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Abstract 27 

The medical and societal consequences of the misuse of pharmaceuticals clearly justifies the need for 28 

comprehensive drug utilization research (DUR). Wastewater-based epidemiology (WBE) employs the analysis of 29 

human metabolic excretion products in wastewater to monitor consumption patterns of xenobiotics at the 30 

population level. Recently, WBE has demonstrated its potential to evaluate lifestyle factors such as illicit drug, 31 

alcohol and tobacco consumption at the population level, in near real-time and with high spatial and temporal 32 

resolution. Up until now there have been fewer WBE studies investigating health biomarkers such as 33 

pharmaceuticals.   34 

WBE publications monitoring the consumption of pharmaceuticals were systematically reviewed from three 35 

databases (PubMed, Web of Science and Google Scholar). 64 publications that reported population-normalised 36 

loads or defined daily doses of pharmaceuticals were selected.  37 

We document that WBE could be employed as a complementary information source for DUR. Interest in using 38 

WBE approaches for monitoring pharmaceutical use is growing but  more foundation research (e.g. compound-39 

specific uncertainties) is required to link WBE data to routine pharmacoepidemiologic information sources and 40 

workflows. WBE offers the possiblity of i) estimating consumption of pharmaceuticals through the analysis of 41 

human metabolic excretion products in wastewater; ii) monitoring spatial and temporal comsumption patterns of 42 

pharmaceuticals continuously and in near real-time; and iii) triangulating data with other DUR information sources 43 

to assess the impacts of strategies or interventions to reduce inappropriate use of pharmaceuticals.  44 

Graphical abstract 45 

 46 



1. Introduction 47 

The development of new and more effective pharmaceuticals in the last decades has contributed to a significant 48 

decrease in mortality, an improved quality of life for people with chronic illnesses and reduced time in hospital 49 

(Lichtenberg, 2014; Poluzzi et al., 2016). Nevertheless, misuse and abuse of pharmaceuticals can also have 50 

negative consequences, such as increased emergency room visits, treatment admissions for prescription drug use 51 

disorders and overdose deaths (National Institute of Drug Abuse, 2018; Poluzzi et al., 2016). In addition, 20% of 52 

health spending is wasteful and can be reduced by preventing the misuse and mis- and overprescription of 53 

pharmaceuticals (Organisation for Economic Co-operation and Development, 2018). The medical consequences 54 

and economic burden of the inappropriate use of pharmaceuticals has encouraged comprehensive drug utilization 55 

research (DUR) over the past decades (Poluzzi et al., 2016). Currently, DUR relies on data from the sales, billing, 56 

prescription and movement through the distribution chain of pharmaceuticals. All of this information is necessary 57 

to ensure the availability of safe, high-quality and efficacious treatments (World Health Organization, 2003). These 58 

information sources can be used to establish utilization patterns for specific pharmaceuticals and may provide a 59 

proxy for the prevalence of the diseases treated by these drugs (Chen & Briesacher, 2011; World Health 60 

Organization, 2003). Definitions for DUR terminology can be found in Table S1. 61 

Data on the illegal trade or clandestine manufacturing of pharmaceuticals are not covered by traditional DUR 62 

figures (Diamanti et al., 2019; European Monitoring Centre for Drugs and Drug Addiction, 2019b), which can 63 

lead to an underestimation of pharmaceutical consumption (van Nuijs et al., 2015). In some health care systems, 64 

incomplete coverage of these data sources might lead to gaps between the number of prescriptions and overall 65 

drug utilisation (i.e. scripts may not be filled, filled scripts may not be consumed, and pharmaceuticals may not be 66 

taken in the recommended doses or by the person for whom they were prescribed). Additionally, the locality where 67 

a prescription is filled may differ from where consumption occurs. Some patients may not be able to afford to fill 68 

their prescriptions, particularly when it comes to repeat prescriptions or due to associated costs or unwanted side 69 

effects. These data also do not always include information on the amounts of pharmaceuticals used in hospitals 70 

and so may only record the use of reimbursed pharmaceuticals. (Poluzzi et al., 2016; World Health Organization, 71 

2003). Furthermore, a limitation of currently used methods for drug utilisation data is the lack of spatial specificity, 72 

the lag in data acquisition and the infrequency of data reporting (e.g. this is often only be done on a yearly basis). 73 

The resolution of the data is also dependent on the quality of the health care system and may differ between 74 

jurisdictions within the same country.  75 



In order to provide community-health information on exposure to xenobiotics, wastewater-based epidemiology 76 

(WBE) measures biomarker concentrations in untreated wastewater and converts these to per capita mass load 77 

estimates using daily wastewater flow rates and population number in the catchment area (Fig. 1) (Boogaerts, 78 

Covaci, Kinyua, Neels, & van Nuijs, 2016; P. Choi et al., 2018; Daughton, 2018; Lai et al., 2013; van Wel et al., 79 

2016; Zuccato, Chiabrando, Castiglioni, Bagnati, & Fanelli, 2008). Target analytes can be quantified at trace levels 80 

(ng/L) by applying specific, accurate and precise bioanalytical methods such as solid phase extraction and liquid 81 

chromatography mass spectrometry (LC-MS/MS) (Andrés-Costa, Andreu, & Picó, 2017; Baker & Kasprzyk-82 

Hordern, 2011a; Botero-Coy et al., 2018; Fatta, Achilleos, Nikolaou, & Meriç, 2007). Although WBE is a 83 

relatively new scientific discipline, it has rapidly realised its potential to provide independent, timely, low 84 

cost/resource and complementary epidemiologic information on the exposure to and consumption of xenobiotics 85 

at high spatial and temporal resolutions (Banta-Green et al., 2009; Huerta-Fontela, Galceran, Martin-Alonso, & 86 

Ventura, 2008; Karolak, Nefau, Bailly, Solgadi, & Levi, 2010; Kasprzyk-Hordern, Dinsdale, & Guwy, 2009; Mari 87 

et al., 2009; Metcalfe, Tindale, Li, Rodayan, & Yargeau, 2010; Postigo, López de Alda, & Barceló, 2010; Terzic, 88 

Senta, & Ahel, 2010; van Nuijs et al., 2009; Zuccato et al., 2005). This is reflected in the increasing numbers of 89 

publications in this field (Fig. S1) (P. Choi et al., 2018).  The majority of WBE research has focussed on back-90 

estimating illicit drug consumption and only a few have investigated the use of pharmaceuticals (P. Choi et al., 91 

2018; Gracia-Lor et al., 2017). In addition, most of the WBE applications on pharmaceuticals i) have used these 92 

data to estimate population size (P. Choi et al., 2018; Lai et al., 2011); ii) to evaluate the illegal use of specific 93 

pharmaceuticals (P. Choi et al., 2018; Thai, Lai, Edirisinghe, et al., 2016) or iii) to associate pharmaceutical loads 94 

with environmental stressors (P. Choi et al., 2018; Phung et al., 2017).  95 



 96 

Fig. 1 Schematic overview of WBE for determining pharmaceutical consumption. Adapted from Choi et al (P. Choi et al., 97 

2018).  98 

Importantly, WBE cannot provide any information on the charactersistics of of the user and his personal 99 

consumption. That is, it cannot tell us about: the administration form, co-consumption, dose purity, dose frequency, 100 

individual compliance, drug use preferences, or the socio-demographic characteristics of individual patients. Nor 101 

can diversion and changes within the drug-using cohort be quantified by WBE. Specifically, if an increase was 102 

observed WBE cannot distinguish between the following possibilities i) more individuals are consuming at the 103 

same rate, ii) slightly more individuals consuming and at a higher rate each, iii) the same number of individuals 104 

consuming a higher total amount each, or iv) one group of individuals in the cohort consuming more than another 105 

group. Nevertheless, wastewater samples can be analyzed retrospectively to provide aggregated consumption 106 

estimates (Boogaerts et al., 2016; Burgard et al., 2019; Mackie et al., 2019) with easily adjusted spatio-temporal 107 

frequencies and short time-lags in gathering and reporting data. While specific socio-demographic features of 108 

individuals might not easily be obtained, WBE can provide a spatial comparison between different populations 109 

with different socio-economic status at a community level (P. Choi et al., 2019).   110 

We review the current situation of applying WBE towards understanding pharmaceutical consumption and provide 111 

an overview of analytical information and biomarkers used to monitor pharmaceutical use in defined population 112 

groups. Our aim is to document state-of-the art WBE applications on pharmaceutical consumption to give a better 113 

understanding on the future research that is needed to move forward WBE as a complementary epidemiological 114 



information source in DUR. In this lights, this review aims to provide key insights and prospects where WBE can 115 

further contribute to DUR. 116 

2. Literature search and eligibility criteria 117 

Multiple literature searches were conducted (between July 2020 and March 2021) to identify all publications (i.e. 118 

research papers, short reports, letters,…) on WBE investigations of pharmaceutical consumption. PubMed, Web 119 

of Science and Google Scholar were queried as illustrated in Table 1. Since WBE was first applied in 2008, we 120 

only searched for publications between 2008 and March 2021. An updated search was performed on a monthly 121 

basis to identify new emerging WBE applications on pharmaceuticals.  122 

Table 1 Applied search combinations during the advanced literature search 123 

Specified search terms Search records 

(sewage OR wastewater OR "wastewater epidemiology") AND (pharmaceuticals OR 

medicines) 

6498 

((wastewater OR sewage OR "wastewater based epidemiology") AND ("pharmaceuticals" 

OR "medicines")) AND consum* 

350 

(((((wastewater) OR sewage) AND influent) AND pharmaceuticals) NOT "removal 

efficien*") NOT sludge 

165 

(((("wastewater epidemiology") OR "sewage epidemiology") OR "wastewater based 

epidemiology") AND pharmaceuticals) AND consum* 

71 

(sewage OR wastewater OR "wastewater epidemiology") AND pharmaceutical AND 

"influent wastewater" 

45 

((("wastewater based epidemiology") AND (pharmaceutical OR medicines)) AND 

(consumption OR "population normalised")) 

28 

("wastewater epidemiology"[Title/Abstract] OR sewage [Title/Abstract] OR 

wastewater[Title/Abstract]) AND (pharmaceuticals OR medicines) AND "population 

health" 

26 

wastewater AND influent AND pharmaceutical AND loads NOT effluent 16 

 124 

Table 1 describes the different keyword combinations that were applied to identify eligible studies for this review. 125 

After a preliminary screening against the eligibility criteria, 122 publications were selected from this wide range 126 

of search records.  This initial search was further screened against the strict inclusion criteria defined below. This 127 

final screening resulted in 64 publications qualified for full text review. While the total number of WBE 128 

applications on pharmaceuticals is relatively small, interest in this field of research has grown for the last six years 129 

(~ 9 papers per year on average), as illustrated in Fig S1. Numerous other studies report concentrations of 130 

pharmaceuticals in influent wastewater (IWW) (Baker & Kasprzyk-Hordern, 2011b; Bodik, Mackulak, Faberova, 131 

& Ivanova, 2016). However, in WBE, concentrations are not suitable to estimate community-wide use of 132 

pharmaceuticals because of fluctuations in flow rates and population sizes. For this reason, it is imperative to 133 

normalize measured concentrations for varying population sizes and flow rates to allow reliable comparisons 134 

between locations. Additionally, these descriptive studies did not triangulate with other data of tested specific 135 



hypothesis about the spatio-temporal patterns of use. Therefore, these studies were not included in this review. By 136 

normalizing to population sizes and flow rates, WBE offers the possibility to compare intra- and intercountry 137 

normalized-loads of pharmaceuticals (Ahmed et al., 2020; Bodik et al., 2016; Pereira, Silva, Meisel, Lino, & Pena, 138 

2015). For these reasons, the selection of eligible cases goes beyond simply reporting of pharmaceutical 139 

concentrations in IWW.   140 

We included (i) WBE studies that estimated population-normalised mass loads of excreted human metabolic 141 

pharmaceutical biomarkers (mg/day/1000 inhabitants) and (ii) WBE studies in which pharmaceutical doses were 142 

back-calculated using measured concentrations of the biomarkers (doses/day/inhabitant). For this purpose, we 143 

excluded wastewater studies on pharmaceuticals that focused exclusively on (i) method development and 144 

validation; (ii) evaluating removal efficiencies during wastewater treatment; (iii) investigating pharmaceuticals as 145 

a potential source of contamination in aquatic environments and (iv) evaluating the use pharmaceutical 146 

concentrations as population size markers. Citation tracking and searches in author’s bibliographies were 147 

performed to track down additional references. Detailed information on the applied analytical techniques and 148 

current WBE biomarkers is given elsewhere (Baker & Kasprzyk-Hordern, 2011a; P. Choi et al., 2018; Gracia-Lor 149 

et al., 2017; van Nuijs et al., 2011).   150 

3. WBE applications on pharmaceuticals: state-of-the-art applications 151 

The final selection of 64 WBE applications can be categorized in different types including spatial and temporal 152 

comparisons, triangulating with sales and/or prescription statistics, monitoring pharmaceuticals as proxies of 153 

disease, correlations with socio-demographics, and evaluating illicit use of pharmaceuiticals (Fig. 2).  Table S2 154 

summarizes all currently available WBE applications on pharmaceuticals. In this section, we will focus on the 155 

most prevalent applications.  156 



 157 

Fig. 2 Overview of all current WBE applications on pharmaceuticals 158 

3.1. Spatio-temporal analysis of pharmaceutical consumption 159 

Population-normalized biomarker mass loads can be employed as a proxy for consumption of the parent 160 

compound. This normalization enables the comparison of consumption patterns across different locations and 161 

different time points. This proxy is more appropriate compared to per capita doses per day since less uncertainty 162 

is associated with the back-calculations (i.e. large uncertainties associated with excretion factors). 163 

3.1.1. Spatial comparisons of pharmaceutical use  164 

45 out of the 64 studies demonstrate the ability of WBE to investigate spatial differences in the consumption of 165 

pharmaceuticals (Ahmed et al., 2020; Australian Crime Intelligence Commision, 2020; Bade, Ghetia, White, & 166 

Gerber, 2020; Baker, Ocenaskova, Kvicalova, & Kasprzyk-Hordern, 2012; Baz-Lomba et al., 2016; Bodik et al., 167 

2016; Boogaerts, Degreef, Covaci, & van Nuijs, 2019; Boogaerts, Quireyns, Covaci, De Loof, & van Nuijs, 2021; 168 

Burgard, Fuller, Becker, Ferrell, & Dinglasan-Panlilio, 2013; Castrignano et al., 2020; Causanilles, Emke, & de 169 

Voogt, 2016; Causanilles et al., 2018, 2017; P. M. Choi et al., 2018; P. Choi et al., 2019; Croft, Huffines, Pathak, 170 

& Subedi, 2020; Duan, Meng, Wen, & Chen, 2013; Escolà Casas et al., 2021; Fáberová, Bodík, Ivanová, Grabic, 171 

& Mackuľak, 2017; Fallati et al., 2020; Gao et al., 2016; Gomez-Canela, Sala-Comorera, Pueyo, Barata, & Lacorte, 172 

2019; Gushgari, Driver, Steele, & Halden, 2018; Kim & Oh, 2020; Krizman, Senta, Ahel, & Terzic, 2016; 173 



Mackulak et al., 2016, 2019; Mirzaei, Mesdaghinia, Hoseini, & Yunesian, 2019; Ort, Lawrence, Reungoat, 174 

Eaglesham, et al., 2010; Ostman, Fick, Nasstrom, & Lindberg, 2014; Pereira et al., 2015; Riva, Castiglioni, 175 

Pacciani, & Zuccato, 2020; Shao et al., 2021; Skees, Foppe, Loganathan, & Subedi, 2018; Subedi, Balakrishna, 176 

Joshua, & Kannan, 2017; Subedi & Kannan, 2015; Thiebault, Fougere, Destandau, Rety, & Jacob, 2017; 177 

Thomaidis et al., 2016; Venhuis, de Voogt, Emke, Causanilles, & Keizers, 2014; Xiao et al., 2019; J.-H. Yan et 178 

al., 2019; Q. Yan et al., 2014; Yargeau, Taylor, Li, Rodayan, & Metcalfe, 2014; Zhang et al., 2019, 2018). 34 179 

studies indicate that WBE is sensitive enough to detect spatial variations in pharmaceutical use within countries 180 

(town/village level) and, therefore, able to identify locations that differ in pharmaceutical use. While some 181 

traditional DUR information sources may lack geospatial granulity, WBE can monitor consumption patterns at the 182 

scale of suburbs and regions within a metropolitan area.   In contrast to the studies that focus on differences in 183 

pharmaceutical use within a specific country, only 8 studies provide a between-country spatial comparison (Baz-184 

Lomba et al., 2016; Castrignano et al., 2020; Causanilles et al., 2018; Duan et al., 2013; Fallati et al., 2020; Gao 185 

et al., 2016; Subedi et al., 2017; Q. Yan et al., 2014). With traditional DUR information sources, it can be difficult 186 

to compare pharmaceutical consumption between jurisdictions when organization of the health care systems and 187 

therefore also data collection are completely different. In this light, Fallati et al. investigated the consumption of a 188 

broad range of pharmaceuticals in different therapeutic classes with WBE in Malé compared to Milan and Oslo 189 

(Fallati et al., 2020). Consumption in Malé could therefore be estimed through WBE as local prescription data 190 

were not available.  191 

An under-explored area is the use of WBE within sub-catchments such as hospitals or university campuses, 192 

suburbs, or aged care facilities. Limited studies show the potential for WBE to monitor the consumption of 193 

pharmaceuticals in subsets of the population and during specific events (Burgard et al., 2019; Gomez-Canela et 194 

al., 2019; Gul, Gul, Stamper, Godfrey, & ElSohly, 2018; Gul, Stamper, Godfrey, Gul, & ElSohly, 2016; Gushgari 195 

et al., 2018; Kosma, Nannou, Boti, & Albanis, 2019; Mackulak et al., 2016; Ort, Lawrence, Reungoat, Eaglesham, 196 

et al., 2010; Stamper, Gul, Godfrey, Gul, & ElSohly, 2016; van Dyken et al., 2016). In this light, three WBE 197 

studies focused on the consumption of opioids and benzodiazepines during football games at the Mississippi 198 

University campus (Gul et al., 2018, 2016; Stamper et al., 2016) and found substantial increases in tramadol and 199 

hydrocodone while concentrations in the municipal IWW samples were unchanged.  200 

3.1.2. Temporal analysis of pharmaceutical consumption 201 

Due to its high temporal resolution, WBE can be employed to obtain useful information on the consumption 202 

patterns of pharmaceuticals over time. For instance, long-term trends can indicate whether pharmaceutical use is 203 



stable, fluctuating, declining or on the rise. Additionally, seasonal patterns can highlight temporal changes with a 204 

fixed frequency (e.g. between months of the year, between same months in different years). Furthermore, within-205 

week trends can reveal recreational pharmaceutical use versus habitual consumption (Tscharke, Chen, Gerber, & 206 

White, 2016).    207 

3.1.2.1 Within-week trends in pharmaceutical loads 208 

To date, because sampling and analysis costs are typically relatively low, most studies have conducted 24-hour 209 

composite sampling for multiple days. This allows for a temporal resolution that is difficult to obtain using other 210 

methods. Differences in the mass loads measured on a daily basis can point to the recreational use of 211 

pharmaceuticals on, for example, weekends as many pharmaceuticals, such as antihypertensives and 212 

antidepressants, have low interdaily variability (Ahmed et al., 2020; Australian Crime Intelligence Commision, 213 

2020; Been et al., 2015; Causanilles et al., 2016; Mastroianni, Lopez-Garcia, Postigo, Barcelo, & Lopez de Alda, 214 

2017; Tscharke, Chen, Gerber, & White, 2015). Studies have thus found weekend differences in per capita 215 

normalized mass loads  for i) tramadol, methadone and possibly amitriptyline in the Czech Republic (Baker et al., 216 

2012), ii) tramadol, codeine and oxazepam in Slovakia (Mackulak et al., 2016) and iii) tramadol, diclofenac 217 

(NSAID), methadone and antibiotics (sulfamethoxazole and trimethoprim) in France (Thiebault et al., 2017). Due 218 

to the high frequency, analyses can also identify correlations between trends in the consumption of pharmaceuticals 219 

that may be of concern.  220 

Interestingly, two out of four studies estimating population-normalized mass loads of sildenafil found no difference 221 

between weekend and weekday in the Netherlands and in 8 European cities (Causanilles et al., 2016, 2018), wheras 222 

two studies, in England and in the Czech Republic, that document such a difference (Baker, Barron, & Kasprzyk-223 

Hordern, 2014; Baker et al., 2012). Similarly, the ADHD medication methylphendidate, having possible stimulant 224 

effects, showed increased use on weekends in some European cities (Baz-Lomba et al., 2016) while this effect was 225 

not found on a university campus  (Gushgari et al., 2018).  226 

3.1.2.2 Seasonality and long-term temporal trends 227 

Most of the studies included in this review focused on a period of  7 days or less and fewer than 10 pharmaceuticals 228 

for only one or two WWTPs, as indicated in Table S2. About half of the publications that assessed pharmaceutical 229 

population-normalised mass loads in wastewater sampled more than 7 days and reported long-term temporal data 230 

(i.e. trends that occur over several months or years). The most investigated substances were opioids, antibiotics, 231 

benzodiazepines and antidepressants. In contrast to illicit drugs, short-term variations in pharmaceutical 232 



consumption are less expected since pharmaceutical treatment requires frequent dose intervals and fixed treatment 233 

schemes. For this reason, it is more interesting to monitor long-term consumption patterns in the use of 234 

pharmaceuticals.  235 

Higher mass loads were found in the winter for antidepressants, antibiotics (Golovko, Kumar, Fedorova, Randak, 236 

& Grabic, 2014),  tramadol and venlafaxine (Mackulak et al., 2016) while summer and autumn recorded higher 237 

mass loads of NSAIDs (Papageorgiou, Kosma, & Lambropoulou, 2016), antihistamines, lipid regulators (Golovko 238 

et al., 2014), codeine and oxazepam (Mackulak et al., 2016). For carbamazepine, oxazepam, methadone, 239 

citalopram, metformine and memantine, population-normalized mass loads were relatively consistent between 240 

seasons (Golovko et al., 2014; Mackulak et al., 2016; Xiao et al., 2019).  241 

Pereira et al and Krizman et al  (Krizman et al., 2016; Pereira et al., 2015) also highlighted that seasonal differences 242 

in consumption estimates may be due to tourism, as higher use of some pharmaceuticals was observed during 243 

summer periods at coastal tourist destinations, when compared with equivalent non-tourist destinations (Pereira et 244 

al., 2015). This seasonal effect was addressed in Phung et al. by directly investigating the link between temperature 245 

and consumption of a handful of pharmaceuticals (Phung et al., 2017). They found increased temperature 246 

associated with increased naproxen (NSAID) loads, while decreased temperature related to increasing atenolol 247 

consumption. No significant changes with temperature were observed for caffeine, codeine, carbamazepine and 248 

hydrochlorothiazide. The changes in consumption measured in that study could also be due to changing population 249 

demographics throughout the year, e.g. an efflux of older people during summer, making it more difficult to 250 

compare studies with multiple years of data from multiple locations. However, these studies may highlight 251 

seasonal effects on consumption of substances; changes that may be geographically or culturally specific.  252 

Of the few long term studies available on pharmaceutical consumption key findings include a decreasing trends in 253 

methadone consumption and an increase in oxycodone and fentanyl in Adelaide between 2011 and 2015 (Tscharke 254 

et al., 2016). Sildenafil and metformin use increased in the Netherlands (Causanilles et al., 2016) and China (Xiao 255 

et al., 2019) respectively over more than 3 years. Notably, consistent use patterns of methadone, morphine and 256 

codeine were observed over time in Lausanne, Zagreb and Adelaide, respectively (Been et al., 2015; Krizman-257 

Matasic, Senta, Kostanjevecki, Ahel, & Terzic, 2019; Tscharke et al., 2016).  258 

3.2. WBE biomarkers for disease and disease outbreaks 259 

The WBE approach demonstrates that urinary human biomarkers identified and quantified in wastewater can 260 

provide a perspective on a population’s health in (near)-real time (Daughton, 2018). Specific pharmaceuticals or 261 



a combination of pharmaceuticals are generally prescribed to treat diseases  (Thomas & Reid, 2011). Several WBE 262 

studies demonstrate the potential for WBE biomarkers to serve as a proxy measure for treated disease prevalence. 263 

By measuring at high spatio-temporal resolution, it will be possible to monitor the evolution of different diseases 264 

in specific locations and make area-specific assessments about their burden and monitor in near-real-time the 265 

evolution of specific diseases.  266 

This can however be complicated by a number of factors such as underdiagnosis or undertreatment.  Additionally, 267 

some diseases need a combination treatment while some pharmaceuticals are used to treat multiple diseases. 268 

Uncertainties as arise for some diseases (e.g. depressive disorders), where non-pharmacological treatment might 269 

be prioritized over pharmaceutical treatment. Furthermore a lack of compliance or recreational use should also be 270 

taken into account. Therefore, it is imperative to proceed with caution when using WBE as a proxy for specific 271 

disease prevalence. 272 

To date, four Chinese WBE studies have used metformin as a proxy for type 2 diabetes (Shao et al., 2021; Song 273 

et al., 2020; Xiao et al., 2019; J.-H. Yan et al., 2019). While they successfully captured metformin consumption in 274 

Chinese communities, measurement of other antidiabetic drugs (e.g. sulfonylureas) would be necessary for a more 275 

comprehensive picture on the prevalence of this disease. Insulin has been a key component of management in 276 

patients with type 2 diabetes mellitus (T2DM), who require insulin therapy to maintain normal hemoglobin A1c 277 

(HbA1c) levels (Scheurer, Brauch, & Lange, 2009). While most diabetic drugs are excreted in sufficient amounts 278 

in urine (Gong, Goswami, Giacomini, Altman, & Klein, 2012; SHELDON, ANDERSON, & STONER, 1965), 279 

almost all insulin is reabsorbed in the kidney with only trace amounts found in urine (Hanefeld, 2014). Therefore, 280 

the use of WBE as a proxy for type 2 diabetes is not viable in the absence of suitable biomarkers for insulin and 281 

additional biomarkers for antidiabetic drugs.   282 

Ahmed et al. measured oxypurinol as a disease biomarker in wastewater to estimate the prevalence of treated gout 283 

in Australia (Ahmed et al., 2020). Gout prevalence was estimated to be 2.7% in this study, which was comparable 284 

to estimates from other epidemiologic studies (Proudman et al., 2019; Robinson, Kempe, Tebbutt, & Roberts, 285 

2017). However, while defined daily doses (DDD) provided a good basis for comparing the consumption of 286 

pharmaceuticals between different countries, it might be more challenging to use it to estimate the prevalence of 287 

disease because of variations in doses prescribed per patient. Additionally, compliance is also universally low in 288 

these patient groups which increases the uncertainty in these estimates (Silva et al., 2010).  289 



Antibiotics have significantly reduced morbidity and mortality from many infectious diseases (Bérdy, 2012). Their 290 

total global consumption increased 65% while consumption per capita increased 39% between 2000-2015 (Klein 291 

et al., 2018). The excess or inappropriate use of antibiotics can lead to antibiotic resistance, as indicated by studies 292 

showing an association between high use of antibiotics and enhanced antimicrobial resistance (AMR) (Chambers, 293 

2001; Llor & Bjerrum, 2014).  Wastewater has been used to monitor antibiotic presence and consumption patterns. 294 

Zhang et al. measured loads of 23 antibiotics in wastewater from eight major WWTPs of Beijing (Zhang et al., 295 

2018).  In another WBE study, antibiotic consumption was correlated with the flu season and the housing price 296 

and population density of the catchment (Zhang et al., 2019).  Another study in China assessed the use of six 297 

antibiotics using WBE because there were no other data (Yuan, Liu, Huang, Yin, & Dang, 2016). In Milan, Italy, 298 

antibiotic excretion was higher in winter than in summer, reflecting the higher rate of infections during winter 299 

(Castiglioni et al., 2006). As antibiotic resistance genes emerge and spread globally, wastewater can monitor 300 

sources of environmental antibiotic resistance. WBE can provide rapid information on community antibiotics 301 

consumption in different time frames. A recent WBE study showed the power of analysing the consumption of 302 

quinolones antibiotics and quinolones resistance genes in European wastewater. It found that higher daily load 303 

qnrS gene were associated higher quinolone loads (Castrignano et al., 2020).  304 

3.3. Relationship between socio-demographic catchment parameters and pharmaceutical use 305 

The WBE approach allows the study of the relationships between consumption of chemicals and sociodemographic 306 

features of catchment areas. This may extend the relevance of WBE in the social sciences to such fields as town 307 

planning or local policy evaluation. These studies find predicted relationships between socioeconomic factors and 308 

the consumption of legal and illegal compounds but they also uncovered novel relationships.  309 

Changes in the socioeconomic composition of a population over time can be measured using WBE. In a 2016 310 

Study, Thomaidis et al. analysed a suite of pharmaceuticals and drugs in the wastewater from Athens (Greece) 311 

between 2010 and 2014, a period in which there was a severe economic downturn and the implementation of 312 

austerity measures (Thomaidis et al., 2016). It showed staggering increases in the per capita consumption of 313 

narcotic drugs such as methadone (7-fold) and psychiatric pharmaceuticals (35-fold), and antidepressants (11-314 

fold). By contrast, the consumption of amphetamine, antibiotics and NSAIDs decreased. This study demonstrates 315 

how WBE can be used to document changes in drug consumption produced by large-scale socioeconomic 316 

disruptions. Recently, Reinstadler et al. also showed the potential to investigate temporal changes during the 317 

coronavirus disease 2019 (COVID-19) lockdown and quarantine in the catchment area of Innsbruck (Reinstadler 318 

et al., 2021). This study showed that consumption of medicines prescribed for chronic pharmaceutical treatment 319 



(e.g. oxazepam, carbamazepine, venlafaxine,etc.) remained unaffected by the public health crisis. Contrastingly, 320 

the consumption of pharmaceuticals for short-term use (e.g. acetaminophen, codeine and trimethoprim) declined 321 

during the COVID-19 pandemic, potentially as a result of improved population health or a reduction in the number 322 

of consultations  of medical doctors or pharmacies.  323 

Housing prices and density have been shown to be associated with  the consumption of pharmaceuticals. A 2018 324 

study measured 37 pharmaceuticals from eight WWTPs in Beijing (China), and related these to the average 325 

housing price and population density for each WWTP catchment (Zhang et al., 2018). These measures were highly 326 

correlated (r = 0.92 – 0.93) with the total load of pharmaceuticals. Because of the sampling strategy in this study 327 

(where one wastewater sample was deemed representative of a WWTP), these results may reflect increased 328 

pharmaceutical consumption by transient residents (i.e. commuting workers) rather than residents. Nevertheless, 329 

the results imply that higher economic status in China is linked to higher pharmaceutical use. 330 

Relationships between WBE biomarkers and socioeconomic measures also include measures of demographics, 331 

education and more. An Australian study measured a suite of mostly drug and pharmaceutical biomarkers from 332 

wastewater samples collected at the same time as a national Census in 2019 (P. Choi et al., 2019).  Per capita loads 333 

of opioids, antipsychotics and antidepressants were significantly higher in catchments with older, lower 334 

socioeconomic status populations. The loads of antibiotics cephlexin, sulfamethoxazole, and trimethoprim were 335 

not associated with either age or socioeconomics of the catchments. Strong correlations were found between 336 

specific drugs and socioeconomic measures. There were for example correlations between: tramadol use and the 337 

percentage of labourers in a population (r = 0.84), amitriptyline and a lack of high school education (r = 0.77), and 338 

there was an inverse relationship between pregabalin and high income (r = -0.77) in Australia (P. Choi et al., 2019). 339 

However, these associations may be influenced by the way reimbursement systems are set up. While WBE studies 340 

examining socioeconomics are unable to distinguish between correlation and causation, they can uncover 341 

important insights into how drug and other chemical consumption patterns are associated with socioeconomic 342 

characteristics.   343 

A WBE study in Milan (Italy) found a significant correlation between airborne particulate matter and salbutamol 344 

(Fattore et al., 2016). This study clearly demonstrated the association between environmental changes (i.e. air 345 

pollution, pollen season) and higher consumption of a pharmaceutical to treat respiratory disease. This study 346 

demonstrates the potential of applying WBE to investigate environmental diseases. It provides a direct comparison 347 



between pharmaceutical consumption and pollution levels at the same day, which can be used to investigate the 348 

relationship between environmental exposure and disease. 349 

4. Future perspectives and developments 350 

4.1. WBE as a promising complementary information source for DUR 351 

The current review demonstrates ways in which WBE can potentially be utilised as a complementary tool in DUR 352 

but additional research is needed on methodological issues (i.e. in-sewer stability, pharmacokinetics, etc.) and data 353 

triangulation.  Nonetheless we observe an increasing number of WBE applications on pharmaceuticals. Fig. 3 354 

indicates where WBE could be applied as a complementary strategy to aid in filling the current knowledge gaps 355 

in the field of DUR and address the strengths of the different data sources. By triangulating data from the different 356 

pharmacoepidemiologic information sources, it may be possible to estimate the prevalence of use of 357 

pharmaceuticals more accurately. This information can be employed by policy-makers in the design and evaluation 358 

of pharmaceutical regulations. 359 

 360 

Fig. 3 The place of WBE in the myriad of pharmacoepidemiological information sources in the context of drug utilization 361 

research  362 

A major advantage of WBE is that it may provide estimates of consumption for pharmaceuticals which are not 363 

recorded using other methods; either because they are consumed illegally, or that they are not recorded in existing 364 

data sets  (e.g. the Pharmaceutical Benefit Scheme in Australia does not include private scripts or in-hospital use; 365 

some pharmaceuticals can be purchased without scripts) (Mellish et al., 2015). WBE can provide complementary 366 



information on what proportion of pharmaceuticals that are sold, dispensed and/or prescribed are consumed by the 367 

population because it measures consumption through human metabolic excretion products in wastewater. 368 

Discrepancies between WBE and prescription data could indicate the degree of compliance to a medication 369 

regimen at a population scale. A pharmaceutical prescribed to a patient is not necessarily taken by the patient in 370 

prescribed amounts or the dispensed amounts (e.g. if some of  the medicines are diverted to others). 371 

Additionally, WBE may be a good alternative when prescription data are very difficult and sales data are too 372 

expensive. For countries with limited prescription and or sales data, WBE could provide cost effective 373 

measurements of the amounts of key compounds that are consumed. Additionally, many low income countries do 374 

not have a prescription system and allow many pharmaceuticals to be sold over the counter with poor record 375 

keeping (Borges, Chama, & Nilsson, 2016). WBE may be useful for surveillance of pharmaceutical regulation that 376 

are not captured through traditional datasets (e.g. for pharmaceuticals not subsidized or off-label indications not 377 

refunded by disability insurance). Some pharmaceuticals can also be obtained without prescription so their use 378 

will not be included in prescription data (e.g. online internet trades, import from neighbouring countries, over-the-379 

counter sales, etc.).  380 

The WBE approach can be especially helpful in monitoring the use of antibiotics (Zhang et al., 2019, 2018) and 381 

misuse of potentially addictive pharmaceuticals, such as opioids and benzodiazepines (Bade et al., 2020; Centazzo, 382 

Frederick, Jacox, Cheng, & Concheiro-Guisan, 2019; Croft et al., 2020; Duvallet, Hayes, Erickson, Chai, & Matus, 383 

2020; Endo et al., 2020; Gushgari, Venkatesan, Chen, Steele, & Halden, 2019; Kim & Oh, 2020). Antibiotics are 384 

supplied in several countries without a prescription (e.g. previously prescribed courses, local markets or stores, 385 

diversion from families or friends) which facilitates the development and spread of antibiotic resistance (Bahta et 386 

al., 2020; Berendonk et al., 2015; Llor & Cots, 2009). A recent study by Castrignanò et al. found that higher total 387 

quinolone loads corresponded with a higher prevalence of quinolone resistance genes (measured through in-sewer 388 

investigation of qnrS genes) in the catchment areas (Castrignano et al., 2020). If estimated antibiotic DDDs in 389 

wastewater are substantially higher or lower than prescribed DDDs, the community may not be compliant with 390 

therapy. It might be difficult to accurately estimate compliance to antibiotic treatment at a population scale due to 391 

lack of knowledge of the optimal treatment length and varied treatment regimens for different infections. 392 

Nonetheless, it is worth investigating trends in the discrepancies between prescribed amounts of antibiotics and 393 

measured amounts in wastewater. Knowledge of total antibiotic loads is helpful to policy makers because of the 394 

strong quantitative link between antibiotic use and antibiotic resistance (World Health Organization (WHO), 395 

2018). Another critical component of this aspect is that WBE can capture uses of pharmaceuticals in animal 396 



husbandry if the runoff from such facilities is connected to the WWTP. This is obviously of high relevance for 397 

identifying inappropriate use of antibiotics leading to antimicrobial resistance as this is a global challenge with 398 

particularly poor data on antibiotic use in the general community (World Health Organization (WHO), 2015). 399 

Additionally, many non-antibiotic pharmaceuticals have shown ability to induce for antibiotic resistance 400 

(Berendonk et al., 2015; Singh et al., 2019).  401 

4.2. Agreement between WBE data and other DUR information sources 402 

Some efforts have already been done to triangulate WBE data with other DUR information sources. These WBE 403 

studies show reasonable relationships between WBE data on pharmaceuticals (e.g. oxazepam, atenolol, etc.) and 404 

prescription and sales data (Baker et al., 2014; Baz-Lomba et al., 2016; Been et al., 2015; Escolà Casas et al., 2021; 405 

He et al., 2020; Kasprzyk-Hordern et al., 2009; Rice, Kannan, Castrignanò, Jagadeesan, & Kasprzyk-Hordern, 406 

2020; Riva et al., 2020; van Nuijs et al., 2015). For some pharmaceuticals (e.g. paracetamol, etc.), discrepancies 407 

were reported which may reflect over-the-counter pharmaceutical sales that are not included in prescription data 408 

(Baker et al., 2014; Crowley, White, Tscharke, & Gerber, 2017; van Nuijs et al., 2015). They could also reflect 409 

illegal sales of pharmaceuticals and import/export/diversion of pharmaceuticals to other geographical areas. 410 

Additionally, these differences may also arise from methodological uncertainties associated with WBE such as the 411 

direct disposal of parent compounds in the sewer, poor accuracy of excretion rates used in WBE’s back-412 

calculations and the complete/incomplete deconjugation of metabolites in the sewer (Escolà Casas et al., 2021). 413 

As indicated by van Nuijs et al, predicted loads and measured loads from the analysis of biomarkers in IWW could 414 

potentially not match accurately because WWTP catchment areas and postal codes do not correspond and not all 415 

households may be connected to the sewer system (van Nuijs et al., 2015). Prescribed pharmaceuticals may not be 416 

consumed by patients and the locality between the location of consumption and excretion might be different due 417 

to commuting.  418 

Riva et al. used WBE with four prescription medicines intended for chronic use, including citalopram, enalapril, 419 

losartan and ramipril (Riva et al., 2020) in an attempt to assess compliance at a population level. WBE estimates 420 

and prescription data showed good agreement for citalopram, enalapril and their metabolites but in other cases 421 

there was a poor match. Although these discrepancies could be related to poor compliance or overuse, the authors 422 

acknowledged that the disagreement may also be the result of methodological uncertainties associated with each 423 

data source. In back-calculating daily defined doses they had to use potentially inaccurate excretion factors found 424 

in pharmacokinetic and metabolism studies. These correction factors are often obtained from clinical trials 425 

performed within a small subset of patients which may not be repressentative for the catchment population. 426 



Additionally prescriptions may be incomplete in some areas (e.g. combination formulations only included in 427 

national figures but not in the regional database) and local prescription data may not match completely with the 428 

catchment area. Therefore, uncertainties in extrapolating to actual consumption should be adressed for each 429 

individual compound.  430 

4.3. Early-warning system for pharmaceutical misuse 431 

The illegal use of pharmaceuticals cannot be monitored using conventional datasets. Data triangulation can 432 

highlight potential discrepancies in the amounts used (e.g. identifying potential shifts to illicit use of 433 

pharmaceuticals) and potentially estimate the number of users, at a local and national level. In order to enable this 434 

comparison, it will be necessary to first monitor fluctuations in population-normalised mass loads of 435 

pharmaceuticals to understand trends in consumption patterns at a population level. The high temporal resolution 436 

of WBE enables researchers to monitor the evolution of the illicit market continuously, and with short-time lag. 437 

This may enable policy-makers to counter more swiftly the spread of counterfeit medicines and the recreational 438 

use of pharmaceuticals. It should be noted that while WBE can provide valuable information on the extent of 439 

counterfeit medication it cannot provide data on the composition (i.e. impurities, lack of API, dose of API, etc.) of 440 

counterfeit pharmaceuticals. WBE is not limited to measuring specific APIs; it can also be used to monitor their 441 

by-products or precursors in communities. In addition, the effects of legal import and export of pharmaceuticals 442 

(i.e. cheaper prices across national borders) cannot be excluded. These complications highlight the need for data 443 

triangulation to obtain a comprehensive view of total consumption and to identifying the extent in which 444 

pharmaceuticals are used appropriately.   445 

In this light, Venhuis et al. highlighted the sale of sildenafil by online pharmacies in three Dutch communities  446 

(Venhuis et al., 2014). They compared estimates of sildenafil use based on WBE data with dispensing data on 447 

sildenafil that was legitimately sold. At least 60% of wastewater loads could not be explained by legal use of the 448 

drug. Causanilles et al. found also big discrepancies between WBE data and prescription data, if these were 449 

available (Causanilles et al., 2018) further documenting the power of WBE for documenting differences in local 450 

consumption patterns.  However, a major limitation of this study is that prescription data was estimated by 451 

extrapolating the Dutch trend in prescription patterns, which might not be representative for other European 452 

countries. 453 

Furthermore, historical WBE data could be used to quickly identify new consumption patterns at high spatio-454 

temporal resolution early enough to avert an escalation in the use of pharmaceuticals. This approach can also be 455 



used in specific locations to describe dissemination of a pattern of drug use of public health concern (e.g. increasing 456 

opioid consumption in rural areas in Australia).   457 

4.4. Monitoring the effect of interventions and quality-control system in decision-making processes 458 

In contrast to illicit drugs, tobacco and alcohol (Australian Crime Intelligence Commision, 2020; Mackie et al., 459 

2019), WBE applications on pharmaceuticals have played a limited role in government strategies and decision-460 

making. We propose several ways in which WBE may provide a complementary monitoring approach for 461 

governments and pharmaceutical policy makers.  462 

The WBE approach provides a tool that can i) measure consumption of pharmaceuticals; ii) determine 463 

consumption patterns of pharmaceuticals at different spatial (e.g. local, regional, national, international) and 464 

temporal resolutions (e.g. daily, weekly, seasonally, yearly, etc.); and iii) by triangulating with other datasets, 465 

assess the impact that strategies or interventions have on consumption. These uses are not limited to a specific 466 

pharmaceutical, but could apply to a group of pharmaceuticals. 467 

In this light, WBE may be particularly useful in monitoring the effect of an intervention or for assessing weekly 468 

or seasonal trends in pharmaceutical consumption. This could include an intervention such as a rescheduling or 469 

restricting of sale of a drug, a change in prescribing practice or regulations, or an education/advertising program 470 

to change the behaviours of presribers or individuals consuming pharmaceuticals. As yet, fewer studies have done 471 

so reported this, however one notable example is Zhang et al, which evaluated a potential decline in antibiotic use 472 

following interventions to prevent their prophylactic use during flu season in China (Zhang et al., 2019). One 473 

limitation of their study was the absence of samples from the period before the change occurred, which necessitated 474 

the use of other data sources. Partnerships between researchers and government agencies may assist in undertaking 475 

evaluations of policy changes before, during and after they occur. Additionally, WBE studies of pharmaceuticals 476 

are not necessarily limited in their choice of pharmaceuticals, as may be the case for surveys of drug use. If 477 

researchers/policy advisors are interested in the effects of an intervention directed at one pharmaceutical, WBE 478 

may be used to assess how this intervention has influenced consumption of another pharmaceutical. WBE could 479 

quickly measure changes in the consumption of pharmaceuticals during public health crises. In this light, WBE 480 

can be employed to investigate the impact of large-scale lifestyle disruptions such as the COVID-19 pandemic, 481 

continuously and with a shorter time lag than prescription or sales data (Been et al., 2021; Reinstadler et al., 2021).  482 

Additionally, WBE can provide location specific information for DUR, which could be used to set area-based 483 

health care priorities for policy-makers. Areas with a higher burden of pharmaceutical misuse may require more 484 



policy attention e.g. public or prescriber education, or  the prevention of opioid overdose deaths by distributing 485 

naloxone sprays (Endo et al., 2020). WBE can identify areas with a higher burden of both legal and illegal opioid 486 

use. By prioritising problematic areas, decision-makers can respond to an evolving public health problems and 487 

address the social determinants of a public health crisis. The EMCDDA has already shown the effectiveness of 488 

this approach in addressing the consumption of illegal drugs in different European communities (European 489 

Monitoring Centre for Drugs and Drug Addiction, 2019a).  490 

In the same manner, WBE is also able to evaluate the effects of the promotional activities of pharmaceutical 491 

companies, government or other institutions. This would enable policy-makers to assess if these approaches are 492 

an efficient use of resources. If the measures don’t produce the desired effect, policy makers might look for 493 

different policies.  WBE could be used, for example, to assess if statin compliance was adversely affected by 494 

exaggerated media reports about side effects (Nordestgaard, 2018).  495 

Besides that, WBE can be used to quickly evaluate the effect of policy changes and to optimize prevention and 496 

harm reduction strategies targeting pharmaceuticals. Furthermore, by triangulating WBE data with other DUR data 497 

from different locations and information sources, decision-makers can identify and promote best practice. In this 498 

light, WBE can also be used to monitor and evaluate measures to ameliorate undesirable  pharmaceutical use (e.g. 499 

over-use of antibiotics, benzodiazepines, Z-drugs, opioids etc.). This is especially helpful in situations where 500 

information on the consumption of pharmaceuticals needs to be obtained rapidly (e.g. socio-economic disruptions, 501 

health crises, epidemics, etc.). These interventions do not always have to be restricted to governments. Other 502 

organisations could potentially use WBE to assess the effects of their activities on the burden of pharmaceutical 503 

use (e.g. non-profit organisations that intervene to diminish addiction). 504 

Furthermore, WBE can also provide an indicator of the extent of stockpiling of pharmaceuticals that have been 505 

removed from the market. WBE can complement DUR data source because sales and prescriptions of these 506 

pharmaceuticals are no longer available upon their removal from the market. It could also measure the extent of 507 

stockpiling after the sale and distribution of scheduled pharmaceuticals is prohibited. If these pharmaceuticals are 508 

still used in different communities, it would mean that they are acquired from other sources (e.g. online pharmacies, 509 

imported from other countries). WBE can also be applied to investigate if pharmaceutical reformulations (e.g. 510 

oxycodone reformulation in Australia to prevent injecting drug use) reduce consumption.  511 

Two examples of governments that have used WBE for drug utilization research are the Australian National 512 

Wastewater Drug Monitoring Program (NWDMP) and the New Zealand National Wastewater Testing Programs. 513 



These campaigns monitor an array of both illicit and licit drug metabolites (e.g. fentanyl and oxycodone) in a large 514 

proportion of the population. The Australian NWDMP demonstrated large spatial differences in per capita 515 

consumption of some pharmaceuticals such as fentanyl and oxycodone and that regional consumption for these 516 

was higher than in the capital cities, as well as changes in consumption over time (Australian Crime Intelligence 517 

Commision, 2020).  518 

5. Methodological limitations 519 

Despite the progress made through more than a decade of research, WBE has some intrinsic uncertainties related 520 

to sampling, biomarker stability, chemical analysis and real-time population that remain to be addressed 521 

(Castiglioni et al., 2013). Fig. 4 focuses on the different steps of WBE that should be checked when adopting this 522 

methodology. This flowchart also indicates the several sources of uncertainty associated with the different steps 523 

that need to be resolved when applying the WBE approach.  524 

 525 

Fig. 4 Criteria for implementing the WBE approach  526 

Efforts have been spent to evaluate these uncertainties and improve the accuracy of WBE estimations. In this 527 

sense, continuous flow-proportional sampling of the influent is recommended best practice for sampling (Ort, 528 

Lawrence, Reungoat, & Mueller, 2010), but in reality different sampling methods including time proportional or 529 

volume proportional sampling are used for logistical reasons. Most of the reported studies use fixed population 530 

numbers and it is difficult to verify if the fluctuations in population-normalized mass loads were due to variations 531 

in population size or changes in consumption patterns. Therefore, it would be more appropriate to use dynamic 532 



population size numbers using either an anthropogenic biomarker or other data such as mobile phone data (Been 533 

et al., 2014; O’Brien et al., 2014; Thomas, Amador, Baz-Lomba, & Reid, 2017).  534 

Metabolism and excretion of drugs are known to vary between individual or even within one individual under 535 

different health condition. Therefore, the excretion factor (EF), derived from these processes, contributes notably 536 

to the overall uncertainty of substance consumption estimation in WBE. EFs used in WBE applications are mostly 537 

derived from pharmacokinetic studies that had a limited number of participants and so may not reflect the average 538 

excretion profile in large populations (Kato, 1975; Klotz, 2011; Yasuda, Zhang, & Huang, 2008). Effort are being 539 

made to refine the EF of different drugs (Gracia-Lor, Zuccato, & Castiglioni, 2016). In recent years, some EF 540 

values derived from pharmacokinetics data were considered unsuitable for WBE application due to the large 541 

uncertainty involved. Therefore, estimation of absolute figures on back-calculated doses should be addressed more 542 

carefully. However, the primary focus of WBE has been to provide a complementary strategy to monitor spatial 543 

and temporal trends in consumption patterns of pharmaceuticals. For this purpose, a viable approach to uncertainty 544 

arising from EFs would be to use population-normalised mass loads and focus on the analysis of trends. Actually, 545 

back-calculating defined daily doses should only be considered when triangulation with other relevant DUR 546 

information sources is necessary. As an alternative, mass load of biomarkers in wastewater and prescription/sales 547 

statistics have been used to refine the EF for WBE applications. In some cases they have shown that these EFs can 548 

provide more accurate estimates of substance consumption in large populations (Thai, Lai, Bruno, et al., 2016). 549 

Additional uncertainties can arise from the the non-use and/or direct disposal of unused drugs or the formation 550 

from other chemicals or conjugated drugs (Bettington et al., 2018; Guirguis, 2010). This is especially an issue if 551 

the parent drug is used as biomarker and if the unused drugs are disposed directly into the sewers (Petrie, Barden, 552 

& Kasprzyk-Hordern, 2015). Most pharmaceuticals possess chirality and racemic analysis can be used to 553 

distinguish between dumping and consumption of pharmaceuticals . 554 

Stability of biomarkers is another source of uncertainties in WBE. Several studies have been carried out to 555 

understand degradation/fate processes and evaluate and model the in-sample and in-sewer biomarker stability in 556 

order to improve our understanding of the degree of this uncertainty (P. Choi et al., 2020; Gao et al., 2019; Li et 557 

al., 2019; Ramin et al., 2017). Using preservatives such as HCl and storing the samples at low temperature 558 

(preferably <-20 ℃) are appropriate ways to minimise biomarker transformation. However, preservatives can only 559 

be introduced at the point of collection and so do not account for any in-sewer degradation. For in-sewer stability, 560 

the uncertainty could be much higher due to the lack of control over the microbiota present in the sewer system, 561 



especially the sewer biofilms. Overall, higher biofilm area to bulk water volume ratio, higher wastewater 562 

temperatures and longer hydraulic retention time promote biomarker transformation in the sewers (O’Brien et al., 563 

2017).  564 

For some chemicals, sorption to particulate matter and/or biofilm can also contribute to the overall uncertainty of 565 

the WBE approach, especially for biomarkers with high log Kow values such as methadone, fluoxetine and 566 

atorvastatin (Baker & Kasprzyk-Hordern, 2011c; Ramin et al., 2017).  567 

6. Conclusion 568 

Influent wastewater contains a wealth of information on population health and lifestyle and can be considered as 569 

a mirror of the society. The growing number of applications demonstrates how WBE can reduce current knowledge 570 

gaps in DUR. In the future, DUR could benefit from a better understanding of pharmaceutical use in the general 571 

population. In this light, WBE could provide information on pharmaceutical use not recorded using other methods 572 

(e.g. illegal use, imported pharmaceuticals,…) and could be employed as an alternative in countries with poor 573 

recordkeeping. Additionally, WBE has the potential to be used as an indicator on health aspects of populations 574 

which can be obtained with fast turn-around-times at high spatial and temporal resolutions and therefore to be used 575 

as early-warning system for more detailed investigations.However,  knowledge of methodological issues and 576 

compound-specific uncertainties (i.e. biomarker excretion, in-sewer stability, population catchment size) will be 577 

needed to convert concentrations of human biomarkers to population-normalised loads and/or pharmaceutical 578 

consumption.   579 

We also clearly emphasize the importance of triangulating multiple sources of information (e.g. 580 

prescription/sales/dispensing data, health interview survey data,…) to validate WBE measurements and obtain a 581 

multi-angled view on the use of pharmaceuticals in different locations. Additionally, the high spatio-temporal 582 

frequency of WBE enables correlation analysis to investigate association between pharmaceutical consumption 583 

and socio-demographics in specific communities. This adaptable sampling frequency also enables the investigation 584 

of the impact of interventions (e.g. pharmaceutical rescheduling, restricted sales, education initiatives…) 585 

implemented by governmental agencies. It improves our understanding of pharmaceutical (mis)use for the 586 

location-specific allocations of health care resources made by policy-makers. Finally, WBE is one of the few data 587 

sources that can objectively measure the extent of illegal pharmaceutical consumption in the population. WBE and 588 

other DUR information sources have their strength and weaknesses but the combination promises to be yield more 589 

than the some of each. 590 
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