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Abstract

Feeder services are public transit services that transport people from a low demand, typically
suburban, area to a high demand area, such as a transportation hub or a city. Here,
passengers continue their journey using traditional forms of public transport. On the one
hand, on-demand feeder services have been a topic of discussion in a number of recent
studies, since these services can serve the demand efficiently. On the other hand, traditional
feeder services with predetermined routes and timetables provide predictability and easier
cost control. In this paper, a demand-responsive feeder service is considered, which combines
positive characteristics of both traditional services as well as on-demand-only services. This
feeder service has mandatory bus stops which are always serviced, as well as optional bus
stops which are only serviced when there is demand for transportation nearby. To optimize
the performance of this feeder service, a large neighborhood search heuristic is developed.
Experimental results on 14 benchmark instances illustrate that the LNS algorithm obtains
solutions with an average gap of 1% or less compared to the optimal solution, within 1s of
runtime. Larger instances can also be solved, typically in less than 60s. The results also
show that the demand-responsive feeder service generally outperforms a traditional service
in terms of service quality, often by more than 60%.

Keywords: meta-heuristics, large neighborhood search, public bus transport, feeder
service, demand-responsive transportation

1. Introduction

Public transport is an essential part of urban mobility in most European cities, more than
55 billion journeys on public transport were recorded in 2014 [1]. As such, public transport
enables accessibility to social activities, goods and services and this can reduce social exclu-
sion and poverty [2]. For secluded areas in particular, like residential areas and suburbs, a
feeder service enables connectivity to major transit networks. In a feeder service, a fleet of
buses transports passengers from typically sparsely populated areas to areas with a high de-
mand for transportation or to transportation hubs, where the passengers can continue their
journey. These services can be an answer to the problem of overfull parking lots at trans-
portation hubs and congestion in the surrounding area. In order to increase the appeal of
public transport, however, the feeder system needs to offer a convenient and reliable service
that matches the demand considering a limited operational cost. In a smart city scenario
in the near future, service providers will be able to communicate with their passengers and
drivers and create a two-way communication. This will allow to further improve service
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quality and to operate a high-quality demand-responsive feeder service while controlling
the operational costs.

Currently, two types of transit services can typically be distinguished: traditional transport
services (TTS) and on-demand transportation services (ODTS). TTS are composed of a
set of bus lines that follow predefined routes and schedules. A crucial advantage of TTS
is their low operational costs, which arises from their ability to transport large groups of
passengers collectively. The predictable nature of TTS, due to fixed schedules and routes,
makes them highly accessible to most commuters. At the same time, however, the inflexi-
bility of TTS is a limitation, since it renders TTS inadequate in settings where demand for
transportation is sparse and constantly changing. To deal with these inefficiencies, ODTS
emerged. ODTS are better able to cope with an ever-changing demand for transportation;
these services operate only when there is demand for transportation and meet the passen-
ger’s expectations accordingly [3]. However, ODTS do not offer a solution to deal with the
“passengers without reservation”, e.g., passengers that do not request a ride, because they
are unfamiliar with the service, but could still benefit from such a ride. As such, this re-
search will focus on a transportation service situated between TTS and ODTS, integrating
the positive characteristics from both types of transit service.

The feeder service considered in this paper is a demand-responsive feeder service (DRFS).
In a feeder service, all passengers have the same destination but different origins. The bus
line in the DRFS considered in this paper serves two sets of bus stops: mandatory stops, and
clustered optional stops. The mandatory stops are visited by each bus. The optional stops
are only visited by a bus when a client nearby makes a request for transportation. Potential
passengers make a request for transportation to the transportation hub, by stating their cur-
rent location and the latest time they want to arrive at the hub. This means that the routes
and the timetables of the buses are not fixed but change according to the demand. The
mandatory stops provide some predictability and serve as a safety net for the “passengers
without reservation” because these passengers can still board a bus at the mandatory stops.

In order to optimize the performance of the service, a meta-heuristic, namely a large neigh-
borhood search (LNS) [4], is developed. In the LNS framework, solutions are iteratively
destroyed and rebuilt. In the rebuilding part of the algorithm, a weighted random based
method is used.

The main contribution of this paper is the design of an efficient LNS algorithm that aims to
optimize the performance of this demand-responsive feeder service under different circum-
stances. The results obtained by this LNS algorithm prove that the use of this meta-heuristic
framework can result in better quality solutions without increasing the runtime significantly.
A randomized search combined with a large neighborhood search can explore more areas of
the solution and improve the solution quality without an increased runtime. Furthermore,
a comparison with a traditional feeder service and an on-demand only feeder system shows
that the service described in this paper can significantly increase the service quality for the
passengers, while using the same fleet of vehicles.

In the next section, a literature review on public transport feeder services is presented.
In Section 3, we present a model to optimize the service provided by the DRFS. Section
4 presents the heuristic that is developed to solve the optimization problem. Section 5
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analyses the performance of the heuristic in order to fine-tune its parameters. In Section
6, the results for several instances, obtained by solving the problem using the heuristic, are
presented and discussed. Section 7 compares the performance of the demand-responsive
feeder system with a traditional feeder system and a on-demand only feeder system. In the
last section, conclusions are drawn and plans for future research are discussed.

2. Literature Review

We introduced the DRFS in a previous paper [5], together with a mathematical model and
optimal solutions for a set of smaller benchmark instances. To the best of our knowledge,
the DRFS has not been discussed before by others. Still, closely related types of services
have been considered in the literature and will be discussed in this section. This will allow
to situate the DRFS with respect to the state of the art.

Traditional feeder services have predetermined stops, routes, and timetables. Traditional
feeder services result in feeder route structures that perform well in terms of satisfaction of
demand, and waiting time. In these traditional feeder services, the demand is considered to
be known and is often derived from historical data. In such services, the Feeder Bus Net-
work Design Problem (FBNDP) is often tackled. The FBNDP determines the design of a
set of feeder bus routes, as well as the service frequency of each route for the period of time.
The inputs for the FBNDP are typically the location of bus stops, the demand of passengers
at each stop during a given period of time, the distance between each pair of stops, and
the capacities of the fleet of buses [6]. Ciaffi et al. [7] solve the FBNDP using a heuristic
algorithm to generate routes, together with a genetic algorithm to find the optimal network
of routes and their frequencies. This solution approach was implemented for two real-size
networks as well, namely in Winnipeg and Rome. Lin et al. [8] present a multi-objective
programming approach to solve the FBNDP, where route length and the maximum route
travel time are minimized, while the service coverage is maximized simultaneously. This
model was used for a case study of a metro station in Taichung City, Taiwan. Mohaymany
et al. [9] consider a FBNDP with multiple transportation modes, each mode with differ-
ent capacities and performances, and used ant colony optimization to solve it. Zheng et
al. [10] introduced a “demand coefficient” to quantify the feeder demand and used a tabu
search algorithm to optimize the design of the feeder network. The optimization approach
was implemented in a downtown area of Suzhou, China. Often, the main objective while
optimizing these services is to minimize travel times of passengers and transfer times to the
main transit. Shrivastava et al. [11] use a genetic algorithm combined with a specialized
heuristic to optimize the routes and the timetables of a traditional feeder service. In a
different study, Shrivastava et al. [12] use a genetic algorithm to optimize both the routes
and the timetable simultaneously.

It is clear that traditional feeder services have their limitations, such as lack of accessibility
and flexibility. In traditional feeder services, it is difficult to accommodate the different
desired arrival times of the passengers. Furthermore, it is inconvenient for some passengers,
such as children, disabled, or senior passengers to reach one of the limited number of bus
stops served by traditional feeder lines [13]. These drawbacks have led to the rise of ODTS
to improve the accessibility of transit services by either offering a door-to-door service, such
as dial-a-ride (DAR) services [14] or ride-sharing services [15]. Other services use predefined
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bus stops and passenger-stop assignment to reduce walking times as well as travel times of
passengers, such as the school bus routing problem [16]. Sun et al. [17] present a mixed-
integer linear programming model for a demand-responsive feeder service similar to a DAR
problem [18, 19]. The model is solved using a heuristic algorithm and is used in a case study
in Nanjing City, China [17]. However, these services typically have a high operational cost
and a high degree of deadheading, i.e., vehicles often operate without carrying or accept-
ing passengers. This limits the application of services like DAR and ride-sharing in practice.

A service that is closely related to the DRFS that we consider here and that integrates
characteristics from TTS and ODTS is the Mobility Allowance Shuttle Transit (MAST)
service. In this service, vehicles have a fixed set of bus stops they always need to visit, e.g.
a fixed path, and these stops also have fixed timetables. However, the vehicles may deviate
from the fixed path. The customers that are served outside of the fixed path are served
at their desired location and need to be within a certain radius from the fixed path in a
so-called “zone”. This service combines the high flexibility of door-to-door services with a
fixed main route [20]. This concept has been applied to feeder services as well. This type of
feeder service allows the bus to deviate from the predetermined route to serve the requested
nearby passengers and return to its original route before arriving to the next stop while
respecting the fixed timetable. Lu et al. [21] developed a three-stage heuristic algorithm to
optimize such a problem, together with a bus assignment sub-problem. Furthermore, Qiu et
al. [22] analyzed a feeder service similar to a MAST service, which has been implemented
in Salt Lake city in the USA. The authors concluded that the service has an advantage
with respect to a fixed service under certain environmental circumstances. Another type
of feeder service with flexible characteristics is the so-called demand responsive connector
(DRC). In the DRC, no mandatory stops are considered and buses transport passengers
from their origin location to transfer hubs within a predefined service area [23, 24]. In both
feeder services, passengers who need a ride are required to make a request for transportation
one to two hours in advance.

Services with flexible characteristics, like MAST and DRC, have more success in low de-
mand areas with a sparse population, while TTS services thrive in high-demand and densely
populated areas. When and where to use which feeder service is further discussed by Li
[25]. This study shows that flexible feeder services perform better with lower demand rates
and become progressively more preferred when more importance is given to the walking
time of the passengers.

The DRFS, which is presented in this research, resembles the feeder service variant of the
MAST service the most. The DRFS has a fixed route where it can deviate from, just as in
MAST services. The main difference is that MAST services provides a door-to-door service
to some customers within a certain radius, while the DRFS groups passengers at a number
of bus stops. This increases the efficiency of the bus assignment and the routing. The
timetable for the fixed route is also predefined in MAST services, limiting the time they can
devote to deviating from the main route to provide the door-to-door service. This is not
the case for the DRFS. Furthermore, in contrast to the DRFS, most MAST optimization
models do not consider the capacity of the buses.
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3. Problem Description

This paper deals with a demand-responsive feeder service (DRFS). In the DRFS, passengers
are typically picked up from low-demand areas and transported to a transportation hub
or a city. All passengers thus have the same destination, but different origins. Our DRFS
contains one bus line with two sets of bus-stops: mandatory bus stops, and clustered optional
bus stops. The mandatory stops need to be visited by each bus. The optional stops will
only be visited by a bus when a passenger, within walking distance dw, needs to be picked
up. The buses can have different routes and timetables according to the demand. However,
it is assumed that each bus starts operating at the first mandatory stop and stops operating
at the last mandatory stop. The mandatory stops provide a factor of predictability, as well
as a safety net for potential clients that may benefit from this service but have not made a
formal request for it. Passengers in need for transportation without any reservation can go
to a mandatory bus stop where they can board a bus. Figure 1 shows a theoretical example
of the DRFS, with four clusters, six optional stops in each cluster, and six mandatory stops.
The mandatory stops are represented by large purple dots and are placed along the main
route, e.g., along a highway. The optional stops are shown as black dots. Each cluster
of optional stops is scattered across a small town, village or neighborhood that is close to
the main route, i.e., a cluster corresponds to a small town, village or neighborhood with
several optional stops. The passengers are denoted as green triangles. The route of the bus
line is the solid red line. In this route, the bus starts in the first mandatory bus stop m0,
and transports the passengers to the destination, i.e., the last mandatory stop m5. The
bus picks up a passenger at the third mandatory stop and deviates from the main route to
pick up one passenger in cluster c1 and three passengers in cluster c2. In cluster c2, two
passengers are grouped at a single bus stop in order to reduce the travel times of the buses.

c0

c1

c2

c3

Cluster

Cluster

Cluster

Cluster

Main route

Mandatory 

bus stop

Optional 

bus stop

Passenger

Bus route

Start

Destination

Figure 1: Theoretical example for the DRFS

Potential passengers make a request for transportation to the transportation hub, by stating
their current location and their latest desired arrival time. After all requests are processed,
the passengers are notified about the bus stop that is assigned to them with the departure
time of their bus at that stop. Furthermore, the DRFS may offer an information service
that notifies potential passengers about both the scheduled departure times and the op-
tional bus stops of each bus for the current planning. This allows passengers that use this
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application but did not make a reservation to go to one of the visited optional stops to
catch a bus. Passengers that need transportation and are not aware of this information
can only catch a bus at the mandatory bus stops. The requests from the passengers are
assumed to be known at the moment the planning is made. This assumption can be viewed
as a shortcoming of the service since it limits flexibility. Nevertheless, this assumption is
not far-fetched since services have been implemented under these conditions before. An
example of such a service is the “Belbus” from DeLijn in Belgium [26], a DAR service that
allows passengers to make a request for transportation until one day before operation. An-
other example is the flexible feeder service in Salt lake city in the USA [22] that requires
a request for transportation before the service starts. The ideal situation, however, is to
offer a service that accepts requests in real-time, which is the future step in this research line.

The service works with a fixed number of buses. In the case that all passengers have
been assigned to a bus and there are still buses available, the buses will still operate and
only visit the mandatory stops in order to serve the potential passengers that have not
made a reservation. The travel times of these buses are considered in the objective function
as well. The timetables of these buses are assumed to be determined by the service provider.

A mathematical model that allows to optimize the performance of a DRFS on smaller
instances is presented in [5]. Here, we limit ourselves to presenting the notations of the
different parameters, sets and variables in Table 1, a textual explanation of the problem
and a discussion on the objective function.

Different inter-depending decisions need to be made in this optimization problem. All pas-
sengers need to be assigned to a departure bus stop, taking into account the walking time.
Consequently, a passenger is also assigned to a bus that will bring him or her to the desti-
nation on time. The routing of each bus needs to be determined based on the optional bus
stops that are assigned to passengers and that are selected for each bus. Furthermore, the
departure time of each bus at the first mandatory bus stop needs to be determined. This
departure time will then determine the departure time at each bus stop and the arrival
time at the destination. All these decisions are intertwined and affect one another. This
problem can be viewed as an integration of a routing problem, an assignment problem, and
a timetabling problem.

These decisions are also subject to a number of restrictions. First, the buses can have differ-
ent routes according to the demand for transportation but all mandatory stops need to be
visited by each bus. Second, the capacity of the buses is limited; no more passengers can be
accepted in a bus if this capacity is reached. Third, the passengers are not allowed to walk
longer than a certain amount of time from their origin location to their assigned departure
bus stop. Fourth, given that the requests of the passengers are known before the optimiza-
tion process starts, it is assumed that all requests need to be served. As a last restriction,
all passengers need to arrive within their time window and, preferably, as close as possible
to their desired arrival time. To model this, both a soft and a hard arrival time window
is introduced for each passenger. The amount of time any passenger is allowed to arrive
earlier or later than their desired arrival time is denoted by dearly and dlate respectively, i.e.,
all passengers p ∈ P need to arrive within time window [datp − dearly, datp + dlate]. Fur-
thermore, arriving earlier or later than the desired arrival time is penalized in the objective
function. The arrival times of the passengers are thus part of both the constraints and the
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Sets

B Set of buses
S Set of all bus stops
O Set of optional bus stops
F Set of mandatory bus stops
P Set of passengers using the service during the optimization horizon

Parameters

Kk Number of optional bus stops in cluster k
M Number of clusters
ttij Travel time from bus stop i ∈ S to bus stop j ∈ S
τ Dwell time per passenger boarding
wtpi Walking time of passenger p ∈ P to departure bus stop i ∈ S
datp Desired arrival time of passenger p ∈ P at the destination bus stop m|F |−1

δ Average acceleration and deceleration time of a bus
dw Maximum value for walking time of any passenger

dlate
Maximum value for arriving later than the desired arrival time
of any passenger

dearly
Maximum value for arriving earlier than the desired arrival time
of any passenger

C Capacity of the buses
w1 Relative weight given to the travel time of the buses
w2 Relative weight given to the walking time of the passengers

w3
Relative weight given to the absolute difference in desired and actual
arrival time of the passengers

Decision Variables

xbij
0-1 variables determining if bus b ∈ B visits bus stop j ∈ S
after visiting bus stop i ∈ S

ypbi
0-1 assignment variables which assume value 1 if passenger p ∈ P
is assigned to bus b ∈ B, with departure bus stop i ∈ S

ap Arrival time of passenger p ∈ P in destination bus stop m|F |−1

Db Departure time of bus b ∈ B at the first mandatory bus stop m0

Table 1: Notation for the parameters, sets and variables of the optimization problem
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objective function.

While optimizing this demand-responsive feeder system the objective is the service quality,
which is modeled as a weighted sum of three factors. First, the travel time for all buses is
minimized (1). Shorter travel times for the buses will reduce the operating costs and imply
shorter ride times for the passengers and thus improve the service quality. The acceleration
and deceleration time δ and, the dwell time τ of a bus are included as well, in order to
model the travel time in a more realistic way. Second, the total walking time from the
origin location of each passenger to the departure bus stop needs to be as low as possible
(2). Third, the absolute time difference between the desired arrival time and the actual
arrival time at the destination, of each passenger, needs to be as close to zero as possible
(3). The weights w1, w2 and w3 of this sum can be determined depending on the situation
and on the preferences of the service provider.

Minimize: z = w1





∑

b∈B

∑

i∈S





∑

j∈S

(ttij + δ)xbij + τ
∑

p∈P

ypbi







 (1)

+ w2





∑

b∈B

∑

i∈S

∑

p∈P

wtpiypbi



 (2)

+ w3





∑

p∈P

|datp − ap|



 (3)

It needs to be noted that the time that the passengers wait for a bus to show up is considered
to be zero. In this model, it is assumed that there are no significant delays and that the
passengers will make a request beforehand. This means passengers can plan to arrive at
the bus stop on time without incurring longer waiting times. Furthermore, we choose
to minimize the travel time of each bus rather than the travel time of each passenger.
This is done in order to optimize the routes of the buses rather than the onboard time
of each passenger individually. Optimal bus routes, however, also imply shorter travel
times for passengers onboard. The onboard times are typically less important to customers
compared to the reliability of the service and arrival time at their destination [27, 28].
Service reliability is inherently part of this service as it deals with passenger requests and a
timely arrival at the destination is covered by the third component of the objective function.

4. Solution approach

The DRFS that is considered in this paper was previously modeled mathematically and
solved with exact solution techniques [5]. However, the required runtimes are too large for
instances of realistic size and do not allow an in-depth analysis of the circumstances ap-
propriate for a DRFS or a comparison with a traditional system or an on-demand system.
Heuristic algorithms can overcome the limitations of exact approaches, and are generally
much faster than exact methods. The main drawback is that optimal solutions are not
guaranteed. Nevertheless, well-developed heuristics can deliver near-optimal results in a
very short time span. There are several definitions and classifications of heuristics in the
state-of-the-art, however, we opted to use the terminology presented by Sörensen and Glover
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(2013) [29]. This terminology has been used in several other works, such as Kayvanfar et al.
[30], Asta et al. [31], and Sun et al. [32]. According to Sörensen and Glover [29], there is an
important distinction between a heuristic, which is simply an optimization algorithm that
does not guarantee optimality, and a meta-heuristic, which is defined by the authors as: “a
high-level problem-independent algorithmic framework that provides a set of guidelines or
strategies to develop heuristic optimization algorithms”. Sörensen and Glover [29] further
subdivide meta-heuristics into three main categories: local search algorithms, constructive
algorithms, and evolutionary algorithms. The heuristic that is developed in this study is a
constructive heuristic, where solution elements of an existing, incomplete solution are added
in each iteration, and mainly follows the framework of LNS [4]. In the LNS framework, an
existing solution is partially destroyed and rebuilt in each iteration. A weighted random
based method is present in our heuristic as well, namely the randomized construction of
solutions. Aspects of the Pilot method [33] were considered too: looking ahead during the
construction of the solution. However, it became evident that the random based method
made our algorithm perform better in this problem setting.

In order to develop an appropriate algorithm for optimizing the performance of a DRFS, we
start from an in-depth understanding of the problem. In this problem, four main decisions
need to be made. First, the assignment of passengers to buses needs to be determined.
Second, the decision on the assignment of passengers to departure bus stops, which is de-
pendent on the walking distance, needs to be made. Third, the routing of buses needs to
be determined based on the location of the stops and according to which stops are used.
Lastly, a decision is made on the timetabling of the buses, which depends on the requests
of the passengers. The assignments of passengers to buses and passengers to bus stops
have implications on all other decisions. After the passengers are assigned to a bus and
a bus stop, the problem becomes a routing problem. When the passengers are assigned
to a bus and its route is determined, the timetabling is limited to determining the opti-
mal departure time. Furthermore, the assignment of passengers to buses must consider all
buses, while the routing and timetabling problems can be solved for each bus independently.

Since all decisions are intertwined and affect each other, we start the optimization by mak-
ing one decision random. The heuristic is based on a randomized search procedure for
the optimal passenger-bus assignment. Afterwards, the other subproblems are each solved
independently for each bus. We propose a large neighborhood search (LNS) heuristic to
tackle this problem. The LNS framework is often used for the optimization of timetables
and routes [34, 35, 36], which makes it a suitable meta-heuristic to use for the optimiza-
tion of the DRFS. The main steps for this framework are presented in Algorithm 1. The
LNS algorithm requires an initial feasible solution as an input. After this, the algorithm
enters a loop. In first step of the loop, the solution is partly destroyed by a “destroy op-
erator” d(.). The destroyed solution is then rebuilt using a “repair operator” r(.) in the
second step. Lastly, in the third step, the new solution is compared to the previous solution
and it is then determined if this new solution will replace the current one. This is done
based on a given acceptance criterion. For example, by comparing the objective function
value of both solutions. The process of destroying and rebuilding continues until a stopping
criterion is met, for example, after a number of destroy-repair cycles or after a time limit [4].
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Algorithm 1: Large Neighborhood Search algorithm

1 Input: initial solution s0
2 while stopping criterion is not met do
3 Destroy s0 by using d(s0).
4 Rebuild the destroyed solution. A new solution s = r(d(s0)) is generated.
5 if acceptance criterion is met then
6 s is accepted.
7 s0 = s.

8 end

9 end

4.1. Initial solution generation

To start the LNS algorithm, an initial solution is needed. The algorithm for the construc-
tion of the initial solution is given in Algorithm 2. The initial solution is constructed by
iteratively constructing a solution for each bus b separately. All passengers are put in a
list Lp and are sorted according to their desired arrival time datp. The passengers are then
added to each bus b ∈ B in this order. Passengers that are assigned to bus b are added
to list Lb and removed from list Lp. The algorithm will stop adding passengers to a bus b
either when the bus reaches its capacity or when max

p∈Lb

datp − min
p∈Lb

datp < dlate + dearly. The

last expression ensures that all passengers reach the destination within their time window.
In each bus b, all passengers are assigned to the closest bus stop to their location, as their
departure bus stop. Afterwards, the route of bus b is determined. To build the bus route,
all the mandatory stops are added to the route first. Next, all the optional stops that are
assigned to passengers assigned to bus b are inserted in the existing route, between the
two closest mandatory stops but otherwise in an arbitrary manner. It needs to be noted
that this is a simple algorithm, designed to quickly generate feasible routes for the initial
solution. Later, in the repair operator, a better and more complex algorithm will be used.
In the last step of the construction of the initial solution of bus b, the departure time of
each bus is determined. Since the route of the bus is already determined, its departure time
at each stop and the arrival time at the destination follow directly from the departure time
from the first mandatory bus stop. The bus needs to arrive at the destination within the

given time window

[

max
p∈Lb

datp − dearly,min
p∈Lb

datp + dlate

]

= [LBb, UBb]. Here, UBb and LBb

denote the upper and lower bounds of the interval, for bus b. The arrival time of the buses
is determined in such a way that the arrival time of the passengers is optimized. This is
expressed in the objective function as

∑

p∈Lb

|datp − ap| , ∀b ∈ B. This is a sum of absolute

deviations, and as shown by Dodge [37], the median, in this case the median of the desired
arrival times of the passengers onboard the bus, minimizes this sum. However, an addi-
tional constraint is that the solution must be within the interval [LBb, UBb]. Whenever the
median is larger than UBb the arrival time will be set to UBb. When the median is smaller
than LBb, the arrival time will be set to LBb. The correction of the arrival time still gives
the best possible solution since

∑

p|datp − ap| is a convex function of ap. For the next bus,
the remaining passengers in the list are considered and the construction of the solution for
the next bus starts. This construction process is repeated until there are no passengers left
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in the list or all available buses have been used.

Algorithm 2: Construction of initial solution

1 Add all passengers p ∈ P to list Lp

2 Order passengers in Lp according to desired arrival time.
3 while Lp is not empty do
4 Choose a bus b with empty list Lb

5 while
∑

i∈S

∑

p∈P

ypbi < C do

6 Select the next passenger in Lp as passenger p
7 if max

p∈Lb

datp − min
p∈Lb

datp < dlate + dearly then

8 break
9 else

10 Assign passenger p to bus b
11 Determine and assign the closest bus stop to passenger p
12 Add passenger p to Lb

13 Remove passenger p from Lp

14 end

15 end
16 Add a route visiting all mandatory bus stops m ∈ F .
17 for ∀o ∈ O do
18 if o is assigned to a passenger onboard bus b then
19 Add o to the route
20 end

21 end
22 Calculate the best arrival time for bus b: ab = median

p∈Lb

{datp}

23 if ab > UBb then
24 ab = UBb

25 else if ab < LBb then
26 ab = LBb

27 end
28 Calculate total travel time TTb. Set departure time: Db = ab − TTb

29 end

During the construction of the initial solution, an infeasible instance is detected. If the
passenger cannot arrive within their time window, the initial solution will not have assigned
all passengers to a bus, which makes the instance infeasible. If the distance to the closest
bus stop to any passenger is larger than dw, then the instance is infeasible too. If the
capacity of the buses times the number of available buses is smaller than the number of
passengers, the capacity constraint cannot be respected and the instance is infeasible as
well.

4.2. Destroy operator

In order to create a new and possibly better solution, the current solution needs to be
partially destroyed by a destroy operator. The destroy operator randomly selects a pre-
determined number of passengers σ and removes them from the solution. This is done by
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going through each bus in the fleet and removing the randomly selected passengers from
their bus. When passengers are removed from a bus, these passengers are not assigned
to a departure bus stop or to a bus anymore. This means that this bus has less optional
stops it needs to visit. The optional stops that each bus b needs to visit are kept in list Sb.
The timetables of the buses where passengers were removed from, are removed from the
solution. The routes, i.e., the sequence of the stops that are visited, are removed from the
solution too. The algorithm for the destroy operator is given in Algorithm 3.

Algorithm 3: Destroy operator

1 Randomly choose σ passengers and place them in a list R
2 for each bus b do
3 Add all optional stops that are vsited by b to list Sb

4 for ∀p ∈ R ∩ Lb do
5 if there exists a new feasible assignment then
6 Undo passenger-bus and passenger-stop assignments for passenger p
7 Remove p from Lb

8 if p was assigned to an optional stop and no other passenger in Lb is

assigned to the same stop then
9 Remove the optional stop from Sb

10 end

11 end

12 end
13 if passengers were removed from bus b then
14 Destroy route and timetable of bus b
15 end

16 end

It needs to be noted that the destroy operator determines whether a new feasible bus
assignment exists, i.e., the new assignment does not violate the capacity constraints or the
time window constraints. If no new bus assignment is feasible, the passenger is not removed.
This allows the repair operator to always find a feasible new assignment.

4.3. Repair operator

The repair operator is given in Algorithm 4 and works similarly to the initial solution algo-
rithm. The first step is to assign the passengers that were removed by the destroy operator
to a bus. For each passenger, this new bus assignment needs to be feasible and should be
different from his previous bus due to the feasibility checks in the destroy operator. The
reassignment is done by taking into account the desired arrival times datp of the passengers

onboard the buses in the following way. First, the average arrival time ˆdatb of the passen-
gers that are still onboard bus b is calculated, for each bus b ∈ B. Second, the deviation
∣

∣

∣

ˆdatb − datp′
∣

∣

∣
is determined for each bus b and each passenger p′ that was removed from the

solution by the destroy operator. Lastly, the buses are ranked for each removed passenger

p′, according to the deviation
∣

∣

∣

ˆdatb − datp′
∣

∣

∣
. The rank of a bus b determines the probability

Pbp′ of being selected as the new bus for passenger p′.
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Algorithm 4: Repair operator

1 for all removed passengers do
2 Reassigned removed passenger p′ with probability Pbp′ to a different bus b
3 if constraints are violated then
4 go back to 2
5 end
6 Determine and assign the closest bus stop si to p′

7 if si is an optional stop and si /∈ Lb then
8 Reassign and add the second closest stop sj to Lb with π2% probability
9 if sj is not reassigned then

10 Reassign and add the third closest sk to Lb with π3% probability
11 end

12 end

13 end
14 for each bus b ∈ B do
15 Rebuild the route: si = m0

16 while si 6= m|F |−1 do

17 Determine which optional stops are eligible

18 Determine the closest eligible stop sk
19 si = sk
20 if no optional stop is eligible then
21 Determine the next mandatory stop sk
22 si = sk
23 end

24 end
25 Calculate the best arrival time for bus b: ab = median

p∈Lb

{datp}

26 if ab > UBb then
27 ab = UBb

28 else if ab < LBb then
29 ab = LBb

30 end
31 The best arrival time for each passenger p onboard is then: ap =

∑

i∈S

ypbiab

32 Calculate total travel time TTb on bus b
33 The best departure time for bus b is then: Db = ab − TTb

34 end
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The probability Pbp′ of a bus being selected is determined as follows. First, |B| different
ranges are determined and assigned to each bus. This is done by calculating the cumula-

tive sum of buses: Nb =
|B|
∑

b=1

b. The lowest ranked bus, with rank 0, is assigned to range

[Nb − |B|, Nb[= [r1, r0[, the bth ranked bus is assigned to [rb−1 − |B|+b, rb−1[ = [rb, rb−1[
and so on. The range becomes smaller as the rank of the bus increases. Finally, a random
number r between 0 and Nb is drawn and a bus b is selected if r is within the range corre-
sponding with bus b. This means lower ranked buses are chosen with a higher probability
because their range is proportional to their rank.

The next step is to assign new departure bus stops to newly assigned passengers in each bus
b ∈ B. First, it is determined if the closest stop is already a part of the solution of bus b,
i.e., if the bus stop is either a mandatory stop or an optional stop in Lb. If that is the case,
obviously, this stop is assigned to the passenger. Otherwise, the second and third closest
stops for this passenger are chosen and added to Lb with a probability of π2% and π3% re-
spectively. These probabilities are relatively low, so the closest bus stop is still chosen most
often. The second and third closest bus stops are chosen at times to ensure more possible
solutions are explored. If the closest stop is not in list Lb already, there is a possibility
to reduce the objective function value by trading longer walking times for shorter travel
times. Another strategy that we considered, and that perhaps seems to make more sense,
is to proactively predict the best option between choosing the closest stop and choosing
a stop that reduces the travel time of the bus, in a manner similar to the Pilot heuris-
tic framework [33]. This was done by estimating the extra walking and travel time that
would be added to the objective if a certain bus stop within walking distance was chosen.
The pilot approach, however, often yields slightly higher (worse) objective function values
than the weighted random based approach and has on average 28% larger runtimes when
it is run on the instances described in Section 5. The results for the LNS algorithm that
uses the pilot method for the bus stop assignment are presented in Table A.6 in Appendix A.

The algorithm to rebuild the routes starts at the first mandatory stop m0 with no stops
added to the route yet. The algorithm stops when the last mandatory stop m|F |−1 is
reached. A route is built by always choosing the closest eligible bus stop to the current stop
as a successor. A stop is eligible for a bus if it is a mandatory stop or if it is an optional
stop assigned to a passenger that is also assigned to this bus. It needs to be noted that in
this search, the optional stops are considered before the mandatory stops in order to always
go to all the stops within a cluster before returning to a mandatory stop, in the main road.
The remaining variables are determined in the same manner as in Algorithm 2.

4.4. Acceptance criterion

In each iteration of the LNS heuristic, the current solution is transformed into a new solution
by the destroy and repair operators, and the objective function value of the new solution
is compared to the objective function value of the original solution. The objective function
value is calculated as described in Section 3. If the objective improves, then the current
solution is replaced by the new solution in the next iteration, i.e., in the next destroy-repair
cycle of the LNS algorithm.
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4.5. Stopping criterion

After the initial solution is computed, the loop of the LNS algorithm starts. To ensure the
algorithm does not stop prematurely, i.e., before the last significant improvement is made,
the algorithm will stop if there was no improvement in the last 5000 iterations. In each
iteration, the LNS algorithm uses a destroy and a repair operator.

4.6. Post-processing

When the LNS algorithm finishes its destroy-repair cycles, the heuristic stops. After the
LNS algorithm finishes, the final solution can still have some inefficiencies in the routing of
the buses. These inefficiencies can be corrected with a 2-opt algorithm. This is necessary
because the routing part of the repair operator is a fast and greedy algorithm that is designed
to obtain the best assignment of passengers to buses. The 2-opt algorithm implemented
here is a first-improvement algorithm, and selects two edges of the existing route and swaps
them if and only if the objective function value is lowered by this swap. The algorithm
randomly chooses the first edge in the existing route, the second edge is chosen from either
clusters nearby or edges connecting mandatory stops nearby. This is done because most
or all inefficiencies are localized in the routes of the buses. In this paper, this operation is
performed 200 times.

5. Experimental set-up

To test the LNS algorithm, different instances are used. Instances I1 to I14 are benchmark
instances that were previously solved in [5]. The remainder of the instances are randomly
generated for this paper. All instances are listed in Table 2. The instances have different
number of buses |B|, requests |P |, bus capacity C and bus stops |S|. Furthermore, there
is always one cluster in-between two mandatory stops and each cluster has the same num-
ber of bus stops K. This means there are M = |F |−1 clusters in each instance, with |F |
the number of mandatory stops. The last column shows the number of variables V of the
mathematical model built based on the instance, this is an indication of the size of each
instance. The list of instances can be divided into different subsets as follows. First, the
optimal objective function values are known for instances I1 to I14. Second, instances I15
to I18 are larger instances and have the same instance parameters except for the number of
optional stops per cluster, which increases gradually. Third, instances I19 to I24 have the
same instance parameters except for the number of passenger requests. Fourth, in instances
I25 to I30, only the number of buses changes. Finally, in instances I31 to I36, only the bus
capacity changes.

For the remainder of Section 5, a representative subset TSa of these instances, namely
I3, I7, I10, I14, I15, I18, I20, I23, I26, I28, I32 and I36, is selected. These instances are
indicated in bold in Table 2. This subset is a representative sample of the entire set of
instances since it contains instances from each subset that is described above. In this sec-
tion, different parameters of the LNS algorithm are evaluated using statistical tests, with
the purpose of fine-tuning the LNS algorithm and obtaining better results. The LNS al-
gorithm is run on a computer with a Windows 10 Enterprise operating system, an Intel
CoreTM i7-8850H, 2.60Ghz CPU and 16 GB of RAM. The details of the parameters of
the instances, as well as the solutions discussed in this paper are available in detail online:
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Inst. |B| |F| K |S| |P| C V

I1 2 3 3 9 12 15 1226
I2 3 3 3 9 12 15 1335
I3 2 4 3 13 16 15 3170
I4 3 4 3 13 16 15 3379
I5 2 5 3 17 20 15 6522
I6 3 5 3 17 20 15 6863
I7 4 5 3 17 20 15 7204
I8 3 6 3 21 25 15 12678
I9 4 6 3 21 25 15 13204

I10 3 6 3 21 30 15 15213
I11 4 6 3 21 30 15 15844
I12 4 7 3 25 30 15 21844
I13 5 7 3 25 30 15 22595
I14 5 10 3 37 40 15 62285

I15 7 12 2 34 50 15 69857
I16 7 12 3 45 50 15 117157
I17 7 12 4 56 50 15 176557
I18 7 12 5 67 50 15 248057

I19 24 12 5 67 45 30 274524
I20 24 12 5 67 90 30 549024
I21 24 12 5 67 158 30 963824
I22 24 12 5 67 225 30 1372524
I23 24 12 5 67 395 30 2409524
I24 24 12 5 67 510 30 3111024

I25 7 12 5 67 158 30 783845
I26 8 12 5 67 158 30 794432
I27 12 12 5 67 158 30 836780
I28 16 12 5 67 158 30 879128
I29 20 12 5 67 158 30 921476
I30 26 12 5 67 158 30 984998

I31 24 12 5 67 158 10 963824
I32 24 12 5 67 158 15 963824
I33 24 12 5 67 158 20 963824
I34 24 12 5 67 158 25 963824
I35 24 12 5 67 158 40 963824
I36 24 12 5 67 158 50 963824

Table 2: List of test instances
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https://www.mech.kuleuven.be/en/cib/drbp#section-4. The objective weights w1, w2

and w3 are set to 0.25, 0.35 and 0.40 respectively. The values are chosen with the goal
of giving each component of the objective function approximately equal importance. The
objective weight values are not exactly equal in order to compensate for the fact that the
travel times are typically larger than the walking times, which in turn are typically larger
than the difference in arrival times. A detailed study of the effect of the weight values on
the solutions is beyond the scope of this paper.

Section 5.1 describes the methodology that is used to analyze the performance of the LNS
algorithm with different parameter settings. In Section 5.2, the results of the analysis of
the destruction factor σ are discussed and the best destruction factor is determined, and in
Section 5.3, the best parameters π2 and π3 are determined.

5.1. Methodology

The analysis is performed by running the LNS algorithm on the training set TSa. For
each of these instances, the LNS algorithm is run with different values of the σ, π2 and π3
parameters. Only one parameter is changed at a time, in order to isolate their effect on
the results. Different values may result from the LNS algorithm, even with the same set of
parameter values, due the randomness of the algorithm. To obtain an adequate estimate of
the objective function value, the LNS algorithm was run 50 times for each set of parameter
values for each instance.

The LNS parameter values that optimize the performance of the LNS algorithm, for each
instance, are determined as follows. For each instance, the mean µv1(of the 50 runs) of
the objective function values that are computed by the LNS algorithm, using a certain set
of LNS parameters v1, is compared to another mean value µv2 that resulted from using a
different set of LNS parameters v2 in the LNS algorithm. For example, let v1 correspond
with the parameter values [σ = 20, π2 = 30, π3 = 5] and v2 with [σ = 15, π2 = 30, π3 = 5].
These mean values are compared using paired, one-sided t-tests [38]. The null hypothesis
is H0: µ̂v2 − µ̂v1 = 0 and the alternative hypothesis is HA: µ̂v2 − µ̂v1 > 0. The level of
significance to reject the null hypothesis is α = 0.05.

5.2. Destruction factor

The destruction factor σ is the percentage of passenger requests that are removed from the
solution by the destroy operator of the LNS algorithm. As stated in [4], if this factor is
too low the solution space cannot be explored sufficiently. On the other hand, if the factor
is too large, the search algorithm takes on a random character, yielding worse results and
increasing the runtime. For these reasons, the largest values of σ will be limited to 40% of
the number of passenger requests, which means that σ ∈ [1%, 40%]. The lower bound is not
0% because the LNS algorithm needs to remove at least one passenger from the solution in
order to obtain a different solution in each iteration of the destroy-repair cycles.
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Figure 2: Boxplots for destruction factor σ

Statistical tests reveal that for most instances there is no simple optimal value for σ. Figure
2 shows the box plots for the objective function values that are obtained after running the
LNS algorithm with different values of σ, for two different instances. The mean values are
denoted by a striped blue line. The box plots of the runtime of the LNS algorithm are given
as well. It can be noted that, generally, a higher value of σ corresponds to a larger runtime.
However, when σ is too low, the runtimes fluctuate significantly and the algorithm may
take longer to stop. In some instances, there are several values which are not statistically
different from the lowest mean value that was observed, i.e., for which the null hypothesis
H0 could not be rejected. Instance I10, for example, has no clear optimal σ while instance
I26 does have an optimal σ, namely the lowest percentage of passenger requests that was
tested for I26: 2%. This parameter value yields lower objective function values and the
lowest mean value for I26. It also results in one of the lowest mean values for the runtime
of I26 as well.

The fact that there is often no clear optimal σ value means that there are several values
of σ which can be considered to be optimal with certain probability. These σ values will
be called ranges of optimality and are displayed in Figure 3, for all instances. The lowest
observed means are displayed as well. If a σ value is not statistically different from the
lowest mean, i.e., if the null hypothesis could not be rejected, this σ value is added to the
range of optimality. These ranges of optimality are based on the objective function values
and not on the runtimes. This is done because, generally, the LNS parameters that yield
better solutions either have the lowest runtimes as well, or the increase of the runtime is not
significant in comparison to other solutions with higher objective function values. From the
results, it is clear that very low percentages of destruction are preferred for larger instances
with more passenger requests. If a relatively larger percentage of passengers is removed
from these larger instances, the LNS algorithm probably becomes too random. For this
reason, Figure 3 shows the number of passenger requests that are destroyed, rather than a
percentage of the total number of passenger requests.
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Figure 3: Ranges of optimality for destruction factor σ

It can be seen that instances I18 to I36 have simple optimal values for σ. The other instances
have ranges of optimality. Furthermore, there is no common value for σ which optimizes
the LNS algorithm for all instances. The best σ value depends on the instance. A good
compromise is to make σ stochastic, randomly choosing the value of σ ∈ [3, 5] in each
repair-destroy cycle of the LNS algorithm. This strategy will increase the randomness of
the algorithm slightly, but it might yield better results in general, for different kinds of
instances. With this strategy, the LNS algorithm assumes the best σ value in some of its
destroy-repair cycles when it is run on any of the test instances in the representative subset
TSa.

5.3. Bus stop parameters

In these experiments, the influence of the π2 and π3 parameters on the performance of the
LNS algorithm is analyzed. Parameters π2 and π3 are the probabilities that the second
closest and third closest bus stop respectively is assigned to a passenger. The parameters
assume the following values: π2 ∈ [0%, 50%] and π3 ∈ [0%, 10%]. Both parameters have
ranges of optimality. The range of optimality and the lowest observed mean values for dif-
ferent π2 and π3 values are given in Figure 4. However, π2 has less influence on the objective
function value compared to σ, and π3 in turn has even less influence on the results. The
value of these parameters does not seem to have a significant influence on the runtime of
the LNS algorithm. This being said, however, Figure 4 shows that the inclusion of these
mechanisms in the LNS algorithm improves the objective function values in most instances.

It is apparent that values of π2 = 25% and π3 = 5% are a good option. The ranges of
optimality are quite large, when the significance level α is set to 0.05. This means that
the choice of these parameters is less important to the performance of the LNS algorithm.
However, more often than not π2 and π3 have non-zero optimal values, which justifies their
inclusion.
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Figure 4: Ranges of optimality for bus stop parameters π2 and π3

6. Performance of the LNS algorithm

In this section, the results for all the instances that are discussed in Section 5 are presented.
In the previous section, the parameters of the LNS algorithm were determined on a training
set of instances. It is decided that parameter σ will be randomly chosen between 3 and 5
passengers in each destroy-repair cycle, parameter π2 will be set to 25% and parameter π3
to 5%. First, the performance of the LNS algorithm on a single instance, namely instance
I14, is discussed. This instance is run several times in order to have insight into the behavior
of the LNS algorithm. Afterwards, all instances are evaluated. To test the LNS algorithm,
each instance was run 10 times. The best solution, the mean value of these runs and the
standard deviation are reported.

6.1. Behavior of the LNS algorithm

Figure 5 shows the progress of improvement of an individual run for instance I14. In this
figure, each black circle represents a lower feasible objective function value that was found
by the LNS algorithm during the destroy-repair cycles. The red triangle represents the
objective function value that is obtained after the 2-opt algorithm. The blue lines corre-
spond with the runtime until the last improvement is found. The red line corresponds with
runtime after the last improvement and includes the 2-opt algorithm.

As expected, the LNS algorithm makes most of its improvements at the start. Most of the
runtime is devoted to reaching the stopping criterion of the LNS algorithm: 5000 destroy-
repair cycles without an improvement. This means that the algorithm can sometimes yield
good results, even when the number of cycles without improvement, in the stopping crite-
rion, is lowered.
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Figure 5: Progress of improvement, instance I14

Instance I14 is run 50 times to observe the different objective function values that the LNS
algorithm produces when different streams of random numbers are utilized. During these
50 runs, the algorithm produces three different objective function values. In figure 6, the
number of required destroy-repair cycles, i.e., the last cycle that found an improvement, is
given for each objective function value. It can be seen that each objective function value
has a wide range of required number of cycles. Furthermore, the best objective function
value does not always require a larger number of cycles. This means that better quality
solutions, for an LNS algorithm with identical LNS parameters, are obtained when the
stream of random numbers is favorable and not necessarily when more destroy-repair cycles
are performed.

It can be concluded that, in practice, it is more advisable to limit the runtime and increase
the number of runs of the LNS algorithm, rather than increasing the runtime and limiting
the number of runs, to obtain better solutions. Furthermore, the runs are independent from
each-other and are thus easily implemented using parallel computing, which can reduce the
overall computing time.
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6.2. Experimental results

The LNS algorithm is used to solved all of the instances that were described in Section 5,
the results are summarized in Table 3. Here, the best (lowest) objective function value and
runtime for a single run are given. The mean and the standard deviation of the objective
function values and the mean and the relative standard deviation of the runtimes are pre-
sented as well.

For the first 14 instances, the optimal values are known [5]. This allows us to determine
the optimality gap, between the optimal and the best observed solution of the LNS algo-
rithm. The gap makes it possible to assess the performance of the LNS algorithm. The
minimum and mean gaps from the 10 runs are presented in Table 3 as well. Column “Ex-
act”, in Table 3, shows the runtimes to solve the instances with the fastest mathematical
model presented in [5]. The mathematical model is solved with the help of CPLEX, and
both the LNS algorithm and the mathematical model are run on the same computer. It
needs to be noted, however, that CPLEX uses 12 threads to solve the mathematical model,
while the LNS algorithm only uses one. If we assume that the LNS algorithm can easily
be run in parallel and that the 12 threads used by the CPLEX solver are equivalent to 10
parallel runs of the LNS algorithm, then the minimal gaps can be used for a fair comparison.

It can be seen that the LNS algorithm performs quite well for the first 14 instances, yielding
minimum optimality gaps of 0.2% or less, when the best run is considered. The objective
function values of the other, larger instances are more difficult to evaluate because there is
no known optimal value. However, the low gaps in the first 14 instances give an indication
that the LNS algorithm performs well. Furthermore, it can be seen that the LNS algorithm
consistently yields good solutions, since the relative standard deviation is often less than
2% and never larger than 3.16%. The LNS algorithm is also quite fast, with low runtimes
that are typically less than a minute for very large instances and typically a few seconds
or less in small and mid-size instances. These runtimes are considerably smaller than the
runtimes obtained by the mathematical model. The difference in runtime becomes greater
as the size of the instances increases, e.g., for instance I1 the LNS algorithm is only 214
times faster than the exact method, while for I14 the LNS algorithm is almost 70000 times
faster. In some instances, the runtime is less consistent and it has a relatively large standard
deviation, typically this occurs when the LNS algorithm solves larger instances.

7. Comparison with other services

In this section, the DRFS is compared to other feeder services. More specifically, the best
way to operate the DRFS, obtained by the LNS algorithm, will be compared to operating an
on-demand only service (ODOS) that serves the same demand. The ODOS uses predefined
stops and stop assignment to reduce walking times and travel times of the passengers in
the same way as the DRFS. In the ODOS, however, there are no mandatory stops so all
stops are optional. The only restriction on the routing is that each bus needs to start at
the first mandatory bus stop and end at the last mandatory stop. The ODOS is a service
that has maximum flexibility (i.e., no mandatory stops). Like the DRFS, this service can
be classified as an on-demand transportation service (ODTS).

The DRFS is also compared to traditional feeder services (TFS). In the TFS, the buses have
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Objective function value (s) Runtime (s)

Inst.
LNS
mean

LNS
min

Relative
LNS Std

Mean
gap

Min
gap

LNS
mean

LNS
min

LNS
Std

Exact

I1 3156,7 3149,6 0,22% 0,40% 0,20% 0,02 0,02 0,00 4,3
I2 2947,0 2932,7 0,85% 0,30% 0,00% 0,03 0,03 0,00 4,1
I3 4898,1 4889,7 0,14% 0,30% 0,10% 0,03 0,03 0,00 27,6
I4 4460,8 4447,2 0,23% 0,20% 0,00% 0,05 0,04 0,01 19,8
I5 7312,2 7300,5 0,13% 0,20% 0,10% 0,04 0,04 0,00 74,2
I6 6131,2 6117,4 0,18% 0,10% 0,00% 0,07 0,06 0,00 81,0
I7 5938,1 5908,9 0,41% 0,50% 0,10% 0,09 0,09 0,00 57,7
I8 7851,2 7838,5 0,05% 0,30% 0,20% 0,11 0,11 0,01 487,2
I9 7300,0 7300,0 0,00% 0,30% 0,20% 0,17 0,15 0,02 309,7
I10 9503,1 9496,1 0,07% 0,20% 0,10% 0,12 0,11 0,00 1822,2
I11 8883,2 8801,8 2,01% 0,20% 0,10% 0,17 0,15 0,03 1730,9
I12 9044,0 9033,3 0,35% 0,40% 0,20% 0,22 0,19 0,04 2314,5
I13 9008,6 8949,4 0,56% 0,80% 0,10% 0,28 0,23 0,05 1449,7
I14 12470,5 12370,4 1,03% 1,10% 0,10% 0,60 0,49 0,11 41832,5

I15 17668,9 17495,6 0,91% 1,27 0,91 0,26
I16 16912,7 16810,6 0,74% 1,50 1,18 0,30
I17 15939,0 15907,1 0,28% 2,32 1,53 0,76
I18 15579,0 15520,6 0,16% 3,00 2,26 0,36

I19 26910,1 26443,7 1,47% 7,47 5,76 1,10
I20 37979,0 37251,3 1,09% 15,95 10,11 4,71
I21 47899,7 46740,0 1,87% 28,22 17,30 6,56
I22 63466,8 62350,5 1,60% 40,57 18,32 17,40
I23 114148,3 111971,0 1,18% 78,22 42,00 24,75
I24 146553,6 141483,0 1,99% 119,50 47,80 59,08

I25 51326,7 51288,8 0,05% 3,40 3,23 0,14
I26 49828,6 49311,3 0,71% 4,42 4,07 0,34
I27 47128,1 44539,5 2,90% 9,79 6,38 2,76
I28 45560,0 43848,9 3,16% 16,06 10,11 4,00
I29 46364,3 45192,1 2,83% 24,97 13,06 12,72
I30 48567,5 47762,9 0,93% 31,88 15,39 11,00

I31 47179,4 46805,9 0,59% 23,78 13,79 7,21
I32 47333,4 46950,1 0,79% 24,07 14,15 10,93
I33 47410,9 47158,1 0,49% 24,11 13,24 8,19
I34 47788,3 46938,6 1,18% 30,01 19,93 7,24
I35 47899,7 46740,0 1,87% 27,13 16,60 6,28
I36 47899,7 46740,0 1,87% 27,10 16,80 6,20

Table 3: Results of the LNS algorithm
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Service
Predetermined

bus stop
locations

Bus stop
assignment

Fixed
route

Fixed
timetable

TFS Yes No Yes Yes
DRFS Yes Yes Partially No
ODOS Yes Yes No No

Table 4: Overview of the characteristics of the different services

fixed routes and timetables. Two different TFS are considered: one that visits all the stops
(TFS1) and one that visits all mandatory stops and one randomly chosen, predetermined
bus stop per cluster (TFS2). In this service, a number of passengers can make requests for
transportation, however, the service will only assign passengers to stops of the fixed routes
of the buses and to a bus with a predetermined timetable. Both services are not flexible at
all and can be classified as traditional transportation services (TTS). An overview of the
different characteristics of each service is shown in table 4.

7.1. Optimizing the operation of ODOS and TFS

In order to have a fair comparison, the operation of the TFS and the ODOS are optimized
as well. The LNS algorithm is modified to obtain the most efficient operation of the ODOS
for a given demand and is used to solve all instances described in Section 5. For both the
DRFS and the ODOS, 10 runs are performed and the best run is considered.

For the TFS, first, the routing of the buses is optimized using a greedy algorithm to construct
an initial solution and a 2-opt algorithm is used to improve upon it. Second, each passenger
will be assigned to its closest stop included in the fixed bus route. Third, the timetables
of the buses are determined by evenly spreading the departure times of the buses from
the first mandatory bus stop over a certain time period, in accordance to the number of
available buses. Then, the departure time of the first bus is determined based on the best
case scenario, i.e. the arrival of the different buses coincides the most with the desired
arrival times of the passengers at the hub. Lastly, the assignment of passengers to buses
is optimized using a Mixed Integer Linear Program (MILP). The MILP minimizes the
(absolute value of the) difference between the actual arrival time and the desired arrival
time of the passengers. Furthermore, the MILP is subject to the same capacity and arrival
constraints as the LNS algorithm. The MILP formulation can be found in Appendix B.

7.2. General comparison

The objective function values of all instances for all services (DRFS, TFS1, TFS2, ODOS)
are summarized in Table 5. This table also indicates the difference in objective function
value of TFS1, TFS2 and ODOS compared to DRFS. A negative difference corresponds to
a better (lower) objective function value. It should be noted that the passenger requests
have time windows and that the TFS services could not respect these time windows for
some instances. This results in infeasible solutions, colored red in Table 5. The value that
is displayed is the objective function value that the service yields when these constraints
are removed.

24



From the results it is clear that the DRFS preforms much better than both versions of
the TFS. The decrease in the objective is often more than 60% and at times over 100%.
When the instance size increases, the improvement of DRFS with respect to TFS increases
too. This means that the DRFS improves the TFS due to the customized timetables and
routes. TFS2 seems to perform slightly better than TFS1 in most instances. TFS1 only
outperforms TFS2 in instances with a small number of buses.

As expected, the fully flexible ODOS performs better when it comes to optimizing the
service quality of the known demand. These results could be considered as a lower bound,
when the DRFS would ignore the mandatory stops. This also means that the ODOS cannot
serve any passengers without reservation, i.e., passengers that need a ride for transportation
but do not make a request for it. Nevertheless, the difference in objective function value
between ODOS and DRFS remains limited, mostly below 7%. This means that when DRFS
(or ODOS) would be implemented in practice, this 7% operational gain should be traded
off with (not) serving passengers without reservation.

7.3. Effect of instance parameters

In what follows, the number of optional stops per cluster, the number of requests, the
number of buses and the bus capacity are modified in different experiments. There are
four sets of experiments and in each set one of the previously mentioned parameters varies
while the other parameters remain constant. Instances I15 to I36 have been designed in
four subsets specifically for these experiments (see Table 2). Instances I15 to I18 have the
number of optional stops per cluster as a variable, while the other instance parameters
remain constant. In instances I19 to I24, the number of requests changes, in instances I25
to I30 the number of buses changes, and in instances I31 to I36 the capacity of the buses
changes. This is done to isolate the effect of each variable on the performance of the DRFS,
the ODOS and the TFS.

7.3.1. Number of optional stops per cluster

Figure 7 shows the objective function values of DRFS, ODOS, TFS1 and TFS2. The number
of optional stops per cluster is the only variable in these experiments. Evidently, the ODOS
and the DRFS optimize their service quality further when a larger number of optional stops
is considered. Even though it is not evident from the figure below, we noticed that the
advantage of the ODOS over the DRFS is more pronounced when there are more optional
stops. This is to be expected since a greater number of optional stops gives the service more
flexibility, which can be utilized more efficiently in the fully flexible ODOS. The traditional
services, however, behave the opposite way; when the number of optional stops increases,
the performance of DRFS further improves compared to both TFS. TFS1 benefits from a
smaller number of optional stops; less optional stops means that the buses need to travel
less. The objective function value of TFS2 is unaffected because only a single optional stop
is visited in each cluster.

7.3.2. Number of passenger requests

Figure 8 shows the impact of the number of passenger requests on the performance of the
different services. It is easy to see that the objective function value of all services increases
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Inst.
DRFS
(s)

ODOS
(s)

Diff
TFS1
(s)

Diff
TFS2
(s)

Diff

I1 3149,6 3149,6 0,00% 3984,0 26,49% 4405,7 39,88%
I2 2932,7 2932,7 0,00% 3860,4 31,63% 4186,9 42,77%
I3 4889,7 4882,5 -0,15% 6160,2 25,98% 7091,8 45,04%
I4 4447,2 4355,6 -2,06% 6046,6 35,96% 6839,8 53,80%
I5 7300,5 7280,1 -0,28% 9510,6 30,27% 10312,8 41,26%
I6 6117,4 6074,6 -0,70% 8023,2 31,15% 8622,3 40,94%
I7 5908,9 5756,9 -2,57% 7830,7 32,52% 8226,7 39,23%
I8 7838,5 7607,5 -2,95% 10130,1 29,24% 10971,1 39,96%
I9 7300,0 6965,5 -4,58% 9981,4 36,73% 10592,6 45,10%
I10 9496,1 9418,4 -0,82% 12709,2 33,84% 13661,5 43,87%
I11 8801,8 8543,2 -2,94% 11562,1 31,36% 12281,6 39,54%
I12 9033,3 8822,2 -2,34% 12270,6 35,84% 12281,6 35,96%
I13 8949,4 8705,5 -2,73% 12841,6 43,49% 12825,3 43,31%
I14 12370,4 11628,6 -6,00% 18244,5 47,49% 18737,6 51,47%

I15 17495,6 16060,5 -8,20% 25076,4 43,33% 24483,6 39,94%
I16 16810,6 15418,3 -8,28% 25296,9 50,48% 24483,6 45,64%
I17 15907,1 14474,7 -9,00% 25254,8 58,76% 24483,6 53,92%
I18 15520,1 14093,5 -9,19% 25726,5 65,76% 24483,6 57,75%

I19 26443,7 22699,0 -14,16% 62031,5 134,58% 51531,9 94,87%
I20 37251,3 33339,5 -10,50% 72250,9 93,96% 65404,8 75,58%
I21 46740,0 43695,7 -6,51% 88124,5 88,54% 86474,2 85,01%
I22 62350,5 59327,6 -4,85% 107896,0 73,05% 114345,0 83,39%
I23 111971,0 107784,0 -3,74% 151458,0 35,27% 172296,0 53,88%
I24 141483,0 141188,0 -0,21% 180732,0 27,74% 210854,0 49,03%

I25 51288,8 50283,4 -1,96% 103441,0 101,68% 113079,0 120,48%
I26 49311,3 48269,7 -2,11% 94311,4 91,26% 103285,0 109,46%
I27 44539,5 42846,5 -3,80% 80078,8 79,79% 86396,7 93,98%
I28 43848,9 41799,5 -4,67% 79963,5 82,36% 83625,3 90,71%
I29 45192,1 42765,1 -5,37% 83485,1 84,73% 84490,8 86,96%
I30 47762,9 44182,8 -7,50% 92417,2 93,49% 89438,8 87,26%

I31 46805,9 43365,7 -7,35% 99469,8 112,52% 97819,5 108,99%
I32 46950,1 43428,6 -7,50% 90280,8 92,29% 88630,5 88,78%
I33 47158,1 43169,3 -8,46% 89814,1 90,45% 88163,8 86,95%
I34 46938,6 43365,9 -7,61% 88124,5 87,74% 86474,2 84,23%
I35 46740,0 43695,7 -6,51% 88124,5 88,54% 86474,2 85,01%
I36 46740,0 43695,7 -6,51% 88124,5 88,54% 86474,2 85,01%

Table 5: Comparisons between DRFS, an on-demand only service and two traditional services
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Figure 7: Effect of the number of optional stops per cluster
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Figure 8: Effect of the number of passenger requests

with the number of passenger requests. TFS2 outperforms TFS1 when the number of
passenger requests is low, while TFS1 performs better than TFS2 when the number of
passenger requests is higher. This is likely due to the fact that the smaller travel times in
TFS2 compensate for the larger walking times of the passengers. When more passengers
request a ride, the walking times become more important and it is more beneficial to visit
more stops so passengers walk less, as in TFS1, rather than visiting less optional stops, as
in TFS2. The relative difference between the objective function values of DRFS and the
objective function values of both the ODOS and the TFS become smaller when the number
of requests is higher. The relative difference decreases from 9% to 0.2% for ODOS, from 135
% to 28% for TFS1 and from 95% to 49% for TFS2. This is expected; when there are more
passenger request, the flexibility of the services has less added value because the demand is
high enough to justify a rigid timetable (desired arrival times are more uniformly spread in
time) and bus routing (visiting more stops makes more sense).

7.3.3. Number of buses

Figure 9 shows the results of the experiments where the number of buses is modified.
Evidently, an increasing number of buses decreases the objective function values of the
services, but too many buses make the objective function value increase again. Having
more buses available means that the difference in desired and actual arrival time of the
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passengers can be reduced. However, if there are too many buses, the added travel time of
the buses becomes more important. The DRFS and the ODOS force every bus to operate
in order to serve potential passengers that need transportation but have not made a request
for it. This means that the travel time of all buses is added to the objective function, even if
some buses have no passengers onboard. The ideal number of buses for TFS1 is lower than
the ideal number buses for TFS2. This is due to the fact that, in TFS1, the travel-time of
each bus is higher because more optional stops are visited. The objective function values of
ODOS approach the values of DRFS when there are fewer buses; having less buses decreases
the flexibility, which in turn decreases the advantage the ODOS has over the DRFS.
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Figure 9: Effect of the number of buses

7.3.4. Bus capacity

Figure 10 shows the impact of the bus capacity. The capacity does not have a major effect
on the ODOS and the DRFS. The behavior of the TFS shows that more capacity improves
the TFS by a significant margin. More capacity means that the buses can transport more
passengers at once, which means more passengers with similar desired arrival times are
grouped, making the services more efficient. After a certain capacity, however, the TFS
services stop improving because all possible efficient groupings of passengers have been
realized already. ODOS and DRFS are essentially unaffected by the bus capacity because
the difference in desired and actual arrival time is reduced by customizing the routes and
the timetables and not necessarily by grouping a larger number of passengers.

8. Conclusion

In this research, a new type of feeder service, with both optional and mandatory bus stops, is
considered: a Demand Responsive Feeder Service (DRFS). This feeder service incorporates
positive characteristics of both traditional transport services (TTS) and on-demand trans-
port services (ODTS). The DRFS has flexibility in selecting which of the clustered optional
bus stops are visited, based on passenger requests. Furthermore, there is predictability in
the mandatory bus stops, which need to be visited by each bus. Passengers can have a
customized service by making requests online. However, if such requests are not made it is
still possible to catch a bus in a mandatory bus stop. This will likely improve service quality.
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Figure 10: Effect of the number of bus capacity

In order to optimize the performance of the DRFS, a heuristic algorithm is developed. The
algorithm follows a large neighborhood search (LNS) framework. In this framework, a part
of the solution is destroyed and rebuilt several times. The destruction operator randomly
destroys part of an existing solution. The reconstruction operator starts from the partially
destroyed solution and rebuilds it. After the destroy-repair cycles, a 2-opt algorithm fur-
ther improves the routing part of the solution. The parameters of the LNS algorithm are
fine-tuned, using a statistical analysis, to obtain good results for any kind of instance. This
approach yields high quality results in short runtimes for 36 different instances. Optimality
gaps of typically less than 0.2% are found for 14 small and mid-size benchmark instances,
for which optimal solutions are available, with very small runtimes of under a second. The
22 larger instances are typically solved within a minute.

This demand responsive feeder service (DRFS) is compared to a traditional feeder service
(TFS), where routes and timetables are fixed, and to an on-demand only service (ODOS),
where all bus stops are optional. The DRFS performs better than the traditional service in
all cases. Often, there is more than 60% improvement in service quality. In some instances,
the TFS is even unable to satisfy all the constraints of the service. The DRFS consequently
needs less buses than the traditional services to satisfy the demand. The DRFS and the
ODOS perform better in situations with relatively low demand for transportation, while the
TFS performs relatively better when there is a high demand for transportation. Further-
more, the improvement in quality of both the DRFS and the ODOS, with respect to TFS,
is greater when a smaller bus capacity and/or bus fleet is available. The ODOS improves
the objective function value obtained by DRFS by 6 % on average. We consider this a small
increase considering that this service does not serve any passengers without reservation,
while such passengers can be served by the DRFS at the mandatory stops. We conclude
that in many circumstances the DRFS could be an attractive, cost efficient and passenger
friendly alternative.

Further research could focus on making the DRFS even more flexible, by optimizing the
service in real-time. This will make the problem considerably more complex because it
needs to modify routes and timetables to accommodate new requests, while still satisfying
all constraints. The LNS algorithm presented in this work can be used as a starting point
for the solution method of such a service. However, the LNS algorithm should be modified
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significantly to be able to work with real-time requests. Quantifying how well the DRFS
can serve the passengers that do not make a request for transportation is an interesting
next step as well. The service could also be further improved towards passengers, by also
considering earliest departure times of the passengers instead of only the latest arrival times.
Another improvement is to replace the mandatory stops by stops with a guaranteed minimal
frequency, allowing to still service the passengers without reservation, but in a more flexible
way.
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[31] S. Asta, E. Özcan, A. J. Parkes, CHAMP: Creating heuristics via many parameters
for online bin packing, Expert Systems with Applications 63 (2016) 208–221.

[32] H. Sun, C. Y. Yang, C. W. Lin, J. S. Pan, V. Snasel, A. Abraham, Genetic and Evo-
lutionary Computing: Proceeding of the Eighth International Conference on Genetic
and Evolutionary Computing, October 18–20, 2014, Nanchang, China, Advances in
Intelligent Systems and Computing 329 (August 2014) (2015).

[33] S. Voß, A. Fink, C. Duin, Looking ahead with the pilot method, Annals of Operations
Research 136 (1) (2005) 285–302.

[34] A. Goel, Vehicle scheduling and routing with drivers’ working hours, Transportation
Science 43 (1) (2009) 17–26.

[35] D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems, Computers and
Operations Research 34 (8) (2007) 2403–2435.

[36] L. F. Muller, An Adaptive Large Neighborhood Search Algorithm for the Multi-mode
Resource-Constrained Project Scheduling Problem, European J. of Industrial Engi-
neering (EJIE) 11 (6) (2010) 1–10.

[37] Y. Dodge, An introduction to L1-norm based statistical data analysis, Computational
Statistics and Data Analysis 5 (4) (1987) 239–253.

[38] F. Campelo, F. Takahashi, Sample size estimation for power and accuracy in the ex-
perimental comparison of algorithms, Journal of Heuristics 25 (2) (2018) 305–338.

32



Appendix A. Results for the LNS algorithm with pilot method

Objective function value (s) Runtime (s)

Inst. Mean Min
Relative

std
Mean Min Std

I1 3167.3 3158.8 0.22% 0.024 0.023 0.002
I2 2957.2 2932.4 1.11% 0.040 0.035 0.005
I3 4904.5 4898.8 0.14% 0.038 0.037 0.002
I4 4462.1 4446.9 0.16% 0.063 0.057 0.013
I5 7309.3 7300.5 0.12% 0.056 0.055 0.002
I6 6127.3 6117.0 0.16% 0.102 0.085 0.025
I7 5934.3 5918.1 0.28% 0.119 0.114 0.007
I8 7850.5 7842.0 0.09% 0.141 0.127 0.015
I9 7303.5 7303.5 0.00% 0.210 0.173 0.049
I10 9505.2 9499.6 0.07% 0.153 0.143 0.008
I11 8867.7 8805.3 1.78% 0.211 0.188 0.046
I12 9089.5 9036.8 1.74% 0.274 0.227 0.053
I13 9041.3 8952.9 0.57% 0.323 0.288 0.027
I14 12542.5 12402.7 1.18% 0.616 0.576 0.028
I15 17663.0 17534.8 0.43% 1.460 1.101 0.234
I16 16974.0 16886.0 0.36% 1.940 1.221 0.692
I17 16009.9 15956.4 0.58% 2.449 1.688 0.548
I18 15616.0 15551.0 0.34% 3.116 2.457 0.470
I19 26894.3 26474.9 1.21% 10.173 7.067 2.764
I20 37773.6 37105.7 1.27% 20.552 15.247 4.036
I21 47632.8 46734.6 1.57% 31.258 16.237 7.054
I22 62954.4 62252.5 1.24% 56.205 25.938 16.831
I23 114987.3 111862.0 1.45% 109.787 60.824 35.973
I24 147335.6 142274.0 2.11% 121.540 83.253 33.906
I25 51325.2 51304.5 0.03% 4.463 4.409 0.030
I26 49907.6 49341.1 0.79% 5.481 5.142 0.567
I27 47002.9 44494.2 2.70% 14.006 10.052 2.783
I28 45681.6 44044.6 2.80% 17.046 11.705 3.822
I29 46714.8 45009.8 2.12% 26.173 16.702 8.393
I30 48558.4 47863.3 1.16% 43.483 18.308 18.302
I31 47387.8 46918.4 1.24% 37.392 17.996 16.887
I32 47237.6 46794.4 0.56% 37.516 18.219 14.239
I33 47629.8 47004.8 1.26% 39.489 22.280 15.150
I34 47563.8 46877.3 0.99% 43.009 21.378 16.358
I35 47632.8 46734.6 1.57% 32.721 17.590 7.368
I36 47632.8 46734.6 1.57% 32.678 17.033 7.396

Table A.6: Results of the LNS algorithm when a pilot method is used for bus stop assignment
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Appendix B. MILP for the traditional system

Decision Variables

ypb
0-1 assignment variables which assume the value of 1 if passenger p ∈ P
is assigned to bus b ∈ B

lap The amount of time passenger p ∈ P is late
eap The amount of time passenger p ∈ P is early

Parameters

ab Arrival time of bus b ∈ B at the destination
dlate Maximum value for arriving later than the desired arrival time of any passenger
dearly Maximum value for arriving earlier than the desired arrival time of any passenger
C Capacity of the buses

Table B.7: Variables and parameters of the MILP

Minimize:

z =
∑

p∈P

(lp + eap)

S.t.

∑

b∈B

ypb = 1 ∀ p ∈ P (B.1)

∑

p∈P

ypb ≤ C ∀ b ∈ B (B.2)

lap ≤ dlate ∀ p ∈ P (B.3)

eap ≤ dearly ∀ p ∈ P (B.4)

datp −
∑

b∈B

ypbab + lap − eap = 0 ∀ p ∈ P (B.5)
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