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AN ISOMORPHISM OF THE WALLMAN AND ČECH-STONE

COMPACTIFICATIONS.

E. COLEBUNDERS, R. LOWEN, M. SIOEN

Abstract

For a metrizable topological space X it is well known that in general the Čech-Stone compactifi-
cation β(X) or the Wallman compactification W (X) are not metrizable. To remedy this fact one
can alternatively associate a point-set distance to the metric, a so called approach distance. It is
known that in this setting both a Čech-Stone compactification β∗(X) and a Wallman compactifi-

cation W ∗(X) can be constructed in such a way that their approach distances induce the original
approach distance of the metric on X [23], [24].

The main goal in this paper is to formulate necessary and sufficient conditions for an approach
space X such that the Čech-Stone compactification β∗(X) and the Wallman compactification

W ∗(X) are isomorphic, thus answering a question first raised in [24]. The first clue to reach
this goal is to settle a question left open in [10], to formulate sufficient conditions for a compact

approach space to be normal. In particular the result shows that the Čech-Stone compactification
β∗(X) of a uniform T2 space, is always normal. We prove that the Wallman compactification
W ∗(X) is normal if and only if X is normal, and we produce an example showing that, unlike for
topological spaces, in the approach setting normality of X is not sufficient for β∗(X) and W ∗(X)
to be isomorphic. We introduce a strengthening of the regularity condition on X, which we call
ideal-regularity, and in our main theorem we conclude that X is ideal-regular, normal and T1

if and only if X is a uniform T1 approach space with β∗(X) and W ∗(X) isomorphic. Classical

topological results are recovered and implications for (quasi-)metric spaces are investigated.

Keywords: Approach space, Čech-Stone compactification, Wallman compactification, regularity,
normality.
Mathematics Subject Classification: 54A05, 54C20, 54D30, 54D35, 54E25, 54E35.

1. Introduction

A metrizable topological space X is normal, meaning that for any A,B closed
subsets, there is a continuous Urysohn map separating A and B in the sense that
f(a) = 1 for a ∈ A and f(b) = 0 for b ∈ B. Equivalently, by the Katětov-Tong
insertion theorem [16], [17] and [28], normality means that for any ρ, η bounded
and lower (respectively upper) semicontinuous, with η ≤ ρ, there exists a realvalued
continuous map f satisfying η ≤ f ≤ ρ.

For some applications in analysis, like for instance the theory of differential
equations or fixed point theory, metric spaces with Lipschitz type functions or non-
expansive maps are more natural than continuous maps. Such isometric settings
get more and more attention like for instance in the study of approximation by
Lipschitz functions in [13], of cofinal completeness and the UC-property in [2], in
investigations on hyperconvexity in [19] and on the non-symmetric analogue of the
Urysohn metric space in [20] and [21]. For other applications the larger context of
approach spaces with contractions is even more suitable as was recently shown in
the context of probability measures [3], [4] and [5], or complexity analysis [7] and
[8].

In [10] normality for topological spaces was extended to approach spaces in
terms of point-set distances and with contractions instead of continuous maps.
Topological spaces are special approach spaces, when the distance is interpreted via
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2 E. COLEBUNDERS, R. LOWEN, M. SIOEN

the closure and so are quasi-pseudometric spaces, when the distance is δq(x,A) =
infa∈A q(x, a) for a quasi-pseudometric q.

Applied to a quasi-pseudometric (approach) space (X, δq), normality means

that when two subsets A,B are γ-separated (in the sense that A(α) ∩ B(β) =
∅, whenever α ≥ 0, β ≥ 0, α + β < γ), then there exists a non-expansive Urysohn
map f : (X, q) → ([0, γ], dE), with dE the Euclidean metric, satisfying f(a) = γ
for a ∈ A and f(b) = 0 for b ∈ B. Here A(α) is defined in terms of the distance
from points to A by A(α) = {x ∈ X|δq(x,A) ≤ α}. Equivalently normality can
be expressed by a Katětov-Tong insertion theorem. A bounded realvalued map ρ
on (X, δq) is lower regular if (ρ(x) − ρ(y)) ∨ 0 ≤ q(x, y) for any x, y ∈ X and a
realvalued map η on (X, q) is called upper regular if (η(y) − η(x)) ∨ 0 ≤ q(x, y)
for any x, y ∈ X. Normality equivalently means that for any ρ, η bounded lower
(respectively upper) regular, with η ≤ ρ, there exists a realvalued non-expansive
map f : (X, q) → ([0,∞], dE) satisfying η ≤ f ≤ ρ. In [11] it was shown that this
notion of normality for quasi-metric spaces coincides with the monoidal version of
normality as introduced in Chapter V of [14].

A compact T2 topological space is known to be normal. In the context of point-
set distances, a quasi-pseudometric space (X, δq) with a compact T2 underlying
topology need not be normal. A counterexample was presented in [10]. It was also
shown that a pseudometric space (regardless of the compactness and separation of
the underlying topology) is always normal, but that a normal quasi-pseudometric
space need not be pseudometric. In the general setting of approach spaces and
contractions, uniform approach spaces are obtained as subspaces of products of
pseudometric spaces. The natural question arises whether a compact T2 uniform
approach space (meaning it is a uniform approach space which has a compact T2

underlying topology) is normal. In [10] a genuine approach example was produced of
a compact T2 uniform approach space that is neither topological nor pseudometric,
but is normal. The general question however was not settled. In this paper, in
section 3, Theorem 3.8 we produce a positive answer to the question by proving
that all compact T2 uniform approach spaces are normal. The result is obtained
by first proving several alternative characterisations of normality. The result of
Theorem 3.8 as well as the alternative characterisations of normality it depends on,
are crucial for the rest of the paper.

For a metrizable topological space X it is well known that in general the Čech-
Stone compactification β(X) or the Wallman compactificationW (X) are not metriz-
able. Working in the setting of approach spaces remedies this fact. It is known that
in this broader setting both a Čech-Stone compactification β∗(X) and a Wallman
compactification W ∗(X) can be constructed in such a way that their approach dis-
tance induces the original approach distance of the given metric on X [23], [24].
Section 4 and the following ones, are a contribution to the compactification theory
for approach spaces. For T2 uniform approach spaces, the Čech-Stone compact-
ification is the reflector β∗ from the category UApp2 of all T2 uniform approach
spaces to the category kUApp2 of compact T2 uniform approach spaces [23]. The
easiest way to construct the compactification β∗(X), given a uniform T2 approach
space X, is described in (3.3). If X is topological, then β∗(X) is isomorphic to the
topological Čech-Stone compactification β(X). In general, for a pseudometric space
X, the Čech-Stone compactification β∗(X) is an approach space which cannot be
derived from a pseudometric.

In [24] the Wallman compactification was introduced for the subcategory of App,
consisting of all weakly symmetric T1-spaces. This class contains all T2 uniform
approach spaces. Given a weakly symmetric T1 approach space X, its bounded
lower regular function frame LX , is a particular so called Wallman base. The
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general concept of a Wallman base was recalled in [12]. From the Wallman base
LX , in [24] an extension of X is obtained on the set W ∗(X) of all maximal zero
ideals Φ over LX . The bounded lower regular functions on X are extended to
W ∗(X) and the set

L̂ = {ρ̂ | ρ ∈ LX}

is a basis of a bounded lower regular function frame LW∗(X) on W ∗(X), making it
into a T1-compactification wX : X → W ∗(X).

When comparing this construction to the topological Wallman compactification
W (X) of a topological space (X, T ) (which is isomorphic to our W ∗(X)), the exten-
sions of lower regular functions in the approach case, correspond to the extensions
of the closed sets from (X, T ). It is well known that in the topological case, car-
rying a closed set G to its closure G in the topological Wallman compactification,
preserves finite intersections and finite unions. The Wallman compactification of
an approach space also has the advantage that the extended lower regular functions
satisfy

µ̂ ∨ ρ = µ̂ ∨ ρ̂ and µ̂ ∧ ρ = µ̂ ∧ ρ̂.

In section 4, Proposition 4.8 we also describe a basis for the upper regular function
frame of W ∗(X), by extending the upper regular functions of X. Upper regular
functions correspond to the open sets in the topological case. Carrying an upper
regular function η to its extension η̌, will also be shown to preserve finite ∧ and
finite ∨.

The main purpose of this paper is to formulate necessary and sufficient conditions
for β∗(X) and W ∗(X) to be isomorphic, thus answering a question first raised
in [24]. As our Theorem 3.8 implies that β∗(X) is always normal, we start our
investigation by studying normality of W ∗(X). In Proposition 6.2 we prove that a
weakly symmetric T1 approach space X is normal if and only if W ∗(X) is normal.

In the topological case normality and T2-separation of X is sufficient for the
topological Wallman compactification W (X) to be isomorphic to the topological
Čech-Stone compactification β(X). We present a counterexample, showing that
for arbitrary approach spaces normality and T2-separation of X is not sufficient.
Another property W ∗(X) should have in order to obtain an isomorphism between
W ∗(X) and β∗(X) is regularity and this is not guaranteed by normality and T2-
separation of X. We introduce a strengthening of the regularity condition on X,
which we call ideal-regularity in Definition 7.4 and in Proposition 7.8 we show that
X is ideal-regular if and only if W ∗(X) is regular.

It is known from [11] that each regular and normal approach space is a uniform
approach space. Moreover in Theorem 5.4 we show that every bounded contraction

f : X → ([0,∞], δdE
) has a unique bounded contractive extension f̃ : W ∗(X) →

([0,∞], δdE
) satisfying f̃ ◦ wX = f and as among uniform approach spaces, β∗

being the reflection UApp2 → kUApp2, is characterised by the extension property
for bounded realvalued contractions. Finally in our main Theorem 7.11 we can
conclude that X is ideal-regular, normal and T1 if and only if X is a uniform T1

approach space with β∗(X) and W ∗(X) isomorphic.
For topological spaces ideal-regularity coincides with normality. So as a corol-

lary we find the well known result that the topological Čech-Stone and Wallman
compactifications are isomorphic if and only if the topological space X is normal
and T1. For every pseudometric approach space X, the set LX coincides with the
set of all bounded contractions f : X → ([0,∞], δdE

). By [26] it follows that β∗(X)
and W ∗(X) are isomorphic. A pseudometric approach space therefore is always
both ideal-regular and normal.
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2. Preliminaries

For more details on concepts and results on approach spaces we refer to [23] or
[22]. We recall terminology and basic results that will be needed in this paper.

Usually an extended quasi-pseudometric on a set X is a function q : X ×X →
[0,∞] which vanishes on the diagonal and satisfies the triangular inequality and
if q moreover satisfies symmetry then it is called an extended pseudometric. In
this paper all such q : X ×X → [0,∞] are allowed to take the value ∞ and both
distances between two different points can be zero. From now on, for simplicity
in terminology we drop the words “extended” and “pseudo”, so in this respect our
terminology differs from what is commonly used. However, it conforms with the
terminology in [23] and [14]. We denote by qMet the category of all quasi-metric
spaces with non-expansive maps as morphisms and by Met the full subcategory of
all metric spaces.

A distance on a set X is a function

(2.1) δ : X × 2X → [0,∞]

with the following properties:

(D1) δ(x, {x}) = 0, ∀x ∈ X,
(D2) δ(x, ∅) = ∞, ∀x ∈ X,
(D3) δ(x,A ∪B) = min{δ(x,A), δ(x,B)}, ∀x ∈ X, ∀A,B ∈ 2X ,
(D4) δ(x,A) ≤ δ(x,A(ε)) + ε, ∀x ∈ X, ∀A ∈ 2X , ∀ε ∈ [0,∞],

with the enlargement

A(ε) = {x|δ(x,A) ≤ ε}.

A pair (X, δ) consisting of a set X endowed with a distance δ is called an approach
space. For A ⊆ X we denote by δA : X → [0,∞] the function defined by δA(x) =
δ(x,A) for x ∈ X.

Morphisms between approach spaces are called contractions. A map f : (X, δX) →
(Y, δY ) is a contraction if

(2.2) ∀x ∈ X, ∀A ⊆ X, δY (f(x), f(A)) ≤ δX(x,A).

The category of approach spaces and contractions is denoted by App.
An approach space X has an approach tower, a family t = (tε)ε∈[0,∞[ where

(2.3) tε : 2
X → 2X ,

is the pretopological closure operator defined by

tε(A) = A(ε),

for A ⊆ X. At level 0 we have a topology. The distance can be recovered from the
approach tower by

(2.4) δ(x,A) = inf{ε | x ∈ A(ε)},

for x ∈ X and A ⊆ X. Using the following characterisation for a map f : (X, tX) →
(Y, tY ) to be a contraction, namely iff

(2.5) f(A(ε)) ⊆ f(A)(ε),

whenever ε ∈ [0,∞[ and A ⊆ X, and suitable axioms for the approach tower, the
category App can be isomorphically described in terms of approach towers. For
details on the axioms we refer to [23].

Convergence in an approach space (X, δ) is described by means of a limit operator
on filters. For a given filter F and a point x ∈ X the value λF(x) is interpreted as
the distance that the point is away from being a limit point of the filter. If FX is
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the set of all filters on X and βX the set of all ultrafilters on X, the limit operator
is a function

λ : FX → [0,∞]X .

The transition from the distance to the limit operator is described by

(2.6) λF(y) = sup
U∈U∈βX,F⊆U

δ(y, U),

for F ∈ FX and y ∈ X. Using the following characterization for a map
f : (X,λX) → (Y, λY ) to be a contraction iff

(2.7) λY f(F)(f(x)) ≤ λXF(x),

for every F ∈ FX and x ∈ X and with f(F) the filter generated by {f(F ) | F ∈ F},
with suitable axioms for the limit operator, the category App can be isomorphically
described in terms of limit operators.

The adherence operator for a filter F and x ∈ X can be derived from the value
of λ on ultrafilters U ∈ β(X),

(2.8) αF(x) = inf
F⊆U,U∈βX

λU(x).

The tower and the limit operator are related by

(2.9) λF(x) ≤ ε ⇔ F → x in the pretopology tε,

for all F ∈ FX, x ∈ X and ε ∈ [0,∞[.
Given an approach space (X, δ) the corresponding bounded local system is the

collection Ab = (Ab(x))x∈X of ideals in [0,∞]Xb , the set of bounded functions from
X to [0,∞],

(2.10) Ab(x) = {ϕ ∈ [0,∞]Xb | inf
z∈A

ϕ(z) ≤ δ(z,A)},

with x ∈ X. Using the characterisation for a map f : (X,Ab,X) → (Y,Ab,Y ) to be a
contraction iff ∀x ∈ X, ∀ϕ′ ∈ Ab,Y (f(x)), ϕ′ ◦ f ∈ Ab,X(x) and suitable axioms for
bounded local systems, the category App can be isomorphically described in terms
of bounded local systems.

An approach space (X, δ) has a gauge, i.e. the collection of quasimetrics on X
given by

(2.11) G = {q | quasimetric on X, δq ≤ δ},

with

(2.12) δq(x,A) = inf
z∈A

q(x, z),

whenever A ⊆ X and x ∈ X. The distance can be recovered from the gauge by

(2.13) δ = sup
q∈G

δq

and we may restrict to the collection of Gb of bounded quasimetrics in G in the
previous formula. A subcollection D ⊆ G stable for finite ∨ is called a gauge basis
if δ = supq∈D δq.

An approach space X is called uniform if the gauge G has a basis consisting of
metrics. With H = {d ∈ G|d metric} we have X is uniform iff

(2.14) δ = sup
d∈H

δd.

Using the following characterisation for a map f : (X,GX) → (Y,GY ) to be a
contraction iff

(2.15) q′ ◦ (f × f) ∈ GX ,
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whenever q′ ∈ GY and suitable axioms for the gauge, the category App can be
isomorphically described in terms of gauges.

The following concepts will play an important role in the sequel. We consider
two quasi-metrics on [0,∞], the quasi-metric

dP(x, y) = x⊖ y = (x− y) ∨ 0,

and its dual d−
P

and note that for the Euclidean metric we have dE = dP ∨ d−
P
.

For an approach space (X, δ) the classes LX of bounded lower regular and UX of
(bounded) upper regular functions, are defined by

(2.16) LX = {f : (X, δ) → ([0,∞], δdP
) | bounded, contractive},

and

(2.17) UX = {f : (X, δ) → ([0,∞], δd−

P

) | bounded, contractive}.

Both are stable for taking finite suprema and infima, LX moreover is stable for
arbitrary bounded suprema, and UX is stable for arbitrary infima.

A basis for the bounded lower regular function frame LX , (basis for the upper
regular function frame UX) is a subset B ⊆ LX (is a subset D ⊆ UX respectively),
which is such that any function in ρ ∈ LX can be written as

(2.18) ρ =
∨

µ∈B,µ≤ρ

µ,

(every function η ∈ UX can be written as

(2.19) η =
∧

ν∈D,ν≥η

ν, respectively).

The function

(2.20) δA ∧ ω : X → [0,∞],

for A ⊆ X and ω < ∞ is an example of a bounded lower regular function. Bounded
upper and lower regular function frames are related in the following way. A basis
for UX is given by

(2.21) {α⊖ ρ|ρ ∈ LX , sup ρ ≤ α < ∞},

and the other way around, a basis for LX is obtained by

(2.22) {α⊖ η|η ∈ UX , sup η ≤ α < ∞}.

The collection of all contractions f : (X, δ) → ([0,∞], δdE
) is denoted by

K((X, δ), ([0,∞], δdE
)),

or shortly K(X), and of all bounded contractions by Kb(X).
Then we have [27]

(2.23) f ∈ UX ∩ LX ⇔ f ∈ Kb(X).

The distance can be recovered from the lower regular function frame by

(2.24) δ(x,A) = sup{ρ(x)|ρ ∈ LX , ρ|A = 0},

for x ∈ X and A ⊆ X.
Using the following characterisation for a map f : (X,LX) → (Y,LY ) to be a

contraction iff

(2.25) ρ ◦ f ∈ LX ,

whenever ρ ∈ LY , and suitable axioms for the bounded lower regular function
frame, the category App can be isomorphically described in terms of bounded lower
regular function frames. Similar results hold for the upper regular function frame.
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Remark that in [24], for an approach space X, the whole lower regular function
frame is considered and denoted by RX , allowing unbounded functions too and
unbounded suprema instead of just bounded ones. By axiomatizing the whole lower
regular function frame as in [23] or the bounded lower regular function frame, where
we focus on, isomorphic categories are described.

If LX is the bounded lower regular function frame, then the function l : [0,∞]Xb →
[0,∞]Xb defined by

(2.26) l(µ) =
∨

{ν ∈ LX |ν ≤ µ}

is called the lower hull operator. This operator is idempotent, monotone, preserves
finite infima and for a constant function α we have l(µ+ α) = l(µ) + α. The lower
hull operator can be calculated directly from the gauge by

(2.27) l(µ)(x) = sup
q∈G

inf
y∈X

(µ(y) + q(x, y)).

If UX is the upper regular function frame then the function u : [0,∞]Xb → [0,∞]Xb
defined by

(2.28) u(µ) =
∧

{ν ∈ U|µ ≤ ν}

is called the upper hull operator. This operator is idempotent, monotone, preserves
finite suprema and for a constant function α we have u(µ + α) = u(µ) + α. The
upper hull operator can be calculated directly from the gauge by

(2.29) u(µ)(x) = inf
q∈G

sup
y∈X

(µ(y)− q(x, y)).

Approach spaces can be isomorphically described by hull operators [23], but the
exact axioms will not be needed in this paper.

As we mentioned, approach spaces can be isomorpically described by distances,
approach towers, limit operators, bounded local systems, gauges or bounded (upper
or lower) regular functions. On a given set X we will often denote a given approach
space simply by X and then we will use its distance δ, its approach tower t =
(tε)ε∈[0,∞[, its limit operator λ, its bounded local system Ab = (Ab(x))x∈X , its
gauge G or its bounded regular function frames LX and UX whenever appropriate.

The category App constitutes a framework wherein other important categories
can be fully embedded. The embedding of quasi-metric spaces is given in the usual
way that one defines a distance δq between points and sets in a metric space as in
(2.12).

The neighborhood filter Vε
δq
(x) of x in the pretopology at level ε in the approach

tower of (X, δq) is generated by

(2.30) {Bq(x, γ)|γ > ε}.

qMet is embedded as a concretely coreflective subcategory. The concrete qMet

coreflection of a given approach space X with distance δ is given by the quasi-
metric space (X, q) where

q(x, y) = δ(x, {y}),

for x, y ∈ X.
Top is embedded as a full concretely reflective and concretely coreflective sub-

category. The embedding of topological spaces is determined by associating with
every topological space (X, T ) (with closure of A written as clA) the distance

δT (x,A) =

{
0 x ∈ clA,

∞ x 6∈ clA.
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Every approach space (X, δ) has two natural topological spaces associated with
it, the topological coreflection, which we will also call the underlying topology, and
the topological reflection. In this paper we will mainly deal with the coreflection
which is the topological space (X, Tδ) determined by the closure

(2.31) x ∈ clA ⇔ δ(x,A) = 0 ⇔ x ∈ A(0).

Tδ coincides with the topology at level 0 of the approach tower.
When X is an approach space notions such as density, closure, open and closed

will always refer to the underlying topology. For f : X → Y, a map between
approach spaces, continuity will always refer to the underlying topologies of X,Y .
This implies that lower (upper) regular functions are lower semicontinuous (upper
semicontinuous respectively). The same holds for properties such as, compact, T1

or T2 when applied to an approach space X. What is meant is that the underlying
topological space (X, Tδ) has the respective property. Other approach properties
like regularity and normality are not equivalent with the corresponding property
of the underlying topology, we will recall their definitions in the sequel, whenever
they are used.

3. Normality for compact spaces

For approach spaces compact and T2 does not imply normality. Counterexam-
ples were provided in [10]. In that paper the normality was shown for the particular
example of β∗(N). In this section we solve the question that was left open in [10],
namely whether compact and uniform implies normality. A positive solution will be
given in subsection 3.2. In order to reach this goal we need some alternative char-
acterisations of normality. These are presented in subsection 3.1. Lifting normality
from an approach space X to its Wallman compactification W ∗(X), as we will need
to do in section 5, will also heavily rely on these new equivalent formulations of
normality.

3.1. Alternative characterisations of normality. Normality for approach spaces
was introduced in [10] by proving several equivalent formulations. One character-
isation is based on Urysohn separation of γ-separated sets, where for an approach
space X and γ > 0, two sets A,B ⊆ X are called γ-separated if

(3.1) A(α) ∩B(β) = ∅, whenever α ≥ 0, β ≥ 0, α+ β < γ.

Another characterisation of normality is based on Katětov-Tong’s insertion. We
recall the definitions from [10].

Theorem 3.1. For an approach space X, the following properties are equivalent:

(1) X satisfies Katětov-Tong’s insertion, meaning that for bounded functions
to [0,∞] satisfying η ≤ ρ with η upper regular and ρ lower regular, there
exists a contractive map f : X → ([0,∞], δdE

) satisfying η ≤ f ≤ ρ.
(2) X satisfies separation by Urysohn contractive maps, meaning that for every

A,B ⊆ X and for every γ > 0, whenever A and B are γ-separated, there
exists a contractive f : X → ([0, γ], δdE

) satisfying f(a) = γ for a ∈ A and
f(b) = 0 for b ∈ B.

An approach space X is normal if and only if it satisfies one and hence both
equivalent conditions in 3.1. The equivalence in 3.1 is the approach counterpart of
a deep and beautiful result in Top that normality can be characterised by means
of insertion between semicontinuous functions. This topological characterisation of
normality is known as Katětov-Tong’s result [16], [28]. We start with alternative
formulations of Katětov-Tong’s insertion for approach spaces.
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Given an approach space X, in the next result we will apply Tong’s lemma [28]
to the special lattice of all contractions K = K(X, ([0, ω], δdE

)) for some ω < ∞,
embedded in the lattice of all maps M = [0, ω]X , where all infima and suprema are
taken. In this particular case, with the notations of Tong, we have Kσ = {

∨
n tn |

∀n : tn ∈ K} ⊆ LX and Kδ = {
∧

n≥1 tn | ∀n : tn ∈ K} ⊆ UX . So using the fact
that

Kσ ∩Kδ ⊆ LX ∩ UX ∩ [0, ω]X = K(X, ([0, ω], δdE
))

by (2.23), the lemma takes the following simpler form.

Lemma 3.2. Let K = K(X, ([0, ω], δdE
)) for some ω < ∞, be embedded in [0, ω]X

where all infima and suprema are taken, let η ∈ Kδ = {
∧

n≥1 tn | ∀n : tn ∈ K}

and ρ ∈ Kσ = {
∨

n tn | ∀n : tn ∈ K} with η ≤ ρ, then a contraction f ∈ K exists
satisfying η ≤ f ≤ ρ.

We first prove the following preliminary results based on 3.2.

Proposition 3.3. Let X be an approach space. The following properties are equiv-
alent:

(1) For all η ∈ UX and ρ ∈ LX with η ≤ ρ, there exists a countable set of
contractions {gn|n ∈ N}, gn : X → ([0,∞], δdE

) with η ≤
∧

n gn ≤ ρ.
(2) For all η ∈ UX and ρ ∈ LX with η ≤ ρ, there exists a countable set of

contractions {hn|n ∈ N}, hn : X → ([0,∞], δdE
) with η ≤

∨
n hn ≤ ρ.

(3) For all η ∈ UX and ρ ∈ LX with η ≤ ρ, there exists a contraction f : X →
([0,∞], δdE

) with η ≤ f ≤ ρ.

Proof. (1) ⇒ (2): For η ≤ ρ ≤ ω < ∞ we have ω − ρ ≤ ω − η. Since ω − ρ is
upper regular and ω − η is lower regular, we can apply (1) to find a countable set
of contractions {gn|n ∈ N} satisfying ω− ρ ≤

∧
n gn ≤ ω− η. Observe that without

loss of generality we may assume that all gn ≤ ω. With hn = ω − gn we have
η ≤

∨
n hn ≤ ρ.

(2) ⇒ (1): Is analogous.
(1) ⇒ (3): For η ≤ ρ ≤ ω < ∞, first apply (1) to obtain a countable set of
contractions {gn|n ∈ N}, which we may assume all to stay below ω, with η ≤∧

n gn ≤ ρ. Then consider the upper regular function
∧

n gn and the lower regular
ρ and apply (2). There exists a countable set of contractions {hn|n ∈ N} with
η ≤

∧
n gn ≤

∨
n hn ≤ ρ. Applying 3.2, the statement (3) follows.

(3) ⇒ (1): This is clear. �

In the next proposition the relation η < ρ is defined pointwise, meaning η(x) <
ρ(x) for all x ∈ X.

Proposition 3.4. Let X be an approach space. The following properties are equiv-
alent:

(1) For all η ∈ UX and ρ ∈ LX with η < ρ, there exists a countable set of
contractions {gn|n ∈ N}, gn : X → ([0,∞], δdE

) with η ≤
∧

n gn ≤ ρ.
(2) For all η ∈ UX and ρ ∈ LX with η < ρ, there exists a countable set of

contractions {hn|n ∈ N}, hn : X → ([0,∞], δdE
) with η ≤

∨
n hn ≤ ρ.

(3) For all η ∈ UX and ρ ∈ LX with η < ρ− 1
p , for some p > 0 with 1

p ≤ inf ρ,

there exists a contraction f : X → ([0,∞], δdE
) with η ≤ f ≤ ρ.

Proof. That (1) and (2) are equivalent is analogous to the equivalence of (1) and
(2) in 3.3.
(1) ⇒ (3): Let η ∈ UX and ρ ∈ LX with ρ ≤ ω < ∞ and η < ρ − 1

p , for some

p > 0, 1
p ≤ inf ρ. Apply (1) to the upper regular function η and the lower regular

function ρ − 1
p to find a countable set of contractions {gn|n ∈ N} which we may
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assume all to stay below ω, with η ≤
∧

n gn ≤ ρ − 1
p < ρ and then (2) to find a

countable set of contractions {hn|n ∈ N} with η ≤
∧

n gn ≤
∨

n hn ≤ ρ. Again by
3.2, statement (3) follows.
(3) ⇒ (1): Let η ∈ UX and ρ ∈ LX with η < ρ ≤ ω. For every n > 0 we have
η < (ρ + 1

n ) −
1
2n with 1

2n < 1
n ≤ inf(ρ + 1

n ) and ρ + 1
n ≤ ω + 1

n , so by the

assumption (3) there exists a contraction gn satisfying η ≤ gn ≤ ρ + 1
n . It follows

that η ≤
∧

n gn ≤ ρ. So we can conclude that (1) is fulfilled.
�

As an application we obtain our first new formulation of normality.

Theorem 3.5. Let X be an approach space. The following properties are equiva-
lent:

(1) X is normal.
(2) For all η ∈ UX and ρ ∈ LX with η < ρ there exists a contraction f : X →

([0,∞], δdE
) satisfying η ≤ f ≤ ρ.

(3) For all η ∈ UX and ρ ∈ LX , for which there is some p > 0 with 1
p ≤ inf ρ,

η < ρ− 1
p , there exists a contraction f : X → ([0,∞], δdE

) satisfying

η ≤ f ≤ ρ.

Proof. That (1) implies (2) follows from 3.1 and that (2) implies (3) is clear.
To prove the implication (3) ⇒ (1), assume that η ≤ ρ. As in the proof of (3) implies
(1) of 3.4, for every n > 0 we have η < (ρ + 1

n ) −
1
2n with 1

2n < 1
n ≤ inf(ρ + 1

n ).

So by the assumption (3) there exists a contraction gn satisfying η ≤ gn ≤ ρ + 1
n .

It follows that η ≤
∧

n gn ≤ ρ. So we can conclude that (1) and hence (3) in
proposition 3.3 is fulfilled. �

Next we describe an alternative for Urysohn separation. We deal with γ+-
separated sets instead of γ-separated sets, where for an approach space X and
γ > 0 two sets A,B ⊆ X are called γ+-separated if

(3.2) A(α) ∩B(β) = ∅, whenever α ≥ 0, β ≥ 0, α+ β ≤ γ.

The next result has a proof quite similar to the proof of (3) ⇒ (1) in Theorem 4.3
in [10].

Proposition 3.6. For an approach space X we have the implication (1) ⇒ (2).

(1) For any two subsets A and B, γ+-separated for γ > 0, there exists a con-
tractive map f : X → ([0, γ], δdE

) satisfying f |A = 0 and f |B = γ.
(2) For η ∈ UX , ρ ∈ LX with η < ρ there exists a countable set of contractions

{fn|n ∈ N}, fn : X → ([0,∞], δdE
) satisfying η ≤

∧
n fn ≤ ρ.

Proof. Assume (1) and let η ∈ UX , ρ ∈ LX with η < ρ ≤ ω for some ω < ∞. For
k,m, n ∈ N with m ≤ k < n, set

Am,n = {ρ ≤ ω
m

n
}, Bk,n = {η ≥ ω(

k

n
+

1

2n
)}.

We show that A
(α)
m,n ∩B

(β)
k,n = ∅ for all α+ β ≤ γ with γ = ω 2k−2m+1

2n .

Let α + β ≤ γ. If x ∈ A
(α)
m,n then since ρ : X → ([0, ω], dP) is contractive, by 2.5

we have ρ(x) ∈ [0, wm/n](α). It follows by (8.1) that infz≤ωm/n(ρ(x)⊖ z) ≤ α and
therefore

ρ(x) ≤
ωm

n
+ α.
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Similarly, assuming x ∈ B
(β)
k,n and using the contractivity of η to the codomain

endowed with d−
P

it follows that

η(x) ≥
ω(2k + 1)

2n
− β.

Since η < ρ, the assumption x ∈ A
(α)
m,n ∩ B

(β)
k,n would imply ω(2k+1)

2n − β < ωm
n + α

which is impossible as it would imply γ < α+ β ≤ γ.
By (1), for 1 < m ≤ k < n, a contraction

fk
m,n ∈ K(X, ([ω

m+ 1

n
, ω

2k + 3

2n
∧ ω], δdE

))

exists with fk
m,n|Am,n

= ωm+1
n and fk

m,n|Bk,n
= ω 2k+3

2n ∧ ω.
From here onwards the proof is exactly the same as the one used in (3) ⇒ (1) in

Theorem 4.3 in [10]. For completeness sake we repeat the construction. Define the
contractions

fm,n =
n−1∨

k=m

fk
m,n and fn =

n−1∧

m=2

fm,n.

Next we show that η ≤ fn whenever n ≥ 3. Let x ∈ X and 1 < m < n, either
x 6∈ Bm,n, then

η(x) ≤ ω
2m+ 1

2n
≤ ω

m+ 1

n
≤ fm,n(x),

or x ∈ Bm,n, then we again consider two cases. If x ∈ Bn−1,n then

η(x) ≤ ω = f (n−1)
m,n (x) ≤ fm,n(x).

Otherwise, a minimal k exists with m < k ≤ n− 1 and x ∈ Bk−1,n, x 6∈ Bk,n. Then
we have

η(x) < ω
2k + 1

2n
= ω

2(k − 1) + 3

2n
= f (k−1)

m,n (x) ≤ fm,n(x).

Next we show that
∧

n≥3 fn ≤ ρ. In order to do so, for x ∈ X we prove that

fn(x)− ρ(x) ≤ ω
2

n

for every n ≥ 3. Fix x ∈ X, then one of three possibilities holds. First if fn(x) ≤
ρ(x), we are done. Secondly if x /∈ Am,n for all m ≥ 2, then ρ(x) > ω(n − 1)/n.
Since fn(x) ≤ ω, we have that

fn(x)− ρ(x) ≤ ω
1

n
< ω

2

n
.

Thirdly, if some minimal m ≥ 2 exists such that x ∈ Am,n, then ρ(x) ≥ ω(m−1)/n
and fm,n(x) = ω(m+ 1)/n. So

fn(x)− ρ(x) ≤ fm,n(x)− ρ(x) ≤ ω
2

n
.

So we can conclude that
η ≤

∧

n≥3

fn ≤ ρ.

�

As an application we obtain our second alternative description of normality.

Theorem 3.7. For an approach space X the following properties are equivalent:

(1) For any two subsets A and B, γ+-separated for γ > 0, there exists a con-
tractive map f : X → ([0, γ], δdE

) satisfying f |A = 0 and f |B = γ.
(2) For all η ∈ UX and ρ ∈ LX with η < ρ− 1

p , for some p > 0 with 1
p ≤ inf ρ,

there exists a contraction f : X → ([0,∞], δdE
) with η ≤ f ≤ ρ.
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(3) X is normal.
(4) For any two subsets A and B, γ-separated for γ > 0, there exists a contrac-

tive map f : X → ([0, γ], δdE
) satisfying f |A = 0 and f |B = γ.

Proof. (1) ⇒ (2): From (1) and 3.6 we have that conditions 3.4 (1) and hence also
3.4 (3) are satisfied. So for all η ∈ UX and ρ ∈ LX with η < ρ− 1

p , for some p > 0

with 1
p ≤ inf ρ, there exists a contraction f with η ≤ f ≤ ρ.

(2) ⇒ (3): This is 3.5.
(3) ⇒ (4): This is 3.1.
(4) ⇒ (1): Clearly any two sets that are γ+-separated are also γ-separated. �

3.2. Compact spaces. The question whether a compact uniform approach space
(2.14) is always normal can now be answered positively.

Theorem 3.8. A compact uniform approach space X is normal.

Proof. Let X be a compact uniform approach space with gauge basis H consisting
of all metrics in the gauge and assume that A and B are γ+-separated for γ > 0.
For b ∈ clX(B) we have δ(b, A) > γ, so by (2.14) there exists a metric db ∈ H with
δdb

(b, A) > γ. For each metric d ∈ H, by (2.1), the distance fulfils the inequality

|δd(x,A)− δd(y,A)| ≤ d(x, y)

for arbitrary x, y, so δd(·, A) : (X, δd) → ([0, ω], δdE
) is contractive on the metric

approach space (X, δd) and hence also on the approach space X. It implies that

{{δd(·, A) > γ}|d ∈ H}

is an open cover of the compact set clX(B). We can choose d1, · · · , dn ∈ H with
clX(B) ⊆

⋃
i=1,··· ,n{δdi

(·, A) > γ} and by putting d = d1 ∨ · · · ,∨dn ∈ H we have

clX(B) ⊆ {δd(·, A) > γ}.

Then the contractive map f = δd(·, A) moreover satisfies f |A = 0 and f |B > γ. So
f ∧ γ fulfils the required conditions. By 3.7, X is normal. �

The easiest way to define the Čech-Stone compactification β∗(X), given a uni-
form T2 approach space X, is by using the embedding

(3.3) eX : X →
∏

f∈Kb(X)

cl[0,∞[ f(X) : x → (f(x))f∈Kb(X),

where the product is taken in the category App of approach spaces. Then β∗(X)
is defined as the closure of eX(X) in this product. It is a uniform approach space
too. So we have the following corollary.

Proposition 3.9. For every T2 uniform approach space X, the Čech-Stone com-
pactification β∗(X) is normal.

An approach space is called regular if

(3.4) λF (γ) ≤ λF + γ

whenever F ∈ F(X), γ ∈ [0,∞[ and where F (γ) is the filter generated by the
collection of enlargements {F (γ)|F ∈ F}. A regular approach space has a regular
underlying topology, but not vice versa. Regularity for approach spaces has been
studied for instance in [6], [1], [29], [9], [11] and [23] and in a monoidal setting in
[14]. In the topological case regularity coincides with the usual topological notion
and in the setting of quasi-metric spaces regularity is equivalent to being a metric
space.
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Proposition 3.10. For a compact approach space X the following properties are
equivalent:

(1) X is a uniform approach space.
(2) X is regular and normal.

Proof. (1) ⇒ (2): This follows from 3.8 and the well known fact that every uniform
approach space is regular [23].
(2) ⇒ (1): This is Theorem 8.1 in [11]. �

Proposition 3.11. For a compact approach space X suppose the bounded upper
and lower regular function frames UX and LX have bases BX stable under finite ∧
and DX , stable under finite ∨ respectively. If for β ∈ BX and γ ∈ DX we have

β < γ ⇒ there exists a contraction g : X → ([0,∞], δdE
), β ≤ g ≤ γ,

then X is normal.

Proof. Let η be upper regular and ρ lower regular, η =
∧

k∈K βk and ρ =
∨

j∈J γj
with βk ∈ BX and γj ∈ DX and η < ρ. For x ∈ X there exists kx ∈ K and jx ∈ J
with βkx

(x) < γjx(x). As −βkx
is lower regular (2.22), γjx − βkx

is lower semicon-
tinuous, so the set {{βkx

< γjx}|x ∈ X} is an open cover of X. By compactness
we can select x1, · · · , xn ∈ X with

X =

n⋃

m=1

{βkxm
< γjxm

}.

We claim that
n∧

m=1

βkxm
<

n∨

m=1

γjxm
.

Indeed for x ∈ X arbitrary, pick m(x) ∈ {1, · · · , n} such that βkxm(x)
(x) <

γjxm(x)
(x). Then we have

∧n
m=1 βkxm

(x) ≤ βkxm(x)
(x) < γjxm(x)

(x) ≤
∨n

m=1 γjxm
(x).

As
∧n

m=1 βkxm
∈ BX and

∨n
m=1 γjxm

∈ DX , by the assumption on these bases
there exists a contraction f satisfying

n∧

m=1

βkxm
≤ f ≤

n∨

m=1

γjxm
.

Finally we have η ≤ f ≤ ρ. By 3.5 the space X is normal. �

4. Bases of lower and of upper regular functions for the Wallman

compactification W ∗(X)

We recall some definitions from [24] and add some results needed in the se-
quel. We express the definitions in terms of the bounded lower regular function
frame LX , whereas in [24] the notions are expressed in terms of the whole lower
regular function frame RX . The resulting concepts are equivalent. In particular
the Wallman compactification W ∗(X) defined below is isomorphic to the Wallman
compactification W(X,RX) introduced in [24].

As in (2.16), LX is the bounded lower regular function frame of X and we define
LX0

the subcollection consisting of all functions ρ ∈ LX satisfying

(4.1) inf
x∈X

ρ(x) = 0.

An approach space X is called weakly symmetric if for all ρ ∈ LX , for all x ∈ X :

(4.2) ρ(x) > 0 ⇒ ∃ρ′ ∈ LX , ρ′(x) = 0 and inf
z∈X

ρ ∨ ρ′(z) > 0.
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4.1. Ideals in LX . Given a weakly symmetric T1 approach space with bounded
lower regular function frame LX , an ideal Φ ⊆ LX is called a zero ideal in LX

(called small ideal in [23]), if
Φ ⊆ LX0

.

The set W ∗(X) is defined as the collection of all maximal zero ideals in LX . Recall
that a maximal zero ideal Φ is prime in the following sense.

(4.3) ∀ρ, ρ′ ∈ LX0
: ρ ∧ ρ′ ∈ Φ ⇒ (ρ ∈ Φ or ρ′ ∈ Φ).

Proposition 4.1. Every Φ ∈ W ∗(X) is saturated in the following sense: if µ ∈ LX0

and ∀ε > 0, ∃ϕε ∈ Φ, µ ≤ ϕε + ε then µ ∈ Φ.

Proof. For Φ ∈ W ∗(X) we put

Φ̃ = {ϕ ∈ LX0
|∀ε > 0, ∃ϕε ∈ Φ, ϕ ≤ ϕε + ε}.

Then Φ̃ is a zero ideal containing Φ, so by the maximality of Φ we have Φ̃ = Φ. �

We recall the link between zero ideals in LX and filters on X as described in
Lemma 4.3.7 in [23]. For a zero ideal Φ in LX the collection

{{ρ ≤ ε}|ρ ∈ Φ, ε > 0}

generates a filter f∗(Φ) on X and

(4.4)
∨

Φ ≤ αf∗(Φ),

where α is the adherence operator introduced in (2.8). The other way around, given
a filter F on X, then

i∗(F) = {ϕ ∈ LX |∃F ∈ F , ϕ ≤ δF }

is a zero ideal in LX and

(4.5) αF =
∨

i∗(F).

Proposition 4.2. An approach space X is compact if and only if for every zero
ideal Φ ⊆ LX0 , there exists x ∈ X satisfying

sup
ϕ∈Φ

ϕ(x) = 0.

Proof. Suppose X is compact and Φ ⊆ LX0
is a zero ideal. By (2.8) and (2.9)

it follows that for the filter f∗(Φ) on X, some x ∈ X exists with αf∗(Φ)(x) = 0.
Applying (4.4) we have

∨
Φ(x) = 0.

To show the other implication, let U be an ultrafilter on X. For the zero ideal
ι∗(U) associated with U , there exists x ∈ X with supϕ∈ι∗(U) ϕ(x) = 0. Applying

(4.5) we can conclude that λU(x) = αU(x) = 0. �

4.2. Lower regular functions in W ∗(X). We recall and adapt some definitions
from [24] and [26]. An extension of X is obtained on the set W ∗(X) of all maximal
zero ideals Φ ⊆ LX with wX : X → W ∗(X) : x → Φx, where

(4.6) Φx = {ϕ ∈ LX |ϕ(x) = 0}.

A basis for the bounded lower regular function frame ofW ∗(X) in the sense of (2.18)
is constructed in the following way. For ρ ∈ LX the function ρ̂ : W ∗(X) → [0,∞]
is defined by

(4.7) ρ̂(Φ) = inf{β ∈ [0,∞]|∃ϕ ∈ Φ : ρ ≤ ϕ+ β} = inf{β ∈ [0,∞]|ρ⊖ β ∈ Φ},

where the infimum is in fact a minimum. Clearly composition with wX gives

ρ̂ ◦ wX = ρ
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and it follows that for α ∈ [0,∞] we have

(4.8) ρ̂(Φ) ≤ α ⇔ ρ⊖ α ∈ Φ.

Note that ρ being bounded implies that also ρ̂ is bounded, in fact since
0 = ρ⊖ sup ρ ∈ Φ for every Φ ∈ W ∗(X), we have ρ̂ ≤ sup ρ. The collection

(4.9) L̂X = {ρ̂|ρ ∈ LX}

is a basis of the bounded lower regular function frame LW∗(X).
In [26] an unbounded extension wρ on W(X,RX) of a function ρ ∈ RX is

considered in order to calculate ρ̂.
As in this paper we restrict to bounded functions, for ρ ∈ LX , we use another

extension to W ∗(X) which is a bounded version of the extension wρ. We define

(4.10)

{
sρ = ρ on wX(X),

sρ = sup ρ on W ∗(X) \ wX(X).

We can use exactly the same proof as in Proposition 3.2 of [26], to obtain the
following result.

Proposition 4.3. With the same notations as above we have ρ̂ = lW∗(X)(sρ).

We recall the following formulas from [24]. For µ, ρ ∈ LX and α ∈ [0,∞[ we
have

(4.11) (µ ∨ ρ)ˆ= µ̂ ∨ ρ̂, (µ ∧ ρ)ˆ= µ̂ ∧ ρ̂, α̂ = α, (µ+ α)ˆ= µ̂+ α.

Moreover if α ≤ inf ρ then

(4.12) (µ− α)ˆ= µ̂− α,

from which it also follows that

(4.13) (µ⊖ α)ˆ= µ̂⊖ α

for all α ∈ [0,∞[.

4.3. Upper regular functions in W ∗(X). In any approach space we have the
following relation between the lower and upper hull operator (2.26), (2.28).

Proposition 4.4. Let µ and ν be bounded functions X → [0,∞] on an approach
space X with upper hull operator u and lower hull operator l, then we have the
following equalities:

(1) u(ν) = sup ν − l(sup ν − ν),
(2) l(µ) = supµ− u(supµ− µ).

Proof. Both proofs are analogous. We prove (2) by calculating the righthandside
using the gauge G of X as in (2.27) and (2.29).

supµ− u(supµ− µ) = supµ− ( inf
d∈G

sup
y∈X

(supµ− µ(y)− d(·, y))

= supµ− supµ+ sup
d∈G

inf
y∈X

(µ(y) + d(·, y))

= l(µ).

�

In 4.8 below we will describe a basis for the upper regular function frame of
W ∗(X) in the sense of (2.19). We first introduce extensions of the functions in UX

to W ∗(X).
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Definition 4.5. Let η ∈ UX , which by definition is bounded. Then by (2.22)
sup η − η is lower regular and bounded and we put

η̌ = sup η − (sup η − η)ˆ .

Clearly by (2.21) η̌ is upper regular and

η̌ ◦ wX = η.

Next we apply 4.5 to some particular upper regular function used in (2.21).

Proposition 4.6. For η = α− ρ with α ≥ sup ρ and ρ lower regular and bounded,
we have the following equality:

η̌ = α− ρ̂ .

Proof. By definition 4.5 and applying (4.11) we have

η̌ = (α− inf ρ)− (α− inf ρ− (α− ρ))ˆ= (α− inf ρ)− (ρ− inf ρ)ˆ

= α− inf ρ− ρ̂+ inf ρ = α− ρ̂.

�

Proposition 4.7. For ρ lower regular and bounded we have the following equality:

(4.14) ρ̂ = sup ρ− (sup ρ− ρ) .̌

Proof. Using 2.21, 4.5 and (4.11) we calculate the righthandside.

sup ρ− (sup ρ− inf ρ) + (sup ρ− inf ρ− sup ρ+ ρ)ˆ= inf ρ+ (ρ− inf ρ)ˆ= ρ̂.

�

Proposition 4.8. The collection

ǓX = {η̌|η ∈ UX}

is a basis of the upper regular function frame of W ∗(X).

Proof. Define
B = {α⊖ ρ̂|ρ ∈ LX , sup ρ ≤ α < ∞}.

By 1.2.51 in [23], B is a basis of the upper regular function frame UW∗(X). Applying
4.6 we have

B = {(α⊖ ρ)ˇ |ρ ∈ LX , sup ρ ≤ α < ∞} ⊆ {η̌ | η ∈ UX} ⊆ UW∗(X),

hence ǓX = {η̌|η ∈ UX} is a basis too. �

Proposition 4.9. Let η be upper regular on X and Φ ∈ W ∗(X), then we have the
following equivalence:

η̌(Φ) ≥ α ⇔ α⊖ η ∈ Φ.

Proof.

η̌(Φ) ≥ α ⇔ sup η − (sup η − η) (̂Φ) ≥ α

⇔ (sup η − η)⊖ (sup η − α) ∈ Φ

⇔ ∀ε > 0, ∃ϕε ∈ Φ : sup η − η ≤ ϕε + sup η − α+ ε

⇔ ∀ε > 0, ∃ϕε ∈ Φ : α⊖ η ≤ ϕε + ε

⇔ α⊖ η ∈ Φ,

where the second equivalence uses (4.8) and the third and last equivalences use
4.1. �

We immediately have the following corollary.
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Proposition 4.10. Let η be upper regular on X and Φ ∈ W ∗(X) then we have the
following equality:

η̌(Φ) = sup{α|α⊖ η ∈ Φ},

where the supremum is in fact a maximum.

For a function η ∈ UX define the extension tη on W ∗(X) by putting

(4.15)

{
tη = η on wX(X),

tη = inf η on W ∗(X) \ wX(X).

Proposition 4.11. With the same notations we have

η̌ = uW∗(X)(tη).

Proof. Applying (4.10) and observing that sup η− tη = s(sup η−η), by 4.4 we have

uW∗(X)(tη) = sup tη − lW∗(X)(sup tη − tη)

= sup η − lW∗(X)(sup η − tη)

= sup η − lW∗(X)(s(sup η − η))

= sup η − (sup η − η)ˆ

= η̌.

�

Proposition 4.12. Let η, η′ be upper regular on X and α < ∞ then we have the
following equalities:

(1) (η ∧ η′)ˇ= η̌ ∧ η̌′,
(2) (η ∨ η′)ˇ= η̌ ∨ η̌′,
(3) α̌ = α,
(4) (η + α)ˇ= η̌ + α,
(5) (η − α)ˇ= η̌ − α if α ≤ inf η.

Proof. (1) Let α ≤ (η̌ ∧ η̌′)(Φ), then we have α⊖ η ∈ Φ and α⊖ η′ ∈ Φ, hence also
(α⊖η)∨(α⊖η′) ∈ Φ, which implies α⊖(η∧η′) ∈ Φ. It follows that (η∧η′) (̌Φ) ≥ α.
The other inequality is clear.
(2) Let α ≤ (η ∨ η′) (̌Φ). Then we have (α⊖ η)∧ (α⊖ η′) = α⊖ (η ∨ η′) ∈ Φ. Since
by maximality, Φ is a prime ideal (4.3), either α ⊖ η ∈ Φ or α ⊖ η′ ∈ Φ. We can
conclude that (η̌ ∨ η̌′)(Φ) ≥ α. The proof of the other inequality is clear.
For the proof of (3), (4) and (5) observe that the extension t satisfies tα = α,
t(η+α) = tη+α, t(η−α) = tη−α for α ≤ inf η. The rest of the proof now follows
from the properties of the upper hull operator (2.28). �

5. Contractions on W ∗(X)

The aim of this section is to prove that bounded contractions from a weakly
symmetric T1 approach space X to ([0,∞], δdE

) have a unique contractive extension
to W ∗(X). We use the following notations in order to formulate the result in
Proposition 5.1 from [23], [15] or [9].
Let Z and Y be approach spaces and consider a map f : A → Y where A is
nonempty and A ⊆ Z. For z ∈ Z and ε ∈ [0,∞] we put

Hε
A(z) = {F ∈ F (Z)|A ∈ F , λZF(z) ≤ ε}
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and

F ε
A(z) =

{
{y ∈ Y |∀F ∈ Hε

A(z) : λY f(F|A)(y) ≤ ε} if Hε
A(z) 6= ∅,

Y if Hε
A(z) = ∅,

where F|A stands for the restriction of the filter F to the set A.

Proposition 5.1. Let Z and Y be approach spaces where Y is regular and T2. If
A ⊆ Z is dense and f : A → Y is a contraction, then the following properties are
equivalent:

(1) There is a unique contraction g : Z → Y such that g|A = f .
(2) For each z ∈ Z :

⋂
α∈[0,∞] F

α
A(z) 6= ∅.

We will need a formulation of the previous result in terms of ultrafilters. Let

V ε
A(z) = {U ∈ β(Z)|A ∈ U , λZU(z) ≤ ε}

and

Uε
A(z) =

{
{y ∈ Y |∀U ∈ V ε

A(z) : λY f(U|A)(y) ≤ ε} if V ε
A(z) 6= ∅,

Y if V ε
A(z) = ∅.

Proposition 5.2. Let Z and Y be approach spaces where Y is regular and T2. If
A ⊆ Z is dense and f : A → Y is a contraction, then the following properties are
equivalent:

(1) There is a unique contraction g : Z → Y such that g|A = f .
(2) For each z ∈ Z :

⋂
α∈[0,∞] U

α
A(z) 6= ∅.

Proof. First observe that in view of the density of A in Z, the sets V ε
A(z) and Hε

A(z)
are nonempty for all z ∈ Z. It is sufficient to prove that

⋂

α∈[0,∞]

Uα
A(z) =

⋂

α∈[0,∞]

Fα
A(z).

One inclusion is clear. To see the other inclusion let y ∈
⋂

α∈[0,∞] U
α
A(z) and let

ε ∈ [0,∞] and F ∈ Hε
A(z) be fixed. For every ultrafilter W with f(F|A) ⊆ W,

there exists an ultrafilter F ⊆ U on Z satisfying f(U|A) ⊆ W . Clearly U ∈ V ε
A(z)

and λY W ≤ λY f(U|A). This implies

λY f(U|A)(y) = sup
f(F|A)⊆W

λY W(y) ≤ sup
F⊆U,f(U|A)⊆W

λY f(U|A)(y) ≤ ε.

�

Let X be an approach space and f : X → Y a map. For a zero ideal Φ ⊆ LX

we define its image by f in LY as

fL(Φ) = {ν ∈ LY | ν ◦ f ∈ Φ}.

Proposition 5.3. For a zero ideal Φ ⊆ LX and f : X → Y we have that fL(Φ) is
a zero ideal on Y which is prime whenever Φ is maximal.

Proof. Clearly fL(Φ) is nonempty and for ν ∈ fL(Φ) we have

inf
y∈Y

ν(y) ≤ inf
y∈f(X)

ν(y) ≤ inf
x∈X

ν(f(x)) = 0,

so fL(Φ) ⊆ LY0
.

For ν, µ ∈ fL(Φ) we clearly have ν∨µ ∈ fL(Φ) and for ν ∈ fL(Φ) and µ ≤ ν, clearly
µ ∈ fL(Φ). So fL(Φ) is a zero ideal on Y . If Φ is a maximal zero ideal then it is
prime and then clearly fL(Φ) is also prime. �
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Theorem 5.4. Let X be a weakly symmetric T1 approach space. Then every
bounded contraction f : X → ([0,∞], δdE

) has a unique bounded contractive ex-
tension

f̃ : W ∗(X) → ([0,∞], δdE
) satisfying f̃ ◦ wX = f.

Proof. Without loss of generality in this proof, not to overload the notations, we
will identify X and wX(X) and consider X nonempty and a dense subset of W ∗(X).
We will apply 5.2 for Z = W ∗(X), A = X and Y = ([0, b], δdE

) for some b < ∞
with f(X) ⊆ [0, b].

Let Φ ∈ W ∗(X) be fixed. In view of the density of X in W ∗(X), all sets V α
X (Φ)

are nonemty. By 5.3, fL(Φ) is a zero ideal on Y and by compactness of Y we can
apply 4.2 to find a ∈ [0, b] with

ν(a) = 0, ∀ν ∈ fL(Φ).

We claim that

a ∈
⋂

α∈[0,∞]

Uα
X(Φ).

In order to see this, suppose on the contrary that for some α ∈ [0,∞[ and
U ∈ V α

X (Φ) we have

λ[0,b]f(U|X)(a) > α.

In the approach space Y, let Vα
δdE

(a) be the neigborhood filter of a in the α-level

pretopology (2.3). As f(U|X) is an ultrafilter, by (2.9) and (2.30) we can choose
F ∈ U , γ > α with

(5.1) f(F ∩X) ∩BdE
(a, γ) = ∅.

We have that the sets {a} and f(F ∩X) are γ-separated in Y . Indeed, if |c−a| ≤ ξ
and δdE

(c, f(F ∩X)) ≤ τ with ξ + τ < γ, choose τ < τ ′ such that ξ + τ ′ < γ. Then
there exists some x ∈ F ∩X, |c− f(x)| < τ ′ and we would have

|a− f(x)| ≤ |a− c|+ |c− f(x)| ≤ ξ + τ ′ < γ,

which is impossible in view of (5.1).
Applying the normality of the metric approach space Y [10], we obtain a contraction
ν : Y → ([0, γ], δdE

) satisfying ν(a) = γ and ν|f(F ∩X) = 0.
By assumption and (2.6) we have λW∗(X)U(Φ) = supG∈U δW∗(X)(Φ, G) ≤ α, so as

L̂X is a basis for LW∗(X), by (2.24)

sup
G∈U

sup
µ∈LW∗(X),µ|G=0

µ(Φ) = sup
G∈U

sup
σ∈LX ,σ̂|G=0

σ̂(Φ) ≤ α.

In particular, with ρ = ν ◦ f ∈ LX , F ∩ X ∈ U and ρ̂|F ∩ X = ρ|F ∩ X = 0, it
follows that ρ̂(Φ) ≤ α, which by (4.8) means ρ ⊖ α ∈ Φ. For the function ν this
implies ν ⊖ α ∈ fL(Φ), but then also ν ⊖ α(a) = 0 and finally ν(a) ≤ α, which
contradicts ν(a) = γ > α. This proves our claim. �

6. Normality of W ∗(X)

From 3.9 we know that the Čech-Stone compactification β∗(X) is always nor-
mal. In this section we formulate necessary and sufficient conditions for W ∗(X)
to be normal as well. First we need some preliminary results linking the order be-
tween lower and upper regular functions on X and on W ∗(X). Let X be a weakly
symmetric T1 approach space.
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Proposition 6.1. For η upper regular and ρ bounded lower regular on X, ρ̂ and η̌
their extensions on W ∗(X), we have the following equivalence:

η ≤ ρ ⇔ η̌ ≤ ρ̂.

Proof. One implication is trivial. To show the other implication, let η ≤ ρ and
assume that there exists a maximal zero ideal Φ ∈ W ∗(X) for which ρ̂(Φ) < η̌(Φ).
Using the expressions for ρ̂(Φ) and η̌(Φ) in 4.7 and 4.10, there exist β, α with
β ⊖ η ∈ Φ and ρ⊖ α ∈ Φ and α < β. Since also ρ⊖ α ∨ β ⊖ η ∈ Φ we have

inf
z∈X

(ρ(z)⊖ α ∨ β ⊖ η(z)) = 0.

Let ε > 0 be chosen such that α+ ε < β − ε. Then there exists z ∈ X for which

ρ(z)⊖ α ∨ β ⊖ η(z) < ε.

This would imply ρ(z) < α+ ε < β − ε < η(z), which is a contradiction. �

Proposition 6.2. Let X be a weakly symmetric T1 approach space. The following
properties are equivalent:

(1) X is normal.
(2) W ∗(X) is normal.

Proof. (1) ⇒ (2): As W ∗(X) is compact, by proposition 3.11 it is sufficient to
check normality on bases. Assume η̌ < ρ̂ on W ∗(X) for η upper regular and ρ
lower regular and bounded. For the restrictions to X we have η < ρ and as X is
normal, by 3.5 we can find a bounded contraction f : X → ([0,∞], δdE

) satisfying

η ≤ f ≤ ρ.

As the contractive extension f̃ : W ∗(X) → ([0,∞], δdE
) is continuous for the un-

derlying topologies, inf η ≤ f ≤ sup ρ implies inf η ≤ f̃ ≤ sup ρ and using the

extensions from (4.10) and (4.15), we have tη ≤ f̃ ≤ sρ and hence using 4.11 and
4.3 we have

η̌ = uW∗(X)(tη) ≤ uW∗(X)(f̃) = f̃ = lW∗(X)(f̃) ≤ lW∗(X)(sρ) = ρ̂.

(2) ⇒ (1): Suppose η is upper regular and ρ lower regular and bounded with η ≤ ρ
on X. So by 6.1 and (2) we can find a contraction h : W ∗(X) → ([0,∞], δdE

)
satisfying η̌ ≤ h ≤ ρ̂. Then the restriction h|X satisfies η ≤ h|X ≤ ρ. �

It is well known that for topological approach spaces [18] or [25], normality and
T2-separation of X is sufficient conditions for the Wallman compactification to be
regular. Next we show that in the arbitrary approach setting normality and T2-
separation is not sufficient to ensure regularity of the Wallman compactification.
We give an example of a quasi-metric weakly symmetric T2 approach space X that
is normal but not regular. So neither can its Wallman compactification be regular.

Example 6.3. (X, q) is the quasi-metric space that was introduced in [24]. X =
[0,∞[ and q(x, y) = 0 if x = y, q(x, y) = 1 if y < x and q(x, y) = 2 if x < y. The
space (X, δq) was shown to be weakly symmetric and since the underlying topology
is discrete it is a T2 space. (X, q) is not metric and therefore (X, δq) is not regular
[23]. We prove that (X, δq) is normal.

Let A and B be γ-separated. We claim that γ ≤ 1. Choose x ∈ A and y ∈ B.
As x 6= y we may assume x < y. Then y ∈ A(1) ∩ B since δq(y,A) ≤ q(y, x) = 1.

So if γ > 1, then for α = 1 and β = 0 we have α+ β < γ and A(α) ∩B(β) 6= ∅.
For A and B γ-separated with γ ≤ 1, let f = γ.1A. To see that f : (X, δq) →

([0, γ], δdE
) is contractive, consider the approach tower of the approach space ([0, γ], δdE

)
in the codomain. At level 1 (and higher) the structure is indiscrete as the balls
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BdE
(x, α) have radius α > 1. On the other hand looking at the approach tower of

(X, δq), at levels ε < 1 the structure is discrete. So f is continuous at every level
and by (2.5) it is contractive.

7. Regularity and T2-separation for W ∗(X)

Another property W ∗(X) should have, besides normality, in order to obtain an
isomorphism between W ∗(X) and β∗(X) is regularity. As we know from [11], once
W ∗(X) is normal and regular it is a uniform approach space. We introduce a
strengthening of regularity on X, which we call ideal-regularity in Definition 7.4
and we show that X is ideal-regular if and only if W ∗(X) is regular. Let X be an
approach space. We use the following notation which we borrow from the theory on
approach frames [29], [1] and adapt it to have an equivalent bounded formulation.

For bounded lower regular functions ρ, ρ′ and for γ < ∞ we write ρ′ ≺γ ρ iff

(7.1) ρ′ ≤ ρ and ∃ρ′′ lower regular and bounded, ρ′ ∧ ρ′′ ≡ 0, ρ ∨ (ρ′′ ⊖ γ) ≫ 0,

where µ ≫ 0 is the short notation for inf µ > 0. We recall that regularity of an
approach frame [29], [1], when applied to the approach frame of all lower regular
functions on an approach space X, is equivalent to the regularity of the approach
spaceX, (3.4). This result too can be adapted to the bounded lower regular function
frame LX as follows.

Proposition 7.1. Let X be an approach space with bounded lower regular function
frame LX . The following properties are equivalent:

(1) X is regular.
(2) LX is regular as an approach frame, meaning for ρ ∈ LX , x ∈ X, γ < ∞

and ε > 0 there exists ρ′ ∈ LX with ρ′ ≺γ ρ and ρ(x) ≤ ρ′(x) + γ + ε.

Proposition 7.2. A regular approach space is weakly symmetric.

Proof. Let X be a regular approach space and let ρ ∈ LX , x ∈ X with ρ(x) > 0.
Put γ = 0 and choose ε with ρ(x) > ε. We use the regularity of LX as an approach
frame, obtaining ρ′ ∈ LX with ρ′ ≺0 ρ and ρ(x) ≤ ρ′(x)+ε. So there exists ρ′′ ∈ LX

with ρ′′ ∧ ρ′ = 0 and ρ ∨ ρ′′ ≫ 0. Since ρ′(x) > 0 we have ρ′′(x) = 0, so ρ′′ fulfils
the required conditions. �

Proposition 7.3. Let X be an approach space with bounded lower regular function
frame LX . Let DX ⊆ LX be a basis such that for every σ ∈ DX , x ∈ X, γ < ∞ and
ε > 0 condition (2) in 7.1 is fulfilled. Then LX is regular as an approach frame.

Proof. Let ρ ∈ LX , x ∈ X, γ < ∞ and ε > 0. Since ρ =
∨

σ≤ρ,σ∈DX
σ we can

choose σ ∈ DX , σ ≤ ρ and ρ(x)− ε
2 ≤ σ(x). For σ, x, γ, ε

2 let ρ′ ∈ LX with ρ′ ≺γ σ
and σ(x) ≤ ρ′(x) + γ+ ε

2 . Clearly ρ′ ≺γ ρ and ρ(x) ≤ σ(x) + ε
2 ≤ ρ′(x) + γ+ ε. �

Definition 7.4. X is ideal-regular if for every ρ bounded lower regular, for every
maximal zero ideal Φ ⊆ LX0

, for every γ < ∞ and for every ε > 0 there exists ρ′

lower regular with ρ′ ≺γ ρ and satisfying

ρ′ ⊖ α ∈ Φ ⇒ ρ⊖ (α+ γ + ε) ∈ Φ, ∀α ≥ 0.

Proposition 7.5. If an approach space is ideal-regular then it is regular.
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Proof. Let X be ideal-regular. We will show that the approach frame LX is regular
as an approach frame in the sense of 7.1. Let ρ be bounded lower regular, x ∈ X,
γ < ∞ and ε > 0. Consider the maximal zero ideal Φx ⊆ LX . By ideal-regularity
of X there exists ρ′ lower regular with ρ′ ≺γ ρ and satisfying

ρ′ ⊖ α ∈ Φx ⇒ ρ⊖ (α+ γ + ε) ∈ Φx, ∀α ≥ 0.

Let α be arbitrary with ρ′(x) ≤ α. This implies ρ′⊖α ∈ Φx so ρ⊖ (α+γ+ε) ∈ Φx.
Hence ρ⊖ (γ + ε)(x) ≤ α. We can conclude that ρ⊖ (γ + ε) ≤ ρ′(x). �

Proposition 7.6. A compact approach space is ideal-regular if and only if it is
regular.

Proof. Let X compact and regular. Let ρ ∈ LX , Φ ⊆ LX0 a maximal zero ideal,
γ < ∞ and ε > 0. By 4.2 there exists z ∈ X with supϕ∈Φ ϕ(z) = 0, which implies
Φ ⊆ Φz. By the maximality of Φ we have Φ = Φz. For ρ, z, γ and ε, by regularity
there exists ρ′ ∈ LX with ρ′ ≺γ ρ and ρ(z) ≤ ρ′(z) + γ + ε. Clearly we have
ρ′ ⊖ α ∈ Φz ⇒ ρ⊖ (α+ γ + ε) ∈ Φz. �

Proposition 7.7. Let X be a weakly symmetric T1 approach space. Let ρ and ρ′

be bounded lower regular on X. Then we have the implication

ρ′ ≺γ ρ ⇒ ρ̂′ ≺γ ρ̂.

Proof. First observe that by (4.11) ρ′ ≤ ρ implies ρ̂′ ≤ ρ̂. Moreover ρ′ ≺γ ρ on X
implies the existence of a bounded lower regular ρ′′ with ρ′∧ρ′′ ≡ 0 and ρ∨(ρ′′⊖γ) ≫
0. Let α > 0 with ρ ∨ (ρ′′ ⊖ γ) ≥ α. Applying (4.11) and (4.13) it follows that

(ρ′ ∧ ρ′′)ˆ= ρ̂′ ∧ ρ̂′′ = 0 and (ρ ∨ (ρ′′ ⊖ γ))ˆ= ρ̂ ∨ (ρ′′ ⊖ γ)ˆ= ρ̂ ∨ (ρ̂′′ ⊖ γ) ≥ α.

Hence ρ̂′ ≺γ ρ̂. �

Proposition 7.8. Let X be a weakly symmetric T1 approach space. The following
properties are equivalent:

(1) X is ideal-regular.
(2) W ∗(X) is regular.

Proof. (1) ⇒ (2): By (4.9) the bounded lower regular function frame LW∗(X) has
a basis

L̂X = {ρ̂|ρ ∈ LX}.

In view of 7.1 and 7.3 let ρ ∈ LX , Φ ∈ W ∗(X), γ < ∞ and ε > 0. By the
ideal-regularity of X, there exists ρ′ lower regular with ρ′ ≺γ ρ and satisfying

ρ′ ⊖ α ∈ Φ ⇒ ρ⊖ (α+ γ + ε) ∈ Φ, ∀α ≥ 0.

By 7.7 we have ρ̂′ ≺γ ρ̂. Moreover

ρ̂(Φ) ≤ ρ̂′(Φ) + γ + ε.

(2) ⇒ (1): Suppose W ∗(X) is regular and ρ ∈ LX . Let Φ be a maximal zero
ideal in LX0 , and assume that γ < ∞ and ε > 0 are given. Consider ρ̂,Φ, γ, ε and
apply regularity of the approach frame LW∗(X). There exists µ ∈ LW∗(X) satisfying
µ ≺γ ρ̂ and

ρ̂(Φ) ≤ µ(Φ) + γ + ε.

Put ρ′ = µ|X ∈ LX . We claim that ρ′ ≺γ ρ. That ρ′ ≤ ρ is clear. Moreover
if ν ∈ LW∗(X) is such that µ ∧ ν ≡ 0, ρ̂ ∨ (ν ⊖ γ) ≫ 0, then ρ′′ = ν|X satisfies
ρ′ ∧ ρ′′ ≡ 0 and ρ ∨ (ρ′′ ⊖ γ) ≫ 0.

Let α ≥ 0 and assume that ρ′ ⊖ α ∈ Φ. This implies ρ̂′(Φ) ≤ α. First observe
that µ ≤ sup ρ′, which follows from the fact that sup ρ′ < ξ < µ(Ψ) for some
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Ψ ∈ W ∗(X). By the density of wX(X) this would imply that the nonempty open
set {µ > ξ} would intersect wX(X), which is impossible.

Therefore we have µ ≤ sρ′ and hence by 4.3, µ ≤ lW∗(X)(sρ
′) = ρ̂′ and µ(Φ) ≤ α.

So we have ρ̂(Φ) ≤ γ + ε+ α which implies ρ⊖ (γ + ε+ α) ∈ Φ. We can conclude
that X is ideal-regular. �

Proposition 7.9. If X is ideal-regular and T1 then W ∗(X) is T2.

Proof. From 7.8 we have that W ∗(X) is regular. This implies that the topological
coreflection (W ∗(X), TW∗(X)) is regular as well. Since it is a T1 topological space
it is T2. �

Theorem 7.10. Let X be a weakly symmetric T1 approach space. The following
assertions are equivalent:

(1) X is normal and ideal-regular.
(2) W ∗(X) is normal and regular.
(3) W ∗(X) is uniform.

Proof. (1) ⇔ (2): This follows from 6.2 and 7.8.
(2) ⇔ (3): This follows from 3.10. �

By 7.10, when X is normal, ideal-regular and T1 it is a uniform T2 approach
space and its Čech-Stone compactification β∗(X) can be constructed. The Čech-
Stone compactification is the reflector β∗ from the category UApp2 of all T2 uniform
approach spaces to the category kUApp2 of compact T2 uniform approach spaces
[23]. It was shown in Proposition 6.3.2 in [23] that a uniform T2 approach space is
compact if and only if it is isomorphic to a closed subspace of a product of compact
subsets of the real line. By standard arguments it can be deduced from this fact
that β∗(X) is characterised by the unique contractive extension property for maps
in Kb(X).

Theorem 7.11. The following assertions are equivalent:

(1) X is normal, ideal-regular and T1.
(2) X is uniform and T1 and W ∗(X) is isomorphic to β∗(X).

Proof. (1) ⇒ (2): From (1) and applying 7.10 and 7.9, W ∗(X) is a uniform ap-
proach T2 compactification of X and by 5.4 it has the unique extension property
for bounded contractions to ([0,∞], δdE

). Hence it is isomorphic to β∗(X).
(2) ⇒ (1): Assume X is uniform and T1 and W ∗(X) is isomorphic to β∗(X), then
W ∗(X) is a uniform approach space. By 7.10 X is ideal-regular and normal. �

8. Topological and quasi-metric approach spaces

It is known from [10] that a metric space is normal but a quasi-metric approach
space can be normal without being metric. Our example in 6.3 is a quasi-metric
approach space, weakly symmetric, T2 and normal, without having any of the
equivalent properties listed in the next Proposition.

Proposition 8.1. For an approach space associated with a T1 quasi-metric space
(X, q) the following properties are equivalent:

(1) Ideal-regular.
(2) Regular.
(3) Metric.
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Proof. (1) ⇒ (2): This is 7.5.
(2) ⇒ (3): This is well known from [23], [1].
(3) ⇒ (1): If (X, q) is a metric space, the set of all bounded lower regular functions
LX coincides with the the set of all bounded contractions Kb(X), [27]. Moreover
(X, δq) is uniform and T1. It follows from [26] that the Wallman compactification
constructed from the Wallman base Kb(X) is β∗(X). So it is isomorphic to W ∗(X),
which implies (X, δq) is ideal-regular. �

However in the topological case the situation is different.

Proposition 8.2. For a T1 topological space (X, T ) the approach space (X, δT ) is
ideal-regular if and only if (X, T ) is normal.

Proof. If for a T1 topological space (X, T ) the associated approach space (X, δT )
is ideal-regular, by 7.9 its Wallman compactification W ∗(X) is T2. As W ∗(X)
coincides with the topological Wallman compactification W (X) of (X, T ), [24], it
is well known that (X, T ) is a normal topological space [25].
For the other implication, assume that (X, T ) is a normal T1 topological space.
Then it is well known that the topological Wallman compactification W (X) is a
compact T2 topological space. Hence the isomorphic space W ∗(X) constructed for
(X, δT ) is regular and by 7.8 (X, δT ) is ideal-regular. �

References

[1] B. Banaschewski, R. Lowen, C. Van Olmen, Regularity in approach theory, Acta Math.

Hungar.,115, (2007), 183-196.
[2] G. Beer, M. I. Garrido, Locally Lipschitz functions, cofinal completeness, and UC spaces, J.

Math. Anal. and Appl., 428, (2015), 804-816.
[3] B. Berckmoes, R. Lowen, J.A. van Casteren, Distances on probability measures and random

variables, J. Math. Anal. and Appl., 374(2), (2011), 412-428.
[4] B. Berckmoes, R. Lowen, J.A. van Casteren, An isometric study of the Lindeberg Feller

central limit theorem via Steins method, J. Math. Anal. and Appl., 405(2), (2013), 484-498.
[5] B. Berckmoes, T. Hellemans, M. Sioen, J.A. van Casteren, An application of approach theory

to the relative Hausdorff measure of non-compactness for the Wasserstein metric, J. Math.

Anal. and Appl., 449(20), (2017), 1770-1789.
[6] P. Brock, D.C. Kent, 1998, On convergence approach spaces, Appl. Categ. Struct., 6 (1),

(1988), 117-125.
[7] E. Colebunders, S. De Wachter, R. Lowen, Fixed points of contractive maps between DCPO’s,

Math. Struct. in Comp. Sci., 24(1), (2014), e240102, 18 pp.
[8] E. Colebunders, S. De Wachter, M. Schellekens, Complexity analysis via approach theory,

Appl. Categ. Struct., 22 (1), (2014), 119-136.
[9] E. Colebunders, F. Mynard, W. Trott, Function spaces and contractive extensions in approach

theory: the role of regularity, Appl. Categ. Struct., 22 (3), (2014), 551-563.
[10] E. Colebunders, M. Sioen, W. Van Den Haute, Normality in terms of distances and contrac-

tions, J. Math. Anal. and Appl., 461, (2018), 74-96.
[11] E. Colebunders, M. Sioen, W. Van Den Haute, Normality, regularity and contractive realval-

ued maps, Appl. Categ. Struct., 26, (2018), 909-930.
[12] E. Colebunders, M. Sioen, The Banaschewski compactification of an approach space is of

Wallman-Shanin type, Quaestiones Math., https://doi.org/10.2989/16073606.2020.1753846.
[13] M. I. Garrido, J. A. Jaramillo, Lipschitz-type functions on metric spaces, J. Math. Anal. and

Appl., 340, (2008), 282-290.
[14] D. Hofmann, G. J. Seal, W. Tholen eds, Monoidal Topology, A categorical approach to order,

metric and topology, Cambridge University Press, (2014).
[15] G. Jaeger, Extensions of contractions and uniform contractions on dense subspaces, Quaes-

tiones Math., 37, (2014), 111-125.
[16] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38, (1951), 85-91.
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