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Abstract—In this paper, we introduce a deep learning-based
technique for the linear hyperspectral unmixing problem. The
proposed method contains two main steps. First, the endmembers
are extracted using a geometric endmember extraction method,
i.e., a simplex volume maximization in the subspace of the dataset.
Then, the abundances are estimated using a deep image prior. The
main motivation of this work is to boost the abundance estimation
and to make the unmixing problem robust to noise. The proposed
deep image prior uses a convolutional neural network to estimate
the fractional abundances, relying on the extracted endmembers
and the observed hyperspectral dataset. The proposed method is
evaluated on simulated and three real remote sensing data for
a range of SNR values (i.e., from 20 to 50 dB). The results
show considerable improvements compared to state-of-the-art
methods. The proposed method was implemented in Python (3.8)
using PyTorch as the platform for the deep network and is
available online: https://github.com/BehnoodRasti/UnDIP.

Index Terms—Hyperspectral image, unmixing, convolutional
neural network, deep learning, deep prior, endmember extraction

I. INTRODUCTION

SPECTRAL unmixing is one of the major hyperspectral
image analysis tasks. Hyperspectral cameras have the

ability to capture the spectral signature of materials. This
ability allows us to distinguish different materials within a
scene. However, due to the limited spatial resolution and
scattering of the light, a pixel spectrum is generally a complex
mixture of the pure spectra of its constituent materials, i.e. the
endmember spectra [1], [2]. Unmixing is the task of estimating
the fractional abundances of those endmembers within the
spectral pixels. From a modeling point of view, unmixing
techniques can be divided into two main groups: linear and
nonlinear unmixing [3], [4].

In linear unmixing, it is assumed that the light only interacts
with one pure material before reaching the sensor. In remote
sensing applications, hyperspectral images are of low spatial
resolution, and pixels typically contain large homogeneous
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regions of single materials. For this situation, the linear
mixture model is a good approximation [3]. In microscopic
scenarios (i.e. close-range scenarios), the pure materials are
intimately mixed within the pixel, and the light undergoes
multiple reflections by several materials. In these situations,
the linear approximation often fails and one has to apply
nonlinear models [3].

In this paper, we aim at remote sensing applications and
focus on the linear hyperspectral unmixing methods. The
linear unmixing methods can be categorized as unsupervised,
supervised, and semi-supervised. Unsupervised methods either
sequentially extract the endmembers from the image and
then estimate the fractional abundances, or simultaneously
estimate both endmembers and abundances from the image
(so-called blind unmixing). Supervised methods only estimate
the abundances from the image assuming that endmembers
are known a priori. If not known a priori, the endmembers
need to be extracted from a large endmember library and one
refers to semi-supervised (so-called sparse unmixing). In the
latter case, the number of endmembers need not to be known
a priori [1], [3].

Endmembers can be extracted from hyperspectral images
based on geometrical principles. This can be done by relying
on either the existence of pure spectra for each material,
located at the vertices of the data simplex or the existence
of sufficient spectra on the facets of the data simplex, to
allow to geometrically locate the vertices of the data simplex.
Approaches such as pixel purity index (PPI) [5], N-FINDR
[6], and the vertex component analysis (VCA) algorithm [7]
use geometrical concepts for endmember extraction. After
endmember extraction, the abundance fractions are generally
estimated by using optimization algorithms such as non-
negative constrained least-squares [8], satisfying the abun-
dance non-negativity constraint (ANC) or fully constrained
least-squares [9], satisfying both ANC and the abundance
sum-to-one constraint (ASC). This step is also referred to as
inversion in the literature [3].

In blind unmixing, both endmembers and abundances are
estimated simultaneously. Two major paradigms in blind un-
mixing are constrained penalized (or regularized) least squares
(CPLS) methods, such as [10] and statistical approaches such
as [11]. Examples of CPLS algorithms are minimum volume
simplex analysis [12], simplex identification via variable split-
ting and augmented Lagrangian (SISAL), and collaborative
nonnegative matrix factorization (CoNMF) [13]. They often
solve a penalized least-squares problem, subject to (either or
both) ASC and ANC. These algorithms often involve a data-
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fitting term and a minimum volume-based regularization term.
A major issue with these algorithms is that the regularization
parameter needs to be tuned. In [14], a geometrical constraint
(the squared of the simplex volume) was enforced as a
regularizer to the fully constrained least squares problem to
simultaneously estimate the abundances and endmembers. In
[15], the regularization parameter for the minimum volume-
based regularization term was automatically selected by de-
termining the simplex which encloses the whole data. The
statistical approaches often formulate the unmixing problem
in a Bayesian way and use different estimators, such as the
joint maximum a posteriori (MAP) estimator in [16]. It is
worth mentioning that both groups are related, as a CPLS
can be derived using a MAP estimator [17]. Due to the
inherent nonconvexity of blind unmixing methods, they are
highly vulnerable to the initialization and therefore they are
always initialized using a geometrical endmember extraction
approach.

In sparse unmixing, the fractional abundances are estimated
using sparse regression techniques. These methods describe
each spectrum as a sparse linear combination of the elements
of a rich library of pure spectra, a problem that can be
generally formulated using CPLS. This results in either a
convex or a non-convex problem, depending on the selected
sparsity promoting penalty to be applied on the abundances
[18]. Sparse unmixing by variable splitting and augmented
Lagrangian (SUnSAL), constrained SUnSAL (C-SUnSAL)
[19] and collaborative sparse unmixing [20] are examples
of sparse unmixing methods. Both SUnSAL and C-SUnSAL
apply an `1 penalty on the fractional abundances. SUnSAL
utilizes `2 for the fidelity term while C-SUnSAL assumes a
constraint to enforce the data fidelity. Collaborative sparse
unmixing is similar to SUnSAL, but applies `2,1 (i.e., the
sum of `2 on the abundances) to promote the sparsity on the
abundances. SUnSAL was improved in [21] by incorporating
spatial information through applying a total variation penalty
on the abundances (SUnSAL-TV).

The spectral variability of the endmembers (i.e. the intra-
class variability of the materials) is taken into account by
using a dictionary of endmember bundles, generated from the
data (as opposed to the above-mentioned sparse regression-
based techniques where the dictionary is made from spectral
libraries and does not rely on the data itself). When using end-
member bundles, four different penalties: the group LASSO
(Least Absolute Shrinkage and Selection Operator) [22], the
collaborative LASSO [23], the elitist LASSO [24], and the
fractional LASSO [25]) were proposed in the framework of
sparse regression in [25], where all take the ASC into account.
The main difference between those techniques is the selection
of the penalty term applied on the abundances.

Deep learning-based networks are state-of-the-art in ma-
chine learning and computer vision applications. Inevitably,
most of the remote sensing applications, involving machine
learning and image processing have been inspired by deep
networks [26]. Recently, a variety of deep neural networks
has been proposed for hyperspectral unmixing, mainly based
on variations of deep encoder-decoder networks, for which the
inputs are the spectra and the outputs are the abundances. The

abundances are then decoded to the spectra again using linear
layers, with the endmembers as the weights. EndNet [27],
SNSA [28], DAEN [29], DeepGUn [30], and uDAS [31] are a
few examples of such unmixing techniques. EndNet proposes
a loss function with several terms, including a Kullback-
Leibler divergence term, a SAD similarity, and a sparsity term
which makes the parameter selection very challenging. SNSA
utilizes a stack of nonnegative sparse autoencoders from which
the last one performs the task of unmixing and the others
are exploited to improve the robustness with respect to the
outliers. DAEN exploits a stacked autoencoder to initialize
a variational autoencoder which performs the unmixing task.
In [30], a variational autoencoder is used to generate the
endmembers. uDAS exploits an additional denoising constraint
on the decoder and a `2,1 sparsity constraint on the decoder.
In all these methods, the spatial information is ignored.

The advantage of incorporating the spatial information for
spectral unmixing has been confirmed in the literature. Train-
ing a network based on a single spectrum at a time ignores the
spatial information. Therefore, patch-wise or cube-wise CNN
was proposed to utilize the spatial information. First, the image
was spatially divided into patches and then the convolution is
applied on small patches of spectra. In [32], it was shown that
cube-wise CNN outperforms pixel-wise CNN. In [33], spatial
information has been exploited for unmixing, by improving
the encoder-decoder architecture proposed in [34], by applying
parallel encoder-decoders on HSI patches. In [35], a CNN was
proposed based on a spatial-spectral model, which is trained
using HSI patches. Most recently, a convolutional autoencoder
was proposed for supervised hyperspectral unmixing in [36],
exploiting 3D convolutional filters. The patchwise approach
was found useful for endmember estimation since it supports
the idea of endmember bundles and captures the variability
of the spectra. However, it degrades (and blurs) the estimated
abundances [35], since small patches do not contain enough
structure for the convolutions (filters) to perform better than
merely a mean filter.

The supervised CNN exploited in the above-mentioned tech-
niques requires spectral signatures to train the CNN. In this
paper, we propose an unsupervised CNN that does not need
spectral signatures for training. The convolutional encoder-
decoder network proposed in this paper is a more general
network than the autoencoders often used in the literature, in
the sense that the input can have any distribution regardless
of the output.

A. Contributions and Novelties

The main motivation of this work is to improve the abun-
dance estimation and to make the unmixing problem robust
to noise. Hence, we propose a method called ”hyperspectral
unmixing using deep image prior” (UnDIP), which utilizes a
conventional geometrical approach for endmember extraction
and a new unmixing deep image prior using a deep convo-
lutional neural network for abundance estimation. The main
novelty of this paper is the introduction of a new unmixing
deep prior for the inversion task. Deep image prior (DIP) was
recently proposed for conventional inverse problems in the
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area of image processing, such as denoising, inpainting, and
super resolution [37], [38]. In [39], DIP was applied for hy-
perspectral image denoising, inpainting, and super resolution.
In this work, the DIP is adjusted to the unmixing problem
to generate fractional abundances. Starting from input noise,
the abundances are generating by iteratively minimizing an
implicitly regularized loss function. The proposed network
is applicable in supervised unmixing scenarios, where the
endmembers are available.

UnDIP has the following attributes that distinguish it from
the other deep learning-based unmixing techniques proposed
in the literature:

• It uses DIP as a deep learning procedure. UnDIP is
designed to solve a regularized inverse problem, in which
the regularizer is implicitly incorporated in the cost
function. This controls the overfitting of the fidelity term
and makes the method robust to noise.

• It incorporates spatial information globally, unlike the
pixelwise or patchwise (convolutional) autoencoder-based
approaches in the literature. UnDIP does not need spectral
signatures for training. The input of the network has the
same spatial size as the observed image and is given by
Gaussian noise which is fixed throughout the learning
process. Then, the network iteratively learns to map that
input to abundance maps. This unsupervised learning
framework has the advantage that the convolutional net-
work can be applied globally on the entire spatial domain
of an image, which leads to sharper abundance maps and
enhances the robustness to noise.

• It combines a geometrical endmember estimation ap-
proach with deep unmixing. The majority of the proposed
blind unmixing techniques, including deep techniques
need to be initialized by a geometrical endmember esti-
mation approach, confirming the importance of this step.
Here, for the first time, UnDIP proposes a collaborative
framework in which a geometrical endmember estimation
is performed prior to the deep unmixing. The endmem-
bers are then used in the loss function for training the
deep network. In this way, the deep network can focus
on the improvement of the abundance estimation, while
the endmembers remain fixed.

The remaining of this paper is organized as follows. The
unmixing methodology is explained in detail in Section II.
The experimental results are shown and discussed in Section
III. Section IV concludes the paper.

II. METHODOLOGY

A. Notation

Before discussing the proposed methodology we explain the
notations used in the paper. Matrices, column vectors, and
scalars are denoted in bold and capital letters, bold letters, and
letters, respectively. X̂ represents the estimate of the variable
X. ‖.‖F and |.| denote the Frobenius norm and the absolute
value. x(i) and xTi denote the ith column and the ith row
of matrix X, respectively. Xij denotes the matrix element
located at ith row and the jth column. 1n is an n-component
column vector of ones. The notation (r)! denotes the factorial

of the positive integer r and det(X) indicates the determinant
of matrix X.

B. Hyperspectral Modeling

We assume a linear model for HSI:

Y = X+N, (1)

where Y∈ Rp×n is the observed HSI, with n pixels and p
bands, X ∈ Rp×n is the unknown image to be estimated, and
N ∈ Rp×n is the model error, including noise. In spectral
unmixing, we assume that:

Y = EA+N, (2)

where E ∈ Rp×rand A ∈ Rr×n, r � p, contain the r
endmembers and their fractional abundances, respectively. The
main goal is to estimate the fractional abundances A, however,
this is not possible without either having prior knowledge
about the endmembers E or estimating/extracting them from
the image.

C. Endmember Extraction

When the endmembers are extracted from the data, one
often relies on the geometry of the data. Due to spectral
redundancy, an HSI often lives in a low-dimensional sub-
space [40], [41]. Therefore, the data can be projected onto
an (r-1)-dimensional subspace and represented by a (r-1)-
dimensional simplex whose vertices are the endmembers em
(m = 1, · · · , r). When pure spectra are available in the data,
the endmembers can be extracted by maximizing the volume
of the data simplex [42]:

argmax
E

V (E) = argmax
E

1

(r− 1)!

∣∣∣∣∣det
[

1 . . . 1

e(1) . . . e(r)

]∣∣∣∣∣ ,
(3)

where E = [e(i)]. In this paper, we use an algorithm, called
simplex volume maximization (SiVM) [43] to extract the
endmembers from the dataset. SiVM selects the endmembers
by iteratively maximizing the simplex volume of the data:

argmax
E

V (E) = argmax
E

√
(−1)r · cmd (E)

2r−1(r− 1)!
, (4)

where cmd is the Cayley–Menger determinant:

cmd (E) = det
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and d2i,j is the Euclidean distance between endmembers ei
and ej . Since (4) does not take into account nuisances such
as noise, we first project the data on the subspace obtained by
the spectral eigenvectors of a singular value decomposition.
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D. Deep Image Prior

In this section, we first explain the general concept of
deep image prior and in the next section, we adapt this
concept to the unmixing problem. CNNs are the most popular
deep learning networks for inverse problems such as image
restoration. They show excellent performances as long as a
large training dataset is available.

Recently, DIP was proposed as an unsupervised deep learn-
ing alternative, in which the network is entirely trained based
on the observed image. DIP generates an image X using
a random initialization Z and utilizing the deep network as
a parametric function X = fθ(Z). Then, the network is
optimized over its parameters (i.e., θ) to generate the optimal
image X̂ = fθ̂(Z).

Generally, inverse image reconstruction tasks, such as de-
noising, super resolution, and inpainting can be formulated as
an optimization problem:

X̂ = argmin
X

Q(Y,X) + λR(X) (5)

where the function Q often controls the fidelity towards the
observed data and is chosen to fit the reconstruction task. R
is a regularizer (or penalty) function selected based on prior
knowledge, and λ is the tuning parameter to trade-off between
the two terms. One major drawback of this framework is that
the selection of a good regularizer depends on the application
and the available prior knowledge, which can considerably
vary in the case of natural images. A widely used regularizer
is total variation, which promotes piece-wise smoothness on
X.

In [38], it was shown that the regularizer can be implicitly
substituted by a deep network:

θ̂ = argmin
θ
Q(Y, fθ(Z)) s.t. X̂ = fθ̂(Z). (6)

where the selection of a proper regularizer is taken off the
hands of the user and the optimization is shifted towards
optimizing the network parameters, i.e., weights and biases.
The minimization problem (6) is solved using the network’s
optimizer, e.g., a gradient descent, applied to the network’s
parameters θ. A common choice for the function Q is the
least squares term and, hence, the problem to solve becomes:

θ̂ = argmin
θ

1

2
||Y − fθ(Z)||2F s.t. X̂ = fθ̂(Z). (7)

E. Abundance Estimation using DIP

In this subsection, we adapt DIP to solve the unmixing prob-
lem. Unlike the majority of the deep learning-based unmixing
techniques proposed in the literature, we propose to use a deep
network for estimating the abundances A only, given fixed
endmembers E. The widely used classical method to estimate
the abundances is to solve the optimization problem:

Â = argmin
A

1

2
||Y −EA||2F s.t. A ≥ 0,1Tr A = 1Tn , (8)

i.e., the fully constrained least squares unmixing (FCLSU) due
to the use of both the ASC and ANC. It has been shown

that the regularized (or penalized) least squares techniques can
take into account prior knowledge of the data and, therefore,
provides a better estimation of the abundances [3]:

Â = argmin
A

1

2
||Y−EA||2F +λR(A)s.t.A ≥ 0,1Tr A = 1Tn ,

(9)
where R(A) is the regularizer or penalty term and λ is the
regularization parameter. The choice of R is dependent on
the available prior knowledge which can vary considerably
in remote sensing images. However, the regularizer can be
implicitly substituted by a deep network and the problem is
transformed into an optimization of the network’s parameters:

θ̂ = argmin
θ

1

2
||Y −Efθ(Z)||2F s.t. Â = fθ̂(Z). (10)

Therefore, problem (10) can be solved using a deep network.
The only issue left to solve is to enforce the constraints. The
constraints in (9) can be easily enforced by using a softmax
function in the final layer of the network, given by:

softmax(A) =
eAij∑r
i=1 e

Aij
∀i, j (11)

As a result, the unmixing problem (8) can be solved using
DIP. Fig. 1 depicts the concept of UnDIP. The random input
image Z is fixed. fθ is a deep network with parameters θ,
which are initialized using random weights θ0 and updated
through the learning process. The core idea of UnDIP is to
map Z to Â, using a deep network fθ such that Â = fθ̂(Z).
Therefore, θ̂ should be estimated. As can be seen from Fig.
1, UnDIP optimizes the network’s parameters θ iteratively by
computing the gradient of the loss function (10), which relies
on the endmembers (E) extracted by SiVM.

When a network is overtrained, overfitting occurs, and the
network will not reach the optimal solution for a test set. Since
the design of UnDIP is not based on training and testing sets,
UnDIP is robust to overfitting of the network. The optimization
is done by iterating based on a fixed input and by optimizing
the output until the loss function has converged. On the other
hand, since UnDIP is an iterative algorithm, the stopping point
becomes an important hyperparameter, which will be discussed
in Subsection II-G.

F. Convolutional Neural Network for UnDIP

DIP requires the selection of a network. The description
of DIP in subsection II-D did not specify a specific network
selection. In [38], the convolutional encoder-decoder network
was suggested as the best option for DIP. Here, we discuss
in detail the network (i.e., fθ) shown in Fig. 2 used for
UnDIP. The CNN, fθ, in UnDIP has a few major differences
with the other deep (convolutional) networks, typically used
for unmixing. First, the entire network is only used for the
abundance estimation, as the endmembers are extracted using
a geometrical approach and are fixed throughout the unmixing.
This framework allows using an unsupervised CNN for un-
mixing where the convolutions can be applied globally on the
entire spatial domain to extract the spatial information. Sec-
ond, the autoencoder network, generally used for deep spectral
unmixing reconstructs spectra as the output of the network
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Fig. 1. Graphical illustration of UnDIP. UnDIP maps a random noise input image Z to Â using a deep network fθ such that Â = fθ̂(Z). To estimate the
network’s parameters θ̂, UnDIP starts with randomized weights (θ0) and optimizes θ iteratively by computing the gradient of the loss function (10) which
utilizes the endmembers (E), extracted by SiVM.

using the observed spectra as the input of the network. To do
so, different loss functions such as spectra angle distance and
mean squared error were used to minimize the reconstruction
error. As we will show later in the experiments, minimizing the
reconstruction error w.r.t. both endmembers and abundances
does not necessarily provide a good abundance estimation,
which is the main goal in unmixing. On the other hand, in
UnDIP, the input is Gaussian noise and the output is given by
the abundance maps. The network is trained to minimize the
loss function, w.r.t. the abundances solely.

The core of the UnDIP network is based on the convolu-
tional encoder-decoder (also called hourglass) with some skip
connections, as proposed in [38], however, with two major
differences. First, UnDIP uses only one downsampling block,
one upsampling block, and one skip block while DIP uses
five blocks for each. From our experiments, we found that the
use of several downsampling blocks downgrades the spatial
resolution for the unmixing application. Additionally, as can
be observed in Fig. 3, the UnDIP network converges much
faster and leads to better abundance estimations than DIP.
The other main difference is the activation function used in
the final layer of UnDIP. While the leaky activation function
is used in all layers of DIP, UnDIP uses the Leaky ReLU
activation function for all the layers except the final layer. For
the final layer, UnDIP exploits a softmax activation function
to hold the constraints as discussed before.

The main part of the forward pass (the plain network
without the skip connection) starts with two blocks of 3
layers: a convolution layer (Conv), a batch normalization (BN)
layer, and a Leaky ReLU nonlinear activation layer, which are
followed by a bilinear upsampling layer to account for the
stride factor used in the convolutions. This type of three-layer
blocks (i.e., conv, BN, and activation) is the most common
one used in the CNN architectures in the literature. The

convolutional layers extract different spatial features by using
different filters. The BN speeds up the learning process and
also provides more robustness in terms of the hyperparameter
selection. The activation layer promotes the nonlinearity on
the prediction in every layer. Deep networks are hard to train
due to vanishing gradients. The skip connection is a solution
to this problem and enables to train a deep network by using
an activation from one layer and add it to a deeper layer. In
this way, the network can easily learn the identity function
when the parameters become zero. The network exploits two
more blocks of convolution, batch normalization, and Leaky
ReLU, followed by a convolution layer and softmax which
finally generates the abundances.

G. Network Component and Hyperparameter Selection

In this work, Leaky ReLU was used as the activation
function (except in the last layer), which often speeds up the
learning process since the derivative is either one or close
to zero. We compared the performance of Leaky ReLU with
the use of Sigmoid, ELU, ReLU activation functions, and
found that both Leaky ReLU and ReLU provide the best
results. Leaky ReLU was selected since it is the default for
the DIP network. The negative slope of Leaky ReLU was set
to 0.1, which is also the default value in the DIP network.
For the filter size of the convolutional layers, we used the
default values proposed in [38], i.e., 3×3 in the forward
connections and 1×1 in the skip connections. Downsampling
is often applied using pooling and/or stride inside the CNN.
For downsampling, we only used the stride within the convo-
lution module as is the default in [38]. For upsampling, we
experimented with both the nearest neighborhood and bilinear
interpolation, and found that bilinear interpolation performs
the best. Reflection padding was used in the convolution to
preserve the size of the image. The number of filters used is
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Fig. 2. The proposed convolutional network architecture with one skip connection. This network is used as fθ for UnDIP in the experiments. Different layers
in the network are shown with specific colors.
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Fig. 3. Comparison of the network architecture of DIP versus UnDIP, applied
on the Jasper Ridge data. (a) Loss function value and (b) Abundance MAE.

4 in the skip connection and 256 in the forward connections.
The hyperparameters of the network are listed in Table I. We

TABLE I
HYPERPARAMETERS USED IN THE EXPERIMENTS FOR UNDIP.

Hyperparameters

Input Ch. Ouput Ch. Filter Size Stride
Conv1 r 256 3x3 2
Conv2 256 256 3x3 1
Conv3 260 256 3x3 1
Conv4 256 256 1x1 1
Conv5 256 r 1x1 1

ConvSkip r 4 1x1 1
Negative Slope

Leaky ReLU 0.1
Scale Factor Mode

Upsample 2 Bilinear
Type Learning Rate Iterations

Optimizer Adam 0.001 3000

should emphasize that we do not optimize the hyperparameters
according to the dataset and/or the SNR since this would
be unfair to the competing methods used in the experiments.
Therefore, the values mentioned in Table I are not optimal and
careful tuning according to the noise level and dataset could
possibly lead to better results and probably faster convergence.
Since UnDIP is an iterative algorithm (as opposed to the other
CNN-based algorithms which use training sets for learning)
the stopping point or the number of iterations becomes an
important hyperparameter to set. To deal with this issue,
we use (as also suggested in [38]) exponentially weighted
averaging over the outputs and set the number of iterations to
a large number (3000). This makes the algorithm very robust

to this parameter since the overall average is very close to
the minimum solution, even if there is a considerable jump in
the loss function at the stopping iteration. Finally, an Adam
optimizer was used with a learning rate of 0.001 and PyTorch
was used as the platform for the network implementation.

III. EXPERIMENTAL RESULTS

The experiments were performed on a simulated dataset and
three real datasets. The description of the datasets is given
below.

A. Hyperspectral Data Description

1) Simulated Dataset: A dataset of 60×75 pixels is sim-
ulated by generating linear mixtures of three minerals, i.e.,
Fe2O3, SiO2, and CaO. The endmembers, which are shown
in Fig. 4(s), were measured by an AgriSpec spectrometer
(manufactured by ASD [Analytical Spectral Devices]) and
contain 200 reflection values in the wavelength range [1000-
2500] nm. The ground truth abundance maps are shown in Fig.
4(b). These contain 20 squares of 5 × 5 pixels with different
binary and ternary linear mixtures. The background contains
binary mixtures of 50% of Fe2O3 and 50% of SiO2.
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Fig. 4. The simulated image: (a) Endmembers; (b) Abundance maps.

2) Samson image: The Samson hyperspectral dataset is
shown in Fig. 5(a) and contains 95×95 pixels. The spectral
signatures contain 156 bands in the wavelength range [401-
889] nm. There are three main materials (i.e., Soil, Tree,
and Water). The ground truth endmembers were extracted
using SiVM and the ground truth fractional abundances were
generated using FCLSU. Both are shown in Fig. 5(b) and Fig.
5(c)), respectively.
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Fig. 5. Samson image: (a) True-color image (Red: 571.01 nm, Green: 539.53 nm, and Blue: 432.48 nm); Endmembers; (c) Abundance maps.

3) Jasper Ridge image: The Jasper Ridge dataset contains
100×100 pixels and is shown in Fig. 6(a). The dataset contains
224 bands covering the wavelength range [380-2500] nm.
The water absorption bands (1–3, 108–112, 154–166, and
220–224) were removed and 198 channels were retained.
There are four endmembers (i.e., Tree, Water, Soil, and Road,
shown in Fig. 6(b)), which are extracted using SiVM. The
ground truth fractional abundances (Fig. 6(c)) were estimated
using FCLSU.

4) Apex Dataset: The cropped image used in the paper
contains 111×122 pixels (shown in Fig. 7(a)) and 285 bands
which cover the wavelength range [413–2420] nm. In this
dataset, there are four ground measured endmembers (i.e.,
Water, Grass, Road, and Roof, shown in Fig. 7(b)). The scene
is influenced by variable illumination conditions and contains
a shadow covered area. Therefore, to create the ground truth
fractional abundances, we added a shadow endmember (a zero
spectrum) to the list of ground truth endmembers, and then
applied FCLSU.

5) Washington DC Mall Dataset: Washington DC Mall is
an airborne hyperspectral image, captured over the Washington
DC Mall using the HYDICE sensor. The cropped image (Fig.
8(a)) used in this paper contains 319 × 292 pixels in 191 bands
over the spectral range from 0.4 to 2.4 µm. The ground truth
is available online 1 and contains 7 classes: Grass, Tree, Roof,
Road, Water, Trail, and Shadow. The ground truth endmembers
are selected manually for this dataset (shown in Fig. 8(b))
and FCLSU was used to estimate the ground truth fractional
abundances.

B. Experimental Setup

Seven unmixing methods from different categories were
used as competing methods in the experiments:

• The baseline FCLSU [9],
• A blind unmixing method: NMF-QMV [15],
• A sparse unmixing method Collab, which is based on a

group sparsity inducing mixed norm using the collabora-
tive LASSO [25],

• Three deep unmixing methods: uDAS [31], SNSA [28],
and DAEN [29].

1https://engineering.purdue.edu/ landgreb/Hyperspectral.Ex.html

All the parameters for the competing methods were selected
according to the reported default values.

Hyperspectral images generally contain different levels and
types of noise [44]. It has been shown that hyperspectral
unmixing techniques are often remarkably robust to noise and
can be used as denoisers [45]. To compare the robustness of
the techniques w.r.t. the image SNR, we added white zero-
mean Gaussian noise to the data to generate the observed data
Y. Images are generated with SNR= 20, 30, 40, and 50 dB, on
all datasets, except for the Apex and the Washington DC Mall
images. All experiments are repeated five times with random
noise realizations. Mean results and standard deviations are
shown.

For all the datasets, ground truth abundance maps are
available and therefore, quality assessment metrics are applied
to compare the results. In the experiments, the results are
compared based on the abundance mean absolute error (MAE),
the reconstruction error (RE), the spectral RMSE, and the
spectral angle distance (SAD). All results, except for SAD are
reported as percentages. The abundance MAE is given by the
mean of the absolute errors (in percent) between the estimated
abundances and the ground truth abundances:

Abundance MAE =
1

rn

r∑
k=1

n∑
i=1

∣∣∣Âki −Aki

∣∣∣× 100, (12)

the reconstruction error is the RMSE (in percent) between
the obtained reconstructed image X̂ and the observed (noisy)
image Y:

RE =

√√√√ 1

pn

p∑
j=1

n∑
i=1

(
X̂ji −Yji

)2
× 100, (13)

The Spectral RMSE is the RMSE (in percent) between the
obtained reconstructed image X̂ and the original noise-free
image X:

Spectral RMSE =

√√√√ 1

pn

p∑
j=1

n∑
i=1

(
X̂ji −Xji

)2
× 100, (14)
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Fig. 6. Jasper Ridge image. (a):True-color image (Red: 570.14 nm, Green: 532.11 nm, Blue: 427.53 nm); (b): Endmembers; (c): Abundance maps.
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Fig. 7. Apex image: (a) True-color image (Red: 572.2 nm, Green: 532.3 nm,
Blue: 426.5 nm); (b) Endmembers.
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Fig. 8. Washington DC Mall image: (a) True-color image (Red: 572.7 nm,
Green: 530.1 nm, Blue: 425.0 nm); (b) Endmembers.

SAD (in degree) is used to measure the spectral angle distance
between an estimated and the ground truth endmember as:

SAD(e(i), ê(i)) = arccos

( 〈
e(i), ê(i)

〉∥∥e(i)∥∥ ∥∥ê(i)∥∥
)
180

π
,

We should note that, although a lower Abundance MAE
denotes a better abundance estimation and a lower Spectral
RMSE denotes a better signal reconstruction, a lower RE
does not necessarily mean a better abundance estimation
performance or a better signal reconstruction. According to
the linear model, the RE depends on the linear combination of
the endmembers and abundances. The multiplication of both
may be close to the observed spectra, but individually, they
might not represent the true endmembers and abundances.
Additionally, the RE includes model errors (nonlinearities)
and noise. Only if the data contains insignificant levels of

model errors and noise, a lower RE denotes an improved
performance, and then, the RE will be close to the spectral
RMSE since the observed data is close to the original data.
The RE should be interpreted along with the Abundance MAE.
If the abundance estimation is satisfactory, then a lower RE
indicates a better performance. Otherwise, the spectral RMSE
is more informative for validating the performance.

C. Unmixing Experiments

1) Experiments on Simulated Dataset: Fig. 9 shows the
results of the unmixing techniques applied on the simulated
data. As can be observed from Fig. 9 (a), UnDIP and FCLSU
obtain the lowest Abundance MAE for all SNR values. DAEN
slightly outperforms the remaining techniques and Collabora-
tive LASSO provides the poorest results for 20 dB. The RE for
all techniques is low, despite the poor abundance estimation
of some of the methods, e.g. sparse unmixing. Therefore, the
Spectral RMSE is more informative (Fig. 9 (c)). In the case
of simulated data, the error is only induced by the noise, since
no other model errors were simulated. SNSA, UnDIP, FCLSU,
and NMF-QMV obtain the lowest RMSE, confirming, along
with the good abundance estimation performance, that these
methods are able to reconstruct the data. Fig. 9 (d) shows
the performance of the endmember estimation by the different
techniques, in terms of SAD. Both UnDIP and FCLSU apply
SiVM for the extraction of the endmembers. It can be observed
that SiVM outperforms the other techniques in terms of SAD
for all SNRs.

Fig. 10 visually compares the obtained abundance maps
using the different unmixing techniques for SNR=20. The
visual comparison reveals that UnDIP is less sensitive to noise
than the other techniques, and generates abundance maps that
are very close to the ground truth abundances, even for SNR
values as low as SNR=20 dB. In supervised CNN, image
patches are extracted to train the network and, therefore, the
convolutional operator is only applied on a spatial subset of
the data. Depending on the size of the patches, the spatial
information can be considerably degraded. On the other hand,
UnDIP applies the convolutional operator on the entire spatial
domain, since it is an unsupervised CNN. As can be seen
from Fig. 10, the proposed method successfully preserves the
structures and provides better abundance estimations.
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Fig. 9. Simulated data - The results of unmixing in terms of (a) Abundance MAE, (b) Reconstruction Error, (c) Spectral RMSE, and (d) SAD (in degree)
w.r.t. different noise levels of the observed image (in SNR).
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Fig. 10. Simulated data - Abundance maps obtained by applying different unmixing techniques (20 dB).

2) Experiments on Samson Dataset: Fig. 11 shows the
results of the unmixing experiments applied on the Samson
dataset, and Fig. 12 shows the estimated abundance maps.

It can be observed that FCLSU, UnDIP, and NMF-QMV
obtain the best abundance estimation performances (Fig. 11
(a)), and produce similar abundance maps, close to the ground
truth (Fig. 12). However, NMF-QMV is more sensitive to
noise. Both UnDIP and NMF-QMV obtain a lower RE and
Spectral RMSE than FCLSU. The Abundance MAE of uDAS
increases with increasing noise power, although the RE and
Spectral RMSE remain low. One can conclude that uDAS
performs better as a denoiser than as an unmixer. This is
due to the denoising constraint applied on the encoder in the
uDAS network. DAEN performs better in terms of abundance
estimation than uDAS for low SNR but worse for high SNR.
SNSA obtains a moderate abundance estimation, and the
poorest of all methods for 20 dB, which shows that it is not
robust w.r.t. noise. The abundance estimation performance of
Collaborative unmixing is poor for all SNRs, which makes it
very sensitive to noise (notice the large variance for 20 dB),
as can also be observed from the abundance maps in Fig.
12. Fig. 11 (d) shows that SiVM and uDAS perform better
for the estimation of endmembers than the other methods and
show robustness to the noise. In terms of SAD, DAEN, SNSA
and NMF-QMV show sensitivity to the noise power . A very
low SAD is obtained by collaborative unmixing for 20 dB,
but the abundance MAE and the visual comparison in Fig. 12
reveal a poor abundance estimation. The good performance of
collaborative unmixing in terms of SAD can be attributed to

the averaging effect of endmember bundles that considerably
helps to decrease the SAD.

3) Experiments on Jasper Ridge Dataset: All the unmixing
techniques were applied to the Jasper Ridge image. The results
are given in Fig. 13 and the abundance maps are shown
in Fig. 14. For this dataset, FCLSU and UnDIP perform
the best in terms of Abundance MAE. FCLSU, however,
obtains poor RE and Spectral RMSE. DAEN, SNSA, and
NMF-QMV obtain lower RE and Spectral RMSE but are less
performant in terms of abundance estimation. Collaborative
unmixing obtains the poorest abundance estimation. SNSA is
not robust to the noise, despite very low RE and Spectral
RMSE. As can be observed from Fig. 14, uDAS mixes the
Water and Road classes. Collaborative unmixing can hardly
distinguish Soil from Road. The Water and Tree abundance
maps are well estimated by all techniques, which can be
attributed to their unique endmembers. From Fig. 13(d) one
can observe that SiVM outperforms the other techniques w.r.t.
endmember extraction. Both NMF-QMV and Collaborative
unmixing give poor results. uDAS and SNSA have a similar
moderate performance.

4) Experiments on Apex Dataset: To further evaluate the
unmixing techniques, they were applied to the Apex dataset,
for which ground truth endmembers are available. In this
experiment, we did not add artificial noise to the dataset.

The results of abundance estimations are given in Table II
and abundances are compared visually in Fig. 15. The lowest
overall MAE is obtained by UnDIP which also obtained the
best estimations of the abundances for Road and Shadow.
Collaborative unmixing also performs well (0.2% higher error
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Fig. 11. Samson dataset - The results of unmixing in terms of (a) Abundance MAE, (b) Reconstruction Error, (c) Spectral RMSE, and (d) SAD (in degree)
w.r.t. different noise level of the observed image (in SNR).

Fig. 12. Samson dataset - Abundance maps obtained by applying different unmixing techniques (20 dB).
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Fig. 13. Jasper Ridge dataset - The results of unmixing in terms of (a) Abundance MAE, (b) Reconstruction Error, (c) Spectral RMSE, and (d) SAD (in
degree) w.r.t. the different noise levels of the observed image (in SNR).

Fig. 14. Jasper Ridge dataset - Abundance maps obtained by applying different unmixing techniques (20 dB).
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Fig. 15. Apex dataset - Abundance maps obtained by applying different unmixing techniques.

than UnDIP) and obtains the best estimations for Water and
Grass. uDAS and FCLSU perform similarly with 0.9 and 0.8%
higher error than UnDIP, respectively. NMF-QMV, DAEN and
SNSA obtain abundance errors which are considered poor
compared to the other competing techniques.

The visual comparison in Fig. 15 confirms the results re-
ported in the table. Although Collaborative unmixing provides
the lowest MAE for Water, a visual comparison reveals that
it is the only technique which considerably mixes Water with
Shadow, while for Grass, it shows the best performance, also
visually. UnDIP show the best performance for Road, while
all the other techniques mix the abundances of Road and Roof.
UnDIP outperforms the others on Shadow, also visually. The
performances on the endmember estimation are compared in
Table IV. It can be observed that SiVM outperforms the other
techniques in terms of SAD. NMF-QMV gives the highest
SAD.

TABLE II
ABUNDANCE MEAN ABSOLUTE ERROR (IN %) OF THE APEX DATASET.

THE BEST PERFORMANCES ARE SHOWN IN BOLD.

Abundance UnDIP FCLSU NMF-QMV uDAS Collab. SNSA DAEN

Water 21.4 18.4 22.4 18.8 10.7 15.0 22.4
Grass 11.7 12.3 13.9 12.7 11.1 21.2 17.5
Road 8.3 8.6 10.5 8.9 19.7 28.0 26.6
Roof 11.6 11.5 14.1 11.8 11.7 13.3 13.0

Shadow 11.5 18.1 18.1 16.4 12.2 13.7 11.7

Overall 12.9 13.8 15.8 13.7 13.1 18.2 18.2

5) Experiments on Washington DC Mall Dataset: The
unmixing techniques were applied on the Washington DC Mall
dataset and the results are compared in Table III. Collaborative
unmixing provides the best MAE. SNSA, UnDIP, and FCLSU
perform similarly in terms of MAE and can be considered as
the second best results in the table. uDAS provides the worst
results on this dataset. The visual comparison in Fig. 16 reveals
that all the methods fail to adequately estimate the abundances.

This is due to the poor endmember estimation or extraction,
as can be observed in Table IV.

TABLE III
ABUNDANCE MEAN ABSOLUTE ERROR (IN %) OF THE WASHINGTON DC

DATASET. THE BEST PERFORMANCES ARE SHOWN IN BOLD.

Abundance UnDIP FCLSU NMF-QMV uDAS Collab. SNSA DAEN

Grass 20.4 20.4 25.1 19.4 20.3 20.5 19.8
Tree 27.6 27.7 10.5 25.2 27.2 28.4 27.2
Rood 9.9 9.8 16.0 14.9 11.1 12.6 11.6
Roof 3.0 3.7 7.0 1.9 1.7 3.9 5.8
Water 29.7 30.0 14.6 22.3 21.3 24.3 30.9
Trail 5.5 5.8 23.8 7.4 5.3 6.7 12.3

Shadow 4.0 4.3 1.5 38.4 2.1 2.3 1.1
Overall 14.3 14.5 16.7 18.5 12.7 14.1 15.5

TABLE IV
SAD OF THE APEX AND WASHINGTON DC MALL DATASETS. THE BEST

PERFORMANCES ARE SHOWN IN BOLD.

SAD SiVM NMF-QMV uDAS Collab. SNSA DAEN

Apex 10.80 41.68 18.28 27.14 20.93 19.47
WDC 12.26 26.04 21.14 12.92 26.49 14.70

D. Discussion

Here, we summarize and discuss the results obtained from
the experiments.

• In all experiments, a very low Abundance MAE, RE, and
Spectral RMSE was obtained by UnDIP compared to all
competing methods. This can be partially attributed to its
ability to globally incorporating the spatial information,
as can visually be observed from e.g. the abundance
maps of the simulated data. The results also clearly
indicate that UnDIP is very robust to noise, which is
due to the implicit application of a regularizer in the
network. The incorporation of a geometrical endmember
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Fig. 16. Washington DC Mall dataset - Abundance maps obtained by applying different unmixing techniques.

estimation approach assures that it is entirely devoted
to the abundance estimation. Other methods that jointly
estimate the endmembers and the abundances obtain low
RE values, but do not necessarily perform well on the
abundance estimation. Since the abundance estimation
highly depends on the quality of the endmembers, a
poor endmember estimation evidently leads to a poor
abundance estimation.

• FCLSU performs equally well for estimating fractional
abundances, but obtains higher RE and Spectral RMSE,
making it more sensitive to noise compared to UnDIP. We
should note that FCLSU is used to generate the ground
truth abundances from the noiseless images. and therefore
the Abundance MAE of FCLSU can be considered as the
benchmark.

• uDAS, and NMF-QMV obtain moderate results. On
the simulated dataset, they perform equally well. On
the Samson dataset, NMF-QMV performs better, while
uDAS performs better on Jasper Ridge and Apex. NMF-
QMV is more robust to noise and obtains lower Spectral
RMSE. This can be attributed to the regularization term
for which the regularization parameter was optimally
selected. uDAS provides low RE and moderate Spectral
RMSE which can be attributed to the denoising constraint
inside the deep network. Although uDAS is designed to
optimize the RE, the experimental results show that this
does not guarantee an optimal abundance estimation.

• SNSA obtains good Spectral RMSE but is not as robust as
the competing methods for abundance estimation. SNSA

is based on stacked encoder-decoders and does not exploit
the spatial information. Moreover, the tuning parameter
of the minimum volume regularizer in the cost function is
fixed and not automatically selected and cannot perform
well for all the noise levels.
Overall, DAEN performs moderately. DAEN utilizes a
variational auto encoder-decoder to improve the abun-
dance and endmember estimation by employing a regular-
izer into the loss function. Additionally, DAEN exploits
stacked encoder-decoders to reduce the sensitivity to the
noise, which can be clearly observed in the experimental
results.

• Collaborative unmixing obtains the worst results and
is shown to be very sensitive to noise throughout the
experiments. This may be attributed to the fact that the
endmember bundles are not available a priori but rather
are generated from the data.

• The reported results in terms of SAD reveal the signif-
icant role of the estimated/extracted endmembers on the
abundance estimation. The results confirm that poor end-
member estimation leads to poor abundance estimation.
SiVM consistently outperforms the other techniques in
all the experiments performed in this paper and shows
robustness with respect to the noise power. However, for
both Apex and Washington DC datasets, none of the
methods could estimate/extract the endmembers satisfac-
torily. This can be attributed to the occurrence of highly
mixed pixels and nonlinearities in those datasets.

• Notice that all reported standard deviations are very
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small, except in some cases at 20dB. It seems that all
randomness, from different noise realizations, initializa-
tions (all methods except UnDIP use VCA to initialize the
endmembers, and the random initialization of the UnDIP
network) is well overcome by the applied methods. In
particular, almost always the same endmembers were
extracted, irrespective of the noise level.

E. Sensitivity Analysis to Hyperparameters

In the concept of the deep image prior, it is important that all
the hyperparameters are tuned with respect to the application
to obtain a better performance [38]. Here, we evaluate the
performance of UnDIP with respect to the hyperparameters of
the network. The results for the Jasper Ridge dataset (50 dB)
are depicted in Fig. 17. Fig. 17 (a) shows the performance
of UnDIP with respect to the spatial size of the convolutional
filter. It can be seen that the size of 3×3 is optimal. 5×5
filters perform similarly in terms of MAE but at a higher
computational cost. Fig. 17 (b) plots the MAE values in
function of the number of convolutional filters. As can be
seen, the use of 256 filters provides the best result. Fig.
17 (c) plots the loss function in function of the number of
iterations for three different learning rates (LRs). It can be
seen that a learning rate of LR = 0.001 provides the fastest
convergence for the proposed algorithm. Fig. 17 (d) compares
the performance of UnDIP in terms of MSE for different
activation functions. Both Leaky ReLU and ReLU outperform
the Sigmoid and ELU activation functions.
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Fig. 17. Sensitivity of UnDIP to the hyperparameters of the network. The
experiments was performed on Jasper dataset (50 dB).

F. Processing Time

Table V reports the processing times for the different
unmixing techniques applied to the Apex and Washington DC
Mall datasets. All the algorithms were implemented in Matlab
(2020b), except UnDIP which was implemented in Python
(3.8). The reported processing times were obtained using a

computer with an Intel(R) Core(TM) i9-10980 HK processor
(2.4 GHz), 32GB of memory, a 64-bit Operating System and
an NVIDIA GEFORCE RTX (2080 Super) graphical process-
ing unit. The results are averaged over five experiments. From
the table, it can be observed that, partially due to the efficiency
of GPU programming, the proposed deep learning method is
very competitive to geometric, blind, and sparse unmixing, in
terms of computational time.

TABLE V
PROCESSING TIME (IN SECONDS) OF THE UNMIXING TECHNIQUES
APPLIED TO THE APEX AND WASHINGTON DC MALL DATASETS.

UnDIP FCLSU NMF-QMV uDAS Collab. SNSA DAEN

Apex 49.32 22.75 14.18 235.40 23.87 131.61 678.6

Wash. DC 262.51 69.39 543.9 944.57 204.61 1.34e+03 7.17e+03

IV. CONCLUSION

In this paper, we proposed a deep prior unmixing technique
called UnDIP. UnDIP first extracts the endmembers using a
geometrical simplex volume maximization technique. Relying
on the extracted endmembers, UnDIP estimates the fractional
abundances using a deep convolutional network. The network
is inspired by the theory behind the deep image prior that
implicitly induces a regularizer on the cost function via the
network parameters. Experiments were carried out on a simu-
lated dataset and three real datasets. Comparative assessments
were performed using sparse, geometrical, deep, and blind
unmixing methods. Experimental results confirm that UnDIP
outperforms all the other techniques used in the experiments
based on quality metrics and visual assessment. Additionally,
the experiments showed that UnDIP not only performs very
well on abundance estimation but also successfully recon-
structs the data. Moreover, UnDIP is considerably robust to
the noise power and does not rely on any spectral library. The
experimental results also showed that UnDIP is computation-
ally very competitive to the conventional methods used in the
experiments due to the efficiency of GPU programming.
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