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Abstract 28 

 Biological nitrogen fixation (BNF) is a fundamental part of nitrogen cycling in tropical forests, 29 

yet little is known about the contribution made by free-living nitrogen fixers inhabiting the 30 

often-extensive forest canopy. 31 

 We used the acetylene reduction assay, calibrated with 15N2, to measure free-living BNF on 32 

forest canopy leaves, vascular epiphytes, bryophytes and canopy soil, as well as on the forest 33 

floor in leaf litter and soil. We used a combination of calculated and published component 34 

densities to upscale free-living BNF rates to the forest level. 35 

 We found that bryophytes and leaves situated in the canopy in particular displayed high mass-36 

based rates of free-living BNF. Additionally, we calculated that nearly 2 kg of nitrogen enters 37 
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the forest ecosystem through free-living BNF every year, 40% of which was fixed by the various 38 

canopy components. 39 

 Our results reveal that in the studied tropical lowland forest a large part of the nitrogen input 40 

through free-living BNF stems from the canopy, but also that the total nitrogen inputs by free-41 

living BNF are lower than previously thought and comparable to the inputs of reactive nitrogen 42 

by atmospheric deposition. 43 

Keywords 44 
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Introduction 46 

Except for areas with high atmospheric nitrogen (N) deposition, biological N fixation (BNF) is the most 47 

important pathway for introducing ‘new’ N into unfertilized terrestrial ecosystems (Cleveland et al., 48 

1999; Vitousek et al., 2013). Inert dinitrogen (N2) gas is reduced to ammonia during fixation by 49 

symbiotic or free-living N fixers (also called diazotrophs). Symbiotic diazotrophs, generally found in 50 

root nodules, exchange fixed N for carbon with their host plants, whereas hetero- or autotrophic 51 

bacteria or archaea freely inhabit and fix N in substrates such as water, soil, rocks, leaves, leaf litter 52 

and bryophytes (Dynarski & Houlton, 2018). The contribution of both these life strategies to the N 53 

cycle in tropical forests is thought to be substantial, estimated to range between 5.5 – 16 kg N ha-1 y-1 54 

for symbiotic BNF, and between 0.1 – 60 kg N ha-1 y-1 for free-living BNF (Reed et al., 2011). Although 55 

many tropical forests have a high abundance of leguminous trees (Losos & Leigh, 2004), typically 56 

associated with symbiotic N fixers present in root nodules, the contribution of symbiotic BNF to the 57 

total BNF in tropical forests has been questioned because mature tropical forests are generally 58 

considered N rich compared to other nutrients, removing the need for trees to obtain N through 59 

symbiotic interactions with diazotrophs (Hedin et al., 2009). Based on mass-balance approaches and 60 

modelling Cleveland et al. (2010) showed that, after accounting for free-living N fixation and 61 

atmospheric N deposition, only modest inputs of N via symbiotic fixation were necessary to balance 62 

the N budget of a mature tropical forest in Amazonia. There is also increasing evidence that root 63 

nodulation and symbiotic N fixation is facultative and may decline to near zero in mature tropical 64 

forests (Menge et al., 2009; Barron et al., 2011; Batterman et al., 2013; Sullivan et al., 2014; Bauters 65 

et al., 2016), and therefore attention has been shifting towards the role of free-living BNF in the N cycle 66 

of tropical forests (Reed et al., 2011).  67 

The availability of N, phosphorus (P) and even molybdenum - a necessary co-factor of many 68 

nitrogenases (Barron et al., 2009) -, in addition to humidity, have been shown to play an important 69 

role in determining free-living BNF rates (Reed et al., 2011; Wurzburger et al., 2012; Camenzind et al., 70 

2018; Dynarski & Houlton, 2018; Van Langenhove et al., 2019). High rates of free-living BNF seem 71 

paradoxical (Hedin et al., 2009) in the face of the generally assumed N-rich and P-poor nature of 72 

mature tropical forests (Turner & Condron, 2013). However, because free-living BNF generally occurs 73 

in substrates decoupled from N conditions in deeper soils, such as the litter layer which is rich in C 74 

relative to N compared to decomposers (Menge et al., 2009), N inputs through free-living BNF can still 75 

be substantial in mature tropical forests (Hedin et al., 2009; Dynarski & Houlton, 2018). High rates of 76 

free-living BNF in tropical forest floor soil and litter have been reported in both Central (Reed et al., 77 

2007; Barron et al., 2009; Černá et al., 2009; Cusack et al., 2009; Wurzburger et al., 2012) and South 78 
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America (Matson et al., 2014), although markedly lower rates of free-living BNF were encountered in 79 

tropical forests in Mato Grosso State, Brazil (Wong, 2019), and in French Guiana (Van Langenhove et 80 

al., 2019), possibly related to the extremely low P availabilities there. 81 

Beyond the forest floor, tropical rainforests possess extensive canopies, generally exceeding 30 m and 82 

regularly 45 m in height (Tao et al., 2016), representing a complex matrix of tree leaves and branches 83 

colonized by a diverse suite of animals and plants, such as bryophytes (including mosses, liverworts 84 

and hornworts), algae, lichens, fungi and vascular epiphytes (Nadkarni, 1994; Sillett & Antoine, 2004; 85 

Enloe et al., 2006; Nakamura et al., 2017). An additional component is canopy soil: accumulations of 86 

organic matter consisting of decomposing epiphytes, leaf litter, invertebrates, fungi and 87 

microorganisms found on branches and in tree junctions (Hietz et al., 2002; Nadkarni et al., 2002). 88 

Canopy soils display many similarities to tropical forest floor litter and soil (Vance & Nadkarni, 1990; 89 

Nadkarni et al., 2002; Cardelús et al., 2009). Microbial communities associated with these different 90 

canopy components do not have access to the soil N and may therefore fix N2 to meet their N 91 

requirements. Indeed, BNF by free-living diazotrophs has been found to occur on tropical leaf surfaces 92 

(Fürnkranz et al., 2008; Reed et al., 2013), on tropical bryophytes (Cusack et al., 2009) and in tropical 93 

canopy soils (Matson et al., 2014). One study even found that free-living BNF measured in canopy soils 94 

was higher than free-living BNF on the forest floor when comparisons were mass-based (Matson et al., 95 

2014). Studies describing the role of vascular epiphytes in harbouring free-living BNF have reported 96 

variable results (Sengupta et al., 1981; Dighe et al., 1986; Bermudes & Benzing, 1991; Brighigna et al., 97 

1992). Yet, to date, no study has aimed to quantify free-living BNF within the different canopy 98 

components simultaneously, nor attempted to estimate ecosystem-wide BNF including the canopy 99 

components. 100 

Therefore, the aims of the present study were (1) to quantify free-living BNF rates of different canopy 101 

components (i.e. leaves, bryophytes, vascular epiphytes, canopy soil) and of forest floor (i.e. soil and 102 

leaf litter), and (2) to upscale these rates to the forest level to evaluate the relative importance of each 103 

component to the total amount of N fixed in an old-growth tropical lowland forest in French Guiana. 104 

By nature of the measurement technique, rates of free-living BNF are typically expressed on a per mass 105 

of substrate or a per area of substrate basis. However, to obtain ecosystem-wide (per hectare of forest) 106 

estimates of free-living BNF for the various canopy and soil components it is necessary to apply an 107 

appropriate scalar (Vitousek et al., 2013; Sullivan et al., 2014). In some instances this scalar is easily 108 

identified, as with forest floor soil for example. There, a measurement of BNF expressed on a per mass 109 

basis multiplied with the soil bulk density, corrected for the depth to which soil samples were taken, 110 

will yield an amount of N fixed per area of forest over a certain time period (see e.g. Matson et al., 111 
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2014). For other components, however, finding the appropriate scalar is not so straightforward and 112 

we here applied a combination of measured scalars for forest floor soil, leaf litter, canopy leaves and 113 

bryophytes while for canopy soils and epiphytes we applied scalars derived from a literature survey. 114 

We hypothesized that because the canopy complexity creates niches for many free-living diazotrophs, 115 

free-living BNF occurring in the canopy contributes substantially to the total amount of N2 fixed and 116 

could make an important contribution to the N input at the ecosystem scale. We expect that because 117 

vascular epiphytes, bryophytes and canopy leaves make up a large part of the forest canopy they will 118 

each contribute more to the overall amount of N fixed through free-living BNF than canopy soils, which 119 

are much less prevalent.  120 

Methods 121 

Study area 122 

The study was conducted at the Nouragues Nature Reserve, a primary rainforest site in French Guiana, 123 

situated 100 km inland from the Atlantic coast and south of the capital city Cayenne (4°2′ N, 52°40′ W). 124 

The site is located between 25 and 40 m above sea level, mean annual air temperature is 26 °C, and 125 

mean annual rainfall is 3000 mm (Bongers et al., 2001). The climate is characterized by a wet and a dry 126 

season due to the north/south movement of the Inter-Tropical Convergence Zone. The region receives 127 

heavy rains from December to July with a short dry period in March and a long dry period, typically 128 

characterized by less than 100 mm rainfall month−1, from August to November (Aguilos et al., 2019). 129 

Soils at the Nouragues site are derived from the Bonidoro series and parent material consists mainly 130 

of Caraib gneiss (Bongers et al., 2001). Soils are classified as nutrient poor Acrisols (FAO, 1998). Samples 131 

were collected within a fully inventoried 1.5 hectare plot at the Pararé Research Station, where canopy 132 

height ranges between 35 to 55 m (Ho Tong Minh et al., 2016). 133 

Sample Collection 134 

Samples were collected in September 2017 from fourteen adult trees. These particular trees were 135 

chosen because they possessed extensive, multilayer canopies with several vascular epiphytes visible 136 

from the forest floor. Additionally, because trees were climbed using single rope access techniques, 137 

another important requirement was safety of access, which required at least one open section in the 138 

canopy to allow the positioning of the access line, an absence of large dead branches and no obvious 139 

signs of wasp, bee, and/or termite nests near the trunk. The fourteen sampled trees belonged to nine 140 

different species and their diameter at breast height (DBH) ranged between 47 and 97 cm (Table 1). 141 

From these trees, samples of canopy leaves, vascular epiphytes, trunk and canopy bryophytes and 142 

canopy soils were collected by hand, for safety reasons often from within the interior crown. To 143 
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account for variation in sunlight exposure per tree, a branch from the upper canopy (sunlit) and 144 

another from the lower canopy (shaded) was removed with a handsaw and three leaves from each 145 

branch were collected. To avoid confounding BNF rates from leaves with the potential BNF rates of 146 

algae, lichens or fungi colonizing leaf surfaces we only selected leaves that bore no visual signs of 147 

abundant colonisation. Per host tree we aimed to collect a maximum of three individual vascular 148 

epiphytes that each had at least 15 g of canopy soil attached, totalling 30 vascular epiphyte individuals 149 

of 17 different species (Table S1). From each vascular epiphyte three 4 cm² pieces were cut from three 150 

leaves and 15 g of canopy soil was collected from its base. Although several trees had deposits of 151 

canopy soil in bifurcations or on top of larger branches, only seven of the fourteen trees had deposits 152 

of sufficient size (>15 g). Preliminary analysis showed no difference in free-living BNF rate between the 153 

canopy soil that was attached to vascular epiphytes and canopy soil derived from branch deposits, 154 

these components were therefore pooled and further analysed as one single canopy component. From 155 

each of the sampled trees, bryophytes were collected by scraping off three pieces (> 4 cm²) from the 156 

tree trunk (trunk bryophytes), between 2 and 5 m above the ground. Canopy bryophytes were 157 

collected by scraping three pieces (> 4 cm²) from three different branches within the canopy. For the 158 

purposes of this study we did not differentiate between the three divisions of non-vascular plants 159 

contained in the bryophyte group (the mosses, liverworts and hornworts). There were very few 160 

bryophytes present on the forest floor and these were therefore ignored during sampling. Lastly, five 161 

samples of forest floor leaf litter and soil were collected between one and two meters away from the 162 

tree trunk in a radial pattern. This was done for only five out of the fourteen trees because earlier 163 

sampling at the same site showed that more measurements of soil and litter free-living BNF were 164 

superfluous to obtain a robust average BNF rate for these components in this homogenous forest plot. 165 

Approximately 5 g of leaf litter were collected by hand from the soil surface and soil samples (around 166 

15 g) were collected with a 2-cm diameter corer to a depth of 5 cm after removing all litter from the 167 

surface. All samples were transported in plastic bags to the field station where sample processing was 168 

initiated within 2 h after collection. 169 

Acetylene Reduction Assay 170 

BNF rates were determined using the acetylene reduction assay (ARA) as a proxy for BNF, wherein the 171 

production of ethylene after acetylene addition to a sample is measured (Hardy et al., 1968). All 172 

collected samples were placed in clear 100 ml borosilicate jars. The jars were sealed with rubber septa 173 

and 10 ml of air was replaced with 10 ml of acetylene gas (welding grade, Air Liquide, Kourou, French 174 

Guiana) to create a 10% headspace concentration by volume. The samples were then incubated in situ 175 

under ambient forest light (no direct sunlight) and temperature for 18 hours. 176 
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After incubation, a 12 ml gas subsample from the sample headspace was injected into a pre-evacuated 177 

12 ml borosilicate vial (Labco Limited, Ceredigion, UK) and shipped to Ghent University (Belgium) for 178 

analysis. Ethylene concentrations were measured using laser-based photo-acoustic spectroscopy (ETD-179 

300, Sensor Sense, Nijmegen, The Netherlands). Parallel acetylene blanks (no sample) and sample 180 

blanks (no acetylene gas) were created in the field to assess background levels of ethylene in the 181 

acetylene gas (1.5 ± 0.4 nl ethylene ml-1 acetylene gas) and background ethylene production in the 182 

samples (0.2 ± 0.1 nl ethylene ml-1). These rates were subtracted from the sample ethylene 183 

concentrations. 184 

We reported the rates of ethylene production expressed as nmol ethylene produced per gram of 185 

substrate per hour (nmol g-1 h-1) and, specifically for canopy leaves, vascular epiphyte leaves, 186 

bryophytes and leaf litter only, as nmol ethylene produced per area of substrate per hour (nmol m-2 h-187 

1), which was necessary for up scaling (see below). We used an LI-3100C Area Meter (LI-COR, Lincoln, 188 

Nebraska USA) to measure the area of each canopy and epiphyte leaf sample. Since measuring with 189 

the LI-3100C would require flattening the bryophyte samples, which would erroneously increase the 190 

area, we instead photographed each bryophyte sample on a standardized white background with a 191 

known scale and used ImageJ software (Schneider et al., 2012) to determine the actual 2D projected 192 

area, which was important for enabling the up scaling of the measured rates to the forest level (see 193 

further). Mass-based leaf litter ethylene production was converted into area-based ethylene 194 

production using the measurements for litter density reported by Van Langenhove et al. (2019) for the 195 

same study site (601 ± 44 g leaf litter m-2). 196 

Upscaling of free-living BNF to forest stand level 197 

In order to upscale free-living BNF rates for each sampled component to the forest canopy and entire 198 

forest level beyond, three additional steps were required. First, measured ethylene production rates 199 

were converted into BNF rates. Second, different canopy component densities were either calculated 200 

from in situ observations or obtained from the literature (Table 2) and, three, these rates and canopy 201 

component densities were combined to scale up to forest-wide rates of free-living BNF.  202 

We calibrated ARA to BNF using 15N2 gas, conducting paired simultaneous assays with acetylene and 203 

15N2 on all components in the field station. We replaced the sample headspace with a gas mixture of 204 

80% 15N2 (≥98 atom %; Sigma Aldrich, St Louis, USA) and 20% O2 and allowed to incubate for 24 h. 205 

Incubations were terminated by evacuating each jar and freezing the samples at -20 °C. Once returned 206 

to the lab, samples were dried at 60 °C, ground and analysed for 15N/14N and percentage of N at the 207 

University of Vienna, Austria by an elemental analyser (EA 1110; CE Instruments, Milan, Italy) coupled 208 

to a Finnigan MAT Delta Plus IRMS (Thermo Fisher Scientific, Waltham, USA). The conversion factor of 209 

ARA to BNF was calculated as nmol of ethylene produced per hour per gram dry mass (or area) divided 210 
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by nmol N incorporated per hour per gram dry mass (or area). We found meaningful conversion factors 211 

for canopy leaves, bryophytes and leaf litter (Table 2). It was, however, not possible to establish 212 

conversion factors for canopy soil, epiphyte leaves and forest floor soil due to a combination of low 213 

BNF rates and high background N concentrations. For these components we decided to use the 214 

theoretical conversion factor of 3 mol ethylene produced per mole of N fixed (Hardy et al., 1968). For 215 

the calculations we assumed that the standard error on the theoretical conversion factor was equal to 216 

the mean standard error identified for the conversion factors of canopy leaves, bryophytes and leaf 217 

litter.  218 

Upscaling the canopy leaf area-based free-living BNF rate into a forest wide canopy BNF rate was done 219 

by multiplying the leaf area-based BNF rate with a leaf area index (LAI) of 6.5 ± 0.5. This LAI value was 220 

based on previous studies conducted in the study area (Cournac et al., 2002; Emmons et al., 2006), 221 

which is slightly higher than the 4.2 ± 2 overall tropical forest evergreen broadleaf average (Asner et 222 

al., 2003), but within the higher range (between 2.7 and 6.8) of LAI values reported for protected 223 

tropical forests in the Americas (Pfeifer et al., 2018). We used the average area-based BNF rates of 224 

both sunlit and shaded leaves together because there was no difference in ethylene production rates 225 

between these two types of leaves (Fig. 1).  226 

Estimates of vascular plant epiphytic densities or canopy soil loads in the literature are scarce, and 227 

almost exclusively represent Central American montane tropical forests (Table S2), which have been 228 

shown to have significantly higher loads than lowland tropical forests (Freiberg & Freiberg, 2000). 229 

Based on the information contained in table S2 we estimated canopy soil loads at 1 ± 0.5 Mg ha-1 and 230 

vascular epiphytic loads at 1.5 ± 0.75 Mg ha-1. We refer to the supplementary information for a more 231 

detailed explanation for this assumption. 232 

Given the limited information in the literature regarding bryophyte loads in lowland tropical forest 233 

canopies (Table S2), a calculation of both canopy and trunk bryophyte density in our plot was made. 234 

First, we visually estimated woody surface area covered by bryophytes by assigning each sampled tree 235 

to a class (0 – 1%, 1 – 25%, 25 – 50%, 50 – 75% and 75 – 100% of trunk or branch surface covered by 236 

bryophytes). Because our 14 trees belonged to the 15% largest trees of the plot, we also estimated the 237 

woody surface area covered by bryophytes on tree trunks of 35 smaller trees (DBH between 12 and 27 238 

cm), to test whether our 14 chosen trees were representative for smaller trees (Table S3). Average 239 

bryophyte coverage on the smaller trees was similar to bryophyte coverage on the larger trees, 240 

indicating that bryophyte coverage was not related to tree size (Li et al., 2015). Second, we quantified 241 

the surface area of the woody surfaces (tree trunk and branch surface area separately) of a select 242 

number of trees and extrapolated this to the entire plot. For this, we used terrestrial laser scanning 243 
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(TLS), an active remote sensing technique able to measure various structural parameters with high 244 

spatial accuracy. We collected TLS data from eight of the fourteen climbed trees in a radial pattern 245 

around each tree using a RIEGL VZ1000 terrestrial laser scanner (RIEGL, Horn, Austria) mounted on a 246 

tripod approximately 1.3 m from the ground. We refer to the supplementary information for more 247 

details on the extrapolation and the TLS protocol. We then multiplied the average relative bryophyte 248 

coverage for both trunk and branch surface with the estimated trunk and branch surface area to obtain 249 

an estimate of bryophyte density in the plot (in m² ha-1). 250 

Lastly, for upscaling mass-based BNF rates in leaf litter and forest floor soil we multiplied them with 251 

litter and soil densities as reported by Van Langenhove et al. (2019). Table 2 gives an overview of the 252 

densities we used for each substrate. 253 

Data analysis 254 

Across the fourteen sampled trees we conducted a total of 455 ARA measurements (including the 45 255 

blanks) to calculate ethylene production rates, comprising forest canopy leaves, vascular epiphytes, 256 

bryophytes and canopy soil along with forest floor leaf litter and soil. 257 

We used linear mixed effects regression models (LMER) to assess the differences in ethylene 258 

production rates between canopy components located in different abiotic conditions: sunlit canopy 259 

leaves versus shaded canopy leaves, and canopy bryophytes versus trunk bryophytes. In each of the 260 

models we used sample type as fixed factor and tree number as random factor. The validity of the 261 

linear models’ assumptions (linearity, normality of residuals, no influential outliers, homoscedasticity) 262 

were evaluated with standard functions of R (R core team 2018, version 3.5.1), including diagnostic 263 

plots. Prior to analysis ethylene production rates were log transformed if their distribution was right-264 

skewed to improve normality of model residuals. 265 

We used LMERs to assess differences in ethylene production rate between the different soil (forest 266 

floor soil and canopy soil) and vegetation (canopy leaves, vascular epiphyte leaves, canopy bryophytes, 267 

trunk bryophytes and leaf litter) components. Sample type was used as a fixed factor and tree number 268 

as random factor. The validity of the linear models’ assumptions was checked with standard functions 269 

of R. Variance of homogeneity was checked using the Bartlett test. Multiple comparisons within a 270 

factor were analysed using Tukey post hoc tests. We used the same approach to investigate differences 271 

in ethylene production between the various species of vascular epiphyte, wherein epiphyte species 272 

was used as a fixed factor and, because we measured ethylene production on three pieces of epiphyte 273 

leaf from each individual epiphyte, epiphyte identity as random factor. As we sampled no multiple 274 
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epiphyte individuals belonging to the same species from a single tree it was unnecessary to include 275 

host tree as random effect. Multiple comparisons within a factor were analysed using Tukey post hoc 276 

tests. 277 

The errors on the upscaled free-living BNF rates were calculated by propagating the standard errors of 278 

the acetylene production rates of each component with the standard errors on the measured 279 

conversion factors (canopy leaves, bryophytes and leaf litter) or theoretical conversion factors (canopy 280 

soil, epiphyte leaves, forest floor soil), and with the standard errors of the component densities (Table 281 

2). 282 

Analyses were conducted in R statistical environment, version R.3.5.1 (R Core Team, 2018), using the 283 

packages plyr (Wickham, 2011), dplyr (Wickham et al., 2018), MASS (Venables & Ripley, 2010), 284 

lmerTest (Kuznetsova et al., 2017) and emmeans (Lenth, 2018) for data analysis and ggplot2 (Wickham, 285 

2016) for visualization. 286 

Results 287 

Free-living BNF rates were highly variable, both within and among ecosystem components (Table 3). 288 

Across all ecosystem components, the lowest average ethylene production rate, as proxy for BNF, was 289 

0.022 ± 0.009 (SE) nmol g-1 h-1, observed in soil, and the highest was 1.26 ± 0.41 nmol g-1 h-1, observed 290 

in canopy bryophytes (Table 3). 291 

While there was no significant difference in either mass or area-based ethylene production rates 292 

between shaded and sunlit leaves, canopy bryophyte ethylene production rates were almost four 293 

times higher than trunk bryophyte ethylene production rates, both on a mass basis (P < 0.001, F1,48 = 294 

16.0) and an area basis (P < 0.001, F1,48 = 12.9) (Fig. 1). For the remainder of the analyses, shaded and 295 

sunlit canopy leaves are grouped together and treated as one canopy component, i.e. canopy leaves, 296 

whereas canopy and trunk bryophyte are treated separately. 297 

The mass-based ethylene production rates of canopy soil were about eight times higher than the 298 

production rate of forest floor soil (P < 0.001, F1,147 = 21.6) (Table 3 and Fig. 2a). The variation in canopy 299 

soil ethylene production was much larger than in forest floor soil (Table 3) and after accounting for 300 

sample size resulted in the much larger SE (Fig. 2a). 301 

Among vegetation components canopy bryophytes had the highest overall mass- and area-based 302 

ethylene production rates (Table 3, Fig. 2). Canopy bryophyte mass-based ethylene production rates 303 

were significantly higher than those of the canopy leaves (P < 0.001, F1,88.6 = 96.7), but they were not 304 
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different from the rates found in the leaf litter (Fig. 2a). Leaf litter mass-based rates, in turn, were also 305 

not different from either canopy leaves or trunk bryophyte rates, although rates were higher on 306 

average (Table 3, Fig. 2a). Vascular epiphytic leaf ethylene production rates were significantly (P < 307 

0.001 for all) lower than all other vegetation canopy components. 308 

In contrast, area-based rates of leaf litter ethylene production were roughly three times and eight 309 

times higher than both trunk bryophytes (P < 0.05, F1,45.8 = 4.0) and canopy leaves (P < 0.001, F1,89.4 = 310 

34.3), respectively (Fig. 2b). Trunk bryophyte rates were also twice as high as canopy leaf rates (P < 311 

0.001, F1,92.8 = 14.8) (Fig. 2b). These differences in area-based ethylene production rates compared to 312 

the mass-based ethylene production rates were caused by differences in area density between the 313 

various components. Just as with the mass-based rates, the area-based ethylene production rates of 314 

vascular epiphytic leaves were lower than all other vegetation canopy components (P < 0.001 for all) 315 

(Fig. 2b). 316 

We found a significant effect of vascular epiphyte species on foliar area-based ethylene production 317 

rates (P < 0.01, F16,13 = 4.3), which ranged from 0 nmol m-2 h-1 ( Anthurium sp.2, Asplenium sp.2 or Clusia 318 

sp.1) to 100 nmol m-2 h-1 and above for Araceae sp.1 and Philodendron sp.2. For six out of the 17 319 

identified species at least two individuals were both accessible and large enough to be sampled (Fig. 320 

3). Considering only the six replicated vascular epiphyte species, we again identified a significant effect 321 

of species identity on ethylene production rate (P < 0.05, F5,13 = 4.7), and only one of these six species 322 

(Pteridophyta sp. 1) showed significant intra species variation (P < 0.01, F2,1 = 17.8). 323 

Scaling to the ecosystem 324 

Ethylene production rates were converted into BNF rates and subsequently scaled up to the ecosystem 325 

level using estimates and measurements of ecosystem-wide mass or area densities of the respective 326 

forest floor and canopy components (Table 2). The upper five cm of soil showed a free-living BNF rate 327 

of 810 ± 350 g N ha-1 y-1, whereas leaf litter on the forest floor contributed much less to the total BNF, 328 

namely 250 ± 90 g N fixed ha-1 y-1 (Fig. 4). Here and following, all mentioned errors are standard errors. 329 

In the canopy, canopy soil free-living BNF contributed only 15 ± 13 g N ha-1 y-1 based on an assumed 330 

canopy soil density of 1 ± 0.5 Mg ha-1 (Table S2). We also estimated the vascular epiphyte density at 331 

our site based on previously published values (Table S2) and assumed a density of 1.5 ± 0.75 Mg ha-1. 332 

This led to a free-living BNF rate of 15 ± 10 g N fixed ha-1 y-1.  333 

Based on the 2015 tree census of the sampling plot (Chave et al., pers. comm.) and data on forest 334 

structure provided by terrestrial laser scanning inventory, we calculated an average tree trunk surface 335 

area of 8740 ± 210 m² ha-1 and a branch surface area of 13100 ± 1250 m² ha-1. Together with an average 336 

trunk bryophyte coverage of 37.5% and an average canopy bryophyte coverage of 62.5%, this led to 337 
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an estimated 390 ± 180 g N fixed ha-1 y-1 for canopy bryophytes and 42 ± 19 g N fixed ha-1 y-1 for trunk 338 

bryophytes (Fig. 4).  339 

Lastly, canopy leaf BNF rates were lower than those of the canopy bryophytes, but higher than those 340 

of the trunk bryophytes , amounting to 250 ± 70 g N fixed ha-1 y-1, using an LAI of 6.5 ± 0.5 as scalar 341 

(Table 1).  342 

When summed across all measured components, free-living BNF amounted to 1.76 ± 0.47 kg N fixed 343 

ha-1 y-1 at this tropical forest site. The soil components (soil and leaf litter) contributed 60%, or 1050 ± 344 

420 g N ha-1 y-1, to the total free-living BNF, while the canopy components (canopy leaves, trunk and 345 

canopy bryophytes , canopy soil and vascular epiphytes) contributed 40%, or 710 ± 200 g N ha-1 y-1. 346 

Discussion 347 

Our results demonstrated that in this mature lowland tropical forest ethylene production following 348 

acetylene addition, as a proxy for BNF, was an active process in canopy soil, on tree- and vascular 349 

epiphytic leaves, in bryophytes, in forest floor leaf litter and in topsoil. We found that 40% of the total 350 

ecosystem free-living BNF was carried out aboveground on tree trunks and within the canopy (Fig. 4), 351 

implying that aboveground free-living BNF constitutes a non-negligible contribution to this tropical 352 

forest’s N cycle. In our study, canopy BNF amounted to 710 ± 200 g N ha-1 y-1, which is much lower than 353 

proposed by early work estimating the canopy contribution at >60 kg N ha-1 y-1 (Edmisten, 1970). More 354 

recently, studies have estimated canopy free-living BNF inputs in tropical forests between 0.02 and 8 355 

kg N ha-1 y-1 (Forman, 1975; Carpenter, 1992; Freiberg, 1998; Matzek & Vitousek, 2003; Benner et al., 356 

2007; Fürnkranz et al., 2008; Reed et al., 2008; Cusack et al., 2009; Matson et al., 2014), but still the 357 

rates at our study site fall towards the lower end of this range. Total ecosystem free-living BNF (canopy 358 

plus forest floor BNF; 1.8 kg N ha-1 y-1) also falls in the lower end of the 0.1 – 60 kg N ha-1 y-1 range 359 

reported for free-living BNF in tropical forests, being more similar to rates reported for boreal and 360 

temperate forests (Reed et al., 2011). 361 

A recent study estimated inorganic N deposition in French Guiana to range between 1 and 2 kg N ha-1 362 

y-1 (Wang et al., 2017), a value that is very similar to the yearly deposition of reactive N measured at a 363 

coastal lowland tropical forest site in French Guiana (Van Langenhove et al., 2020). To our knowledge, 364 

in old growth French Guianese forests symbiotic BNF has not yet been quantified, but Roggy and 365 

Prevost (1999) found that 67% of species belonging to potentially nodulating taxa were nodulated in a 366 

primary forest. Assuming that symbiotic BNF in this primary lowland tropical forest is similar to the 2 367 

to 4 kg N fixed ha-1 y-1 found in old growth forests in Eastern Brazil (Winbourne et al., 2018), Costa Rica 368 

(Taylor et al., 2019) or Panama (Batterman et al., 2013), this would mean that between 25 and 33% of 369 
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the input of ‘new’ N stems from free-living BNF on the forest floor and in the canopy, highlighting the 370 

importance of free-living BNF for the ecosystem’s N cycle. Taken together, this shows that in this forest 371 

N is introduced into the ecosystem by free-living BNF at a rate that equals the rate of inorganic N 372 

deposition, yet this input is lower than previously thought (see e.g. Reed et al., 2011) and likely less 373 

important for sustaining the ecosystem N budget than the N that is recycled yearly through litterfall 374 

(Chave et al., 2010). 375 

It is important to note that the amount of forest-wide BNF measured in this forest is closely dependent 376 

on various characteristics of this particular forest. It is humid (~3000 mm rainfall per year), has tall 377 

trees with extensive canopies, leading to favourable conditions for bryophyte growth and an LAI that 378 

is higher than average (Pfeifer et al., 2018). Contributions of canopy components to total forest free-379 

living BNF may be different in other forests, such as montane tropical forests that typically have much 380 

higher loads of canopy soil and epiphytes (Freiberg & Freiberg, 2000), but are lower in stature leading 381 

to lower LAIs (Moser et al., 2007). Canopy free-living BNF in dry lowland tropical forests is likely much 382 

lower as humidity plays an important role in determining free-living BNF (Dynarski & Houlton, 2018; 383 

Rousk et al., 2018). Finally, lowland tropical forests situated in regions that are subject to higher 384 

amounts of (anthropogenic) P deposition could potentially possess higher canopy BNF rates as, besides 385 

litterfall, deposition is the main source of P for the canopy dwelling diazotrophs (Stanton et al., 2019). 386 

Free living BNF activity of different ecosystem components 387 

Several studies have assessed free-living BNF in forest floor soil and/or litter in tropical forests (e.g. 388 

Vitousek and Hobbie, 2000; Reed et al., 2007; Wurzburger et al., 2012; Reed et al., 2013; Barron et al., 389 

2009; Cusack et al., 2009) and overall found higher rates of ethylene production than in our study. In 390 

contrast, only one other study measured BNF in canopy soil from the neotropics and reported ethylene 391 

production rates of nearly 0.7 nmol g-1 h-1 (Matson et al., 2014), more than three-fold higher than the 392 

rates in our study. This discrepancy is unlikely to be associated with the nutrient contents of the 393 

respective canopy soils since these are very similar between both studies (Table S4), indicating that 394 

these rates can strongly vary between forests. Matson et al. (2014) found similar mass based BNF rates 395 

for soil and canopy soil across their altitudinal gradient and reasoned this was unsurprising because 396 

these two types of soil were both organic. In contrast, in our study we found that soil nutrients (Table 397 

S4) and mass based BNF rates differed strongly between the mineral forest floor soil and the organic 398 

canopy soil (Fig 2). Likely, the higher availability of carbon relative to nitrogen in the canopy soil 399 

induced higher BNF rates so heterotrophic fixers could offset the unfavourable C:N stoichiometry of 400 

their substrate (Hedin et al., 2009; Menge et al., 2009). On the other hand, the higher N:P ratio in the 401 

mineral soil might be expected to favour BNF as compared to the canopy soil. However, total P is a 402 
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poor indicator of biologically available P. In tropical mineral soils the majority of the P fraction is 403 

occluded by clay minerals and metal-oxides, rendering P inaccessible for microbes (Vitousek et al., 404 

2010; Fink et al., 2016). As such, there probably was much less P available in the mineral soil than in 405 

the canopy soil, contributing to the large difference in mass-based BNF rates. 406 

Free-living BNF rates on the surfaces of rainforest plants have been studied more often and highlighted 407 

as a potential source of N for the plant (Ruinen, 1961; Bentley, 1987; Fritz-Sheridan & Portecop, 1987; 408 

Carpenter, 1992; Freiberg, 1998). Compared to canopy leaf fixation rates in Costa Rica (between 0.003 409 

and 0.070 nmol g-1 h-1; Reed et al., 2008) our identified rates, averaging at nearly 0.5 nmol g-1 h-1 (Fig. 410 

2A), were more than six times higher. Because we selected leaves that were free of any visual signs of 411 

colonisation by fungi, lichens, algae or other organisms, it is possible that the main agent responsible 412 

for the observed high rates of leaf BNF were endophytic diazotrophs (Moyes et al., 2016; Puri et al., 413 

2020). However, the identification of possible endophytic diazotroph associations in tree leaves was 414 

beyond the scope of the present study. 415 

In 40% of vascular epiphyte leaf samples there was no ethylene production and in the remainder of 416 

samples ethylene production was low (Table 3), resulting in the lowest overall ethylene production 417 

rate of all vegetal substrates (0.12 nmol g-1 h-1). Nevertheless, average ethylene production was still 418 

higher than reported by the only other study carried out on tropical epiphytes (Brighigna et al., 1992).  419 

The low rates of BNF suggest that vascular epiphytes derive their N from alternate sources, e.g. 420 

mineralization of intercepted organic material, wet or dry atmospheric deposition or even animal 421 

interactions (Leroy et al., 2009). We also detected differences in ethylene production rates between 422 

different vascular epiphyte species (Fig 3). In particular leaves of the bromeliad Achmea aquilega 423 

showed high rates (ca. 12 nmol g-1 h-1), even when individuals were collected from different trees. This 424 

suggests that the microbial community, or at least the taxa responsible for BNF, present on the leaves 425 

is related more to the epiphyte than to the host tree, possibly because of various functional traits of 426 

the epiphyte  (Kembel et al., 2014). 427 

In our study canopy bryophytes showed the highest mass-based rates of ethylene production and BNF 428 

activity compared to all other measured components (Fig 2A). Free-living BNF in mosses has been 429 

identified as an important source of N in boreal forests (DeLuca et al., 2002; Lagerström et al., 2007), 430 

but studies on tropical forest bryophyte BNF are rare. The ethylene production rates identified in our 431 

French Guianase forest site are lower than those found in mosses situated on tree trunks in Puerto 432 

Rico (Cusack et al., 2009), but similar to rates identified on forest floor moss in Hawaii (Vitousek, 1994; 433 

Matzek & Vitousek, 2003). The differences in ethylene production between trunk and canopy 434 
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bryophytes (Fig 1 and 2) may have several explanations. Differences in abiotic conditions, such as 435 

humidity (Cusack et al., 2009), is one possible explanation. Because we sampled during the second 436 

month of the dry season, during which relative air humidity in the canopy is still substantially higher 437 

than in the understorey (Stahl et al., 2010; Gehrig-Downie et al., 2011), the canopy bryophytes were 438 

significantly wetter than trunk bryophytes (Fig S5), potentially affecting diazotroph activity. Though 439 

not studied in tropical systems, in arctic systems moss moisture was previously found to be the most 440 

important factor for BNF, followed by temperature (Rousk et al., 2018). Another possibility is that 441 

bryophyte (Leppänen et al., 2015) or diazotroph (Warshan et al., 2016) species composition may have 442 

at least been partly responsible for the difference in ethylene production rates between trunk and 443 

canopy bryophytes. However, we did not characterize the different bryophyte species occurring in the 444 

canopy and on the tree trunks, nor did we identify the diazotroph community. Thus, we cannot rule 445 

out that differences in species composition caused the differences in ethylene production rates 446 

between canopy and trunk bryophytes. 447 

The large discrepancies between mass-based BNF rates and forest-wide rates for any specific 448 

ecosystem component are primarily due to the employed scalars. For instance, the mass-based BNF 449 

rate of soil was by far the lowest (Fig 2), while at the scale of the ecosystem the contribution of soil 450 

was the highest, representing roughly 45% of the N fixed across all measured ecosystem components 451 

(Fig 4), all because the soil density was orders of magnitude higher than the densities of the other 452 

components (Table 2). While canopy bryophytes and tree leaves had over 70 times lower component 453 

densities than soil, their high mass-based BNF rates relative to soils results in upscaling to just over 454 

35% of the forest-wide free-living BNF and over 90% of the canopy-derived free-living BNF. This 455 

demonstrates that in spite of their lower relative abundances, these components are pivotal for forest-456 

level N cycles. Furthermore, bryophyte BNF rates in particular are more susceptible to adverse 457 

conditions in, e.g., temperature, humidity or atmospheric deposition than soil because these 458 

conditions affect both the bryophyte density in the forest and their associated mass-based BNF rates 459 

(Zotz & Bader, 2009; Mendieta-Leiva et al., 2020). Soil, however, has an unchanging density on short 460 

timescales and very low BNF rates that, if reduced further, would yield fairly minor changes in soil BNF. 461 

In the framework of a changing environment the combination of a high density and high BNF rate could 462 

cause bryophytes to be disproportionately affected, leading to changes in forest-wide BNF rates. 463 

Uncertainties of determining free living BNF activity  464 

The free-living BNF rates reported here are the result of careful point measurements that were up 465 

scaled to the ecosystem level using estimated and measured densities of the relevant scalars, and are 466 

accompanied by a number of uncertainties. First, the conversion of the ethylene production rate to 467 
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BNF rates requires converting the number of moles of ethylene produced into a number of moles of N 468 

fixed (Hardy et al., 1968). This conversion factor is empirically determined, and mostly resembles the 469 

theoretical conversion factor of 3:1 (Vitousek, 1994; Vitousek & Hobbie, 2000; DeLuca et al., 2002; 470 

Leppänen et al., 2013; Rousk et al., 2017). For canopy leaves, bryophytes and leaf litter we were able 471 

to empirically determine the conversion factor, which closely resembled the theoretical ratio (Table 472 

2), and use this in our up scaling. However, likely due to low mass based BNF rates and relatively high 473 

background N concentrations (Menge & Hedin, 2009; Matson et al., 2014; Van Langenhove et al., 474 

2019), it was not possible to determine conversion factors for vascular epiphyte leaves, canopy soil 475 

and forest floor soil. Instead, we used the theoretical 3:1 conversion factor, which is commonly used 476 

in BNF studies where 15N2 incubations were not possible or not carried out at all (Benner et al., 2007; 477 

Reed et al., 2007; Cusack et al., 2009; Matson et al., 2014; Brookshire et al., 2019). To our knowledge, 478 

no empirical conversion factors have ever been determined for canopy soil or vascular epiphytic 479 

leaves. Regardless of the accuracy of the theoretical conversion factor, because of the low mass based 480 

ethylene production rates in these two components any deviations from it would lead to only minor 481 

changes in their respective BNF rates. However, the accuracy of the forest floor soil conversion factor, 482 

which in Swedish soils was shown to range between 0.8 and 3.6 (Nohrstedt, 1983), has a larger impact 483 

on the final result, as soils represented the largest fraction of free-living BNF. Depending on the actual 484 

conversion factor the BNF rates in soils could range from 0.7 to 3.0 kg N ha-1 y-1. 485 

A second source of uncertainty were the applied scaling factors. This is especially true for the amount 486 

of canopy soil and density of vascular epiphytes in our forest, as they were not quantified, but 487 

estimated based on findings from other tropical forests (Table S2). However, the mass-based ethylene 488 

production rates of the canopy soil and vascular epiphytes were comparably low, so much so that even 489 

if we assumed unrealistically high canopy soil load and vascular epiphytic density (10,000 and 22,000 490 

kg ha-1; respectively), fixed N from both sources combined would still amount to only 0.3 kg N ha-1 y-1. 491 

Because we measured bryophyte coverage and used quantified values of canopy leaf area, leaf litter 492 

abundance and soil density specifically for our site, the errors associated with these scalars were much 493 

smaller (Table 2). 494 

A third source of uncertainty is the very high spatial variability in BNF rates within forest floor or canopy 495 

components, which led to the large errors associated with the ethylene production rates (Table 3). The 496 

commonly accepted explanation for this high natural variability is that the free-living N fixer 497 

community, as well as nutrient availability, can differ profoundly over very small distances (Reed et al., 498 

2011; Dynarski & Houlton, 2018). While different microbial species may be responsible for the BNF in 499 

different components, the physiology of all free-living N fixers is affected by the properties and 500 
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requirements of the nitrogenase enzyme (Gutschick, 1981). BNF is energy- and nutrient-intensive, and 501 

it is often suppressed when N availability is high (Hedin et al., 2009; Menge et al., 2009) and stimulated 502 

when phosphorus availability increases (Camenzind et al., 2018; Dynarski & Houlton, 2018), thus 503 

differences in substrate N:P ratio even on a small spatial scale may be responsible for varying rates. 504 

An important caveat of the scaling up approach employed here is that we assume constant rates of 505 

BNF throughout the year. Free-living BNF rates are variable in time even when measured at the exact 506 

same location (e.g. Reed et al., 2007; Matson et al., 2014; Van Langenhove et al., 2019), which makes 507 

an upscaling of point measurements of BNF to yearly rates challenging (Stanton et al., 2019). In forest 508 

floor soil and leaf litter, changing BNF rates are often related to changing biotic and abiotic conditions, 509 

mainly driven by changing moisture impacting the microbial community and decomposition rates, 510 

which in turn leads to changes in nutrient availability (Reed et al., 2011). We can imagine similar 511 

limitations on canopy BNF, as seasonally changing rainfall and associated air humidity (Gehrig-Downie 512 

et al., 2011) could impact microbial communities there and seasonal trends in atmospheric deposition 513 

(Eklund et al., 1997) could potentially impact nutrient inputs and thus also BNF. It is possible that the 514 

yearly rates of BNF discussed here are lower than the actual rates, given that they were measured in 515 

the beginning of the dry season and extrapolated to an entire year. Free-living BNF occurring on arctic 516 

mosses, for example, was previously shown to be impacted strongly by changes in moisture (Rousk et 517 

al., 2018) and this could very well be the case here too. On the other hand has previous research in 518 

French Guiana shown that seasonal differences, at least for leaf litter and soil, are rather small (Van 519 

Langenhove et al., 2019). Measuring free-living BNF in canopy compartments two or even four times 520 

within one year would have likely provided a better overview of yearly rates and the temporal 521 

variability of these rates. 522 

Conclusion 523 

Overall, rates of free-living BNF were low in our tropical forest site. Even so, 40% was carried out in the 524 

canopy and of all components both canopy bryophytes and canopy leaves showed the highest mass-525 

based BNF rates and contributed most to total canopy BNF. The contribution made by vascular 526 

epiphytes and canopy soils was much smaller, at least in this forest. According to these results, future 527 

studies attempting to quantify ongoing BNF in lowland forest canopies will likely benefit from focussing 528 

their efforts on bryophytes and canopy leaves. However, in montane forests where canopy soil and 529 

epiphyte loads are likely larger their contribution to the total amount of N fixed could still be 530 

substantial. Thus far, efforts to construct biome wide rates of BNF have included symbiotic and free-531 

living forest floor BNF, but ignored canopy BNF, often for a variety of reasons including a lack of data. 532 
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For future tropical budgeting studies it will be worthwhile to also include estimates of canopy BNF as 533 

they can represent a substantial part of the total fixed N.  534 
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Tables 546 

Table 1: List of trees sampled during the study. The World Flora Online database (2019) was consulted to validate scientific names as well as to confirm 547 

author names. The diameter at breast height (DBH) is listed, along with the number of samples gathered from each tree for each of the different 548 

components. Bryo. is an abbreviation for bryophytes 549 

Species Family 
DBH 
(cm) 

Forest 
floor 
soil 

Canopy 
Soil 

Litter 
Canopy 
Leaves 

Vascular  
Epiphyte  
Leaves 

Canopy 
Bryo. 

Trunk 
Bryo. 

Aspidosperma sprucaneaum Benth. Ex 

Müll.Arg. 
Apocynacea 97.1 - 6 - 6 3 - 3 

Tetragastris altissima (Aubl.) Swart Burseraceae 95.5 - 15 - 6 9 3 3 

Tetragastris sp. Burseraceae 47.4 5 - 5 6 6 3 - 

Poraqueiba guianensis Aubl. Icacinaceae 83.4 - 12 - 3 9 3 3 

Couratari oblongifolia Ducke & R. Knuth Lecythidaceae 79.1 - 18 - - 6 3 3 

Eschweilera coriaceae (DC.) S.A.Mori Lecythidaceae 53.0 5 3 5 6 - 3 3 

Eschweilera coriaceae (DC.) S.A.Mori Lecythidaceae 53.6 - 9 - 9 9 3 3 

Eschweilera coriaceae (DC.) S.A.Mori Lecythidaceae 53.2 - - - 6 6 - - 

Eschweilera coriaceae (DC.) S.A.Mori Lecythidaceae 48.7 - 3 - 6 3 3 3 

Eschweilera coriaceae (DC.) S.A.Mori Lecythidaceae 54.7 5 12 5 3 9 3 3 

Lecythis persistens Sagot Lecythidaceae 47.4 - 18 - 6 9 3 3 

Eperua falcata Aubl. Leguminosae 81.8 5 15 5 6 9 - 3 

Eperua falcata Aubl. Leguminosae 73.5 - 9 - 3 6 3 3 

Micropholis sp. Sapotaceae 69.6 5 15 5 6 6 - - 

Total samples incubated  25 135 25 72 90 30 33 

550 
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Table 2: List of conversion factors and component densities used to upscale each substrate for which 551 

ethylene production was measured. Indicated errors are standard errors. Standard errors of 552 

theoretical conversion factors were assumed to be similar to the mean of the relative standard error 553 

of the calculated conversion factors (see Methods). 554 

 Component conversion Component Density 

Component Conversion 
factor 

Source Measurement Value Reference 

Forest floor soil 3.0 ± 0.8 Theoretical 
Soil bulk density to 5 

cm depth 
44 ± 1 kg m-2 

Van Langenhove et 

al., 2019 

Canopy soil 3.0 ± 0.8 Theoretical 
Canopy soil load per 

hectare of forest 
1000 ± 500 kg ha-1 Listed in Table S2 

Canopy bryophytes 2.4 ± 0.9 
Calculated 

(n = 10) 

Branch bryophyte 

surface area per 

hectare of forest 

8190 ± 780 m² ha-1 Calculated 

Trunk bryophytes 2.4 ± 0.9 
Calculated 

(n = 10) 

Trunk bryophyte 

surface area per 

hectare of forest 

3280 ± 284 m² ha-1 Calculated 

Canopy leaves 3.5 ± 0.4 
Calculated 

(n = 10) 
Leaf area index 6.5 ± 0.5 m² m-2 

Cournac et al., 2002; 

Emmons et al., 2006 

Forest floor litter 4.1 ± 0.6 
Calculated 

(n = 10) 

Litter density on 

forest floor 
601 ± 44 g m-2 

Van Langenhove et 

al., 2019 

Vascular epiphytes 3.0 ± 0.8 Theoretical 
Vascular epiphyte 

mass per hectare 
1500 ± 750 kg ha-1 Listed in Table S2 

 555 

Table 3: Overview of the mass-based ethylene production rates identified in each component. The 556 

sampling size (n), overall mean, geometric mean, SE, SD, minimum, maximum and median values are 557 

listed, along with the percentage of measurements per components wherein no ethylene production 558 

was present (% zero). Values are expressed as nmol ethylene produced g-1 h-1.  559 

 560 

 n Mean Geometric 

mean 

SE SD Min Max Median % zero 

Forest floor soil 25 0.022 0.012 0.009 0.049 0.003 0.253 0.010 0 

Canopy soil 133 0.189 0.037 0.135 0.897 0.001 5.986 0.031 2 

Canopy 

bryophytes 
31 1.264 0.300 0.407 2.268 0.006 9.731 0.373 0 

Trunk 

bryophytes 
29 0.273 0.080 0.093 0.498 0.000 2.559 0.130 4 

Canopy leaves 67 0.479 0.420 0.111 0.905 0.000 5.435 0.066 34 

Leaf litter 25 0.691 0.242 0.211 1.056 0.029 4.453 0.234 0 

Epiphyte leaves 88 0.119 0.222 0.052 0.286 0.000 1.486 0.031 40 

 561 

  562 
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Figures 563 

 564 

 Figure 1: Comparison of mass-based (a, c) and area-based (b, d) rates of ethylene production 565 

for shaded versus sunlit leaves (a, b) and canopy bryophytes versus trunk bryophytes (c, d). Error 566 

bars represent standard errors. Different lowercase letters represent significant differences (P < 567 

0.001) between canopy components. Sample sizes: Shaded leaves n = 35, Sunlit leaves n = 32, 568 

Canopy bryophyte N = 31, Trunk bryophyte N = 29 Bryo. is an abbreviation for bryophytes. 569 
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 570 

 Figure 2: Average mass-based (a) and area-based (b) ethylene production rates for each of the 571 

measured components. It was not possible to directly measure area-based rates for forest floor 572 

soil and canopy soils. Error bars indicate standard errors. Lowercase letters indicate significant 573 

differences at the P < 0.05 level for components derived from vegetation; uppercase letters 574 

indicate significant differences at the P < 0.05 level between soil and canopy soil. Abbreviations: 575 

Soil = forest floor soil, Litter = leaf litter, Can. Soil = Canopy soil, Trunk bryo. = bryophytes 576 

gathered from the tree trunks, Can. bryo. = bryophytes gathered from the tree canopy, Can. 577 

Leaves = canopy leaves, including both sunlit and shaded leaves, and Vasc. Epi. = vascular 578 

epiphyte leaves collected from the canopy. Respective sample sizes can be found in Table 3. 579 
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 580 

Figure 3: Area-based ethylene production rates of leaves of vascular epiphyte species. For each 581 

species at least two individuals were sampled. Error bars indicate standard errors. Different 582 

lowercase letters indicate significant differences at the P < 0.05 level. Species are ordered 583 

alphabetically. We sampled two individual Achmea aquilega plants, three Asplenium sp. 1 plants, 584 

five Ludovia lancifolia plants, four Philodendron sp. 1 plants, two Philodendron sp. 2 plants and 585 

three Pteridophyta sp. 1 plants. 586 

  587 
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 588 

 589 

Figure 4: Diagram of calculated amounts of free-living BNF per ecosystem component both on 590 

the forest floor and within the canopy in a tropical lowland forest in French Guiana. Free-living 591 

BNF rates are expressed in g N fixed ha-1 y-1 and include standard errors. 592 

  593 
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