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Abstract

We present a quantitative method which allows us to reliably measure dynamic changes in the atomic structure of
monatomic crystalline nanomaterials from a time series of atomic resolution annular dark field scanning transmission
electron microscopy images. The approach is based on the so-called hidden Markov model and estimates the number of
atoms in each atomic column of the nanomaterial in each frame of the time series. We discuss the origin of the improved
performance for time series atom-counting as compared to the current state-of-the-art atom-counting procedures, and
show that the so-called transition probabilities that describe the probability for an atomic column to lose or gain one
or more atoms from frame to frame are particularly important. Using these transition probabilities, we show that the
method can also be used to estimate the probability and cross section related to structural changes. Furthermore, we
explore the possibilities for applying the method to time series recorded under variable environmental conditions. The
method is shown to be promising for a reliable quantitative analysis of dynamic processes such as surface diffusion,
adatom dynamics, beam effects, or in situ experiments.

Keywords: atom-counting, dynamic structural changes, quantitative electron microscopy, scanning transmission
electron microscopy

1. Introduction

Nanomaterials exhibit unique properties depending on
their size and shape, as well as on the type of atoms
[1, 2, 3]. Particularly interesting are the changes in the
nanomaterials through time, which can occur via ad-
atom dynamics [4, 5], surface diffusion and reconstruc-
tion [6, 7, 8, 9, 10], due to electron beam irradiation
[11, 12, 13, 14], or during in situ experiments such as heat-
ing or gas flow experiments [15, 16]. In order to study the
properties of such time varying processes, it is important
to correctly quantify the 3D atomic structure of the nano-
materials, and the structural changes that occur over time.
In order to unravel the structure-properties relationship of
nanomaterials, atomic resolution annular dark field (ADF)
scanning transmission electron microscopy (STEM) is an
ideal technique [17, 18]. When the inner angle of the
annular detector is chosen sufficiently high - about three
times larger than the probe convergence angle, the ADF
STEM imaging is incoherent. In such high angle annular
dark field (HAADF) STEM images, the intensity increases
monotonically with the atomic number Z and the thick-
ness of the material [18, 19, 20, 21]. The HAADF STEM
is therefore very suitable for quantitative analysis. How-
ever, depending on the specimen thickness, quantitative
analysis of ADF STEM image intensities can also be done

∗sandra.vanaert@uantwerpen.be

using smaller detector inner angles, balancing the detector
collection area against the coherence of the image intens-
ity in order to obtain the optimal experiment design [22].
For a single atomic resolution ADF STEM image, the 3D
atomic structure of the nanomaterial can be retrieved us-
ing 2D atom-counting results. An initial 3D configuration
is therefore generated starting from the counting results,
using prior knowledge about the material’s crystal struc-
ture. Next, an energy minimization using ab-initio calcu-
lations or a Monte Carlo approach is performed to relax
the 3D atomic structure [23, 24, 25, 26].

Different methods have been developed that can reliably
count the number of atoms in each atomic column from a
single ADF STEM image [23, 27, 28, 29, 30, 31]. These
approaches are all based on the so-called scattering cross
sections, a measure for the total intensity of electrons
scattered from the atomic columns [32, 33]. The scat-
tering cross section of an atomic column increases with
increasing atomic mass number Z or increasing thickness
of the atomic column, and can be estimated from an ADF
STEM image by integrating image intensities in Voronoi
cells around the atomic column positions [33], or by fitting
a parametric model consisting of 2D overlapping Gaussian
peaks [29, 32, 34]. Once the scattering cross sections for
all atomic columns are estimated, atoms can be counted
by using an image simulations-based approach [23, 27],
a statistics-based approach [28, 29, 30], or a hybrid ap-
proach, combining both techniques [31]. In case of the im-
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age simulations-based approach, normalised experimental
scattering cross sections from the ADF STEM image are
directly compared to scattering cross sections obtained
from simulated images with the same microscope settings
of the same material in a bulk crystal at different thick-
nesses. The statistics-based approach on the other hand
estimates a Gaussian mixture model based on the set of
scattering cross sections, where each Gaussian component
corresponds to a set of atomic columns with a given thick-
ness. Then, for each atomic column the most likely number
of atoms is assigned. The parameters of the Gaussian mix-
ture model even provide a measure for the precision of the
counting results. Finally, the hybrid statistics-simulations
based method for atom-counting includes prior knowledge
from image simulations to estimate the locations of the
components of the Gaussian mixture model. This ap-
proach allows for more reliable atom-counting, particularly
at low electron doses.
In this paper, we propose a method for atom-counting, spe-
cifically designed for the analysis of sequential ADF STEM
images, using a so-called hidden Markov model. The
method was introduced in [35] to quantitatively analyse
possible changes of the atomic structure from time series
of ADF STEM images. Here, its methodology, possibilities
and limitations will be discussed in more detail. In Section
2, the theoretical framework of the hidden Markov model
is introduced and an explicit link between this new method
and the existing procedure for atom-counting from a single
image is made [28, 29, 30, 31]. In this section, the so-called
transition probabilities are introduced as key parameters
of the hidden Markov model, as they quantify the prob-
abilities for an atomic column to lose or gain one or more
atoms from frame to frame during the time series. Next, in
Section 3, we discuss the possibilities and inherent limita-
tions of this method for atom-counting from time series of
ADF STEM images. It will be shown that the transition
probabilities estimated from this analysis can be linked to
physical cross sections related to structural changes. Fur-
thermore, we discuss how to deal with variable environ-
mental conditions during the time series.

2. Time series atom-counting methodology

In this section, we discuss in detail how to count the num-
ber of atoms in each atomic column of a nanostructure
from a time series of ADF STEM images [Figure 1(a)].
First, the ADF STEM image intensities need to be nor-
malised to the incident electron beam [36, 37, 38, 39].
Then, in order to reliably quantify the changes for each
atomic column of the nanostructure, the time series needs
to be aligned. This is achieved using rigid registration
to account for sample drift and/or rotation [Figure 1(b)].
One can also apply non-rigid registration of the images to
compensate for scan distortions in order to improve the
precision of the quantification of the ADF STEM images
performed during the next steps [40]. Next, the atomic
column positions need to be reliably quantified in each

frame. In case of high electron dose recordings, a simple
peak finding routine is sufficient. However, when the elec-
tron dose is low, and the noise level in the images is high,
it becomes difficult to distinguish atomic columns from
noise fluctuations. It is however crucial to correctly se-
lect all atomic columns. This can be done using the max-
imum a posteriori (MAP) probability rule [Figure 1(c)]
[41, 42]. Using these atomic column positions, a para-
metric imaging model is fitted to each ADF STEM im-
age using the StatSTEM software [34]. From this model,
which takes overlapping intensities of neighbouring atomic
columns into account, scattering cross sections can be es-
timated, corresponding to the total scattered intensity for
each atomic column [Figure 1(d)]. Although crosstalk is
not estimated by this incoherent imaging model, it was
shown that this effect does not hamper reliable quanti-
fication [43, 44]. In order to apply the hidden Markov
model to the ADF STEM time series, the atomic columns
of the nanostructure are tracked in each image, and the
scattering cross sections of each atomic column are sorted
accordingly [Figure 1(e)]. Together, the scattering cross
sections of all atomic columns in each ADF STEM im-
age of the time series are the input for the hidden Markov
model analysis [Figure 1(f)]. The output of the hidden
Markov model is the set of atom-counting results for each
ADF STEM image of the time series [Figure 1(g)].

2.1. Scattering cross sections for time series analysis

In order to analyse the ADF STEM time series, the scat-
tering cross sections of the atomic columns in each image
are estimated [Figure 1(d)] [34]. The ADF STEM image
intensities are peaked at the atomic column positions [18].
Therefore, a parametric model consisting of overlapping
2D Gaussian peaks is fitted to the image. The expecta-
tion of the image intensity at pixel (k, l), corresponding
to position (xk, yl) in the ADF STEM image, can be de-
scribed by the expectation model fkl (θ):

fkl (θ) = ζ +
∑N

n=1 ηn exp

(

−
(xk−βxk)

2
+(yl−βyl)

2

2ρ2

)

, (1)

with θ the vector of unknown structure parameters: a con-
stant background ζ, the width of the Gaussian peaks ρ, the
height of each Gaussian peak ηn, and the position coordin-
ates of each atomic column βxn

and βyn
. The total number

of atomic columns analysed using this model corresponds
to N . The volumes under the 2D Gaussian peaks quantify
the scattering cross sections of each atomic column n in
the image:

o(n) = 2πηnρ
2. (2)

This procedure is applied to each individual ADF STEM
image of the time series. Each atomic column present in at
least one of the images of the time series therefore receives
a unique index n. The scattering cross sections are ranked
accordingly [Figure 1(e)]. When an atomic column n is
absent in a frame t according to the MAP rule [41, 42], it
is not included in the fitting procedure for that image, but
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Figure 1: Workflow for atom-counting from a time series of ADF STEM images using hidden Markov models.

its scattering cross section o
(n)
t is simply set to zero. By

sorting the set of scattering cross sections in this manner,
we can construct the so-called observed sequence:

O =
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o
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T · · · o

(N)
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. (3)

This corresponds to the set of scattering cross sections of
an ADF STEM time series with N unique atomic columns
and T frames, and it serves as an input for the hidden
Markov model that will be used to count the number of
atoms.

2.2. Probability distribution of estimated scattering cross

sections

A hidden Markov model consists of two layers [Figure 1(f)].
The first layer is “hidden”, and is observed only indirectly
through the observed sequence that constitutes the second
layer of the hidden Markov model. The first layer is a first
order Markov chain. This implies that the state at a given
time t depends only on the previous state, at time t − 1,
and not on the state of the system before that. In the con-
text of atom-counting, the hidden states of the first layer
correspond to the number of atoms in each atomic column
at each image of the time series. The number of atoms in
each atomic column of the nanoparticle in each frame can
only be observed indirectly through the scattering cross
sections. Therefore, in the context of atom-counting, the
set of all scattering cross sections estimated from the ADF

STEM images of the time series O = {o
(n)
t }, introduced

in Equation (3), constitutes the second layer. The set of
all hidden states is summarised by the hidden state se-

quence H = {h
(n)
t }. In this expression, h

(n)
t is a so-called

latent variable that describes the hidden state (number of
atoms) at time t for atomic column n. In the context of
hidden Markov models, this is commonly chosen as a bin-

ary vector, with binary elements h
(n)
tg = 1 if and only if

the number of atoms in atomic column n in frame t equals

g, otherwise h
(n)
tg = 0.

The joint probability density function of the hidden state
sequence H and the observed sequence O is described as:

p(O,H|Ω) =

N
∏

n=1

G
∏

g=0

(ιg)
h
(n)
1g

(

N (o
(n)
1 |aMg, σ)

)h
(n)
1g

(4a)

×
T
∏

t=2

N
∏

n=1

G
∏

j=0

G
∏

g=0

(Ajg)
h
(n)
t−1,jh

(n)
tg (4b)

×
T
∏

t=2

G
∏

g=0

N
∏

n=1

(

N (o
(n)
t |aMg, σ)

)h
(n)
tg

. (4c)

This expresses the likelihood that a specific state sequence
H corresponds to the observed sequence O, given a set of
model parameters Ω. In this expression, G is the max-
imum number of atoms in any atomic column of the time
series and T is the number of frames in the time series.
Note that the products over the number of atoms start
from 0, in order to allow atomic columns to be absent in
some of the frames. The unknown model parameters are
given by the parameter vector:

Ω =
(

ι0, ι1, · · · , ιG−1, A00, · · · , A0,G−1, A10, · · ·AG,G−1, a, σ
)

. (5)

The notation used for the hidden Markov model through-
out this paper is summarised in Table A.1 of Appendix
A. The initial probability ιg expresses the probability for
an atomic column to contain g atoms in the first frame
[blue arrow in Figure 1(f)]. Only G initial probabilities
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are estimated, since
∑G

g=0 ιg = 1. The transition probab-
ility Ajg expresses the probability that an atomic column
has j atoms in one frame and g atoms in the next frame
[green arrows in Figure 1(f)]. All transition probabilit-
ies, for 0 ≤ j ≤ G and 0 ≤ g ≤ G are summarised
in the (G + 1) × (G + 1) transition matrix A = {Ajg}.
Only (G+1)G transition probabilities are estimated, since
∑G

g=0 Ajg = 1, ∀0 ≤ j ≤ G. Note that we implicitly as-
sume that atomic columns with the same thickness will
undergo structural changes in a similar manner by model-
ling all structural changes using only one transition matrix.
The probability to observe a scattering cross section with

value o
(n)
t when g atoms are in the atomic column, is mod-

elled by a Gaussian emission probability N
(

o
(n)
t |µg, σ

)

[orange arrows in Figure 1(f)]. In this expression, the av-
erage scattering cross section for an atomic column with g
atoms is determined by µg = aMg, with Mg the library
value, i.e. the scattering cross section determined from im-
age simulations, for an atomic column with g atoms, as in
[31]. In this manner, we include prior knowledge from im-
age simulations, but allow for small deviations between the
parameters used for the image simulations and the actual
experimental imaging conditions by estimating the linear
scaling parameter a. The width of the Gaussian emis-
sion probability is σ, as indicated schematically in Figure
1(f). The average distance between subsequent average
scattering cross sections µg and µg+1, with 0 ≤ g < G,
is called δ, and is also indicated in Figure 1(f). This al-
lows us to express the relative width of the Gaussian emis-
sion probability σ/δ, which is a measure for the amount of
overlap between neighbouring emission probabilities, and
therefore also a measure for the noise level of the ADF
STEM images from which the scattering cross sections are
estimated. Equation (4) expresses the joint probability
density function of a factorial hidden Markov model [45],
since the number of atoms in each atomic column is de-
scribed as a separate hidden state. In a conventional hid-
den Markov model, the hidden states would be defined as
the set of atom-counts at each time corresponding to a spe-
cific 3D atomic model, which makes unravelling the phys-
ical meaning of each hidden state unnecessarily complex.
In addition, also the observations are factorised in Equa-
tion (4), as each atomic column has a separate scattering
cross section, which makes it possible to derive analyt-
ical update formulas for the parameters, contrary to most
factorial hidden Markov models, where such an approach
becomes intractable [45]. The parameters of the factorial
hidden Markov model for atom-counting are estimated us-
ing an Expectation-Maximisation algorithm, often called
a Baum-Welch algorithm [46]. The counts are retrieved
using a Viterbi decoding algorithm that determines the
most likely state sequence H [47, 48]. This state sequence
contains the evolution of the number of atoms in each of
the atomic columns in the nanomaterial during the time
series [Figure 1(g)].

When only 1 frame is considered (T = 1), the joint prob-

ability density function reduces to Equation (4a). This is
the joint probability density function of a Gaussian mix-

ture model with latent variables h
(n)
1g , observed variables

o
(n)
1 , and mixing proportions ιg [49]. In order to under-
stand this, we can derive the marginal probability distri-
bution for the observed sequence O when T = 1, given the
model parameters Ω:

p(O|Ω) =
∑

H

p(O,H|Ω)

=
∑

H

[

N
∏

n=1

G
∏

g=0

(ιg)
h
(n)
1g

(

N (o
(n)
1 |aMg, σ)

)h
(n)
1g

]

=

N
∏

n=1

G
∑

g=0

ιgN (o
(n)
1 |aMg, σ), (6)

where the sum over H implies summing over all possible

values of h
(n)
1g , or in other words, over all possible numbers

of atoms g for each atomic column n. In this expression, we
indeed recognise a Gaussian mixture model for N atomic
columns, with mixing proportions ιg. In other words, for a
single frame, the proposed approach in this paper for atom-
counting from a time series of ADF STEM images reduces
to the existing approach for atom-counting [28, 29, 30, 31].
The mixing proportions correspond to the probability of
having g atoms in an atomic column. During the time
series, these probabilities are modified by the transition
probabilities Ajg. We can therefore derive mixing pro-
portions at each frame t, to quantify how the probability
of having g atoms in an atomic column is changed after
each transition from one frame to the next. The mixing
proportion at frame t = 1 is given by

π(1)
g = ιg. (7)

In a frame t > 1, the probability of having g atoms in an
atomic column depends on the probabilities for all possible
transitions j → g from frame t− 1 to frame t, and on the
probability distribution for the different thicknesses j in
the previous frame, such that:

π(t)
g =

G
∑

j=0

π
(t−1)
j Ajg, (8)

In Section 3.2, we will use this expression to link the trans-
ition probabilities to a physical cross section related to
structural changes.

2.3. Parameter estimation

The estimates for the unknown model parameters Ω of the
factorial hidden Markov model [Equation (5)] are obtained
by maximising the likelihood [Equation (4)], or equival-
ently maximising the expectation value of the log likeli-
hood [46, 50]. The expectation value of the log likeli-
hood is evaluated during the E-step of the Expectation-
Maximisation algorithm, and used to determine updates
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for the model parameter estimates in the M-step of the
Expectation-Maximisation algorithm. A more detailed de-
rivation is given in Appendix A. The update formulas for
the model parameters are calculated in the M-step and are
expressed by the following equations:

ιg =

∑N
n=1 E

[

h
(n)
1g

]

∑N
n=1

∑G
j=0 E

[

h
(n)
1j

] , (9)

Ajg =

∑T
t=2

∑N
n=1 E

[

h
(n)
tg h

(n)
t−1,j

]

∑T
t=2

∑N
n=1

∑G
g′=0 E

[

h
(n)
tg′ h

(n)
t−1,j

] , (10)

a =

∑T
t=1

∑N
n=1

∑G
g=0 E

[

h
(n)
tg

]

o
(n)
t Mg

∑T
t=1

∑N
n=1

∑G
g=0 E

[

h
(n)
tg

]

M2
g

, (11)

σ =

√

√

√

√

√

∑T
t=1

∑N
n=1

∑G
g=0 E

[

h
(n)
tg

]

(o
(n)
t − aMg)2

∑T
t=1

∑N
n=1

∑G
g=0 E

[

h
(n)
tg

] . (12)

The expected values E

[

h
(n)
tg

]

and E

[

h
(n)
tg h

(n)
t−1,j

]

of the

hidden states are first determined in the E-step of the
Expectation-Maximisation algorithm, and are derived in
Appendix A.1. The update formulas are derived in Ap-
pendix A.2. These iterative parameter updates are initial-
ised by starting values. For the initial probabilities and
transition probabilities, uniform starting values are used:
ιg = 1

G+1 and Ajg = 1
G+1 , where G + 1 is the number of

different thicknesses considered during the analysis, as the
counting is allowed to start from 0 atoms. In this manner,
no prior knowledge on the thickness distribution of the
nanostructure or the amount of structural changes that
might occur during the time series is imposed during the
parameter estimation procedure. The scaling parameter is
initialised by a = 1, which implies that we expect no or
only small deviations between the parameters used to per-
form the image simulations and the actual experimental
settings. Estimating the scaling parameter will nonethe-
less allow for some small variations, enabling us to account
for small mismatches between experiment and image sim-

ulation. The width is initialised by σ = max(O)−min(O)
2(G+1) .

The maximum number of atoms in an atomic column G
that is considered during the analysis should be chosen lar-
ger than the maximum number of atoms one might expect
from prior knowledge about the material such as sample
preparation or additional information resulting from extra
viewing directions.

2.4. Retrieving reliable counting results

In order to obtain atom-counting results for the time series,
the hidden statesH need to be estimated from the factorial
hidden Markov model, once its parameters Ω are estim-
ated as described in Section 2.3. An intuitive approach
might be to select the number of atoms g that is most

likely for each atomic column n in a frame t, based on
the likelihood defined by Equation (4). This corresponds
to the approach used to determine the number of atoms
from a frame by frame analysis using the existing approach
for atom-counting [28, 29, 30, 31]. However, this does not
suffice. Suppose that the most likely number of atoms
in atomic column n at time t is g, and was j at time
t− 1. The transition probability Ajg may be zero or close
to zero, causing this transition to be invalid or very un-
likely. Therefore, an algorithm is required to consider the
entire state sequence: the Viterbi algorithm [47, 48]. This
path backtracking algorithm determines the most likely
state sequence H given the observed sequence O and the
estimated model parameters Ω, including the transition
probabilities Ajg. An elaborate derivation is provided in
Appendix A.3.

3. Possibilities and limitations

3.1. Performance for time series atom-counting

In order to study the performance for time series atom-
counting of the proposed hidden Markov model, a set of
hypothetical time series of scattering cross sections with
different lengths was generated by creating hidden state se-
quences and observed sequences. The parameters used to
generate the hypothetical hidden Markov models are sum-
marised in Table B.1 of Appendix B. The state sequences
correspond to N = 100 atomic columns with up to G = 10
atoms in an atomic column. Uniform initial probabilities
ιg were used, which represents a uniform distribution of
thicknesses ranging between 1 and the maximum thick-
ness G in the first frame. No missing atomic columns were
included in the state sequences. The number of atoms in
each state sequence is then changed according to a trans-
ition matrix A with a Gaussian spread around the di-
agonal with full widh at half maximum (FWHM) equal
to 1.5, shown in Figure B.1 of Appendix B. This implies
that some structural changes will occur during the time
series, but the probability that large jumps in the number
of atoms, i.e. ±2 or more, are generated from frame to
frame is small. A unitary transition matrix would imply
no structural changes. The observed sequences of scatter-
ing cross sections are created using a Gaussian emission

probability N (o
(n)
t |aMg, σ), with average scattering cross

section equal to the scattering cross sections Mg obtained
from HAADF STEM image simulations of Pt(110) as de-
scribed in Appendix B. The relative width of the Gaus-
sian emission probability considered in the simulation to
study the performance is σ/δ = 0.3 and 0.7. This width
accounts for fluctuations of the scattering cross sections
around the average value, caused by various effects such
as scan noise, counting statistics or neighbouring atomic
columns. Note that this simulation set-up implicitly as-
sumes that all structural changes are described by the
transition matrix, regardless of the process that causes the
changes.

5



At each length of the time series T and noise level, i.e. re-
lative width of the Gaussian emission probability σ/δ, 100
noise realisations of the hypothetical time series with the
above mentioned settings were analysed. Using these hy-
pothetical time series, the performance of the proposed
hidden Markov model for time series atom-counting is
compared to the existing state-of-the-art atom-counting
procedure, the so-called hybrid method for atom-counting
[31]. In order to count the number of atoms from a time
series using the hybrid method, the scattering cross sec-
tions of all frames of the time series are jointly analysed by
estimating the parameters of one Gaussian mixture model.
The counting results are then extracted per frame. We will
call this approach the collective hybrid method. In Figure
2, we evaluate the average percentage of correctly counted
atomic columns from the hypothetical time series, with a
95% confidence interval for both methods. From these res-
ults, it is clear that the hidden Markov model counts the
number of atoms more reliably than the collective hybrid
method, especially for longer time series. Note that in
the case of T = 1, both methods indeed yield exactly the
same result, as mentioned before in Section 2.2. Adding
even only a few extra frames allows the hidden Markov
model to quickly exceed the performance of the collect-
ive hybrid method. One could argue that this improve-
ment of the counting performance with an increasing time
series length T is simply the result of the better statis-
tics obtained by analysing the increasing set of N × T
scattering cross sections. This is however not the main
reason for the improved performance. We demonstrate
this by analysing hypothetical hidden Markov models with
the same parameters used for the analysis shown in Fig-
ure 2, as summarised in Table B.2 of Appendix B, but
with a constant total number of scattering cross sections
T × N = 1000 considered during the analysis. Figure 3
shows the average percentage of correctly counted atomic
columns with 95% confidence intervals for the analysis of
these hypothetical hidden Markov models as a function of
the number of frames in the time series T and the number
of atomic columns in each frame N . For the collective hy-
brid method, increasing the number of atomic columns N
or the number of frames T would both result in a larger
set of scattering cross sections that are jointly analysed.
For the hidden Markov model on the other hand, there is
a difference, and increasing the number of frames improves
the atom-counting performance, as shown in Figure 3. In
other words, it is beneficial to increase the length of the
time series, rather than increasing the number of atomic
columns in each frame of the time series.
The improved performance of the hidden Markov model
over the collective hybrid method for the same noise
level (i.e. the same relative width of the Gaussian emis-
sion probability σ/δ) can therefore be attributed to the
inclusion of transition probabilities to explicitly model
structural changes over time. By increasing the number
of frames T , the amount of frame transitions increases.
Moreover, the reliability with which the transition prob-

Figure 2: Comparison of the performance for atom-counting
from a time series of the hidden Markov model and the collect-
ive hybrid method for atom-counting, at different noise levels
σ/δ, evaluated as a function of the length of the time series T .

Figure 3: Performance for atom-counting from a time series
of the hidden Markov model at different noise levels σ/δ, eval-
uated as a function of the length of the time series T and the
number of atomic columns in each frame N , while the product
N × T was kept constant.

abilities that model the changes in the number of atoms
in an atomic column through time can be estimated also
increases. Instead of estimating one set of mixing pro-
portions for the entire time series, as is the case for the
collective hybrid method, initial probabilities and trans-
ition probabilities are estimated by the hidden Markov
model analysis, to allow for changes in the distribution
of different thicknesses in the nanostructure from frame to
frame. This allows us to use the Viterbi path backtrack-
ing algorithm to determine the number of atoms in each
atomic column in each frame of the time series by con-
sidering the most likely sequence, rather than the most
likely number of atoms to fit the scattering cross section
values in each frame separately. In this manner, we ex-
ceed the limitations imposed by the overlapping Gaussian
distributions. To demonstrate this, a hypothetical time
series with up to G = 6 atoms thickness was created us-
ing parameters summarised in Table B.3 of Appendix B.
Figure 4(a) shows the set of scattering cross sections of
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the entire time series. The scattering cross sections cor-
responding to atomic columns with 3, 4 and 5 atoms are
colour-coded in blue, green and red respectively. The scat-
tering cross sections that correspond to atomic columns
with 1, 2 or 6 atoms are all in grey. Figures 4(b) and 4(c)
show the same colour-codings for the atomic columns that
are counted as 3, 4 and 5 atoms respectively, using the col-
lective hybrid method for atom-counting and the hidden
Markov model for atom-counting. In the collective hybrid
method, atomic columns in the tails of the Gaussian com-
ponents are miscounted when components overlap [Figure
4(b)]. This limitation is no longer present for the hidden
Markov model [Figure 4(c)], thanks to the Viterbi path
backtracking algorithm which exploits the information on
the structural changes captured by the transition prob-
abilities. This means that the hidden Markov model for
atom-counting from a time series of ADF STEM images
yields more accurate counting results, as compared to the
existing atom-counting approach.

Figure 4: Histogram showing all scattering cross sections of a
hypothetical time series, colour coded according to the number
of atoms in an atomic column: blue for 3 atoms, green for
4 atoms, red for 5 atoms and grey for any different number
of atoms. (a) Ground truth. (b) Atoms counted using the
collective hybrid method, with the estimated Gaussian mixture
model. (c) Atoms counted using the hidden Markov model.

3.2. Physical interpretation of transition probabilities

So far, we have shown that the hidden Markov model yields
more reliable counting results for the analysis of a time

series of a changing nanostructure. In order to obtain these
atom-counts, the parameters of the hidden Markov model
are estimated as discussed in Section 2. An important
parameter of the hidden Markov model is the transition
matrix A, as this is used to model the probability that
the number of atoms in an atomic column changes, and
thus the probability of structural changes. In this section,
we will discuss the link between the transition matrix and
the cross section related to the process that drives the
structural changes throughout the time series. Therefore,
we have to assess the accuracy of the estimated transition
probabilities, and their physical interpretation. Intensity
variations during a time series can be caused either by
noise fluctuations, or by actual structural changes. The
hidden Markov model estimates two separate parameters
to model both contributions. The noise is modelled by
the width σ of the Gaussian emission probability, and the
structural changes are modelled by the transition matrix
A. We will assess the accuracy of the estimated probab-
ility of structural changes using a combined measure for
the G(G+1) estimated transition probabilities and the G
estimated initial probabilities:

P =

∑G
g=0 πg(1−Agg)

G+ 1
. (13)

This expresses the weighted average probability that the
number of atoms in an atomic column changes during the
time series, as 1−Agg corresponds to the probability that
the number of atoms in an atomic column will not stay the
same from frame to frame. The weights πg follow from the
estimated transition and initial probabilities:

πg =
1

T − 1

T−1
∑

t=1

π(t)
g , (14)

with π
(t)
g defined in Equation (8).

In order to validate the physical interpretation of the es-
timated transition matrix in terms of atomic structural
changes, we created 50 noise realisations of a hypothet-
ical time series with the parameters of the hidden Markov
model estimated from the experimental time series of the
Pt wedge that will be analysed further in this section,
shown in Figure 5. The width of the Gaussian emission
probability σ is varied to obtain different noise levels. The
width σ can be related to the electron dose d through

σ =
√

µg

d
when only Poisson noise is present, with µg the

scattering cross section for g atoms in an atomic column
[51]. In this manner, at the average sample thickness, the
noise levels σ/δ used during the following analysis can be
translated to electron doses ranging between 7×104 e−/Å2

and 9×102 e−/Å2. Table 1 summarises the 95% confidence
intervals for the mean estimated values of the probability
of structural changes P from Equation (13) and the rel-
ative width of the Gaussian emission probability σ/δ, at
the different noise levels, together with the ground truth
of these parameters. The percentage of correctly counted
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atomic columns is also summarised using a 95% confidence
interval. Furthermore, results are shown for an analysis of
50 noise realisations of a hypothetical time series with the
same settings, but with a more diffuse transition matrix,
as to allow for more structural changes during the time
series. This transition matrix is shown in Figure B.2 of
Appendix B. In this manner, we can assess the accuracy
of the estimated parameters that quantify noise and struc-
tural changes. For a small underlying probability of struc-
tural changes P , the estimated values of P and σ/δ are ac-
curate up to high noise levels. This indicates that intensity
variations due to structural changes are indeed quantified
by the transition matrix A, while noise fluctuations are
quantified by the width of the Gaussian emission prob-
ability σ. When the underlying probability of structural
changes P is larger, the estimated values of P and σ/δ
still remain accurate up to a reasonably high noise level,
but are slightly more inaccurate, as well as less precise, at
high noise levels. This also leads to a lower percentage of
correct atom-counts. We conclude that the separation of
noise fluctuations from atomic structural changes is reli-
ably done by the hidden Markov model analysis for small
values of P , even at a low electron dose. When the prob-
ability of structural changes P is larger, the separation of
noise and structural changes can still be performed reas-
onably well, although slight inaccuracies arise when the
electron dose is lowered, making it more difficult to dis-
cern the origin of the fluctuations in the scattering cross
sections from frame to frame.

Figure 5: (a) First frame of Pt wedge time series. (b) Estim-
ated transition matrix.

Therefore, when the electron dose is sufficiently high,
Equation (13) reliably describes the probability of struc-
tural changes. In this manner, we can now estimate the
probability of structural changes for an experimental ADF
STEM time series of a Pt wedge using the hidden Markov
model analysis. The time series consists of T = 6 frames
and was previously also analysed in [51]. The first frame
of the time series is shown in Figure 5(a), and all frames
are shown in Figure C.1 of Appendix C. The consecutive
ADF STEM images of the Pt wedge were recorded using
a beam current of 37 pA, corresponding to an electron
dose of 2.8 ×104 e−/Å2. The counting results obtained
by the hidden Markov model analysis for each image are

shown in Figure C.2 of Appendix C. The transition mat-
rix estimated during this hidden Markov model analysis
is shown in Figure 5(b). The white diagonal line plotted
on top of the transition matrix indicates the transitions
where the number of atoms in an atomic column stays the
same. The upper and lower triangles contain the probabil-
ities for an atomic column to respectively gain or lose one
or more atoms. Using Equation (13), this yields an es-
timated probability of structural changes P = 12.6%. We
do not expect structural changes to be caused by sputter-
ing of atoms from the surface, only by surface diffusion,
since the threshold energy for sputtering Pt atoms from a
convex surface with step sites is 379 keV, well above the
incident electron energy of 300 keV [13, 51]. In order to
relate the probability of structural changes to the probab-
ility of surface displacement, a factor 1

2 should be added in
Equation (13), to account for the top and bottom surface
of the nanostructure:

Psd =
1

2

∑G
g=0 πg(1−Agg)

G+ 1
. (15)

The cross section σsd and probability Psd for surface dis-
placement are related as follows [51]:

Psd = σsdd
Nad

N
, (16)

with d the electron dose, N the total number of atomic
columns, and Nad the number of adatoms, taken equal to
the number of atoms with coordination number less than
or equal to 6 in the symmetrical 3D atom configuration
based on the atom-counting. In this manner, we estim-
ate the cross section related to surface diffusion for this
Pt wedge equal to σsd = (5.60± 0.05)× 10−6Å2 from the
probability of surface displacement Psd = 6.3% and the
estimated fraction of adatoms Nad

N
= 0.4. The error bar

in this expression is equal to the standard deviation of
the mean estimated cross section from 100 hypothetical
time series using the same parameters estimated for the
experimental Pt wedge. This value for the cross section
related to surface displacement corresponds to a surface
diffusion threshold energy of 1.09 eV [52]. This is in close
agreement with the theoretical threshold energy for sur-
face diffusion for Pt(110), which is calculated as 1.07 eV,
corresponding to a cross section of σsd = 16 × 10−6Å2

[53]. The underestimation of the cross section by the hid-
den Markov model analysis can be understood since the
estimated transition probabilities describe net structural
changes from frame to frame. These net structural changes
can however be the result of multiple hops of atoms, po-
tentially in opposite directions, yielding a smaller amount
of net changes after the frame is acquired as compared to
the actual amount of structural changes. In this manner,
we unavoidably underestimate the cross section related to
surface diffusion. However, this methodology gets a closer
match with the theory as compared to the current state-of-
the-art analysis of variance method, where a cross section
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P (%) σ/δ correct atom-counts (%)
ground 95% CI ground 95% CI 95% CI
truth lower bound upper bound truth lower bound upper bound lower bound upper bound

12.42 12.69 0.1 0.0998 0.1002 99.99 100.00
12.35 12.70 0.3 0.2990 0.3010 97.16 97.28

12.55 12.38 12.81 0.5 0.4968 0.5003 88.69 89.00
11.67 12.44 0.7 0.6945 0.6998 79.02 79.53
11.55 12.74 0.9 0.8908 0.8972 69.83 71.12
59.01 59.38 0.1 0.1000 0.1004 99.99 100.00
59.01 59.47 0.3 0.2974 0.2992 92.89 93.05

59.52 59.60 60.34 0.5 0.4818 0.4888 75.88 76.16
61.50 63.26 0.7 0.6603 0.6762 61.54 62.07
63.72 66.70 0.9 0.8363 0.8525 50.07 51.35

Table 1: Accuracy of the probability of structural changes P , the relative width of the Gaussian emission probability σ/δ and
the atom-counts estimated by the hidden Markov model.

of σsd = (0.74 ± 0.20) × 10−6Å2 was estimated [51], and
is therefore a promising approach for the reliable quanti-
fication of physical cross sections from experimental ADF
STEM time series.

3.3. Multiple transition matrices

The hidden Markov model presented in this paper mod-
els a set of transition probabilities, summarised by one
transition matrix A. In other words, so far, we have as-
sumed that the experimental conditions driving the struc-
tural changes, such as electron irradiation, temperature or
gas flow, are time-invariant. In order to incorporate nano-
materials in real applications, a fundamental understand-
ing of the mechanisms behind atomic structure evolutions
under variable environmental conditions is of crucial im-
portance. We therefore need to test whether the method
presented here can be used to reliably quantify, for ex-
ample, changes during reduction and oxidation reactions.
To this purpose, we will look at the atomic structure of a
Pt catalyst nanoparticle, shown in Figure 6(a), previously
studied in an alternating hydrogen (H2) and oxygen (O2)
flow using the existing state-of-the-art atom-counting pro-
cedure for single ADF STEM images [16]. During the gas
flow experiment, the Pt nanoparticle changes from a fa-
cetted to a round morphology and vice versa. Therefore,
the underlying transition probabilities are not the same for
each frame transition. In fact, two alternating transition
matrices can be recognised, as illustrated in Figure 6(a).
In this section, we examine the effect on the quantification
when we nonetheless assume one transition matrix during
the estimation procedure.
To this purpose, we created a hypothetical time series with
T = 10 frames, based on the atom-counts that were pre-
viously quantified from the single ADF STEM images of
the catalyst Pt nanoparticle in an H2 and O2 environ-
ment [16]. The initial probabilities ιg are set equal to the
mixing proportions quantified previously for the Pt nan-
oparticle in an H2 environment. A direct Markov chain
analysis of a transition from the atom-counts previously

quantified for the Pt nanoparticle in an H2 environment
to the atom-counts quantified in the O2 environment yields
the transition matrix for the first process AH2→O2 , shown
in Figure 6(b). Figure 6(c) shows the transition matrix
for the inverse process AO2→H2 . Note that Figure 6(b)
clearly shows non-zero probabilities for transitions of 0
atoms to multiple atoms, which indicate the appearance
of extra atomic columns during the transition from a fa-
cetted to a round morphology. The frame transitions of
the state sequence are then generated alternately from the
two transition matrices AH2→O2

and AO2→H2
. The num-

ber of atoms in an atomic column ranges between 0 and
G = 26, and the total number of atomic columns analysed
in each frame is N = 2457. The observed sequence of scat-
tering cross sections is created using a Gaussian emission
probability with average scattering cross sections equal to
the Pt library values Mg previously also used in the sim-
ulations in Sections 3.1 and 3.2. The relative width of
the Gaussian emission probability is σ/δ = 0.1 and 0.7,
which corresponds approximately to an electron dose of
respectively 105 e−/Å2 and 2× 103 e−/Å2 per frame, as-
suming Poisson noise only. These parameters are also sum-
marised in Table B.4 of Appendix B. At each noise level
σ/δ, 50 noise realisations of the observed sequence have
been analysed. The hidden Markov model analysis is per-
formed assuming a maximum thickness of G = 30 atoms.
Figure 6(d) shows the transition matrix estimated from a
time series with σ/δ = 0.1 by the hidden Markov model
which assumes only one transition matrix during the time
series. This estimated transition matrix for the time series
with alternating structural changes is close to the aver-
age of both underlying transition matrices, weighted with
the number of times a frame transition occurred driven by
each type of transition matrix. The percentages of cor-
rectly counted atomic columns for the different time series
are summarised in the first two columns of Table 2 us-
ing 95% confidence intervals obtained from the 50 noise
realisations. Next, we compare these results to the per-
formance discussed in Section 3.1. The analysis shown in
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Figure 6: (a) A Pt catalyst nanoparticle in an alternating
hydrogen and oxygen flow changes morphology from facetted
to round and vice versa, analysed previously using single frame
atom-counting [16]. These structural changes can be described
by alternating transition matrices. (b-c) Transition matrices
1 & 2, estimated from the atom-counts previously quantified
in [16] using a direct Markov chain analysis for the changes
from facetted to round morphology and vice versa respectively.
(d) Transition matrix estimated using a hidden Markov model
assuming only one transition matrix from a hypothetical time
series corresponding to a Pt nanoparticle with alternating fa-
cetted and round morphology with σ/δ = 0.1.

Figures 2 and 3 yields (99.99±0.01)% and (64.66±0.67)%
correctly counted atomic columns for T = 10 at σ/δ = 0.1
and 0.7 respectively. From Table 2, it follows that the per-
formance for atom-counting from a time series with two
underlying transition matrices using the hidden Markov
model as described in this paper remains unaffected for
low enough σ/δ, corresponding to high enough electron
doses. However, at higher σ/δ, or equivalently at lower
electron doses, the performance is slightly worse as com-
pared to atom-counting from a time series with only one
underlying transition matrix, as discerning between noise
and structural changes becomes more challenging. Non-
etheless, the hidden Markov model, with (58.00 ± 0.78)%
correctly counted atomic columns as summarised in Table
2, still outperforms the collective hybrid analysis, which
reached only (51.44 ± 0.82)% correctly counted atomic
columns for T = 10 and σ/δ = 0.7, as shown in Figure 2.
We conclude that at high electron doses the assumption
of a constant transition matrix does not pose any restric-
tions for applying the hidden Markov model for counting
the number of atoms in a time series of ADF STEM images
of an in situ experiment with strongly alternating envir-
onmental conditions. When the electron dose is lower, the
performance for atom-counting decreases, but nonetheless
reasonably reliable counting results can still be obtained.

One should however be careful when interpreting the

transition probabilities in terms of physical cross sections
in the same manner as discussed in Section 3.2. In or-
der to estimate physical cross sections related to the two
separate processes, we analyse the estimated atom-counts
of the time series as a Markov chain with two transition
matrices. The probabilities of structural changes for both
processes can then be estimated from these two trans-
ition matrices, similarly to the approach discussed in Sec-
tion 3.2. This is described in more detail in Appendix
D.1. The probabilities of structural changes PH2→O2

and
PO2→H2 estimated in this manner from the hypothetical
time series discussed above are summarised in the last two
columns of Table 2 using 95% confidence intervals on the
mean estimated value, together with the expected values.
The expected probabilities of structural changes PH2→O2

and PO2→H2
are estimated using Equation (13) from the

transition matrices AH2→O2 and AO2→H2 obtained from
the previously quantified counting results, shown in Fig-
ure 6(b) and 6(c). At a low noise level σ/δ, the hidden
Markov model accurately estimates the probabilities of
structural changes for both processes. When the noise in-
creases, the estimated probabilities are slightly inaccurate,
as it becomes more difficult to separate structural changes
from noise fluctuations. These results show that through
post-processing of the results obtained from the hidden
Markov model analysis, probabilities of structural changes
and even cross sections can still be quantified for the differ-
ent physical processes causing structural changes during a
time series with alternating environmental conditions.
We can now go a step further, and consider more than two
transition matrices. In order to test the performance for
atom-counting of the hidden Markov model analysis for,
for example, a heating experiment where the temperat-
ure is increased gradually, we simulated a hypothetical ob-
served sequence generated from a state sequence obtained
by changing the transition matrix at each frame trans-
ition, according to the parameters summarised in Table
B.5 of Appendix B. At each transition from frame to frame,
a transition matrix with a Gaussian spread around the
diagonal is used, each time with an increasing value for
the FWHM, in order to mimic the increasing mobility of
the atoms in the nanostructure when the temperature in-
creases. The transition matrices used for this simulation
are shown in Figure D.1 of Appendix D.2. At a low and
high noise level (σ/δ = 0.3 and 0.7), we obtain a per-
centage of respectively 93.6% and 60.8% correctly counted
atomic columns during the time series. This performance
is close to the results shown previously in Figure 2, where
at T = 22 the respective obtained percentages of correct
atom-counts are (94.34±0.13)% and (68.00±0.41)%. This
implies that we can still obtain reasonably reliable count-
ing results from a time series with non-constant underlying
transition matrix.
In conclusion, it is possible to use the existing framework
of hidden Markov model for atom-counting when the un-
derlying driving process is non-constant. This opens up
possibilities for the analysis of in situ heating or gas flow
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correct atom-counts (%) PH2→O2 (%) PO2→H2 (%)
expected value 100 70.09 64.20

σ/δ = 0.1 (95% CI) [99.99; 100.00] [69.65; 70.08] [63.92; 64.29]
σ/δ = 0.7 (95% CI) [57.28; 58.72] [65.87; 68.37] [64.85; 67.17]

Table 2: Performance for atom-counting and accuracy of the estimated probability of structural changes P for the two processes
of the variable gas flow illustrated in Figure 6.

experiments.

4. Conclusions

We have presented a methodology for atom-counting from
a time series of ADF STEM images using a hidden Markov
model. For single frames, this approach for atom-counting
is identical to the existing state-of-the-art atom-counting
procedure, but it quickly outperforms the state-of-the-art
when one or more frames are added to the time series,
both at high and low electron doses. Adding extra frames
of the nanostructure under study to the time series further
increases the performance of the hidden Markov model.
We have shown that this improvement is largely due to the
increased number of frames in the time series, which leads
to more reliable estimates for the transition probabilities.
Therefore, the Viterbi path backtracking algorithm yields
a higher percentage of correctly counted atomic columns,
by retrieving the most likely state sequence.
Furthermore, we have shown how the transition matrix
can be related to the probability of structural changes, and
how this probability of structural changes can be related
to a physical cross section. We have applied this to an
experimental time series of a Pt wedge, for which we cal-
culated the cross section related to surface displacement.
The corresponding surface diffusion threshold energy is in
close agreement with the theoretical value. The estimated
cross section value underestimates the theoretical value, as
multiple hopping events can occur during one transition
from frame to frame. We have discussed the estimation of
a cross section related to adatom hopping from the trans-
ition matrix, but in general cross sections for any mechan-
ism driving the structural changes can be estimated from
the transition matrix in a similar manner.
Finally, we have discussed whether it is possible to use the
hidden Markov model which assumes a constant transition
matrix throughout the time series, when in fact the struc-
tural changes are driven by multiple transition matrices,
changing over the course of the time series. We show that
the percentage of correctly counted atomic columns is not
strongly affected, especially at high electron doses, but one
should be careful when interpreting the transition probab-
ilities in terms of physical probabilities of structural chan-
ges or even cross sections, as an average transition mat-
rix is estimated for the time series. When the changes in
the environmental conditions throughout the time series
are known, it is however possible to extract probabilities
of structural changes for the different conditions using a

post-processing based on the counting results obtained by
the hidden Markov model analysis.
In summary, the hidden Markov model opens up possibil-
ities for the reliable quantification of the atomic structure
of nanoparticles that undergo structural changes, for ex-
ample during in situ gas flow or heating experiments, as a
consequence of the electron beam irradiation, or resulting
from adatom hopping and surface diffusion. The hidden
Markov model for atom-counting from time series of ADF
STEM images has been implemented in the freely available
StatSTEM software [34].
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A. Parameter estimation

Table A.1 summarises the notation used for the factorial
hidden Markov model for atom-counting.
The parameters of the factorial hidden Markov model are
estimated using an Expectation-Maximisation algorithm,
typically called a Baum-Welch algorithm in the context
of hidden Markov models. This is an iterative updating
algorithm, consisting of two steps: an E-step, and an M-
step. During the E-step, the likelihood is evaluated, and
this quantity is maximised during the M-step. The para-
meter estimates are in practice obtained by maximising
the expectation value of the log likelihood [46, 50]:

E [ln p(O,H|Ω)] =
N
∑

n=1

G
∑

g=0

E

[

h
(n)
1g

]

ln ιg

+

T
∑

t=2

N
∑

n=1

G
∑

j=0

G
∑

g=0

E

[

h
(n)
t−1,jh

(n)
tg

]

lnAjg

+

T
∑

t=1

N
∑

n=1

G
∑

g=0

E

[

h
(n)
tg

]

lnN
(

o
(n)
t |aMg, σ

)

. (A.1)

A.1. E-step

In this step, the likelihood is evaluated, and the expected

values E
[

h
(n)
tg

]

and E

[

h
(n)
tg h

(n)
t−1,j

]

that occur in the update
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Symbol Explanation

T Number of frames in the time series
N Number of atomic columns in each frame
G Maximum number of atoms in an atomic column during the time series

H T ×N × (G+ 1) tensor with hidden states: H =
{

h
(n)
t

}

h
(n)
t 1× (G+ 1) binary state vector at time t: h

(n)
t =

{

h
(n)
tg

}

h
(n)
tg Binary state variable: h

(n)
tg = 1 if atomic column n has g atoms at time t

O T ×N matrix with observed states: O =
{

o
(n)
t

}

o
(n)
t Scattering cross section of atomic column n at time t
ιg Initial probability for an atomic column to have g atoms in frame 1
A (G+ 1)× (G+ 1) transition matrix: A = {Ajg}
Ajg Transition probability from j to g atoms between two frames
µg Average scattering cross section corresponding to g atoms in an atomic column
Mg Library value for an atomic column with g atoms
a Scaling parameter relating the average scattering cross section to the library: µg = aMg

σ Width of the Gaussian distribution around the average scattering cross section
δ Average distance between subsequent scattering cross sections µg and µg+1

Ω Parameter vector of the hidden Markov model, defined in Equation (5)

Table A.1: Notation overview

formulas in the M-step are determined. The derivation is
similar to the E-step of the general Baum-Welch algorithm,
but factorised over the atomic columns. The expectation
value of a binary variable, equals the probability for this
binary variable to equal 1. Therefore, the expected values

E

[

h
(n)
tg

]

and E

[

h
(n)
tg h

(n)
t−1,j

]

can be written as the following

probabilities:

E

[

h
(n)
tg

]

= p
(

h
(n)
tg = 1|O,Ω

)

, (A.2)

often called the state occupation probability, and

E

[

h
(n)
t−1,jh

(n)
tg

]

= p
(

h
(n)
t−1,j = 1, h

(n)
tg = 1|O,Ω

)

, (A.3)

since the product of two binary variables only equals 1 if
both variables are equal to 1. Equations (A.2) and (A.3)
can be rewritten as follows [54]:

p
(

h
(n)
tg = 1|O

)

=
p
(

O|h(n)
tg = 1

)

p
(

h
(n)
tg = 1

)

p (O)
(A.4)
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(A.5)
and
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Note that each probability in the expression above is im-
plicitly conditional on the parameter vector Ω, which was
omitted in order to reduce the complexity of the notation.
We can now introduce the (scaled) forward variables

α̂(h
(n)
tg ) and (scaled) backward variables β̂(h

(n)
tg ):

α̂(h
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and

β̂(h
(n)
tg ) =

p
(

o
(n)
t+1, · · · , o

(n)
T |h

(n)
tg = 1,Ω

)

p
(

o
(n)
t+1, · · · , o

(n)
T |Ω

)

=
p
(

o
(n)
t+1, · · · , o

(n)
T |h

(n)
tg = 1,Ω

)

∏T
r=t+1 c

(n)
t

, (A.9)

with
c
(n)
t = p(o

(n)
t |o

(n)
1 , · · · , o

(n)
t−1|Ω). (A.10)

The expected values required during the M-step can the-
refore be determined using the so-called forward-backward
algorithm:

E

[

h
(n)
tg

]

= α̂(h
(n)
tg )β̂(h

(n)
tg ) (A.11)
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with the forward and backward variables determined re-
cursively. For computational reasons, an additional nor-

malisation of E
[

h
(n)
tg h

(n)
t−1,j

]

is performed. Initialisation of

the normalised forward variable is done by

α̂(h
(n)
1g ) =

ιgN (o
(n)
1 |aMg, σ)

c
(n)
1

. (A.13)

Then we forwards propagate through time (hence the
name), in order to recursively obtain the next forward vari-
ables:

α̂(h
(n)
tg ) =

1

c
(n)
t

N (o
(n)
t |aMg, σ)

G
∑

j=1

α̂(h
(n)
t−1,j)Ajg.

Initialisation of the backward variable is done by

β̂(h
(n)
Tg ) = 1. (A.14)

Then we backwards propagate through time (hence the
name), in order to recursively obtain the other backward
variables:

β̂(h
(n)
tg ) =

1

c
(n)
t+1

G
∑

j=1

N (o
(n)
t+1|aMj , σ)β̂(h

(n)
t+1,j)Agj . (A.15)

It can furthermore be shown that the likelihood is obtained
as the product of the scaling parameters c

(n)
t that are used

to avoid numerical issues with the forward-backward al-
gorithm, as follows:

c
(n)
t = p(o

(n)
t |o

(n)
1 , ..., o

(n)
t−1,Ω) (A.16)

⇒ p(o
(n)
1 , ..., o

(n)
t |Ω) =

t
∏

q=1

c(n)q (A.17)

⇒ p(O|Ω) =
N
∏

n=1

T
∏

q=1

c(n)q . (A.18)

A.2. M-step

The update formulas for the model parameters are calcu-

lated in the M-step using the expected values E
[

h
(n)
tg

]

and

E

[

h
(n)
tg h

(n)
t−1,j

]

calculated during the E-step. These expres-

sions are obtained by maximising the expectation value of
the log likelihood from Equation (A.1), while taking into
account that ιG and AjG ∀0 ≤ j ≤ G need not be estim-

ated, since
∑G

g=0 ιg = 1 and
∑G

g=0 Ajg = 1. This results
in the following update formulas:

ιg =

∑N
n=1 E

[

h
(n)
1g

]

∑N
n=1

∑G
j=0 E

[

h
(n)
1j

] , (A.19)

Ajg =

∑T
t=2

∑N
n=1 E

[

h
(n)
tg h

(n)
t−1,j

]

∑T
t=2

∑N
n=1

∑G
g′=0 E

[

h
(n)
tg′ h

(n)
t−1,j

] , (A.20)

a =

∑T
t=1

∑N
n=1

∑G
g=0 E

[

h
(n)
tg

]

o
(n)
t Mg

∑T
t=1

∑N
n=1

∑G
g=0 E

[

h
(n)
tg

]

M2
g

, (A.21)

σ =

√

∑

T
t=1

∑

N
n=1

∑

G
g=0 E

[

h
(n)
tg

]

(o
(n)
t −aMg)2

∑

T
t=1

∑

N
n=1

∑

G
g=0 E

[

h
(n)
tg

] . (A.22)

A.3. Viterbi algorithm

The goal of the Viterbi algorithm for hidden Markov mod-
els is to determine the most likely hidden state sequenceH.
We could determine the individually most likely number
of atoms in atomic column n at time t as

q
(n)
t = argmax

06g6G

(

E

[

h
(n)
tg

])

, for 1 6 t 6 T, (A.23)

but the transition probability from t − 1 to this state at
time t may be zero, causing this state to be invalid. The-
refore, an algorithm is required to consider the entire state
sequence: the Viterbi algorithm.
In order to retrieve the state sequence, the so-called best
score δ(n)(t, g) is introduced. This considers the probab-

ility for each possible state sequence h
(n)
1 , · · · ,h

(n)
t−1 that

could have proceeded state g at time t, and that could

account for the first t observations o
(n)
1 , · · · , o

(n)
t :

δ(n)(t, g) = max
h
(n)
1 ,··· ,h

(n)
t−1

P

(

h
(n)
1 , · · · ,h(n)

t−1, h
(n)
tg = 1,

o
(n)
1 , · · · , o(n)

t |Ω

)

. (A.24)

The best score at the next time t+1 can be retrieved using
a recursion relation:

δ(n)(t+ 1, j) = max
g

[

δ(n)(t, g) ·Agj

]

N (o
(n)
t+1|aMj , σ).

(A.25)
In order to keep the numerical range of the best score com-
putationally feasible, in practice this expression is norm-
alised for each time t and each atomic column n. In or-
der to retrieve the most likely state sequence, we need to
keep track of the argument that maximises this expression.
Note that this is not affected by the additional normal-
isation. Therefore, an argument array φ(n)(t, g) is intro-
duced.
We can now summarise the Viterbi algorithm as follows.
First, we initialise the best score and the argument array:

δ(n)(1, g) = ιgN (o
(n)
1 |aMg, σ), (A.26)

φ(n)(1, g) = 0. (A.27)

Then the recursion formula is applied for each next time
t:

δ(n)(t, g) = max
06j6G

[

δ(n)(t− 1, j)Ajg

]

N (o
(n)
t |aMg, σ),

(A.28)
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φ(n)(t, g) = argmax
06j6G

[

δ(n)(t− 1, j)Ajg

]

. (A.29)

Next, we perform a termination step at time T :

P̂ = max
06g6G

[

δ(n)(T, g)
]

, (A.30)

ĥ
(n)
T = argmax

06g6G

[

δ(n)(T, g)
]

. (A.31)

Finally, path backtracking is performed in order to de-
termine the most likely hidden state sequence:

ĥ
(n)
t = φ(n)(t+ 1, ĥ

(n)
t+1) (A.32)

B. Simulation parameters

A hypothetical hidden Markov model is simulated by
creating hypothetical hidden state sequences (number of
atoms) and corresponding observed sequences (scattering
cross sections). We summarise the parameters used in the
simulations of Section 3 in Tables B.1-B.5.

Each simulation discussed in this paper uses the same lib-
rary of scattering cross sections obtained from image simu-
lations. These scattering cross sections, also called library
valuesMg, were obtained from HAADF STEM image sim-
ulations using the MULTEM software [55, 56] for Pt(110)
at 300 keV, using a 21 mrad semi-convergence angle, 58-
190 mrad detector collection range, and a pixel size of 9.1
pm. This library corresponds to the experimental images
of a Pt wedge that will be discussed in Section 3.2, and
which have previously been analysed in [51] as well.

The state sequences of such hypothetical time series cor-
respond to T frames with N atomic columns in each frame
with up to G atoms in an atomic column, created using a
set of initial probabilities ιg for 0 ≤ g ≤ G. The number of
atoms in each state sequence is then changed according to
a transition matrix A. The transition matrix can be gen-
erated using a Gaussian spread around the diagonal, such
as shown in Figure B.1. The observed sequences of scatter-
ing cross sections are generated using a Gaussian emission

probability N (o
(n)
t |aM}, σ). The library values Mg were

scaled using a scaling parameter a = 1 in all simulations.
The relative width of the Gaussians considered in the sim-
ulation to study the performance is σ/δ, where δ is the
average difference between subsequent average scattering
cross sections aMg.

C. Pt wedge

Figure C.1 shows the 6 ADF STEM images of the time
series of a Pt wedge analysed in Section 3.2. The count-
ing results obtained for these ADF STEM images using a
hidden Markov model are shown in Figure C.2.

Figure B.1: Transition matrix with a Gaussian spread around
the diagonal with FWHM = 1.5.

Figure B.2: More diffuse transition matrix, based on the es-
timated transition matrix for the Pt wedge time series from
Figure 5, used for the results in Table 1.

D. Multiple transition matrices

D.1. Probability of structural changes in case of two trans-

ition matrices

In Section 3.3, a time series with 2 different underlying
transition matrices was analysed using the hidden Markov
model presented in this paper. The counting results ob-
tained from this analysis can be regarded as a Markov
chain. As we know at which transitions, the process that
drives the structural changes, we are able to estimate a
Markov chain with two transition matrices A1 and A2,
instead of one. We can again derive a probability of struc-
tural changes from each transition matrix, according to
Equations (D.1) and (D.2):

P1 =

∑G
g=0 π

[1]
g (1− [A1]gg)

G+ 1
(D.1)

P2 =

∑G
g=0 π

[2]
g (1− [A2]gg)

G+ 1
. (D.2)

In this expression, the weights π
[x]
g , with x = 1, 2, are

determined by which type of transition occurs from frame
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Parameter Value

T 1 to 40
N 100
G 10
ιg Uniform
Ajg Gaussian spread around

diagonal with FWHM = 1.5
a 1
Mg Pt(110)
σ/δ 0.3 and 0.7

Table B.1: Parameters of the hypothetical hidden Markov
models used to obtain the results from Figure 2.

Parameter Value

T 1, 2, 5, 10, 20
N 1000/T
G 10
ιg Uniform
Ajg Gaussian spread around

diagonal with FWHM = 1.5
a 1
Mg Pt(110)
σ/δ 0.3 and 0.7

Table B.2: Parameters of the hypothetical hidden Markov
models used to obtain the results from Figure 3.

to frame:

π[x]
g =

1

Tx

∑

t∈Tx

π(t)
g , (D.3)

with Tx the set of Tx frames that change to the next frame
according to transition matrix Ax, with x = 1, 2. In this

expression, π
(t)
g remains the same, as defined by Equation

(8).

D.2. Gradually increasing probability of structural changes

Figure D.1 shows the gradually changing transition
matrices that are used in the time series analysed in Sec-
tion 3.3. The FWHM of the Gaussian spread of the di-
agonal is increased from 1 to 3 in steps of 0.1 throughout

Parameter Value

T 10
N 60
G 6
ιg Uniform
Ajg Gaussian spread around

diagonal with FWHM = 1.5
a 1
Mg Pt(110)
σ/δ 0.7

Table B.3: Parameters of the hypothetical hidden Markov
model used to obtain the results from Figure 4.

Parameter Value

T 10
N 2457
G 26
ιg Mixing proportions πg previously

estimated from Pt nanoparticle
in H2 environment in [16].

Ajg Alternating transition matrices for
H2 → O2 and O2 → H2 transitions,
obtained from atom-counts previously
quantified in [16].

a 1
Mg Pt(110)
σ/δ 0.1 and 0.7

Table B.4: Parameters of the hypothetical hidden Markov
models used to study the effect of two transition matrices in
Section 3.3.

Parameter Value

T 22
N 100
G 10
ιg Uniform
Ajg Gaussian spread around

diagonal with FWHM = 1 to 3
a 1
Mg Pt(110)
σ/δ 0.3 and 0.7

Table B.5: Parameters of the hypothetical hidden Markov
models used to study the effect of gradually changing transition
matrices in Section 3.3.

the time series, and therefore the probability of structural
changes P calculated using Equation (13) is also increased
throughout the time series.
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