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Abstract

Due to recent advances in the development of laboratory equipment, large screening
experiments can be conducted to study the joint impact of a few dozen factors.
While much is known about orthogonal designs involving 64 and 128 runs, there is a
lack of literature on screening designs with intermediate run sizes. In this article, we
construct screening designs with 80, 96 and 112 runs which allow the main effects to be
estimated independently from the two-factor interactions and limit the aliasing among
the interactions. We motivate our work using a 14-factor tuberculosis inhibition
experiment and compare our new designs with alternatives from the literature using
simulations.

Keywords: Drug combination experiment, large run size, minimal aliasing, nonregular de-
sign, orthogonal array, strength three

1 Introduction

The first stages of product and process development involve screening experiments to iden-

tify, from a list of potentially influential factors, those that are indeed influential. Many

screening experiments are conducted using two-level orthogonal designs. An attractive fea-

ture of these designs is that the two levels of every factor occur equally often and the factors’

main effects are not aliased with each other. Two-level orthogonal designs are divided into

two broad groups: regular and nonregular designs. In regular designs, all pairs of factors’
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effects are either fully aliased or not aliased at all, while nonregular designs involve pairs

of effects which are only partially aliased. Mee (2009) and Wu and Hamada (2009) provide

comprehensive treatises on two-level orthogonal designs.

Due to recent advances in the miniaturization of laboratory equipment, orthogonal

designs involving many factors and runs are being used to study complex biological and

chemical processes, such as drug combination regimens. For instance, in order to develop

a treatment that inhibits tuberculosis, Silva et al. (2016) studied the 14 drugs shown in

Table 1. The overall goal of the study was to identify the concentrations of the drugs that

maximize the percentage of inhibition of Mycobacterium tuberculosis—the causative agent

of tuberculosis—in infected human cells.

The first stage of the study involved a screening experiment to identify the influential

drugs. These drugs would subsequently be studied in later stages to find their optimal

concentrations. Table 1 shows the factor levels used in the screening experiment, which

correspond to the absence or presence at a given concentration of the drugs. Previous

knowledge about the drugs suggested that many of them would have an active individual

effect on the response. It also suggested the presence of active drug-drug interactions. For

instance, the drug Rifampicin is known to have both synergistic and antagonistic interac-

tions with some of the other drugs in Table 1. Therefore, all 14 main effects (MEs) and all

91 two-factor interactions (TFIs) of the 14 drugs were considered at the screening stage.

In this article, we explore cost-efficient two-level designs for the tuberculosis inhibition

experiment.

Two-level orthogonal designs (either regular or nonregular) may be generally classified

by their so-called strength (Hedayat et al., 1999). In technical terms, a two-level orthogonal

design has a strength of t if every subset of t factor columns is an equally replicated full 2t

factorial design, where t is an integer larger than or equal to two. Consequently, a two-level

orthogonal design of strength t has a run size that is a multiple of 2t. Classifying two-level

regular designs in terms of their strength is equivalent to classifying them according to

their well-known resolution (Wu and Hamada, 2009, ch 5), which is a Roman numeral

equal to the smallest order of factors’ interactions that are fully aliased with the intercept.

In fact, the strength of a regular design equals its resolution minus one. In what follows,

we categorize regular and nonregular designs in terms of their resolution and strength,

respectively.

To study the effects of the 14 drugs, Silva et al. (2016) used a two-level nonregular

design of strength 4 with 128 runs. Similar to regular resolution-V designs, nonregular
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Table 1: Factors considered in the tuberculosis inhibition study and their concentrations

for the screening experiment. The concentrations of the drugs are shown in micrograms

per milliliter (µg/ml).

Levels

Label Drug −1 +1

X1 Amoxicillin/clavulanate 0 0.7000

X2 Clofazimine 0 0.0780

X3 Cyclosorine 0 1.5000

X4 Ethambutol 0 0.0500

X5 Isoniazid 0 0.0030

X6 Linezolid 0 0.0130

X7 Moxifloxacin 0 0.0310

X8 PA-824 0 0.0038

X9 para-aminosalicylic acid 0 0.0700

X10 Prothionamide 0 0.0110

X11 Pyrazinamide 0 4.0000

X12 Rifampicin 0 0.0008

X13 SQ-109 0 0.1000

X14 TMC-207 0 0.0060

strength-4 designs do not involve any aliasing among the MEs and the TFIs, and allow

the estimation of all MEs and all TFIs with full precision. Therefore, they are excellent

for screening MEs and TFIs simultaneously. For 12 to 15 factors, two-level nonregular

strength-4 designs with 128 runs can be obtained using dedicated combinatorial methods

available in Hedayat et al. (1999). These nonregular designs require only half as many runs

as regular resolution-V designs for the same numbers of factors.

Silva et al. (2016) conducted the 14-factor 128-run nonregular strength-4 design in a

completely randomized fashion. The number of drugs present in each run ranged from zero

to 10, where the run without drugs served as a control. The total time required to prepare

the 128 combinations of the 14 drugs was around seven hours, using the automatic liquid

handling workstation called Microlab STAR Line. The statistical analysis of the results

from the 128-run design resulted in eight significant MEs and six significant TFIs. Three of
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the significant TFIs satisfied strong effect heredity (Wu and Hamada, 2009, ch 4), meaning

that the MEs of the factors involved in these interactions were also significant. These three

TFIs involved the drug Rifampicin, which is in line with the existing knowledge about the

drugs. The other three significant TFIs, however, did not satisfy effect heredity. The fact

that only 14 of the 105 potential effects of the drugs turned out to be significant suggests

that, in hindsight, these effects might also have been detected using a more economical

experimental design, with fewer runs than 128.

As it is undesirable that MEs are aliased with TFIs in screening experiments, we only

consider alternative designs in which there is no such aliasing. Moreover, since the moti-

vating experiment demands screening as many as 105 potential effects, we focus on designs

with at least 64 runs so as to limit the chances of missing the active effects. One possible 64-

run design to study 14 factors is a 64-run regular design of resolution IV; see, e.g., Wu and

Hamada (2009, ch 5). In resolution-IV designs, the MEs are not aliased with the TFIs and

can be estimated with full precision. However, these designs involve pairs of TFIs which are

fully aliased. A major limitation of this aliasing structure is that additional experimental

effort may be needed to disentangle or acquire insight into fully aliased interactions.

Two-level nonregular strength-3 designs are attractive alternatives to regular resolution-

IV designs. This is because strength-3 designs do not involve any aliasing between the MEs

and the TFIs, and, in contrast with resolution-IV designs, any two TFIs may be only par-

tially aliased in these designs. The partial aliasing between two TFIs permits at least

some information to be retrieved about each of the interactions. Another advantage of

nonregular strength-3 designs over resolution-IV designs is their flexible run sizes, since

strength-3 designs are available for run sizes which are multiples of eight. This is unlike

regular resolution-IV designs which exist only for run sizes that are powers of two. For 14

factors, nonregular strength-3 designs have the potential to provide cost-efficient alterna-

tives that fill the large gap between a 64-run regular resolution-IV design and the 128-run

nonregular strength-4 design used by Silva et al. (2016). However, not much is known

about nonregular strength-3 designs with run sizes between 64 and 128.

In this article, we construct nonregular strength-3 designs with 80, 96 and 112 runs

to fill the gap between the run sizes 64 and 128. In Section 2, we review the existing

strength-3 designs with run sizes ranging from 64 to 128. In Section 3, we introduce

criteria to assess the quality of nonregular strength-3 designs. In Section 4, we outline an

effective construction procedure to generate our nonregular strength-3 designs with 80, 96

and 112 runs. This construction procedure concatenates two smaller equally-sized strength-
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3 designs. In Section 5, we present a collection of strength-3 designs with 80, 96 and 112

runs and 9 to 29 factors we obtained using that construction. The collection includes

alternative design options for the tuberculosis inhibition experiment. We show that the

designs we found outperform or are competitive with the benchmark strength-3 designs

available in the literature in terms of the aliasing among the TFIs.

In Section 6, we revisit the tuberculosis inhibition experiment and propose alternative

strength-3 design options. Using simulations, we compare these orthogonal design options

with the 128-run design actually used, with each other and with nonorthogonal designs that

could have been considered as well. We end the article in Section 7 with a discussion and

suggestions for future research. A practical conclusion of our research is that, for situations

involving many active MEs and up to a moderate number of large active TFIs, our 80-, 96

and 112-run strength-3 designs have the potential to provide the same or almost the same

statistical power to identify the active effects as 128-run strength-4 designs. Our collection

of strength-3 designs is available in the online supplementary materials accompanying this

article.

2 Literature review

Similar to two-level regular resolution-IV designs, two-level nonregular strength-3 designs

with N runs can accommodate up to N/2 factors. Complete catalogs of two-level strength-

3 designs with 32, 40 and 48 runs are available from Schoen et al. (2010). For 32 runs, these

catalogs include both regular resolution-IV and nonregular strength-3 designs with up to

16 factors. For 40 and 48 runs, the catalogs include nonregular strength-3 designs with

up to 20 and 24 factors, respectively. For run sizes larger than 48, it is computationally

infeasible to enumerate all strength-3 designs (Bulutoglu and Margot, 2008; Schoen et al.,

2010). To overcome the lack of complete catalogs of large designs, several authors have

presented partial collections of attractive strength-3 designs with run sizes from 64 to 128.

Table 2 provides an overview of these collections and highlights the contributions of the

present article in bold font. For completeness, the table also includes available collections

of regular resolution-IV designs with 64 and 128 runs.

Chen et al. (1993) enumerated all regular resolution-IV designs with 64 runs and up to

32 factors. Using different enumeration approaches, Xu (2009) and Block and Mee (2005)

identified the most attractive resolution-IV designs with 128 runs and up to 64 runs. Using

so-called quaternary linear codes, Xu and Wong (2007) obtained nonregular strength-3
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Table 2: Literature review on two-level regular and nonregular designs of strength 3 with

run sizes from 64 to 128. The notation ‘≤ k’ means that designs are available for up to k

factors.

Runs Reference Factors Technique

64 Chen et al. (1993) ≤ 32 complete enumeration of regular strength-3 designs

Xu and Wong (2007) ≤ 32 designs from selected quaternary linear codes

Cheng et al. (2008) 17 partial fold over of a 32-run strength-3 design

Mee (2009, ch 7) 32 fold over of 32-run Paley Hadamard matrix

Vazquez et al. (2019) ≤ 17 concatenation of two 32-run strength-3 designs

Vazquez et al. (2019) ≤ 32 projections of the folded-over 32-run Paley Hadamard matrix

72 Box and Hunter (1961), Mee (2009, ch 7) 36 fold over of 36-run Plackett-Burman design

80 Box and Hunter (1961), Mee (2009, ch 7) 40 fold over of 40-run Plackett-Burman design

Cheng et al. (2008) 21 partial fold over of a 40-run strength-3 design

present work ≤ 21 concatenation of two 40-run strength-3 designs

88 Box and Hunter (1961), Mee (2009, ch 7) 44 fold over of 44-run Plackett-Burman design

96 Box and Hunter (1961), Mee (2009, ch 7) 48 fold over of 48-run Plackett-Burman design

Cheng et al. (2008) 25 partial fold over of a 48-run strength-3 design

Vazquez and Xu (2019) ≤ 16 concatenation of three 32-run regular strength-3 designs

present work ≤ 25 concatenation of two 48-run strength-3 designs

104 Box and Hunter (1961) 52 fold over of 52-run Plackett-Burman design

112 Box and Hunter (1961) 56 fold over of 56-run Plackett-Burman design

present work ≤ 29 concatenation of two 56-run strength-3 designs

120 Box and Hunter (1961) 60 fold over of 60-run Plackett-Burman design

128 Block and Mee (2005), Xu (2009) ≤ 64 partial enumeration of regular strength-3 designs

Xu and Wong (2007) ≤ 64 designs from selected quaternary linear codes

Box and Hunter (1961) 64 fold over of 64-run Plackett-Burman design

Vazquez et al. (2019) ≤ 33 concatenation of two 64-run strength-3 designs

Vazquez and Xu (2019) ≤ 16 concatenation of four 32-run regular strength-3 designs

designs with 64 and 128 runs for up to 32 and 64 factors, respectively. Vazquez et al.

(2019) provide an alternative collection of 64- and 128-run nonregular strength-3 designs

for up to 17 and 33 factors, respectively. Their designs were constructed by concatenating

two equally-sized strength-3 designs with 32 and 64 runs. Based on a similar idea, Vazquez

and Xu (2019) constructed nonregular strength-3 designs with 96 and 128 runs for up to

16 factors by concatenating multiple copies of a regular resolution-IV design with 32 runs.

Regular resolution-IV designs can be constructed by folding over regular resolution-

III designs. Similarly, nonregular strength-3 designs can be constructed by folding over

nonregular strength-2 designs. Box and Hunter (1961) suggested to construct large non-

regular strength-3 designs by folding over well-known nonregular strength-2 designs such
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as Plackett-Burman designs (Plackett and Burman, 1946). More specifically, consider a

(N − 1)-factor N -run Plackett-Burman design with coded levels −1 and +1. A nonregular

strength-3 design with 2N runs and N factors is obtained by augmenting this design with

an extra column of +1s and folding over the resulting design. Plackett and Burman (1946)

report designs with run sizes N a multiple of four and at most 100. Using their designs with

36 to 64 runs, we obtain a collection of nonregular strength-3 designs with 72-128 runs and

36-64 factors. The 64-run 32-factor strength-3 design generated from the 32-run Plackett-

Burman design is regular, and so it is included in the enumeration of 64-run strength-3

regular designs of Chen et al. (1993).

Mee (2009, ch 7) provides another collection of strength-3 nonregular designs with 64-,

72-, 80-, 88- and 96-run strength-3 designs with 32, 36, 40, 44 and 48 factors, respectively.

These strength-3 designs are constructed by folding over Hadamard matrices of orders 32,

36, 40, 44 and 48. In technical terms, a Hamard matrix of order N is an N ×N orthogonal

matrix with all its elements ±1. In the literature of combinatorics, one of the most popular

methods to construct Hadamard matrices is that of Paley (1933). Hadamard matrices

constructed using this method are commonly refereed to as Paley Hadamard matrices. The

64-run 32-factor nonregular strength-3 design in Mee (2009, ch 7) is constructed by folding

over the Paley Hadamard matrix of order 32. For 72, 80, 88 and 96 runs, the strength-

3 designs in Mee (2009, ch 7) provide similar aliasing among TFIs as those derived by

folding over Plackett-Burman desings with 36 to 48 runs. To save space, Table 2 shows the

strength-3 designs obtained from Placket-Burman designs only.

Vazquez et al. (2019) provide alternative 64-run strength-3 designs with up to 32 factors.

Their designs are obtained from attractive projections of the folded-over 32-run Paley

Hadamard matrix onto subsets of factors. Cheng et al. (2008) provide one 64-run 17-factor

strength-3 design, one 80-run 21-factor strength-3 design and one 96-run 25-factor strength-

3 design. These nonregular designs were constructed by folding over one or more columns

of a specific strength-3 design.

Table 2 shows that nonregular strength-3 designs with 72, 80, 88, 96, 104, 112 and 120

runs are scarce in the current literature on two-level orthogonal designs. In this article,

we present 80-run designs with up to 21 factors, 96-run designs with up to 25 factors, and

112-run designs with up to 29 factors, and thereby fill an important gap in the literature.
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3 Evaluation of strength-3 designs

Two-level nonregular strength-3 designs are commonly evaluated in terms of the extent

to which the TFIs are aliased. It is thereby assumed that three-factor and higher-order

interactions are negligible. In this section, we review the most commonly used criteria to

assess the severity of the aliasing among the TFIs in strength-3 designs. First, we show

how to measure and visualize this aliasing using the color map of absolute correlations.

Next, we introduce the generalized resolution, the F4 vector and the B4 value (Deng and

Tang, 1999; Tang and Deng, 1999), which summarize the most important correlations in

the color maps of strength-3 designs. As our final criteria to measure the quality of our

strength-3 designs, we use the largest number of estimable TFIs (Cheng et al., 2008) and,

for strength-3 designs that can estimate all these effects, the D-efficiency criterion (Goos

and Jones, 2011, ch 2), which we discuss at the end of this section.

3.1 Aliasing among two-factor interactions

To assess the severity of the aliasing among the TFIs, we start from the interaction model

matrix. For a given m-factor strength-3 design in which the two levels of every factor

are coded as −1 and +1, the interaction model matrix involves columns corresponding to

the intercept, the m MEs and the m(m − 1)/2 TFIs. We measure the extent to which

two effects are aliased using the absolute correlation between the corresponding effects’

columns of this matrix. An absolute correlation close to 1 implies that the two effects are

strongly aliased, while an absolute correlation of 0 means that the effects are not aliased at

all. Ideally, all absolute correlations between pairs of columns of the two-factor interaction

matrix are 0, because this means there is no aliasing among all MEs and all TFIs.

As an example, we consider the nonregular strength-3 design with 32 runs and 10

factors in Table 3, obtained from Schoen and Mee (2012). The 10 factors are labeled

X1, X2, . . . , X10, and their levels are coded as −1 and +1. It is easy to see that, for each

factor column in Table 3, there are 16 −1s and 16 +1s. Therefore, the two levels of every

factor occur equally often in the design.

A popular way to visualize the absolute correlations between columns corresponding to

the MEs and the TFIs is a color map. Figure 1 shows the color map of the absolute corre-

lations for the ME and TFI columns of the model matrix of the 10-factor 32-run strength-3

design in Table 3. In the color map, the largest absolute correlations are visualized by

the darkest cells while zero correlations are indicated in white. The color map shows that
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Table 3: A two-level nonregular strength-3 design with 32 runs and 10 factors from Schoen

and Mee (2012).

Runs X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

2 −1 −1 −1 −1 −1 −1 1 1 1 1

3 −1 −1 −1 −1 1 1 −1 −1 1 1

4 −1 −1 −1 −1 1 1 1 1 −1 −1

5 −1 −1 1 1 −1 −1 −1 −1 −1 −1

6 −1 −1 1 1 −1 1 −1 1 1 1

7 −1 −1 1 1 1 −1 1 1 −1 1

8 −1 −1 1 1 1 1 1 −1 1 −1

9 −1 1 −1 1 −1 −1 1 −1 1 1

10 −1 1 −1 1 −1 1 1 1 −1 −1

11 −1 1 −1 1 1 −1 −1 1 1 −1

12 −1 1 −1 1 1 1 −1 −1 −1 1

13 −1 1 1 −1 −1 1 −1 1 1 −1

14 −1 1 1 −1 −1 1 1 −1 −1 1

15 −1 1 1 −1 1 −1 −1 1 −1 1

16 −1 1 1 −1 1 −1 1 −1 1 −1

17 1 −1 −1 1 −1 1 −1 1 −1 1

18 1 −1 −1 1 −1 1 1 −1 1 −1

19 1 −1 −1 1 1 −1 −1 1 1 −1

20 1 −1 −1 1 1 −1 1 −1 −1 1

21 1 −1 1 −1 −1 −1 1 1 1 −1

22 1 −1 1 −1 −1 1 1 −1 −1 1

23 1 −1 1 −1 1 −1 −1 −1 1 1

24 1 −1 1 −1 1 1 −1 1 −1 −1

25 1 1 −1 −1 −1 −1 −1 1 −1 1

26 1 1 −1 −1 −1 1 −1 −1 1 −1

27 1 1 −1 −1 1 −1 1 −1 −1 −1

28 1 1 −1 −1 1 1 1 1 1 1

29 1 1 1 1 −1 −1 −1 −1 1 1

30 1 1 1 1 −1 −1 1 1 −1 −1

31 1 1 1 1 1 1 −1 −1 −1 −1

32 1 1 1 1 1 1 1 1 1 1
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the 32-run 10-factor design in Table 3 is indeed an orthogonal strength-3 design. This is

because the off-diagonal cells corresponding to the absolute correlations between two ME

columns, and between any ME and any TFI column, are white in the color map. So, there

is no aliasing among the MEs and between the MEs and the TFIs.

In two-level orthogonal designs, pairs of TFI columns sharing a common factor are

never correlated. The only pairs of TFI columns that can be correlated are those involving

four different factors. For the 10-factor design in Table 3, there are 630 pairs of that type.

Figure 1 shows that the largest absolute correlations for two TFI columns involving four

factors equal 1. These are visualized by the six darkest off-diagonal cells, corresponding to

three pairs of TFIs which are fully aliased. These pairs are X1X2 and X3X4, X1X3 and

X2X4, and X1X4 and X2X3, each of which involves the factors X1, X2, X3 and X4. In

general, TFI pairs involving the same four factors have the same correlation. For every set

of four different factors, there are three associated pairs of TFIs.

Figure 1 shows 372 gray off-diagonal cells. They correspond to 186 pairs of TFI columns

with an absolute correlation of 0.5. These 186 pairs can be divided into 186/3 = 62 groups

of three TFI pairs involving the same four factors. The fact that the 10-factor 32-run

design has absolute correlations of 0.5 implies that certain effects are partially aliased and

that the design is nonregular. The figure also shows that the remaining 441 pairs of TFIs

involving four factors are not aliased at all as the corresponding cells in the color map are

white.

For a two-level strength-3 design with N runs, Deng and Tang (1999) showed that the

possible values for the absolute correlations between pairs of TFI columns involving four

factors necessarily equal 1− 16q/N , where q is an integer ranging from zero to the largest

integer smaller than or equal to N/16. For the 32-run strength-3 design in Table 3, the

possible values for the absolute correlations between pairs of TFI columns involving four

factors are therefore 1− 0× 16/N = 1, 1− 1× 16/N = 0.5 and 1− 2× 16/N = 0, since q

is at most two when N = 32. This is why the off-diagonal cells in the color map in Figure

1 have only three different colors.

In general, when evaluating a strength-3 design based on the color map, we focus only

on the off-diagonal cells corresponding to pairs of TFIs involving four factors, because the

other off-diagonal cells—corresponding to pairs of MEs, pairs of a ME and a TFI, and

pairs of TFIs involving three factors—are always white in the color map. Good strength-3

designs possess few colored off-diagonal cells corresponding to pairs of TFIs involving four

factors, because this means that few pairs of TFIs are aliased. Moreover, the lighter the
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Figure 1: Color map showing the absolute correlations between the ME and TFI columns

for the 10-factor 32-run strength-3 design in Table 3. The white, gray and dark cells

correspond to absolute correlations equal to 0, 0.5 and 1, respectively.

colors of these cells, the better, because any existing aliasing is mild then. The generalized

resolution, the F4 vector and the B4 value provide alternative summaries of the information

contained in the color map about the aliasing between pairs of TFIs involving four factors.

3.2 Generalized resolution

The maximum absolute correlation between pairs of TFI columns for a given strength-3

design determines the largest extent to which two TFIs are aliased. It also determines

the generalized resolution of the design. More specifically, for a strength-3 design, the

generalized resolution is 5−ρmax, where ρmax is the maximum absolute correlation between

pairs of TFI columns. For instance, for the 10-factor 32-run strength-3 design in Table 3,
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the maximum absolute correlation between pairs of TFI columns, ρmax, is 1, as witnessed by

the darkest off-diagonal cells in the color map. So, the design has a generalized resolution

equal to 4.

Ideally, the generalized resolution of a strength-3 design is large, since small absolute

correlations between pairs of TFI columns are desirable. In other words, the lighter is the

darkest off-diagonal cell corresponding to pairs of TFI columns in its color map, the larger

the generalized resolution of a strength-3 design.

The generalized resolution criterion can be used to evaluate and compare two-level reg-

ular and nonregular designs. For two-level regular designs, the generalized resolution equals

the resolution (Deng and Tang, 1999). This means that a two-level regular resolution-IV

design has a generalized resolution of 4.

3.3 The F4 vector

The F4 vector summarizes all the correlations between pairs of TFI columns involving four

factors and shown in the color map in Figure 1. For strength-3 designs, the entries of the

F4 vector are the numbers of pairs of TFI columns involving four factors with an absolute

correlation value of 1, 1 − 16/N , 1 − 32/N , and so on, divided by three. The division by

three is due to the fact that the F4 vector counts each set of three TFI pairs involving the

same four factors only once, because they have the same correlation. For example, the F4

vector of the 10-factor 32-run strength-3 design in Table 3 is F4(1, 0.5, 0) = (1, 62, 147).

This means that there are 1 × 3 = 3, 62 × 3 = 186, and 147 × 3 = 441 pairs of TFI

columns with absolute correlations of 1, 0.5 and 0, respectively, in the design. These pairs

are visualized by the 3 dark, 186 gray and 441 white off-diagonal cells in the color map in

Figure 1.

When comparing two strength-3 designs in terms of their F4 vectors, we prefer the

design whose value for the first entry in which the F4 vectors differ is smaller, because this

means that it involves less severe aliasing among the TFIs between the two designs (Deng

and Tang, 1999). In other words, we prefer strength-3 designs that sequentially minimize

the F4 vector from left to right, because they have color maps involving the smallest number

of dark off-diagonal cells corresponding to pairs of TFI columns, and, subject to this, the

smallest number of gray off-diagonal cells, and so on.

The F4 vector is a more refined criterion than the generalized resolution because it

allows to detect differences in quality between designs of equal generalized resolution. Note
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that sequentially minimizing the F4 vector maximizes the generalized resolution.

3.4 The B4 value

The B4 value is a numerical summary of all the correlations between pairs of TFI columns

involving four factors and thus of all entries in the F4 vector. More specifically, the B4

value of a strength-3 design equals the sum of the squared correlations between all pairs

of TFI columns involving four factors divided by three. The divisor of three eliminates

the redundancy due to TFI pairs involving the same four factors. The B4 value of a

strength-3 design can be calculated from its F4 vector (in which the division by three has

already taken place). For example, the 10-factor 32-run strength-3 design in Table 3 with

F4(1, 0.5, 0) = (1, 62, 147) has a B4 value equal to 1× (1)2+62× (0.5)2+147× (0)2 = 16.5.

The B4 value of 16.5 is a compact summary of all the dark and gray non-diagonal cells in

the color map in Figure 1.

In general, a small B4 value implies that the off-diagonal cells corresponding to pairs of

TFI columns in the color map mainly show light colors. When comparing two strength-3

designs in terms of their B4 values, we then prefer the design with the smaller B4 value as

it involves less overall aliasing among the TFIs (Tang and Deng, 1999).

As with the F4 vector, the B4 value is also a more refined criterion than the general-

ized resolution because it allows to detect differences in quality between designs of equal

generalized resolution. The F4 vector and the B4 value can be used to evaluate two-level

regular resolution-IV designs. For these designs, the first entry of the F4 vector equals the

B4 value, while the rest of the entries are zero.

3.5 Degrees of freedom for estimating two-factor interactions

Similar to regular resolution-IV designs, nonregular strength-3 designs permit the estima-

tion of the intercept and all the MEs, independently from the TFIs. The question is then,

how many TFIs can we estimate with these designs? The rank of the matrix involving all

TFI columns answers this question as it quantifies the number of degrees of freedom avail-

able for estimating TFIs. The more degrees of freedom, the more TFIs can be estimated.

For a two-level strength-3 design with N runs andm factors, the largest possible number

of degrees of freedom for estimating TFIs is N−m−1. If a design does provide that specific

number of degrees of freedom, it is referred to as a second-order saturated design (Cheng

et al., 2008). Second-order saturated designs are attractive because all their experimental
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runs provide information concerning the MEs and the TFIs.

The 10-factor 32-run strength-3 design in Table 3 provides 15 degrees of freedom for

TFIs. Therefore, this design allows the estimation of the intercept, the 10 MEs and up to 15

TFIs. This design, however, is not second-order saturated because the number of degrees

of freedom for TFIs is smaller than N−m−1 = 21. The fact that six degrees of freedom do

not provide information concerning the TFIs means that they involve higher-order effects,

which are generally assumed negligible.

3.6 D-efficiency to estimate the interaction model

If anm-factor strength-3 design permits the estimation of allm(m−1)/2 TFIs, we calculate

its D-efficiency (Goos and Jones, 2011, ch 2) for estimating the interaction model. Let X

denote the N × p interaction model matrix including a column of ones and the columns

associated with the m MEs and the m(m − 1)/2 TFIs, where p = 1 + m + m(m − 1)/2.

The D-efficiency for the interaction model then is |XTX|1/p/N , which ranges from zero to

one. For a given run size N , a higher D-efficiency is preferred because this implies a higher

precision for the estimates of the parameters in the interaction model. Strength-3 designs

that do not permit the estimation of the interaction model have a D-efficiency of zero. This

is the case for the 10-factor 32-run strength-3 design in Table 3.

4 Construction of large designs by concatenation

Given the availability of complete catalogs of strength-3 designs with up to 48 runs, one way

to construct strength-3 designs with 80 and 96 runs is by concatenating two equally-sized

strength-3 designs with 40 and 48 runs, respectively. Vazquez et al. (2019) introduced

an effective column change/variable neighborhood search (CC/VNS) algorithm for this

purpose. For any two equally-sized strength-3 designs, referred to as parent designs, the

CC/VNS algorithm searches for the best concatenated design in terms of the F4 vector or

the B4 value.

In this section, we briefly introduce the CC/VNS algorithm and outline the concatena-

tion procedure. We also provide details on the 40- and 48-run parent designs we used to

construct our strength-3 designs with 80 and 96 runs, respectively. Since, in this article,

we also wish to explore strength-3 designs with 112 runs, we also need 56-run strength-3

parent designs. For lack of complete catalogs of 56-run strength-3 designs, we obtained
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56-run parent designs by adding or removing columns from 56-run 27-factor strength-3

designs generated using the fold over technique. We discuss our 56-run parent designs at

the end of this section.

4.1 The CC/VNS algorithm

The CC/VNS algorithm is a heuristic algorithm (Michalewicz and Fogel, 2004) to con-

catenate two strength-3 parent designs so as to sequentially minimize the F4 vector or to

minimize the B4 value of the concatenated design. One of the parent designs is referred to

as the upper parent design while the other as the lower parent design. The CC/VNS algo-

rithm is composed of two interconnected algorithms: the column change (CC) algorithm

and the variable neighborhood search (VNS) algorithm. Both algorithms perform column

permutations and sign switches of the elements of one or more columns in the lower parent

design, so as to improve the concatenated design.

4.1.1 Building block 1: CC algorithm

The CC algorithm performs systematic changes to each of the columns of the lower parent

design, starting from the leftmost column and ending at the rightmost column. For each

column in turn, the CC algorithm evaluates three changes: switching the signs of the

elements of the column, swapping it with another column to its right in the lower parent

design, and swapping it with the sign-switched version of that column. If one of these

changes improves the concatenated design in terms of the F4 vector or the B4 value, then

the improved concatenated design replaces the original and the algorithm continues its

operations on the improved design. The CC algorithm repeats the whole process until no

changes to the columns in the lower parent design improve the concatenated design.

4.1.2 Building block 2: VNS algorithm

When concatenating parent designs involving many factors, the CC algorithm may end up

with a concatenated design which is suboptimal. The VNS algorithm attempts to overcome

this weakness by systematically changing specific sets of columns in the lower parent design.

There are four types of changes the VNS algorithm can make to the lower design:

1. Switch signs of the elements of any column in the lower design.

2. Swap any two columns in the lower design.
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3. Switch signs of the elements of any two columns in the lower design.

4. Choose a subset of three columns in the lower design, move the first two columns one

position to the right and move the third column to the first position.

The VNS algorithm performs the four types of changes consecutively, starting with the

first type and ending with the fourth type. More specifically, the most complex types of

changes are explored only when the simpler ones did not allow the concatenated design to

be improved.

4.1.3 The full CC/VNS algorithm

The inputs to the CC/VNS algorithm are the upper and the lower parent designs. The

algorithm begins by creating an initial concatenated design. The initial design results from

executing the CC algorithm on a concatenated design generated by random permutations

and sign switches of the columns in the lower parent design. Next, the algorithm improves

the initial concatenated design using the following steps:

I. Set the index i to 1.

II. Modify the current best concatenated design using the VNS algorithm and the i-th

type of change.

IIIa. Minimize the B4 value or sequentially minimize the F4 vector of the resulting concate-

nated design from Step II using the CC algorithm. If a better concatenated design

is found, then go back to Step I with the improved concatenated design as the new

current best design. Otherwise, go back to Step II.

IIIb. If all possible modifications to the current best concatenated design using the i-th

type of change in Step II have been exhausted, then increase the value of index i by

1 and, if i ≤ 4, go back to Step II.

IV. If i > 4, terminate the algorithm.

The CC/VNS algorithm terminates in the event no better concatenated design has been

found after exploring all four types of changes of the VNS algorithm. The output of the

algorithm is the best concatenated design found for the two parent designs selected. Finally,

the whole CC/VNS algorithm can be repeated several times so as to increase the likelihood

of finding the optimal concatenated design.
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4.2 Concatenation procedure

To construct the large strength-3 designs, we used the concatenation procedure of Vazquez

et al. (2019). The procedure involves the following steps:

Step 1. Select either the F4 vector or the B4 value as the criterion of interest for the concate-

nated design.

Step 2. Select two strength-3 parent designs with m factors and N/2 runs, which perform

well in terms of the criterion selected in Step 1.

Step 3. Repeatedly apply the CC/VNS algorithm to the parent designs from Step 2. The

output of the algorithm is the best m-factor N -run concatenated design among all

repetitions. Call that design C.

Step 4. Add the column z = [1T
N/2,−1T

N/2]
T to the concatenated design C, where 1N/2 is the

N/2 × 1 vector of ones. The resulting design is an N -run strength-3 design with

k = m+ 1 factors, which minimizes the criterion selected in Step 1.

According to Vazquez et al. (2019), concatenating the best strength-3 parent designs in

terms of the B4 value and the F4 vector generally leads to the best concatenated designs

in terms of these criteria. For this reason, to construct good large designs in terms of the

F4 vector or the B4 value, we use attractive strength-3 parent designs in terms of the F4

vector or B4 value, respectively, in Step 2.

Vazquez et al. (2019) showed that 10 and 40 repetitions of the CC/VNS algorithm are

generally enough to obtain high-quality concatenated designs in terms of the F4 vector and

the B4 value, respectively. Note that optimizing the F4 vector automatically maximizes

the generalized resolution of the concatenated design.

In Step 4, the column z defines an extra factor that can be added to the concatenated

design C. This extra factor has several attractive properties. For instance, its two levels

occur equally often and its ME is not aliased with the MEs and TFIs of the original factors.

Moreover, its m TFIs are neither aliased with any of the MEs nor with any of the TFIs of

the other factors (Vazquez et al., 2019). Therefore, adding the extra factor implies that one

additional ME and m additional TFIs can be estimated independently and with maximum

precision.
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4.3 Parent designs

4.3.1 40-run parent designs

A complete catalog of two-level strength-3 designs with 40 runs and 8 to 20 factors is avail-

able in Schoen et al. (2010). From this catalog, we considered the designs with minimum

B4 value as parent designs for the 80-run concatenated designs that optimize the B4 value.

For the 80-run concatenated designs that optimize the F4 vector, we picked the parent

designs from the top three 40-run strength-3 designs in terms of the F4 vector. When there

are multiple best designs, we used the degrees of freedom for TFIs as tie breaker. For the

series of 40-run strength-3 designs including more than three best designs in terms of the

F4 vector and the degrees of freedom for TFIs, we randomly selected three of these designs

as parents.

4.3.2 48-run parent designs

A complete catalog of two-level strength-3 designs with 48 runs and 8 to 24 factors is also

available in Schoen et al. (2010). However, the number of different 48-run strength-3 designs

is too large to consider all designs with minimum B4 value or F4 vector as parent designs

for the 96-run concatenated designs. Instead, we used the 48-run strength-3 designs with

up to 24 factors recommended by Schoen and Mee (2012) both for B4 and F4 optimization.

These designs are best in terms of the B4 value and the F4 vector.

4.3.3 56-run parent designs

Using two different techniques to enumerate orthogonal designs, Bulutoglu and Margot

(2008) and Schoen et al. (2010) tried to enumerate two-level 56-run strength-3 designs

with up to 28 factors. They concluded that enumerating all 56-run strength-3 designs with

more than eight factors is computationally infeasible, because there are too many designs.

For lack of a complete catalog of 56-run strength-3 designs, we obtained the parent designs

for our 112-run concatenated designs by folding over selected two-level nonregular strength-

2 designs with 28 runs and 27 factors, and adding an extra column or removing one or more

of their columns.

Our procedure to obtain the 56-run strength-3 parent designs with 8 to 28 factors is as

follows:

1. We started with the complete series of 7570 two-level nonregular strength-2 designs
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with 28 runs and 27 factors, obtained from Schoen et al. (2017). This series includes

the 28-run 27-factor Plackett-Burman design.

2. We then generated all 56-run nonregular strength-3 designs with 27 factors using the

fold over technique.

3. Next, we selected the 27-factor 56-run designs that were best and second best in

terms of the F4 vector. There was one overall best design in terms of the F4 vector

with a generalized resolution as large as 4.57 and eight second best designs all with

a generalized resolution of 4.29. Therefore, these nine designs did not involve fully

aliased TFIs. We include these 56-run 27-factor strength-3 designs in the online

supplementary materials.

4. We obtained 56-run strength-3 designs with fewer than 27 factors by dropping columns

from the nine best 27-factor 56-run designs. More specifically, we evaluated all pro-

jections of the nine best 27-factor 56-run designs onto 8 ≤ m ≤ 26 factors. We used

the best designs in terms of the B4 value and the F4 vector, among all projections

of all nine 27-factor designs, as parent designs for the 112-run concatenated designs

that optimize the B4 value and the F4 vector.

5. Finally, our 56-run 27-factor strength-3 parent design was the best design in terms

of the F4 vector. We obtained the 56-run 28-factor strength-3 parent design by

appending the column [1T
28
,−1T

28
]T to this 27-factor 56-run design.

A detailed account of the best projections of the folded-over 56-run designs is included

in supplementary Section A. To the best of our knowledge, these 56-run strength-3 designs

are new to the literature.

5 A collection of strength-3 designs with 80, 96 and

112 runs

For each combination of number of runs and number of factors, we considered all pairs

of parent designs, including pairs of the same designs. We then used the concatenation

procedure described in Section 4.2 to generate concatenated designs from each pair of

parent designs. Tables 4, 5 and 6 show the best designs we found with 80, 96 and 112 runs,

respectively, in terms of the F4 vector or the B4 value. In nine cases, we found that our
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best F4-optimized designs were equally good or better than our best B4-optimized designs,

or vice versa, in terms of both the F4 vector and the B4 value. For these cases, we only

include the overall best design in terms of both the B4 value and the F4 vector in the tables.

Supplementary Section B shows the detailed construction of our concatenated designs from

their parent designs.

In Tables 4, 5 and 6, the designs are labeled as k.b, k.f or k.bf, where k is the number

of factors in the concatenated design, ‘b’ indicates designs that are best in terms of the B4

value, ‘f’ indicates designs that are best in terms of the the F4 vector, and ‘bf’ indicates

designs that are best in terms of both the B4 value and the F4 vector. The tables report

the generalized resolution (GR), the F4 vector, the B4 value, and the number of degrees of

freedom for estimating TFIs of the designs. For notational simplicity, the tables omit the

last entry of the F4 vector, corresponding to pairs of TFI which are not correlated.

We compare our designs to the few benchmark designs in Table 2. As additional bench-

mark designs, we consider strength-3 designs obtained by dropping the last columns from

folded-over Plackett-Burman designs with 40, 48 and 56 runs. This is because of the fol-

lowing two reasons: (1) folded-over Placket-Burman designs are well-known among prac-

titioners, and (2) it is the easiest way to obtain designs with a smaller number of factors.

The folded-over Plackett-Burman designs include the corresponding column z in the first

position. A detailed analysis of the benchmark strength-3 designs derived from folded-over

Plackett-Burman designs is included in supplementary Section C.

5.1 80-run designs with up to 21 factors

Table 4 shows the properties of our best 80-run strength-3 designs with 9 to 15 factors.

For 9 to 11 factors, the designs have a generalized resolution of 4.8, whereas, for 12 and 13

factors, they have a generalized resolution of 4.6. For 14 factors or more, the best designs

in terms of the B4 value and the F4 vector have a generalized resolution of 4.4 and 4.6,

respectively. Therefore, none of the 80-run designs in Table 4 involve fully aliased TFIs.

For each number of factors, the best 80-run designs in terms of the B4 value and the

F4 vector provide the same degrees of freedom for TFIs. The 80-run designs with 9 to 11

factors permit the estimation of all the TFIs and so, they can estimate the full interaction

model. For this model, designs 9.bf, 10.bf and 11.bf in Table 4 provide a D-efficiency of

0.943, 0.891 and 0.802, respectively.

For 21 factors, the designs in Table 4 are second-order saturated, since they employ all
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Table 4: Strength-3 designs with 80 runs. F4(1, 0.8) = (0, 0) for all designs. GR: generalized

resolution; df: degrees of freedom for TFIs; e: design permits the estimation of all TFIs; s:

design is second-order saturated.

Design GR F4(0.6, 0.4, 0.2) B4 df Design GR F4(0.6, 0.4, 0.2) B4 df

9.bfe 4.8 (0, 0, 18) 0.72 36 17.b 4.4 (1, 78, 886) 48.28 54

10.bfe 4.8 (0, 0, 44) 1.76 45 17.f 4.6 (0, 67, 989) 50.28 54

11.bfe 4.8 (0, 0, 82) 3.28 55 18.b 4.4 (2, 101, 1178) 64.00 55

12.bf 4.6 (0, 4, 164) 7.20 49 18.f 4.6 (0, 95, 1250) 65.20 55

13.b 4.6 (0, 24, 186) 11.28 50 19.b 4.4 (1, 148, 1481) 83.28 56

13.f 4.6 (0, 6, 264) 11.52 50 19.f 4.6 (0, 130, 1614) 85.36 56

14.b 4.4 (1, 25, 330) 17.56 51 20.b 4.4 (1, 186, 1907) 106.40 57

14.f 4.6 (0, 16, 415) 19.16 51 20.f 4.6 (0, 167, 2064) 109.28 57

15.b 4.4 (6, 16, 507) 25.00 52 21.bs 4.4 (4, 242, 2320) 132.96 58

15.f 4.6 (0, 28, 563) 27.00 52 21.fs 4.6 (0, 216, 2557) 136.84 58

16.b 4.4 (1, 55, 658) 35.48 53

16.f 4.6 (0, 43, 757) 37.16 53

their 80 degrees of freedom for estimating the intercept, the 21 MEs and up to 58 TFIs.

For 21 factors, Cheng et al. (2008) report a strength-3, second-order saturated design

with 80 runs. This design has a generalized resolution of 4.4, F4(1, 0.8, 0.6, 0.4, 0.2, 0) = (0,

0, 125, 0, 2288, 3572), a B4 value of 136.52 and 46 degrees of freedom for estimating TFIs.

Both the designs 21.b and 21.f in Table 4 outperform the second-order saturated design of

Cheng et al. (2008) in terms of the F4 vector. Design 21.b also outperforms this benchmark

design in terms of the B4 value.

All 80-run designs in Table 4 outperform the strength-3 designs obtained by dropping

the last columns from the folded-over 40-run Plackett-Burman design in terms of the F4

vector, the B4 value and the degrees of freedom for estimating TFIs. For 9 to 13 factors,

our 80-run designs outperform these benchmark designs in terms of the generalized reso-

lution too. The same is the case for the best 80-run F4-optimized designs with 14 to 21

factors. However, the best 80-run B4-optimized designs with 14 to 21 factors have the

same generalized resolution as strength-3 designs obtained by dropping columns from the

folded-over 40-run Plackett-Burman design; see supplementary Table S6.
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After a close inspection of the structure of the 80-run designs, we found that some

of them have replicate runs. More specifically, designs 10.bf and 11.bf in Table 4 have

four duplicate runs each, while design 9.bf has two duplicate runs. The reason behind the

presence of replicate runs in these 80-run designs is that their parent designs have replicate

runs too. Replicate runs provide a pure error estimate of the error variance, which can be

used in significance tests for the MEs and the TFIs. None of our other 80-, 96- and 112-run

designs have replicate runs.

5.2 96-run designs with up to 25 factors

Table 5 shows the properties of our best 96-run strength-3 designs with 9 to 25 factors. For

9 and 10 factors, the designs have a generalized resolution of 4.83. For 11 factors, the best

designs in terms of the B4 value and the F4 vector have a generalized resolution of 4.6 and

4.83, respectively. For 12 factors or more, the 96-run designs have a generalized resolution

of 4.67, except for designs 15.b and 17.b which have a generalized resolution of 4 and 4.5,

respectively. Therefore, with the exception of design 15.b, the 96-run designs in Table 5

provide pairs of TFIs which are only partially aliased.

For 9, 10 and 16 to 25 factors, the best 96-run designs in terms of the B4 value and the

F4 vector provide the same degrees of freedom for TFIs. For the other numbers of factors,

the best designs in terms of the F4 vector provide more degrees of freedom for TFIs than

the best designs in terms of the B4 value. Four of the six 96-run designs with 9 to 12

factors permit the estimation of all TFIs, since the number of degrees of freedom for these

effects equals the number of TFIs. For the 9- and 10-factor 96-run designs, the D-efficiency

for the interaction model is 0.988 and 0.959, respectively. The D-efficiencies of designs 11.f

and 12.f are 0.875 and 0.799, respectively.

Designs 14.f and 15.f perform extremely well in terms of the degrees of freedom for TFIs.

Both designs provide as many as 80 degrees of freedom for TFIs, the largest number in the

table. Table 5 further shows that designs 15.f, 25.f and 25.b are second-order saturated

and thus employ all their 96 degrees of freedom for estimating the intercept, the MEs and

the TFIs.

Regarding benchmark strength-3 designs, Vazquez and Xu (2019) provide 96-run strength-

3 designs with 9 to 16 factors, while Cheng et al. (2008) provide one 96-run strength-3 design

with 25 factors. The 96-run designs in Table 5 outperform the designs of Vazquez and Xu

(2019) in terms of both the F4 vector and the B4 value. The designs in Table 5 also provide
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Table 5: Strength-3 designs with 96 runs. F4(1, 0.83, 0.67) = (0, 0, 0) for all designs except

15.b. For that design F4(1, 0.83, 0.67) = (1, 0, 0). GR: generalized resolution; df: degrees

of freedom for TFIs; e: design permits the estimation of all TFIs; s: design is second-order

saturated.

Design GR F4(0.5, 0.33, 0.17) B4 df Design GR F4(0.5, 0.33, 0.17) B4 df

9.bfe 4.83 (0, 0, 6) 0.17 36 18.b 4.67 (0, 181, 1118) 51.17 63

10.bfe 4.83 (0, 0, 24) 0.67 45 18.f 4.67 (0, 144, 1312) 52.44 63

11.b 4.67 (0, 10, 16) 1.56 54 19.b 4.67 (0, 223, 1506) 66.61 64

11.fe 4.83 (0, 0, 70) 1.94 55 19.f 4.67 (0, 197, 1676) 68.44 64

12.b 4.67 (0, 18, 32) 2.89 62 20.b 4.67 (0, 300, 1876) 85.44 65

12.fe 4.67 (0, 1, 126) 3.61 66 20.f 4.67 (0, 260, 2092) 87.00 65

13.b 4.67 (0, 14, 144) 5.56 67 21.b 4.67 (0, 397, 2286) 107.61 66

13.f 4.67 (0, 2, 222) 6.39 77 21.f 4.67 (0, 333, 2624) 109.89 66

14.b 4.67 (0, 21, 216) 8.33 69 22.b 4.67 (0, 477, 2918) 134.06 67

14.f 4.67 (0, 8, 330) 10.06 80 22.f 4.67 (0, 424, 3224) 136.67 67

15.b 4.00 (0, 108, 0) 13.00 74 23.b 4.67 (0, 608, 3500) 164.78 68

15.fs 4.67 (0, 31, 440) 15.67 80 23.f 4.67 (0, 531, 3906) 167.50 68

16.b 4.67 (0, 100, 614) 28.17 61 24.b 4.67 (0, 695, 4434) 200.39 69

16.f 4.67 (0, 71, 762) 29.06 61 24.f 4.67 (0, 583, 4996) 203.56 69

17.b 4.50 (3, 120, 875) 38.39 62 25.bs 4.67 (0, 861, 5240) 241.22 70

17.f 4.67 (0, 102, 1012) 39.44 62 25.fs 4.67 (0, 708, 5984) 244.89 70

more degrees of freedom for TFIs than the designs of Vazquez and Xu (2019), except for 9

and 10 factors. For these numbers of factors, the degrees of freedom for TFIs of our 96-run

designs and the designs of Vazquez and Xu (2019) are the same.

The 25-factor 96-run design of Cheng et al. (2008) has a generalized resolution of 4,

F4(1, 0.83, 0.67, 0.5, 0.33, 0.17, 0) = (30, 0, 0, 0, 1940, 0, 10680), a B4 value of 245.55 and

70 degrees of freedom for TFIs. Since the strength-3 design of Cheng et al. (2008) provides

70 degrees of freedom for TFIs, it can estimate up to 96 effects: an intercept, 25 MEs and

70 TFIs. So, this design is second-order saturated. Designs 25.b and 25.f in Table 5, which

are also second-order saturated, outperform the design of Cheng et al. (2008) in terms of

the generalized resolution, the F4 vector and the B4 value.

The 96-run strength-3 designs in Table 5 have the same generalized resolution as the
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strength-3 designs obtained by dropping the last columns from the folded-over 48-run

Plackett-Burman design, except for designs 9.bf, 10.bf, 11.f and 15.b and 17.b. Designs 9.bf,

10.bf and 11.f have a larger generalized resolution than the benchmark designs, while de-

signs 15.b and 17.b have a smaller generalized resolution than these designs. In terms of the

F4 vector, the B4 value and the degrees of freedom for estimating TFIs, our 96-run designs

outperform the strength-3 designs derived from the folded-over 48-run Plackett-Burman

design, but there are some exceptions. These exceptions are our best 96-run B4-optimized

designs with 15, 17, 21, 23 and 25 factors, which have a worse F4 vector than the bench-

mark designs. However, the latter designs provide a larger B4 value and a smaller number

of degrees of freedom for estimating TFIs than the designs constructed by concatenation.

5.3 112-run designs with up to 29 factors

Table 6 shows the properties of our best 112-run strength-3 designs with 9 to 29 factors.

For 9 and 10 factors, the designs in Table 6 have a generalized resolution of 4.86. For 11,

12 and 14 to 20 factors, the best designs in terms of the B4 value and the F4 vector have

a generalized resolution of 4.57 and 4.71, respectively. For 13 factors, the best design in

terms of both the F4 vector and the B4 value has a generalized resolution of 4.71. The

112-run designs for 21 factors or more have a generalized resolution of 4.57.

For 11 and 21 to 25 factors, the 96-run designs in Table 5 have a larger generalized

resolution than the corresponding 112-run designs in Table 6. A partial explanation for

this result is in the generalized resolution of the parent designs. For the 96-run designs,

the 48-run parent designs with 10 and 20 to 24 factors all have a generalized resolution of

4.67; see Table 5 in Schoen and Mee (2012). For the 112-run designs, the 56-run parent

designs with these numbers of factors have a generalized resolution of 4.57 or less; see Table

S2 in the supplementary sections. Therefore, in terms of generalized resolution, the parent

designs for the 112-run designs are inferior to those used to construct the 96-run designs.

Similarly, for 9 to 15 factors, the 96-run designs in Table 5 have a smaller B4 value than the

112-run designs in Table 6. This result can also be explained by the parent designs used,

since the B4 values of the 48-run parent designs with 8 to 14 factors are generally smaller

than those of the 56-run parent designs. This can be seen from the B4 values of the 48-run

strength-3 designs in Table 5 in Schoen and Mee (2012) and the 56-run strength-3 designs

in supplementary Table S2.

For each number of factors, the best 112-run designs in terms of the B4 value and the
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Table 6: Strength-3 designs with 112 runs. F4(1, 0.86, 0.71, 0.57) = (0, 0, 0, 0) for all designs.

GR: generalized resolution; df: degrees of freedom for TFIs; e: design permits the estimation

of all TFIs; s: design is second-order saturated.

Design GR F4(0.43, 0.29, 0.14) B4 df Design GR F4(0.43, 0.29, 0.14) B4 df

9.bfe 4.86 (0, 0, 18) 0.37 36 21.b 4.57 (21, 447, 2417) 89.67 74

10.bfe 4.86 (0, 0, 60) 1.23 45 21.f 4.57 (1, 559, 2383) 94.45 74

11.be 4.57 (1, 0, 101) 2.25 55 22.b 4.57 (25, 578, 2930) 111.57 75

11.fe 4.71 (0, 2, 112) 2.45 55 22.f 4.57 (3, 674, 3040) 117.61 75

12.b 4.57 (1, 10, 149) 4.04 65 23.b 4.57 (41, 716, 3506) 137.53 76

12.f 4.71 (0, 10, 174) 4.37 65 23.f 4.57 (8, 805, 3661) 141.89 76

13.bf 4.71 (0, 16, 250) 6.41 65 24.b 4.57 (58, 848, 4301) 167.65 77

14.b 4.57 (1, 49, 334) 11.00 67 24.f 4.57 (13, 1000, 4452) 174.88 77

14.f 4.71 (0, 43, 409) 11.86 67 25.b 4.57 (59, 1008, 5341) 202.12 78

15.b 4.57 (3, 69, 490) 16.18 68 25.f 4.57 (17, 1185, 5246) 206.92 78

15.f 4.71 (0, 72, 531) 16.71 68 26.b 4.57 (79, 1225, 6219) 241.43 79

16.b 4.57 (2, 114, 639) 22.71 69 26.f 4.57 (24, 1408, 6312) 248.16 79

16.f 4.71 (0, 112, 725) 23.94 69 27.b 4.57 (89, 1460, 7393) 286.41 80

17.b 4.57 (6, 155, 866) 31.43 70 27.f 4.57 (31, 1674, 7369) 292.74 80

17.f 4.71 (0, 161, 981) 33.16 70 28.b 4.57 (90, 1760, 8642) 336.57 81

18.b 4.57 (16, 197, 1138) 42.25 71 28.f 4.57 (40, 1987, 8658) 346.25 81

18.f 4.71 (0, 232, 1216) 43.76 71 29.bs 4.57 (113, 2066, 10037) 394.25 82

19.b 4.57 (15, 261, 1519) 55.06 72 29.fs 4.57 (52, 2296, 10175) 404.63 82

19.f 4.71 (0, 314, 1594) 58.16 72

20.b 4.57 (25, 331, 1929) 70.98 73

20.f 4.71 (0, 425, 1912) 73.71 73

F4 vector provide the same degrees of freedom for estimating TFIs. The 112-run designs

with 9 to 11 factors permit the estimation of all TFIs. Designs 9.b, 10.bf, 11.b and 11.f in

Table 6 provide a D-efficiency for the interaction model of 0.974, 0.924, 0.855 and 0.832,

respectively. For 12 to 15 factors, the 112-run designs do not provide more degrees of

freedom for TFIs than the 96-run designs in Table 5. Once again, this can be explained

by the fact that the 48-run parent designs with 11 to 14 factors generally provide more

degrees for freedom for TFIs than the 56-run parent designs; see Table 5 in Schoen and Mee

(2012) and supplementary Table S2. Table 6 shows that the 29-factor 112-run designs are
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second-order saturated, since they employ all their 112 degrees of freedom for estimating

the intercept, the 29 MEs and up to 82 TFIs.

All 112-run strength-3 designs in Table 6 outperform the strength-3 designs obtained by

dropping the last columns from the folded-over 56-run Plackett-Burman in terms of the F4

vector, the B4 value and the degrees of freedom for estimating TFIs. For 21 to 29 factors,

our 112-run designs have the same generalized resolution as these benchmark designs. This

is also the case for our best 112-run designs in terms of the B4 value with 11 to 20 factors.

The rest of the 112-run designs in Table 6 have a larger generalized resolution than strength-

3 designs obtained by omitting columns from the folded-over 56-run Plackett-Burman; see

supplementary Table S8.

6 Alternative designs for the tuberculosis inhibition

experiment

The practical example that motivated this article is a tuberculosis (TB) inhibition exper-

iment (Silva et al., 2016). In order to develop a treatment to increase the inhibition of

TB, the absence and presence of the 14 drugs in Table 1 were studied. The goal of the

experiment was to detect the active effects of the drugs, among their 14 MEs and their

91 TFIs, on the percentage of inhibition of Mycobacterium tuberculosis in infected human

cells. The design actually used was a two-level strength-4 nonregular design with 14 factors

and 128 runs, which provided full precision to estimate all the MEs and all the TFIs. The

total time required to prepare the 128 drug combinations given by this design was around

seven hours. This means that preparing a single combination of the 14 drugs requires,

approximately, three minutes and 17 seconds.

The work we did in this article allowed us to find six alternative cost-efficient strength-3

designs with 80, 96 and 112 runs, for the TB inhibition experiment. We first introduce

these alternatives together with several 64-run design options from the literature. Next, we

discuss alternative nonorthogonal designs for the TB inhibition experiment. We end this

section by comparing the orthogonal and nonorthogonal design options using a simulation

study.
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6.1 Strength-3 orthogonal design options

Table 7 shows several strength-3 design options with 64, 80, 96 and 112 runs for the TB

inhibition experiment. For each design option, the table reports the maximum absolute

correlation (which equals 5 minus the generalized resolution) and the sum of squared cor-

relations between pairs of TFI columns (which equals three times the B4 value), as well

as the number of degrees of freedom available for estimating TFIs. The table also reports

the number of pairs of TFI columns that possess the maximum absolute correlation. That

number—which is shown in the fourth column of the table and corresponds to three times

the first nonzero entry of the F4 vector—should only be used to compare designs with the

same maximum absolute correlation.

In Table 7, the 80-, 96- and 112-run designs are labeled N.b or N.f, where N is run

size of the design, ‘b’ indicates designs that minimize the B4 value and ‘f’ indicates designs

that sequentially minimize the F4 vector. The table also includes 64-run strength-3 designs

from Xu and Wong (2007) and Vazquez et al. (2019). These designs are Pareto optimal

among all the available 14-factor 64-run strength-3 designs when considering the F4 vector,

the B4 value and the degrees of freedom for TFIs; see Vazquez et al. (2019) for details.

Design 64.q in the table is obtained from the quaternary linear codes in Xu and Wong

(2007). Designs 64.p and 64.f are obtained from Vazquez et al. (2019). Design 64.p is a

specific projection of the folded-over 32-run Paley Hamadard matrix, while design 64.f is

constructed by concatenating two 32-run strength-3 designs and sequentially minimizing

the F4 vector of the concatenated design.

Table 7 shows that design 64.p has a maximum absolute correlation between pairs of

TFI columns involving 4 factors equal to 0.25, the smallest maximum absolute correlation

among all design options. However, this design provides only 31 degrees of freedom for

TFIs, the smallest number in Table 7. The second best design in terms of the maximum

absolute correlation between pairs of TFI columns involving four factors is design 112.f with

a maximum absolute correlation of 0.29, followed by the 96-run designs with maximum

absolute correlations of 0.34. In terms of the sum of squared correlations between pairs

of TFI columns, Table 7 shows that designs 96.b and 96.f are the best and second-best,

respectively, among all the design options. More specifically, designs 96.b and 96.f have

sum of squared correlation values of 24.99 and 30.18, respectively. The 96-run designs

also provide the largest numbers of degrees of freedom for TFIs; design 96.b provides 69

degrees of freedom while design 96.f provides 80. Although 112 runs are, in principle,

enough to estimate the intercept, 14 MEs and 91 TFIs, the 112-run designs do not allow
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Table 7: Strength-3 design options for the 14-factor tuberculosis inhibition experiment.

N.f: N -run concatenated design that minimizes the F4 vector; N.b: N -run concatenated

design that minimizes the B4 value; ρmax: maximum absolute correlation between pairs of

TFI columns; #Pairs(ρmax): number of pairs of TFI columns with an absolute correlation

of ρmax; SSC: sum of squared correlations between pairs of TFI columns; df: number of

degrees of freedom for estimating TFIs. Design 64.q is from Xu and Wong (2007); design

64.p and 64.f are from Vazquez et al. (2019). The generalized resolution value is calculated

as 5− ρmax, while the B4 value is SSC/3.

Runs Label ρmax #Pairs(ρmax) SSC df

64 64.q 0.50 168 42.00 49

64.p 0.25 1578 99.00 31

64.f 0.50 72 72.75 43

80 80.b 0.60 3 52.68 51

80.f 0.40 48 57.48 51

96 96.b 0.34 63 24.99 69

96.f 0.34 24 30.18 80

112 112.b 0.43 3 33.00 67

112.f 0.29 129 35.58 67

the estimation of all these effects simultaneously.

Overall, designs 96.b and 96.f are attractive alternatives for the TB inhibition exper-

iment because of their good performance in terms of the maximum absolute correlation,

sum of squared correlations and degrees of freedom for TFIs. Design 96.f has fewer pairs

of TFI columns with the maximum absolute correlation, 0.34, and offers more degrees of

freedom for TFIs than design 96.b. On the other hand, design 96.b has a smaller sum of

squared correlations value than design 96.f. So, no design dominates the other in terms

of all criteria. Given that preparing a single combination of the 14 drugs requires around

three minutes and 17 seconds, the total time needed to prepare the drug combinations in

the 96-run designs would have been, approximately, five hours and 15 minutes. This would

have saved around one hour and 45 minutes of sample preparation using the Microlab

STAR Line station, when compared to the 128-run strength-4 design used by Silva et al.

(2016).
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An attractive feature of the 14-factor 96-run designs (as well as of the 80- and 112-run

designs) in Table 7 is that, by construction, they include a factor whose 13 TFIs with the

other factors are neither aliased with any of the MEs nor with any of the other TFIs. Since

previous knowledge suggested the presence of active TFIs involving the drug Rifampicin,

a sensible advice would have been to assign this drug to that factor.

6.2 Nonorthogonal design options

Attractive alternatives for screening that may or may not belong to the class of two-level

orthogonal designs are D-optimal designs (Goos and Jones, 2011, ch 2) and Bayesian D-

optimal designs (DuMouchel and Jones, 1994). For a given number of runs, a D-optimal

design maximizes the D-efficiency (defined in Section 3.5) for a specific model, for instance,

the interaction model involving the 14 drugs. A higher D-efficiency implies a higher pre-

cision for the estimates of the parameters in the specified model. D-optimal designs are

available for any number of runs larger than or equal to the number of model parameters.

So, for the TB inhibition experiment, we can generate D-optimal designs with at least 106

runs, since the interaction model for the 14 drugs includes one intercept, 14 MEs and 91

TFIs.

Bayesian D-optimal designs are constructed by maximizing a Bayesian modification to

the D-efficiency. When considering MEs and TFIs, these designs can be constructed to

provide an efficient estimation of the intercept and all the MEs, while allowing for some

detectability for TFIs. To construct a Bayesian D-optimal design we need to specify a

tuning parameter called the prior variance. This tuning parameter defines a trade-off

between the design’s estimation efficiency for the intercept and all the MEs and its ability

to detect TFIs. Larger values of the prior variance result in a Bayesian D-optimal design

with a larger emphasis on the TFIs. For the TB inhibition experiment, Bayesian D-optimal

designs are available with run sizes as small as 15, since these designs must only estimate

the intercept and the 14 MEs of the drugs. Therefore, an attractive advantage of these

designs when compared to D-optimal designs and strength-3 designs is their flexible run

sizes.

Using the coordinate-exchange algorithm (Meyer and Nachtsheim, 1995), as imple-

mented in the statistical software package JMP v14, we constructed D-optimal and Bayesian

D-optimal designs with 14 factors and run sizes comparable to those of the strength-3 de-

signs in Table 7. More specifically, we generated a D-optimal design with 112 runs and
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Bayesian D-optimal designs with 64, 80 and 96 runs. We used 1,000 iterations for the

coordinate-exchange algorithm and a prior variance equal to 1/16, the default parameter

value in JMP v14 for generating Bayesian D-optimal designs (with the TFIs specified as

“If Possible”).

Table 8 shows the main properties of the D-optimal and Bayesian D-optimal designs

for the TB inhibition experiment. In contrast with the strength-3 designs, the two levels

of each factor in these designs do not occur equally often and the MEs are aliased with

each other to some extent. So, the D-optimal and Bayesian D-optimal designs are not

orthogonal. Table 8 shows that the D-optimal and Bayesian D-optimal designs also provide

ME columns which are correlated with the TFI columns to some extent. This is not the

case for the strength-3 designs in Table 7.

Regarding the TFIs, with one exception, the D-optimal and Bayesian D-optimal designs

outperform the strength-3 designs in terms of the maximum absolute correlation, the sum

of squared correlations and the degrees of freedom for TFIs. The exception is the 64-run

Bayesian D-optimal design, which provides a larger sum of squared correlations than the

strength-3 design 64.q in Table 7. Nevertheless, the 64-run Bayesian D-optimal design

has the same number of degrees of freedom for TFIs and a smaller maximum absolute

correlation between these effects than design 64.q. The reason behind the good performance

of the D-optimal and Bayesian D-optimal designs for the TFIs is that, unlike the strength-3

designs, they allow some aliasing among the MEs and between the MEs and the TFIs.

Table 8: Nonorthogonal design options for the 14-factor tuberculosis inhibition experiment.

N.bd: Bayesian D-optimal design with N runs; 112.d: D-optimal design with 112 runs for

the interaction model; ρmax: maximum absolute correlation; SSC: sum of squared corre-

lations; df: number of degrees of freedom for estimating TFIs. The D-efficiency for the

interaction model of the 112-run D-optimal design is 0.747.

Correlation among ME Correlation between ME Correlation among TFI

columns and TFI columns columns

Runs Label ρmax SSC ρmax SSC ρmax SSC df

64 64.bd 0.13 0.25 0.25 6.07 0.44 49.08 49

80 80.bd 0.10 0.12 0.25 5.82 0.30 30.16 65

96 96.bd 0.08 0.12 0.21 4.90 0.29 21.38 81

112 112.d 0.07 0.07 0.23 5.62 0.30 15.63 91
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6.3 Comparing design options using simulations

Inspired by the TB inhibition experiment, we performed a simulation study involving eight

active MEs and one to 10 active TFIs. We considered all the strength-3 designs in Table

7, all the nonorthogonal designs in Table 8, and the two-level nonregular strength-4 design

with 128 runs and 14 factors used by Silva et al. (2016). To identify the active effects, we

used the Dantzig selector (Candes and Tao, 2007; Phoa et al., 2009), which searches for

the active effects by solving a linear programming problem. Using simulations, Marley and

Woods (2010), Draguljić et al. (2014) and Mee et al. (2017) demonstrated the excellent

performance of the Dantzig selector to correctly identify active MEs and TFIs, when com-

pared to traditional model selection strategies such as forward selection. Details regarding

the Dantzig selector and the selection of the required tuning parameters for an automatic

model selection are given in supplementary Section D.

6.3.1 Simulation protocol

To explain how we performed our simulations, we need to introduce some notation. Let

X be the N × [m + m(m − 1)/2] interaction model matrix for 14 factors (excluding the

intercept column) and g be the number of active TFIs. For each design and each g from

one to 10, each of our 1,000 simulations consisted of the following steps:

1. We randomly selected eight ME columns of X and associated these with the eight

active MEs. Next, we randomly selected g TFI columns ofX subject to the constraint

that they involved at least one factor with an active ME. In other words, we assumed

that the TFIs satisfy weak effect heredity (Wu and Hamada, 2009, ch 4). The selected

TFI columns were associated with the g active TFIs.

2. We generated the coefficients corresponding to the active effects according to two cases

labeled ‘minSNR1’ and ‘minSNR2’, which consisted of adding 1 or 2, respectively, to

an exponentially distributed random number. The coefficients corresponding to the

inactive effects were drawn from N(0, 0.252). A ‘+’ or ‘−’ sign was randomly assigned

to each sampled value.

3. We generated an N × 1 response vector y using the model y = Xβ + ǫ, where the

[m + m(m − 1)/2] × 1 vector β contains the simulated coefficients for the active

and inactive effects, and the N × 1 vector of residuals ǫ has elements ǫi drawn from

N(0, 1).
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4. The set of effects declared active is determined using the Dantzig selector.

The numbers of active MEs and TFIs we considered cover the active effects in the TB

inhibition experiment as well as other situations that may occur in practice. In the case

labeled minSNR1, most signal-to-noise ratios (SNRs) for the active effects were close to 1

in absolute value, while a few were larger. In the case labeled minSNR2, most SNRs for

the active effects were close to 2 in absolute value. Following the simulation protocols of

Marley and Woods (2010) and Draguljić et al. (2014), we did not set the coefficients for the

inactive MEs and TFIs to zero. Instead, they followed a normal distribution with zero mean

and standard deviation of 0.25. Therefore, there was a small probability that, for a given

simulation, the absolute value of an inactive effect would exceed that of an active effect. In

such cases, the coefficient for the inactive effect was re-generated. An R implementation of

our simulation protocol is included in the online supplementary materials.

6.3.2 Results

We used three measures to compare the designs: power, false discovery rate (FDR) and

false positive rate. The power is the proportion of active effects that are successfully

detected. The FDR is the proportion of effects declared active that are actually inactive.

The false positive rate (or type-I error rate) is the proportion of inactive effects that are

incorrectly declared active. Obviously, the power should be maximized, while the FDR

and the false positive rate should be minimized. We computed the average power, average

FDR and average false positive rate for each design option using the 1,000 simulations for

each combination of number of active TFIs (1 to 10) and case (‘minSNR1’ or ‘minSNR2’).

Performance for detecting main effects

We found that all designs had average false positive rates well below 0.05 for the MEs,

for all numbers of active TFIs in both the minSNR1 and the minSNR2 cases. Similarly,

all designs had average FDRs of virtually zero for the MEs in all simulation settings we

considered. So, all designs had an excellent performance in terms of the false positive rate

and the FDR for the MEs.

Regarding the power for the MEs, the strength-3 designs had average powers above

0.95 for all numbers of TFIs in both the minSNR1 and minSNR2 cases. In contrast, the D-

optimal and Bayesian D-optimal designs had average powers for MEs between 0.85 and 0.92.

The Bayesian D-optimal designs with 64 and 80 runs had average powers strictly smaller
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than 0.9 in the minSNR1 case. In the event that effect hierarchy holds (Wu and Hamada,

2009, ch 4)—that is, MEs are more important than TFIs—average powers smaller than 0.9

for the MEs may be regarded as unsatisfactory. We therefore do not consider these designs

in the next section. We do include these results in the online supplementary materials.

Performance for detecting two-factor interactions

Figure 2 shows the average power and average FDR for the TFIs as a function of the

number of active TFIs, for each of the designs in Tables 7 and 8 except for the 64- and

80-run Bayesian D-optimal designs. Each subfigure consists of two panels which differ

according to the minimum SNR in the simulations. The figure does not show the average

false positive rates for the TFIs because these are below 0.05 for each design, except for

design 64.p. For this design, the average false positive rate for the TFIs was between 0.053

and 0.064 for case minSNR2 and more than eight active TFIs. One of the conclusions from

Figure 2 is that the 128-run strength-4 design used by Silva et al. (2016) has the largest

average powers and the smallest average FDRs for the TFIs in both cases.

Figure 2a shows that, when most SNRs for the active effects are close to 1 (case min-

SNR1), the best strength-3 designs in terms of the power for the TFIs are the 96- and

112-run designs, as these designs have average powers between 0.82 and 0.87 for all num-

bers of active TFIs. Among these designs, design 96.f is slightly better than the others for

most numbers of active TFIs. Figure 2b shows that the best strength-3 designs in terms

of the FDR for the TFIs are also the 96- and 112-run designs, as their average FDRs are

below 0.07 for all numbers of active TFIs. Design 96.f also stands out as having smaller

average FDRs for all numbers of active TFIs than the other strength-3 designs.

Regarding the nonorthogonal design alternatives, Figure 2a shows that the 96-run

Bayesian D-optimal design, 96.bd, has similar average FDRs but slightly larger average

powers than the strength-3 design 96.f for all numbers of active TFIs in the minSNR1 case.

The average power of design 96.bd is between 0.87 and 0.9. In the minSNR1 case, the

112-run D-optimal design 112.d is the best design with fewer than 128 runs, since it has

the largest average powers and the smallest average FDRs.

When most SNRs for the active effects are close to 2 (case minSNR2), the best designs

in terms of power for the TFIs are the 96-, 80- and 112-run strength-3 designs, together

with the 96-run Bayesian D-optimal design and the 112-run D-optimal design. This is

because these designs have average powers larger than 0.95 for all numbers of active TFIs.

Figure 2a shows that, for four or more active TFIs, the 96- and 112-run designs perform
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slightly better than the 80-run designs. Regarding the FDR for the TFIs, Figure 2b shows

similar results for both cases: the best designs for the high SNR case in terms of the FDR

are again the 96- and 112-run designs, with average FDRs close to 0.

6.3.3 Discussion of the simulation results

Overall, our simulation results showed that the strength-3 and nonorthogonal designs with

96 and 112 runs provided a good performance in terms of power, false positive rate and

false discovery rate for both the MEs and the TFIs. These designs, together with the 80-

run strength-3 designs, will very likely identify all the active effects with a signal-to-noise

ratio as small as 2. Nevertheless, our results also demonstrated that, in the presence of

smaller active TFIs, choosing a design smaller than the 128-run nonregular design used

by Silva et al. (2016) entails a decrease in the power for these effects. In situations where

conducting 128 runs is feasible and several active effects as small as the error’s standard

deviation are expected and considered practically relevant, we would feel uncomfortable

recommending one of the 96- or 112-run designs. The smaller designs are appropriate for

situations where conducting 128 runs is too expensive or even infeasible, or where the goal

is to identify large active TFIs. An important added value of our simulation results is that

they show the trade-offs between using economical designs and being able to identify the

active effects, when using the Dantzig selector as the data analysis method.

Regarding the alternative nonorthogonal designs with 96 runs, neither the Bayesian D-

optimal design nor the strength-3 design 96.f dominated each other when considering the

power for MEs and TFIs. If the MEs and TFIs are equally important, then the Bayesian

D-optimal design is attractive. In contrast, if the MEs are considered to be more important

than TFIs, then design 96.f is more attractive because it had a larger power for detecting

the MEs than the Bayesian D-optimal design, while providing an only slightly smaller power

for the TFIs. We reached similar conclusions for the strength-3 and D-optimal designs with

112 runs.

Our conclusions about the performance of strength-3 and nonorthogonal designs for

identifying active MEs and TFIs are in line with the literature. Using simulations involving

the Dantzig selector and 11-factor designs with 32 to 48 runs, Mee et al. (2017) showed that

strength-3 designs are generally powerful for detecting the active MEs. For the detection

of active TFIs, they showed that Bayesian D-optimal designs have larger powers. Using

relative standard errors, Eendebak and Schoen (2017) and Vazquez and Xu (2019) reached

similar conclusions when comparing strength-3 and D-optimal designs.
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7 General discussion

This article features two-level nonregular strength-3 designs with run sizes between 64 and

128. Using an existing construction procedure for concatenating equally-sized strength-

3 designs, we obtained a previously unknown collection of strength-3 designs with 80,

96 and 112 runs, and up to 29 factors. These designs minimize the aliasing among the

two-factor interactions and, with one exception, provide pairs of two-factor interactions

which are only partially aliased. Moreover, they outperform or are competitive with the

available benchmark strength-3 designs in terms of the aliasing among interactions. Our

new collection of designs is available in the online supplementary materials.

In most cases, we provide two types of strength-3 designs. One type of design minimizes

the overall aliasing among all two-factor interactions, as measured by the B4 value. The

other type of design minimizes the most severe aliasing among these effects, as measured

by the generalized resolution and the F4 vector. Our preference for one of these two types

of strength-3 designs depends on how we wish to cope with the aliasing of interactions. In

practice, both types of designs are high-quality designs and the differences between them

are not extremely important.

Our designs with 80, 96 and 112 runs include a column z which splits the experimental

runs into two equally-sized strength-3 designs. Throughout the article, we evaluated this

column as an additional treatment factor. Alternatively, we could use the column for a

blocking factor to arrange the designs in two blocks with half of the runs. The blocking

factor would then have the attractive property that its main effect is not confounded with

any of the main effects or any of the two-factor interactions of the remaining treatment

factors. Therefore, our large designs are suitable for experiments spanning two different

days or requiring two different machines or operators.

Using a tuberculosis inhibition experiment and a simulation study, we investigated the

usefulness of our 80-, 96- and 112-run designs with 14 factors. We discussed the strengths

and limitations of the smaller strength-3 designs when compared to the 128-run nonregular

strength-4 design actually used in the experiment. On the upside, our designs offer the same

(or almost the same) chances to detect small and large active main effects as well as large

active interactions as the 128-run design. On the downside, they are less effective to identify

small active interactions. The tuberculosis inhibition experiment benefited from the fact

that it was feasible to implement this excellent 14-factor 128-run nonregular strength-4

design, which allows to estimate all the effects of interest with full precision. The largest
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number of factors for which 128-run nonregular strength-4 designs are available is 15. For 16

to 19 factors, both nonregular strength-4 designs and regular resolution-V designs require

at least 256 runs, while, for 20 or more factors, they require at least 512 runs; see Mee

(2004). Therefore, as the number of factors grows, our strength-3 designs become more and

more attractive cost-efficient alternatives to strength-4 designs and resolution-V designs.

A byproduct of our research is that we found 56-run strength-3 designs with up to 28

factors, from projections of selected folded-over orthogonal designs. These 56-run designs

fill the gap between 48 and 64 runs. When used as parent designs, some of these 56-run

designs resulted in 112-run designs which are inferior to our 96-run designs in terms of

the generalized resolution, F4 vector, the B4 value or the degrees of freedom for two-factor

interactions. This is merely a consequence of the fact that a complete catalog of 56-run

strength-3 designs is unavailable. Therefore, we could not identify the best possible parent

designs for the 112-run designs. For 16 to 20 factors, however, our best 112-run designs

in terms of the F4 vector outperform the 96-run designs in terms of all the criteria we

considered.

Finally, in this article we paid specific attention to nonregular strength-3 designs which

can be constructed by concatenating two equally-sized strength-3 designs. In doing so, we

ignored strength-3 designs with 72, 88, 104 and 120 runs, since they cannot be constructed

by concatenating two strength-3 designs. As a matter of fact, the construction of these

designs would require parent designs with run sizes of 36, 44, 52 and 60, which are not

multiples of eight and for which strength-3 designs do not exist. So, an interesting topic for

future research is to find attractive strength-3 designs with 72, 88, 104 and 120 runs, using

a different construction method. One way to obtain these strength-3 designs is from the

best projections of the folded-over Plackett-Burman designs with 36, 44, 52 and 60 runs.

For instance, the strength-3 designs obtained by folding over the 36- and 44-run Plackett-

Burman designs have generalized resolutions as large as 4.67 and 4.73, respectively. So,

they provide attractive starting designs as they do not involve fully aliased pairs of two-

factor interactions. We may extend the search for the best projections to the folded-over

Plackett-Burman designs with 40, 48 and 56. Such study would reveal if the benchmark

strength-3 designs with 80, 96 and 112 we considered in Section 5 were the best ones

available. However, the identification of the best projections from all these folded-over

Plackett-Burman designs is computationally very demanding. So, we leave it for future

research.
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Supplementary Materials

Supplementary sections.pdf Tables of 56-run parent designs; detailed construction of

the concatenated designs with 80, 96 and 112 runs; details on the strength-3 designs

derived from folded-over Plackett-Burman designs; details on the Dantzig selector.

Supplementary files.zip Collection of two-level strength-3 designs with 80, 96 and 112

runs and 9 to 29 factors, selected two-level strength-3 designs with 27 factors and 56

runs, and an R implementation of our simulation study.
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Figure 2: Average power and FDR for correctly identifying 1 to 10 active TFIs. Design

‘128’ is the two-level nonregular strength-4 design used by Silva et al. (2016). The two-

level strength-3 and nonorthogonal designs are labeled as in Tables 7 and 8, respectively.

minSNR1: small SNRs for the active effects; minSNR2: large SNRs for the active effects.

The online version of this figure is in color.
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