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Abstract 

RATIONALE: Structure elucidation of small molecules has been one of the cornerstone 

applications of mass spectrometry for decades. Despite the increasing availability of software 

tools, structure elucidation from MS/MS data remains a challenging task, leaving many spectra 

unidentified. However, as an increasing number of reference MS/MS spectra are being curated 

at a repository scale and shared on public servers, there is an exciting opportunity to develop 

powerful new deep learning (DL) models for automated structure elucidation.  

ARCHITECTURES: Recent early-stage DL frameworks mostly follow a “two-step 

approach” that translates MS/MS spectra to database structures after first predicting molecular 

descriptors. The related architectures could suffer from: 1) computational complexity because 

of the separate training of descriptor-specific classifiers, 2) the high dimensional nature of mass 

spectral data and information loss due data preprocessing, 3) low substructure coverage and 

class imbalance problem of predefined molecular fingerprints. Inspired by successful DL 

frameworks employed in drug discovery fields, we have conceptualized and designed 

hypothetical DL architectures to tackle the above issues. For 1), we recommend multitask 

learning to achieve better performance with fewer classifiers by grouping structurally related 

descriptors. For 2) and 3), we introduce feature engineering to extract condensed and higher-

order information from spectra and structure data. For instance, encoding spectra with subtrees 

and pre-calculated spectral patterns add peak interactions to the model input. Encoding 

structures with graph convolutional networks incorporates connectivity within a molecule. The 

joint embedding of spectra and structures can enable simultaneous spectral library and 

molecular database search.  

CONCLUSIONS: We believe that in principle, given enough training data, adapted DL 

architectures, optimal hyperparameters and computing power, DL frameworks can predict 

small molecule structures, completely or at least partially, from MS/MS spectra. However, their 
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performance and general applicability should be fairly evaluated against classical machine 

learning frameworks.  
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Abbreviations 

CNN, Convolutional neural network; 

DDA, Data dependent acquisition; 

DIA, Data independent acquisition; 

DL, Deep learning; 

DNN, Deep neural network; 

ECFP, Extended-connectivity fingerprint;  

FT, Fragmentation tree; 

GAN, Generative adversarial network; 

GPU, Graphics processing unit; 

MFP, Molecular fingerprint; 

ML, Machine learning; 

MLP, Multi-layer perceptron; 

MPNN, Message-passing neural network; 

MTL, Multitask learning; 

PLS-DA, Partial least square discriminative analysis; 

QSAR, Quantitative structure activity relationship; 

ReLU, Rectified linear activation function; 

RNN, Recurrent neural network; 

SMILES, Simplified molecular input line entry specification; 

SVM, Support vector machine; 

VAE, Variational autoencoder; 

Thesaurus 

Machine Learning Machine Learning (ML) algorithms build a statistical model based on sample data 

(or training data) to make predictions or decisions without explicit instructions. ML technology powers 

many aspects of society: from web searches to e-commerce to business decision-making. In many 

research projects, ML assists complex data analysis and stimulates fundamental biological discoveries. 

ML can provide automated solutions for MS/MS-based small molecule structure elucidation to assist 

or partially replace manual spectral interpretation. Community-scale spectral libraries contain a large 
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amount of sample data, including both spectra and corresponding structure labels. Ideally, we can 

translate the spectral library into a statistical model that captures and records the complex 

relationships between spectra and structures or structure properties in a robust and reliable fashion. 

Without explicit instructions from experts, the ML model created can automatically predict structures 

or structure descriptors for an unseen spectrum. ML models can be further developed into a user-

friendly structure elucidation software. 

Deep Learning Deep Learning (DL) is a subfield of ML technology. DL algorithms, due to their complex 

architectures, are considered as an evolution of statistical models in standard ML. In fact, DL 

applications use a multiple layer structure of algorithms called a Deep Neural Network (DNN). The 

concept of a DNN is inspired by the biological neural network of the human brain, leading to a process 

of learning that is more sophisticated and flexible than that of traditional ML models. DL methods 

have considerably improved the state-of-the-art in speech recognition, computer vision and many 

other domains such as drug discovery and genomics. Likewise, DL may improve computational 

frameworks for MS/MS-based small molecule structure elucidation. An advantage of DL over standard 

ML is that artificial neural networks might better recognize complex spectral patterns observed from 

library spectra, such as peak interactions, and map these patterns to small molecule structures or 

structure properties. 

Supervised and Unsupervised Learning Within the field of ML (DL), there are two major learning tasks: 

supervised or unsupervised. The main difference between these is that supervised learning requires 

ground truth, or in other words, the training data contains expected output values for each sample. 

The goal of supervised learning is to learn a statistical model that best approximates the relationship 

between the input (e.g. library spectra) and output (e.g. molecular descriptors) from the training data. 

Unsupervised learning, on the other hand, does not require labeled outputs, and its goal is to infer the 

natural structure or condensed information present within a set of data inputs (e.g. unlabeled library 

spectra). The natural structure can be in the form of patterns (e.g. MS2LDA motifs and MESSAR rules) 

or vectors in an embedded space (as for Spec2Vec). 

Kernel To develop either supervised or unsupervised ML(DL) algorithms for MS-based structure 

elucidation, the common challenge is to put similar training spectra or structures close to each other. 

MS/MS spectra, after centroiding and m/z discretization, can be represented as vectors of numbers. 

Therefore, the dot product between two vectors can be a simple similarity measure between two 

spectra. However, chemical structures in the spectral library are not easily convertible into numeric 

vectors, and neither are fragmentation trees built from MS/MS spectra. Kernel methods are a class of 

algorithms that extend the similarity measure to virtually any type of samples including these non-

vectorizable ones. Kernel methods require only a user-specified kernel (a similarity function) over pairs 

of data points (e.g. pairs of fragmentation trees), which enable them to perform prediction or 

dimension reduction tasks in an implicit feature space. 

Parameters and Hyperparameters Model parameters are the parameters internal to the ML(DL) 

model whose values are learned from training data. In fact, the values of the parameters determine 

how accurately the model fits the training data and how good it performs the prediction task. During 

the learning phase, parameters are estimated automatically by minimizing a loss function. The 

parameters of DNNs are typically the weights of the connections between neurons. Hyperparameters 

are configurations of the model whose values cannot be estimated from data. Before the learning 

phase, they are optimized for a given predictive modeling task and set by the practitioner. They usually 

remain unchanged throughout the learning and prediction phase. The aim of hyperparameter tuning 

is to find the combination that strikes the balance between underfitting and overfitting on the 

validation set in the hope that these results generalize to the testing set. The hyperparameters of 
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DNNs are related to both network structure (e.g. layers, units, and dropout rate) and training 

algorithm (e.g. learning rate, momentum, number of epochs, and batch size).   

Multi-Layer Perceptron An Artificial Neural Network (ANN) in DL technology is a network connecting 

units or nodes called artificial neurons, which loosely model the neurons in human brains. The input 

of each neuron is a real number (e.g. intensity of a product ion), and the output of each neuron is 

computed by non-linear transformations of the sum of its inputs (e.g. non-linear functions on 

intensities of product ions). The basic example of an ANN is a Multi-Layer Perceptron (MLP), which 

consists of at least three layers of neurons: the input layer, one or more hidden layers, and the output 

layer. The input layer receives the numeric input data to be processed, for example, the intensities of 

all m/z bins. The result of the prediction task, such as the presence or absence of molecular descriptors, 

is given by the output layer. A pre-defined number of hidden layers that are placed between the input 

and output layers are the true computational engine of the MLP. In an MLP, the data flows in the 

forward direction from the input layer to the output layer, while the weights of the neurons are trained 

via back-propagation. MLPs are designed to approximate any continuous function to recognize 

complex spectral patterns observed from library spectra, such as peak interactions, and map these 

patterns to molecular descriptors in the output layer. An ANN, including a basic MLP, can be called a 

deep neural network (DNN), if there are multiple hidden layers between the input and output layer. 

Graph Neural Network Graph Neural Networks (GNN) are a type of ANN that directly operate on a 

graph structure. In computer science, a graph is a data structure consisting of two components: nodes 

and edges. Molecular graphs are the most natural representation of small molecules by considering 

atoms as nodes and bonds as edges. Among diverse GNN architectures, the Message Passing Neural 

Network (MPNN) is a promising and recent approach in QSAR modelling for engineering molecular 

descriptors from molecular graphs. They have outperformed predefined molecular descriptors, such 

as ECFP, for building accurate models for the prediction of various properties and activities of small 

molecules. A MPNN framework usually contains four steps: (1) feature initialization step, where 

chemical information of each atom and bond is coded as feature vectors, (2) message passing step, 

where, for each atom, atom or bond features from its neighbors are propagated, based on the graph 

structure, into a so-called message vector; (3) update step, where atom features are updated by the 

message vector; (4) aggregation step, where atom features in the molecule are aggregated into a 

molecule feature vector. The output of an MPNN (i.e. molecule feature vector) can be obtained by 

maximizing its correlation with the spectral data. A good example is the “molecular vector” in the 
ADAPTIVE framework. 

CNN and RNN Besides the graph-based representation, different DNN architectures can use other 

types of molecular representations as input. Among such DNN architectures, Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) have both gained remarkable success in 

QSAR and drug discovery. For instance, we can use CNNs on images of 2D drawings of molecules. 

SMILES strings can be directly used as the input to RNNs. RNNs are usually applied in combination with 

attention mechanisms to better process long SMILES strings. Like GNNs, CNNs and RNNs can both 

learn features from structures directly without using any predefined structure descriptors. In fact, the 

architectural flexibility is a prominent benefit of DL compared to other ML methods.  
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1. Introduction 

Mass spectrometry (MS) is being used across diverse fields that require structure elucidation 

of small molecules, such as metabolomics, pharmaceutical discovery and development, 

forensic toxicology, environmental science, and clinical research1. As examples, metabolite 

identification is an essential step towards the understanding of complex biological systems and 

biomarker discovery2,3. The pharmaceutical industry must investigate and identify all process 

impurities and degradation products to meet the requirements of regulatory authorities4. Drug 

discovery from natural products and toxicity analysis cannot proceed without correct structure 

proposals of isolated compounds5. 

One of the standard methods for identifying small molecules (below 1,500 Da) is liquid 

chromatography (LC) techniques coupled with tandem mass spectrometry (MS/MS). Data 

acquired from LC-MS/MS platforms capture each analyte in several layers of information, 

including exact mass, retention time, isotopic profile, and fragmentation patterns (both MS2 

and MSn). Modern tandem MS technologies provide data dependent acquisition (DDA) and 

data-independent acquisition (DIA) functionalities to acquire multiple stages of mass analysis 

including MS1, MS2 (MS/MS), and MSn spectra for small molecules present in a complex 

mixture6. Such experiments start with measuring precursor ions of intact small molecules (MS1 

stage) in a sample. In the MS2 stage, some precursor ions are selected, isolated and fragmented, 

and the product ions detected are used to generate the MS2 spectrum of a selected precursor 

ion. With some MS instruments, if the intensity of product ions allows, this process may be 

extended by selectively retaining product ions in the mass analyzer and repeating the 

fragmentation process to generate the MS3 or even MSn (n>3) spectra. 

Hundreds of small molecules can be screened from a complex sample in minutes on an LC-

MS/MS system. Meanwhile, mass spectra of authentic standards and real-world samples are 

being stored in spectral libraries after manual curation and annotation by experts7. Most 

spectral libraries record selected MS1/MS2 scans (two-column matrices: mass, intensity), 

analytical techniques (e.g. instrument, gradient), measurement in other dimensions (e.g. 

retention time, drift time) along with structure metadata provided by experts (e.g. formula, 

adduct, InChIKey). MS3 and MSn scans are also recorded in some spectral libraries such as 

mzCloud8. Repositories exist to gather spectral libraries from individual laboratories into larger 

resources. Community-scale spectral repositories, such as GNPS7, MassBank9, METLIN10 and 

MetaboLights11, collect spectra of up to 1,000,000 small molecule structures acquired on 

diverse instruments. 

Despite tremendous efforts of the MS community to contribute manually curated spectra, only 

a marginal fraction of compounds present in biological systems, chemical processes, and the 

environment are covered by these community-scale repositories. According to experts, about 

2% of spectra acquired in LC-MS/MS experiments can be annotated via direct reference 

spectral matching, although for well-studied biological matrices, such as Escherichia coli, 

human cell lines, plasma or urine this may recently become as high as 10%12–14. Therefore, 

alternative algorithms have been developed to deal with the unavailability of measured 

reference spectra in small molecule structure elucidation. 
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Among them, machine learning (ML) approaches, including deep learning (DL)-based 

frameworks are rapidly emerging in the field15. These frameworks can be distinguished from 

spectral library search and in silico fragmentation in a few aspects: 1) ML and DL models are 

initially created based on existing spectral libraries, with the MS/MS spectra and structure 

metadata used for model training, 2) subsequent compound identification does not directly rely 

on spectral libraries with a limited coverage; 3) unlike when applying in silico fragmentation, 

these frameworks are purely data-driven, in other words, there is no attempt to predict the 

fragmentation behavior through bond breaking, gas-phase chemistry, or fragmentation rules. 

ML models have shown clear advantages in diverse applications that involve small molecule 

structure elucidation (Box 1). First, compared to classical spectral library searching, they 

enable an extension of the search space from smaller spectral libraries to comprehensive 

molecular databases (e.g. PubChem16) through correct prediction of substructures or other 

chemical properties (Figure 1). Next, since data-driven approaches do not rely on predefined 

rules, they might be able to capture rare, hard-to-explain fragmentation rules and unexpected 

patterns from the spectral library. In addition, unlike mechanistic or combinatorial models, 

once ML models are trained, the prediction phase typically does not require heavy computing. 

As a result, the compound identification can be performed in a high-throughput manner. 

Despite the success of ML-based software that predict molecular substructures such as 

CSI:FingerID17, key drawbacks have been raised, for example, by Nguyen and colleagues15. 

They discuss how the complexity of existing spectral library data often leads to limitations 

related to dimensionality, higher-order interaction, interpretability, and sparsity, which are 

partially overlooked by current ML models (see details in Section 4). Meanwhile, spurred by 

the increasing availability of training data (expansion of available spectral libraries) and 

improved computational resources, deep neural networks (DNN) are currently being 

introduced in the field as an alternative to classical ML models such as linear regression, 

discriminant analysis, and support vector machine (SVM). The consensus is that, with enough 

training data, DL models can outperform related ML models for the same application. However, 

in our opinion, the conceptual drawbacks of ML for structure elucidation must be carefully 

addressed before seeing a clear improvement with DL-based methods. 

In this perspective paper, we will first revisit typical ML-based frameworks by analyzing their 

underlying reasoning, architectures, and drawbacks. Potential DL implementations are then 

proposed with inspiration from early-stage developments in the field as well as popular 

architectures used in quantitative structure activity relationship modelling (QSAR)18–20. These 

architectures are designed to not only improve prediction accuracy and computational 

performance, but also to address, to a certain extent, limitations of current ML-based 

frameworks. Finally, we will discuss potential risks, challenges, and future directions for 

implementing DL and ML technologies in general. 

2. Revisiting machine learning strategies for structure elucidation 

The first computational efforts to extend identified small molecules beyond the spectral 

libraries are in silico fragmentation tools. These tools attempt to predict theoretical MS/MS 

spectra of compounds outside spectral libraries using expert knowledge fragmentation rules 

and on calculations of standard bond energy. Since the fragmentation behavior of small 

molecules on LC-MS/MS systems is complex and sometimes hard to predict, experimental 

MS/MS spectra were used in some tools, such as ISIS21 and CFM-ID22, to parameterize and 
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improve physical models that mimic fragmentation processes. Although these computational 

frameworks are sometimes considered as ML-based methods and haven shown great potential 

in structure elucidation, they are not included in the scope of the paper. Instead, we focus on a 

class of “black-box” algorithms called “supervised learning for substructure prediction”. The 
underlying models are often built and trained using large spectral datasets without explicitly 

encoding physicochemical knowledge of the fragmentation process. Instead, each small 

molecule is transformed into a molecular descriptor according to predefined rules. A molecular 

descriptor in these algorithms is a binary vector indicating the presence or absence of chemical 

properties (in CSI:FingerID17) and substructures (CSI:FingerID & MESSAR23), or the 

membership to certain chemical classes (ClassyFirePredict for MS2LDA24).  

Related computational frameworks follow similar learning and prediction procedures (Figure 

1). The modeling or learning phase uses MS/MS spectra of known molecules, sometimes 

transformed, for instance, to fragmentation trees (FTs), or combined with data from other 

analytical dimensions. The presence/absence of molecular descriptors is learnt in a supervised 

way. Most frameworks use binary classifiers such as partial least square discriminative analysis 

(PLS-DA)25, decision tree26 or SVM. During the prediction phase, ML models predict the 

probability of presence of each molecular descriptor for a query spectrum. Meanwhile, by 

searching a massive molecular database with precursor m/z or formula, a limited set of structure 

candidates are retrieved. In CSI:FingerID, these structures can be further scored by comparing 

their corresponding molecular descriptors to the predicted probabilities. As the output, 

candidates whose molecular descriptors agree with the predicted probabilities are provided as 

potential annotations of the query spectrum. 
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Figure 1. Current spectral library search and machine learning concepts for MS-based small molecule 
structure elucidation.  A) Spectral library search compares the query spectrum to reference spectra of structure 

candidates retrieved from a spectral library (e.g. via precursor m/z). Candidates are scored and ranked based on 

the spectral similarity with the query spectrum. Therefore, if the molecule to be identified is not yet included by 

the spectral library, no accurate structure proposal can be made via spectral library search. B) ML can extend the 

structure candidate retrieval from a spectral library to an entire molecular database (with considerably more 

structures available). Current ML frameworks use a two-step supervised learning approach that consists of a 

learning and a prediction phase. First, training spectra in a spectral library are pre-processed using FTs27 

(CSI:FingerID), text mining28 (MS2LDA), or frequent pattern mining23 (MESSAR). Meanwhile, the 

corresponding training molecules are encoded into molecular fingerprint bits, ClassyFire terms29 (chemical classes) 

or broken into substructures. Next, independent binary classifiers are trained and validated using transformed 

spectra as input and the presence/absence of each molecular fingerprint bit, ClassyFire term, or substructure as 
output. CSI:FingerID used SVM on kernel similarities of FTs to predict molecular fingerprint bits. MS2LDA was 

combined with a multilayer neural network called ClassyFirePredict to predict ClassyFire terms24. Patterns of 

spectral features and substructures were mined by MESSAR and converted to association rules (binary classifiers). 

During inference with these ML frameworks, the probability of each molecular descriptor is computed using the 

trained models. To make structure proposals, the precursor m/z or the exact formula of an unknown MS/MS 

spectrum is searched in a molecular database, after which the retrieved candidates are scored and ranked based on 

the likelihood of agreement between the inferred and retrieved molecular descriptor. Only the top candidates are 

proposed to users as putative annotations. Currently, the last step (structure proposal) is only available in 

CSI:FingerID (through molecular fingerprint prediction). However, searching molecular databases and scoring 

candidates can be implemented for MS2LDA and MESSAR as well, via ClassyFire term and substructure 

prediction, respectively. 
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These ML methods belong to a “two-step approach” since predefined molecular descriptors, 

including molecular fingerprints (MFPs), substructures or chemical classes can be used as 

intermediate without learning the direct mapping between spectra and small molecule 

structures. In other words, full structure elucidation of unknown spectra is performed in a 

separate phase (i.e. descriptor prediction and candidate scoring) after training and validating 

ML models. Interestingly, molecular descriptors are also a popular intermediate step of ML 

models for QSAR. Since the prediction of chemical properties or biological activity directly 

from chemical structures is not yet fully explored, the QSAR field uses numerous approaches 

to first encode a drug candidate into a list of molecular descriptors30. One avenue is to look at 

descriptors related to electronic, topological, spatial, or physicochemical aspects of part of the 

molecule, or the complete molecule31. The possibilities are extensive, and examples include 

the HOMO-LUMO gap, dipole moment, polarizability, polar surface area, molecular volume, 

LogP, molecular weight, number of H-bridge donors/acceptors, number of bond types, max 

positive/negative charge on atom, sum of positive/negative partial charge or graph theoretical 

connectivity indexes32. MFPs are another approach to representing molecular structures. 

Although originally developed for data retrieval and similarity matching, such MFPs have 

proven valuable in QSAR modelling as well. Some prominent examples include: 1) MACCS33, 

where the substructure encoding is based on a predefined dictionary, 2) ECFP34, where the 

atom environments are encoded exhaustively in a combinatorial fingerprint, and 3) 

enumeration of pharmacophore fragments35. For a contemporary overview, including 3D-

based MFPs, the reader can refer to36,37.  

Over the past decade, there has been a remarkable growth in experimental and biomedical data 

related to compound activity. DL has taken advantage of the increased QSAR data availability 

and improved computational power to outperform previous state-of-the-art ML algorithms 

such as random forest and SVM38,39 and more recently gradient boosted decision trees40. The 

main advantages of DL-based methods are: (i) DNNs can automatically learn complex patterns 

from raw data including potential interaction between thousands of input features; (ii) DL 

provides much more flexible architecture so it is possible to create a DNN architecture tailor-

made for a specific problem41; (iii) Many existing algorithms and libraries can take advantage 

of graphics processing units (GPUs) to accelerate the training of DL models and to optimize 

their predictive performance20. A subtle advantage of DNN over classical ML models is that 

striking a balance between bias and variance is usually possible by iteratively fine-tuning model 

hyperparameters (because more hyperparameters are available for optimization than for an 

average ML model). However, finding optimal hyperparameters to avoid overfitting and 

underfitting requires expertise and extensive trial and error, making the process time-

consuming for some DL applications41. 

3. Enhancing the two-step machine learning strategy by deep learning 

The ever-increasing size and quality of publicly available MS spectral libraries has enabled the 

development of several early-stage DL frameworks for small molecule identification, notably 

in the metabolomics field. These tools follow the two-step concept centered around the 

prediction of structure descriptors from MS/MS data (Figure 2, Architecture 1). For example, 

DeepEI42 proposed a DL approach to predict the retention index and MFPs of unknown 

compounds from GC-EI-MS data. Using 184,874 training spectra as input, DeepEI built 

separate models for each of the 636 fingerprint bits (selected from 6 types of MFPs) calculated 

from training structures. Each model was a multi-layer perceptron (MLP) containing three fully 

connected hidden layers (units = 2000, 1000, and 500, respectively) with ReLU activation 

functions. The output was presented as a fully connected layer with a SoftMax activation 

function. When compared to alternative approaches under identical conditions (same 
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training/testing set, same number of classifiers), the DL-based approach clearly outperformed 

linear regression, discriminant analysis, and gradient boosted decision trees. In addition, 

DeepEI is effective for identifying the correct structure of unknowns by searching predicted 

MFPs in a molecular structure database.  

Another tool built under a similar framework was MetFID43. Trained with merged 

(LC-)MS/MS spectra of 15,228 known compounds (input), MetFID aimed at predicting 528 

bits from three types of pre-calculated MFPs (output). The neural network consisted of two 

ReLU hidden layers (units = 800 and 600). In contrast to other “two-step” ML methods 
(including DeepEI), MetFID allows the prediction of all fingerprint bits at once by inserting a 

528-dimensional multiple label layer (1 for every fingerprint bit). This layer involves a sigmoid 

activation function and was trained using the binary cross-entropy loss function. MetFID has 

demonstrated the potential to improve metabolite putative annotation in combination with other 

ML-based software. 

Like predicting all fingerprint bits, many QSAR studies aim at predicting multiple potentially 

related tasks at once (e.g. affinity of drugs with similar tumor receptors). This DL approach is 

called multitask learning (MTL), in which related tasks are learnt in parallel by constructing a 

common representation over these tasks39. Due to the extra information in the training signals, 

learning related tasks together can enable knowledge transfer and data across tasks, thus 

improving overall predictive performance44. The underlying mechanism by which these 

benefits occur has been thoroughly discussed45. In QSAR modeling, for realistically-sized 

datasets in drug discovery (100,000s of compounds, several 100s of tasks, millions of data 

points), network architectures of 1 to 4 layers with thousands of nodes per layer are performing 

satisfactorily41. 

Although the context is fundamentally different, the multi-label learning in MetFID is 

comparable to a typical MTL implementation, consisting of classification with attributes 

limited to binary labels. Besides predicting all bits of MFP simultaneously, MetFID has a clear 

advantage of learning the latent hidden relationships between elements within a fingerprint. 

However, when there is no task relatedness, a risk of deteriorated performance of a multitask 

model as compared to a respective single-task model exists44,46. This risk is called “negative 

transfer” in technical terms. 
An aspect of MetFID that should be addressed, according to the authors43, is the scoring and 

ranking of structure candidates via MFP prediction. In practice, similar structure candidates 

could be better discriminated by adding other MFP types into the MetFID framework. However, 

a decrease of prediction performance was observed when certain types of MFPs were included. 

This issue can be partially explained by the negative transfer between MFP bits. To avoid 

negative transfer, we recommend extra shared layers in the MetFID architecture by grouping 

similar molecular descriptors (Figure 2, Architecture 2). The hypothesis underlying this 

strategy is that molecular descriptors can have very close chemical meaning or structural 

representations. For instance, the bit in position 758 of PubChem fingerprint, the ClassyFire 

term “Indoles and derivatives”, and the substructure with SMILES code “c12c([nH]cc1)cccc2” 
are all related to tryptophan-like structures, and they should be captured by similar patterns of 

fragments and neutral losses23. Therefore, training MTL models by groups of molecular 

descriptors is a way to maximize task relatedness and thus overall model performance. 

Practically speaking, the underlying links between different molecular descriptors are not fully 

understood, thus the expert-driven grouping can be quite labor intensive. We recommend 

exploring data-driven task grouping, for instance, by clustering molecular descriptors based on 

their coappearance in training structures.  
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Figure 2. Deep learning architectures to enhance the two-step supervised ML approach for structure 
elucidation. In the learning phase, training MS/MS spectra are converted into vectors with a fixed dimension by 

dividing the m/z range into bins. Molecular descriptors are determined in the same way as for traditional ML 

approaches. In Architecture 1 (implemented by DeepEI), individual DNNs (with different hyperparameters) are 

built to learn the relationship between spectral patterns and each molecular descriptor. In Architecture 2, we 

suggest a MTL architecture that consists of shared layers and task-specific layers to predict molecular descriptors. 

Architecture 2 is an augmentation of the current MetFID architecture by adding shared layers in front of groups 

of chemically related molecular descriptors. The prediction phase of both Architecture 1 and 2 is identical to other 
two-step supervised ML frameworks. 

 

4. Major limitations of the two-step machine (deep) learning strategy 

Despite the clear success of software based on the two-step ML strategies such as 

CSI:FingerID17, some key drawbacks hereof have been raised in Nguyen et al. (2018)15. In our 

opinion, the afore-mentioned DL frameworks are facing similar limitations and challenges. We 

summarize them into two major drawbacks: 

1) The early-stage DL framework usually starts by data pre-processing: dividing the m/z 

range into bins to create high-dimensional feature vectors (Figure 2). In practice, the 

optimal bin width is hard to determine. While wider bins can introduce noise to higher 

resolution MS data (e.g. loss of specificity of bins to exact masses), too narrow bins 

result in extremely large vectors that are hard to handle by DL frameworks. Narrow 
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bins also lead to alignment errors, i.e. the same fragment is assigned to different bins. 

Moreover, higher-order interactions between fragments and neutral losses are lost 

during the discretization process. Depending on the type of fragmentation technique 

applied, due to consecutive fragmentation processes, peaks in MS/MS spectra can have 

a hierarchical relationship starting from a precursor ion to higher and subsequently 

lower m/z product ions27,47. The underlying links between product ions are clearly 

reflected by their frequent co-occurrence observed in spectral libraries23. Introducing 

higher-order interaction as domain knowledge as encoded features, offers the 

possibility to improve current DL frameworks without the need for massive training 

data. Several spectral encoding strategies will be introduced in Section 5. 

 

2) The focus of both ML and early-stage DL frameworks is to predict the presence/absence 

of predefined molecular descriptors to score compound candidates. Despite the 

successful use of molecular descriptors in metabolite annotation software for certain 

classes of molecules, it is known from QSAR and virtual screening that many molecular 

descriptors struggle to achieve equally high performances on all classes of compounds 

in various settings48. MFPs can be limited in representing higher-mass fragments and 

neutral losses since they rarely encode larger substructures that confer to higher m/z 

product ions. Alternatively, some ML frameworks use predefined chemical rules to 

generate information-rich substructures. However, to our knowledge, no single set of 

rules can cover all relevant substructures in a spectral library49. Another challenge of 

using molecular descriptors is the class imbalance problem. For instance, DeepEI opted 

to select a subset of fingerprint bits for DNN training since the rest was either present 

in very few or almost all training structures. Moreover, the use of rare molecular 

descriptors can hinder model validation due to the lack of their presence in testing 

samples. In section 6, we will go through advanced structure encoding methods to 

tackle the afore-mentioned challenges. Also, DL architectures that avoid completely 

predefined molecular descriptors (descriptor-free architectures) will be proposed in 

section 5 and 6. 

 

5. MS/MS spectral encoding to improve DL frameworks 

DL frameworks nowadays often start with a data pre-processing step to make raw data more 

amenable to DNN architectures. We mainly focus on MS/MS spectra in this section although 

input data can include other layers of information such as adduct type, retention time, precursor 

formula etc. An MS/MS peak list consisting of m/z and intensity pairs can be considered as a 

virtual (sparse) vector, and they can be easily discretized into a m/z vector with a fixed 

dimension by binning (e.g. vector of length 100,000 for the m/z range 0-1000 Da with a bin 

size of 0.01 Da) (Figure 2).  

Based on discretized mass values from data pre-processing, we can develop sophisticated 

spectral encoding methods to extract underlying information from MS/MS spectra and to 

improve overall performance of DL frameworks. The task is called feature engineering in ML 

and DL terms, and its goal is to build information-rich features using domain knowledge and 

data mining techniques. In the context of the perspective paper, “features” indicate all types of 

new spectral information created from raw MS/MS spectra that can be served as inputs of DNN 

architectures. “Feature engineering”, an intermediate step between data pre-processing and 

DNN training, is defined as the transformation from pre-processed MS/MS spectra to spectral 

encodings. This transformation is predefined and hard coded by the network designer, and not 

modifiable throughout the learning process. 

https://en.wikipedia.org/wiki/Feature_(machine_learning)
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According to these definitions and requirements, many existing metabolite annotation tools 

provide means to engineer information-rich features. For instance, both MESSAR23 and 

MS2LDA28 extract patterns or motifs featuring co-occurring mass fragments and neutral losses 

(Figure 1). In addition, MESSAR extracts spectral patterns potentially related to a substructure, 

while MS2LDA provides expert interpretation of motifs in terms of fragmentation events, 

substructures, and compound classes. Elemental formulas of fragments computed by 

CSI:FingerID through fragmentation tree building can serve as input features to DNNs (Figure 

3B-➂). 

A multi-layer perceptron (MLP) can be imagined with structurally relevant patterns or motifs 

as input nodes (replacing bins representing individual mass peaks) and pattern overlapping 

scores as node values (instead of intensities) (Figure 3B-➁). The new MLP has clear 

advantages over the “binned” version (Figure 2): 1) before model training, domain knowledge 

is efficiently used in different data preparation steps including calculation of neutral losses, 

determination of theoretical masses of product ions and removal of non-monoisotopic, noisy 

or structurally-irrelevant mass peaks etc. 2) the dimensionality is reduced from, for example 

100,000 input variables to, a few thousand MESSAR patterns or a few hundred MS2LDA 

motifs; 3) the sparsity of input features decreases since only frequent patterns or motifs are 

kept; 4) peak interactions (based on their co-occurrence related to a shared substructure or 

chemical class) are captured and fed as supplementary information to the MLP.  

The previously described pattern mining algorithms for feature engineering consider MS/MS 

spectra as one-dimensional vectors. Alternatively, it is generally accepted that a hierarchical 

relationship can exist between precursor mass and fragments as well as among product ions 

due to the fragmentation cascade50. Such relationships are revealed through fragmentation trees 

(FTs) built from MS/MS data27. Initially designed for precursor (and fragment) formula 

determination, FTs can be computed for most high-resolution MS/MS spectra independently 

from spectral or structural databases. Compared to other data preparation procedures, FT 

calculation not only annotates precursor formulas that can be used as important input features 

for DL, but it also creates edges between mass signals (nodes) if the elemental formula of a 

fragment is a sub-formula of another (Figure 3B). Next to fragmentation trees, commercial 

software tools, such as Mass Frontier, create MSn trees to capture the sequential stages and 

relationships of mass spectral acquisition in MSn experiments8,51. MSn trees in Mass Frontier 

also represent precursor and product ions as nodes and mass differences as edges. The 

difference is that FTs are built based on implicit formula/sub-formula relationships of 

precursor/product ions and product/product ions within the MS/MS stage, while MSn trees 

highlight the hierarchical order from precursor to all product ions using their explicit links 

observed between different MSn stages. Therefore, MSn trees provide means to directly 

reconstruct the entire fragmentation cascade without elemental formula calculation. From both 

FTs and MSn trees, the directed tree (graph) nature of small molecule MS/MS and MSn spectra 

opens the door to graph feature engineering. Graph features, including node/edge attributes 

(e.g. elemental formula of fragments and mass differences), local structure features (e.g. 

subtrees), and node/edge embeddings, can be easily fed into a MLP52–55. Since both FTs and 

MSn trees can capture known fragmentation events, mechanisms, and substructures50,56, we 

strongly recommend expert-driven feature engineering on these trees. Figure 3B-➂ provide 

examples of information-rich graph features extracted from a FT. 

Besides encoding via pattern or graph feature mining, another possibility is indirect encoding 

through spectral similarity. The reasoning is that MS/MS spectral similarity can reflect the 

structural similarity of small molecules7. A category of algorithms and software are emerging 

in metabolomics with the goal to optimize spectral similarity measures to better explain the 
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structural similarity57. For instance, CSI:FingerID17 computes spectral similarity as FT 

similarity using kernel methods. The kernels range from node (fragment) intensities and 

chemical elements of edges (mass difference) to graph-related ones such as common paths and 

subtrees counting. Subsequently, CSI:FingerID applies multiple kernel learning58 to combine 

these kernels in order to build binary classifiers for fingerprint prediction. CSI:FingerID 

captures both individual peak information and peak interaction through FTs. However, it has 

two limitations: 1) SVMs produce sparse solutions in dual space instead of primal space, 

leading to the lack of interpretability in kernel-based methods. 2) Query spectra must be 

converted into FTs before similarity calculation, and the conversion can be computationally 

demanding.  

A few alternative methods have been proposed in the field to deal with the issues of sparsity 

and to improve the spectral similarity calculation. Sparse Interaction Model over Peaks of 

moLEcules (SIMPLE)59 explicitly incorporate peak interactions after m/z discretization. 

Sparsity is introduced through a sparsity-induced regularizer in the training stage60, and FT as 

background knowledge to regularize peak interactions, making the model more robust. 

SIMPLE resolves two limitations of CSI:FingerID: 1) the contribution of individual peaks and 

their interactions to spectral similarity is made explicit, 2) the computationally-demanding FT 

conversion is only needed for regularization but not for prediction of unknown spectra. 

Spec2Vec61 is an unsupervised ML technique that creates an embedded space to optimize 

spectral comparison. It adapts the Word2Vec algorithm62 to the ML task by transforming 

MS/MS spectra into “sentences” composed of “vocabularies” (i.e. fragments and neutral 

losses). Using Word2Vec, co-occurring vocabularies are placed close to each other in a new 

embedded space during model training. For model testing, spectral similarities are measured 

based on distances between sentences. A strong correlation is observed between Spec2Vec 

spectral similarity and structural similarity. DeepMASS63 is the first DL-based framework for 

spectral similarity calculation. Starting from binned spectrum pairs and their cross-correlation 

coefficients, it trains a 4-layer DNN to predict spectral similarity. The output of DeepMASS is 

an optimized similarity measure (known as MASS scores) that shows a high correlation with 

the structural similarity.  

From CSI:FingerID, SIMPLE, Spec2Vec and DeepMASS, we can see that spectral similarity 

calculation offers a holistic and flexible approach to encode the entire spectrum, creating 

information-dense features. In practice, when encoding a training spectrum, features extracted 

could be similarity scores by matching the training spectrum to a list of reference spectra. 

Alternatively, we can project the training spectrum in the Spec2Vec embedded space, and the 

scores obtained can be used as input features of DL frameworks. 

In summary, we presented several potential feature engineering strategies for encoding high-

dimensional small molecule MS/MS spectra. In DL applications, features extracted from 

different algorithms can capture complementary pieces of information in the raw data. 

Therefore, they can be combined to achieve improved prediction performance. We propose 

here DL architectures 3 and 4 by combining blocks of features extracted from three selected 

spectral encoding methods (Figure 3A).  

To begin, a pool of reference compounds can be used to encode input spectra based on spectral 

similarity (Figure 3B-➀). To select reference compounds, we suggest metabolic network hubs 

to encode metabolite spectra since these compounds are involved in diverse biochemical 

reactions, which can help position structurally related input spectra. Likewise, unmodified 

drugs can be used to encode spectra of pharmaceutical process impurities and degradation 

products.  
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Second, input spectra can be matched against expert-curated and substructure-related patterns 

available in MS2LDA and MESSAR (Figure 3B-➁). Features generated will be score vectors 

that represent the presence/absence of spectral patterns in the input spectra or degree of 

overlapping.  

For the last encoding method, we suggest a knowledge-based approach to extract graph features. 

We will first present to experts a collection of FTs computed for MS/MS spectra of reference 

compounds. Using the knowledges about fragmentation mechanisms and substructures, 

alongside with elemental formulas assigned during FT computations, they can identify and 

record graph features that are useful and important for structure elucidation (Figure 3B-➂). 

Typical features to be identified include nodes (representing fragments), edges (neutral losses 

and mass differences), and subgraphs (e.g. long paths indicating consecutive losses of 

functional groups). New algorithms are required to automatically determine the values of these 

graph features for the entire training spectra after converting them to FTs. 

Since the three feature engineering approaches proposed are complementary, a single DNN 

combining three classes of input features is expected to improve the model performance64,65. 

To fusion heterogeneous multimodal features, we recommend the strategy adopted in 

DeepMASS63 of first connecting each feature class to fully-connected layers followed by a 

activation layer. After that, the outputs can be concatenated to form information-rich 

representations of the input spectra. In Architecture 3, we link this shared representation to 

task-specific layers (individual classifiers) for molecular descriptor prediction (Architecture 3). 

The new architecture is an improved version of Architecture 1 in the category of two-step ML 

approaches (Figure 2). 

Architecture 4 was inspired by the GLEAMS framework66. Its goal is to create an output space 

that directly translates spectral similarity to small molecule structural similarity. Training can 

happen in a Siamese DNN setup: instead of processing one spectrum at a time, the neural 

network NN is trained on pairs of spectra, such as S1 and S2. The distance ds between encodings, 

noted as NN(S1) and NN(S2), will be computed. If the structural distance between underlying 

molecules m1 and m2 is dm, the loss function to minimize when training the DNN would be 

(dm-ds)
2. In the output space, structurally similar training molecules will be positioned together 

while unrelated molecules will be pushed away from each other. 

In the prediction phase of Architecture 3 and 4, blocks of features will be extracted from a 

query spectrum in a similar manner as for training spectra and further encoded by the DNN. 

For Architecture 3, structure elucidation can be achieved by comparing predicted molecular 

descriptors to candidates retrieved from a molecular database. Architecture 4 produces 

distances by feeding the Siamese network the query spectrum and reference spectra from a 

selected spectral library. The putative annotation will be the label (structure) of the candidate 

spectrum which has the smallest distance to the query spectrum. 

As opposed to “two-step” approaches (i.e. Architectures 1, 2, and 3), Architecture 4 does not 

require intermediate tasks of molecular descriptor prediction since structure elucidation is 

achieved via direct library spectra matching in the Siamese output space. However, 

Architecture 4 requires library spectra in its prediction phase if exact structure annotation is 

desired. For never-seen compounds, it is expected that structurally similar molecules are 

retrieved. 
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Figure 3. Deep learning architectures based on spectral feature engineering. A) Three blocks of feature values 

are calculated by mapping input MS/MS spectra to: ➀ reference spectra of important metabolites ➁ structurally 

annotated spectral patterns from MESSAR and MS2LDA ➂ graph features designed by experts based on FTs of 

selected training spectra. Each block of input features is followed by a fully connected layer with activation 

function before concatenating into a shared layer. In Architecture 3, the shared layer will be connected to task-

specific layers for individual molecular descriptor prediction. Architecture 4 follows a Siamese network 
architecture NN that learns an output encoding that minimizes the difference between spectral distance ds and 

small molecule structural distance dm. The prediction phase of Architecture 4 can improve spectral library 

searching by processing pairs of query-library spectra through NN and computing the spectral distance in the 

informative encoding space. Structure candidates can be ranked according to their distances to the query spectrum 

in the output space. B) Example of asparagocholic acid (positive ion mode MS/MS spectrum with fragmentation 

tree built by CSI:FingerID) to break down the three feature engineering methods used in Architecture 3 and 4: ➀ 

“Reference compound” features are a vector of spectral similarity values (here cosine score) between input 
spectrum and selected reference spectra (of some important metabolites in this example). ➁ “Matched pattern” 
features are a vector of overlapping scores between input spectrum and spectral patterns from MESSAR rules and 

MSL2DA motifs. Overlapping score is defined as the percentage of fragments and neutral losses explained by 

each pattern. ➂ “Fragmentation tree” features are expert-designed graph features that capture important structure 

information and fragmentation events from FTs. Elemental formula assigned to nodes (product ions) can also be 

examples of graph features. Feature values were determined manually in the example.  

6. Encoding small molecule structures to improve DL frameworks  

Most ML or DL frameworks for automated structure elucidation have used predefined 

molecular descriptors to encode training molecules to a binary vector. However, MS/MS data, 

due to its complexity and potential lack of relevant fragmentation patterns, cannot always be 

related to known molecular properties, substructures, or chemical classes. Interestingly, an 

active research topic in QSAR is to improve ML or DL model performance by finding optimal 

molecular representations or structural feature engineering of small molecules67. 

One important attempt is feature engineering from small molecule structures using deep neural 

networks. Spurred by the increasing number of large molecular databases that are available for 

pharmaceutical research, several DL methods have recently been proposed to obtain features 

from 2D molecular information68.  

Drugs, as all small molecules, are composed of atoms and chemical bonds. By treating small 

molecules as graphs or networks in which atoms are nodes and chemical bonds are edges, task-
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relevant features can be extracted using convolution operators adapted for molecular graphs. 

Message-passing neural networks (MPNNs) generalize several graph-based neural networks, 

including graph convolutional networks69,70. These networks use atom and bond information 

as input and are capable of learning flexible fingerprints most relevant for the task at hand. 

Besides graph convolutions, recent developments in QSAR have used types of NNs to generate 

meaningful chemical representations. Using SMILES as inputs, recurrent neural networks 

(RNNs), possibly in combination with attention mechanisms71, and convolutional neural 

networks (CNNs) which accept one-dimensional input, can directly predict molecular 

properties or biological activities72–75.  

The above DL methods can be adapted to encode small molecules to improve automated 

structure elucidation. ADAPTIVE76 is the first framework in the field, to our knowledge, that 

adopts such an approach. ADAPTIVE is an improved version of the IOKR algorithm57, 

developed for fingerprint-free metabolite identification. IOKR first computes spectral 

similarity and fingerprint-based structural similarity matrices from the training data. The 

learning phase of IOKR minimizes the distance between the two similarity matrices. MFPs are 

only used for structural similarity calculation and are not required in the prediction phase for 

compound identification. ADAPTIVE further eliminates MFPs in the learning phase by using 

a “molecular vector” – i.e. descriptors learned from training structures through the graph 

convolution network MPNN. The MPNN is trained so that the correlation between the spectra 

and the molecular vector is maximized. Because molecular vectors are compact and implicit 

representations of small molecules adapted specifically to MS/MS data, ADAPTIVE led to 

more accurate metabolite identification than IOKR, which was trained using classical 

molecular descriptors.  

Architecture 5, ADAPTIVE, was initially designed for processing multi-modal data (Figure 4). 

The reasoning is that input MS/MS spectra and small molecule structures are two distinct types 

of training data that should be encoded with separate DNNs. However, if the two types of data 

are paired and derived from the same spectral library, it is possible to build a unified learning 

framework via joint or cross-modal embedding. The common representation (joint embedding 

space) generated may offer similar benefits as the molecular vectors in ADAPTIVE.  

In DL research, cross-modal embedding77–79 has been widely used to map different modes of 

media, such as text, image, music, and video, into the joint embedding space in which media 

can be compared solely based on their captions. Inspired from embedding frameworks of 

multimedia data, the learning phase of Architecture 5 requires a triplet loss function L79. By 

minimizing the triplet loss, spectral and structural encoding can be learned so that an input 

spectrum (e.g. S1) will be closer to its corresponding structure (m1) in the joint embedding 

space than any other structure (e.g. the compound m2). In the prediction phase, a query 

spectrum can be projected onto the joint embedding space. For direct candidate match, we can 

evaluate the distances between the query spectrum and pre-calculated coordinates of database 

structures or library spectra. In contrast to Architecture 4, Architecture 5 is not limited to 

training compounds which have a spectrum, and the candidate retrieval can be extended to a 

combined search space of molecular databases and spectral libraries.  
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Figure 4. Deep learning architecture with structural encoding and cross-modal embedding of 
spectra and structure. Training structures can be converted to molecular graphs before applying 

MPNN to learn meaningful representations. Meanwhile, training spectra can be encoded using 

approaches described in Figure 3. The mapping functions for structures and spectra are noted as f and 
g, respectively. The learning phase maximizes the co-structure of two encodings so that the spectrum 

(S1) should be closer to the corresponding structure (m1) in the joint embedding space than any other 

structures (e.g. compound m2). A triplet loss function L is adapted for this learning task. In the function 

L, d expresses the distance between the embeddings in the latent space, and ⍺ is a positive margin which 
controls the separation. The sum of losses over all triplets (i.e. an input spectrum, the corresponding 

structure, and an irrelevant structure) should be minimized to learn the parameters of f and g. In the 

prediction phase, a query spectrum can be mapped to the joint embedding space with g. Meanwhile, the 
database structures and library spectra can be encoded via f and g in the same joint space, which allows 

simultaneous structure candidate retrieval from molecular databases and spectral libraries. 

 

Another important DL development in QSAR and drug discovery is structural feature 

engineering via unsupervised learning. The resulting molecular representations are not limited 

to the training task at hand but can instead be generated based on a large set of unrelated input 

structures. Some extracted features can be further be applied as inputs in a modelling task of 

interest. Popular architectures of unsupervised learning include Generative Adversarial 

Networks (GANs)80 and Variational Autoencoders (VAEs)81 based on RNNs82, transformers83 

and graph models84.  

A VAE consists of an encoder and a decoder. The encoder compresses discrete molecular 

representations (e.g. SMILES strings) into latent continuous vectors (the latent space), and the 

decoder can recreate the input molecules from these vectors. The success of VAEs in drug 

discovery is mainly due to the ability for de novo generation of small molecule drugs. In fact, 

any given point in the latent space can be passed to the decoder networks in order to generate 

a chemical structure 85. It can be noted that this generation process is non-deterministic. 
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Therefore, by performing operations such as random sampling, perturbing known molecules, 

or interpolating between molecules, the decoder can generate novel chemical structures. Some 

VAE architectures include a predictor that estimates chemical properties or biological activities 

from the continuous vectors82,86,87. These frameworks create or select latent representations that 

are expected to lead to higher values of desired properties or activities. The new representations 

can then be “decoded” to new drug candidates. 
The de novo aspect of VAEs is interesting for MS-based structure elucidation. We recall that 

databases, either spectral libraries or molecular databases, are necessary to retrieve structural 

candidates in all DL frameworks previously presented. However, many molecules to be 

identified, such as process impurities or degradation products from drugs in early 

pharmaceutical development, are present in neither spectral libraries nor structure databases. 

The decoder networks of VAEs, on the other hand, although requiring an extensive database 

when training in an unsupervised manner, do not require this for the task at hand, and offer the 

possibility of de novo structure elucidation.  

For instance, a pre-trained decoder network called Neuraldecipher has been recently 

introduced in the QSAR field88. Neuraldecipher aims to reconstruct or partially recreate 

molecular structures via reverse-engineering of discrete MFPs by learning a mapping from 

ECFPs to a latent space from which the SMILES representations of small molecules can be 

obtained through the decoder. To allow database-independent structure elucidation, instead of 

mapping from ECFPs, MS/MS spectral information can be used to map to such latent space. 

An example using input spectra and structures, could be mapping the combined feature layer 

in Architecture 3 (Figure 3A) to a continuous latent space C (instead of predefined molecular 

descriptors) and then mapping (with the decoder network pretrained in Neuraldecipher) from 

C to SMILES representations. In the prediction phase of such architectures, the trained decoder 

network could sample from C to predict de novo structure candidates without the need of 

spectral libraries or molecular databases. Furthermore, recent autoencoder architectures can 

incorporate user-defined constraints for sampling and prediction89. For instance, if we know an 

unknown compound is a degradation product of a known drug, instead of sampling from the 

entire latent space, we can predict the structure of the unknown by sampling from the latent 

space surrounding that drug. The output of the decoder will be structurally close to the known 

compound in the context of application.  

As a de novo approach, auto-encoder frameworks can normally generate a high proportion of 

grammatically valid SMILES87. Moreover, there exist other types of structural representations, 

such as SELFIE90, that can further prevent invalid structure outputs. On the other hand, the 

appropriateness of the proposed structures should be rigorously evaluated based on the context 

of application, domain knowledge, and ideally data from other analytical layers or dimensions. 

 

7. Conclusion and General Discussions 

The structure elucidation of small molecules is an essential step towards biological 

interpretation, biomarker discovery, process understanding, etc. in diverse application domains. 

Despite the increasing availability of library spectra and powerful software tools, the 

identification of unknowns still requires laborious manual interpretation and expert 

intervention. In fact, many spectra cannot be solved by current bioinformatics tools due to the 

lack of library spectra or appropriate algorithmic models. 

Recently, deep learning has achieved remarkable success in various research areas. In the MS 

field, the increased availability of potential training data (public MS/MS spectra and 

community-wide curated structures) has stimulated early deep learning efforts for automated 

structure elucidation. These early-stage DL frameworks follow a two-step concept 

characterized by m/z binning, DNN prediction for individual molecular descriptors, and 
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descriptor-driven molecular database search. To potentially improve these models, we 

conceptualize and design new DL architectures that: 1) combine structurally related 

classification tasks (descriptor prediction) via MTL; 2) engineer information-rich features from 

training spectra and structures; 3) create joint embedding of spectra and structures. Like 

existing ML models, these architectures are adapted for structural candidate retrieval from 

molecular databases and spectral libraries. 

The reason DL architectures might outperform classical ML models is their ability to learn 

complex interactions between input features. In contrast, DL frameworks are considered to 

have some limitations and flaws compared to classical ML models: A) Combining massive 

training data to learn from and parameters to compute, DL models can take quite a lot of time 

to train, sometimes up to several weeks, while training smaller ML models require much less 

computing power. B) DL models usually have many hyperparameters to fine-tune, and the 

process of optimizing hyperparameters can be time-consuming and tedious especially when 

done manually or when an exhaustive grid search approach is used. C) The "black box" nature 

of DNNs is a barrier in structure elucidation-based applications, where interpretability is 

essential. As an example, DNNs may achieve high accuracy in predicting a specific 

substructure, but they cannot directly pinpoint to end-users the subset of contributing features 

in the raw spectra.  

On the other hand, as a rapidly emerging field, there are many techniques and toolboxes in DL 

to tackle above challenges. To tackle A), DL training time can be reduced by using specialized 

hardware, such as GPUs20 or custom cloud-based processors91 (e.g. Google’s Tensor 
Processing Unit). Moreover, advanced training approaches, such as self-supervised learning92, 

can be used to achieve state-of-the-art performance without the need for a huge amount of 

labeled data. Concerning B), advanced hyperparameter tuning techniques, such as Bayesian 

optimization93,94 or early stopping95, can more efficiently find optimal hyperparameters and 

significantly reduce the computational requirements. An extensive guideline for improving 

hyperparameter tuning and model selection was recently published96. For the interpretability 

issue in C), powerful techniques to elucidate the workings of DL models are becoming 

available. For example, SHAP (Shapley Additive exPlanations)97 is an interpretability 

technique rooted in game theory that uses interpretable local models to assign a SHAP 

importance value to each input feature for a particular prediction. In this fashion, SHAP values 

can be used to identify important spectral features contributing to the predictions and interpret 

structure elucidation-based models. 

Despite existing techniques to improve DL models, it is still unclear whether their performance 

and general applicability can outcompete classical ML frameworks. In terms of prediction 

accuracy, it is important to benchmark and evaluate several classical ML and DL frameworks 

on the same, previously unknown, validation set. As demonstrated by the ImageNet challenge98, 

which initiated the DL revolution in image processing, community challenges can be a valuable 

venue to find the best model. Interestingly, community challenges are already launched for 

small molecule structure elucidation. A typical example is the CASMI contest99, or the Critical 

Assessment of Small Molecule Identification, that enables comparison of diverse identification 

software and methods on a common dataset. 

Meanwhile, common drawbacks of ML (including DL) raised in Nguyen et al.15 have been 

partially addressed throughout the manuscript. Several related techniques, including MTL, 

feature engineering, and joint embedding, are not limited to DL architectures - they can be 

adopted by classical ML models to deal with dimensionality, higher-order interaction, and data 

sparsity issues.  
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After all, to fundamentally enhance automated MS-based structure elucidation, we believe that 

the following directions should not be overlooked next to developing new DL and even 

classical ML frameworks: 1) Increasing the amount, the diversity and the quality of training 

data, which includes the removal of low quality spectra, the detection of incorrect structure 

labels, and integrating data from orthogonal analytical dimensions (e.g. precursor m/z, charge, 

retention time, isotopic pattern, collision cross section values) into current frameworks. 2) 

Further exploring database-independent structure elucidation. Interestingly, the last direction 

will lead to potential discovery of novel small molecules from MS/MS data. This de novo 

aspect was recently tackled by CANOPUS100, a DNN model that predicts 2,497 compound 

classes from any given MS/MS spectra. To move beyond compound classes, we introduce VAE 

due to its unique functionality to reconstruct a novel structure entirely. Although the 

appropriateness of reconstructed structures should be rigorously evaluated, mostly correct 

structural proposals (e.g. partial prediction of very large substructures) by VAEs are already 

informative and can be a big leap towards complete automation and compound discovery in 

diverse MS applications. 3) Bridging the developer-end-user gap. As a major challenge to both 

classical ML and DL-based methods, future directions should be developing user-friendly 

software based on a comprehensive structure elucidation pipeline that includes raw data 

processing, customizable reporting, model interpretation and batch processing. In the end, the 

proof of the pudding for the end-users will be in the eating. 
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