fractional abundances. Starting from input noise,

the abundances are generating by iteratively minimizing an

implicitly regularized loss function. The proposed network

is applicable in supervised unmixing scenarios, where the

endmembers are available.

UnDIP has the following attributes that distinguish it from

the other deep learning-based unmixing techniques proposed

in the literature:

• It uses DIP as a deep learning procedure. UnDIP is

designed to solve a regularized inverse problem, in which

the regularizer is implicitly incorporated in the cost

function. This controls the overfitting of the fidelity term

and makes the method robust to noise.

• It incorporates spatial information globally, unlike the

pixelwise or patchwise (convolutional) autoencoder-based

approaches in the literature. UnDIP does not need spectral

signatures for training. The input of the network has the

same spatial size as the observed image and is given by

Gaussian noise which is fixed throughout the learning

process. Then, the network iteratively learns to map that

input to abundance maps. This unsupervised learning

framework has the advantage that the convolutional net-

work can be applied globally on the entire spatial domain

of an image, which leads to sharper abundance maps and

enhances the robustness to noise.

• It combines a geometrical endmember estimation ap-

proach with deep unmixing. The majority of the proposed

blind unmixing techniques, including deep techniques

need to be initialized by a geometrical endmember esti-

mation approach, confirming the importance of this step.

Here, for the first time, UnDIP proposes a collaborative

framework in which a geometrical endmember estimation

is performed prior to the deep unmixing. The endmem-

bers are then used in the loss function for training the

deep network. In this way, the deep network can focus

on the improvement of the abundance estimation, while

the endmembers remain fixed.

The remaining of this paper is organized as follows. The

unmixing methodology is explained in detail in Section II.

The experimental results are shown and discussed in Section

III. Section IV concludes the paper.

II. METHODOLOGY

A. Notation

Before discussing the proposed methodology we explain the

notations used in the paper. Matrices, column vectors, and

scalars are denoted in bold and capital letters, bold letters, and

letters, respectively. X̂ represents the estimate of the variable

X. ‖.‖F and |.| denote the Frobenius norm and the absolute

value. x(i) and x
T
i denote the ith column and the ith row

of matrix X, respectively. Xij denotes the matrix element

located at ith row and the jth column. 1n is an n-component

column vector of ones. The notation (r)! denotes the factorial

of the positive integer r and det(X) indicates the determinant

of matrix X.

B. Hyperspectral Modeling

We assume a linear model for HSI:

Y = X+N, (1)

where Y∈ R
p×n is the observed HSI, with n pixels and p

bands, X ∈ R
p×n is the unknown image to be estimated, and

N ∈ R
p×n is the model error, including noise. In spectral

unmixing, we assume that:

Y = EA+N, (2)

where E ∈ R
p×rand A ∈ R

r×n, r ≪ p, contain the r

endmembers and their fractional abundances, respectively. The

main goal is to estimate the fractional abundances A, however,

this is not possible without either having prior knowledge

about the endmembers E or estimating/extracting them from

the image.

C. Endmember Extraction

When the endmembers are extracted from the data, one

often relies on the geometry of the data. Due to spectral

redundancy, an HSI often lives in a low-dimensional sub-

space [40], [41]. Therefore, the data can be projected onto

an (r-1)-dimensional subspace and represented by a (r-1)-

dimensional simplex whose vertices are the endmembers em

(m = 1, · · · , r). When pure spectra are available in the data,

the endmembers can be extracted by maximizing the volume

of the data simplex [42]:

argmax
E

V (E) = argmax
E

1

(r− 1)!

∣

∣

∣

∣

∣

det

[

1 . . . 1

e(1) . . . e(r)

]∣

∣

∣

∣

∣

,

(3)

where E = [e(i)]. In this paper, we use an algorithm, called

simplex volume maximization (SiVM) [43] to extract the

endmembers from the dataset. SiVM selects the endmembers

by iteratively maximizing the simplex volume of the data:

argmax
E

V (E) = argmax
E

√

(−1)r · cmd (E)

2r−1(r− 1)!
, (4)

where cmd is the Cayley–Menger determinant:

cmd (E) = det














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.

1 d2r,1 d2r,2 d2r,3 . . . 0















,

and d2i,j is the Euclidean distance between endmembers ei

and ej . Since (4) does not take into account nuisances such

as noise, we first project the data on the subspace obtained by

the spectral eigenvectors of a singular value decomposition.
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D. Deep Image Prior

In this section, we first explain the general concept of

deep image prior and in the next section, we adapt this

concept to the unmixing problem. CNNs are the most popular

deep learning networks for inverse problems such as image

restoration. They show excellent performances as long as a

large training dataset is available.

Recently, DIP was proposed as an unsupervised deep learn-

ing alternative, in which the network is entirely trained based

on the observed image. DIP generates an image X using

a random initialization Z and utilizing the deep network as

a parametric function X = fθ(Z). Then, the network is

optimized over its parameters (i.e., θ) to generate the optimal

image X̂ = f
θ̂
(Z).

Generally, inverse image reconstruction tasks, such as de-

noising, super resolution, and inpainting can be formulated as

an optimization problem:

X̂ = argmin
X

Q(Y,X) + λR(X) (5)

where the function Q often controls the fidelity towards the

observed data and is chosen to fit the reconstruction task. R

is a regularizer (or penalty) function selected based on prior

knowledge, and λ is the tuning parameter to trade-off between

the two terms. One major drawback of this framework is that

the selection of a good regularizer depends on the application

and the available prior knowledge, which can considerably

vary in the case of natural images. A widely used regularizer

is total variation, which promotes piece-wise smoothness on

X.

In [38], it was shown that the regularizer can be implicitly

substituted by a deep network:

θ̂ = argmin
θ

Q(Y, fθ(Z)) s.t. X̂ = f
θ̂
(Z). (6)

where the selection of a proper regularizer is taken off the

hands of the user and the optimization is shifted towards

optimizing the network parameters, i.e., weights and biases.

The minimization problem (6) is solved using the network’s

optimizer, e.g., a gradient descent, applied to the network’s

parameters θ. A common choice for the function Q is the

least squares term and, hence, the problem to solve becomes:

θ̂ = argmin
θ

1

2
||Y − fθ(Z)||

2
F s.t. X̂ = f

θ̂
(Z). (7)

E. Abundance Estimation using DIP

In this subsection, we adapt DIP to solve the unmixing prob-

lem. Unlike the majority of the deep learning-based unmixing

techniques proposed in the literature, we propose to use a deep

network for estimating the abundances A only, given fixed

endmembers E. The widely used classical method to estimate

the abundances is to solve the optimization problem:

Â = argmin
A

1

2
||Y −EA||2F s.t. A ≥ 0,1T

r A = 1
T
n , (8)

i.e., the fully constrained least squares unmixing (FCLSU) due

to the use of both the ASC and ANC. It has been shown

that the regularized (or penalized) least squares techniques can

take into account prior knowledge of the data and, therefore,

provides a better estimation of the abundances [3]:

Â = argmin
A

1

2
||Y−EA||2F +λR(A)s.t.A ≥ 0,1T

r A = 1
T
n ,

(9)

where R(A) is the regularizer or penalty term and λ is the

regularization parameter. The choice of R is dependent on

the available prior knowledge which can vary considerably

in remote sensing images. However, the regularizer can be

implicitly substituted by a deep network and the problem is

transformed into an optimization of the network’s parameters:

θ̂ = argmin
θ

1

2
||Y −Efθ(Z)||

2
F s.t. Â = f

θ̂
(Z). (10)

Therefore, problem (10) can be solved using a deep network.

The only issue left to solve is to enforce the constraints. The

constraints in (9) can be easily enforced by using a softmax

function in the final layer of the network, given by:

softmax(A) =
eAij

∑r

i=1 e
Aij

∀i, j (11)

As a result, the unmixing problem (8) can be solved using

DIP. Fig. 1 depicts the concept of UnDIP. The random input

image Z is fixed. fθ is a deep network with parameters θ,

which are initialized using random weights θ0 and updated

through the learning process. The core idea of UnDIP is to

map Z to Â, using a deep network fθ such that Â = f
θ̂
(Z).

Therefore, θ̂ should be estimated. As can be seen from Fig.

1, UnDIP optimizes the network’s parameters θ iteratively by

computing the gradient of the loss function (10), which relies

on the endmembers (E) extracted by SiVM.

When a network is overtrained, overfitting occurs, and the

network will not reach the optimal solution for a test set. Since

the design of UnDIP is not based on training and testing sets,

UnDIP is robust to overfitting of the network. The optimization

is done by iterating based on a fixed input and by optimizing

the output until the loss function has converged. On the other

hand, since UnDIP is an iterative algorithm, the stopping point

becomes an important hyperparameter, which will be discussed

in Subsection II-G.

F. Convolutional Neural Network for UnDIP

DIP requires the selection of a network. The description

of DIP in subsection II-D did not specify a specific network

selection. In [38], the convolutional encoder-decoder network

was suggested as the best option for DIP. Here, we discuss

in detail the network (i.e., fθ) shown in Fig. 2 used for

UnDIP. The CNN, fθ, in UnDIP has a few major differences

with the other deep (convolutional) networks, typically used

for unmixing. First, the entire network is only used for the

abundance estimation, as the endmembers are extracted using

a geometrical approach and are fixed throughout the unmixing.

This framework allows using an unsupervised CNN for un-

mixing where the convolutions can be applied globally on the

entire spatial domain to extract the spatial information. Sec-

ond, the autoencoder network, generally used for deep spectral

unmixing reconstructs spectra as the output of the network
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Fig. 1. Graphical illustration of UnDIP. UnDIP maps a random noise input image Z to Â using a deep network fθ such that Â = f
θ̂
(Z). To estimate the

network’s parameters θ̂, UnDIP starts with randomized weights (θ0) and optimizes θ iteratively by computing the gradient of the loss function (10) which
utilizes the endmembers (E), extracted by SiVM.

using the observed spectra as the input of the network. To do

so, different loss functions such as spectra angle distance and

mean squared error were used to minimize the reconstruction

error. As we will show later in the experiments, minimizing the

reconstruction error w.r.t. both endmembers and abundances

does not necessarily provide a good abundance estimation,

which is the main goal in unmixing. On the other hand, in

UnDIP, the input is Gaussian noise and the output is given by

the abundance maps. The network is trained to minimize the

loss function, w.r.t. the abundances solely.

The core of the UnDIP network is based on the convolu-

tional encoder-decoder (also called hourglass) with some skip

connections, as proposed in [38], however, with two major

differences. First, UnDIP uses only one downsampling block,

one upsampling block, and one skip block while DIP uses

five blocks for each. From our experiments, we found that the

use of several downsampling blocks downgrades the spatial

resolution for the unmixing application. Additionally, as can

be observed in Fig. 3, the UnDIP network converges much

faster and leads to better abundance estimations than DIP.

The other main difference is the activation function used in

the final layer of UnDIP. While the leaky activation function

is used in all layers of DIP, UnDIP uses the Leaky ReLU

activation function for all the layers except the final layer. For

the final layer, UnDIP exploits a softmax activation function

to hold the constraints as discussed before.

The main part of the forward pass (the plain network

without the skip connection) starts with two blocks of 3

layers: a convolution layer (Conv), a batch normalization (BN)

layer, and a Leaky ReLU nonlinear activation layer, which are

followed by a bilinear upsampling layer to account for the

stride factor used in the convolutions. This type of three-layer

blocks (i.e., conv, BN, and activation) is the most common

one used in the CNN architectures in the literature. The

convolutional layers extract different spatial features by using

different filters. The BN speeds up the learning process and

also provides more robustness in terms of the hyperparameter

selection. The activation layer promotes the nonlinearity on

the prediction in every layer. Deep networks are hard to train

due to vanishing gradients. The skip connection is a solution

to this problem and enables to train a deep network by using

an activation from one layer and add it to a deeper layer. In

this way, the network can easily learn the identity function

when the parameters become zero. The network exploits two

more blocks of convolution, batch normalization, and Leaky

ReLU, followed by a convolution layer and softmax which

finally generates the abundances.

G. Network Component and Hyperparameter Selection

In this work, Leaky ReLU was used as the activation

function (except in the last layer), which often speeds up the

learning process since the derivative is either one or close

to zero. We compared the performance of Leaky ReLU with

the use of Sigmoid, ELU, ReLU activation functions, and

found that both Leaky ReLU and ReLU provide the best

results. Leaky ReLU was selected since it is the default for

the DIP network. The negative slope of Leaky ReLU was set

to 0.1, which is also the default value in the DIP network.

For the filter size of the convolutional layers, we used the

default values proposed in [38], i.e., 3×3 in the forward

connections and 1×1 in the skip connections. Downsampling

is often applied using pooling and/or stride inside the CNN.

For downsampling, we only used the stride within the convo-

lution module as is the default in [38]. For upsampling, we

experimented with both the nearest neighborhood and bilinear

interpolation, and found that bilinear interpolation performs

the best. Reflection padding was used in the convolution to

preserve the size of the image. The number of filters used is
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Fig. 2. The proposed convolutional network architecture with one skip connection. This network is used as fθ for UnDIP in the experiments. Different layers
in the network are shown with specific colors.
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Fig. 3. Comparison of the network architecture of DIP versus UnDIP, applied
on the Jasper Ridge data. (a) Loss function value and (b) Abundance MAE.

4 in the skip connection and 256 in the forward connections.

The hyperparameters of the network are listed in Table I. We

TABLE I
HYPERPARAMETERS USED IN THE EXPERIMENTS FOR UNDIP.

Hyperparameters

Input Ch. Ouput Ch. Filter Size Stride
Conv1 r 256 3x3 2
Conv2 256 256 3x3 1
Conv3 260 256 3x3 1
Conv4 256 256 1x1 1
Conv5 256 r 1x1 1

ConvSkip r 4 1x1 1

Negative Slope
Leaky ReLU 0.1

Scale Factor Mode
Upsample 2 Bilinear

Type Learning Rate Iterations
Optimizer Adam 0.001 3000

should emphasize that we do not optimize the hyperparameters

according to the dataset and/or the SNR since this would

be unfair to the competing methods used in the experiments.

Therefore, the values mentioned in Table I are not optimal and

careful tuning according to the noise level and dataset could

possibly lead to better results and probably faster convergence.

Since UnDIP is an iterative algorithm (as opposed to the other

CNN-based algorithms which use training sets for learning)

the stopping point or the number of iterations becomes an

important hyperparameter to set. To deal with this issue,

we use (as also suggested in [38]) exponentially weighted

averaging over the outputs and set the number of iterations to

a large number (3000). This makes the algorithm very robust

to this parameter since the overall average is very close to

the minimum solution, even if there is a considerable jump in

the loss function at the stopping iteration. Finally, an Adam

optimizer was used with a learning rate of 0.001 and PyTorch

was used as the platform for the network implementation.

III. EXPERIMENTAL RESULTS

The experiments were performed on a simulated dataset and

three real datasets. The description of the datasets is given

below.

A. Hyperspectral Data Description

1) Simulated Dataset: A dataset of 60×75 pixels is sim-

ulated by generating linear mixtures of three minerals, i.e.,

Fe2O3, SiO2, and CaO. The endmembers, which are shown

in Fig. 4(s), were measured by an AgriSpec spectrometer

(manufactured by ASD [Analytical Spectral Devices]) and

contain 200 reflection values in the wavelength range [1000-

2500] nm. The ground truth abundance maps are shown in Fig.

4(b). These contain 20 squares of 5 × 5 pixels with different

binary and ternary linear mixtures. The background contains

binary mixtures of 50% of Fe2O3 and 50% of SiO2.

1000 1500 2000 2500

Wavelength in nm

0

0.2

0.4

0.6

0.8

1

R
e
fl
e
c
ta

n
c
e

Fe
2
O

3

SiO
2

CaO

(a) (b)

Fig. 4. The simulated image: (a) Endmembers; (b) Abundance maps.

2) Samson image: The Samson hyperspectral dataset is

shown in Fig. 5(a) and contains 95×95 pixels. The spectral

signatures contain 156 bands in the wavelength range [401-

889] nm. There are three main materials (i.e., Soil, Tree,

and Water). The ground truth endmembers were extracted

using SiVM and the ground truth fractional abundances were

generated using FCLSU. Both are shown in Fig. 5(b) and Fig.

5(c)), respectively.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. ?, NO. ?, OCT. 2020 7

400 500 600 700 800 900

Wavelength in nm

0

0.2

0.4

0.6

0.8

1

R
e

fl
e

c
ta

n
c
e

Soil

Tree

Water

(a) (b) (c)

Fig. 5. Samson image: (a) True-color image (Red: 571.01 nm, Green: 539.53 nm, and Blue: 432.48 nm); Endmembers; (c) Abundance maps.

3) Jasper Ridge image: The Jasper Ridge dataset contains

100×100 pixels and is shown in Fig. 6(a). The dataset contains

224 bands covering the wavelength range [380-2500] nm.

The water absorption bands (1–3, 108–112, 154–166, and

220–224) were removed and 198 channels were retained.

There are four endmembers (i.e., Tree, Water, Soil, and Road,

shown in Fig. 6(b)), which are extracted using SiVM. The

ground truth fractional abundances (Fig. 6(c)) were estimated

using FCLSU.

4) Apex Dataset: The cropped image used in the paper

contains 111×122 pixels (shown in Fig. 7(a)) and 285 bands

which cover the wavelength range [413–2420] nm. In this

dataset, there are four ground measured endmembers (i.e.,

Water, Grass, Road, and Roof, shown in Fig. 7(b)). The scene

is influenced by variable illumination conditions and contains

a shadow covered area. Therefore, to create the ground truth

fractional abundances, we added a shadow endmember (a zero

spectrum) to the list of ground truth endmembers, and then

applied FCLSU.

5) Washington DC Mall Dataset: Washington DC Mall is

an airborne hyperspectral image, captured over the Washington

DC Mall using the HYDICE sensor. The cropped image (Fig.

8(a)) used in this paper contains 319 × 292 pixels in 191 bands

over the spectral range from 0.4 to 2.4 µm. The ground truth

is available online 1 and contains 7 classes: Grass, Tree, Roof,

Road, Water, Trail, and Shadow. The ground truth endmembers

are selected manually for this dataset (shown in Fig. 8(b))

and FCLSU was used to estimate the ground truth fractional

abundances.

B. Experimental Setup

Seven unmixing methods from different categories were

used as competing methods in the experiments:

• The baseline FCLSU [9],

• A blind unmixing method: NMF-QMV [15],

• A sparse unmixing method Collab, which is based on a

group sparsity inducing mixed norm using the collabora-

tive LASSO [25],

• Three deep unmixing methods: uDAS [31], SNSA [28],

and DAEN [29].

1https://engineering.purdue.edu/ landgreb/Hyperspectral.Ex.html

All the parameters for the competing methods were selected

according to the reported default values.

Hyperspectral images generally contain different levels and

types of noise [44]. It has been shown that hyperspectral

unmixing techniques are often remarkably robust to noise and

can be used as denoisers [45]. To compare the robustness of

the techniques w.r.t. the image SNR, we added white zero-

mean Gaussian noise to the data to generate the observed data

Y. Images are generated with SNR= 20, 30, 40, and 50 dB, on

all datasets, except for the Apex and the Washington DC Mall

images. All experiments are repeated five times with random

noise realizations. Mean results and standard deviations are

shown.

For all the datasets, ground truth abundance maps are

available and therefore, quality assessment metrics are applied

to compare the results. In the experiments, the results are

compared based on the abundance mean absolute error (MAE),

the reconstruction error (RE), the spectral RMSE, and the

spectral angle distance (SAD). All results, except for SAD are

reported as percentages. The abundance MAE is given by the

mean of the absolute errors (in percent) between the estimated

abundances and the ground truth abundances:

Abundance MAE =
1

rn

r
∑

k=1

n
∑

i=1

∣

∣

∣
Âki −Aki

∣

∣

∣
× 100, (12)

the reconstruction error is the RMSE (in percent) between

the obtained reconstructed image X̂ and the observed (noisy)

image Y:

RE =

√

√

√

√

1

pn

p
∑

j=1

n
∑

i=1

(

X̂ji −Yji

)2

× 100, (13)

The Spectral RMSE is the RMSE (in percent) between the

obtained reconstructed image X̂ and the original noise-free

image X:

Spectral RMSE =

√

√

√

√

1

pn

p
∑

j=1

n
∑

i=1

(

X̂ji −Xji

)2

× 100, (14)
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Fig. 6. Jasper Ridge image. (a):True-color image (Red: 570.14 nm, Green: 532.11 nm, Blue: 427.53 nm); (b): Endmembers; (c): Abundance maps.
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Fig. 7. Apex image: (a) True-color image (Red: 572.2 nm, Green: 532.3 nm,
Blue: 426.5 nm); (b) Endmembers.
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Fig. 8. Washington DC Mall image: (a) True-color image (Red: 572.7 nm,
Green: 530.1 nm, Blue: 425.0 nm); (b) Endmembers.

SAD (in degree) is used to measure the spectral angle distance

between an estimated and the ground truth endmember as:

SAD(e(i), ê(i)) = arccos

(

〈

e(i), ê(i)
〉

∥

∥e(i)

∥

∥

∥

∥ê(i)

∥

∥

)

180

π
,

We should note that, although a lower Abundance MAE

denotes a better abundance estimation and a lower Spectral

RMSE denotes a better signal reconstruction, a lower RE

does not necessarily mean a better abundance estimation

performance or a better signal reconstruction. According to

the linear model, the RE depends on the linear combination of

the endmembers and abundances. The multiplication of both

may be close to the observed spectra, but individually, they

might not represent the true endmembers and abundances.

Additionally, the RE includes model errors (nonlinearities)

and noise. Only if the data contains insignificant levels of

model errors and noise, a lower RE denotes an improved

performance, and then, the RE will be close to the spectral

RMSE since the observed data is close to the original data.

The RE should be interpreted along with the Abundance MAE.

If the abundance estimation is satisfactory, then a lower RE

indicates a better performance. Otherwise, the spectral RMSE

is more informative for validating the performance.

C. Unmixing Experiments

1) Experiments on Simulated Dataset: Fig. 9 shows the

results of the unmixing techniques applied on the simulated

data. As can be observed from Fig. 9 (a), UnDIP and FCLSU

obtain the lowest Abundance MAE for all SNR values. DAEN

slightly outperforms the remaining techniques and Collabora-

tive LASSO provides the poorest results for 20 dB. The RE for

all techniques is low, despite the poor abundance estimation

of some of the methods, e.g. sparse unmixing. Therefore, the

Spectral RMSE is more informative (Fig. 9 (c)). In the case

of simulated data, the error is only induced by the noise, since

no other model errors were simulated. SNSA, UnDIP, FCLSU,

and NMF-QMV obtain the lowest RMSE, confirming, along

with the good abundance estimation performance, that these

methods are able to reconstruct the data. Fig. 9 (d) shows

the performance of the endmember estimation by the different

techniques, in terms of SAD. Both UnDIP and FCLSU apply

SiVM for the extraction of the endmembers. It can be observed

that SiVM outperforms the other techniques in terms of SAD

for all SNRs.

Fig. 10 visually compares the obtained abundance maps

using the different unmixing techniques for SNR=20. The

visual comparison reveals that UnDIP is less sensitive to noise

than the other techniques, and generates abundance maps that

are very close to the ground truth abundances, even for SNR

values as low as SNR=20 dB. In supervised CNN, image

patches are extracted to train the network and, therefore, the

convolutional operator is only applied on a spatial subset of

the data. Depending on the size of the patches, the spatial

information can be considerably degraded. On the other hand,

UnDIP applies the convolutional operator on the entire spatial

domain, since it is an unsupervised CNN. As can be seen

from Fig. 10, the proposed method successfully preserves the

structures and provides better abundance estimations.
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Fig. 9. Simulated data - The results of unmixing in terms of (a) Abundance MAE, (b) Reconstruction Error, (c) Spectral RMSE, and (d) SAD (in degree)
w.r.t. different noise levels of the observed image (in SNR).
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Fig. 10. Simulated data - Abundance maps obtained by applying different unmixing techniques (20 dB).

2) Experiments on Samson Dataset: Fig. 11 shows the

results of the unmixing experiments applied on the Samson

dataset, and Fig. 12 shows the estimated abundance maps.

It can be observed that FCLSU, UnDIP, and NMF-QMV

obtain the best abundance estimation performances (Fig. 11

(a)), and produce similar abundance maps, close to the ground

truth (Fig. 12). However, NMF-QMV is more sensitive to

noise. Both UnDIP and NMF-QMV obtain a lower RE and

Spectral RMSE than FCLSU. The Abundance MAE of uDAS

increases with increasing noise power, although the RE and

Spectral RMSE remain low. One can conclude that uDAS

performs better as a denoiser than as an unmixer. This is

due to the denoising constraint applied on the encoder in the

uDAS network. DAEN performs better in terms of abundance

estimation than uDAS for low SNR but worse for high SNR.

SNSA obtains a moderate abundance estimation, and the

poorest of all methods for 20 dB, which shows that it is not

robust w.r.t. noise. The abundance estimation performance of

Collaborative unmixing is poor for all SNRs, which makes it

very sensitive to noise (notice the large variance for 20 dB),

as can also be observed from the abundance maps in Fig.

12. Fig. 11 (d) shows that SiVM and uDAS perform better

for the estimation of endmembers than the other methods and

show robustness to the noise. In terms of SAD, DAEN, SNSA

and NMF-QMV show sensitivity to the noise power . A very

low SAD is obtained by collaborative unmixing for 20 dB,

but the abundance MAE and the visual comparison in Fig. 12

reveal a poor abundance estimation. The good performance of

collaborative unmixing in terms of SAD can be attributed to

the averaging effect of endmember bundles that considerably

helps to decrease the SAD.

3) Experiments on Jasper Ridge Dataset: All the unmixing

techniques were applied to the Jasper Ridge image. The results

are given in Fig. 13 and the abundance maps are shown

in Fig. 14. For this dataset, FCLSU and UnDIP perform

the best in terms of Abundance MAE. FCLSU, however,

obtains poor RE and Spectral RMSE. DAEN, SNSA, and

NMF-QMV obtain lower RE and Spectral RMSE but are less

performant in terms of abundance estimation. Collaborative

unmixing obtains the poorest abundance estimation. SNSA is

not robust to the noise, despite very low RE and Spectral

RMSE. As can be observed from Fig. 14, uDAS mixes the

Water and Road classes. Collaborative unmixing can hardly

distinguish Soil from Road. The Water and Tree abundance

maps are well estimated by all techniques, which can be

attributed to their unique endmembers. From Fig. 13(d) one

can observe that SiVM outperforms the other techniques w.r.t.

endmember extraction. Both NMF-QMV and Collaborative

unmixing give poor results. uDAS and SNSA have a similar

moderate performance.

4) Experiments on Apex Dataset: To further evaluate the

unmixing techniques, they were applied to the Apex dataset,

for which ground truth endmembers are available. In this

experiment, we did not add artificial noise to the dataset.

The results of abundance estimations are given in Table II

and abundances are compared visually in Fig. 15. The lowest

overall MAE is obtained by UnDIP which also obtained the

best estimations of the abundances for Road and Shadow.

Collaborative unmixing also performs well (0.2% higher error
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Fig. 11. Samson dataset - The results of unmixing in terms of (a) Abundance MAE, (b) Reconstruction Error, (c) Spectral RMSE, and (d) SAD (in degree)
w.r.t. different noise level of the observed image (in SNR).

Fig. 12. Samson dataset - Abundance maps obtained by applying different unmixing techniques (20 dB).

20 30 40 50

SNR (dB)

0

5

10

15

20

25

30

A
b

u
n

d
a

n
c
e

 M
A

E
 (

%
) UnDIP

FCLSU

NMF-QMV

uDAS

Collab.

SNSA

DAEN

20 30 40 50

SNR (dB)

1

1.5

2

2.5

3

3.5

R
e

c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r 
(%

)

UnDIP

FCLSU

NMF-QMV

uDAS

Collab.

SNSA

DAEN

20 30 40 50

SNR (dB)

1.2

1.4

1.6

1.8

2

2.2

2.4

S
p

e
c
tr

a
l 
R

M
S

E
 (

%
)

UnDIP

FCLSU

NMF-QMV

uDAS

Collab.

SNSA

DAEN

20 30 40 50

SNR (dB)

0

5

10

15

20

25

S
A

D
 (

in
 d

e
g

re
e

)

SiVM

NMF-QMV

uDAS

Collab.

SNSA

DAEN

(a) (b) (c) (d)

Fig. 13. Jasper Ridge dataset - The results of unmixing in terms of (a) Abundance MAE, (b) Reconstruction Error, (c) Spectral RMSE, and (d) SAD (in
degree) w.r.t. the different noise levels of the observed image (in SNR).

Fig. 14. Jasper Ridge dataset - Abundance maps obtained by applying different unmixing techniques (20 dB).
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Fig. 15. Apex dataset - Abundance maps obtained by applying different unmixing techniques.

than UnDIP) and obtains the best estimations for Water and

Grass. uDAS and FCLSU perform similarly with 0.9 and 0.8%

higher error than UnDIP, respectively. NMF-QMV, DAEN and

SNSA obtain abundance errors which are considered poor

compared to the other competing techniques.

The visual comparison in Fig. 15 confirms the results re-

ported in the table. Although Collaborative unmixing provides

the lowest MAE for Water, a visual comparison reveals that

it is the only technique which considerably mixes Water with

Shadow, while for Grass, it shows the best performance, also

visually. UnDIP show the best performance for Road, while

all the other techniques mix the abundances of Road and Roof.

UnDIP outperforms the others on Shadow, also visually. The

performances on the endmember estimation are compared in

Table IV. It can be observed that SiVM outperforms the other

techniques in terms of SAD. NMF-QMV gives the highest

SAD.

TABLE II
ABUNDANCE MEAN ABSOLUTE ERROR (IN %) OF THE APEX DATASET.

THE BEST PERFORMANCES ARE SHOWN IN BOLD.

Abundance UnDIP FCLSU NMF-QMV uDAS Collab. SNSA DAEN

Water 21.4 18.4 22.4 18.8 10.7 15.0 22.4

Grass 11.7 12.3 13.9 12.7 11.1 21.2 17.5

Road 8.3 8.6 10.5 8.9 19.7 28.0 26.6

Roof 11.6 11.5 14.1 11.8 11.7 13.3 13.0

Shadow 11.5 18.1 18.1 16.4 12.2 13.7 11.7

Overall 12.9 13.8 15.8 13.7 13.1 18.2 18.2

5) Experiments on Washington DC Mall Dataset: The

unmixing techniques were applied on the Washington DC Mall

dataset and the results are compared in Table III. Collaborative

unmixing provides the best MAE. SNSA, UnDIP, and FCLSU

perform similarly in terms of MAE and can be considered as

the second best results in the table. uDAS provides the worst

results on this dataset. The visual comparison in Fig. 16 reveals

that all the methods fail to adequately estimate the abundances.

This is due to the poor endmember estimation or extraction,

as can be observed in Table IV.

TABLE III
ABUNDANCE MEAN ABSOLUTE ERROR (IN %) OF THE WASHINGTON DC

DATASET. THE BEST PERFORMANCES ARE SHOWN IN BOLD.

Abundance UnDIP FCLSU NMF-QMV uDAS Collab. SNSA DAEN

Grass 20.4 20.4 25.1 19.4 20.3 20.5 19.8

Tree 27.6 27.7 10.5 25.2 27.2 28.4 27.2

Rood 9.9 9.8 16.0 14.9 11.1 12.6 11.6

Roof 3.0 3.7 7.0 1.9 1.7 3.9 5.8

Water 29.7 30.0 14.6 22.3 21.3 24.3 30.9

Trail 5.5 5.8 23.8 7.4 5.3 6.7 12.3

Shadow 4.0 4.3 1.5 38.4 2.1 2.3 1.1

Overall 14.3 14.5 16.7 18.5 12.7 14.1 15.5

TABLE IV
SAD OF THE APEX AND WASHINGTON DC MALL DATASETS. THE BEST

PERFORMANCES ARE SHOWN IN BOLD.

SAD SiVM NMF-QMV uDAS Collab. SNSA DAEN

Apex 10.80 41.68 18.28 27.14 20.93 19.47
WDC 12.26 26.04 21.14 12.92 26.49 14.70

D. Discussion

Here, we summarize and discuss the results obtained from

the experiments.

• In all experiments, a very low Abundance MAE, RE, and

Spectral RMSE was obtained by UnDIP compared to all

competing methods. This can be partially attributed to its

ability to globally incorporating the spatial information,

as can visually be observed from e.g. the abundance

maps of the simulated data. The results also clearly

indicate that UnDIP is very robust to noise, which is

due to the implicit application of a regularizer in the

network. The incorporation of a geometrical endmember
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Fig. 16. Washington DC Mall dataset - Abundance maps obtained by applying different unmixing techniques.

estimation approach assures that it is entirely devoted

to the abundance estimation. Other methods that jointly

estimate the endmembers and the abundances obtain low

RE values, but do not necessarily perform well on the

abundance estimation. Since the abundance estimation

highly depends on the quality of the endmembers, a

poor endmember estimation evidently leads to a poor

abundance estimation.

• FCLSU performs equally well for estimating fractional

abundances, but obtains higher RE and Spectral RMSE,

making it more sensitive to noise compared to UnDIP. We

should note that FCLSU is used to generate the ground

truth abundances from the noiseless images. and therefore

the Abundance MAE of FCLSU can be considered as the

benchmark.

• uDAS, and NMF-QMV obtain moderate results. On

the simulated dataset, they perform equally well. On

the Samson dataset, NMF-QMV performs better, while

uDAS performs better on Jasper Ridge and Apex. NMF-

QMV is more robust to noise and obtains lower Spectral

RMSE. This can be attributed to the regularization term

for which the regularization parameter was optimally

selected. uDAS provides low RE and moderate Spectral

RMSE which can be attributed to the denoising constraint

inside the deep network. Although uDAS is designed to

optimize the RE, the experimental results show that this

does not guarantee an optimal abundance estimation.

• SNSA obtains good Spectral RMSE but is not as robust as

the competing methods for abundance estimation. SNSA

is based on stacked encoder-decoders and does not exploit

the spatial information. Moreover, the tuning parameter

of the minimum volume regularizer in the cost function is

fixed and not automatically selected and cannot perform

well for all the noise levels.

Overall, DAEN performs moderately. DAEN utilizes a

variational auto encoder-decoder to improve the abun-

dance and endmember estimation by employing a regular-

izer into the loss function. Additionally, DAEN exploits

stacked encoder-decoders to reduce the sensitivity to the

noise, which can be clearly observed in the experimental

results.

• Collaborative unmixing obtains the worst results and

is shown to be very sensitive to noise throughout the

experiments. This may be attributed to the fact that the

endmember bundles are not available a priori but rather

are generated from the data.

• The reported results in terms of SAD reveal the signif-

icant role of the estimated/extracted endmembers on the

abundance estimation. The results confirm that poor end-

member estimation leads to poor abundance estimation.

SiVM consistently outperforms the other techniques in

all the experiments performed in this paper and shows

robustness with respect to the noise power. However, for

both Apex and Washington DC datasets, none of the

methods could estimate/extract the endmembers satisfac-

torily. This can be attributed to the occurrence of highly

mixed pixels and nonlinearities in those datasets.

• Notice that all reported standard deviations are very
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small, except in some cases at 20dB. It seems that all

randomness, from different noise realizations, initializa-

tions (all methods except UnDIP use VCA to initialize the

endmembers, and the random initialization of the UnDIP

network) is well overcome by the applied methods. In

particular, almost always the same endmembers were

extracted, irrespective of the noise level.

E. Sensitivity Analysis to Hyperparameters

In the concept of the deep image prior, it is important that all

the hyperparameters are tuned with respect to the application

to obtain a better performance [38]. Here, we evaluate the

performance of UnDIP with respect to the hyperparameters of

the network. The results for the Jasper Ridge dataset (50 dB)

are depicted in Fig. 17. Fig. 17 (a) shows the performance

of UnDIP with respect to the spatial size of the convolutional

filter. It can be seen that the size of 3×3 is optimal. 5×5

filters perform similarly in terms of MAE but at a higher

computational cost. Fig. 17 (b) plots the MAE values in

function of the number of convolutional filters. As can be

seen, the use of 256 filters provides the best result. Fig.

17 (c) plots the loss function in function of the number of

iterations for three different learning rates (LRs). It can be

seen that a learning rate of LR = 0.001 provides the fastest

convergence for the proposed algorithm. Fig. 17 (d) compares

the performance of UnDIP in terms of MSE for different

activation functions. Both Leaky ReLU and ReLU outperform

the Sigmoid and ELU activation functions.
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Fig. 17. Sensitivity of UnDIP to the hyperparameters of the network. The
experiments was performed on Jasper dataset (50 dB).

F. Processing Time

Table V reports the processing times for the different

unmixing techniques applied to the Apex and Washington DC

Mall datasets. All the algorithms were implemented in Matlab

(2020b), except UnDIP which was implemented in Python

(3.8). The reported processing times were obtained using a

computer with an Intel(R) Core(TM) i9-10980 HK processor

(2.4 GHz), 32GB of memory, a 64-bit Operating System and

an NVIDIA GEFORCE RTX (2080 Super) graphical process-

ing unit. The results are averaged over five experiments. From

the table, it can be observed that, partially due to the efficiency

of GPU programming, the proposed deep learning method is

very competitive to geometric, blind, and sparse unmixing, in

terms of computational time.

TABLE V
PROCESSING TIME (IN SECONDS) OF THE UNMIXING TECHNIQUES

APPLIED TO THE APEX AND WASHINGTON DC MALL DATASETS.

UnDIP FCLSU NMF-QMV uDAS Collab. SNSA DAEN

Apex 49.32 22.75 14.18 235.40 23.87 131.61 678.6

Wash. DC 262.51 69.39 543.9 944.57 204.61 1.34e+03 7.17e+03

IV. CONCLUSION

In this paper, we proposed a deep prior unmixing technique

called UnDIP. UnDIP first extracts the endmembers using a

geometrical simplex volume maximization technique. Relying

on the extracted endmembers, UnDIP estimates the fractional

abundances using a deep convolutional network. The network

is inspired by the theory behind the deep image prior that

implicitly induces a regularizer on the cost function via the

network parameters. Experiments were carried out on a simu-

lated dataset and three real datasets. Comparative assessments

were performed using sparse, geometrical, deep, and blind

unmixing methods. Experimental results confirm that UnDIP

outperforms all the other techniques used in the experiments

based on quality metrics and visual assessment. Additionally,

the experiments showed that UnDIP not only performs very

well on abundance estimation but also successfully recon-

structs the data. Moreover, UnDIP is considerably robust to

the noise power and does not rely on any spectral library. The

experimental results also showed that UnDIP is computation-

ally very competitive to the conventional methods used in the

experiments due to the efficiency of GPU programming.
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