
University of Antwerp
Faculty of Sciences

Department of Mathematics &
Computer Science

Network-aware resource allocation algorithms for service
orchestration in heterogeneous cloud environments

Bart Spinnewyn

Thesis submitted for the degree of doctor in
Computer Science at the University of

Antwerp, to be defended by Bart Spinnewyn,
Academic year 2018-2019.

University of Antwerp
Faculty of Sciences

Department of Mathematics &
Computer Science

Promotors: Prof. Dr. Steven Latré
Prof. Dr. Juan Felipe Botero Vega

University of Antwerp
Faculty of Sciences

Department of Mathematics & Computer Science
Sint-Pietersvliet 7, B-2000 Antwerp, Belgium

Thesis submitted for the degree of doctor in
Computer Science at the University of

Antwerp, to be defended by Bart Spinnewyn,
Academic year 2018-2019.

Nederlandse samenvatting –
Summary in Dutch

De volgende generatie van Internetdiensten, zoals, zelfrijdende auto’s, geaugmenteerde wer-
kelijkheid en slimme robots waarvoor de intelligentie in de cloud zit, vereisen draadloze
communicatiemiddelen die zeer weinig vertraging introduceren; produceren gigantische hoe-
veelheden data en vereisen dat het opzetten van digitale samenwerkingen tussen uiteenlopende
apparaten gezwind gebeurt. Terwijl een traditionele clouddienst typisch wordt opgezet binnen
één enkele server cluster, hebben deze nieuwe diensten bandbreedte en reactietijd vereisten
die opleggen dat minstens enkele computationele taken uitgevoerd worden nabij de eindge-
bruiker. In een eerste fase van ruimtelijke distributie van de cloud-infrastructuur verbinden
Internetdiensten cloud-elementen tussen meerdere clusters van servers. In een tweede fase
worden cloud-elementen nog dichter geplaatst bij de eindgebruiker. Tegenwoordig, naar
het paradigma van edge-computing, worden rekencapaciteiten geplaatst aan de rand van
het netwerk. Binnen het paradigma van mist- en fog-computing worden deze elementen
zelfs binnen het (draadloze) toegangsnetwerk geplaatst, om de afstand tot de eindgebruiker
verder te minimaliseren. Om de technische en economische haalbaarheid van deze nieuwe
internettoepassingen te verzekeren, is het vermogen om op een effectieve en vraag-gedreven
wijze, de reken-, netwerk-, en opslagcapaciteiten aan de rand van het netwerk te orkestreren,
onontbeerlijk.

De inlijving van perifere apparatuur in de cloud-omgeving, dewelke beperkte en ongelijk-
matig verdeelde capaciteiten kent en minder betrouwbaar is, brengt serieuze uitdagingen met
zich mee i.v.m. het beheer. Huidige algoritmes voor de middelentoewijzing in cloud-systemen
kunnen niet overweg met de verhoogde schaarste en onbetrouwbaarheid van middelen aan de
rand van het netwerk. In dit proefschrift identificeren we de uitdagingen waarmee ruimtelijk
gedistribueerde cloud-omgevingen te kampen hebben en reiken we technieken en algorit-
mes aan om deze uitdagingen weg te werken. Ten eerste zijn er uitdagingen betreffende de
vermenigvuldiging van gegevens over meerdere opslagvoorzieningen aan de rand van het
netwerk. Replicatie van gegevens is een techniek die traditioneel aangewend wordt om zeer
betrouwbare gegevensopslag te realiseren d.m.v. standaard, commerciële computerappara-
tuur. In gecentraliseerde server clusters kan foutloze gegevensopslag op deze wijze verzekerd
worden gedurende duizenden jaren. Deze lange beschikbaarheid is mogelijk omdat de na-
genoeg onbegrensde opslagcapaciteiten binnen een server cluster toestaan dat de gegevens
uitvoerig gerepliceerd worden. Aan de rand van het netwerk is de kans op faling echter meer
uitgesproken en zijn opslagcapaciteiten veel schaarser. Daarom is opslag aan de rand van het

ii

netwerk hoofdzakelijk bestemd voor tijdelijke bewaring van gegevens. Als een gevolg daarvan
zijn slimme algoritmes nodig om de replicatie van gegevens te sturen, die aangepast aan de
vereiste kwaliteit van dienstverlening (SLA) die met de gegevens gepaard gaat en aan de
infrastructuur waarop de gegevens bewaard worden. Daarom ontwikkelen we een SLA-bewust
replicatie algoritme dat dynamisch het verwachte gegevensverlies en de opslagkosten kan
balanceren over de levensduur van een dienst. D.m.v. uitgebreide simulaties tonen we aan dat
onze aanpak de winstgevendheid van gegevensopslag kan verbeteren over een breed gamma
aan SLA- en cloud-omstandigheden en de replicatie-strategie kan aanpassen aan veranderende
operationele omstandigheden.

Ten tweede zijn er uitdagingen om betrouwbare netwerkdiensten op te zetten die een
combinatie van node- en link-falen kunnen weerstaan. De schaarste aan middelen en het
verhoogde faalgedrag compliceren de middelentoewijzing aan de rand van het netwerk voor
virtuele netwerk allocaties die falingen in de onderliggende infrastructuur dienen te weerstaan
(SVNEs). Huidige algoritmes kunnen niet overweg met de verminderde uniformiteit, gezien
deze een vast niveau van bescherming introduceren. Daarom stellen we een methode voor om
SVNEs te alloceren die zowel de beoogde beschikbaarheid van de dienst in overweging neemt
als beschermingen enkel introduceert daar waar ze nodig zijn om een minimale beschikbaarheid
voor de gehele dienst te realiseren, en dit met minimale kost. Een uitgebreide evaluatie
toont aan dat vergeleken met algoritmes die een vast beschermingsniveau voorzien, onze
voorgestelde heuristiek het aantal applicaties waarvan de beschikbaarheidsvereisten voldaan
zijn, kan verdubbelen in cloud-omgevingen met meer dan 100 nodes, terwijl de vereiste
rekentijd om een oplossing te vinden beperkt blijft tot 20 seconden.

Ten derde zijn er uitdagingen gerelateerd aan de orkestratie van netwerkdiensten op basis
van een combinatie van functionele en niet-functionele vereisten, wanneer de infrastructuur
sterk niet-uniform is. Er is nood aan orkestratie algoritmes die een dienst kunnen samenstellen
uit virtuele netwerkfuncties (VNFs), op basis van zijn vereisten m.b.t. de geleverde dienst
en met oog voor de beperkingen van de gedeelde middelen aan de rand van het netwerk
(MEC). Huidige modellen voor de compositie van dergelijke diensten tot een VNF-FG, beperken
gewoonlijk de samenstelling van deze logische structuur van de dienst tot VNFs die verbonden
zijn in een pad- of boomstructuur. Gezien de structuur van diensten in realiteit vele malen
complexer is, poneren we een nieuw model met bredere toepasbaarheid dat de VNFs kan
verbinden met de topologie van een gerichte acyclische graaf. Verder, terwijl huidige orkestratie
aanpakken gewoonlijk de compositie van de VNF-FG en de toewijzing van deze gevirtualiseerde
middelen aan fysieke bronnen in het netwerk typisch uitvoeren met weinig tot geen coördinatie
tussen beide taken, stellen wij algoritmes voor die compositie en toewijzing uitvoeren op een
gecoördineerde manier. Experimenten tonen aan dat coördinatie van beide taken het aantal
diensten die gelijktijdig gebruik kunnen maken van de infrastructuur gevoelig kan verhogen.

Samengevat, gecentraliseerde en ruimtelijk gedistribueerde cloud-omgevingen verschillen
sterk. In vergelijking tot gecentraliseerde clouds zijn gedistribueerde omgevingen veel minder
uniform. Gedistribueerde omgevingen incorporeren namelijk zowel de infrastructuur van
gecentraliseerde omgevingen, als de infrastructuur aan de rand van het netwerk, welke veel
minder betrouwbaar is en vaak beperkte capaciteiten heeft. Deze kloof in betrouwbaarheid,
connectiviteit, en afstand tot de eindgebruiker, bemoeilijkt het beheer van dergelijke om-
gevingen aanzienlijk. Dit proefschrift onderzoekt de uitdagingen die gepaard gaan met de
orkestratie van Internetdiensten in deze heterogene cloud-omgevingen en reikt technieken aan
om deze uitdagingen aan te gaan. Ten eerste, onderzoeken we hoe gegevens op een effectieve
wijze gerepliceerd kunnen worden over opslagvoorzieningen aan de rand van het netwerk.
We maximaliseren de opbrengsten van de netwerkbeheerder in situ over de levensduur van

iii

een dienst. Deze optimalisatie beschouwt zowel SLAs betreffende beschikbaarheid en de
cloud-karacteristieken. Deze aanpak is gestoeld op een dynamisch falingsmodel dat zowel de
impact van faalgedrag en de benodigde tijd om data te repliceren beschouwt. Ten tweede,
onderzoeken we hoe betrouwbare geheugenloze netwerkdiensten kunnen opgezet worden
in een omgeving waar zowel apparaten als hun verbindingen falen, waarbij een minimale
beschikbaarheid gegarandeerd wordt voor elke dienst en de plaatsingskost geminimaliseerd
wordt. Om de beperkingen van de infrastructuur aan de rand van het netwerk te omzeilen
introduceert onze SVNE-techniek, die zich bewust is van de beschikbaarheidsvereisten, enkel
beschermingen waar deze nodig zijn. Ten derde, onderzoeken we hoe een netwerkdienst te
orkestreren in een NFV-omgeving. We stellen algoritmes voor die het aantal diensten die tege-
lijkertijd eenzelfde infrastructuur kunnen delen; en de kwaliteit van de configuraties, kunnen
verbeteren door coördinatie van de compositie van middelen, enerzijds; en de toewijzing van
deze middelen aan bronnen in de fysieke infrastructuur, anderzijds. Naast de ontwikkeling
van de vereiste middelentoewijzingsalgoritmes voor een bestaand model van netwerkdiensten
met een boomstructuur, ontwikkelen we ook een nieuw model met bredere toepasbaarheid en
ook de vereiste algoritmes.

English summary

The next generation of Internet services, e.g., self-driving cars, Cloud-Radio Access Network
(C-RAN), ubiquitous and remote sensing, Augmented Reality (AR) and cloud robotics, requires
ultra-low latency wireless communications, produces vast quantities of data and requires
the speedy deployment of real-time collaborations between a wide variety of devices. While
traditionally cloud services are hosted on infrastructure that is located within a single datacenter,
these novel services have throughput and response time requirements that dictate that at least
some computational tasks are executed near the location of the end user. In a first phase
of geo-distribution of the cloud infrastructure, services interconnect cloud elements across
multiple datacenters. In a second phase of geo-distribution, cloud elements are moved even
closer to the end-user. Now, computational elements are being placed at the edge of the
network, in what is referred to as edge computing, or even within the (wireless) Local Area
Network (LAN), in mist and fog computing. For these applications to be at the same time
technically feasible and economically viable, they will depend on the ability to effectively
orchestrate computing, networking and storage resources at the network edge, on-demand.

Incorporating devices at the network edge that have limited and diverse capabilities and
an increased failure probability, poses severe challenges with regard to the manageability of
the infrastructure. Current cloud resource allocation algorithms cannot deal in a meaningful
way with the resource scarcity and best-effort behavior at the edge. In this monograph, we
identify the orchestration challenges related to these geo-distributed deployments and propose
mechanisms and algorithms to mitigate those challenges.

First, there are challenges related to replication of application data across multiple edge
nodes. Data replication traditionally enables highly available cloud storage on top of commodity
hardware. In datacenters, the Mean Time to Dataloss (MTDL) is in the order of thousands
of years and the storage capabilities are virtually infinite. At the network edge however,
failure is much more present and storage capabilities are severely reduced. Hence, storage at
the network edge should be temporary. Consequently, intelligent replication algorithms are
needed that are optimized for the required Quality of Service (QoS)-level and that consider
the infrastructure on which the services are deployed. Hence, we propose a Service Level
Agreement (SLA)-aware replication algorithm that dynamically balance data loss and storage
cost over the service lifetime. Through extensive simulations, we show that our approach
significantly improves the provider revenue over a wide range of cloud- and SLA-conditions
and adapts its strategy to evolving operating conditions.

Second, there are challenges related to deploying reliable Network Services (NSs) that
can survive a combination of node and link failures. Given the scarcity of resources and the

increased failure probability, provisioning Survivable Virtual Network Embeddings (SVNEs)
at the edge is very challenging. Current SVNE algorithms cannot deal with the increased
heterogeneity as they introduce a fixed level of redundancy to protect the NS. Therefore,
we propose availability-aware SVNE mechanisms and resource allocation algorithms that
introduce protections only where they are needed in order to realize a minimum degree of
availability for the entire service at minimal cost. A detailed performance evaluation shows
that compared to algorithms that produce SVNEs with a fixed protection level, our proposed
heuristic can double the number of applications satisfying availability requirements, in cloud
environments comprising over 100 nodes, while keeping the time required to calculate the
solution under 20 seconds.

Third, there are challenges related to the orchestration of NSs based on their service
requirements when the infrastructure is highly heterogeneous. Service orchestration algorithms
are needed that can compose the service based on the service requirements while considering
the Multi-access Edge Computing (MEC) resources in the Network Functions Virtualization
(NFV) environment. Current service models typically considered that the logical structure of
the service is either an Service Function Chain (SFC) or a tree. Hence, we propose a novel
service model with wider applicability that can be used to compose Virtual Network Functions
(VNFs) into a Directed Acyclic Graph (DAG) VNF-Forwarding Graph (VNF-FG). Further, while
current orchestration approaches typically performed composition and embedding with poor
coordination between these two tasks, we propose algorithms that can compose and embed
such services in a coordinated way. Numerical experiments show that, through coordination of
both tasks, our proposed algorithms can significantly improve the acceptance ratio and reduce
the embedding cost, compared to algorithms that perform these tasks in two uncoordinated
stages.

Summarized, centralized and geo-distributed cloud environments are worlds apart. Com-
pared to centralized clouds, geo-distributed cloud environments are much more heterogeneous.
These environments incorporate both infrastructure in datacenters and infrastructure at the
network edge with very limited capabilities and that is much more failure-prone. This spread
on capability; reliability; connectivity; and proximity to the end-user, severely complicates
the management. This thesis investigates the challenges related to the orchestration of NSs
across heterogeneous cloud environments and proposes novel management approaches that
address these challenges. First, we investigate how to effectively replicate data across storage
nodes in these environments. We approach this problem as a runtime revenue problem, that
considers both SLAs regarding durability and the cloud characteristics. This approach builds
on a dynamic availability model that considers both the impact of failure distribution and
recovery times on data loss. Second, we investigate how to protect stateless NSs against a
combination of node and link failure in these environments. We approach the problem of
placing applications, while guaranteeing a minimum availability for each application and
minimizing the placement cost as a resource allocation problem. To deal with the scarcity of
resources at the edge and the reliability spread, our availability-aware approach introduces
protections only where they are needed. Third, we investigate how to orchestrate NSs in
an NFV environment. We propose orchestration algorithms that can improve the acceptance
ratio and placement quality through coordination of the service composition and embedding.
Not only do we develop the required orchestration algorithms for an existing service model
that can generate VNF-FGs with a tree topology, we also develop a novel service model with
improved applicability and develop the required orchestration algorithms.

Acknowledgements

Firstly, I would like to thank my advisor Prof. Steven Latré for the support of my PhD study
and related research. He introduced me to the wonderful world of cloud computing and
virtualization, which is simple and pure. The past four years have been a great journey, where
I had the privilege to research the topics that interested me most.

Besides my advisor, I would like to express my sincere gratitude to Prof. Juan Felipe
Botero Vega of the University of Antioquia for his guidance and constructive feedback to my
work. Further, I thank Carlos Donato for his valuable contributions to the 5G and Twitch
media-streaming use-cases.

I thank my fellow PhD students for the stimulating discussions, for all the fun we have had
in the last four years, and lending a hand in times of need.

Also, I thank my friends at Applied Telecommunication Research Group (GITA) of the
University of Antioquia, for welcoming me in your beautiful country and supporting me
throughout my 6 month stay. Further, I thank Joost Bosman, Prof. Hans van den Berg and
Prof. Rob van der Mei for the stimulating discussions we had during my research stay at the
Stochastics group at Center for Mathematics and Computer Science (CWI) in Amsterdam,
Netherlands.

Finally, I would like to thank my friends and family for their continued support throughout
the entirety of my studies. I am forever indebted to my parents and brothers, for being great
role models and providing me with a loving home-environment. Special thanks go out to
Gert-Jan Stockman for his friendship, practical advice and proofreading of my manuscripts. I
am indebted to my friend Stijn Vanhamel, for being there whenever I need him and helping
me distract from my research at times. Last but not least, I thank my girlfriend Jeanny Bosack
for her love and support throughout my life and teaching me the things that one cannot learn
from books.

Antwerp, March 2019
Bart Spinnewyn

Table of Contents

Nederlandse samenvatting – Summary in Dutch i

English summary v

Acknowledgements vii

List of Acronyms xvii

1 Introduction 1-1
1.1 Research context . 1-1
1.2 Problem statement . 1-4
1.3 Research questions . 1-4
1.4 Contributions . 1-6
1.5 Organization . 1-7

2 Background 2-1
2.1 Cloud computing . 2-1

2.1.1 Cloud provisioning models . 2-1
2.1.2 Geo-distribution . 2-2

2.2 Virtual networking . 2-3
2.2.1 Node virtualization . 2-3
2.2.2 Link virtualization . 2-4
2.2.3 Network virtualization . 2-5

2.3 Network functions virtualization . 2-5
2.3.1 The need for middle-boxes . 2-6
2.3.2 VNF taxonomy . 2-7
2.3.3 Management and orchestration (MANO) 2-10

2.4 Resource allocation challenges . 2-11
2.4.1 Cloud management . 2-12
2.4.2 Resilience in cloud computing . 2-13
2.4.3 Virtual Network Embedding . 2-14
2.4.4 NFV service orchestration . 2-15
2.4.5 A taxonomy of resource allocation approaches 2-16
2.4.6 State of the art . 2-20
2.4.7 Emerging research directions . 2-24

2.5 Conclusions . 2-25

x

3 Cost-effective replica management 3-1
3.1 Introduction . 3-2
3.2 Related work . 3-2
3.3 Generalized Replica Management Problem . 3-4

3.3.1 Replication model . 3-4
3.3.2 SLA model . 3-6
3.3.3 Formal problem description . 3-6

3.4 Algorithmic description . 3-6
3.4.1 Approach . 3-7
3.4.2 Algorithm . 3-7

3.5 Performance evaluation . 3-9
3.5.1 Static naive replication . 3-9
3.5.2 Static Erasure Coding replication . 3-12
3.5.3 Dynamic replication . 3-15

3.6 Conclusion and future work . 3-16

4 Availability-aware application placement 4-1
4.1 Introduction . 4-1
4.2 Related work . 4-2
4.3 Resilient cloud placement model . 4-4

4.3.1 Application requests . 4-4
4.3.2 Cloud infrastructure . 4-6
4.3.3 The VAR protection method . 4-6
4.3.4 Availability calculation . 4-7

4.4 Formal problem description . 4-7
4.4.1 Decision variables . 4-8
4.4.2 Constraints . 4-9
4.4.3 Objective function . 4-11

4.5 Solution strategies . 4-12
4.5.1 GRECO: Genetic Reliable ClOuds . 4-12
4.5.2 Subgraph isomorphism . 4-16

4.6 Performance evaluation . 4-18
4.6.1 Evaluated algorithms . 4-20
4.6.2 Application model . 4-21
4.6.3 Cloud infrastructure . 4-22
4.6.4 Algorithmic parameters . 4-22
4.6.5 Key observations . 4-23

4.7 Results discussion . 4-30
4.8 Conclusion . 4-31

5 Coordinated NFV orchestration 5-1
5.1 Introduction . 5-1
5.2 Related work . 5-2
5.3 SECC problem formulation . 5-4

5.3.1 Service composition . 5-4
5.3.2 Service embedding . 5-6

5.4 Exact algorithm (OPT-SECC) . 5-8
5.4.1 Chain generation . 5-8

xi

5.4.2 Integer Linear Program . 5-12
5.4.3 Composition constraints . 5-13
5.4.4 Embedding constraints . 5-13
5.4.5 Objective function . 5-14
5.4.6 Discussion . 5-14

5.5 Greedy Chain Selection Heuristic . 5-15
5.5.1 Greedy Chain Selection . 5-15
5.5.2 Minimum-cost SFC embedding . 5-17
5.5.3 Illustration . 5-19

5.6 Performance evaluation . 5-20
5.6.1 Requirements . 5-20
5.6.2 Evaluated algorithms . 5-21
5.6.3 Simulation parameters . 5-22
5.6.4 Evaluation metrics . 5-22
5.6.5 Results . 5-22
5.6.6 Conclusions . 5-29

6 An improved NFV orchestration model 6-1
6.1 Introduction . 6-2
6.2 Related work . 6-2
6.3 Problem formulation . 6-3

6.3.1 Composition and embedding requirements 6-4
6.3.2 Augmented Graph . 6-9
6.3.3 ILP1S . 6-9
6.3.4 ILP2S . 6-13
6.3.5 ILP1S-DC . 6-14
6.3.6 ILP2S-DC(f) . 6-18

6.4 Recursive heuristic (REC) . 6-19
6.4.1 Algorithm description . 6-19
6.4.2 Illustration . 6-21

6.5 Performance Evaluation . 6-23
6.5.1 Requirements . 6-23
6.5.2 Metrics . 6-25
6.5.3 Evaluated algorithms . 6-25
6.5.4 Simulation parameters . 6-25
6.5.5 Results . 6-26
6.5.6 Conclusions . 6-30

7 Conclusions 7-1
7.1 Main contributions and results . 7-1
7.2 Research projects . 7-4

8 Future work 8-1
8.1 Applicability of thesis contributions . 8-1
8.2 Further improvement of the contributions . 8-2

8.2.1 Application to 5G network slicing . 8-2
8.2.2 Decentralized approach . 8-2
8.2.3 Practical realization through protocols 8-3

List of Tables

1.1 Publications in journals. 1-7
1.2 International conferences. 1-7

2.1 VNF taxonomy. 2-7
2.2 Overview of the related work on resource allocation. 2-20

3.1 Replication model parameters. 3-5
3.2 Service parameters as per SLA. 3-6
3.3 Decision variables for the GRMP. 3-7

4.1 Overview of input variables to the CAPP. 4-5
4.2 An overview of resource sharing amongst identical VNos and VLs. 4-6
4.3 Overview of auxiliary symbols used throughout the ILP formulation. 4-8
4.4 Overview of decision variables to the binary ILP. 4-8
4.5 An overview of the variables used in the vnmFlibm routine. 4-16
4.6 Overview of the evaluated placement methods. 4-20

5.1 Input parameters to the service composition. 5-5
5.2 Input parameters related to the service embedding. 5-6
5.3 Input parameters to the service composition for the ILP. 5-12
5.4 Decision variables of the ILP. 5-12
5.5 Illustration of GCS. 5-18
5.6 Scalability experiments. 5-26

6.1 Input parameters to the service composition. 6-4
6.3 Input parameters to the service embedding. 6-8
6.4 Input parameters to the service composition for the ILP. 6-11
6.5 Decision variables of the ILP. 6-12
6.6 Input parameters to the service composition for the ILP. 6-15
6.7 Decision variables of the ILP. 6-16
6.8 Illustration of the execution of REC. 6-22
6.9 Evaluated algorithms. 6-25

7.1 Research projects. 7-4

List of Figures

1.1 The architecture of geo-distributed cloud infrastructure. 1-4
1.2 Thesis organization. 1-8

2.1 Network virtualization environment. 2-5
2.2 Illustration of a VNF-Forwarding Graph (VNF-FG), comprising 4 VNF in-

stances and 3 VL instances. 2-6
2.3 MANO architecture proposed by ETSI. 2-10
2.4 Illustration of Virtual Network Embedding (VNE). 2-14
2.5 Illustration of the key service orchestration concepts in Network Functions

Virtualization (NFV) environments. 2-16

3.1 Problem description. 3-6
3.2 Static naive replication: influence of the MTTF on expected reward. 3-10
3.3 Static naive replication: influence of the hosting cost on the expected reward

for MTTF=8000. 3-11
3.4 Static naive replication: influence of the required lifetime on the expected

reward. 3-11
3.5 Static naive replication: influence of the required lifetime on computation time. 3-12
3.6 Static Erasure Coding (EC) replication: expected reward as a function of the

failure correlation (stripe size=256 MB). 3-13
3.7 Static EC replication: expected reward as a function of the failure correlation

(stripe size=512 MB). 3-14
3.8 Static EC replication: relation between recovery volume and probability of

data loss (MTTF=2000). 3-14
3.9 Static EC replication: relation between recovery volume and probability of

data loss (MTTF=15000). 3-15
3.10 Dynamic replication: reward per request. 3-16
3.11 Dynamic replication: cost per request. 3-17

4.1 Overview of this work. 4-5
4.2 Illustration of the VAR protection method. 4-7
4.3 Workflow of a GRECO worker . 4-15
4.4 Steps taken by vnmFlibm when solving the problem depicted in Figure 4.2. . 4-19
4.5 An illustration of multiple application models. 4-21
4.6 An illustration of Substrate Network (SNe) types. 4-22
4.7 Influence of the required availability level. 4-25

xvi

4.8 Influence of the CPU Load Factor (CLF), for a required availability of 99.0%. 4-26
4.9 Influence of the SNe dimensions for a required availability of 99.9% and

application type "random". 4-27
4.10 Influence of application type for 26 PMs, for a required availability of 99.9%,

using VAR-SUB. 4-28
4.11 Influence of the number of application requests for 26 Physical Machines

(PMs), a required availability of 99.9%, using VAR-SUB. 4-29
4.12 Influence of the SNe dimensions for a required availability of 99.9%, using

VAR-SUB. 4-29

5.1 Illustration of the SRs. 5-4
5.2 Example of two functionally equivalent VNF-FGs. 5-5
5.3 Illustration of an SNe in a 5G context. 5-7
5.4 Augmented tree resulting from application of Algorithm 5.1 to the service

request depicted in Figure 5.1 . 5-9
5.5 Augmented Graph (AG) used to estimate the embedding costs and to gener-

ate an embedding of c4 for s0. 5-19
5.6 Influence of the Location Constraints (LCs): Service Function Chain (SFC),

offline, for 5 ranks. 5-24
5.7 Influence of the LCs: SFC, offline, for 3 ranks. 5-25
5.8 Influence of the offered load: SFC, offline, for 3 ranks. 5-27
5.9 SFC, online traces, for 5 ranks, radius = 9. 5-28
5.10 Influence of LCs: Service Function Tree (SFT), offline, for 3 ranks. 5-30
5.11 SFT, online traces, for 5 ranks, radius = 9. 5-31

6.1 Service requirements for the illustrative use-case. 6-5
6.2 Illustration of a valid VNF-FG for the use-case. 6-7
6.3 SN illustration comprising 3 switches. 6-8
6.4 AG for the use-case. 6-11
6.5 Influence of the Physical Link (PL) bandwidth capability Bavg 6-27
6.6 Influence of the radius (ρ) for Bavg = 6000. 6-28
6.7 Influence of the maximum end-to-end latency for Bavg = 6000 and ρ = 10. . 6-29
6.8 Online traces for Bavg = 6000, ρ = 10 and tN

max = 575ms. 6-31

List of Acronyms

5GUARDS 5G qUAlity slicing foR the Deployment of Security
services.

ACROSS Autonomous Control for a Reliable Internet of Ser-
vices.

AG Augmented Graph.
AGV Automated Guided Vehiclex.
API Application Programming Interface.
APP Application Placement Problem.
AR Augmented Reality.
ARPANET Advanced Research Projects Agency Network.
AWS Amazon Web Services.

BFS Breadth First Search.
BS Base Station.
BSS Business Support System.

C-RAN Cloud-Radio Access Network.
CAPP Cloud Application Placement Problem.
CDN Content Delivery Network.
CLF CPU Load Factor.
COST European Cooperation in Science & Technology.
CPU Central Processing Unit.
CWI Center for Mathematics and Computer Science.

DAG Directed Acyclic Graph.
DB database.
DFS Depth First Search.
DHCP Dynamic Host Control Protocol.
DNS Domain Name Service.
DoS Denial of Service.
DP Dynamic Programming.

xviii

EC Erasure Coding.
EEA European Economic Area.
EM Element Manager.
EMD Elastic Media Distribution for online collaboration.
ETSI European Telecommunications Standards Institute.
EU European Union.

FaaS Function as a Service.
FAN Field Area Network.
FCAPS fault, configuration, accounting, performance, se-

curity.
FEC Forward Error Correction.
FUSE Flexible federated Unified Service Environment.
FW Firewall.

GA Genetic Algorithm.
GCS Greedy Chain Selection.
GDPR General Data Protection Regulation.
GITA Applied Telecommunication Research Group.
GRECO Genetic Reliable ClOuds.
GRMP Generalized Replica Management Problem.
GT-ITM Georgia Tech Internetwork Topology Models.

HDFS Hadoop Distributed File System.
HMI human-machine interaction.
HPC High-Performance Computing.

IaaS Infrastructure as a Service.
IDS Intrusion Detection System.
iFEST improved Festival Experience with wearable Sensor

Technology.
ILP Integer Linear Program.
IMCF Integer MCF.
InP Infrastructure Provider.
IoS Internet of Services.
IoT Internet of Things.
IP Internet Protocol.
ISP Internet Service Provider.
IT Information Technology.

KPI key Performance Indicator.

xix

LAN Local Area Network.
LB Load Balancer.
LC Location Constraint.
LC-VNE Location-Constrained VNE.
LP Linear Program.

M2C machine-to-cloud.
M2M machine-to-machine.
MANO Management and Orchestration.
MAV Micro Air Vehicle.
MCF Multi Commodity Flow.
MCTS Monte Carlo Tree Search.
MEC Multi-access Edge Computing.
MI Management Interval.
MILP Mixed Integer Linear Program.
MIP Mixed Integer Program.
MIQCP Mixed Integer Quadratically Constrained Program.
MKP Multidimensional Knapsack Problem.
MPC Model Predictive Control.
MPLS Multi Protocol Label Switching.
MPTCP Multi Path TCP.
MTDL Mean Time to Dataloss.
MTTF Mean Time To Failure.

NAT Network Address Translation.
NCP Network Control Program.
NF Network Function.
NFV Network Functions Virtualization.
NFVI NFV Infrastructure.
NIC Network Interface Card.
NS Network Service.

OASIS Organization for the Advancement of Structured
Information Standards.

OS Operating System.
OSI Open Systems Interconnection.
OSS Operations Support System.

P2P Peer to Peer.
PaaS Platform as a Service.
PC Placement Configuration.

xx

PL Physical Link.
PM Physical Machine.
PoP Points of Presence.
PP Physical Path.
PSO Particle Swarm Optimization.

QAP Quadratic Assignment Problem.
QoS Quality of Service.

RAN Radio Access Network.
RF Radio Frequency.
RFID Radio-Frequency IDentification.
RL Replication Level.
RUV Resource Usage Vector.

S3 Simple Storage Service.
SaaS Software as a Service.
SAE Service Architecture Evolution.
SDN Software Defined Networking.
SECC Service Embedding and Chain Composition.
SeP Service Provider.
SFC Service Function Chain.
SFT Service Function Tree.
SG Substrate Graph.
ShP Shortest Path.
SL Substrate Link.
SLA Service Level Agreement.
SNe Substrate Network.
SNo Substrate Node.
SOA Service Oriented Architecture.
SR Service Requirement.
SVNE Survivable Virtual Network Embedding.

TCP Transmission Control Protocol.
TOCSA Topology and Orchestration Specification for Cloud

Applications.

UE User Equipment.
USA United States of America.

vCPE virtual Customer Premises Equipment.
VIM Virtualized Infrastructure Manager.

xxi

VL Virtual Link.
VLAIO Flanders Innovation & Entrepreneurship.
VLAN Virtual Local Area Network.
VM Virtual Machine.
VMP Virtual Machine Placement.
VNE Virtual Network Embedding.
VNe Virtual Network.
VNF Virtual Network Function.
VNF-FG VNF-Forwarding Graph.
VNFM VNF Manager.
VNFR VNF Request.
VNo Virtual Node.
VoD Video on Demand.
VPC Virtual Private Cloud.
VPN Virtual Private Network.
VUPIC Virtual Machine Usage Based Placement in IaaS

Cloud.

WAN Wide Area Network.
WSN Wireless Sensor Network.

Chapter 1

Introduction

1.1 Research context

The Internet was conceptualized as an interconnection of networks. It has had a tremendous
success and changed how we humans interact, spend our free time, consume information and
do business. Over its lifetime, how the Internet is used, has evolved tremendously. One of the
Internet’s first killer applications was the worldwide web, allowing people to display a copy
of a web page, that is stored on a remote server, on their personal computer. In this light, Al
Gore, former vice president of the United States of America (USA), famously referred to the
Internet as an information superhighway [1].

Traditionally, providers had to manage their own server infrastructure in order to deploy
their Internet services. They had to decide on how many servers to buy and operate in order to
deal with the expected demand for their service. While installing servers is a very slow process,
taking up a few hours or even days, the demand for a service can vary rapidly in a matter of sec-
onds. Hosting a service was complicated as the provider had to manage his own infrastructure
and had to carefully provision resources upfront, requiring large capital investments. Overpro-
visioning resources, maximized service uptime, but lead to low infrastructure-utilization, while
underprovisioning reduced wasted resources, but caused service downtime during demand
peaks.

The introduction of cloud computing has removed this barrier of providing a service. The
cloud computing paradigm offers users access to vast quantities of computing, storage and
network resources on-demand. For instance, on-demand computing platform Amazon Web
Services (AWS) was publicly launched in 2006. Here, the infrastructure was centralized in
large datacenters and the resources could be time-shared, driving down the cost of com-
puting drastically. Virtualization allowed multiple users to share infrastructure, improving
resource utilization. Through replication of data and Virtual Machines (VMs) over multiple
availability zones, combined with highly automated management software, the cloud enabled
high availability services on top of commodity hardware. For instance, cloud storage service
Dropbox [2], providing an online backup of personal data, was released in 2007. About the
same time, broadband services delivering music and Video on Demand (VoD) were launched,
e.g. Spotify [3] and YouTube [4], respectively. Compared to more traditional web applications,

1-2 INTRODUCTION

these broadband services often were very demanding in terms of Quality of Service (QoS) and
throughput. While the use of the Internet changed dramatically, the network protocols stayed
the same. To deal with this ossification, network virtualization was proposed, enabling multiple
logically separated overlay networks to coexist and employ their own network protocols, on
top of shared networking infrastructure. In this way, network virtualization [5], combined with
Software Defined Networking (SDN) [6] allowed assigning different QoS levels and bandwidth
guarantees to traffic flows.

Cloud computing initially moved computing away from the end user, to remote centralized
datacenters. Lately, Network Services (NSs) are increasingly being deployed across a geo-
distributed cloud infrastructure. This geo-distribution is needed for several reasons. First,
there are legal reasons and privacy concerns. For instance, the General Data Protection
Regulation (GDPR) is a regulation in European Union (EU) law on data protection and privacy
for all individuals within the EU and the European Economic Area (EEA). This regulation,
implemented in 2016, requires that before personal data can be transferred outside the EU
and EEA, to countries that are not deemed adequate, additional safeguards have to be put in
place [7]. Concerns regarding where privacy-sensitive data is stored also crop up on a much
smaller scale, within regional and national borders. For instance, in smart camera applications,
privacy video material may not be allowed to leave the premises of a correctional facility
or an oil platform. Second, while previously uptime was an application developer’s main
concern, now reaction times are becoming more important. Cloud elements that are in close
proximity to the user’s location generally can be accessed with a much lower latency compared
to elements that are farther away. Consequently, resources that are hosted at the network edge
can serve users much faster. For instance, a nearby web proxy can significantly reduce page
loading times. Further, these nearby elements can result in significant bandwidth savings. For
instance, in the smart camera scenario, the amount of video data generated by this application
may be so overwhelming that not all data can be transferred to a remote datacenter due to
bandwidth limitations. In this case, the data must initially be stored at the edge location closest
to its source and only after a first analysis, a subset of the data is transferred to a remote
datacenter.

In a first phase of geo-distribution, public and private clouds became interconnected,
forming hybrid clouds. Netflix [8] is an architecturally interesting example of a global VoD
streaming service. Its data and control plane are deployed on separate infrastructure. Anything
that does not involve serving video is handled by AWS. In order to distribute its content
efficiently, Netflix built a proprietary Content Delivery Network (CDN), i.e. OpenConnect, by
partnering with local Internet Service Providers (ISPs). Interestingly, Spotify initially combined
their own servers with a Peer to Peer (P2P) network, where music is cached at the client
side and shared with other users. In 2011, 80% of the songs were delivered through the P2P
network, reducing the buffering time for clients [9]. Initially, its master catalogue was hosted
on Spotify’s own datacenter. Later, it was migrated to Amazon Simple Storage Service (S3). In
2014, Spotify started phasing out its P2P network. All songs could now be streamed directly
from the cloud, with acceptable delays. Finally, in 2016 Spotify migrated all of its computing
resources to Google Cloud. One of the reasons for migrating to Google Cloud, was its Virtual
Private Cloud (VPC) offering, which through network virtualization prevents the failure of one
software component, to bring down the entire Spotify platform [10]. In contrast to Spotify

INTRODUCTION 1-3

and YouTube, Twitch’s crowd-sourced interactive live streaming platform [11] launched in
2011, does not provide the sources of live streaming [12]. Instead, it serves as a platform that
interconnects sources and viewers, which complicates the orchestration of such a NS. First, the
sources are no longer professional content providers and often have limited computation and
network resources and may join or leave at any time, making high-quality live streaming more
challenging. Moreover, Twitch allows interaction with live content broadcasters. The delay
must therefore be limited to a few seconds. The main source of stream unavailability in Twitch
is due to connectivity problems at the source side [12]. Moreover, there are challenges related
to data persistence as, all video streams are archived and available as VoD during a period of 14
and 60 days for regular and premium broadcasters, respectively. Second, there are challenges
related to the composition of the NS. Since sources and targets include computers, gaming
consoles and mobile devices, premium broadcasters can opt for an online transcoding service
in order to maximize their viewership. Further, users can customize the video composition, by
making a selection, combining multiple viewing angles and live commentary. YouTube mainly
offers static VoD and can therefore use a static caching strategy that heavily relies on placing
CDN nodes close to the end user [13]. Driven by the delay sensitivity of live streaming, Twitch
progressively and proactively replicates streams across servers only after sufficient demand
is observed. This more centralized management approach places a much greater reliance on
effective peering and interconnection strategies. At the same time, users must be able to switch
between sources with a delay of at most a few seconds.

In a second phase of geo-distribution, cloud elements other than CDN nodes, are being
placed at the edge of the network, further complicating the cloud management. According to a
recent survey on edge computing for the Internet of Things (IoT) [14], this edge infrastructure
is needed to enable ultra-low response times and facilitate data processing for future IoT
applications. While the compute and storage capabilities of centralized cloud elements are
immense, the capabilities of IoT devices are mostly limited to messaging. Cloud robotics
and self-driving cars will offload the intelligence required to make realtime decisions to the
cloud. The required response times will be in the order of milliseconds, impeding offloading
computation to a remote centralized cloud. The devices at the edge, will have capabilities
that are more limited than the ones in centralized datacenters, but that are accessible at lower
latencies. In order to enable ultra-low response times for these demanding IoT applications,
mobile providers are investigating placement of Multi-access Edge Computing (MEC) sites in
their Radio Access Network (RAN). In the next generation of mobile networks, i.e. 5G, this
MEC can be used by the mobile operator to place Virtual Network Functions (VNFs) close to
the user and can be opened up to third party Service Providers (SePs). The architecture of the
geo-distributed cloud infrastructure is shown in Figure 1.1. The core network interconnects
the centralized clouds and the edge clouds. The Local Area Network (LAN) interconnects
the end-devices and connects the end-devices to the edge clouds. While edge clouds are
closer to the end-user, the capability and reliability of this infrastructure is much more limited,
compared to centralized clouds. Further, the infrastructure in centralized clouds is much more
homogeneous, with heterogeneity being limited to multiple generations of servers being used.

According to Yu et al. [14], the long-term analytics for big data applications will be
performed in centralized clouds, while short-term storage and analytics will be performed

1-4 INTRODUCTION

Centralized clouds

Edge clouds

End-devices

Core network

Local Area Network
+Distance to user

+Capabilities

+Reliability
+Homogeneity

Figure 1.1: The architecture of geo-distributed cloud infrastructure.

at the edge. Since the devices at the edge are severely resource-constrained, intelligent
orchestration algorithms are needed that can deal with these heterogeneous resources. These
algorithms must orchestrate the services, while at the same time considering the desired
outcome of the service and the scarcity of the compute, network and storage resources.

1.2 Problem statement

In the previous section, we described the growing need to deploy Internet services across a
geo-graphically distributed cloud infrastructure. This need stems from a combination of legal
and privacy concerns; the growing demand for responsive services with low reaction times;
and the need to reduce the uplink bandwidth requirements of bandwidth-hungry applications
towards the core network. In response, SePs are increasingly interconnecting cloud elements
across multiple datacenters and cloud elements are being placed at the edge of the network.

In order to operate cloud environments, highly-automated cloud management software is
needed. Novel management algorithms are needed as the state of the art cannot deal with
the increased heterogeneity caused by introducing infrastructure at the edge into the cloud
environment. The aim of this thesis is to investigate the challenges related to the orchestration
of services across these heterogeneous cloud environments and propose novel management
approaches that address these challenges. The research questions that are investigated in this
thesis are presented in Section 1.3.

1.3 Research questions

In this thesis, the following research questions and subquestions regarding the management of
services in heterogeneous cloud environments will be investigated. First, there are queries
regarding the replication of persistent application data. While the storage capabilities within
datacenters are virtually infinite, the capabilities at the edge of the network are a great deal
scarcer. Moreover, the storage capabilities differ wildly from one edge location to another.
While in one edge location, only a single gateway with some storage capabilities might be
present, at other edge locations the data can possibly be replicated across multiple storage

INTRODUCTION 1-5

racks. The bandwidth capabilities both within and across storage cells vary wildly from one
edge location to another. The storage locations can be interconnected through a plethora of
communication technologies, either via high-bandwidth fiber-optical cables, copper wires or
even via the wireless Radio Frequency (RF) spectrum. Further, data from a wide range of
services will coexist at the edge. These services have diverse QoS requirements regarding
data persistence, i.e. how long the data must be stored and to which degree data loss can be
tolerated. The services will compete for the same physical resources. Thus, for geo-distributed
clouds to be operated effectively, the following questions regarding data management at the
edge must be answered.

Question I. How to effectively replicate data across storage nodes in heterogeneous cloud
environments?

Subquestion Ia. How to maximize the expected provider revenue over a service’s lifetime?

Subquestion Ib. How to model data loss in replicated systems?

Subquestion Ic. What is the impact of Service Level Agreements (SLAs) on data availability
on the optimal replication strategy?

Subquestion Id. What is the impact of the cloud characteristics on the optimal replication
strategy?

Subquestion Ie. How does a replication strategy that balances SLA conformity with storage
costs perform, compared to traditional replication strategies?

Second, there are queries regarding the provisioning of reliable Survivable Virtual Network
Embeddings (SVNEs). Traditional cloud management often ignores bandwidth limitations
within a datacenter, as the operator has full control over the infrastructure and the wired
links can be heavily overprovisioned. However, when NSs are deployed in geo-distributed
cloud environments, the network limitations cannot be ignored. Hence, in order to reliably
orchestrate NSs, across geo-distributed cloud infrastructure, both nodal and bandwidth re-
sources must be provisioned. Further, in order to protect realtime broadband services against
failures in the underlying infrastructure, they must be able to survive failures in both nodes and
their interconnections. Current protection schemes, introduce the same level of redundancy
across the entire infrastructure, regardless of the local failure behavior and resource scarcity.
Moreover, they typically introduce a predetermined level of replication for each service, re-
gardless of the required QoS. Thus, to maximize the number of applications that can co-exist
in these geo-distributed cloud environments, while satisfying their reliability requirements,
the following questions must be answered.

Question II. How to protect NSs against node and link failure in heterogeneous cloud envi-
ronments?

Subquestion IIa. How to deal with the scarcity of resources at the edge?

Subquestion IIb. How to introduce redundancy into the Placement Configuration (PC) only
where it is needed?

1-6 INTRODUCTION

Subquestion IIc. How to place applications, while guaranteeing a minimum availability for
each application?

Subquestion IId. How to calculate the expected availability of a SVNE?

Subquestion IIe. How does a proactive approach that introduces a variable level of protection
and that is availability-aware perform, compared to traditional strategies?

Third, there are queries regarding the orchestration of NSs in NFV environments. NSs are
increasingly being described as a composition of VNF instances and their required intercon-
necting Virtual Link (VL) instances. To successfully orchestrate a NS in an NFV environment,
its VNF-FG must be composed based on the Service Requirements (SRs) and the composed
VNF-FG must be embedded onto the infrastructure. The orchestration of these services across a
geo-distributed cloud infrastructure is very challenging as compared to traditional Information
Technology (IT) services, because their execution often depends on very specific hardware
capabilities. Further, these NSs originate and terminate at specific geographical locations,
whose interconnections introduce severe bandwidth limitations. The heterogeneity in the SNe
is known to complicate the service-embedding significantly. Further, often multiple candi-
date VNF-FG compositions can fulfill the SRs, drastically increasing the search space for PCs.
Traditional orchestration approaches consider the composition and embedding problems in
two separate stages. Composing the service without any knowledge about the SNe can result
in a VNF-FG that is hard or even impossible to embed. Hence, coordination between these
two tasks is expected to improve the quality of the PC. Further, current service composition
models make very restrictive assumptions on the service topology and requirements, which
severely limit their applicability. Thus, to effectively orchestrate services in geo-distributed
NFV environments, the following questions must be answered.

Question III. How to orchestrate NSs in NFV environments?

Subquestion IIIa. How to compose the VNFs based on the service requirements?

Subquestion IIIb. How to coordinate the VNF-FG composition and embedding?

Subquestion IIIc. How do orchestration approaches that coordinate the composition and
embedding tasks perform, compared to uncoordinated approaches?

Subquestion IIId. How to orchestrate NSs that require traffic aggregation?

1.4 Contributions

The research work presented in this monograph has been internationally validated in different
networking peer reviewed journals and conferences. Several experts have provided their
comments in the peer reviews allowing us to improve our investigations and to guide the
direction of our research. The articles published during the development of this thesis are
detailed in Table 1.1 and 1.2 with a quality indicator that highlight the quality level of the
journal/conference.

INTRODUCTION 1-7

Table 1.1: Publications in journals.

Year Paper title Journal Quality indicator

2017 Resilient application
placement for geo-distributed
cloud networks [C1]

Journal of Network and
Computer Applications

Impact Factor 3.991, Q1

2018 Coordinated service
composition and embedding
of 5G location-constrained
network functions [C2]

IEEE Transactions on
Network and Service
Management

Impact Factor 3.286, Q1

2019 Delay-constrained NFV
Orchestration for
Heterogeneous Cloud
Networks [C3]

IEEE/ACM
Transactions on
Networking

Impact Factor 3.11, Q1 status:
submitted

Table 1.2: International conferences.

Year Paper title Conference Quality indicator

2014 Towards a fluid cloud: an
extension of the cloud into
the local network [C4]

International
Conference on
Autonomous
Infrastructure,
Management and
Security (AIMS), PhD
track

-

2015 Fault-tolerant application
placement in heterogeneous
cloud environments [C5]

Network and Service
Management (CNSM)

CORE Ranking B, acceptance
rate 17.6%

2017 Cost-effective replica
management in fault-tolerant
cloud environments [C6]

Network and Service
Management (CNSM)

CORE Ranking B, acceptance
rate 17.6%

2019 Effective NFV Orchestration
for Wide-Ranging Services
Across Heterogeneous Cloud
Networks [C7]

Symposium on
Integrated Network
and Service
Management (IM)

CORE Ranking A (2017)

1.5 Organization

The organization of this thesis is shown in Figure 1.2. There, the individual chapters and
their interdependencies are shown. In Chapter 2, the challenges related to resilience in cloud
computing, VNE and NFV composition are identified.

The contributions of this thesis are presented in Chapters 3, 4, 5 and 6. Chapter 3 focuses
on Question I. It addresses the challenges related to balancing resilience and operational costs
in dynamic cloud environments. It defines the Generalized Replica Management Problem
(GRMP) which considers the problem of maximizing the provider revenue for a replicated

1-8 INTRODUCTION

Chapter 1: Introduction

Motivation &
Objectives

Scientific
Contribution

Thesis
Organization

Chapter 2: Background

Resilience in
Cloud VNE

NFV
Composition

Chapter 3: Cost-effective replica-management
Dynamic

Data Loss GRMP

Chapter 4: Availability-aware application placement

SVNE
Availability-

Availability-
Aware SVNE

Placement

Chapter 5: Coordinated NFV orchestration

Service model Combined
Composition &

Computing

Model

Model

Runtime
Revenue

Optimization

Problem

Tree VNF-FG
Service Model

Algorithm

On-Demand
Orchestration

AlgorithmEmbedding

Chapter 7: Conclusions

Main Research
ProjectsContributions

Chapter 8: Future work

Applicability Further
of Results Improvements

Algorithm

Chapter 6: An improved NFV orchestration model

Service model Combined
Composition &

DAG VNF-FG
Service Model

On-Demand
Orchestration

AlgorithmEmbedding

QI

QII

QIII

QIII

Figure 1.2: Thesis organization.

INTRODUCTION 1-9

service over the service lifetime. This problem is the task to periodically monitor the service’s
health and decide whether scaling in or out maximizes the provider’s monetary reward, while
consider the SLA. Instead of directly considering the status of each individual PL and PM, our
proposed approach considers the impact of failure distribution, operational costs, recovery
times and scheme. A Dynamic Programming (DP) is proposed that performs a runtime revenue
optimization over the service’s lifetime. This algorithm’s execution time depends on the used
replication scheme, but not directly on the dimensions of the SNe, which makes the approach
well-suited for the management of replicated services in large-scale environments.

Chapter 4 focuses on Question II. It focuses on the challenges related to the protection of
VNEs in heterogeneous cloud environments. The chapter proposes a fine-grained replication
scheme based on the embedding of multiple service duplicates and develops the corresponding
service availability model. Compared to traditional replication schemes, these duplicates can
share resources. Building on this availability model, the availability-aware SVNE problem is
formulated, which aims to embed a service with minimal cost on a SNe, where both PMs and
PLs can fail, while guaranteeing a minimum availability per service. Since finding an exact
solution is NP-hard, several placement heuristics are proposed. As the uplink capabilities of IoT
environments are often unreliable or nonexistent, the cloud management algorithms might
need to be executed on these unreliable devices on the edge. However, the devices at the edge
often have very limited computational capabilities and increasingly fail without any warning,
compared to the servers in centralized datacenters. Therefore, a distributed fault-tolerant
placement algorithm is proposed that can find a solution to the availability-aware SVNE
problem. The proposed Genetic Algorithm (GA) uses a distributed pool model to distribute
the solution population over the workers. The workers, executed on the edge devices each
retrieve a set of individuals from the database, process them and write them back. When a
worker fails during processing, its operation times out and another worker can start processing
these individuals. Finally, a scalable centralized heuristic, based on subgraph isomorphism is
proposed, that can find solutions in a SNe with up to 100 PMs under 20 seconds.

Chapters 5 and 6 focus on Question III. They both consider the problem of service orches-
tration in NFV environments. Service composition in NFV environments entails both service
composition and VNF-FG embedding. The composition of the NS’s VNF-FG is based on the SRs.
VNF-FG embedding is closely related to the VNE problem. Two service models are considers.
First, Chapter 5 considers this problem, building on an existing service model can compose
VNF-FGs with a tree topology. The problem is formulated as an Integer Linear Program (ILP)
that can be used to find the exact solution for smaller problem instances. To deal with the
computational complexity of the problem, a fast, greedy heuristic that iteratively adds SFCs to
the composition and embeds them at the same time, is proposed. Second, Chapter 5 proposes
an improved service model that provides wider applicability. It supports traffic aggregation,
bidirectional chaining requirements and optional VLs. This combined composition and embed-
ding problem is formulated as an ILP that can be used to find the exact solution for smaller
problem instances. Further, a recursive heuristic is proposed that can orchestrate services that
adhere to this service model.

Finally, Chapter 7 presents the conclusions and main results of this thesis. Chapter 8 depicts
the possible improvements of the presented contributions and the emerging research branches
that can be the subject of future work.

Chapter 2

Background

This chapter provides the basic background against which the thesis is developed. First,
the cloud computing paradigm and the recent trend towards geo-distribution of the cloud
infrastructure are introduced. Second, the concept of network virtualization is introduced.
Third, NFV, i.e. the process to virtualize Network Functions (NFs) that previously ran on
dedicated hardware, is discussed. Then, the resource allocation challenges related to the
management of these computing environments are presented.

2.1 Cloud computing

Cloud computing is a way of offering computing, storage and networking resources, on-
demand, over the Internet. Previously, IT service providers had to manage their own private
servers, requiring large up-front investments. Nowadays, cloud computing provides access to
a vast pool of computing resources, realized by commodity hardware that resides within large
datacenters. The tenants time-share this infrastructure, and must not be aware of each other’s
presence. The required performance isolation is realized through combinations of virtualization
techniques and highly automated cloud management software. Due to the centralization of
computing resources, the cloud formalism promises reduced costs due to the economies of
scale. Further, it offers the possibility to scale an application in or out, when the demand for an
application in- or decreases, respectively. Hence, the service provider no longer has to heavily
over-provision resources. Further, the cloud offers highly available services running on top
of commodity hardware, enabled by virtualization techniques. For more information on the
cloud computing paradigm, the interested reader is referred to [15, 16].

2.1.1 Cloud provisioning models

The cloud paradigm liberates service providers from the burden to manage the entire stack
required to realize their service, from the physical infrastructure, up to managing their applica-
tion. This burden is now shared by a set of stakeholders. Jennings and Stadler identify three
cloud actors in the cloud model [16].

2-2 BACKGROUND

• Cloud provider: manages a set of datacenter hardware and system software resources,
providing abstractions of those resources. The cloud provider is responsible for allocating
these resources so that it meets SLAs and/or achieves other management goals;

• Cloud user: uses public clouds to host applications that it offers to its end users. The
cloud user is responsible for meeting SLAs agreed with its customers (i.e., end users) and
is typically concerned with doing so in a manner that minimizes its costs and maximizes
its profits by ensuring that the level of resources leased from the cloud provider scales in
line with demands from its end users;

• End user: generates the workloads that are processed using cloud resources.

Cloud resources are offered in one of the following resource models. These models offer
the computation resource using different levels of abstraction, each characterized by its own
granularity of control and separation of concern.

• Software as a Service (SaaS): does not consider a separate cloud user. The cloud provider
manages the infrastructure, the platform and the application. The cloud provider
offers the service directly to the end user. Examples of SaaS include Google Apps [17],
Dropbox [2] and GoToMeeting [18].

• Platform as a Service (PaaS): provides a platform for software creation. It allows busi-
nesses to design and create applications that are built into the PaaS with special software
components. In PaaS, the cloud provider manages the infrastructure; the cloud user
manages the platform and the cloud user manages the application.

• Infrastructure as a Service (IaaS): provides the tenants access to a virtualized datacenter.
As opposed to SaaS or PaaS, IaaS clients are responsible for managing aspects such as
applications, runtime, Operating Systems (OSs) and data. Providers of the IaaS cloud
manage the servers, hard drives, networking virtualization and storage. Examples of
IaaS include AWS [19], Rackspace [20] and Google Compute Engine [21].

• Function as a Service (FaaS): provides a platform that executes functions in response to
events at any scale. The user is only billed for the time during which the functions are
invoked. The functions are short-lived, typically the execution time of a function is limited
to a few minutes. The state of the application is stored in a distributed database; the
functions are stateless. The key difference compared to PaaS, is that during the lifetime
of a PaaS application at least one of the servers must be online, while that is not required
for FaaS. Examples of FaaS platforms include OpenWhisk [22], OpenLambda [23] and
Azure Functions [24].

2.1.2 Geo-distribution

While traditionally a cloud infrastructure is located within a single datacenter, recently, there
is a need for geographical distribution. NSs now often span multiple federated clouds. Geo-
decentralization is needed to keep up with the users’ ever-increasing demand for low response
times and high throughput. There are also legal reasons, restricting the storage or processing

BACKGROUND 2-3

of privacy-sensitive data to particular geographical locations, e.g., within the boundaries of a
country.

Lately, this need for geo-distribution has led to a new evolution of decentralization. Most
notably, the extension of cloud computing towards the edge of the network, is generally
referred to as fog or edge computing [25]. In fog computing, computation is performed at the
edge of the network at the gateway devices, reducing bandwidth requirements, latency, and
the need for communicating data to the servers. These gateway devices will aggregate the
data originating from a wide variety of things or objects, e.g. Radio-Frequency IDentification
(RFID) tags, sensors, actuators and mobile phones, in what is known as IoT [26]. Second,
mist computing pushes processing even further to the network-edge, involving the sensor and
actuator devices [27]. Closely related to mist computing is the cloud robotics architecture
put forward by Hu et al. [28]. The architecture leverages the combination of a virtual ad-hoc
cloud formed by machine-to-machine (M2M) communications among participating robots,
and an infrastructure-cloud enabled by machine-to-cloud (M2C) communications.

2.2 Virtual networking

The cloud paradigm offers computational resources on-demand to its tenants. While the users
time-share the infrastructure, this should be transparent to its tenants. First, the tenants
require a simpler, abstract view on the resources, where the configurations of the different
tenants do not affect one another. Second, the resource management by the provider should
isolate the performance of multiple tenants. To realize this, the cloud formalism relies on a
combination of node and link virtualization.

2.2.1 Node virtualization

The processes required by the service are executed in virtualized environments, referred to as
Virtual Nodes (VNos). These virtualized environments are deployed on PMs that run a host OS.
The two dominant virtualization environments are VMs and containers. These environments
differ in how much overhead they require. On the one hand, each VM image contains a guest
OS that manages the user processes. While running a host OS and multiple guest OSs at the
same time causes a significant overhead, it does bring a great deal of flexibility since VMs
executed on the same PM can run different OSs, e.g., Ubuntu 18.04, 16.04 and Windows 10 at
the same time. Communication between processes running within the same VM is managed by
the guest OS. Performance-isolation between VMs collocated on the same machine, is typically
realized by assigning them to different Central Processing Unit (CPU). This process is referred
to as CPU pinning. On the other hand, the processes in a containerized environment are
all directly executed within the host OS. Processes can only observe and talk to processes
that correspond to the appropriate namespace. Typically, the relative performance of the
containers that run on the same PM, is configured through their assigned priorities. The
resource requirements of VNos are typically expressed along the following dimensions.

• Processing: a measure for the CPU requirements of a VNo. When the PMs in the SNe are
heterogeneous, then the processing requirements to execute this VNo can differ from

2-4 BACKGROUND

PM to PM. Typically, these requirements are expressed in the number of cores, or by a
scalar proportional to the number of instructions that must be processed by the VNo to
assure acceptable behavior;

• Memory: the required space in the working memory to host the VNo. It is typically
expressed in MB or GB.

• Storage: the amount of storage required on persistent memory. It is typically expressed
in MB or GB.

• Network Interface Card (NIC) bandwidth: the overall bandwidth requirement of the VNo.

The lifecycle of a VNo is the following. Before an instance of a binary image can be deployed
on a PM, its content is transferred over the network. When an image is deployed, its processes
are loaded in the PM’s memory. Then, images can be suspended, meaning that its processes are
halted, after which the image can be either destroyed or resumed. Further, an image can be
migrated to another PM. Migration is a processing- and bandwidth-intensive operation and
typically always results in some minimal service downtime. When an image is suspended,
prior to migration, the migration process is referred to as cold migration. When the image
remains operational during transfer, the process is referred to as live migration.

2.2.2 Link virtualization

The communication between processes is organized using VLs. For security reasons, it is
important that the traffic from different tenants is logically separated. Logical separation of
traffic flows can be realized through Virtual Local Area Network (VLAN) technology or via the
creation of Virtual Private Network (VPN) tunnels. These tunnels create logical end-to-end
connections, referred to as VL instances that are routed over Physical Paths (PPs). A PP is
formed by a sequence of PLs in the SNe. The routing of a VL should be transparent to the
user. Further, the traffic flows can use different network protocols, optimized for the tenant’s
requirements. The data flowing over these VLs is typically encrypted to prevent eavesdropping.

Performance isolation between users sharing network resources can be realized via pri-
oritization of traffic flows using Multi Protocol Label Switching (MPLS), or through SDN.
Traditional switches use endpoint routing, meaning that the interface to which a packet is
forwarded by a router depends solely on the destination IP-address of the packet. In contrast,
SDN separates the control and data plane, facilitating the management of this infrastructure,
by enabling centralized steering of the traffic flows through the network. SDN enables the
infrastructure provider to provide bandwidth guarantees to different flows.

The requirements for VLs are typically expressed along the following dimensions.

• Bandwidth: the required communication bandwidth between the end-points of the VL.

• Delay: maximum acceptable delay, e.g., expressed in ms or hops, between the end-points
of the VL.

BACKGROUND 2-5

SeP2

SNe

VNo1

InP1

InP2

SeP1

VNe2

Figure 2.1: Network virtualization environment.

2.2.3 Network virtualization

Network virtualization is the process of combining hardware and software network resources
and network functionality into a single software-based administrative entity. The result of this
process is a Virtual Network (VNe).

Feamster et al. propose a business model similar to IaaS for network virtualization [29].
In this model, there are two actors. First, the Infrastructure Provider (InP) provides the
infrastructure. Second, the SeP provides the NS.

Figure 2.1 illustrates the network virtualization environment, formed by two SePs, i.e.,
SeP1 and SeP2; and two InPs, i.e., InP1 and InP2. In this illustration, SeP1 and SeP2 each
request a single VNe, i.e. VNe1 and VNe2, respectively. The VNes form an overlay-network,
comprising VNo instances, interconnected by VLs.

In the context of network virtualization, a VNo is typically a software component with
routing functionality. Hence, it also referred to as a virtual router. A VL (instance) is a logical
interconnection of two virtual routers, appearing to them as a direct PL with dynamically
changing properties. The virtualized resources in these VNes are realized by resources in the
SNe. Several independent VNes can coexist at the same time on top of a SNe. The SNe, formed
by pooling resources from InP1 and InP2, comprises Substrate Nodes (SNos), interconnected
by Substrate Links (SLs). These resources can either be physical network resources, i.e., PLs
and PMs, or they can be virtualized resources too, possibly leased from another InP.

2.3 Network functions virtualization

Similar to how cloud computing revolutionized how traditional IT services are deployed, NFV
is doing the same for broadband services that require NFs, e.g., Network Address Translation

2-6 BACKGROUND

NAT IDS VPNFW

Figure 2.2: Illustration of a VNF-FG, comprising 4 VNF instances and 3 VL instances.

(NAT), Firewall (FW), Intrusion Detection System (IDS) and VPN, that previously ran on
middle-boxes. Section 2.3.1 discusses why these middle-boxes were installed in the network.
NFV allows spinning up and down these NFs, with the same flexibility as if they were VMs in
an IaaS cloud. Compared to network virtualization (c.f. Section 2.2.3), NFV considers VNos
that realize more complex NFs, than only forwarding. Section 2.3.2 provides an overview of
the most common VNFs, most of which were previously executed on middle-boxes.

In NFV environments, the logical structure of a NS is represented by its VNF-FG. This
VNF-FG is essentially a VNe, where the VNos are VNF instances. An illustration of a VNF-FG is
shown in Figure 2.2.

This VNF-FG comprises NAT, FW, IDS and VPN instances. In order to promote re-usability
and modularity, NSs that are deployed in NFV environments are typically described as a
composition of VNFs. Each VNF is described by a VNF template, detailing its nodal and
connectivity requirements. For instance, Topology and Orchestration Specification for Cloud
Applications (TOCSA) [30] is a data model standard by industry group Organization for the
Advancement of Structured Information Standards (OASIS) that can be used to orchestrate
NFV services and applications. Most importantly, this standard describes VNF types, containing
the constraints in terms of architecture, processing and memory requirements to host an
instance of this VNF on a SNo and the total maximum and minimum number of instances
of this VNF. Further, it describes relationships between VNFs, i.e., which VNF is contained
within another and which connections it can have to other VNFs. The resource requirements of
VNF instances are typically dependent on the applied workload. It is important to distinguish
between the templates that describe the virtualized resources and the deployments, adhering
to these templates. In this monograph, the templates that describe the VNos are referred to
as VNFs. The actual deployments of these templates are referred to as VNF instances. While
the resource requirements of VNFs are relative, the requirements of their instances in the
VNF-FGs are absolute. The possible connections between VNFs, as specified in their templates,
are referred to as VLs. For an ingress VL, only the target VNF is fixed, while for an egress
VL, only the source VNF is predetermined. VL instances are the connections between VNF
instances in the VNF-FG, formed by connecting an egress VL of one VNF instance to an ingress
VL of another VNF instance. While the requirements of a VL depend on the workload, the
requirements of a VL instance are known.

2.3.1 The need for middle-boxes

Middle-boxes are dedicated, proprietary hardware, that fulfill a particular NF. Historically,
these boxes were installed by infrastructure providers, to deal in an ad-hoc way with the new
issues that they were facing, while the architecture of the Internet architecture and protocols
stayed largely the same. Conceptually, the Internet was designed as dumb packet forwarder,
with the intelligence located at the edge of the network. It evolved as an experimental packet-
switched network. The Open Systems Interconnection (OSI) data communications reference

BACKGROUND 2-7

model divides the communication functions of a telecommunication system over seven layers.
In this model, the packets should only be processed in the network stack up to the network
layer, i.e. layer three. The transport, session, presentation and application logic should only
be processed in the end-devices, i.e. the hosts. The first Internet applications were simple
web and e-mail services. In the past two decades, Internet services were deployed that had
not been envisaged upon the conception of the Internet, including music and video streaming
services, e.g., Spotify and Netflix, massive online multiplayer games and social media, e.g.,
Facebook and LinkedIn. However, the basic Internet Protocols (IPs) have not changed since
1983, when Advanced Research Projects Agency Network (ARPANET) changed from Network
Control Program (NCP) to the Transmission Control Protocol (TCP)/IP protocol suite, since
it would be very hard to remain backwards compatibility with older devices. This inertia is
often referred to as the ossification of the Internet. In order to support these novel broadband
services, the service providers have installed a wide variety of middle-boxes into the network.

2.3.2 VNF taxonomy

Table 2.1: VNF taxonomy.

Name Layer Type Description Flexibility Ref.

Storage VNF Application Functional Replica of data. Optional [12]

Authentication
Authorization
Accounting (AAA)
(e.g. RADIUS)

Application Functional Controls access to data. Sequence [31]

Domain Name
Service (DNS)

Application Functional Resolve host names. Optional [32]

Route Reflectors Application Scalability An alternative to the logical
full-mesh requirement of
IBGP.

Optional

Dynamic Host
Control Protocol
(DHCP)

Application Functional Assigns IP-addresses. Optional,
sequence

Service
Architecture
Evolution (SAE)
gateway

Application Performance Change routing path
according to application.

Optional,
sequence

Deep Packet
Inspection (DPI)

Application Security Inspection of packets. Optional,
sequence

[33]

Load Balancer (LB) Application Performance Divide the workload over
multiple homogeneous
servers, or separate flows
based on their processing
needs (e.g. video stream and
web traffic).

Optional,
sequence

[32]

Monitoring,
Monitoring and
Analytics probes

Application Reliability Monitor QoS, learn possible
optimizations, troubleshoot
traffic flows.

Optional,
sequence

[33]

Lawful Interception Application Security Wiretapping by law
enforcement.

Optional,
sequence

[33]

Watermarking Application Security Identify ownership of the
copyright, tracing copyright
infringements, source
tracking.

Optional,
sequence

2-8 BACKGROUND

Table 2.1: VNF taxonomy.

Name Layer Type Description Flexibility Ref.

Transcoding (video
or audio)

Application Functional,
performance

Change codec of a video,
done because target device
does not support source
codec, or to reduce the
bandwidth.

Optional,
sequence

[12, 34]

Conferencing,
recording, speech
recognition, text to
speech, language
translation, event
notification

Application Functional VNFs required for in
teleconferencing or customer
support.

Sequence [31]

Performance
enhancing proxy
(PR)

Application Performance Limits retransmission of the
same data.

Sequence,
optional

[32, 31]

Cache (content
distribution
network)

Application Performance Limits retransmission of the
same data.

Sequence,
optional

[35, 31]

Virtual Customer
Premises
Equipment (vCPE)

Application Functional Parental control, VoD, Billing Sequence,
optional

[35, 31]

Retransmission
engine

Application Performance,
reliability

Reduce latency in lossy
networks.

Optional,
sequence

[35]

Intrusion Detection
System (IDS)

Application Security Detect anomalies. Optional,
sequence

[35, 31]

Virtual Private
Network (VPN)
tunnel

Application Security Avoid man in the middle
attacks in non-trusted parts
of the internet.

Optional,
sequence

[35]

Anonymization
VNF

Application Security Used when personal data
cannot leave the enterprise
network, without being
anonymized first.

Optional,
sequence

Malware detection Application Security Detect malware. Optional,
sequence

[35]

Billing Application Functional Required for orchestration
across multiple
administration domains.

Optional,
sequence

Monitoring Application Reliability Monitoring of both network
and application

Optional,
sequence

[35]

Streamer Application Functional Creates a video or audio
stream from source material.

Optional,
sequence

Composer Application Functional Make a composition of
multiple streams.

Optional,
sequence

[34]

Cloud interfacer Application Functional Allow different Cloud
providers to work together.

Optional,
sequence

MAC VNFs Data Performance QoS differentiation, WAN
optimizers, low latency QoS
schedulers.

Optional,
sequence

Multi Protocol
Label Switching
(MPLS)

Data, network Performance Separate flows. Label packets
on layer 2 based on
destination IP. Switching on
layer 2 is less resource
intensive.

Optional,
sequence

[35]

FEC encoder and
decoder

Data, Network,
Transport

Performance,
reliability

Reduce latency in lossy
networks.

Optional,
sequence

Router (customer
edge, provider
edge)

Network Functional Forwards data packets. Optional,
sequence

[32]

BACKGROUND 2-9

Table 2.1: VNF taxonomy.

Name Layer Type Description Flexibility Ref.

Header
modification

Network Functional E.g., to change time-to-live of
a packet.

Optional

Slicing VNFs Network Performance Provide differentiated QoS. Optional

Firewall (FW) Network,
Transport

Security Monitors and control
incoming and outgoing
network traffic based on
predetermined security rules.

Optional,
sequence

[32]

Network Address
Translation (NAT)

Network,
Transport

Functional Provide connectivity between
multiple IP-ranges.

Optional [32, 31]

Signal processing
(e.g. Fast Fourier
Transform)

Physical Functional Signal processing required for
wireless communications.

[36]

Multipath TCP
(MPTCP)

Transport Performance Split the traffic over multiple
PPs in the SNe.

Optional,
sequence

Quic UDP Internet
Connections (Quic)

Transport Performance Provides reduced connection
and transport latency.

Optional

Transport relays Transport Performance Terminate the connection at
an intermediate point. Useful
when the latency of the
infrastructure varies (e.g.,
latency wireless, and cloud).

Optional

Session control Transport Functional Management of
communication sessions.

Sequence,
optional

[35]

NAT-P Transport,
network

Functional Provide connectivity
spanning multiple protocols.

Optional,
sequence

[32]

Rate control Transport,
session

Performance,
security

Data rate limitation to
enforce SLAs. Can prevent
DoS attack.

A comprehensive list of VNFs is given in Table 2.1, together with their characteristics.
Many of these NFs were originally executed on middle-boxes and therefore appeared in the
middle-box taxonomy by Carpenter et al. [32]. ’Layer’ indicates up to which layer in the OSI
data communications reference model the VNF processes the packets.

Three types of VNFs are used. Functional indicates that the VNF determines which service
the NS realizes. Security and performance are non-functional aspects. For instance, an applica-
tion proxy caches data, in order to avoid retrieving this data multiple times from the original
source. Load Balancers (LBs) forward the traffic over a set of servers, in order to achieve a
larger overall capacity. FWs block or pass packets, based on a set of rules regarding the source
and destination IP-address and port of the packet. A NAT allows devices that have a local
IP-address to connect to the Internet.

The category ’Flexibility’ indicates the flexibility in the composition of the VNF-FG. Optional
VNFs can be added to the NS, but in some cases, it is possible to compose a valid VNF-FG
without this VNF. For instance, a VPN tunnel might only be required if the VL is routed over
infrastructure that is not controlled by the cloud user. This scenario occurs in a hybrid cloud,
where the infrastructure pools resource from a private cloud, operated by the cloud user
and resources from a public cloud. Similarly, watermarking of a video stream might only
be required if the stream leaves the enterprise network. Additionally, a start and end-point
for a Multi Path TCP (MPTCP) connection might only be used if the SNe does not support

2-10 BACKGROUND

Hardware resources
Computing
hardware

Storage
hardware

Network
hardware

Virtualization layer

Virtual resources
Virtual
compute

Virtual
storage

Virtual
network

VNF1

EM1 EM2 EM3

OSS/BSS

Service, VNF &
infrastructure
description

VNF Management &
orchestration

Orchestrator

VNFM-

VIM-Virtualized
Infrastructure

Manager

VNF2 VNF3

NFVI

VNF Manager

Figure 2.3: MANO architecture proposed by ETSI.

path splitting, or if there is not enough bandwidth along a specific PL. Header modification
to increase the time-to-live of a packet is only required if the PP over which the packets are
routed exceeds a maximum length. Further, there are VNFs of which their relative order in the
chain does not affect the delivered functionality. For instance, the relative order of NAT and
FW instances in the SFC shown in Figure 2.2, does not necessarily influence the functionality
of this chain. However, changing the relative order of the IDS and VPN instance in the chain,
must not be allowed. Encrypting the traffic in the start-point of the tunnel would hinder
detection of intrusions later on.

2.3.3 Management and orchestration (MANO)

The NFV management and orchestration architecture proposed by European Telecommunica-
tions Standards Institute (ETSI) [37] is shown in Figure 2.3.

The following entities can be identified.

• Element Manager (EM): is responsible for the functional management of VNF i.e. fault,
configuration, accounting, performance, security (FCAPS). An EM can manage one or
more VNFs.

• VNF Manager (VNFM): performs the life-cycle management for one or more VNFs. The

BACKGROUND 2-11

VNF life-cycle is highly similar to that of a VNo in a network virtualization environment.
VNF life-cycle management entails the following functions. VNF onboarding is the
processing a VNF template, such that instances of it can be readily generated. VNF
deployment and undeployment are the processes of creating and terminating a running
VNF instance, respectively. Monitoring entails observing the key performance metrics of
a running VNF. Scaling up or down is the process of in- or decreasing the dimensions of
the VNF instance, e.g. by changing the number of assigned CPU cores or the amount
of reserved working memory. Healing restores a deployed VNF in case of software- or
hardware-related problems. In response, the current instance can either be migrated to
another SNo, or a new instance can be created.

• NFV Infrastructure (NFVI): the environment in which VNFs run. This includes physical
resources, virtual resources and virtualization layer. Physical resources include com-
puting, storage and networking infrastructure. Virtual resources are instantiated on
these physical resources. The virtual resources are ultimately utilized by VNFs. The
virtualization layer is responsible for abstracting physical resources into virtual resources.

• Virtualized Infrastructure Manager (VIM): the VIM is responsible for controlling and
managing the NFVI computing, networking and storage resources within one operator’s
infrastructure domain. It is also responsible for collection of performance measurements
and events.

• Orchestrator: generates, maintains and tears down NSs that are composed of multiple
VNF instances. The orchestrator enables the creation of end-to-end services that span
infrastructure from multiple NFVIs. The resource allocation algorithms required to
realize the orchestrator function will be the focus of this thesis. The resource allocation
challenges related to the orchestration of NSs in NFV environments will be discussed in
Section 2.4.

• Operations Support System (OSS)/Business Support System (BSS): OSS deals with network
management, fault management, configuration management and service management.
BSS deals with customer management, product management and order management.

2.4 Resource allocation challenges

The structure of this section is the following. First, Section 2.4.1 presents the key challenges
related to the management of a cloud environment. Second, Section 2.4.3 presents the
specific resource allocation challenges related to managing VNEs. Subsequently, Section 2.4.4
focuses on the challenges related to managing NSs in NFV-enabled cloud environments. Third,
Section 2.4.5 proposes a taxonomy of the related work on resource allocation approaches
in cloud environments. Finally, Section 2.4.7 concludes this chapter with emerging research
directions in this field.

2-12 BACKGROUND

2.4.1 Cloud management

According to Jennings et al., the two main cloud management functions required to successfully
operate a cloud infrastructure are application placement and migration control [16]. These
functions are needed to optimize the operation of the cloud with respect to its management
objectives or constraints. These goals and constraints can be related to the management of
the cloud itself, or they can be related to the SRs. Important management concerns related
to the cloud infrastructure are minimization of resource fragmentation, energy and resource
consumption. These concerns are all in some way related to the scarcity of resources. The
concerns related to the services/applications include both functional and non-functional aspects.
The objectives related to the services are typically described in the agreed SLAs between the
cloud provider and cloud user.

2.4.1.1 Application placement

Application placement entails deciding whether a request for resources is accepted or declined,
referred to as admission control; and deciding how to realize this request using the cloud
infrastructure, referred to as placement control. Placement control entails finding a good initial
PC for an application, which requires solving the Application Placement Problem (APP). One can
distinguish between the offline and online APP. The offline APP is the task of finding an initial
PC for a set of requests concurrently. The online version considers each request separately. In
practical cloud environments, the requests typically arrive one at a time. Competitive analysis
is a method invented for analyzing online algorithms, in which the performance of an online
algorithm is compared to the performance of an optimal offline algorithm that can view the
sequence of requests in advance. An online algorithm is competitive if the ratio between
its performance and the offline algorithm’s performance, is bounded. Hence, competitive
algorithms are used to overcome uncertainties about the future.

Initial approaches to the Cloud Application Placement Problem (CAPP) considered the
placement of VMs, without considering the communication required between VMs. This
approximation can be justified for deployments within a single datacenter, where the network
is rather well-controlled and can be heavily over-provisioned. In this case, when the goal
is to host as many requests as possible, the VM placement problem can be reduced to the
Multidimensional Knapsack Problem (MKP) [38]. The MKP is known to be NP-hard. In geo-
distributed clouds however, this approximation is no longer valid and the placement must be
network-aware for the following reasons. First, the bandwidth requirements between VMs are
often more limiting than the nodal requirements. Second, there often is a maximum acceptable
delay for the communication between VMs. Network-aware approaches are closely related to
the VNE problem, discussed in Section 2.4.3.

2.4.1.2 Migration control

Migration includes all adjustments made to PCs. These adjustments are made for one of the
following reasons.

• Fragmentation of SN’s resources: Since the requests for resources arrive one at a time and
the resources in the SNe are scarce, the PC of one request can complicate the placement

BACKGROUND 2-13

of a later one. Further, when one request is terminated, the PC of the remaining request
might be altered in order to reduce energy consumption. For instance, VMs could be
collocated, allowing powering down a PM.

• Changes in the SRs: Over a service’s lifetime, the demand for it can vary. The cloud user
can deal with these variations, through a combination of horizontal and vertical scaling.
In case of vertical scaling, when the capabilities of the SNo do not allow the dimensions
of the VNo to increase any further, the management can decide to migrate the VNo to
another SNo.

• Changes in the SNe: The characteristics of the SNe can vary over time. The cloud
management must be able to react to this dynamicity. For instance, it can decide to
migrate a VNo out of a failing SNo. In case the observed delay for VL becomes too high,
e.g., because the loading of the PLs along its PP in the SNe increases, the manager can
decide to reroute the VL.

2.4.2 Resilience in cloud computing

Reliability is an important non-functional requirement, as it outlines how the software systems
realizes its functionality [39]. It refers to the system’s capacity to recover from failure. Cloud
computing enables highly available services, running on top of commodity hardware. To
provide resilience in face of software and hardware failures, there are two types of schemes.
First, there are schemes of protection. These schemes aim to prevent or limit service outage by
introducing redundancy into the application’s PC, prior to failure happening. When failure
happens, the protection scheme should render the failure transparent to its user. One can
distinguish between act ive/act ive protection schemes, which have primary and backup
resources active at the same time, and act ive/passive protection schemes, that only activate
the backup resources when a failure has happened. Compared to act ive/act ive schemes,
act ive/passive schemes typically require fewer resources, since backup resources can be
pooled together between multiple services. This overhead reduction does come at the cost
of increased downtime and data loss. Second, there are schemes of restoration. Restoration
schemes are reactive, in that they do not foresee any backup resources upfront. In response to
failure events, service recovery is attempted by migrating the virtualized resources out of the
failed substrate resources. Restoration schemes cause the least overhead but tend to result in
the longest service downtime and the most data loss.

Jayasinghe et al. model cloud infrastructure as a tree structure with arbitrary depth [40].
Physical hosts on which VMs are hosted are the leaves of this tree, while the ancestors comprise
regions and availability zones. The nodes at bottom level are physical hosts where VMs
are hosted. Wang et al. were the first to provide a mathematical model to estimate the
resulting availability from such a tree structure [41]. They calculate the availability of a single
VM as the probability that neither the leaf itself, nor any of its ancestors fail. Their work
focuses on handling workload variations by a combination of vertical and horizontal scaling
of VMs. Horizontal scaling launches or suspends additional VMs, while vertical scaling alters
VM dimensions. The total availability is then the probability that at least one of the VMs is

2-14 BACKGROUND

SNe

VNe1

InP1 InP2

SeP1
a

c

d

eb

f

a
b

c

d

e
f

Figure 2.4: Illustration of VNE.

available. While their model suffices for traditional clouds, it is ill-suited for a heterogeneous
cloud environment as link failure and bandwidth limitations are disregarded.

Further, there are works that model data availability in replicated file systems [42, 43, 44,
45, 46]. These models are dynamic, in that they consider the impact of the time between
failures and the time to recovery. While these works can be used to estimate the impact
of system parameters and replication schemes, they lack algorithms to synthesize a good
replication scheme that is optimized for the required QoS-level and the cloud characteristics.

2.4.3 Virtual Network Embedding

The VNE problem is the task to embed a VNe onto a SNe, which is illustrated in Figure 2.4.
VNE entails both the task of node mapping, i.e. assigning each VNo to a SNo and link

mapping, i.e. assigning each VL to one or more PPs in the SNe. These tasks depend on each
other, as a VL instance from one VNo to another, must be routed from the SNo onto which the
former VNo is mapped, to the SNo onto which the latter is mapped.

A PP is an ordered list of PLs. When the SNe supports path-splitting, the VL bandwidth
can be distributed over multiple PPs, originating and terminating at the same source and
target SNo, respectively. In Figure 2.4, the flow along the VL instance between VNos e and
f is split over two disjoint PPs in the SNe. One of these PPs introduces one hop, while the
other introduces two hops. Typically, there is an upper limit on the tolerable delay-difference
between the PPs over which a single VL is split. For an overview of VNE, the reader is referred
to [47]. The link mapping must respect the PL bandwidth capabilities of each PL. The total
bandwidth consumption along a PL is the sum of the bandwidths of all VLs that are routed
over this PL. The node mapping considers the resource requirements of the VNos and the
capabilities of the PMs. Finding an optimal solution to the VNE problem is NP-hard [48].
Optimal solutions can be found using an ILP formulation, e.g. the one in [49, 50].

Fischer et al. distinguish between two types of heuristic strategies to the VNE [47]. First,

BACKGROUND 2-15

there are approaches that do not coordinate the node and link mapping. For instance, Razzaq
et al. first try to map the request’s VNos in order of decreasing processing requirements [51].
In the second phase, if all VNos are assigned, then the required VLs are allocated. To route
a VL between two PMs, the k shortest PPs in the SNe are traversed in order of increasing
path-length. The VL is assigned to the first PP with enough remaining bandwidth. Since the
two stages are uncoordinated, a poorly chosen node mapping, will often complicate the link
mapping. Especially, when well-connected VNos are assigned to poorly connected SNos.

Second, there are approaches that do coordinate these two subtasks. Coordinated ap-
proaches can either perform node and link mapping in 1 or in 2 separate stages. On the one
hand, Cheng et al. propose a coordinated algorithm that first maps VNos to SNos in order
of decreasing rank and then routes the VLs between the mapped nodes [52]. They consider
two routing scenarios. In case of splittable flow, the Linear Program (LP) formulation of the
Multi Commodity Flow (MCF) problem is solved. In case of unsplittable flow, for each VL, the
Shortest Path (ShP) with enough remaining bandwidth is selected. A VNo’s rank is based on
both its resource and topological attributes. The ranking results in a node mapping, that tries to
map well-connected VNos to well-connected PMs. On the other hand, in the same paper [52],
Cheng et al. propose a 1-stage algorithm that maps the VNos to SNos in order of decreasing
rank. The key difference is that this algorithm performs the node and link mapping at the same
time. Each time a VNo is mapped, its required VLs are immediately routed using a Breadth
First Search (BFS) algorithms. Lischka et al. propose another 1-stage coordinated algorithm,
that is based on subgraph isomorphism detection [53]. Their proposed algorithm in each step
maps a VNo to a PM and maps the VLs that are targeted at the current mapping simultaneously.
Coordinating the node and link embedding can significantly reduce the embedding cost.

The SVNE problem is the task of embedding a VNe, so that it can survive one or more
failures in the SNe [54]. For instance, Rahman et al. propose two strategies to deal with a
failing PL [55]. First, they propose a restoration approach that calculates candidate detour
paths for each PL. When after initial placement a given PL fails, then the VLs that use this PL
are rerouted. Second, they propose a proactive approach, which prereserves both primary
and backup bandwidth for each VL on link disjoint PPs. While the aforementioned approach
considers only a single PL to fail, SiMPLE can protect against multiple concurrent PL failures by
splitting the primary and backup flows over multiple disjoint PPs in the SNe [56]. For instance,
when a flow requiring x bandwidth units is routed over 3 disjoint PPs, then provisioning x/2
and x bandwidth units along each PP results in a SVNE that can survive 1 and 2 PL failures,
respectively. Finally, DRONE protects against a single PM or PL failure [57]. It does so by
placing a primary and backup VNE on two disjoints subgraphs in the SNe.

2.4.4 NFV service orchestration

In order to implement the NFV orchestrator shown in Figure 2.3, service orchestration algo-
rithms are needed. These orchestration algorithms realize two important functions [58, 59],
which are illustrated in Figure 2.5.

First, the chain composition when the orchestrator composes the VNF-FG based on the SRs.
This VNF-FG describes the logical structure of the application, i.e. it entails the VNF instances
that realize the service and their required interconnections, i.e., VL instances. Second, the

2-16 BACKGROUND

VNF1 VNF2

VNF4

VNF3

VNF5

VNF1 VNF2

VNF4VNF3

VNF5VNF3

Embedding

VNF-FG

Service
Requirements (SRs)

node- & link-

composition

mapping (VNE) PC

onto SNe

VNF1

VNF3

VNF2

VNF3 VNF4

VNF5

Figure 2.5: Illustration of the key service orchestration concepts in NFV environments.

service embedding where the orchestrator decides on how to embed the virtualized resources
that constitute the VNF-FG onto the SNe. The embedding entails the task of node mapping, i.e.
assigning the VNFs in the VNF-FG to SNos; and the task of link mapping, i.e. assigning the
VL instances between VNF instances to PPs in the SNe. This process is closely related to the
VNE problem, discussed in Section 2.4.3. The combination of a composed VNF-FG, together
with an embedding of this VNF-FG onto a SNe is referred to as a PC. Since the VNE problem is
NP-hard, the combined service orchestration problem is at least NP-hard.

2.4.5 A taxonomy of resource allocation approaches

This section provides an overview of the categories into which the related work is subdivided.

2.4.5.1 Static vs. dynamic

On the one hand, static (S) approaches do not adjust the placement of a request, once it is
placed. On the other hand, dynamic (D) approaches do consider adjustments to the PC of
deployed requests.

Since migration is an operation requiring a lot of overhead, dynamic approaches typically
consider a migration cost that incorporates the required migration bandwidth, processing
resources or service downtime.

2.4.5.2 Strategy

• Exact (E): when these algorithms return a solution, it is guaranteed to be optimal in
the objective function. These solutions are typically based on an ILP formulation.

• Approximation (A): these algorithms can find solutions with guarantees on the optimality
of the solution.

• Heuristic (H): these solutions can find a solution faster but provide no guarantees on
the optimality of the solution.

BACKGROUND 2-17

• Model (M): these works do not propose resource allocation algorithms but model the
behavior of the system.

2.4.5.3 Application topology

The existing orchestration approaches consider one of the following application topologies.

• Set of tasks: the workload comprises a set of tasks that must be scheduled on a set
of PMs, often considering a maximum execution time for the entire application. For
instance, Lee et al. consider the initial distribution of tasks with a fixed processing time
over a set of PMs and subsequent redistribution to reduce the total energy requirements
through task consolidation [60]. Since the PC is modified after initial deployment, the
approach is labeled ’Dynamic’. In contrast, Zhong et al. consider the problem of finding
an initial scheduling for a set of tasks, while minimizing the total execution time and
maximizing the load balancing [61]. Since they only consider the initial task assignment,
their approach is labeled ’Static’. In their model, the processing time for a task depends
on the instruction count of the task and the processing capabilities of the PM on which it
is executed, expressed in instructions per second. The major limitation of this work is
that the communication between tasks is not considered.

• Set of VMs: the application comprises a set of VMs; the communication between these
VMs is not considered. An important difference compared to approaches that consider a
set of tasks, is that while the tasks of an application can be executed sequentially, all
VMs required for an application are typically considered active over the application’s
lifetime. An example of such an approach is the work by Camati et al. that approaches
the VM placement problem as an MKP [62].

• Set of replicas: Silberstein et al. propose a ’lazy’ replication scheme for EC replicated
filesystems that postpones recovery operations. By grouping these recovery operations,
recovery bandwidth is saved, at the cost of an increased data loss probability [43].

• Graph: the embedding of a generic graph onto a SNe is the VNE problem. For instance,
Jarray et al. consider the problem of embedding VNe graphs [63]. The authors propose
a batch approach based on column generation, combined with an auction technique
to price resources. Each column represents a possible PC for a VNe. Their proposed
heuristic can significantly improve the acceptance ratio, by using the SNe resources more
efficiently.

• Replicated graph: the VNF-FG required for the NS is allocated more than once. For
instance, DRONE protects against single PM and PL failures by placing a primary and
backup embedding on two disjoint subgraphs in the SNe [57].

• SFC: the VNF-FG topology entails a set of NFs that form a directed acyclic path. For
instance, Bari et al. propose an exact ILP and heuristic based on DP to embed such an
SFC [64].

• DAG: the topology is restricted to be a connected graph that does not contain any cycles.
For instance, the virtualized CDN topology considered by Bouten et al. is a hierarchical

2-18 BACKGROUND

caching network comprising a single inner core Points of Presence (PoP). Its content is
delivered to multiple access PoPs through a sequence of outer core, and aggregation
PoPs [65].

• Tree: a tree is an undirected graph in which any two vertices are connected by exactly
one path. Typically, the VNF-FG is a directed rooted tree. Ocampo et al. propose a Mixed
Integer Linear Program (MILP) [66] that can compose the minimal bandwidth VNF-FG
tree. Each SFC from the single root VNF towards any of the terminal VNF-instances
satisfies the chaining requirements of the composing VLs, which are part of the SRs. The
service model considers that the VNFs bandwidth requirements depend on the order in
which the VNFs are chained. Further, since the algorithm can decide on the best order
of VNFs in this tree, the number of instances of each VNF depends on the composition.
The major limitation of this work is that the authors do not consider the embedding of
this VNF-FG.

• Cactus graph: it is a connected graph in which every edge belongs to at most one simple
cycle. For instance, Rost et al. propose a decomposition scheme for cactus graphs. Their
algorithm is based on this reformulation and a LP relaxation of the problem [67]. It is
the first polynomial time algorithm with guarantees on the optimality of the resulting
solutions. Since the algorithms’ probabilistic guarantees on profitability and capacity
violations are rather relaxed, its contributions have little practical use.

2.4.5.4 Composition

Some works assume the VNF-FG to be precomposed, hence the composition task is not consid-
ered. Others do consider the VNF-FG composition. These approaches can be classified using
the following criteria.

• Flexibility in the sequence of the NFs (seq): the order of the VNF instances in the VNF-FG
can be varied. For instance, Ocampo et al. consider the optimal chaining of VNFs in
a directed tree topology [66]. The flow on each egress VL, must pass through a set of
VNFs, prior to termination in a terminal VNF. For a VNF instance, the bandwidth for
each of its egress VL instances is proportional to its total ingress bandwidth.

• Dependence of resource requirement on PC (res): the resource requirements of a VNF
instance depend on the composition of the VNF-FG and on the applied workload. For
instance, Ma et al. consider the problem of routing SFCs through middle-boxes [68]. The
authors consider flexibility in the order in which the SFCs flow through the middle-boxes.
The egress bandwidth of a VNF is assumed proportional to its ingress bandwidth, by
the associated traffic changing factor. Therefore, the bandwidth requirement of a VNF
instance depends on its order in the SFC. The authors propose a DP that can decide
on the order of the middle-boxes in the SFC. The major drawback is that their model
assumes the processing requirements independent of the ordering of the SFCs.

• Optional NFs (opt): not all VNFs are strictly required to be part of the VNF-FG. Bouten
et al. consider the problem of installing a caching hierarchy [65]. In their model, the
ingress bandwidth to a cache depends on the cache’s hit rate, determined by its size, and

BACKGROUND 2-19

its egress bandwidth. Both the number of instances in each caching layer and the size of
each cache is flexible.

• Flexibility in the number of instances (inst): the number of instances of a VNF in the
VNF-FG depends on the composition and/or the workload. For instance, Houdi et
al. consider the problem of adapting the PC of an existing request, to deal with a
changing workload [69]. They propose an exact algorithm based on an ILP formulation
of the problem and a greedy heuristic that can adjust the PC through a combination of
horizontal and vertical scaling and migration.

2.4.5.5 Embedding

Some approaches only consider the placement of VNos onto PMs and disregard the traffic
between the VNos. For instance, Tordsson et al. propose an ILP for the VM placement
problem [70]. They try to maximize the resource utilization, subject to a maximum total
deployment cost. Contrastingly, authors in [71] consider the problem of assigning n VMs to n
different PMs, while minimizing the routed bandwidth. They consider a routing cost based
on predefined SNe routes. The proposed heuristic tries to assign VM-pairs with heavy mutual
traffic to PM-pairs with low-cost connections. First, it clusters the PMs, using the hop-distance
between them as the partition criterion. Then, the VMs are partitioned into k VM-clusters with
minimum inter-cluster traffic. The major limitation of this work is that the routing is assumed
predefined and PL bandwidth capabilities are not considered.

Other works do consider the VL routing. For instance, Calheiros et al. propose a 2-stage
VNE heuristic [72]. In the first stage, the node mapping is performed in order of decreasing
processing requirements. After initial node assignment, a local search is performed on the node
mapping to improve the load balancing. In the second stage, the link mapping is performed
in order of decreasing bandwidth requirements. The routing is performed using the A*-ShP
heuristic.

2.4.5.6 Objective function/constraints

An aspect related to the quality of a PC can be considered in the objective function, and/or as a
constraint. In case an aspect is considered only in the objective function, it is indicated with ’O’
between parentheses. When this aspect is considered as a constraint, then it is indicated with
’C’ between parentheses. If an aspect is modeled and not used in a management algorithm,
then it is indicated with ’M’ between parentheses. Following types of aspects, related to the PC
are considered.

• Nodal (nod): these are requirements related to the VNos. For instance, Virtual Ma-
chine Usage Based Placement in IaaS Cloud (VUPIC) rearranges VMs according to their
Resource Usage Vector (RUV) [73]. This 3-dimensional RUV considers CPU usage (per-
centage), network utilization (bytes per second and disk I/O (bytes per second). The
main objective of VUPIC is to club together those VMs which consume different resources,
to minimize resource contention.

• Bandwidth (bw): these are related to the bandwidth requirement between VNos, or the
routed bandwidth in the SNe. For instance, the recursive VNE heuristic proposed by

2-20 BACKGROUND

Lischka et al. considers the residual bandwidth capabilities on each PL in the SNe when
it generates the possible candidates to add to the current mapping [53]. It uses a BFS
procedure to construct a PP with enough remaining bandwidth for each VL between the
candidate VNo and the already mapped VNos.

• Availability (ava): these are related to the availability of the service. For instance, Jiang
et al. consider the SVNE problem with availability constraints on individual VLs and
VNos [74]. They propose an ILP that can replicate VLs and VNos. The major limitation of
their availability model is that it does not support overall service availability constraints
and failure correlation. Further, each PL and PM can be used only once for each request.
Other approaches consider the impact of workload variations on service availability. For
instance, Wang et al. [41] consider both workload and PM availability in their availability
model. The authors minimize bandwidth consumption by a combination of horizontal
and vertical VM scaling.

• Delay (del): these are related to the maximum tolerable delay for a VL or the maximum
end-to-end delay between VNos. For instance, Inoue et al. consider a maximum accept-
able latency for VL instances [75]. The delays in the SNe vary according to the loading
of PMs and PLs. They propose a distributed approach that minimizes the migrations
caused by uncertainty in the delays.

• Energy (ene): these are related to the energy required to place the request. These
placement approaches build on an underlying energy consumption model. For instance,
Marotta et al. consider the problem of embedding a set of SFCs with minimal total power
consumption, while considering uncertainty in the CPU consumption of VNos [76]. They
formulate the problem as a robust optimization problem that considers the power profile
of the servers and switches. When a switch or server is powered down, it does not
consume any power. When it is powered on, then its power consumption is the sum of
the idle power consumption and a term proportional to the loading of the component.

• Cost (cos): these are related to the costs incurred by the provider to deploy the NS.
For instance, Ghribi et al. consider the problem of embedding an SFC with minimal
cost [77]. The authors consider heterogeneous hosting and routing costs throughout the
SNe. They propose a heuristic algorithm based on DP.

2.4.6 State of the art

An overview of the related work on resource allocation in cloud environments is shown in
Table 2.2.

Table 2.2: Overview of the related work on resource allocation.

Ref. S/D Strat. Contribution Shortcoming Top. Comp. Emb. O/C/M

[65] S E, H ILP formulation and a
GA. Consider the effect of
cache size and hit rate on
the required bandwidth
and expected latency.

The embedding of
nodes and links is
fixed. Only an average
end-to-end delay is
considered.

DAG yes: opt,
res

VL, VN nod(C),
del(C),
bw(O),
ene(O),
cos(O)

BACKGROUND 2-21

Table 2.2: Overview of the related work on resource allocation.

Ref. S/D Strat. Contribution Shortcoming Top. Comp. Emb. O/C/M

[69] D E, H An exact ILP and a
greedy heuristic that can
adapt the PC of a service
to changing workload
requirements through a
combination of
horizontal and vertical
scaling and migration.

The approach does
not consider any
flexibility in the order
of the VNFs.

DAG yes: res,
inst

VL, VN nod(C),
bw(C),
cos(O)

[53] S H Recursive algorithm
based on subgraph
isomorphism detection:
it maps nodes and links
during the same stage. It
can find a feasible
solution fast.

The algorithm stops as
soon as a feasible
solution is found,
without any
guarantees on
optimality.

Graph no VL, VN nod(C),
bw(C)

[49] S E, H An exact MILP and
heuristics based on
reformulation of the
problem on an
augmented graph and
randomized and
deterministic rounding.

Collocation within a
service is not allowed.

Graph no VL, VN nod(C),
bw(C),
cos(O)

[78] S E, H Reduction of LC-VNE to
the minimum-cost
maximum clique
problem and proposal of
two heuristics.

Each PL and PN can
only be used once for
each service.

Graph no VL, VN nod(C),
bw(C),
cos(O)

[75] D H Application of a
Yuragi-based method
that reduces the number
of migrations needed to
satisfy the maximum
end-to-end latency while
considering the effect of
requirement fluctuation
and topological SNe
change.

The VL delay
calculation only
considers the delay
contribution by the
highest-loaded PL on
the PP.

Graph no VL, VN nod(C),
del(C),
bw(C)

[79] S H An MCTS algorithm that
can find a better solution
when given more time.

Absent a good roll-out
strategy, the algorithm
performs a random
search.

Graph no VL, VN nod(C),
bw(C),
cos(O)

[56] S E, H Two methods to protect
against single link
failures: a PL and path
based protection method.
The approach reserves
backup bandwidth.

Node failures are not
considered.

Graph no VL, VN nod(C),
del(C),
bw(C),
ava(C)

[63] S H A near-optimal offline
VNE heuristic based on
column generation that
can improve the resource
utilization by pricing the
SNe resources using an
auction technique.

The pricing of the SNe
resources does not
consider the lifetime
of each VNe request,
reducing the resource
utilization.

Graph no VL, VN nod(C),
del(C),
bw(C),
cos(O)

[74] S E, H An exact ILP and two
heuristics that can solve
the SVNE problem with
availability requirements
on each VNo and VL
instance.

The availability
requirements are not
end-to-end. Failures
are considered
uncorrelated.

Graph no VL nod(C),
bw(C),
ava(C),
cos(O)

2-22 BACKGROUND

Table 2.2: Overview of the related work on resource allocation.

Ref. S/D Strat. Contribution Shortcoming Top. Comp. Emb. O/C/M

[72] S H A two-stage VNE
heuristic that performs a
local search during the
node-mapping phase in
order to improve load
balancing.

The node- and
link-mapping phases
are not
well-coordinated.

Graph no VL nod(C),
del(C),
bw(C)

[71] S E, H Reduction of the
traffic-aware VM
placement problem that
minimizes the SNe
bandwidth to the QAP.

Collocation of VMs
and bandwidth
limitations are not
considered.

Graph no nod(C),
bw(O)

[57] S E, H An exact and heuristic
algorithm that protect
against single PM and PL
failures by placing two
copies on disjunct
subgraphs of the SNe.

Simultaneous failure
and heterogeneous
failure behavior are
not considered.

Replicated
graph

no VL nod(C),
bw(C),
ava(C),
cos(O)

[45] D M Markov chain model of
replica loss and replica
repair that considers
storage and bandwidth
limits.

Lacks a replica
management
algorithm.

Set of
repli-
cas

no nod(M),
bw(M),
ava(M),
dur(M)

[43] D M A replication scheme that
postpones recovery of
failed data chunks to
reduce recovery
bandwidth.

Lacks a replica
management
algorithm.

Set of
repli-
cas

yes: inst nod(M),
bw(M),
ava(M)

[80] S E A DP that maximizes a
file’s availability, while
guaranteeing a
maximum replication
cost and nodes with
heterogeneous
availability and cost.

PL failure and nodal
resource limitations
are not considered.

Set of
repli-
cas

yes: inst nod(C),
ava(O)

[81] S H A replication strategy
that distributes replicas
over a cluster based on a
non-similarity metric and
minimizes recovery time
and bandwidth, while
guaranteeing a minimum
availability and
considering
heterogeneous failure
probabilities.

Correlation between
failures and
bandwidth limitations
are not considered.

Set of
repli-
cas

no nod(C),
del(O),
bw(O),
ava(C)

[60] D H Two energy-conscious
task consolidation
heuristics, which aim to
maximize resource
utilization and explicitly
take into account both
active and idle energy
consumption.

The algorithms do not
consider migration
costs and
communication
between tasks.

Set of
tasks

no nod(C),
ene(O)

[61] S H A greedy Partical Swarm
Optimization (PSO)
algorithm that reduces
the total execution time
and improves the load
balancing.

The communication
requirements between
tasks are not
considered.

Set of
tasks

no nod(yes),
del(O)

[62] S E, H Approach the VMP
problem as an MKP.

Communication
between VMs is not
considered.

Set of
VMs

no nod(C),
cos(O)

BACKGROUND 2-23

Table 2.2: Overview of the related work on resource allocation.

Ref. S/D Strat. Contribution Shortcoming Top. Comp. Emb. O/C/M

[70] S E An ILP for VM placement
that maximizes the
resource utilization,
subject to a maximum
prize for the total
deployment.

The bandwidth
requirements between
VMs are not
considered.

Set of
VMs

no nod(C),
cos(C)

[73] D H Improvement in VM
performance isolation in
multiple dimensions and
overall resource
utilization through
usage-based migration.

The PL bandwidth
limitations are not
considered.

Set of
VMs

no nod(C),
bw(C)

[41] S H Consider both workload
and PM reliability in
their availability model.
Minimize bandwidth
consumption by a
combination of
horizontal and vertical
VM resizing.

The algorithm does
not consider PL
failure.

Set of
VMs

yes: res,
inst

bw(O),
ava(C)

[82] S E, H An exact MILP and a
heuristic that employs a
binary search to
maximize the number of
SFCs that can be
accepted at the same
time.

The heuristic does not
scale very well as it
involves solving an
MILP several times

SFC yes VL nod(C),
del(C),
bw(C),
cos(O)

[64] S E, H ILP formulation and a
heuristic based on DP.

Multiple VNFs of the
same service cannot
be collocated

SFC no VL nod(C),
del(O),
bw(C),
ene(O)

[77] S E DP that supports
collocation of VNFs of
the same service.

The order of the VNFs
in the SFC is fixed.

SFC no VL nod(C),
bw(C),
ene(O),
cos(O)

[83] S E, H A competitive online
algorithm.

PL bandwidth is not
considered.

SFC no VL nod(C),
del(C),
cos(O)

[76] S E Application of the theory
of robust optimization to
deal with uncertainty in
the input parameters.

The optimal algorithm
does not scale well for
larger problem
instances.

SFC no VL bw(C),
ene(O)

[68] S H A DP that optimizes the
order in which an SFC
passes through a series
of middle-boxes.

The NF placement is
not considered.
Processing
requirements are not
considered.

SFC yes: seq,
res

VL nod(O),
bw(C),
cos(O)

[84] S E, H An exact ILP and a
heuristic based on LP
relaxation that can chain
and embed SFCs that
have a partially ordered
VNFs.

The bandwidth
requirements are
considered constant
through the SFC.

SFC yes: seq VL nod(C),
del(C),
bw(C),
cos(O)

[67] S E, A The first polynomial time
service chain
approximation
algorithms both for the
case with admission and
without admission
control.

While the algorithm
provides guarantees
on the quality of the
embedding, other
heuristics perform
better.

SFC/
Cacti

no VL nod(C),
cos(O)

2-24 BACKGROUND

Table 2.2: Overview of the related work on resource allocation.

Ref. S/D Strat. Contribution Shortcoming Top. Comp. Emb. O/C/M

[85] S H A recursive heuristic that
coordinates composition
and embedding.

The algorithm stops as
soon as a feasible
solution is found.

Tree yes: seq,
res, inst

VL nod(C),
bw(C)

[86] S H One of the first papers
that considers both the
composition and the
embedding problem. A
heuristic that greedily
minimizes the VNF-FG
bandwidth and embeds it
using an MIQCP

The composition and
embedding stages are
not coordinated.

Tree yes: seq,
res, inst

VL nod(C),
del(O),
bw(C),
cos(O)

[66] S E A first MILP that can
compose the exact
minimal bandwidth
VNF-FG.

The algorithm does
not consider the
embedding stage.

Tree yes: seq,
res, inst

bw(O)

2.4.7 Emerging research directions

This section highlights the future research directions of resource allocation in cloud environ-
ments. Three main directions that may propel the research in this field in the near future
are identified. Replica management in very dynamic cloud environments; availability-aware
SVNE; and network-aware NFV orchestration.

2.4.7.1 Dynamic replica management

There is a need for outcome-oriented service management, since in a public cloud the provider
is remunerated based on the service outcome, according to the agreed SLA. To maximize his
revenue, the provider must consider the impact of his management decisions on the service
outcome and the costs that he incurs to provision the service. When the service outcome is
acceptable, then the provider receives a reward. In case of an unsatisfactory QoS the provider
typically pays a penalty.

The trend towards geographically decentralized computing environments, means that
unreliable and resource-constrained hardware is increasingly being included into the cloud
infrastructure and that both hardware and services are increasingly becoming heterogeneous.
Therefore, provisioning fault-tolerant services in a cost-effective way is becoming increasingly
challenging. The cloud provider must continuously monitor the service and the SNe and
decide on the appropriate replication actions to take. There have been various studies that
model the impact of the time between failures and the distribution of recovery times on the
availability of data in replicated (file) system [44, 45, 42]. These studies were typically based
on overly simplistic failure models or focused on analytic calculation of a metric with very
limited practical meaning, namely the Mean Time to Dataloss (MTDL), which can be in the
order of a 1000 of years. The provider however, is not directly interested in these metrics,
but rather in assessing the impact that replication decisions have on the service outcome.
Hence, we conclude that further research is needed into resource allocation algorithms that
can provide intelligent replication decisions over a service’s lifetime.

BACKGROUND 2-25

2.4.7.2 Availability-aware SVNE

Current SVNE approaches lack an availability model. They typically focused on finding an
embedding that can survive 1 or more SNo or SLs failures [56, 57]. When the failure behavior
in the SNe is homogeneous, this can be a good first approach. However, they do not provide
guarantees on the resulting availability of the SVNE. In geo-distributed cloud environments, the
failure behavior can be very heterogeneous. This means that some parts of the infrastructure
can be fairly reliable, for instance the part in a datacenter, while the PMs and PLs at the
network edge are very unreliable. The existing approaches use the same level of protection
anywhere in the SNe. They cannot intelligently adjust the protection level to the resilience
requirements of the service. Additionally, current SVNE approaches typically require that
virtualized resources of the same application cannot be collocated on the same PM. However,
for a given protection level, it is well-known that the total failure probability increases as the
number of independently failing devices in the SNe increases. Therefore, given the recent
trend towards geo-distribution, intelligent SVNE algorithms are needed that allow for more
flexibility in the PC and that provide availability guarantees.

2.4.7.3 Network-aware NFV orchestration

On-demand service orchestration is an important requirement for the management of NFV
environments. On the one-hand, on-demand service-orchestration requires the composition of
the VNF-FG, based on the SRs. On the other hand, it requires the embedding of this VNF-FG.
Most of the current orchestration approaches typically assume the VNF-FG precomposed [64,
77, 67, 83]. When the composition task is considered, the service model is too restrictive.
Typically, the VNF-FG is restricted to be an SFC [68], or a tree [66, 86]. Hence, each VNF
instance can have at most 1 ingress VL instance. Given the rise of novel broadband services
that interconnect multiple sources and targets on-demand, e.g., Twitch [11], there is need
for a service model that can produce more general VNF-FGs. Further, current orchestration
approaches that do consider both composition and embedding tasks, perform both tasks in
two separate stages [86]. In other words, the VNF-FG is composed without considering the
availability of resources in the SNe. In IaaS clouds, the infrastructure provider has control
over both the cloud infrastructure and the NS. Hence, the cloud provider should optimize the
composition and the embedding at the same time. Clearly, there is need for NFV orchestration
algorithms that perform both tasks in a coordinated way.

2.5 Conclusions

The demand for real-time broadband services continues to surge. Today’s services are increas-
ingly demanding in terms of throughput and response times. Therefore, while cloud computing
initially centralized computing resources in remote datacenters, now there is a need for storage,
compute and networking resources close to the end user. Today, VoD service providers, such as
YouTube and Netflix partner up with ISPs to install private CDNs at the network edge. These
caches are typically provisioned based on historical demand. In the near future, applications
will continue to generate larger amounts of data and demand lower response times. In order

2-26 BACKGROUND

to enable mission-critical IoT applications, such as cloud robotics, Industry 4.0, self-driving
cars and Cloud-Radio Access Network (C-RAN), a wide variety of tasks must be executed near
the edge of the network. Incorporation of these devices into the cloud formalism will enable
service providers to share these resources in a flexible, cost-effective way. At the same time,
these devices severely complicate the management of the cloud environment. The capabilities
of the infrastructure at the edge are very limited and the infrastructure is much less reliable
than the hardware in datacenters. The cloud management must therefore carefully balance the
desired service outcome and the resource consumption. Current cloud management algorithms
cannot deal with this highly heterogeneous infrastructure. The orchestration of realtime NSs
that can hardly tolerate any downtime at all is particularly challenging on best-effort hardware.
Therefore, SVNEs are needed that can protect the service against a combination of SNo and SL
failures. For these realtime services, the desired outcome is the aggregate service availability.
Current SVNE algorithms are not availability-aware and therefore further research is needed.
Further, data persistence is very important for many IoT and big data applications. Given the
scarcity of resources at the network edge, storage at the edge will be temporary. In order, to
balance storage cost and data loss, SLA-aware resource allocation algorithms are needed that
can synthesize good replication strategies.

Tomorrow’s IoT applications have diverse, often conflicting QoS requirements. To optimize
wireless communications on a per-service basis, for objectives such as power consumption,
throughput and ultra-low latency, the RAN will be virtualized in 5G. In order to deploy these
services, on-demand service orchestration algorithms are needed that can compose services
with complex topologies in NFV environments. Since the sources of these services are no longer
provided by the service provider itself and traffic aggregation will become more important,
the orchestration algorithms must be able to compose VNF-FGs that aggregate traffic. Further,
these compositions must be made on-demand and consider the SNe resources, while keeping
the execution time of the orchestration algorithms under a few seconds. Current orchestration
algorithms do not support traffic aggregation and have poor or no coordination between the
composition and embedding subtasks.

Chapter 3

Cost-effective replica management

This work was supported by the University of Antioquia and by the FUSE project.
The underlying ideas have been published in [C6].

This chapter focuses on the challenges related to the orchestration of storage resources in
heterogeneous cloud environments. More specifically, it focuses on Question I. As introduced
in Chapter 1 and 2, compared to centralized clouds, the storage capabilities at the edge of
the network are much more limited. Hence, while centralized storage will be employed for
long-term storage, storage at the network edge will be mainly temporary. Moreover, storage
capabilities and connectivity vary strongly from one edge location to another. This chapter
investigates how to replicate data effectively across storage nodes in heterogeneous cloud
environments.

Cloud providers rely on fault-tolerance mechanisms to realize high-availability services
on best-effort infrastructure. Service replication limits the data loss caused by failure, at the
expense of additional operational costs. Recently, with the advent of MEC, cloud environments
are becoming increasingly heterogeneous and dynamic, by the incorporation of (very) un-
reliable and resource-constrained devices. In this chapter, we investigate how to devise an
economically viable replication strategy, for a given service on a particular cloud environment.
Previous work either focused on finding replication strategies for stateless services, ignoring
recovery processes and correlated failures, or considered system dynamics, while lacking SLA-
awareness. We approach the replica management problem as a runtime revenue maximization
problem. Our proposed DP algorithm can generate the optimal replication strategy over the
application lifetime. Through extensive simulations, we show that our algorithm significantly
improves provider revenue over a wide range of cloud- and SLA-conditions and adapt its
strategy to evolving operating conditions. The results show that coupling dynamic failure
models with SLA-awareness can lead to profitable replication strategies, even in cases where
providers currently turn a loss.

3-2 CHAPTER 3

3.1 Introduction

In this work, we are the first to introduce and analyze the GRMP, which is the problem of
finding a replication strategy that maximizes expected revenue over the service lifetime. The
GRMP approaches the problem of data loss prevention from the economical perspective of a
service provider. The goal of this chapter is to find an optimal placement strategy over the
envisioned service lifetime. Based on the current replication state and the remaining required
lifetime, the replication algorithm decides whether scaling in, scaling out, or doing nothing is
most cost-effective.

We identify following major contributions. First, we introduce the GRMP. Second, we
propose an exact algorithm, which considers both a dynamic replication model and SLAs to
maximize provider revenue. This algorithm can be used to generate optimal policies over a
wide range of operating conditions. Third, we demonstrate that our approach can significantly
improve provider revenue in both time-invariant and time-variant cloud environments, as our
algorithm can adapt to varying system parameters.

The remainder of this chapter is structured as follows. Section 3.2 provides an overview of
related work. In Section 3.3, the GRMP is introduced. We propose our solution in Section 3.4.
Subsequently, we compare the performance of our algorithm to related works in Section 3.5.
Finally, we conclude the chapter in Section 3.6.

3.2 Related work

SLAs describe the QoS-level that its users can expect. Nowadays, services can be anything
ranging from VMs, containers and databases to disk images.

SLA violations can lead to hefty fines for service providers. To avoid these penalties, while
relying on best-effort infrastructure (e.g., a datacenter), suffering from failures caused by faulty
disks, software errors, power outage and network problems, providers employ fault-tolerance.
In literature, there are two main protection schemes to make applications survive failures.

First, there are schemes of protection, which before any failures have happened, proactively
instantiate additional resources. When failures happen, there are still sufficient resources
available to make sure that the service remains available. Second, reactive schemes do not
instantiate any additional resources before failure occurs but try to bring failed services back
online by hosting them on different PMs. Reactive methods do not use any additional resources
in the absence of failure. However, as bringing a new replica online always requires some
minimal setup time, service outage cannot be avoided. Additionally, reactive methods cannot
avoid that at least some data is lost. Therefore, reactive methods are typically only used to
protect stateless services. In protection schemes a trade-off must be made between resource
consumption and availability.

Considerable research effort has been devoted to the failure behavior in replicated systems.
In a first approach, researchers have considered the failure behavior of services to be static.
For instance, Jayasinghe et al. model cloud infrastructure as a tree structure with arbitrary
depth [40]. Physical hosts on which VMs are hosted constitute the leaves of this tree, while the
ancestors comprise regions and availability zones. The PMs at bottom level are physical hosts
where VMs are hosted. Wang et al. estimate the availability of a single VM as the probability that

COST-EFFECTIVE REPLICA MANAGEMENT 3-3

neither the leaf itself, nor any of its ancestors fail [41]. While static approaches can serve as a
first approximation to assess the availability and hosting costs, they are not accurate as in reality
failures exhibit both temporal and spatial correlation [87]. Static approaches rely on three very
limiting assumptions. First, they assume a constant availability value for each machine over
time. In reality, at some moment all machines seize permanently to function, consequently
their instantaneous availability declines over time. Additionally, when a transient failure
occurs it will take some minimum time before the machine is back online. Hence, temporal
correlation in the availability of a single machine cannot be ignored. Second, these approaches
typically assume the same set of machines to be used during the entire deployment. In contrast,
replicated systems often migrate copies that are hosted on unrecoverable machines. These
migrations will always take some time and induce migration costs, which are disregarded in
static models. Third, in reality a stateful service becomes unrecoverable as soon as insufficient
copies are online at a given moment. Hence, the availability of a single service is time-
dependent as the probability that such a catastrophic event has occurred inevitably increases
over time.

Therefore, more dynamic failure models are needed to estimate the total operation cost
and service availability. Google researchers propose a time-homogeneous Markov model for
replicated systems [42]. They define a cell as a pool of devices, together with their higher-level
coordination processes. They show that replication across multiple racks, or even across geo-
distributed clouds can be accurately modeled as multiple linked cells. Their model considers
failure correlation, recovery and migration processes.

The most important limitation of the work is that they do not consider how to generate a
“good” replication strategy, given a certain system model. Their availability model forms the
basis for our proposed approach.

In distributed file systems two redundancy schemes are commonly used (1) replication,
which creates identical replicas for each data block; and (2) EC, which transforms original
data blocks into an expanded set of encoded blocks, such that any subset with enough encoded
blocks can be used to reconstruct the original data blocks [88].

For system designers, it is important to have a replication strategy that addresses their
specific challenges. The main types of resources that comprise the subjects of a cloud resource
management system are compute, networking, storage and power [16]. In general, the
provider’s objectives related to resource consumption and the objectives of the cloud user
conflict. For instance, Silberstein et al. focus on reducing the bandwidth required for the EC
recovery process [43]. The authors propose a lazy recovery scheme: recoveries are queued and
bundled, hereby reducing bandwidth consumption, while also increasing the failure probability.
While the authors evaluate their proposed recovery schemes for a combination of disk, machine
and rack failures, they do not provide a practical algorithm which can be used to select the
best strategy. In another approach, Wang et al. try to maximize reliability and at the same
time keep the hosting expenses under a maximum level [80]. However, the applicability of
their approach is severely limited by the assumption of a static failure model.

The objectives of the providers center around efficient and effective resource use within
the constraints of SLAs with the Cloud users [16]. Therefore, the providers need replication
management algorithms that consider the impact of management decisions on operational
expenses and the expected pay-off through SLA conformity. As these cloud environments are

3-4 CHAPTER 3

increasingly changing over time, the replication management algorithms must become more
dynamic.

Our approach exceeds the state of the art in that it focuses on the problem of revenue
maximization during a certain time window. Other approaches are generally limited to
finding analytic expressions for the MTDL, while lacking any notion of resource consumption
costs. Moreover, our approach is not limited to an analysis of replicated systems but yields
a practically usable replication management algorithm. Finally, our proposed algorithm can
generate strategies that vary over the service lifetime.

In this chapter, we will focus on SLA violation as a direct result of failure. The impact of
workload variations on response time requirements is considered out-of-scope. However, we
will consider the indirect consequences of workload variations on data unavailability through
their effect on system costs.

3.3 Generalized Replica Management Problem

In this chapter, we research how one should manage the Replication Level (RL) of a certain
service over time, in order to maximize the expected revenue during its relevant lifetime. The
remainder of this section is structured as follows. First, we discuss the replication model, its
parameters, and the validity of the model. Finally, we provide a description of the GRMP.

3.3.1 Replication model

Google researchers showed that large-scale replicated systems can be modeled as time-
homogeneous Markov processes [42]. In their model, the current behavior of the replicated
system is uniquely determined by the current number of copies available. Hence, the process
is memoryless, i.e. as time passes the process loses the memory of the past. They represent
both failure and recovery processes by constant transition rates between states. Consequently,
their approach can only be used to evaluate a fixed strategy. In our model, we use a time-
inhomogeneous Markov chain. We observe the process periodically and assume that the
behavior can only change at the start of a new period. An overview of the replication model
parameters is given in Table 3.1. In the following we illustrate how these parameters can be
determined in a Hadoop Distributed File System (HDFS) context.

Lmin depends on the chosen replication scheme. When the number of active copies drops
below this value, then the data is irrevocably lost. For naive replication the minimum RL is
always 1, while for (k, n)-EC, this value is equal to k. Lmax is the maximum number of copies
that can be active at the same time. For naive replication, this value is only limited by the
number of PMs available in a cell. However, to limit computation time its value can be set to a
reasonable upper-limit and can then be further increased should a strategy with maximum
RL be chosen by our algorithm. For EC, Lmax equals n. Figure 3.1a shows an example for
a single-cell replicated system with Lmin = 1 and Lmax = 2. In the model, the states, i.e.
I, comprise two types. First, there are regular states (uncolored) for which the number of
reserved copies and the number of active copies is the same. There is a state corresponding to
RL 0, 1, . . . , Lmax . These states are also present in [42]. Second, we introduce action states
(colored), which represent a decision to change the RL. In HDFS, the current RL can be queried

COST-EFFECTIVE REPLICA MANAGEMENT 3-5

Parameter Description
Lmin Minimum RL for the data to be recoverable.
Lmax Maximum RL to be considered.
ION States for which the data is recoverable.
IOFF States for which the data is unrecoverable.
Ai Set of possible actions (go-to states) from state i.

Ci, j(n) Cost of action j in i, at the start of MI n.
Pi, j(n) Transition probability from state i to j during MI n.

h Management period, i.e. the time between MIs.

Table 3.1: Replication model parameters.

via the Application Programming Interface (API). The desired RL can be set via the same
interface. The action costs can be estimated using advanced energy profiling methods, such as
the one proposed in [89]. For practical purposes, it typically suffices to consider the hosting
costs proportional to the RL. The migration cost can be approximated as proportional to the
amount of data transferred through the network. In the following, we assume that scaling out
takes a certain exponentially distributed time, while scaling in happens instantaneously. For a
multi-cell configuration, the states and actions can be derived in a similar way.

The action states with an intermittent border represent actions, i.e., ’0→ 1’ and ’0→ 2’,
which can only be taken upon the initial deployment of the service. These actions are assumed
to take effect immediately, which means that the number of replicas at startup equals the desired
number of replicas. After initial deployment, the data is either available or unrecoverable,
depending on whether the state is in ION or IOFF, respectively. ION = {1,1 → 2,2} and
IOFF = {0}. A0 = {0→ 1, 0→ 2}, A1 = {1→ 0, 1, 1→ 2, 1→ 3}, A2 = {2→ 0, 2→ 1, 2}. When
the service is in an action state at the beginning of an MI, then the only possible action is to
stay in this same state. For instance, when there is one active replica and a second one is being
generated, then the only possible action is to wait until the second replica is online or until an
additional failure has happened, i.e. A1→2 = {1→ 2}. Further, in any state, choosing to stay in
the same state, is a valid action, i.e. ∀i ∈ ION ∪ IOFF : i ∈ Ai .

The recovery rates can be estimated directly from historical data. The transition probabili-
ties corresponding to failures can be determined in two ways. First, in real deployments the
transition rates can be derived directly from observed replica failures, e.g., using maximum
likelihood estimation. Second, they can be determined from the PM failure distribution. Given
a failure burst, we can compute the expected fraction of copies made unavailable by the burst.
Assuming that copies are uniformly distributed across the PMs of the cell, the replica failure
rates in the model can be determined from the device failure distribution combinatorically
[42]. This approach will be taken in Section 3.5.

Figure 3.1b illustrates that in our model the replication state of each service is observed
periodically, namely at the start of each MI n. For each service the first MI (n = 0) takes place
upon initial deployment. Subsequent MIs (n> 0) are separated by the management period h.

At the start of MI n, the current replication state i of the service is observed and the
replication manager decides to take action j ∈ Ai . The cost incurred to the system for taking

3-6 CHAPTER 3

1

1 → 2

20

1 → 0

2 → 0

0 → 1 0 → 2

2 → 1

(a) Illustration of a replication model.

δ

0

Time

1

. . .

2 T3n =

h

(b) Service request.

Figure 3.1: Problem description.

Parameter Description
δ Required lifetime in time units.
T Required lifetime in MIs.
R Reward received when available at n= T .
V Penalty when not available at n= T .

Table 3.2: Service parameters as per SLA.

action j is given by Ci, j(n).

3.3.2 SLA model

The following SLA is considered. A service request has a duration δ, comprising exactly
T management periods. Hence, for this service a decision will be made at the start of MI
n ∈ {0, . . . , T − 1}. If the service is accessible until δ time units after initial deployment, then
the service provider receives a reward R. In case the service is no longer available, then the
provider receives a penalty V . Figure 3.1b illustrates the flow of a request. Table 3.2 provides
an overview of the service parameters.

3.3.3 Formal problem description

The GRMP is formally defined as follows. Given the replication and service model defined in
Section 3.3.1 and Section 3.3.2 respectively, and that revenue of the provider is determined by
the costs that he makes and the potential reward or penalty that he receives from the user. In
order to maximize expected revenue, which action should the replication manager take at MIs
n= 0,1, . . . , T − 1?

3.4 Algorithmic description

Given the inputs described in Table 3.1 and Table 3.2, we maximize the expected reward over
the entire request duration. The decision variables are listed in Table 3.3. The structure of this
section is the following. First, the algorithmic approach is described. Then, we present the
algorithm in pseudo-code.

COST-EFFECTIVE REPLICA MANAGEMENT 3-7

Parameter Description
Ri, j(n) ∈ R The expected reward of taking action j ∈ Ai , when in state i ∈ I at the start

of MI n ∈ {0, . . . , T − 1}.
Ji(n) ∈ Ai The action to take, when in state i ∈ I at the start of MI n ∈ {0, . . . , T − 1}.
Ri(n) ∈ R The expected reward corresponding to taking action j ∈ Ai , when in state i at

the start of MI n ∈ {0, . . . , T − 1}.

Table 3.3: Decision variables for the GRMP.

3.4.1 Approach

The memorylessness-property of the Markov model implies that the behavior of the replicated
service at the start of each MI is only determined by its current replication state i, hence the
same goes for the expected reward. At the start of MI n, the actions that will be taken for MI
n+1 up-to T −1 are unknown. We denote the best action when in state i at MI n as Ji(n) ∈ Ai .

The expected reward of taking action j ∈ Ai at MI n, namely Ri, j(n), is determined by two
elements. First, the immediate cost of this action. Second, the probability to transition from j
at n to all other states j̃ ∈ I at the start of MI n+ 1, and associated expected reward R j̃(n+ 1).
Therefore ∀n ∈ {0, 1, T − 1} :

Ri, j(n) = −C (i, j) +
∑

j̃∈I

Pj, j̃(n)R j̃(n+ 1) (3.1)

For state i ∈ I, n= T the reward is defined by the SLA:

Ri(T) =

¨

−V, i ∈ IOF F

R, i ∈ ION
(3.2)

Hence, using Equation 3.1 and Equation 3.2 we can recursively determine the actions that
maximize expected reward. ∀n ∈ {0,1, T − 1}, i ∈ I :

Ji(n) = arg max
j∈Ai

Ri, j(n) (3.3)

and
Ri(n) =max

j∈Ai

Ri, j(n) (3.4)

Summarized, to maximize the overall expected reward at the start of MI n, one needs to
select the action with the highest expected reward, given the current replication state i ∈ I.
To calculate the expected reward for each possible action it suffices to know the cost of this
action; the transition probabilities to all states in I; and the associated expected rewards at the
start of the next MI.

3.4.2 Algorithm

Using the approach described in the previous section, we can find the best policy recursively.
Algorithm 3.1 describes how the best strategy can be found using DP. The values of Ji(n) and

3-8 CHAPTER 3

Ri(n) will be stored in tables J and R respectively, to prevent unnecessary recalculation. First,
the decision table (J) and the table containing the expected values (R) are initialized (Line 4
and 5). Ji(n) == ; signifies that the entry has not yet been calculated. Calc(i,n) returns
the expected reward for (i, n) and stores the calculated values of the decision variables in the
appropriate tables. During this function call, all decisions and expected rewards for all states
in I and for MI n+1, . . . , T will be either retrieved from the tables, or calculated and stored. If
the decision for (i, n) was already tabulated, then the corresponding value is returned (Line
10). If after initial deployment, insufficient replicas are accessible, then the expected value is
−V (Line 15). When the service has reached the deadline and sufficient copies remain, then
the expected value is R (Line 20).

In all other cases, the best decision and corresponding expected reward must be evaluated
for all possible actions (Line 23). Then, the action with the highest expected reward is selected
(Line 25) and the maximum expected value is stored and returned (Line 27). Note that, the
values are written to the table to prevent unnecessary recalculation of J (Lines 14, 19, 25) and
R (Lines 13, 18, 26).

Algorithm 3.1 Proposed optimal replication algorithm.
1: var I, ION,A,C,P, T, R, V
2: for each i ∈ I do
3: for each n ∈ 0,1, . . . T do
4: Ji(n) = ;
5: Ri(n) = 0
6: end for
7: end for
8: procedure CALC(i, n)
9: if Ji(n) != ; then

10: return Ri(n)
11: end if
12: if i /∈ ION && n> 0 then
13: Ri(n) = −V
14: Ji(n) = 0
15: return −V
16: end if
17: if N == T && i ∈ ION then
18: Ri(n) = R
19: Ji(n) = 0
20: return R
21: end if
22: for each j ∈ Ai do
23: Ri, j(n) = −C (i, j) +

∑

j̃∈I Pj, j̃(n)CALC(j̃, n+ 1)
24: end for
25: Ji(n) = argmax j∈Ai

Ri, j(n)
26: Ri(n) = Ri,Ji (n)(n)
27: return Ri(n)
28: end procedure

The worst-case complexity can be derived as follows. The decision table contains |I|×(1+T)
entries. However, for the column at n= T no actions need to be calculated (Line 14 and 19).
For each entry (i, n) (Line 23), |Ai | possible actions must be evaluated. We introduce A as
the maximum number of actions for any state, i.e. A=maxi∈I |Ai |. Evaluation of each action
requires |I| multiplications and additions. Hence, filling in the table is O (|I|2TA). Note that we

COST-EFFECTIVE REPLICA MANAGEMENT 3-9

opted for a recursive formulation to ease readability. In a real deployment, overhead should
be limited by an iterative implementation.

3.5 Performance evaluation

We implemented a discrete event simulator in Java to simulate a single cell with 100 PMs.
Since the model approximates devices within a single cluster to be homogeneous, individual
nodal and bandwidth requirements can be ignored, as long as the aggregate capacity within
the cluster suffices. Additionally, the number of PMs does not impact the expected reward,
as only the PMs on which the service is hosted impact the costs and availability. However,
increasing the number of simulated PMs does impact the simulation time as more failure
events will be generated. Failures arrive at a rate λ. To generate the number of failures in one
failure event we used the bi-exponential model proposed in [44]. In this model, the probability
that in a given failure event i out of u PMs fail is given by

pi = (1−α) f (ρ1, i) +α f (ρ2, i), (3.5)

where α is a tunable parameter that describes the probability of large-scale correlated failures;
and f (ρ, i) : ρ ∈ R>0, i ∈ {1, . . . , u} is an exponential distribution for which f (ρ, i) = c(ρ)ρi .
The normalizing factor c(ρ) serves to make

∑u
i=0 f (ρ, i) = 1.

For each PM the Mean Time To Failure (MTTF) is given by

M T T F =
u

λ
∑u

i=1(ipi)
. (3.6)

Equation 3.6 can be used to generate failures with the same burst size distribution, but with
different MTTFs by varying λ. We consider α = 0.009, ρ = 0.3 and ρ = 0.96, unless specified
otherwise. These values were extracted from real live deployments on PlanetLab [44]. In the
experiments, recoveries can only be initiated at the start of a MI. To prevent accumulation of
failure events during an MI, the period must be sufficiently smaller than the MTTF. Under this
condition, the exact value of the MI does not influence the expected reward.

3.5.1 Static naive replication

3.5.1.1 Simulation setup

In this setup, we consider a replicated system with Lmin and Lmax equal to 1 and 5 respectively.
A hosting cost model with a cost per unit time of 0.1 per replica is used. The cost is proportional
to the number of duplicates reserved. Two replication algorithms are considered. First, Optimal
time-dependent is our proposed algorithm. Second, Fixed Replication(L) is the default replication
strategy in HDFS. This strategy always tries to return to a predefined RL, L = 1, . . . , 5.

3.5.1.2 Results

The influence of the MTTF on the expected reward is shown in Figure 3.2. The request duration
is 1000, and h = 100. R and V are 1000 and 10000 respectively. The mean instantiation delay

3-10 CHAPTER 3

10
3

10
4

2000

3000

4000

5000

6000

7000

8000

9000

10000
Ex

pe
ct

ed
 re

w
ar

d 5

5
5 4 3 3

Best fixed RL

Figure 3.2: Static naive replication: influence of the MTTF on expected reward.

equals 10, for any recovery process. For all MTTFs the expected reward per request of our
proposed algorithm is equal to, or higher than for the fixed replication strategies. For low
MTTF values, the expected reward is dominated by the probability of data loss. Here, the
expected reward per request is equal to that for F ixedReplicat ion(5). When the MTTF goes
up, then the expected reward increases for all fixed RLs. For high MTTF values, failures are
less present and the best policy will be to reduce the operational costs. As the MTTF increases,
the fixed RL that yields the highest expected reward decreases from 5 to 3 replicas.

In Figure 3.3, the cost per unit time is varied from 0.1 to 16. Increasing the hosting cost
has a dramatic effect on the expected reward. Clearly, our algorithm performs best for all
cost levels as it is aware of the operational costs. For low operating costs, the maximum RL is
optimal. However, when the cost increases, then the maximum RL performs worse. For a cost
per unit time of 0.8, our algorithm performs 17% better than the others. For a cost per unit
time of 1.6, our approach is still profitable (+448) while the others have a negative expected
reward (-498 and worse). These results show the importance of considering operational costs.

Next, we investigate the influence of request duration on the expected reward in Fig-
ure 3.4. M T T F = 8000, instantiation delay=10, h= 100, cost per unit time=0.1, R=10000,
V=100000. Reward and penalty are assumed proportional to the request duration, which is
more or less realistic. For low request durations, all six algorithms perform similarly as the
probability of failure is negligibly low. When the request duration increases, then the expected
reward increases for all algorithms. The performance of F ixedrepl icat ion(5) coincides with
our algorithm. Note that this is because the cost per unit time is only 0.1. Hence, for the

COST-EFFECTIVE REPLICA MANAGEMENT 3-11

10
-1

10
0

-4000

-2000

0

2000

4000

6000

8000
Ex

pe
ct

ed
 re

w
ar

d

Cost per unit time

Best fixed RL5 5
5

5

3

Figure 3.3: Static naive replication: influence of the hosting cost on the expected reward for
MTTF=8000.

10
3

10
4

-5

0

5
10

4

Request duration

Ex
pe

ct
ed

 re
w

ar
d

Figure 3.4: Static naive replication: influence of the required lifetime on the expected reward.

3-12 CHAPTER 3

0.5 1 1.5 2

10
4

0

0.5

1

1.5

2

2.5
10

7

Request duration

C
om

pu
ta

tio
n

tim
e

Figure 3.5: Static naive replication: influence of the required lifetime on computation time.

maximum duration of 20000 time units, the total operating cost per request can only vary
between 0 and 1000. However, the pay-off can be either 10000 or -100000.

The required computation time to generate the decision table for each request is shown
in Figure 3.5. It is averaged out over 10 runs. Since the duration of the MI is fixed, the
total number of MIs is proportional to the request duration. Hence, the computation time is
proportional to the request duration, as determined in Section 3.4.2.

3.5.2 Static Erasure Coding replication

3.5.2.1 Simulation setup

In this setup, we consider a (10, 14)-erasure coded system. This time, as cost we consider the
data transferred by the recovery process. In a (k,n)-erasure coded system, the recovery from f
failures requires two steps. First, the original data is reconstructed from any combination of k
available data blocks. The size of each data block, i.e. the block size, equals b. The stripe size
is the total size of the reconstructed data, i.e. k× b. Second, from this reconstructed data, f
new data blocks are created and transferred over the network towards their destination. In
total, this recovery process requires (f + k)× b to be transferred. We compare our algorithm
to Laz yReplicaton(L), for L = 0,1,2,3 [43]. In the lazy replication scheme, a recovery is
only instantiated when more than L failures have been detected at the start of an MI. Again,
the request duration is 1000. R = 10000, V = 100000, h = 100 and M T T F = 8000. The
mean recovery time is 50.

COST-EFFECTIVE REPLICA MANAGEMENT 3-13

2 4 6 8 10

10
-3

1000

2000

3000

4000

5000

6000

7000

8000

9000
Ex

pe
ct

ed
 re

w
ar

d

Figure 3.6: Static EC replication: expected reward as a function of the failure correlation
(stripe size=256 MB).

3.5.2.2 Results

Figure 3.6 and Figure 3.7 show the impact of the probability of a large-scale failure burst
(α), for a stripe size of 256 MB and 512 MB, respectively. For low α, the failures are relatively
uncorrelated, while for high α there is a high probability of a large-scale failure burst. Because
correlated failure increases the probability of data loss, the expected reward goes down as
the failure correlation increases. Overall, our proposed algorithm exceeds the performance of
the others. For a stripe size of 256 MB, Laz yReplicat ion(2) performs second best, while for a
stripe size of 512 MB Laz yReplicat ion(3) performs second best. This can be explained by a
doubling of the recovery cost, which results in an optimal policy with a higher probability of
data loss.

Figure 3.8 and Figure 3.9 show the relation between data loss probability and expected
transfer costs for the generated policies. The reward is varied logarithmically between 102

and 108, and the penalty equals 0. It is clear that the performance of our proposed algorithm
dominates the lazy replication algorithm. Moreover, the distribution of data points shows
that the proposed algorithm can generate a rich set of replication strategies, that trade-off
recovery costs for data loss. This figure illustrates the importance of balancing availability and
operational costs to maximize expected revenue.

3-14 CHAPTER 3

2 4 6 8 10

10
-3

1000

2000

3000

4000

5000

6000

7000

8000

9000
Ex

pe
ct

ed
 re

w
ar

d

Figure 3.7: Static EC replication: expected reward as a function of the failure correlation
(stripe size=512 MB).

0 2000 4000 6000 8000 10000

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Recovery volume [MB]

Pr
ob

ab
ilit

y
of

 d
at

al
os

s

Figure 3.8: Static EC replication: relation between recovery volume and probability of data
loss (MTTF=2000).

COST-EFFECTIVE REPLICA MANAGEMENT 3-15

0 500 1000 1500

0.026

0.0265

0.027

0.0275

0.028

0.0285

0.029

0.0295

0.03

Recovery volume [MB]

Pr
ob

ab
ilit

y
of

 d
at

al
os

s

Figure 3.9: Static EC replication: relation between recovery volume and probability of data
loss (MTTF=15000).

3.5.3 Dynamic replication

3.5.3.1 Simulation setup

In this setup we consider naive replication with minimum 1 and at most 10 replicas. Again, we
consider a hosting cost with a cost per unit time of 0.1. We simulate a dynamic environment,
where the failure behavior changes abruptly. M T T F = 5000 for t ∈ [0,500000[and equals
10000 for t ∈ [500000,+∞[.

The request duration is increased to 10000, with h = 100, with both R and V equal to
100000. The mean time between requests is exponentially distributed with mean 100. In total
10000 service requests are generated.

Every 100000 time units the failure arrival rate λ is re-estimated using a rolling window
of 100000 time units. Based on this λ̂ the failure probabilities are re-estimated and a new
decision table is generated. Because the reward and duration of the generated requests are
identical, this table can be shared by all services.

3.5.3.2 Results

For each service request the accumulated reward (including penalty, reward and costs) and the
accumulated cost is tracked. At the start of each MI the current replication state is evaluated.
When the service is offline, then a penalty is incurred. In case the deadline has been reached,
then a reward is added. In both cases a reward or penalty is added, and the accumulated
reward is written to a log file. No future MIs are scheduled for this service. In case the deadline

3-16 CHAPTER 3

2 3 4 5 6 7 8 9

10
5

5

6

7

8

9

10
10

4

Time

R
ew

ar
d

Reward
Reward (smoothed)

Figure 3.10: Dynamic replication: reward per request.

was not reached (yet), then the replication manager consults the decision table. If the decision
table is older than 100000 time units, then a new decision table is generated. The replication
manager selects the next action from the table and the corresponding cost is accumulated.

Figure 3.10 and Figure 3.11 shows the received rewards and hosting costs incurred for
the generated requests. The smoothed traces result from a moving average with window
size 1000. While the failure probability is lowered at t = 500000, the decision table is only
updated with the new value of λ̂ at t = 600000. In [500000;600000[, the expected reward
increases gradually, as the probability of data loss goes down. While this is not immediately
clear in the raw data, the smoothed line clearly goes up. In this same period, the average costs
increase slightly, because more services live through their entire required lifetime, resulting
in a higher overall resource consumption. At t = 600000 the decision table is updated. The
reward goes up linearly in [600000; 610000[, because the decision table is updated for running
services which were already running. At t = 610000, we see that both average reward and
cost remain stable. Compared to t < 500000 our replication algorithm has switched to a lower
RL, increasing the average reward and lowering operating costs.

3.6 Conclusion and future work

In this work, we present a novel unified approach towards the analysis or replicated systems
and the synthesis of a cost-effective replication strategy. We approach the problem of replica

COST-EFFECTIVE REPLICA MANAGEMENT 3-17

2 3 4 5 6 7 8 9

10
5

0

2000

4000

6000

8000

10000
C
os
t

Time

Cost (smoothed)
Cost

Figure 3.11: Dynamic replication: cost per request.

management in fault-tolerant cloud environments as a runtime revenue optimization problem.
While some related works have either solely focused on analysis of replicated systems, others
made very unrealistic assumptions on recovery and failure rates. Our approach is based on a
dynamic failure model and can be applied to both single datacenters and geo-distributed cloud
environments. As the cell dimensions go up, the underlying model becomes more accurate and
the computation time remains the same. Therefore, our approach is particularly of interest for
revenue optimization in very large-scale cloud networks.

We show that, while other works propose fixed placement strategies for specific cloud
environments, our adaptive algorithm yields significant profitability improvements in a wide
range of cloud and SLA conditions.

The major limitation of our work is that the computation time of the proposed algorithm is
proportional to the number of MIs. Currently, the MI must be small to the MTTF. Therefore,
future work includes switching between replication strategies, instead of deciding on individual
replication operations at the start of an MI. This improvement can relax the requirement on
the MI, in that it only has to be small compared to the required service lifetime.

Chapter 4

Availability-aware application
placement

This work was supported by the iFEST and EMD projects. The underlying ideas
have been published in [C4, C5, C8, C1].

While the previous chapter focused on the challenges related to the orchestration of
persistent resources, this chapter investigates how to orchestrate reliable stateless NSs on top
of an unreliable geo-distributed cloud infrastructure. More specifically, it focuses on Question 4,
which investigates how to protect NSs against node and link failure in heterogeneous cloud
environments.

The strong uptake of cloud computing has led to an important increase of mission-critical
applications being placed on cloud environments. Those applications often require high levels
of availability coupled with guarantees on a minimum level of throughput and a maximum
level of response time. To achieve the lowest response time possible, clouds are more and
more decentralized, leading to a heterogeneous network of micro clouds positioned on the
edge of the network and possibly interconnected by best-effort PLs. This heterogeneous
environment introduces important challenges for the management of these clouds as the
heterogeneity results in an increased failure probability. In this chapter, we address these
challenges by providing a resilient placement of mission-critical applications on geo-distributed
clouds. We present an exact solution to the problem, which is complemented by two heuristics:
a near-optimal distributed genetic meta-heuristic and a scalable centralized heuristic based
on subgraph isomorphism detection. A detailed performance evaluation shows that, with
the newly proposed heuristic based on subgraph isomorphism detection, we can double the
amount of applications satisfying availability requirements, in cloud environments comprising
over 100 PMs, while keeping the time required to calculate the solution under 20 seconds.

4.1 Introduction

In this chapter, we consider the problem of processing an initial collection of application requests
upon startup of a cloud environment, which is referred to as the offline APP [16]. We model the

4-2 CHAPTER 4

application requests as VNes, consisting of VNos and their required communication channels.
The cloud infrastructure is modeled as a SNe consisting of PMs and their interconnecting PLs.
The problem of mapping the VNes to a SNe, whilst considering failures in the SNe is known as
the SVNE problem [55]. Given the failure behavior of the cloud infrastructure, we solve the
problem of initial distribution of application components over the cloud environment, whilst
satisfying a minimum level of total availability for each application.

To the best of our knowledge, this work is the first that provides a computationally feasible
approach to place applications in a realistic and large-scale failure prone cloud environment
that provides guarantees on the availability. More specifically, the contributions of this work
are four-fold. First, we present a novel approach of placing applications in a failure prone
cloud environment: by adding additional replicas we can provide availability guarantees. This
is formulated as an ILP, which can be used to find an exact solution. Second, we propose a
distributed fault-tolerant meta-heuristic based on genetic programming: a distributed set of
workers concurrently search for the best placement of applications (including the definition of
replicas). Third, we present a scalable centralized algorithm using the paradigm of subgraph
isomorphism: this heuristic approach provides ultra-fast placement of applications with a cost
in optimality. Fourth, based on an extensive performance evaluation that investigates the
performance of different application types, we provide clear guidelines on when and how to
apply which application placement algorithm.

The remainder of the chapter is organized as follows. Section 4.2 discusses related works
on cloud management algorithms and survivability. In Section 4.3 our model for availability is
introduced, and in Section 4.4 the APP is formulated as an ILP, which will be used to find exact
solutions. In Section 4.5 a near-optimal distributed genetic meta-heuristic, and a scalable
centralized heuristic based on subgraph isomorphism detection are presented. Section 4.6
presents simulations results that evaluate the proposed heuristics. Finally, Section 4.8 concludes
the chapter and summarizes the key findings.

4.2 Related work

In this section, the state of the art with regard to the APP in cloud environments is discussed.
Early work on application placement merely considers nodal resources, such as CPU and
memory capabilities. Deciding whether requests are accepted and where those virtual resources
are placed then reduces to an MKP [62]. An MKP is known to be NP-hard and therefore optimal
algorithms are hampered by scalability issues. A large body of work has been devoted to
finding heuristic solutions. For instance, Xu et al. focus on the multi-objective Virtual Machine
Placement (VMP) problem [90]. They propose a GA with fuzzy multi-objective evaluation for
efficiently searching the large solution space and conveniently combining possibly conflicting
objectives. While Yi et al. propose an evolutionary game theoretic framework for adaptive
and stable application deployment in clouds [91]. Other works include NIC capabilities as a
dimension in the MKP [92] and assumes an over-provisioned inner-network. While plausible
within the boundaries of one datacenter, this condition rarely holds when a combination of
multiple clouds or even a wireless environment is considered.

When the application placement not only decides where computational entities are hosted,
but also decides on how the communication between those entities is routed in the SNe,

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-3

then we speak of network-aware APP. Network-aware application placement is closely tied to
VNE [93].

An example of a network-aware approach is the work from Moens et al. [94]. It employs a
Service Oriented Architecture (SOA), in which applications are constructed as a collection of
communicating VNos. This optimal approach performs VNo- and VL-mapping simultaneously.
In contrast, other works try to reduce computational complexity by performing those tasks in
distinct phases [52, 95].

While the traditional VNE problem assumes that the SNe network remains operational at
all times, the SVNE problem does consider failures in the SNe. For instance, Ajtai et al. try and
guarantee that a VNe can still be embedded in a physical network, after k SNe components
fail. They provide a theoretical framework for fault-tolerant graphs [96]. However in this
model, hardware failure can still result in service outage as migrations may be required before
normal operation can continue.

Mihailescu et al. try to reduce network interference by placing VMs that communicate
frequently, and do not have anti-collocation constraints, on PMs located on the same rack [97].
Additionally, they uphold application availability when dealing with hardware failures by
placing redundant VMs on separate server racks. A major shortcoming is that the number of
replicas to be placed, and the anti-collocation constraints are user-defined.

Csorba et al. propose a distributed algorithm to deploy replicas of VM images onto PMs
that reside in different parts of the network [98]. The objective is to construct balanced and
dependable deployment configurations that are resilient. Again, the number of replicas to be
placed is assumed predefined.

SiMPLE allocates additional bandwidth resources along multiple disjoint paths in the
SNe [56]. This proactive approach assumes splittable flow, i.e. the bandwidth required for a
VL can be realized by combining multiple parallel connections between the two end points.
The goal of SiMPLE is to minimize the total bandwidth that must be reserved, while still
guaranteeing survivability against single PL failures. However, an important drawback is
that while the required bandwidth decreases as the number of parallel paths increases, the
probability of more than one path failing goes up exponentially, effectively reducing the VL’s
availability.

Chowdhury et al. propose Dedicated Protection for Virtual Network Embedding (DRONE) [57].
DRONE guarantees VNe survivability against a single PL or PM failure, by creating two VNEs
for each request. These two VNEs cannot share any PMs and PLs.

Aforementioned SVNE approaches [96, 97, 98, 56, 57] lack an availability model. When
the infrastructure is homogeneous, it might suffice to impose that each VNe has a predefined
number of replicas. However, in geo-distributed cloud environments the resulting availability
will largely be determined by the exact PC, as moving one VNo from an unreliable PM to a
more reliable one can make all the difference. Therefore, geo-distributed cloud environments
require SVNE approaches which have a computational model for availability as a function of
SNe failure distributions and PC.

The following cloud management algorithms have a model to calculate availability. Jayas-
inghe et al. model cloud infrastructure as a tree structure with arbitrary depth [40]. Physical
hosts on which VMs are hosted are the leaves of this tree, while the ancestors comprise regions
and availability zones. The PMs at bottom level are PMs where VMs are hosted. Wang et al.

4-4 CHAPTER 4

were the first to provide a mathematical model to estimate the resulting availability from such
a tree structure [41]. They calculate the availability of a single VM as the probability that
neither the leaf itself, nor any of its ancestors fail. Their work focuses on handling workload
variations by a combination of vertical and horizontal scaling of VMs. Horizontal scaling
launches or suspends additional VMs, while vertical scaling alters VM dimensions. The total
availability is then the probability that at least one of the VMs is available. While their model
suffices for traditional clouds, it is ill-suited for a geo-distributed cloud environment as PL
failure and bandwidth limitations are disregarded.

In contrast, Yeow et al. define reliability as the probability that critical VNos of a virtual
infrastructure remain in operation over all possible failures [99]. They propose an approach
in which backup resources are pooled and shared across multiple virtual infrastructures. Their
algorithm first determines the required redundancy level and subsequently performs the actual
placement. However, decoupling those two operations is only permissible when PL failure can
be omitted, and PMs are homogeneous.

In previous work [C5], an availability model for geo-distributed cloud networks was
introduced, which considers any combination of PM and PL failures, and supports both
VNo and VL replication. The aforementioned model was employed to study the problem of
guaranteeing a minimum level of availability for applications. Using an ILP formulation of
the problem and an exact solver, an increased placement ratio was demonstrated, compared
to naive approaches which lack an availability model. While the ILP solver can find optimal
PCs for small-scale networks, its computation time quickly becomes unmanageable when the
SNe dimensions increase. In [C8], a first heuristic is presented. This distributed evolutionary
algorithm employs a pool model, where execution of computational tasks and storage of the
population database (DB) are separated.

Compared to previous work, this work presents the following novelties. First, a fast new
algorithm, based on subgraph isomorphism detection, is introduced. In contrast to previous
work, this new algorithm is scalable and is the only one that is applicable for real-life large-
scale environments. Second, a much more extensive evaluation is provided, considering
multiple SN topologies and dimensions, and application types. In comparison to our previous
work, next to a flat SN, now also real-world Internet type topologies, generated by a transit-
stub model, are studied. Additionally, not only unstructured applications, but also more
practical application models, namely 3-Tier and MapReduce, are simulated. Third, we carry
out a detailed comparative study to the performance of the presented heuristics, relative to
traditional placement algorithms, and homogeneous survivability methods. This study provides
clear guidelines about the applicability of each algorithm.

4.3 Resilient cloud placement model

4.3.1 Application requests

This work considers a SOA, which is a way of structuring IT solutions that leverage resources
distributed across the network [100]. In a SOA, each application is described as its composition
of VNos. Throughout this work, the collected composition of all requested applications will be
represented by the instance matrix (I).

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-5

Symbol Description
A Set of requested applications.
S Set of VNos.
ωs CPU requirement of VNo s.
γs Memory requirement of VNo s.
βs1,s2

Bandwidth requirement between VNos s1 and s2.
Ia,s Instantiation of VNo s by application a: 1 i.f.f. instanced.
N Set of PMs comprising the SNe.
E Set of PLs (edges) comprising the SNe.
Ωn CPU capacity of PM n.
Γn Memory capacity of PM n.
pN

n Probability of failure of PM n.
Be Bandwidth capacity of PL e.
pE

e Probability of failure of PL e.
Ra Required total availability of application a: lower bound on the probability that

at least one of the duplicates for a is available.
δ Maximum allowed number of duplicates.

Table 4.1: Overview of input variables to the CAPP.

Applications SNe

a1

a|A|

{I}{!,�,�} {⌦,�, pN , B, pE}

a2

. . .

instan-

{�, R}

tiation
application-
placement

Figure 2: Overview of this work: applications {!,�,�}, composed of services {I}, are placed
on a substrate network where node {pN } and link failure {pE} is modeled. By increasing
the redundancy , a minimum availability R can be guaranteed.

sharing of resources

CPU memory bandwidth

within application yes yes yes

amongst applications no yes no

Table 2: An overview of resource sharing amongst identical services and VLs.

In the VAR model, an application is available if at least one of its dupli-
cates is on-line. A duplicate is on-line if none of the PMs and Physical Links
(PLs), that contribute its placement, fail. Duplicates of the same application
can share physical components. An advantage of this reuse is that a fine-grained
tradeo↵ can be made between increased availability, and decreased resource con-280

sumption. An overview of resources’ reuse is shown in Table 2. In Figure 3

Application

Duplicate 1

Duplicate 2

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(a) 0 replicated services

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(b) 1 replicated VL

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(c) 2 replicated services

Figure 3: Illustration of the VAR protection method.

three possible placement configurations using two duplicates are shown for one
application. In Figure 3a both duplicates are identical, and no redundancy is
introduced. The nodal resource consumption is minimal, as CPU and memory
for s1, s2, and s3 are provisioned only once. Additionally, the total bandwidth285

9

VNos

Figure 4.1: Overview of this work: applications {ω,γ,β}, composed of VNos {I}, are placed
on a SNe where PM {pN} and PL failure {pE} are modeled. By increasing the redundancy δ,
a minimum availability R can be guaranteed.

VNos have CPU (ω) and memory requirements (γ). Additionally, bandwidth (β) is required
by the VLs between any two VNos. A submodular approach allows sharing of memory resources
among VNos belonging to multiple applications.

4-6 CHAPTER 4

Sharing of resources
CPU Memory Bandwidth

Within application yes yes yes
Among applications no yes no

Table 4.2: An overview of resource sharing amongst identical VNos and VLs.

4.3.2 Cloud infrastructure

Consider a SNe consisting of PMs and PLs. PMs have CPU (Ω) and memory capabilities (Γ).
PLs between PMs are characterized by a given bandwidth (B). Both PLs and PMs have a known
probability of failure, pN and pE respectively. Failures are considered to be independent.

4.3.3 The VAR protection method

Availability not only depends on failure in the SNe, but also on how the application is placed.
Non-redundant application placement assigns each VNo and VL at most once, while its redun-
dant counterpart can place those virtual resources more than once. The survivability method
presented in this work, referred to as VAR, guarantees a minimum availability by application
level replication, while minimizing the overhead imposed by allocation of those additional
resources. VAR uses a static failure model, i.e. availability only depends on the current state
of the network. Additionally, it is assumed that upon failure, switching between multiple
application instances takes place without any delay. These separate application instances will
be referred to as duplicates. Immediate switchover yields a good approximation, when the
duration of switchover is small compared to the uptime of individual components. A small
switchover time is feasible, given that each backup VNo is preloaded in memory, and CPU and
bandwidth resources have been preallocated.

In the VAR model, an application is available if at least one of its duplicates is online. A
duplicate is online if none of the PMs and PLs, that contribute its placement, fail. Duplicates
of the same application can share physical components. An advantage of this reuse is that
a fine-grained trade-off can be made between increased availability and decreased resource
consumption. An overview of resource reuse is shown in Table 4.2.

In Figure 4.2 three possible PCs using two duplicates are shown for one application. In
Figure 4.2a both duplicates are identical, and no redundancy is introduced. The nodal resource
consumption is minimal, as CPU and memory for s1, s2, and s3 are provisioned only once.
Additionally, the total bandwidth required for (s1, s2), and (s2, s3) is only provisioned once.
The bandwidth consumption of this configuration might not be minimal, if consolidation of
two or three VNos onto one PM is possible. This PC does not provide any fault-tolerance, as
failure of either n1, n2 or n3, or (n1, n2), (n2, n3) results in downtime.

When more than one duplicate is placed and the resulting arrangements of VLs and VNos
differ, then the placement is said to introduce redundancy. However, this increased redundancy
results in a higher resource consumption. In Figure 4.2b the application survives a singular
failure of either (n4, n2), (n2, n3), (n4, n5), or (n5, n3). The SVNE depicted in Figure 4.2c
survives all singular failures in the SNe, except for a failure of n1.

Duplicates can be seen as a generalization of the PC model defined by Chowdhury et

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-7

applications substrate

a1

services

a|A|

{I}{!,�,�} {⌦,�, pN , B, pE}

a2

. . .

instan-

network

{�, R}

tiation
application-
placement

Figure 2: Overview of this work: applications {!,�,�}, composed of services {I}, are placed
on a substrate network where node {pN } and link failure {pE} is modeled. By increasing
the redundancy �, a minimum availability R can be guaranteed.

sharing of resources

CPU memory bandwidth

within application yes yes yes

amongst applications no yes no

Table 2: An overview of resource sharing amongst identical services and VLs.

In the VAR model, an application is available if at least one of its dupli-
cates is on-line. A duplicate is on-line if none of the PMs and Physical Links
(PLs), that contribute its placement, fail. Duplicates of the same application
can share physical components. An advantage of this reuse is that a fine-grained
tradeo↵ can be made between increased availability, and decreased resource con-280

sumption. An overview of resources’ reuse is shown in Table 2. In Figure 3

Application

Duplicate 1

Duplicate 2

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(a) 0 replicated services

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(b) 1 replicated VL

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(c) 2 replicated services

Figure 3: Illustration of the VAR protection method.

three possible placement configurations using two duplicates are shown for one
application. In Figure 3a both duplicates are identical, and no redundancy is
introduced. The nodal resource consumption is minimal, as CPU and memory
for s1, s2, and s3 are provisioned only once. Additionally, the total bandwidth285

9

(a) 0 Replicated VNos.

applications substrate

a1

services

a|A|

{I}{!,�,�} {⌦,�, pN , B, pE}

a2

. . .

instan-

network

{�, R}

tiation
application-
placement

Figure 2: Overview of this work: applications {!,�,�}, composed of services {I}, are placed
on a substrate network where node {pN } and link failure {pE} is modeled. By increasing
the redundancy �, a minimum availability R can be guaranteed.

sharing of resources

CPU memory bandwidth

within application yes yes yes

amongst applications no yes no

Table 2: An overview of resource sharing amongst identical services and VLs.

In the VAR model, an application is available if at least one of its dupli-
cates is on-line. A duplicate is on-line if none of the PMs and Physical Links
(PLs), that contribute its placement, fail. Duplicates of the same application
can share physical components. An advantage of this reuse is that a fine-grained
tradeo↵ can be made between increased availability, and decreased resource con-280

sumption. An overview of resources’ reuse is shown in Table 2. In Figure 3

Application

Duplicate 1

Duplicate 2

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(a) 0 replicated services

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(b) 1 replicated VL

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(c) 2 replicated services

Figure 3: Illustration of the VAR protection method.

three possible placement configurations using two duplicates are shown for one
application. In Figure 3a both duplicates are identical, and no redundancy is
introduced. The nodal resource consumption is minimal, as CPU and memory
for s1, s2, and s3 are provisioned only once. Additionally, the total bandwidth285

9

(b) 1 Replicated VL.

applications substrate

a1

services

a|A|

{I}{!,�,�} {⌦,�, pN , B, pE}

a2

. . .

instan-

network

{�, R}

tiation
application-
placement

Figure 2: Overview of this work: applications {!,�,�}, composed of services {I}, are placed
on a substrate network where node {pN } and link failure {pE} is modeled. By increasing
the redundancy �, a minimum availability R can be guaranteed.

sharing of resources

CPU memory bandwidth

within application yes yes yes

amongst applications no yes no

Table 2: An overview of resource sharing amongst identical services and VLs.

In the VAR model, an application is available if at least one of its dupli-
cates is on-line. A duplicate is on-line if none of the PMs and Physical Links
(PLs), that contribute its placement, fail. Duplicates of the same application
can share physical components. An advantage of this reuse is that a fine-grained
tradeo↵ can be made between increased availability, and decreased resource con-280

sumption. An overview of resources’ reuse is shown in Table 2. In Figure 3

Application

Duplicate 1

Duplicate 2

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(a) 0 replicated services

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(b) 1 replicated VL

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(c) 2 replicated services

Figure 3: Illustration of the VAR protection method.

three possible placement configurations using two duplicates are shown for one
application. In Figure 3a both duplicates are identical, and no redundancy is
introduced. The nodal resource consumption is minimal, as CPU and memory
for s1, s2, and s3 are provisioned only once. Additionally, the total bandwidth285

9

(c) 2 Replicated VNos

Figure 4.2: Illustration of the VAR protection method.

al. [57]. The authors place a primary and backup VNe to guarantee survivability against single
PM or PL failures, which can be considered two duplicates of the same VNe. There are three
key differences between their model and VAR. First, Chowdhury et al. require the placement of
exactly two duplicates, while VAR supports any number of duplicates. Second, their approach
requires all VNos for one duplicate to be located on different PMs. In our approach, VNos of
one duplicate can be consolidated onto one PM. Consolidation offers the possibility to increase
availability of a duplicate and avoids wasting precious bandwidth resources. Third, their model
does not allow duplicates of the same application to share PMs or PLs. In our model, duplicates
of the same application can either have no part of the SNe in common, have some part of the
SNe in common (and possibly share resources), or even have completely identical PCs (and
require no additional resources). Those three differences mean that their model cannot yield
any feasible solution for the problem depicted in Figure 4.2.

4.3.4 Availability calculation

In the previous section, an application was defined available, if at least one of its duplicates
is online. Hence, the total availability of an application is then the probability that at least
one of its duplicates is available. When at most δ duplicates are considered, then the total
availability of application a is given by

Z(a) = P

�

δ
⋃

d=1

Da
d

�

: a ∈ A, (4.1)

where Da
d denotes the event that duplicate d of application a is available. The event that this

duplicate is not available is denoted by Da
d .

4.4 Formal problem description

In this section, the problem is formulated as a binary ILP. The input variables to the model
were already described throughout Section 4.3. Given those input variables, the algorithm

4-8 CHAPTER 4

finds a value for the decision variables listed in Section 4.4.1 that minimizes the objective
function (Section 4.4.3). The optimization is subject to the constraints listed in Section 4.4.2.

Symbol Description
C Set of physical components in the SNe, i.e. PMs and PLs (C = N ∪ E).
D Set of duplicates.
M Set of minterms.
X Set of all possible states.

X (m) Particular state of the SNe, the state of each component follows from m according
to Equations 4.19 and 4.20.

χc State of physical component c.
bc(m) Value of χc for component c in minterm m.
ζ(d, a) Availability of duplicate d for application a.
Z(a) Joint availability of application a.

Table 4.3: Overview of auxiliary symbols used throughout the ILP formulation.

4.4.1 Decision variables

The decision variables are described in Table 4.4. O indicates which application requests are
accepted, while G provides detailed information about which duplicates are actually placed.
Information about the assignment of VNos to PMs is contained in π, Π and U , while υ and
Υ tell us how the VLs are routed over the PLs. K, τ and T are directly used for availability
calculation. Auxiliary variables are described in Table 4.3.

Symbol Description
Oa acceptance of application a: 1 i.f.f. accepted.

Gd,a placement of duplicate d of application a: 1 i.f.f. placed.
πd,a

s,n Placement of VNo s for duplicate d of application a on PM n: 1 i.f.f. hosted.
Πa

s,n Use of PM n for hosting of VNo s by application a: 1 i.f.f. used.
Us,n Hosting of VNo s on PM n: 1 i.f.f. hosted.

υd,a
s1,s2
(e) Placement of VL between VNos s1 and s2 on PL e for duplicate d of application

a: 1 i.f.f. placed.
Υ a

s1,s2
(e) Use of PL e by at least one duplicate of application a for the placement of the VL

between s1 and s2: 1 i.f.f. placed.
Kd,a

c Use of physical component c by duplicate d of application a: 1 i.f.f. used.
τd,a

m Coverage of minterm m by duplicate d of application a: 1 i.f.f. covered m.
T a

m Availability of application a when the state of the network equals X (m): 1 i.f.f.
available.

Table 4.4: Overview of decision variables to the binary ILP.

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-9

4.4.2 Constraints

4.4.2.1 Admission control

At most, δ duplicates can be placed for each application:

|D|= δ. (4.2)

An application can only be accepted if at least one of its duplicates is placed:

∀a ∈ A : Oa ≤
∑

d∈D

Gd,a. (4.3)

4.4.2.2 Node-embedding

Nodal resources are only assigned to duplicates if they are considered placed:

∀a ∈ A, s ∈ S, n ∈ N , d ∈ D : πd,a
s,n ≤ Gd,a × Ia,s. (4.4)

The number of VNos hosted for each accepted duplicate equals the total number of instantiated
VNos. If a duplicate is not placed, no VNos are instantiated:

∀a ∈ A, d ∈ D : Gd,a ×
∑

s∈S

Ia,s =
∑

s∈S

∑

n∈N

πd,a
s,n . (4.5)

If a VNo is hosted on a PM for any of its duplicates, then Πa
s,n equals 1:

∀a ∈ A, d ∈ D, s ∈ S, n ∈ N : πd,a
s,n ≤ Π

a
s,n. (4.6)

For each duplicate a VNo is hosted on at most one PM:

∀a ∈ A, d ∈ D, s ∈ S :
∑

n∈N

πd,a
s,n ≤ 1. (4.7)

Conservation of CPU and memory resources dictates:

∀n ∈ N :
∑

a∈A

∑

s∈S

Πa
s,n ×ωs ≤ Ωn (4.8)

and

∀n ∈ N :
∑

s∈S

Us,n × γs ≤ Γn. (4.9)

A VNo must be hosted on a PM, as soon as it is used by one of the duplicates:

∀s ∈ S,∀n ∈ N :
∑

a∈A

∑

d∈D

πd,a
s,n ≤ Us,n × |D| ×

∑

a∈A

Ia,s. (4.10)

4-10 CHAPTER 4

4.4.2.3 Link-embedding

MCF constraints on each PM can be expressed as: ∀a ∈ A, s1, s2 ∈ S, d ∈ D, n1 ∈ N :
∑

(n1,n2)∈E

υd,a
s1,s2
(n1, n2)−

∑

(n2,n1)∈E

υd,a
s1,s2
(n2, n1) = π

d,a
s1,n1
−πd,a

s2,n1
. (4.11)

Υ a
s1,s2
(e) indicates if at least one of an application’s duplicates uses e for this VL: ∀a ∈ A,s1 ∈

S,s2 ∈S,e ∈E,d ∈D :
υd,a

s1,s2
(e)≤ Υ a

s1,s2
(e). (4.12)

The total bandwidth used per PL cannot exceed the total PL capacity:

∀e ∈ E :
∑

s1∈S

∑

s2∈S

∑

a∈A

Υ a
s1,s2
(e)× βs1,s2

≤ Be. (4.13)

4.4.2.4 Availability-awareness

For a duplicate to be available, each of the individual components it uses must be available. A
component is used by a duplicate if it hosts any of the duplicate’s VNos or VLs: ∀a ∈ A, d ∈
D, c ∈ C , s1, s2 ∈ S :

Kd,a
c ≥

¨

πd,a
s1,c if c ∈ N

Υ d,a
s1,s2
(c) if c ∈ E

. (4.14)

The state of an individual component is described as:

∀c ∈ C : χc =

¨

0 if c fails

1 if c does not fail
. (4.15)

The probability that a component fails is given by:

∀c ∈ C : P [χc = 0] =

¨

pN
c if c ∈ N

pN
e if c ∈ E

. (4.16)

The state of the SNe can then be described as:

X = (χ1,χ2, . . . ,χ|C |). (4.17)

To facilitate systematical description of all possible SNe states, which will be further referred
to as minterms, the following notation is introduced:

M = {0,1, . . . , 2|C | − 1} (4.18)

and
∀m ∈ M : X (m) = X |∀c ∈ C : χc = bc(m), (4.19)

where bc(m) ∈ {0,1} is defined by:

∀m ∈ M : m=
∑

c∈{0,1,...,|C |−1}

bc(m)× 2c . (4.20)

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-11

As component failures are assumed independent, the probability of each minterm is given by:

∀m ∈ M : P [X = X (m)]

=
∏

c∈C |bc(m)=0

P [χc = 0]×
∏

c∈C |bc(m)=1

P [χc = 1]. (4.21)

Note that the ILP formulation can easily be extended to support correlated failure, by changing
the failure probability in Equation 4.21.

As stated earlier, a duplicate is available, if all physical components that contribute to its
placement are online:

∀a ∈A, d ∈D : ζ(a, d) = P

�

⋂

c∈C
(χc=1)∪ (Kd,a

c = 0)

�

(4.22)

=
∑

m∈M

τd,a
m P [X=X (m)], (4.23)

where the law of total probability was used:

τd,a
m = P

�

⋂

c∈C

(χc=1)∪ (Kd,a
c =0)|X=X (m)

�

. (4.24)

For the ILP this is reformulated as Equation 4.25. An additional Gd,a term ensures that no
minterm is covered when a duplicate is not placed (Gd,a=0): ∀m ∈ M , d ∈ D, c ∈ C , a ∈ A:

τd,a
m ≤ Gd,a + (bc(m)− 1)Kd,a

c . (4.25)

Finally, an application is available if at least one of its duplicates is available:

∀a ∈ A, m ∈ M : T a
m = P

�

⋃

d∈D

τd,a
m

�

, (4.26)

which can be formulated as:

∀m ∈ M , a ∈ A : T a
m ≤

∑

d∈D

τd,a
m . (4.27)

The total availability of an application is then given by:

∀a ∈ A : Z(a) =
∑

m∈M

T a
mP [X=X (m)]. (4.28)

Finally, the condition that an application is only placed if the joint availability exceeds Ra can
be written as:

∀a ∈ A : 1−Oa +
∑

m∈M

T a
mP [X=X (m)]≥ Ra. (4.29)

4.4.3 Objective function

The placement is sequentially optimized in multiple steps. In each step an objective function
is minimized, and the results of the previous steps are added as equality constraints. The
objective functions are listed in the order in which they are used by the algorithm.

4-12 CHAPTER 4

Maximize acceptance:
f1(A) = −

∑

a∈A

Oa. (4.30)

Minimize bandwidth usage:

f2(A, E, S,β) =
∑

a∈A

∑

e∈E

∑

s1,s2∈S

Υ a
s1,s2
(e)× βs1,s2

. (4.31)

Minimize CPU resources usage:

f3(A, N , S,ω) =
∑

n∈N

∑

a∈A

∑

s∈S

Πa
s,n ×ωs. (4.32)

Minimize the number of duplicates used:

f4(A, D) =
∑

a∈A

∑

d∈D

Gd,a. (4.33)

The last objective function ensures that multiple duplicates of the same application are only
placed if beneficial to maximize the placement ratio or minimize resource usage.

4.5 Solution strategies

The ILP formulation presented in the previous chapter can be used to find exact solutions
to the problem. In Section 4.6, it will be shown that when the dimensions of the problem
increase, even for small instances finding an exact solution to the problem quickly becomes
computationally intractable. Therefore, two heuristic algorithms, which can find "good-enough"
solutions within a reasonable time-frame, were developed.

4.5.1 GRECO: Genetic Reliable ClOuds

A scalable algorithm to search for a good placement solution, by using a distributed GA, is
defined. This algorithm is validated in a pool-based framework, which allows a completely
decentralized computation of the solution and can even survive when the PMs that calculate
the solution fail. In this section, Genetic Reliable ClOuds (GRECO) is described. Firstly,
Section 4.5.1.1 explains the foundations of a GA. Secondly, the chromosome and its decoding,
are explained in 4.5.1.2 and 4.5.1.3, respectively. Finally, Section 4.5.1.4 describes the pool
model.

4.5.1.1 Genetic Algorithm

GAs are frequently used to solve hard optimization problems. A GA uses a chromosome
representation to represent solutions in the solution space. A chromosome representation of
one particular solution is referred to as an individual. In a population-based GA, multiple
individuals are maintained at each time during execution of the algorithm. The GA starts by
creating a random set of individuals, referred to as the seed population. Additionally, through
several iterations, the GA selects the best individuals (based on a selection operator). New

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-13

solutions are generated in each iteration by combining chromosomes two by two, producing
(hopefully better) children. With a small probability there can be a small mutation on one
of the chromosomes. The last iteration step is to check the end-condition, which is highly
problem-specific. The key idea behind a GA is the use of the laws of natural selection and
survival of the fittest to generate the solution [101].

4.5.1.2 Chromosome definition

The key challenge in creating a GA is finding a suitable chromosome representation, because
this representation will largely determine its performance. A biased-random-key chromosome
is proposed, which is an array of floating-point values between 0 and 1, and is used to make
decisions in the decoding phase of the chromosome [102]. A biased-random-key allows
definition of a decoder, which can’t possibly create invalid solutions. Hence, one can be sure
that the offspring of two valid parent solutions, will also be valid solutions.

C =
�

A1, A2, · · · , A|A|
︸ ︷︷ ︸

Order of the applications

,

S1,1
1 , S1,1

2 , · · · , S1,1
|S1|

, S1,2
1 , · · · , S1,δ1

|S1|
, · · · , S

|A|,δ|A|
|S|A||

︸ ︷︷ ︸

Order of the VNos for each duplicate

,

N1,1
1 , N1,1

2 , · · · , N1,1
|S1|

, N1,2
1 , · · · , N1,δ1

|S1|
, · · · , N

|A|,δ|A|
|S|A||

︸ ︷︷ ︸

PM number for each VNo in each duplicate

�

(4.34)

The chromosome described in Equation 4.34 consists of three main parts:

1. A1, · · · , A|A|, describes the order in which the applications are placed.

2. S1,1
1 , · · · , S

|A|,δ|A|
|S|A||

describes the order in which the VNos are placed within each duplicate.

3. N1,1
1 , · · · , N

|A|,δ|A|
|S|A||

determine which PM hosts which VNo for which duplicate.

4.5.1.3 Deterministic Decoding

When using a biased-random-key, there is no straight-forward way to interpret the chromosome.
Therefore, a decoding algorithm is used to translate the chromosome into a solution in the
solution space.

Within GRECO, the approach shown in Algorithm 4.1, is taken. First, the applications are
ordered by the value of the chromosome’s first part (A1, · · · , A|A|), as this will define the order
in which applications are prioritized in the actual placement, the first step of Algorithm 4.1.
Placement of an application starts by allocating its first duplicate. If that duplicate is allocated,
then the realized availability is calculated (Line 6). If the realized availability exceeds the
requested availability, then the application has successfully been allocated, and the decoder
proceeds to the next application. On the other hand, if the realized availability is lower than
the requested availability, and the maximum number of duplicates for this application has

4-14 CHAPTER 4

not been exceeded, then the decoder tries to place an additional duplicate. If the required
availability level is not met and the maximum number of duplicates has been placed, then the
application request is declined, and its placement removed.

To place duplicate d of application a, first its VNos are ordered by the value of the second
part of the chromosome Sa,d

1 , Sa,d
2 , · · ·Sa,d

|Sa |
, (Line 8). For each VNo s, a list (L) is created,

containing only the PMs that can run VNo s, while satisfying all necessary constraints (Line
10). For each PM, it must be verified if the remaining CPU and memory capacity suffice, and
if there is sufficient bandwidth to the PMs, that were added to the PC previously. Only PMs
that satisfy those three constraints are included in L. If list L is empty, then application a
is removed from the placement because there is no valid way to place a (Line 12). Else, if
|L|> 0, then L is ordered, and the nth PM is selected (Line 15). This PM will host VNo s for
duplicate d and the required bandwidth for the VLs between s and the previously handled
VNos is allocated. The VLs is routed over the ShP with sufficient remaining bandwidth.

It is mandatory that a certain genome maps to one and only one PC. Therefore, the PMs
must have a total deterministic order, independent of the use of the PMs. The PMs are sorted
by id, this is easy, deterministic and generally results in a good random order for the last step.
The decoding algorithm is illustrated in Algorithm 4.1.

Algorithm 4.1 Decoding algorithm

1: procedure DECODING(A1.., S1,1
1 .., N1,1

1 ..)
2: SORTBYCHROMOSOME(A, A1..A|A|)
3: for each a ∈ A do
4: δ = 0
5: r = 0
6: while d ≤ δa ∧ r < Ra do
7: d+ = 1
8: SORTBYCHROMOSOME(Sa , Sa,d

1 ..Sa,d
|Sa |

)
9: for each s ∈ Sa do

10: L = ALLPOSSIBLEPM(s)
11: if |L|== 0 then
12: break
13: end if
14: SORTBYID(L)
15: n= dN a,d

s |L|e
16: PLACEVNO(s, n)
17: end for
18: r = CALCULATEAVAILABILITY(a)
19: end while
20: if r < Ra then REMOVEAPPLICATION(a)
21: end if
22: end for
23: end procedure

4.5.1.4 Framework: Pool model

Various models exist to distribute the population among the computing nodes. Amongst those
distribution models for population-distributed GAs, the pool model offers the best combination
of scalability and fault-tolerance. While in other distribution models, worker nodes (called
workers) are responsible of both executing GA operations, and storing part of the population

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-15

Start

Load configuration

Request bucket

Acquired?Sleep

Retrieve bucket

Genetic operations

Request write

Acquired?

Update bucket

Check end condition

Fulfilled?

Stop

no

yes

yes

no

no

yes

Figure 4: Workflow of a GRECO worker

which holds a random partition of the population. If a bucket cannot be ac-
quired, because all buckets have already been assigned, then the worker sleeps,440

and checks the end-condition of the GA. If a bucket can be acquired, then the
worker retrieves it and performs the evolutionary operators (selection, crossover,
mutation, elite conservation). Next, the worker requests permission to update
the bucket in the DB. When the worker cannot update the bucket, e.g. because
it took too long to process it, then the worker will try to continue processing445

other buckets. If the worker gets write permission then it will proceed to up-
date the bucket, and check the end-condition. If the end-condition is met (e.g.
certain number of generations exceeded), then there is no more work to do, and
the worker stops, else the worker proceeds to request new work.

5.2. Subgraph isomorphism450

The APP algorithm presented in this section is based on subgraph isomor-
phism detection: it maps nodes and links during the same stage.

Lischka et al. show that this method results in better mappings and is
faster than the two stage approach, especially for large virtual networks with

19

Figure 4.3: Workflow of a GRECO worker

database, the pool model maintains the population in a separate DB. A pool model deploys a
set of autonomous processors working on a shared resource pool. The processors are loosely
coupled, do not know of each other’s existence and interact with only the pool.

The workflow of a GRECO worker is shown in Figure 4.3. First, the worker loads a config-
uration file from the DB, which describes the application requests, and the SNe. Subsequently,
the worker contacts the DB and requests a bucket, which holds a random partition of the
population. If a bucket cannot be acquired, because all buckets have already been assigned,
then the worker sleeps, and checks the end-condition of the GA. If a bucket can be acquired,
then the worker retrieves it and performs the evolutionary operators (selection, crossover,
mutation, elite conservation). Next, the worker requests permission to update the bucket in the

4-16 CHAPTER 4

Variable Definition
GV Graph representing application requests, comprising VNos and VLs that need to

be placed.
GV

sub Subgraph of GV , containing the VNos and VLs that have been added to the
placement.

GP The graph, representing the SNe, comprising PMs and PLs
C List of (VNo-PM) pairs.

M(·) Mapping of its argument to GP .
M(GV

max) Mapping for which most applications are placed.
w Total number of mappings that have been tried.
W Upper-limit to the number of mappings.

Table 4.5: An overview of the variables used in the vnmFlibm routine.

DB. When the worker cannot update the bucket, e.g., because it took too long to process it, then
the worker will try to continue processing other buckets. If the worker gets write permission
then it proceeds to update the bucket and checks the end-condition. If the end-condition is
met, e.g., the desired number of generations is exceeded, then there is no more work to do
and the worker stops, else the worker proceeds to request new work.

4.5.2 Subgraph isomorphism

The APP algorithm presented in this section is based on subgraph isomorphism detection: it
maps VNos and VLs during the same stage.

Lischka et al. show that this method results in better mappings and is faster than the
two-stage approach, especially for large VNes with high resource consumption which are hard
to map [53]. The advantage of this single stage approach is that link mapping constraints are
taken into account at each step of the mapping. When a bad mapping decision is detected it
can be revised by simply backtracking to the last valid mapping decision, whereas the two-stage
approach has to remap all VLs, which is very expensive in terms of runtime. vnmFlib, the
backtracking algorithm presented by Lischka et al. allows the mapping of VLs to PPs shorter
than a predefined distance value ε (in terms of hops).

A modified version of vnmFlib, referred to as vnmFlibm, is described in Algorithm 4.2.
An overview of the variables used in vnmFlibm is shown in Table 4.5.
The algorithm tries to build a valid SVNE solution by successively adding PMs and PLs

of GV to an initially empty subgraph GV
sub of GV . During the mapping process the algorithm

ensures that M(GV
sub) is a valid mapping of GV

sub onto GP . In each step of the algorithm, a list of
possible (VNo, PM)-pairs is generated by the function Genneigh (Line 5). The pairs are ordered
by Genneigh as follows. First, the (VNo, PM)-pairs are ordered application-wise, which assures
that at most one partially placed application is present in M(GV

sub). The application order is
determined subsequently by total increasing CPU requirements, memory requirements and
finally by application number. Second, the (VNo, PM)-pairs are ordered by VNo index. Third,
they are ordered by duplicate number. Finally, they are ordered by the id of the PM.

The algorithm loops over this sorted list, and when a valid mapping is encountered, a

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-17

new subgraph GV
sub and a corresponding mapping are generated (Line 9). The validity of the

mapping is checked by the valid function. The valid function (Line 7) checks if PM nP has
sufficient remaining nodal resources to host VNo nV , and if sufficient bandwidth remains in
the SNe to route all VLs to and from the VNos already included in M(GV

sub). The VLs are routed
using a ShP algorithm.

Additionally, the valid function verifies if the availability requirement can be met. During
availability calculation, the placement of an application is most of the time incomplete. The
availability of those unplaced components is assumed 100%. If the potential availability
increments, brought by future placement of an additional replica were not taken into account,
then the algorithm would not be able to place applications which require multiple duplicates
to reach their availability goal. The (intermediate) availability of a mapping will be referred
to as f (M(GV

sub)) in the example at the end of this section.
The algorithm can terminate in one of two ways. On the one hand, if the maximum number

of mappings W has been exceeded (Line 3), or if all (VNo, PM)-pairs have been exhausted
(Line 22), then the algorithm returns null. In the calling procedure, the best intermediate
result can be used, which was stored in M(GV

max). M(GV
max) is updated each time a placement

is found which holds a higher number of completely placed applications (Line 11). On the
other hand, when GV

sub fully covers GV (Line 18), the algorithm returns M(GV
sub) (Line 19),

which is a valid mapping of GV on GP .

Algorithm 4.2 vnmFlibm procedure.
1: procedure VNMFLIB(GV

sub , M(GV
sub), GV , GP , M(GV

sub),M(G
V
max), w, W)

2: if w≥W then
3: return null
4: end if
5: C← GENNEIGH(GV

sub , GV , GP)
6: for each (nV , nP) ∈ C do
7: if VALID(M(GV

sub), (n
V , nP), GV) then

8: w← w+ 1
9: create GV

sub and M(GV
sub) by adding (nV , nP)

10: if PLACED(M(GV
sub))>PLACED(M(GV

max)) then
11: M(GV

max)← M(GV
sub)

12: end if
13: MT ← VNMFLIB(GV

sub , M(GV
sub), GV , GP)

14: if MT !=null then
15: return MT
16: end if
17: end if
18: if GV

sub == GV then
19: return M(GV

sub)
20: end if
21: end for
22: return null
23: end procedure

The algorithm’s operation is illustrated using the problem shown in Figure 4.2. An avail-
ability A, equal to 0.9853, is assumed for each SNe component. For the sake of clarity, the
bandwidth in the SNe is considered not to be a critical constraint, this condition holds if each
VL requires 1 unit of bandwidth, and each PL has a bandwidth capability of at least 1 unit. The
required availability is 97%. It is assumed that the memory constraints limit the number of

4-18 CHAPTER 4

VNos hosted per PM to 1. In Figure 4.4, the different steps of the algorithm are shown. Note
that only the mapped (VNo, PM) pairs are explicitly indicated, to ease notation. The routing is
performed using a ShP algorithm. For the availability calculation, these paths must be taken
into account. Distinction is made between the VNos of the two duplicates, by adding a tilde to
the VNos corresponding to the second duplicate.

The inputs to vnmFlibm take following values: GV
sub = (;,;), GV = (V V , EV), where V V =

{s1, s̃1, s2, s̃2, s3, s̃3}, and EV = {(s1, s2), (s̃1, s̃2), (s2, s3), (s̃2, s̃3))}. GP = (V P , EP), where V P =
{n1, n2, n3, n4, n5}, and EP = {(n1, n2), (n1, n4), (n2, n3), (n2, n4), (n3, n5), (n4, n5)}, M(GV

sub) =
;, M(GV

max) = ;, w= 1, W = 4× 6= 24.

Now, the execution commences. In step 1, GV
sub is empty and the algorithm tries to place

the first VNo, namely s1, on n1, which is a valid placement. In step 2, (s1, n1) is added to the
mapping, and the algorithm attempts to place s̃1 on n1, which is also a valid placement. In
step 3, c = (s2, n1) is not valid because n1 does not have enough resources. Therefore, the first
valid option is (s2, n2). In step 4, c = (s̃2, n1

�

is not valid because n2 does not have enough
resources. c = (s̃2, n2

�

is not valid because f (M(GV
sub)) would become A3 = 0.9565, which is

lower than 97%. n3 is a valid option. In step 5, n1 through n3 do not have enough resources to
host s3. The availability when using either s4, or s5 would be too low, as f (M(GV

sub)) would be
respectively A5 + A4 − A7 = 0.9696, and A6 + A4 − A7 = 0.9559. Hence, there is no valid (VNo,
PM)-pair in C , and the algorithm backtracks (rip up (s̃2, n3)). In step 6, the algorithm continues
where it left off in step 4, and tries (s2, n4), which is a valid combination. In step 7, n1 and n2

do not have sufficient resources to host s3, but n3 does. In step 8, n1 and n2 cannot host s̃3.
n3 is also not a valid candidate, as the resulting f (M(GV

sub)) would be A5 + A6 − A7 = 0.9421.
n4 is also not a valid option, because it does not have sufficient remaining resources. n5 is a
valid option. In step 9, M(GV

sub) contains one fully placed application, therefore M(GV
max) is

overwritten. GV equals GV
sub and the algorithm terminates. The resulting placement is the one

depicted in Figure 4.2c.

4.6 Performance evaluation

In this section, the performance of the proposed heuristics is compared against the ILP formu-
lation presented in Section 4.4, and two other placement methods found in literature. For this
evaluation, a custom simulation platform is developed in Java. First, this software platform
simulates the selected type of application requests and SNe configurations. The result is a json
file per problem description, holding the input parameters shown in Table 4.1. Subsequently,
the selected application placement algorithm is applied to these input json files and a PC is
generated and stored in an output json file. These output files are then further analyzed to
compile the graphs shown throughout this section.

This Section is structured as follows. First, the evaluated algorithms are discussed. Second,
the models for workload and cloud environments are presented. Then, the effect of multiple
parameters is analyzed. For each input parameter, the types of simulated workload and cloud
environment are described, and an analysis is provided.

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-19

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

Figure 4.4: Steps taken by vnmFlibm when solving the problem depicted in Figure 4.2.

4-20 CHAPTER 4

Method Duplicates per ac-
cepted application

Consolidation onto
one PM

Availability

VAR (this work) at least 1, and at
most δ

any two VNos can be
consolidated

checked before each
mapping

MOENS [94] exactly 1 any two VNos can be
consolidated

checked after execu-
tion has finished

DRONE [57] exactly 2 only VNos of differ-
ent applications can
be consolidated

checked after execu-
tion has finished

Table 4.6: Overview of the evaluated placement methods.

4.6.1 Evaluated algorithms

In this section, the suffixes OPT, SUB, and GA indicate an exact algorithm based on an ILP-
formulation, a heuristic based on subgraph isomorphism detection, and a GA respectively. An
overview of the compared placement methods is given in Table 4.6. VAR refers to the protection
method described in Section 4.3.3, which can vary the amount of redundancy introduced. The
ILP-formulation presented in Section 4.4, is referred to as VAR-OPT, the GRECO algorithm
(Section 4.5.1.1) as VAR-GA, and the heuristic based on subgraph isomorphism detection
(4.5.2) as VAR-SUB. To the best of our knowledge, there exist no other placement algorithms,
introducing a model for availability which considers both PM and PL failures. Therefore,
a comparison is made to methods which do not have a model for availability. After these
placement algorithms have finished execution, the applications whose availability requirements
have not been met, are removed. Two other placement methods are considered. On the one
hand Moens et al. place each application at most once [94]. MOENS-OPT is an exact algorithm
based on ILP. MOENS-SUB is a self-defined heuristic based on subgraph isomorphism detection
for MOENS-OPT. The only differences between MOENS-SUB and VAR-SUB, are that MOENS-
SUB does not have an availability requirement and that it places at most 1 duplicate. On the
other hand, DRONE-OPT is based on the ILP-formulation from Chowdhury et al [57]. In their
approach, each accepted application request must be placed exactly twice and VNos belonging
to the same application cannot be consolidated onto one PM. The embeddings of the primary
and backup VNe must be fully disjoint (i.e. they cannot have any PM or PL in common),
which guarantees survivability against a single PM or PL failure. For the sake of comparison,
their model is modified so that memory resources can be shared among applications which
use the same VNo. DRONE-SUB is a self-defined algorithm based on subgraph isomorphism
detection for DRONE-OPT. Compared to VAR-SUB, this algorithm does not check availability
during placement and it always tries to place two duplicates. Additionally, DRONE-SUB allows
an application to make use of each PM and PL at most once, while VAR-SUB has no such
restrictions.

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-21

this algorithm does not check availability during placement, and it always tries
to place two duplicates. Additionally, DRONE-SUB allows an application to
make use of each PM and PL at most once, while VAR-SUB has no such re-
strictions.

6.2. Application model585

The SOA model described in Section 3.1 can be used to represent a wide
range of applications. In the following, three application types are presented:
one with a flat hierarchy, and two with a special structure, which are commonly
used in software engineering. These application types are used throughout the
performance evaluation.

(a) Random

map reducein out

(b) MapReduce

layer 1 layer 2 layer 3

(c) 3 Tier

Figure 6: An illustration of multiple application models.

590

Random. This application type is similar to the simulation setup used by Moens
et al. [16]. In this model, application requests are generated as follows. First,
a certain number of services is generated, which have a certain probability to
be interconnected pairwise by a VL. Then, each application randomly picks
services out of those services. In this model, multiple applications can share the595

same service. The application model is illustrated in Figure 6a.

MapReduce. MapReduce is a programming model and an associated implemen-
tation for processing and generating large data sets. Users specify a map func-
tion that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated with600

the same intermediate key [33]. The application model shown in Figure 6b
comprises 1 mapper and 1 reducer stage, and assumes the input files and out-
put files to be located on one input, and one output node respectively. It is
assumed that resources cannot be reused between services of multiple applica-
tions. Each mapper communicates with the input node and exactly one reducer605

node. The reducer nodes communicate with the output node, and exactly one
mapper node. When there are m mappers in the mapper stage, then there are
also m reducers, which totals 2 + 2 ⇥ m services per application.

3 Tier. A Multi-tier Architecture is a software architecture in which di↵erent
software components, organized in tiers (layers), provide dedicated functional-610

ity. The most common occurrence of a multi-tier architecture is a three-tier sys-
tem consisting of a data management tier (mostly encompassing one or several
database servers), an application tier (business logic) and a client tier (interface

25

(a) Random

this algorithm does not check availability during placement, and it always tries
to place two duplicates. Additionally, DRONE-SUB allows an application to
make use of each PM and PL at most once, while VAR-SUB has no such re-
strictions.

6.2. Application model585

The SOA model described in Section 3.1 can be used to represent a wide
range of applications. In the following, three application types are presented:
one with a flat hierarchy, and two with a special structure, which are commonly
used in software engineering. These application types are used throughout the
performance evaluation.

(a) Random

ReduceIn Out

(b) MapReduce

layer 1 layer 2 layer 3

(c) 3 Tier

Figure 6: An illustration of multiple application models.

590

Random. This application type is similar to the simulation setup used by Moens
et al. [16]. In this model, application requests are generated as follows. First,
a certain number of services is generated, which have a certain probability to
be interconnected pairwise by a VL. Then, each application randomly picks
services out of those services. In this model, multiple applications can share the595

same service. The application model is illustrated in Figure 6a.

MapReduce. MapReduce is a programming model and an associated implemen-
tation for processing and generating large data sets. Users specify a map func-
tion that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated with600

the same intermediate key [33]. The application model shown in Figure 6b
comprises 1 mapper and 1 reducer stage, and assumes the input files and out-
put files to be located on one input, and one output node respectively. It is
assumed that resources cannot be reused between services of multiple applica-
tions. Each mapper communicates with the input node and exactly one reducer605

node. The reducer nodes communicate with the output node, and exactly one
mapper node. When there are m mappers in the mapper stage, then there are
also m reducers, which totals 2 + 2 ⇥ m services per application.

3 Tier. A Multi-tier Architecture is a software architecture in which di↵erent
software components, organized in tiers (layers), provide dedicated functional-610

ity. The most common occurrence of a multi-tier architecture is a three-tier sys-
tem consisting of a data management tier (mostly encompassing one or several
database servers), an application tier (business logic) and a client tier (interface

25

Map

(b) MapReduce

this algorithm does not check availability during placement, and it always tries
to place two duplicates. Additionally, DRONE-SUB allows an application to
make use of each PM and PL at most once, while VAR-SUB has no such re-
strictions.

6.2. Application model585

The SOA model described in Section 3.1 can be used to represent a wide
range of applications. In the following, three application types are presented:
one with a flat hierarchy, and two with a special structure, which are commonly
used in software engineering. These application types are used throughout the
performance evaluation.

(a) Random

map reducein out

(b) MapReduce

Layer 1 Layer 2 Layer 3

(c) 3 Tier

Figure 6: An illustration of multiple application models.

590

Random. This application type is similar to the simulation setup used by Moens
et al. [16]. In this model, application requests are generated as follows. First,
a certain number of services is generated, which have a certain probability to
be interconnected pairwise by a VL. Then, each application randomly picks
services out of those services. In this model, multiple applications can share the595

same service. The application model is illustrated in Figure 6a.

MapReduce. MapReduce is a programming model and an associated implemen-
tation for processing and generating large data sets. Users specify a map func-
tion that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated with600

the same intermediate key [33]. The application model shown in Figure 6b
comprises 1 mapper and 1 reducer stage, and assumes the input files and out-
put files to be located on one input, and one output node respectively. It is
assumed that resources cannot be reused between services of multiple applica-
tions. Each mapper communicates with the input node and exactly one reducer605

node. The reducer nodes communicate with the output node, and exactly one
mapper node. When there are m mappers in the mapper stage, then there are
also m reducers, which totals 2 + 2 ⇥ m services per application.

3 Tier. A Multi-tier Architecture is a software architecture in which di↵erent
software components, organized in tiers (layers), provide dedicated functional-610

ity. The most common occurrence of a multi-tier architecture is a three-tier sys-
tem consisting of a data management tier (mostly encompassing one or several
database servers), an application tier (business logic) and a client tier (interface

25

(c) 3 Tier

Figure 4.5: An illustration of multiple application models.

4.6.2 Application model

The SOA model described in Section 4.3.1 can be used to represent a wide range of applications.
In the following, three application types are presented: one with a flat hierarchy, and two
with a special structure, which are commonly used in software engineering. These application
types are used throughout the performance evaluation.

Random This application type is similar to the simulation setup used by Moens et al. [94].
In this model, application requests are generated as follows. First, a certain number of VNos
is generated, which have a certain probability to be interconnected pairwise by a VL. Then,
each application randomly selects VNos. In this model, multiple applications can comprise the
same VNo. The application model is illustrated in Figure 4.5a.

MapReduce MapReduce is a programming model and an associated implementation for
processing and generating large data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value pairs, and a reduce function
that merges all intermediate values associated with the same intermediate key [103]. The
application model shown in Figure 4.5b comprises 1 mapper and 1 reducer stage and assumes
the input and output files to be located on one input and one output node, respectively. It
is assumed that resources cannot be reused between VNos of multiple applications. Each
mapper communicates with the input node and exactly one reducer node. The reducer nodes
communicate with the output node and exactly one mapper node. When there are m mappers
in the mapper stage, then there are also m reducers, which totals 2+2×m VNos per application.

3 Tier A multi-tier architecture is a software architecture in which different software com-
ponents, organized in tiers (layers), provide dedicated functionality. The most common
occurrence of a multi-tier architecture is a three-tier system consisting of a data management
tier (mostly encompassing one or several database servers); an application tier (business logic);
and a client tier (interface functionality). Conceptually, a multi-tier architecture results from a
repeated application of the client/server paradigm. A component in one of the middle tiers is
client to the next lower tier and at the same time acts as server to the next higher tier [104].
The simulations assume a VL between any pair of VNos in two subsequent layers and the same
number of VNos in each layer.

4-22 CHAPTER 4

functionality). Conceptually, a multi-tier architecture results from a repeated
application of the client/server paradigm. A component in one of the middle615

tiers is client to the next lower tier and at the same time acts as server to the
next higher tier [34]. The simulations assume a VL between any pair of services
in two subsequent layers, and an equal amount of services per layer.

6.3. Cloud infrastructure

In this section, two SN models are presented.620

Random SN. In this model a random graph, with a predefined number of PLs
and VLs, is generated. The procedure by Broder et al. is used to generate
a minimal spanning tree [35], subsequently non-neighbouring PMs are inter-
connected at random, until the desired number of PLs has been reached. An
illustration of such a topology is shown in Figure 7a.625

Trans-stub model SN. Transit-stub network topologies are generated using the
GT-ITM topology generator [36]. An illustration of this SN model, using 4
transit nodes, is shown in Figure 7b. Any two nodes in the transit network
are connected by a PL with a probability of 80%. Within a cluster in the
stub-network this probability equals 40%. Each PM in the transit network is630

connected to 2 clusters, each comprising 6 PMs. The total number of nodes in
the substrate graph is then equal to thirteen (=transit node + 2⇥6 stub nodes)
times the number of transit nodes. For 1, 2, 3, and 4 transit nodes, the SN
comprises 13, 26, 52 and 104 PMs respectively.

(a) Random

6

6

Stub

Trans

6

6

6

6 6

6

(b) Trans-stub

Figure 7: An illustration of SN types.

6.4. Algorithmic parameters635

The VAR-GA stops after it has computed 100 generations or it has the same
best solution for 20 generations. The algorithms based on subgraph isomorphism
detection attempt at most 4 placements per virtual node in GV , as proposed
by Lischka et al. The ILP models are solved by Gurobi 6.5.1. All tests were
executed on the High Performance Cluster (HPC) core facility CalcUA at the640

University of Antwerp. Each test used one machine with 20 cores. For the GA
the MongoDB database was allocated at a server at the university and not at
the HPC. The latency between HPC and the MongoDB server is about 1.740
milliseconds.

26

(a) Random

functionality). Conceptually, a multi-tier architecture results from a repeated
application of the client/server paradigm. A component in one of the middle615

tiers is client to the next lower tier and at the same time acts as server to the
next higher tier [34]. The simulations assume a VL between any pair of services
in two subsequent layers, and an equal amount of services per layer.

6.3. Cloud infrastructure

In this section, two SN models are presented.620

Random SN. In this model a random graph, with a predefined number of PLs
and VLs, is generated. The procedure by Broder et al. is used to generate
a minimal spanning tree [35], subsequently non-neighbouring PMs are inter-
connected at random, until the desired number of PLs has been reached. An
illustration of such a topology is shown in Figure 7a.625

Trans-stub model SN. Transit-stub network topologies are generated using the
GT-ITM topology generator [36]. An illustration of this SN model, using 4
transit nodes, is shown in Figure 7b. Any two nodes in the transit network
are connected by a PL with a probability of 80%. Within a cluster in the
stub-network this probability equals 40%. Each PM in the transit network is630

connected to 2 clusters, each comprising 6 PMs. The total number of nodes in
the substrate graph is then equal to thirteen (=transit node + 2⇥6 stub nodes)
times the number of transit nodes. For 1, 2, 3, and 4 transit nodes, the SN
comprises 13, 26, 52 and 104 PMs respectively.

(a) Random

6

6

Stub

Trans

6

6

6

6 6

6

(b) Trans-stub

Figure 7: An illustration of SN types.

6.4. Algorithmic parameters635

The VAR-GA stops after it has computed 100 generations or it has the same
best solution for 20 generations. The algorithms based on subgraph isomorphism
detection attempt at most 4 placements per virtual node in GV , as proposed
by Lischka et al. The ILP models are solved by Gurobi 6.5.1. All tests were
executed on the High Performance Cluster (HPC) core facility CalcUA at the640

University of Antwerp. Each test used one machine with 20 cores. For the GA
the MongoDB database was allocated at a server at the university and not at
the HPC. The latency between HPC and the MongoDB server is about 1.740
milliseconds.

26

(b) Trans-stub

Figure 4.6: An illustration of SNe types.

4.6.3 Cloud infrastructure

In this section, two SNe models are presented.

Random SNe In this model, a random graph with a predefined number of PLs and VLs is
generated. The procedure by Broder et al. is used to generate a minimal spanning tree [105],
subsequently non-neighboring PMs are interconnected at random, until the desired number of
PLs has been reached. An illustration of such a topology is shown in Figure 4.6a.

Trans-stub model SNe Transit-stub network topologies are generated using the Georgia
Tech Internetwork Topology Models (GT-ITM) topology generator [106]. An illustration of
this SNe model, using 4 transit nodes, is shown in Figure 4.6b. Any two PMs in the transit
network are connected by a PL with a probability of 80%. Within a cluster in the stub-network
this probability equals 40%. Each PM in the transit network is connected to 2 clusters, each
comprising 6 PMs. The total number of PMs in the substrate graph is then equal to thirteen
(=transit node + 2×6 stub nodes) times the number of transit nodes. For 1, 2, 3, and 4 transit
nodes, the SNe comprises 13, 26, 52 and 104 PMs respectively.

4.6.4 Algorithmic parameters

VAR-GA stops when it has computed 100 generations or if the best solution does not improve
during 20 consecutive generations. The algorithms based on subgraph isomorphism detection
attempt at most 4 placements per VNo in GV , as proposed by Lischka et al. The ILP models are
solved by Gurobi 6.5.1. All tests were executed on the High-Performance Computing (HPC)
core facility CalcUA at the University of Antwerp. Each test used one machine with 20 cores.
For the GA, the MongoDB database was hosted on a server at the university, outside the HPC
facility. The latency between the HPC and the MongoDB server was 1.740 ms on average.

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-23

4.6.5 Key observations

Before analyzing the performance of the algorithms, two metrics must be introduced. First, the
placement ratio is the ratio of the number of applications that meet the availability requirement
to the total number of application requests. Second, the execution time is the time it takes to
execute the placement algorithm. While also an important performance metric, the application
response time, has not been simulated. One could incorporate response time requirements by
appropriately dimensioning the CPU and bandwidth requirements according to the expected
user workload. Additionally, VL latency requirements could easy be added as an additional
constraint to the model. Third, the CLF expresses the loading on the cloud environment, i.e.
the ratio of total CPU demand of all application requests, to the total amount of available CPU
resources:

CLF=

∑

s∈S

∑

a∈A
Ia,s ×ωs

∑

n∈N
Ωn

. (4.35)

In the following, a wide range of parameters is swept. Unless explicitly stated otherwise,
for each parameter setting, the CLF is varied from 0.1 to 1, in increments of 0.1. For each
CLF level 100 input files are generated, each containing a certain workload and SNe. The
simulation results are shown in Figures 4.7 - 4.10, where markers indicate averages and
error-bars represent the standard error of the mean.

4.6.5.1 Influence of required availability

Generated workload In this experiment, the workload consists of 10 random applications.
The VNos of each application are chosen (at random) out of a set of three VNos with a
probability of 60%. For each VNo s :ωs is uniformly distributed in the interval [0.2; 1], and γs

is uniformly distributed in the interval [0.75;1]. Any two VNos of the same application are
interconnected by a VL, requiring a bandwidth which is uniformly distributed in the interval
[0.02; 0.04].

Used SNe A random SNe is generated, consisting of 5 PMs and 8 PLs. Each PL has a
bandwidth of 1. For each PM n : Ωn ∈ {0.5,2,10,50}, and Γn ∈ {1,1.5,2}. For each PL and
PM the failure rate is a uniformly distributed random choice out of the {0%,2.5%, 5%}.

Results In Figure 4.7, for a required availability level of 0%, the placement ratio for MOENS-
OPT and VAR-GA is very close to optimal (VAR-OPT). The placement ratios for VAR-SUB and
MOENS-SUB are about 6% lower. The placement ratios for DRONE-OPT and DRONE-SUB
are very low because these algorithms must always find two completely disjoint mappings
while there are only 5 PMs in total. As the required availability level increases from 0% to
90%, the placement ratios for the algorithms which are availability-aware (VAR-OPT, VAR-SUB,
VAR-GA) remain relatively constant. Additionally, the placement ratios for DRONE-OPT and
DRONE-SUB remain constant, as the backup VNe embedding protects against single PM and
PL failures. In contrast to that, the placement ratio for MOENS-SUB decreases by 4% and the
placement ratio for MOENS-OPT even decreases by 33%. The differences between MOENS-
SUB and MOENS-OPT can be attributed to the fact that MOENS-SUB generally uses less PLs

4-24 CHAPTER 4

and PMs per application, yielding a higher availability. When the required availability level
increases further from 90% to 99% the placement ratios drop significantly for most algorithms.
Only for DRONE-OPT and DRONE-SUB the drop is less than 1%, as almost all of the placed
applications fulfill the availability requirement. For an availability requirement of 99% there is
a huge benefit associated to considering 2 duplicates instead of 1 (for VAR-SUB an increase of
81% in placement ratio), at the cost of an increase of 128% in computation time. Given the
drastically improved placement ratio, 2 duplicates will be used in the following experiments,
unless explicitly stated otherwise.

While the computation time of DRONE-OPT and MOENS-OPT is below 100 ms, for VAR-
OPT it increases dramatically when the required availability goes from 0% to 90%. Most of
the configurations with a required availability level of 99% did not finish and were therefore
excluded from the graph. While the GA provides a dramatic speedup compared to VAR-OPT
for non-zero required availability levels (741x at 90% required availability), the subgraph
algorithm is up to 169x faster than the GA. However, the placement ratio of VAR-SUB is up
to 14% lower than for VAR-GA. Because finding the exact solution takes too much time for
moderate-scale problems, VAR-OPT will be excluded from the remaining experiments.

4.6.5.2 Influence of CPU Load Factor

Generated workload In this setup, 10 random applications are generated, comprising 24
VNos in total. Each application is assigned 12 out of those 24 VNos at random. For each VNo
s :ωs is uniformly distributed in the interval [0;ωmax], and γs is uniformly distributed in the
interval [0;γmax], where

ωmax =
C LFtar get .|N |.2.Ω
∑

a∈A

∑

s∈S Ia,s
(4.36)

and
γmax = Γmax ×

ωmax

Ωmax
. (4.37)

Equation 4.36 ensures that the expected CLF equals C LFtar get . Equation 4.37 scales the
memory requirements proportionally with the CLF.

Used SNe A trans-stub network comprising 13 PMs, is generated. The PM capabilities are
a uniformly distributed random choice of t2, m3, and m4, Amazon EC2 instance specifica-
tions [107]. The PL bandwidth is uniformly distributed in [0;100]. Both PM and PL failure
rates are uniformly distributed in [0%;1%].

Results The results in Figure 4.8 show that the placement ratio decreases, for all algorithms,
as the CLF increases from 0.1 to 1.0. Again, the placement ratio of MOENS-OPT and MOENS-
SUB is very low (up to 89% and 71% lower than VAR-SUB) as these algorithms do not introduce
any protection. For low CLF values, the performance of DRONE-OPT and DRONE-SUB is
comparable to that of VAR-SUB (less than 1% difference). However, when the CLF increases
insufficient resources remain to place each VNe twice and the placement ratios of DRONE-OPT
and DRONE-SUB are up to 27% and 41% lower than for VAR-SUB. While VAR-SUB performs
about 1% better for CLFs up to 0.6, the GA performs 28% better for a CLF of 1.0. This difference

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-25

Figure 4.7: Influence of the required availability level.

4-26 CHAPTER 4

Figure 4.8: Influence of the CLF, for a required availability of 99.0%.

can be explained by how the algorithms handle the application requests. While the subgraph
isomorphism algorithm tries to place the applications in a predetermined order and backtracks
as soon as an application cannot be placed, the GA tries different orderings of the applications,
and when an application cannot be placed, it proceeds to the next one. A similar reasoning can
be applied to the differences between DRONE-OPT and DRONE-SUB. For CLF values up to 0.3,
DRONE-SUB achieves a higher placement ratio than DRONE-OPT, as typically its embeddings
are more compact, realizing a higher availability and ditto placement ratio. However, for CLF
values higher than 0.3, DRONE-OPT realizes up to 23% higher placement ratios, as the ILP
solver can try different orderings of applications, while DRONE-SUB backtracks as soon as an
application cannot be placed.

While the influence of CLF on execution time is not so clear, it is clear that VAR-SUB is
much faster than VAR-GA: a speed-up of 400×, up to even 900× is observed. The GA is much
slower in our experiments, because of the large overhead in communication with the database.
A detailed breakdown of the computation time of the GRECO algorithm shows that up to
93% of the time is spent communicating with the remote DB, even though the workers for
one optimization are all running on one and the same PM [C8]. Because of administrative
limitations it was not possible to host the DB within the HPC network. Given the dramatic
differences in execution time, compared to the other algorithms, only the heuristics based on
subgraph isomorphism detection (VAR-SUB, MOENS-SUB, and DRONE-SUB) are included in
the remaining experiments.

4.6.5.3 Influence of application requests and SN dimensions

Generated workload For this setup, separate test runs are generated, each considering only
random, MapReduce, or 3 Tier applications requests. The number of VNos per application is
12, resulting in 5 mappers and 5 reducers, and 4 VNos per layer, in the MapReduce and 3

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-27

Figure 4.9: Influence of the SNe dimensions for a required availability of 99.9% and application
type "random".

Tier model respectively. In Section 4.6.5.2 the number of applications was fixed to 10, and
the CLF was increased by generating increasingly CPU heavy applications. However, in this
setup the CLF is varied by changing the number of application requests, while keeping the
VNo requirements constant. For a C LFtar get of 0.1, 0.2, and 0.3, the simulation platform
generates 10, 20, and 30 applications respectively. Again, for each VNo the CPU and memory
requirements are uniformly distributed, with maximum values dictated by Equation 4.36, and
4.37. Also, VL bandwidth requirements are uniformly distributed in [0;1].

Used SNe A trans-sub model is used with the same specifications as in Section 4.6.5.2, only
now the SNe comprises 1, 2, 3, or 4 transit nodes.

Results Figure 4.9 shows that the placement ratio decreases as the SNe size increases. Again,
the placement ratio for MOENS-SUB is the lowest of all three algorithms. The placement ratio
for 13 and 26 PMs is roughly the same for DRONE-SUB and VAR-SUB. However, when the SNe
grows further, then the performance for VAR-SUB is up to 2x better than for DRONE-SUB. An
explanation is that as the number of PMs increases, the CPU resources get more fragmented
(constant CLF), which makes it harder to always place 2 disjoint duplicates. Additionally, an
increased SNe size brings a higher number of reliable PMs. Hence, there is a higher probability
that a combination of high available PLs and PMs can be made, avoiding the need for a second
duplicate. The execution time for DRONE-SUB is clearly smaller than for VAR-SUB, as the
number of possible mappings is smaller (no consolidation possible within application) and as
the availability conditions are only checked once (versus before each mapping step).

Figure 4.10 shows that the performance of the algorithm strongly depends on the type
of application considered. While the three application types require the same number of

4-28 CHAPTER 4

Figure 4.10: Influence of application type for 26 PMs, for a required availability of 99.9%,
using VAR-SUB.

VNos, and have the same VNo requirements, the performance for the random and structured
applications (MapReduce and 3Tier) differs significantly. The random application type takes
significantly longer to place. Additionally, structured applications can benefit more from using
more than one duplicate. For the random application type, the placement ratio even decreases
slightly when the number of duplicates increases from 2 to 3. Intuitively these observations can
be explained by the fact that the VNos of structured applications are easier to consolidate. This
effect becomes more pronounced when redundancy levels go up, causing increased competition
for CPU resources.

Figure 4.11 shows that the placement ratio decreases and the execution time increases,
when the number of application requests goes up. Increasing the number of applications
requests causes the memory usage of the subgraph algorithm to increase, as the recursion
depth goes up. Therefore, it is good practice to limit the number of mappings to be considered.

Figure 4.12 shows that the placement ratio increases for the structured applications (MapRe-
duce, 3Tier) as the number of PMs increases, while the placement ratio decreases for the
random application. This can be explained as follows. On the one hand, when the number
of PMs increases, the nodal capabilities get more fragmented, as the CLF is kept constant.
On the other hand, as the SNe dimensions increase it become easier to meet the availability
requirements, as long as the nodal capabilities are not too fragmented to fit the VNos. It is
clear that the computation time increases when the number of PMs increases. Additionally, the
computation time for the random application is higher than for the structured applications.

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-29

Figure 4.11: Influence of the number of application requests for 26 PMs, a required availability
of 99.9%, using VAR-SUB.

Figure 4.12: Influence of the SNe dimensions for a required availability of 99.9%, using
VAR-SUB.

4-30 CHAPTER 4

4.7 Results discussion

In the previous section, it was shown that in heterogeneous cloud networks, VAR can bring
a dramatic increase in placement ratio, relative to the state of the art, currently lacking an
availability model. While exact solution of the ILP formulation scales badly [C5], the GA [C8]
can place 10 applications on a SNe comprising 13 PMs within 100 seconds. The newly proposed
heuristic based on subgraph isomorphism detection can even place up to 30 applications on
a SNe comprising 104 PMs, all within 20 seconds. When the placement algorithm can be
offloaded to a (remote) reliable server, then VAR-SUB can be used. If this offloading is not
possible, requiring execution of the placement algorithm within the heterogeneous cloud
network, then either the fault-tolerant distributed GA must be used, or alternatively the
protection methods laid out throughout this work can be applied to VAR-SUB, to make it
survive failure of the management nodes.

In reliable cloud environments (or equivalently, under low availability requirements),
it is often acceptable to place each VNe only once, and not bother about availability [94].
However, when the frequency of failures is higher (or if availability requirements increase),
then one of the following measures should be taken. First, one can improve the availability by
placing additional backups, which fail independently of one another. However, this approach
works best in homogeneous cloud environments, where one can use the same number of
backup VNEs, regardless of the exact PC. In heterogeneous environments, a fixed redundancy
level for each application either results in wasted SNe resources, or a reduced placement
ratio. The same reasoning can be made for applications, having heterogeneous availability
requirements. Second, one can already achieve an increased placement ratio by considering
the realized availability during placement (VAR-SUB, δ = 1). In this case, the placement
algorithm can place applications with higher availability requirements on more reliable parts
of the infrastructure, and at the same time avoid wasting resources on applications whose
availability requirements cannot be fulfilled. Third, one can consider the realized availability
during placement and decide on the appropriate redundancy level. This decision depends on
both the precise availability requirements and the actual PC.

For example, in an Amazon cloud environment, where heterogeneity is limited to multiple
generations of servers being used, and resources are virtually infinite, it makes sense to disperse
a predefined number of copies across multiple availability zones. However, in an edge-cloud,
where computation tasks must be deployed close to the edge of the network, one cannot afford
to waste precious resources. While previously intractable, now VAR-SUB can find an intelligent
PC, tailored to the specific availability requirements of each application, in a matter of seconds.

When focusing on the placement ratio obtained by VAR-SUB, following observations can
be made. First, when the required availability level increases, the placement ratio goes down
and the computation time increases. Additionally, more stringent availability requirements
require a higher number of duplicates to be used. Second, increased loading of the SNe,
either caused by more resource-intensive applications, or an increased number of application
requests, decreases the fraction of application requests that can be accepted. While the resource
requirements of individual applications have little effect on the execution time, increasing the
number of application requests significantly affects computation time. Third, the fraction of
application requests that can be accepted largely depends on the type of application requests.

AVAILABILITY-AWARE APPLICATION PLACEMENT 4-31

Applications that can be consolidated more easily achieve better placement ratios.

4.8 Conclusion

Cloud environments are becoming increasingly decentralized, leading to a heterogeneous
network of micro-clouds which are positioned on the edge of the network and possibly intercon-
nected by best-effort PLs. This heterogeneous environment introduces important challenges for
the management of these clouds as the heterogeneity results in an increased failure probability.
In this chapter, we study the problem of simultaneous placement of a set of mission-critical
applications on such an unreliable network, while guaranteeing a certain level of availability
for each application. Three algorithms are presented that make use of intelligent application
level replication: an optimal algorithm using an ILP solver (VAR-OPT), and two heuristics. The
first heuristic (VAR-GA) is a fault-tolerant distributed GA which uses a distributed pool model
to distribute the population. The second (VAR-SUB) is a fast centralized algorithm, based on
subgraph isomorphism detection. VAR-GA performs near-optimal for small problem instances
and outperforms the subgraph algorithm up to 28% when its placement ratio drops below 0.7.
However, when the problem size grows, the VAR-SUB algorithm scales better and becomes the
algorithm of choice. While previous solutions were computationally too complex to allow a
timely calculation in real-life large-scale environments, the newly presented algorithm based
on subgraph isomorphism detection (VAR-SUB), effectively removes this barrier. A detailed
performance evaluation shows that, in comparison to algorithms that protect against single
PM or PL failure, VAR-SUB can double the placement ratio in cloud environments comprising
over 100 PMs, while keeping the time required to calculate the solution under 20 seconds.

Chapter 5

Coordinated allocation of service
requests in NFV environments

This work was supported by the University of Antioquia and the 5Guards and
FUSE projects. The underlying ideas have been published in [C2].

While Chapters 3 and 4 zoomed in on the QoS-related issues, more specifically, the resilience
challenges, connected with the orchestration of NSs in geo-distributed clouds, this chapter
focuses on fulfilling the functional requirements of NFV orchestrations in these environments.
As described in Chapters 1 and 2, geo-distributed clouds are highly heterogeneous, compared
to a centralized cloud whose infrastructure is located within a single datacenter. In geo-
distributed cloud environments, NSs typically originate and terminate at specific locations
that have limited connectivity. Additionally, bandwidth considerations dictate that VNos that
communicate heavily with one another must be placed on PMs that are well-connected. Further
in an NFV context, many VNFs have stringent LCs due to their dependence on specialized
hardware. This chapter investigates how to compose the NS’ VNF-FG and embed it when the
infrastructure is highly heterogeneous. More specifically, this chapters focuses on Question III
for NSs with a tree topology for their VNF-FG.

5.1 Introduction

NFV is a promising way for service providers to improve configurability of the offered network
services. First, NFs and their corresponding flows can be embedded in the SNe in an automated
way. Second, the modularity offered by the description of a service as a composition of NFs and
their interconnecting VLs, enables tuning of the service’s logical structure. A major challenge
w.r.t. the management of these environments is the placement of service requests in the
physical infrastructure, comprising NFs that can only be instantiated on particular hosts, due
to latency, legislation, or hardware-related constraints. These location constraints are known
to complicate the resource allocation. This chapter proposes two service placement algorithms
with better coordination between the composition and embedding phases.

5-2 CHAPTER 5

The remainder of the chapter is structured as follows. Section 5.2 provides an overview of
related work. Section 5.3 introduces the combined Service Embedding and Chain Composition
(SECC) problem. A formal description of the problem as an ILP is provided in Section 5.4,
which can be used to find an exact solution to the problem. The Greedy Chain Selection
(GCS) heuristic that can solve larger problem instances is presented in Section 5.5. A detailed
performance evaluation is presented in Section 5.6. Finally, Section 5.6.6 concludes the chapter.

5.2 Related work

According to Herrera et al., the main resource allocation challenges related to NFV are VNF
chain composition, embedding and scheduling [59]. The VNF-FG provides the logical connec-
tivity (i.e VLs) between virtual appliances (i.e. VNFs) [108]. A VNo is a VNF instance, which
can be, e.g., containerized or VM-based. VLs are communication channels required between
VNos. VNos typically have processing and memory requirements, while VLs have bandwidth
and latency requirements. VNF-FG embedding is very closely related to VNE, which is the task
of embedding a VNe request onto a SNe. VNE entails node mapping, which is the mapping
of VNos to PMs, and link mapping, which is the routing of VLs through the SNe. The VNE
problem on itself has been shown to be NP-hard, and a large body of work has been devoted to
finding exact, heuristic and approximate solutions. For a general overview of VNE the reader
is referred to [47].

Many emerging network virtualization applications impose LCs, similar to other location-
aware applications [78]. Therefore, several researchers have considered those constraints in
their VNE approaches. Chowdhury et al. consider that each VNe has to be placed within a
certain geographical distance of its preferred physical location [49]. The authors formulate
the problem of finding a feasible embedding that maximizes provider revenue as a Mixed
Integer Program (MIP). Their proposed heuristics perform coordinated node and link-mapping.
Gong et al. consider the problem of finding a minimum-cost VNE subject to additional LCs
on VNos [78]. The authors generalize the LCs to the requirement that each VNo can only be
instantiated on PMs which are in its candidate set. They reduce the problem to the search for
a minimum-cost maximal clique in a compatibility graph.

Recently, researchers have focused on the embedding of SFCs. Ghribi et al. study the
problem of finding a minimum-cost embedding of an SFC, subject to multiple resource types
and processing and bandwidth constraints [77]. The authors propose a dynamic program
that exploits the structuring of the problem in multiple subproblems. Bari et al. reduce the
problem of finding a minimum-cost embedding of an SFC, to finding the shortest path from
source to sink in an auxiliary graph with associated weights. In each stage of this graph, nodes
represent embedding candidates for a particular VNF. The directed edges between stages
represent a combination of operational costs. VNFs of the same request cannot be collocated,
which is a major limitation, especially for scenarios comprising a large number of light-weight
micro-services, combined with sparse computational power, e.g., in a Wireless Sensor Network
(WSN) context. Rost et al. consider the problem of embedding multiple services at the same
time [67]. They consider both the problem of admission and placement control, for both
SFCs and service cactus graphs. In a service cactus graph two simple cycles share at most

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-3

a single node. They propose an approximation algorithm, based on novel ILP formulations
together with a decomposition algorithm that enables randomized rounding. In general, the
major shortcoming of the aforementioned approaches is that they do not consider service
composition.

In contrast, several researchers and industry initiatives did consider the composition
problem. For instance, Topology and Orchestration Specification for Cloud Applications
(TOSCA) is a data model used by telecom carriers for creating templates or data descriptions
of applications and infrastructure for cloud services [109]. It defines the relationships among
these services, as well as their operational behavior. Researchers recognized that many
telecommunication applications are logically structured as a SFT, i.e. traffic originates at a
single root VNF, passes through subsequent intermediate VNF instances that can split the
traffic, and then terminates in one or more terminating VNFs [86, 85, 66]. Ocampo et al.
studied the problem of generating an SFT with minimum aggregate VL bandwidth demands,
subject to precedence constraints in the VNF chaining [66]. The traffic along a VL must pass
through a set of predefined VNFs prior to termination. The authors formulate the problem as
an MIP, which can be used to synthesize an VNF-FG with minimum aggregate VL bandwidth.
The major limitation of the work is that the proposed formulation does not consider the
embedding phase. Hence, the practical value of their work is limited, as the VNF-FG with
minimum aggregate bandwidth is not necessarily the easiest to embed, or the one that requires
the least bandwidth in the SNe. Other works consider both the composition and embedding
parts. One can distinguish between uncoordinated and coordinated approaches, based on
whether the VNF-FG generation and embedding phases are fully isolated or not. An example
of an uncoordinated approach is the work by Mehraghdam et al. [86]. In the composition
phase, a greedy heuristic is used to minimize the aggregate VL bandwidth requirements, i.e.
VNFs are added to the chain in order of increasing bandwidth consumption. This greedy
approach results in an SFT with minimum aggregate bandwidth requirements when all VNFs
are required in the chains. The authors assume fixed start and end-points for any service.
Additionally, they consider two types of PMs in the SNe, namely switch- and datacenter
nodes. The resulting VNF-FG is embedded onto the SNe using an Mixed Integer Quadratically
Constrained Program (MIQCP). Beck et al. propose a coordinated approach to the combined
composition and embedding problem [85]. The authors propose an approach similar to the
VNE heuristic by Lischka et al., based on subgraph isomorphism detection [53]. At each step,
their recursive algorithm tries to map all outgoing VLs of the current VNF. The algorithm
generates a list of candidate subsequent mappings, each consisting of a possible next VNF and
PM. For each VNF the candidate PMs are generated using a BFS algorithm, considering the
required bandwidth towards the next VNF, and the maximum path length from the lastly used
PM. When an outgoing link can not be mapped then the algorithm backtracks. The algorithm
has two major limitations. First, it terminates as soon as a feasible embedding has been found.
Hence, when the first chaining that is tried can be embedded, then no other compositions are
explored. Second, the algorithm does not take into account the LCs of the VNFs that have
to be placed subsequently. Currently, there are no algorithms which exploit flexibility in the
service composition, to improve load-balancing. The major contributions of this chapter are

• a formal formulation of the combined SECC problem as an ILP which can be used to
find the exact solution; and

5-4 CHAPTER 5

MI = 1
rgen = 1.0

drel = 5

vroot = vBNF

MI = 1
rgen = 1

drel = 5

MI = 1
rgen = 6/4

drel = 5

MI = 1
rgen = 0.8

Vdep = ∅
rrel = 1.0

drel = 20

MI = 1
rgen = 0.0

drel = 25

Vterm = {vCDN2, vCDN4, vAR} rinit = 5.0Mbps

l4

vBNF

vRT

vPR

vTC

vAR
MI = 1
rgen = 0.0

drel = 10

rrel = 4/5
Vdep = {vPR, vTC}

rrel = 1/5

Vdep = {vAR}
l2

l1

rrel = 3/6
Vdep = {vCDN2}

rrel = 3/6

Vdep = {vCDN4}

l3
Vdep = {vRT }
rrel = 1.0 l0

vCDN2

l5 MI = 1
rgen = 0.0

drel = 40

vCDN4

Figure 5.1: Illustration of the SRs.

• a fast heuristic which can be used for larger problem instances.

To the best of our knowledge we are the first to study the impact of LCs on the SECC problem.

5.3 SECC problem formulation

In this section, the SECC problem, which is to find a good PC for a service, given an SNe and
SRs, is presented. This problem combines the tasks of VNF-FG composition (Section 5.3.1) and
VNF-FG embedding (Section 5.3.2). While the subproblems are introduced separately, the task
is to solve both at the same time. Stated otherwise, during composition the constraints and
costs related to the embedding should be considered and vice versa. The VNF-FG composition
problem is considered as it was introduced by Ocampo et al. [66]. The extension of the
problem, to include the VNF-FG embedding, is one of our main contribution. Throughout the
remainder of this section, a simplified working example is used to illustrate the key concepts.

5.3.1 Service composition

The composed VNF-FG must satisfy the SRs. The input parameters to the service composition
are listed in Table 5.1. The traffic of the service originates at vroot = vBN F (Virtual Basestation
Network Function) at rate rini t . The processing requirement of VNF v ∈ V is proportional to its
ingress traffic rate (factor drel(v)). The traffic of this VNF must flow through all of its outgoing
links l ∈ Lv

out . The traffic on this link is proportional to the ingress traffic of the VNF, the rate
at which the VNF generates traffic (rgen(v)), and the relative traffic rate of l (rrel(l)). Hence,
the resource consumption depends on the order in which the VNFs are chained. The flow on
an outgoing link l must pass exactly once through each of the required VNFs in V l

dep, before
termination in one of the terminal VNFs in Vterm. Ocampo et al. require that the composition
comprises at least MV (v) instances of each VNF v ∈ V .

The SRs to the working example are shown in Figure 5.1. This service request comprises 7
VNFs (V) and 6 VLs (L). Five 1 Mbps video streams originate at vBNF, which must be located at
Base Station (BS)1. A router (vRT) separates the flow intended for an Augmented Reality (AR)
VNF, from the 4 video streams that will be used to create 2 video compositions. These two video

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-5

Symbol Description
V Set of VNFs in the service.
L Set of VLs.

vroot ∈ V Root VNF.
Lv

out ⊂ L Set of outgoing VNF links of the VNF v ∈ V
V l

dep ⊂ V Set of VNFs ∈ V that the traffic originating from l ∈ L should pass
through before termination.

Vterm ⊂ V Set of terminating VNFs.
rini t : R+ Initial data rate arriving at the VNFR.

rgen(v) : V → R+ The ratio of the rate at which VNF v generates traffic, to the ingress
data rate at v.

drel(v) : V → R+ The ratio of the processing requirement of VNF v, to the ingress data
rate at v.

rrel(l) : L→ R+ The ratio of traffic flowing out l, to the traffic generation rate of VNF
v ∈ V .

M(v) : V → {0,1} Minimum number of instances for VNF v ∈ V .

Table 5.1: Input parameters to the service composition.

vCDN2
24

vPR
16

vCDN4
96

vAR
25

vTC
80

vRT
25

vBNF
25

2.4

2.4

3.2

5

4

1

(a) Composition A (CA): single Transcoder (vTC) instance.

vCDN2
24

vPR
20

vCDN4 96

vAR
25

vTC
60

vRT
25

vBNF
25

3

3

2.4

5

4

1

vTC
60 2.4

(b) Composition B (CB): two Transcoder (vTC) instances.

Figure 5.2: Example of two functionally equivalent VNF-FGs.

streams terminate in CDN VNFs vC DN2 and vC DN4, respectively. Each video composition
contains 3 out of the 4 video streams, i.e., F1, F2, F3 and F2, F3, F4, respectively. Before
termination, the video streams must flow through a proxy (vPR) and transcoding (vTC) VNF.
vPR combines two functions. First, it buffers the original stream for both CDN targets, doubling
the aggregate bandwidth. Second, it decomposes both resulting streams to filter out one in
four substreams for each CDN target, i.e.,F4 andF1 respectively. Overall, the total bandwidth
flowing out of vPR amounts to 150% of the ingress bandwidth to this VNF (= 75% +75%).

In a 2-stage approach to the SECC problem, the outcome of the composition task is a
composed service VNF-FG that is ready to be embedded in the next stage. The VNF-FG comprises

5-6 CHAPTER 5

Symbol Description
H Set of PMs.
E Set of PLs.

φ(v) ⊂ H Set of PMs ∈ H that can host VNF v ∈ V .
D(h) Remaining processing capability of PM h ∈ H.

B(h1, h2) Remaining bandwidth capability of (h1, h2) ∈ E.
T (h1, h2) Latency introduced by (h1, h2) ∈ E.

t L(l) : L→ R+ Upper bound on the delay for l ∈ L.
tV (vterm) : Vterm→ R+ Maximum allowed end-to-end latency between vroot and any in-

stance of terminal VNF vterm.

Table 5.2: Input parameters related to the service embedding.

VNF instances (V inst), interconnected by directed VL instances (L inst). Figure 5.2 represents
two possible VNF-FGs with their corresponding processing and bandwidth requirements, that
each satisfy the SRs for the working example. In CA (Figure 5.2a) the streams are transcoded,
prior to caching, while in CB (Figure 5.2b) the streams are cached, and then transcoded. In
CA, 4 streams are transcoded, while in CB, 6 streams are transcoded. Hence, CA requires fewer
VNF-FG resources.

5.3.2 Service embedding

The embedding of the VNF-FG must consider the constraints imposed by the SNe. The input
parameters to the VNF service embedding are listed in Table 5.2. The SNe comprises PMs
(H), interconnected by directed PLs (E). Each PM h ∈ H has a processing capacity D(h) and
each PL (h1, h2) ∈ E has a bandwidth capability B(h1, h2) and introduces a delay T(h1, h2).
A VNF v ∈ V can only be instantiated on PMs of the required resource type and meeting
certain geographical requirements. Both requirements are combined in the constraint that v
can only be embedded on φ(v) ⊂ H. It is assumed that VNFs of the same service request can
be collocated on the same machine. It depends on the underlying implementation whether
collocated instances of the same VNF run in the same container or VM, or run in separate
environments, e.g., for reasons of performance isolation. Typically, memory resources can only
be shared among logical VNFs running in the same virtualized environment. Since generally
bandwidth and processing requirements are limiting, and memory is (relatively) abundant,
we opt to not explicitly consider memory consumption. The inclusion of memory constraints
in our algorithms is fairly straightforward. The maximum allowed delay for VL l ∈ L is given
by t L(l). The Small Cell Forum lists the bandwidth and latency requirements between the
BS VNFs [36]. Splits within the physical layer require a latency as low as 0.250 ms, and a
bidirectional bandwidth of up to 2.5 Gbps for control and user traffic. At higher layers, the
bandwidth and latency requirements are significantly lower. Further, the end-to-end delay
from vroot to any terminal VNF vterm ∈ Vterm must not exceed tV (vterm).

For the working example, the SNe with indication of the available bandwidth and processing
capabilities, is shown in Figure 5.3. A typical 5G infrastructure comprises BS locations,
connected to Public Clouds through a MEC network. b1 through b4 represent general-purpose

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-7

BS1
b1

b=20

d=200

a1

d=30

BS2

b4
d=5000

a4
d=1200

s1

s4

s2

d=250

a2

d=150

b2

b3
d=1000

a3
d=120

s3

♦vT C 80

4.0∇5.0♣3.4△3.4♦

vCDN4 96∇
vCDN4 96♣
vCDN4 96△
vCDN4 96♦

vAR 25♦
vCDN2 24♦

vBNF 25♦

b=8

b=6

5.0∇
5.0♣
5.0△
5.0♦

MEC1
PC1

♦2.4 △4.0 ♣2.4 ∇2.4

vBNF 25△

vT C 80△

vT C 80♣

vAR 25△
vCDN2 24△

vP R 16♣
vCDN2 24♣

vP R 16△

vAR 25♣
vCDN2 24∇

vAR 25∇ vT C 60∇

vBNF 25♣
vBNF 25∇

∇vT C 60

vRT 25♦
vP R 16♦
vRT 25△

vRT 25∇
vP R 20∇
vRT 25♣

Figure 5.3: Illustration of an SNe in a 5G context, annotated with available bandwidth (b)
and processing capabilities (d). The resource consumption of three PCs based on CA with vT C
embedded onto a3(♦), a4(4), a2(♣) and one based on CB(∇) are shown.

5-8 CHAPTER 5

compute power, while a1 through a4 represent specialized hardware, that can only execute
specific tasks. The LCs for the working example restrict the placement of each source and
terminal VNF to a single PM. Hence, φ(vBN F) = {b1}, φ(vAR) = {b2}, φ(C DN2) = {b2} and
φ(C DN4) = {b4}. Further, vTC can only be executed on nodes with accelerator capabilities,
φ(vT C) = {a1, a2, a3, a4}. Both vRT and vPR can be executed on any of the general-purpose
nodes, φ(vRT) = φ(vPR) = {b1, b2, b3, b4}.

The result of the SECC problem is a PC, which is a composed VNF-FG combined with a
valid VNE. This VNE entails a mapping of each VNF instance to a PM and a mapping of each VL
instance to a path in the SNe. Consider the placement of two requests of the working example
service type, i.e., s0 and s1. Four possible PCs, i.e., ♦, ♣, 4 and ∇, are shown in Figure 5.3.
♦, ♣ and 4 are based on CA, while ∇ is based on CB. It is impossible to place both services at
the same time using CA. First, {♦, ♦} violates the processing capability of a3 as 80+80> 120.
Second, {♦, 4} violates the bandwidth capacity of (s3, s4) as 2.4+ 4> 6. Third, both {♦, ♣}
and {4, ♣} violate the bandwidth capacity of PL (s3, s2) as 3.4+ 5> 8. In contrast, two PCs
based on CB can be placed together, i.e. {∇, ∇}. Furthermore, a combination of CA and CB can
also be placed, i.e., {♦, ∇} or { ♣, ∇}. This small example illustrates that both composition
and embedding procedures impact the resource consumption and acceptance ratio in the SNe.

5.4 Exact algorithm (OPT-SECC)

This section describes OPT-SECC, an optimal algorithm to solve SECC. In our approach, first
all valid VNF chains, together with their corresponding VL bandwidths and VNF processing
requirements are generated. Subsequently, these chains are used as input to an ILP, which can
find the minimum average-load embedding, satisfying the requirements of Sections 5.3.1 and
5.3.2. The resulting PC is guaranteed to be optimal in the objective function, for two reasons.
First, any valid VNF-FG can be described as a combination of the generated chains. Second,
the ILP simultaneously selects a valid subset of these chains and embeds them.

5.4.1 Chain generation

Recall that for a PC to be valid, exactly one of the possible VNF-FG configurations, satisfying the
SRs must be selected and embedded, i.e., either Figure 5.2a or 5.2b for the working example.
For the embedding of this VNF-FG, each comprising VNF instance must be mapped to a PM
and all its egress VL instances must be routed through the SNe. Since each service request
has a single root VNF instance and all other instances have a single ingress VL, the topology
of any valid VNF-FG is a tree. The exact algorithm proposed in this section is based on the
reformulation of the combined SECC problem on an augmented tree, instead of directly on the
input parameters in Table 5.1. The augmented tree represents all possible VNF-FGs satisfying
the SRs, without needing to explicitly enumerate them. By construction, any valid VNF-FG
will be a subgraph of this augmented tree. The procedure to construct this augmented tree is
presented at the end of this subsection.

Strictly speaking, each vertex θ ∈ Θ in the augmented tree is a VNF instance and its ingress
link is a VL instance. Only a subset of the VNF instances represented in the augmented tree

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-9

vBNF
θ0 b = 5

d = 25

vRT
θ1 b = 5

d = 25

vAR
θ2 b = 1.0

d = 25

vPR
θ4 b = 4

d = 20

vTC
θ3 b = 4

d = 80

vTC
θ7 b = 3

d = 60

vTC
θ6 b = 3

d = 60

vCDN2
θ10 b = 2.4

d = 24

vCDN4
θ11 b = 2.4

d = 96

vPR
θ5 b = 3.2

d = 16 vCDN4
θ9 b = 2.4

d = 96

vCDN2
θ8 b = 2.4

d = 24

l0

l1

l3

l4

l1

l2

l5

l5

l3

l4

l2

c3

c4

c1

c2

c0

Figure 5.4: Augmented tree resulting from application of Algorithm 5.1 to the service request
depicted in Figure 5.1. The valid compositions are CA = {c0, c1, c2} and CB = {c0, c3, c4}.

will eventually end up in the VNF-FG and be instantiated. We will refer to the vertices in the
augmented tree as augmented nodes, to emphasize this distinction.

Given this representation, the SECC problem can be reformulated in terms of selecting
and embedding augmented nodes. The leaf augmented nodes correspond to terminating VNF
instances. The sequence of augmented nodes and augmented links from the augmented root
VNF to a leaf augmented node will be referred to as a (service function) chain. Each chain in
the augmented tree satisfies the precedence constraints of its composing VL, i.e. for each VL l
in the chain, its required VNFs appear in the chain, exactly once, and not before l. For the
working example, the augmented tree is shown in Figure 5.4.

Each augmented VNF θ ∈ Θ has a corresponding VNF v(θ) and corresponding ingress
VL l(θ). For instance, v(θ1) = vRT . The processing and bandwidth requirement of v(θ) and
l(θ) are given by d(θ) and b(θ) respectively. If θ2 ∈ Θ is a child of θ1 ∈ Θ, then this relation
implies that the chaining constraints allow, v(θ2) to be chained after v(θ1), via l(θ2). Since
each VNF-FG satisfying the chaining requirements is a subgraph of the augmented tree, each
possible VNF-FG is formed by a subset of the chains C in the augmented tree. For instance, CA

is formed by the union of c0, c1 and c2, which comprises θ0, θ1, θ2, θ3, θ5, θ8, θ9 and their
ingress augmented VL instances.

The remaining composition requirements for the VNF-FG can be formulated in terms of the
augmented tree. If an augmented node is selected, then for each of its egress VLs exactly one
child needs to be selected as target of this VL. For instance, if vRT is part of the composition,
then its egress link l3 needs to be connected to an instance of either vPR (θ4) or vT C (θ3),
but not both. vRT (θ4) can only be connected via l1 to an instance of vAR (θ2). Compared to
the approach by Ocampo et al., the generated chains satisfy the precedence requirements by
construction, greatly simplifying the ILP formulation, as the number of decision variables and
constraints is drastically reduced [66].

5-10 CHAPTER 5

Algorithm 5.1 Depth First Search (DFS) chain construction algorithm.
1: var C , Vterm, vroot , V, L,θcur , rini t
2: C = []
3: Vreq = {}
4: θcur =new θ (∅, vroot)
5: b(θcur)← rini t
6: d(θcur)← rini t × drel (vroot))
7: procedure SEARCH(Vreq)
8: Θcan← GENC(Vreq)
9: order(Θcan)

10: for each θcan ∈ Θcan do
11: child ren(θcur)← {child ren(θcur),θcan}
12: if v(θcan) ∈ Vterm then
13: C ← {C , ancestors(θcan)}
14: else
15: V new

req ← {Vreq , V l
dep} \ v(θcan)

16: θcur ← θcan
17: SEARCH(V new

req)
18: θcur ← parent(θcan)
19: end if
20: end for
21: if ∃l ∈ Lv(θcur)

out |>θ ∈ child ren(θcur) : l(θ) == l then
22: child ren(parent(θcur))← child ren(parent(θcur)) \ θcur
23: C ← C \ {c ∈ C |θcur ∈ Θ(c)}
24: end if
25: return
26: end procedure

The DFS procedure to construct all valid chains is described in Algorithm 5.1. The algorithm
keeps track of the valid chains C . At each recursion, the state of the algorithm is determined
by following variables. The current augmented VNF, θcur represents the augmented VNF that
has been added to the current chain most recently. The VNFs that must still be added to the
current chain are stored in Vreq. Each chain originates at the root VNF, which has no ingress VL
(Line 4). The algorithm considers the subset of VNF and VL combinations that can be chained
after θcur . The order in which the augmented VNFs are considered depends on the order
function (Line 9). Here, the augmented VNFs are ordered according to increasing bandwidth
requirements. Each augmented VNF candidate θcan is added as a child to its parent θcur . If
θcan corresponds to a terminating VNF, then the chain from the augmented root VNF to θcan is
added to C (Line 13). Here, ancestors(θcan) returns the subchain of augmented VNFs from the
augmented root VNF to, and including, θcan. If θcan does not correspond to a terminating VNF,
then a new set of required VNFs V new

req is generated and the algorithm recurses (Line 17). V new
req ,

includes the previously required VNFs in Vreq, and the additional ones required by l(θcan),
which are not equal to v(θcan) (Line 15). When all augmented VNF candidates have been
explored, then, before backtracking, the algorithm verifies if a valid chain, containing θcur ,
exists for each of the required outgoing VLs (Line 21). If not all outgoing VNF links can be
chained to θcur , then θcur is removed as a child of its parent (Line 22) and all chains in C
containing θcur are removed (Line 23). By construction, for any augmented non-root VNF
in the tree, a valid chaining exists for all of its corresponding outgoing VLs. Consequently, a
feasible composition is guaranteed to exist when the algorithm terminates and the augmented
root VNF has children.

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-11

Algorithm 5.2 Augmented VNF candidate generation.
1: var vroot , Vterm, V, L,θcur
2: procedure GENC(Vreq)
3: Θcan← ;
4: for each l ∈ Lv(θcur)

out do
5: V ′req ← {Vreq , V l

dep}
6: if V ′req ⊂ Vterm then
7: Vcan← V ′req . Chain terminates
8: else
9: Vcan← {v ∈ V ′req \ Vterm : >θ ∈ ancestors(θcur)|v(θ) = v} . VNFs pending

10: end if
11: for each v ∈ Vcan do
12: θnew←new θ (l, v)
13: b(θnew)← b(θcur).rgen(v(θcur)).rrel (l)
14: d(θnew)← b(θnew).drel (v)
15: parent(θnew)← θcur
16: Θcan← {Θcan,θnew}
17: end for
18: end for
19: return Θcan
20: end procedure

Not all VNFs in V can be added to the current subchain, as a chain can contain at most
one instance of each VNF and the chain cannot terminate before all VNF dependencies have
been satisfied.

Algorithm 5.2 generates the set of augmented VNF candidates, Θcan, that can be chained
after θcur . For each outgoing link l of θcur (Line 4), the set of VNFs that the traffic on l must
go through to fulfill the combined VNF dependencies is stored in V ′req (Line 5). When only
terminating VNFs are required, then any of the required non-visited VNFs can be added to the
chain (Line 7). In case non-terminal VNFs are required, then only these can be added after
θcur (Line 9). Next, for each valid augmented VNF candidate, the bandwidth (Line 13) and
processing (Line 14) requirements are calculated based on the requirements of its parent θcur .
Finally, its parent relation is set (Line 15) and the candidate is added to candidate set Θcan

(Line 16).

5-12 CHAPTER 5

Symbol Description
V Set of VNFs for the service.
C Set of chains that meet the dependence constraints.

vterm(c) : C → Vterm Terminal VNF vterm corresponding to chain c ∈ C .
Θ Set of augmented VNF nodes in the pruned chain search tree.

v(θ) : Θ→ V VNF corresponding to θ ∈ Θ.
l(θ) : Θ→ L Ingress VNF link to θ ∈ Θ.
Θ(c) : C → Θ Set of augmented VNFs in chain c.

d(θ) : Θ→ R+ The processing requirement of augmented VNF θ ∈ Θ.
parent(θ) : Θ→ Θ Parent augmented VNF of θ ∈ Θ.

child ren(θ) : Θ→ Θ Children of θ ∈ Θ.
b(θ) : Θ→ R+ The ingress bandwidth of θ ∈ Θ, i.e. b(l(θ)).

Table 5.3: Input parameters to the service composition for the ILP.

Symbol Description
uc Binary variable indicating if chain c ∈ C is part of the composition.
Xθ Binary variable indicating if augmented VNF θ ∈ Θ is used.
xθ ,h Binary variable indicating if augmented VNF θ ∈ Θ is embedded onto PM h ∈ H.

yθ ,(h1,h2) Binary variable indicating if the augmented VL instance to augmented VNF θ ,
flows over (h1, h2) ∈ E.

Πθ̃ ,h Binary variable linearizing the product xparent(θ̃),hX θ̃ .

Table 5.4: Decision variables of the ILP.

5.4.2 Integer Linear Program

In this section, we provide a formal description of our problem as an ILP [110]. Table 5.3 lists
the input parameters related to the VNF chains and service composition. These parameters
result from the chain generation algorithm described in Section 5.4.1. The input parameters
related to the service embedding are the same as for the original problem (Table 5.2). The
decision variables are listed in Table 5.4.

The remainder of this section is structured as follows. First, the constraints related to the
VNF-FG composition and VNE are provided. Then, the objective function to the optimization
problem is given.

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-13

5.4.3 Composition constraints

Each VNF v ∈ V must be instantiated at least M(v) times, placing a lower bound on the number
of chains containing v in the VNF-FG.

M(v)≤
∑

c∈C:∃θ∈Θ(c)|v(θ)=v

uc : ∀v ∈ V, (5.1)

Decision variable uc indicates if c ∈ C , is selected as part of the composition. If an
augmented VNF is used, then each of its outgoing VLs is embedded exactly once. Conversely,
if an augmented VNF is used, then so is its parent.
∀θ ∈ Θ, l ∈ Lv(θ)

out :

Xθ =
∑

θ̃∈child ren(θ):l(θ̃)=l

X θ̃ (5.2)

If chain c ∈ C is selected, then all the augmented VNFs that are part of c must be used.

uc ≤ Xθ : ∀c ∈ C ,θ ∈ Θ(c) (5.3)

5.4.4 Embedding constraints

If an augmented VNF θ is used, then it is embedded onto exactly one PM h ∈ H.

Xθ =
∑

h∈H

xθ ,h : ∀θ ∈ Θ (5.4)

The processing requirements for the VNFs are assumed additive. If an augmented VNF θ
is embedded onto h ∈ H, then its processing requirements d(θ) must be allocated. For each
PM h ∈ H, the total processing requirements cannot exceed the node’s remaining capabilities.

∑

θ∈Θ

d(θ)xθ ,h ≤ D(h) : ∀h ∈ H (5.5)

VNF v ∈ V cannot be instantiated on PMs that are not in its candidate set φ(v) ⊂ H.

xθ ,h = 0 : ∀θ ∈ Θ, h ∈ H \φ(v(θ)) (5.6)

If augmented VNFs are used, then their interconnecting VLs must be routed through the
SNe. MCF constraints imply that for any VL the net number of flows leaving a certain PM
h1 depends on the embedding location of the source and target VNF of this VL. This number
equals 1 if solely the VL source is hosted on h1, -1 if both are located on h1 or 0 when either
both or none are placed on h1.
∀h1 ∈ H,θ ∈ Θ, l ∈ Lv(θ)

out , θ̃ ∈ {θ̂ ∈ child ren(θ) : l(θ̂) = l} :
∑

(h1,h2)∈E

yθ̃ ,(h1,h2)
−

∑

(h2,h1)∈E

yθ̃ ,(h2,h1)
= Πh1,θ̃ − xθ̃ ,h1

, (5.7)

where yθ ,(h1,h2) is a binary variable indicating if the ingress traffic of augmented VNF θ
is routed along (h1, h2). Note that a binary value of yθ ,(h1,h2) results in the mapping of a VL

5-14 CHAPTER 5

to at most a single path in the SNe. When the SNe supports path splitting, then yθ ,(h1,h2) can
assume any value in [0; 1].
Πθ̃ ,h is a binary variable indicating if parent(θ̃) is hosted on h and augmented VNF θ̃ is

used. Hence, Πθ̃ ,h = xparent(θ̃),hX θ̃ , which is linearized by ∀θ̃ ∈ Θ|v(θ̃) 6= vroot , h ∈ H :

Πθ̃ ,h ≤ xparent(θ̃),h, (5.8)

Πθ̃ ,h ≤ X θ̃ , and (5.9)

Πθ̃ ,h ≥ xparent(θ̃),h + X θ̃ − 1 (5.10)

If for VNF θ ∈ Θ, the ingress VL is routed along PL (h1, h2) ∈ E, then its required bandwidth
b(θ) must be allocated. The total bandwidth consumption on a PL cannot exceed the total
available bandwidth B(h1, h2).

∑

θ∈Θ

b(θ)yθ ,(h1,h2) ≤ B(h1, h2) : ∀(h1, h2) ∈ E (5.11)

The delay constraints are twofold. First, the delay of VL l ∈ L cannot exceed t L(l(θ)). For
each augmented link instance, the delay of its ingress VL is the sum of the delays of the PLs
that it is routed over. ∀(h1, h2) ∈ E,θ ∈ Θ|v(θ) 6= vroot :

∑

(h1,h2)∈E

yθ ,(h1,h2)T (h1, h2)≤ t L(l(θ)) (5.12)

Second, the end-to-end delay between vroot and any instance of vterm ∈ Vterm cannot exceed
tV (vterm). ∀vterm ∈ Vterm, c ∈ C |vterm(c) = vterm :

∑

Θ(c)

∑

(h1,h2)∈E

yθ ,(h1,h2)T (h1, h2)≤ tV (vterm) (5.13)

5.4.5 Objective function

The objective of the resource allocation is to minimize resources consumption, weighted by
the scarcity of said resource.

L=
∑

θ∈Θ

∑

h∈H

d(θ)xθ ,h

D(h)
+
∑

θ∈Θ

∑

(h1,h2)∈E

b(θ)yθ ,(h1,h2)

B(h1, h2)
(5.14)

The objective is to minimize L subject to Equations 5.1 - 5.13.

5.4.6 Discussion

Relative to the formulation by Ocampo et al. [66], our augmented tree approach greatly
simplifies the ILP formulation for the chaining and composition for several reasons. First, their
formulation considers all acyclic VNF chainings and verifies precedence constraints using the
ILP. Second, in our approach, only valid chainings are considered, which greatly reduces the
number of chains to be considered. Third, precomputation of the valid chainings reduces the

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-15

constraints related to the composition problem to Equations 5.1, 5.2 and 5.3, compared to
their 25 equations.

An upper bound on the number of augmented VNFs is

|Θ| ≤ |V |(Lmax
out .V max

can)
|V |−1, (5.15)

where Lmax
out =maxv∈V |Lv

out | is the maximum number of outgoing VL for any VNF in V , and
V max

can is the maximum number of candidates considered for chaining after any VNF. Hence,
for applications with a lot of flexibility in the chaining, the number of augmented VNFs
quickly becomes unmanageable and the optimal solution can no longer be determined within
reasonable computation time.

However, to limit the size of the tree, one can limit the number of children for each
augmented VNF corresponding to each outgoing link, while pruning the tree in Algorithm 5.1.
This limitation is considered out of scope.

The minimum-bandwidth VNF-FG composition problem can be reduced to finding a
minimum-cost maximal clique in a graph G(Θ,Ψ), where nodes Θ are augmented VNFs
and an edge ψ ∈ Ψ indicates if its endpoints are compatible. Any two augmented VNFs
are incompatible i.f.f., they connect to the same parent via the same VL l ∈ L, or if their
parents are incompatible. While a minimal clique can be generated in linear time, finding a
minimum-cost maximal clique is NP-hard [111]. The combined SECC problem is even harder
than the minimum-bandwidth VNF-FG composition problem, because the costs now depend
on the embedding.

5.5 Greedy Chain Selection Heuristic

In this section, a GCS algorithm that iteratively adds chains and embeds them, is proposed for
the SECC problem. This procedure is based on a greedy heuristic for set cover, that at each
iteration selects a set that has the highest utility [112]. The main difference compared to this
greedy set cover heuristic, is that the universe of elements that need to be covered (U) grows
as more chains are selected. Additionally, since several augmented nodes are not compatible,
a list of blacklisted augmented VNFs (Θblack), that cannot be added to the composition, must
be maintained. This section is structured as follows. First, the main routine of the greedy
algorithm is presented. Then, the subroutine to embed the SFCs is introduced. Finally, an
illustration of the algorithm concludes this section.

5.5.1 Greedy Chain Selection

The GCS algorithm is described in Algorithm 5.3. The algorithm requires the following
input: the set of feasible chains (C), the set of PMs (H) and PLs (E), vroot , the available
bandwidth (B) and processing (D) resources and the set of all-pair k-shortest PPs ρ in graph
G(H, E). The k-ShPs between any two nodes are generated using the algorithm proposed
by Martins et al. [113]. The algorithm can be configured to either compute all paths at
once, or rather compute them incrementally. ρh1,h2,% is the resulting % th ShP from h1 to
h2 : h1 ∈ H, h2 ∈ H,% ∈ {0,1, . . . , k− 1}. The selected chains are stored in Cres ⊂ C , which is

5-16 CHAPTER 5

Algorithm 5.3 GCS-SECC algorithm.
1: var Cres , H, E, B, D,ρ
2: procedure GCSEMBEDDING(C , vroot)
3: Cres ← ;
4: Ccan← ;
5: Mres ← ;
6: Θdir t y ← Θ(C)
7: Θblack ← ;
8: U ← {(Xθ , lout) : θ ∈ Θ(C), v(θ) = vroot , lout ∈ Lvroot

out }
9: while U (cover(Cres , U) do

10: for each c ∈ Ccan do
11: if c ∩Θdir t y 6= ; then
12: Gc ← AG(c, Mres)
13: Mc ← M E(Gc , 0)
14: end if
15: end for
16: cbest ← argmaxc∈C\Ccan

{ |cover(c,U)\cover(Cres ,U)|
cost(Mc)

}
17: κ← 1
18: while !valid(Mcbest

) do
19: Mcbest

← M E(Gcbest
,κ)

20: κ← κ+ 1
21: if κ == K then
22: Mres ← ;
23: return false
24: end if
25: end while
26: Θblack ← {θ1 ∈ Θ(C) : ∃θ2 ∈ cbest |parent(θ1) = parent(θ2), l(θ1) = l(θ2)}
27: Mres ← Mres ∪Mcbest
28: Cres ← {Cres , cbest}
29: Ccan← Ccan \ {c ∈ Ccan : Θ(c)∩Θblack 6= ;}
30: U ← U ∪ {(θ , lout) : θ ∈ Θ(cbest), lout ∈ Lv(θ)

out }
31: end while
32: update B, D
33: return true
34: end procedure

initialized on Line 3. Afterwards, the node and link mappings Mres are initialized (Line 5).
Subsequently, the set of elements that require covering, U , is initialized (Line 8). The universe
initially contains all combinations of the root augmented VNF with its outgoing VLs. Additional
composition requirements, as per Equation 5.1, can be included here too.

While the selected chains do not cover all elements in U (Line 9), the algorithm iteratively
selects the next chain with the highest utility and tries to embed it. In each iteration of this
loop, the chain in Ccan with the highest utility, cbest is selected. The utility is defined as the
ratio of the number of newly covered elements in U , to the (estimated) embedding cost of this
chain. The cost of a chain must be updated if any of its augmented VNFs is labeled dirty, i.e.
its mapping was altered in the previous iteration (Line 11). To estimate the cost of a chain,
an Auxiliary Graph Gc = AG(c, Mres) is generated, considering the existing mappings in Mres

(Line 12). Then, Gc is used to generate a minimum-cost embedding Mc (Line 13). M E(Gc ,κ)
is the procedure to calculate the κth minimum-cost embedding of chain c, using AG Gc . Both
procedures are explained in detail, in Section 5.5.2.

The cost of a mapping Mc is determined by Equation 5.14. If M(cbest) violates one or more
resource constraints, or the end-to-end delay constraint (Line 18), then the next minimum-

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-17

cost embedding is generated (Line 19). If no feasible embedding can be generated within
K attempts, then the mapping is undone (Line 23) and the request is declined (Line 22). If
this SFC can be embedded, then the set of augmented VNFs violating Equation 5.2 is updated
(Line 26). Furthermore, the mapping Mres is updated with the new mappings in Mcbest

. The
set of selected chains (Cres) is updated with cbest . Then, the chains containing blacklisted
augmented VNFs are removed from the set of candidate chains for the next iteration (Ccan)
(Line 29). Lastly, all outgoing VLs of the augmented VNFs in cbest need to be covered as per
Equation 5.2 (Line 30).

Ultimately, if all required elements are present in Cres (Line 9), then the algorithm termi-
nates successfully (Line 33).

5.5.2 Minimum-cost SFC embedding

The K least-cost embeddings, for an SFC c ∈ C , are calculated in two steps. First, an AG
Gc ← AG(c, Mres) is generated. Figure 5.5 shows the AG, corresponding to the embedding of
c4. This chain is part of the augmented VNF tree shown in Figure 5.4, corresponding to the
working example. For an augmented VNF θ ∈ Θ(c) that is not (yet) in Mres, its corresponding
stage contains all candidate PMs in φ(v(θ)). Stages corresponding to augmented VNFs in
Mres contain only the mapping defined in Mres. Therefore, the embedding possibilities for
a particular service decrease as more chains are selected. Additionally, nodes S and T are
introduced, representing the virtual source and sink of the chain, respectively. The cost of
mapping VL (θ1,θ2) to PP ρh1,h2,% ∈ ρ is ∀θ2 ∈ Θ,θ1 = parent(θ2) :

C (θ2,ρh1,h2,%) =
d(θ1)
D(h1)

.1Θ(C\Cres)(θ1)

+
∑

e∈ρh1,h2,%

b(θ2)
B(h1, h2)

.1Θ(C\Cres)(θ2),
(5.16)

where 1A(x) : X → {0,1}, with A ⊂ X , is an indicator function which equals 1 i.f.f. x ∈ A.
Equation 5.16 only explicitly considers the processing cost of the VL’s source VNF (θ1) onto h1.
The processing cost of hosting the VL’s target VNF (θ2) onto h2 is attributed to the subsequent
VL mapping with source VNF θ2. The choice to assign the processing cost of a VNF in an SFC
fully to either its egress or ingress VL, or any affine combination of both, does not affect the cost
of the SFC embedding. VL latency constraints are enforced by disregarding PPs, violating the
delay limit. For the example depicted in Figure 5.5, k = 1. For k > 1, the AG is a multi-graph.

5-18 CHAPTER 5

C
ost

R
esulting

∆
U

before
∆
Θ

black
∆

M
res

service
run

c0
c1

c2
c3

c4
com

position
run
(θ

,lou
t)

before
run

before
run

s0
0

0.59
1.51

1.18
1.22

1.01
(θ

0 ,l0)
s0

1
1.30

0.97
1.01

0.81
(θ

1 ,l1),(θ
1 ,l2)

(θ
0 ,b

1),(θ
1 ,b

1),(θ
2 ,b

2)
s0

2
0.79

(θ
4 ,l3),(θ

4 ,l4),(θ
7 ,l5)

θ
3

(θ
4 ,b

3),(θ
7 ,a

4),(θ
11 ,b

4)
s0

3
C

B
=
{c0 ,c3 ,c4 }

(θ
6 ,l5)

(θ
6 ,a

2),(θ
10 ,b

2)
s1

0
0.90

2.08
1.98

1.87
1.64

(θ
0 ,l0)

s1
1

1.81
1.71

1.61
1.38

(θ
1 ,l1),(θ

1 ,l2)
(θ

0 ,b
1),(θ

1 ,b
1),(θ

2 ,b
2)

s1
2

1.31
(θ

4 ,l3),(θ
4 ,l4),(θ

7 ,l5)
θ

3
(θ

4 ,b
3),(θ

7 ,a
4),(θ

11 ,b
4)

s1
3

C
B
=
{c0 ,c3 ,c4 }

(θ
6 ,l5)

(θ
6 ,a

2),(θ
10 ,b

2)

Table
5.5:

Illustration
of

G
C

S
for

the
placem

ent
of

services
s0

and
s1 ,w

hich
can

each
be

realized
by

com
position

C
A

or
C

B .

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-19

c4

b1

vBNF
b = 5
d = 25

θ0

vRT
b = 5
d = 25

θ1

vPR
b = 4
d = 20

θ4

vTC
b = 3
d = 60

θ7

vCDN4
b = 2.4
d = 96

θ11

b1

b2

b3

b4

S

b1

b2

b3

b4

a1

a2

a3

a4 b4

T
0.0

0
0.385

0.025

0.526
0.055

0.0
19

0.208

run 1

run 0

Figure 5.5: AG used to estimate the embedding costs and to generate an embedding of c4 for
s0. The minimum-cost embedding for run 0 and the deviation from this embedding in run 1
are indicated in solid thick, and solid intermittent lines, respectively.

Compared to the SFC approach by Bari et al. [64], we consider all k ShPs in the SNe, while
they consider only a single ShP between candidates PMs in subsequent stages. Additionally,
Bari et al. check the resource constraints solely in a pre-processing step, which is only valid if
resources can only be used once by a chain, i.e., VNFs of the same request cannot be collocated.

Second, M E(Gc ,κ) : c ∈ C ,κ ∈ N generates the κth minimum-cost embedding by determin-
ing the κth ShP from S to T in Gc . The resulting ShP in the AG corresponds to an embedding.
The embedding is not guaranteed to be feasible, as PM- and PL-capabilities, or end-to-end
latency bounds might be exceeded. The cost function (Equation 5.16) results in an embedding
that tends to avoid highly-loaded resources. If the embedding is not feasible, due to collocation
of too many VNFs, then the algorithm is increasingly likely to yield a feasible solution, as κ
increases.

For a graph with n nodes and m edges the algorithm proposed by Martins et al. has a
worst-case complexity O(Kn(m+ n log n)) [113]. The maximum number of PM candidates
for any VNF is given by A= maxv∈V {|φ(v)|}. For the AG n = O(A|V |) and m = kA2. Hence,
generating the K minimum-cost embeddings for a SFC is O(KA|V |(kA2 + A|V | log A|V |).

5.5.3 Illustration

In this section, the execution of GCS is illustrated using the working example from Section 5.3.
An overview of the state of the algorithm during each iteration is provided in Table 5.5.
Initially, U contains the combinations of θ0 corresponding to vroot , with its egress VLs l0 and
l1, cover = ; and Θblack = ;. Then, during the first iteration the minimum-cost embedding of
each candidate chain is determined. The AG used to find the minimum-cost embedding for c4

of s0 is shown in Figure 5.5. The network traffic corresponding to c4 must flow through vBN F ,
vRT , vPR, vT C , and vC DN4, in this specified order, as shown in Figure 5.4.

In run 0, no augmented VNFs are mapped (Mres = ;), and all candidates in φ(θ(v)) are
considered. Each candidate chain covers exactly one element in U . Therefore, the chain
with minimum cost is selected: c0. Since, each chain can only be selected once, c0 is not
considered in later iterations. U is updated with the combinations of each augmented VNF

5-20 CHAPTER 5

in Mres, combined with their outgoing links. At the start of iteration 1, the only element in
U , not covered by Mres is (θ1, l2). Since, not all elements are covered, the algorithm cannot
finish yet. In iteration 1, the minimum embedding cost of c1 through c4 is estimated. Now,
the mapping possibilities are more limited as θ0 and θ1 were already mapped to b1 and b3,
respectively. Compared to run 0, the embedding cost for c1, c2 and c3 is lowered because θ0 and
θ1 are already embedded. Again, each considered chain covers one additional element from U ,
namely (θ1, l2). Therefore, the chain with minimum cost, i.e. c4, is selected. Each outgoing link
of an augmented VNF can only be placed once. Therefore, the addition of θ4 to the composition,
leads to the blacklisting of θ3 and the chains that contain this augmented VNF, namely c1 and
c2. At the end of run 1, outgoing VL l5 of θ6 remains uncovered. Therefore, the algorithm
cannot terminate. In run 2, the only candidate chain remaining, i.e. c3, is selected. Before
iteration 3, all required elements in U are covered and the algorithm terminates successfully.
For this particular problem instance, the minimum-cost embedding was feasible. When the
minimum-cost embedding of the selected chain is not feasible, then the algorithm tries the next
K −1 minimum-cost embeddings. If none of these embeddings satisfy the resource constraints,
then the algorithm terminates unsuccessfully.

Both s0 and s1 are placed using CB, the corresponding costs are 2.19 and 3.59 respectively.
The costs are slightly higher than for OPT-SECC, because GCS does not consider the impact
that the embedding of one chain has on the embedding costs during subsequent iterations.

5.6 Performance evaluation

This section compares the proposed algorithms against the state of the art. First, the procedures
to generate composition and embedding constraints are described. Then, the evaluated
placement algorithms are discussed. Next, the simulation parameters and evaluation metrics
are provided. Finally, numerical results conclude this section.

5.6.1 Requirements

Composition requirements Chaining requirements are generated using a procedure that
synthesizes random Directed Acyclic Graphs (DAGs), based on node-ranking: each VNF is
assigned a rank. Each egress link of a VNF of certain rank depends on all VNFs of higher rank.
Dependencies on VNFs of lower or equal rank are not allowed. Rank 1 contains only vroot .
The highest rank, contains only the terminating VNFs. Based on the number of ranks, we
distinguish between two scenarios. Both scenarios result in a minimum of 5 and a maximum
of 8 VNFs per chain.

• 3 ranks: the number of VNFs in rank 2, is with equal probability selected from {3, 4, 5, 6}.

• 5 ranks: the number of VNFs in ranks 2, 3 and 4, are each with equal probability selected
from {1, 2}.

The initial bandwidth rini t = 0.10. The relative bandwidths rrel(l) on VL l ∈ L are uniformly
distributed in [0.75;1.5]. The relative processing requirements drel(v) are uniformly dis-
tributed in [1;4]. Each VNF has at most τ outgoing links. The out-degree distribution for

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-21

VNFs follows a power law, i.e., for each VNF the probability of k outgoing links P(k) = ak−γ,
where a is a normalizing constant such that the

∑τ

k=1 kP(k) = 1. Based on the maximum
out-degree τ, the VNF-FG is either an SFC (τ = 1), or an SFT (τ = 5). In the SFT scenario,
γ= 2.8, resulting in an average out-degree of 1.3. A single-chain configuration results in at
most 720 and 8 valid chains for 3 and 5 ranks, respectively.

Embedding constraints Transit-stub Substrate Graphs (SGs) are generated using the GT-
ITM topology generator on a 100× 100 grid [106]. Any two nodes in the transit network are
connected by a PL with a probability of 80%. Within a stub-network cluster this probability
is 40%. Each PM in the transit network is connected to 2 clusters, each comprising 6 PMs.
In the experiments, the number of transit nodes is 2, corresponding to 26 PMs. Processing
capabilities are uniformly distributed in [20; 100]. The PL bandwidths all equal 4.

The LCs are generated in the following way, a similar approach is taken in [78], [49]: the
VNFs are each assigned a preferred location, which corresponds to the location of a randomly
selected PM hpre f (v) ∈ H. The candidate set for v is the collection of PMs, located within a
distance radius from hpre f (v) ∈ H.

φ(v) = {h ∈ H|dist(h, hpre f (v))≤ radius} : ∀v ∈ V, (5.17)

where dist(h1, h2) is the Euclidean distance between PMs h1 and h2. The coordinates generated
by GT-ITM are unitless, consequently the same applies for radius.

Service arrival The arrival of service requests is simulated in a discrete event simulator.
The algorithm handles the requests sequentially, in the order of arrival. After each accepted
request, the remaining bandwidth and processing capabilities are updated. When the life-time
of a service exceeds the requested duration, the consumed resources are released. The time
between arrivals and the request holding times are assumed exponentially distributed with
rate λ= 1 and µ, respectively.

5.6.2 Evaluated algorithms

Following algorithms are evaluated.

OPT-SECC the exact algorithm presented in Section 5.4. The ILP is solved using Gurobi 7.5.2,
a hybrid solver, combining multiple solution techniques [114].

GCS the heuristic presented in Section 5.5.

MEHR the uncoordinated approach by Mehraghdam et al., performing VNF-FG composition
and embedding in two separate steps [86]. First, VNF candidates are chained greedily, in order
of increasing bandwidth requirement. For the working example, this means that only CA is
considered. Second, this VNF-FG is embedded using a Mixed Integer Quadratically Constrained
Program. For comparison’s sake, in our implementation the embedding is performed using the
ILP described in Section 5.4.4. The algorithm can only place one of the two services in the
working example.

5-22 CHAPTER 5

ILP2STAGE an uncoordinated approach, performing VNF-FG composition in two separate
stages. First, the VNF-FG is composed by an ILP, minimizing the aggregate VL bandwidth,
subject to the constraints in Section 5.4.3. The composition objective is the same as in [66].
Then, this VNF-FG is embedded using the ILP described in Section 5.4.4.

SUBG the heuristic based on subgraph isomorphism detection proposed by Beck et al. [85].
This recursive algorithm performs chaining, node and link embedding at the same time. At
each step this DFS algorithm lists the possible VNF candidates to add to the chain. For each
candidate VNF, the algorithm generates a list of candidate PMs within the neighborhood of
the most recently added PM. When the outgoing VLs of the current VNF cannot be mapped,
then the algorithm backtracks. The algorithm places s0 using composition CA. Due to the poor
load balancing for this request, s1 cannot be accepted.

5.6.3 Simulation parameters

The key simulation parameters are:

• Radius: geographical distance from the preferred PM, where a VNF can be placed. It
is a measure for the flexibility in the embedding: a low radius corresponds to a very
location-constrained embedding;

• rini t : initial data rate arriving at vroot . The processing and bandwidth requirements
in the VNF-FG are proportional to rini t . Therefore, an increased rini t corresponds to a
higher offered load;

• Ranks: the number of ranks used to generate the precedence requirements. For a given
number of VNFs, fewer ranks correspond to fewer precedence constraints, increasing
the chaining flexibility; and

• VNF-FG topology: either an SFC or an SFT.

5.6.4 Evaluation metrics

Following metrics are evaluated. First, the Acceptance ratio is the fraction of requests that is
accepted. Further, the total bandwidth and CPU consumption in the SNe, combined for all
requests are evaluated. Finally, the required Computation time to process a request is evaluated.

5.6.5 Results

Two scenarios are considered. In the offline scenario, a batch of 100 requests is processed.
For each batch, the evaluated metrics are averaged out over these 100 requests. The holding
time µ→∞, meaning that all requests are active at the same time. Per parameter setting,
10 independent batches are averaged out. In the online scenario, the holding time µ= 100.
Therefore, in steady-state the expected number of requests active at the same time is 100. The
resulting traces are smoothed by a moving average filter with a window-size of 100 requests.

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-23

Service Function Chain VNF-FG

Offline Figure 5.6 shows the impact of the LCs for 5 VNF ranks. A valid chaining contains
all VNFs in V . The cardinality of V is between 5 and 8. Overall, the acceptance ratio of
OPT-SECC is the highest, closely followed by GCS, ILP2STAGE and MEHR. The difference
in acceptance ratio between OPT-SECC and MEHR is limited to 4%. The acceptance ratio
of ILP2STAGE equals that of MEHR. The acceptance ratio of SUBG is up to 22% lower. The
computation time of ILP2STAGE is the highest, followed closely by OPT-SECC and MEHR. In
this scenario, the performance gain obtained by coordinating composition and embedding
is limited because the maximum number of valid chains is only 8. The computation time
for SUBG and GCS is about 100× lower, compared to OPT-SECC. For a radius of 6, only a
few PMs can host a particular VNF. The acceptance ratio is at its lowest or all algorithms.
As the radius increases, the cardinality of each candidate set goes up. The main reason why
SUBG performs worse than the other algorithms is that the procedure terminates as soon
as a valid embedding is found, which is not necessarily one with a low-cost VNF-FG. This
behavior ultimately limits the acceptance ratio for the next requests. Finally, for higher radii,
the acceptance ratio approaches 100% for all algorithms. Clearly, OPT-SECC results in the
placement with the lowest bandwidth consumption per accepted request, closely followed
by GCS. The placement performance of GCS is virtually equal to that of OPT-SECC, while
reducing computation time by a factor of 100. The bandwidth consumptions by MEHR and
ILP2STAGE are up to 9% higher than for OPT-SECC, because the composition and embedding
stages are not coordinated. The bandwidth consumption of SUBG is up to 60% higher than
for OPT-SECC. The main reason for SUBG’s poor performance is that the embedding lacks a
look-ahead mechanism to consider the placement restrictions on the next VNFs.

Figure 5.7 shows the same results for service requests with 3 VNF ranks, instead of 5, and
the same maximum number of VNFs. Obviously, the difference in acceptance ratio between
our proposed algorithms and the other algorithms is much larger now, up to 29% for low
radii. Relative to Figure 5.6, the acceptance ratios of MEHR and ILP2STAGE remain virtually
unaltered. While the bandwidth consumption by GCS and OPT-SECC decreases by up to 38%,
for MEHR and ILP2STAGE the decrease is less than 11%.

The acceptance ratio of SUBG increases by up to 5%, indicating that the algorithm can
sometimes find a feasible embedding for an alternative composition, when the minimum-
bandwidth VNF-FG cannot be embedded. Finally, our proposed algorithms see an acceptance
ratio improvement up to 13%, compared to the case with 5 ranks. Interestingly, for our
proposed algorithms the processing consumption decreases slightly as the radius increases
and the acceptance ratio remains constant. The reason for this decrease is that the CPU
consumption is proportional to the total VL bandwidth in the VNF-FG. Hence, when LCs
are stringent, then our proposed algorithms generate VNF-FGs that match the SNe topology
best. When LCs are loosened, then our algorithms generate VNF-FG with reduced bandwidth
requirements.

Table 5.6 shows the influence of the SNe dimensions; the number of transit nodes is varied
from 1 to 4. As the SNe dimensions increase, the total available processing and bandwidth
resources increase. For all algorithms, SUBG excluded, the acceptance ratio increases as the
SNe dimensions go up. Since SUBG consumes the most bandwidth resources, the bandwidth

5-24 CHAPTER 5

6 8 10
0.6

0.7

0.8

0.9

1

(a) Average acceptance.

6 8 10
20

30

40

50

60

70

80

90

(b) Total bandwidth consumption.

6 8 10
120

140

160

180

200

(c) Total CPU consumption.

6 8 10

10
8

10
10

(d) Average computation time.

Figure 5.6: Influence of the LCs: SFC, offline, for 5 ranks.

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-25

6 8 10
0.6

0.7

0.8

0.9

1

(a) Average acceptance.

6 8 10
20

30

40

50

60

70

80

90

(b) Total bandwidth consumption.

6 8 10
120

140

160

180

200

(c) Total CPU consumption.

6 8 10

10
8

10
10

(d) Average computation time.

Figure 5.7: Influence of the LCs: SFC, offline, for 3 ranks.

5-26 CHAPTER 5

PMs OPT-S. ILP2. SUBG MEHR GCS
13 0.90, 15 0.82, 6 0.75, 0.03 0.82, 0.09 0.90, 0.15
26 0.95, 49 0.83, 20 0.69, 0.11 0.83, 0.13 0.95, 0.23
39 0.97, 75 0.85, 30 0.68, 0.25 0.85, 0.17 0.97, 0.27
52 1.00, 103 0.95, 46 0.83, 0.47 0.95, 0.42 1.00, 0.30

Table 5.6: Influence of the number of PMs on the acceptance ratio and
computation time in seconds for radius = 6.

between the transit nodes becomes a bottleneck for 26 and 39 PMs. As the number of transit
nodes further increases, the impact of this bottleneck diminishes.

Figure 5.8 shows the impact of the offered load. For low values of rini t all five algorithms
can handle all requests. In general, when the offered load increases, the acceptance ratio
decreases. The acceptance ratio is the highest for OPT-SECC and GCS. For OPT-SECC, the
reduced acceptance ratio for higher rini t values is due to imposition of a time-limit of 10 minutes
per request, after which the request is declined. Again, the placement ratio for ILP2STAGE
and MEHR are identical. The placement ratio for SUBG is the lowest. OPT-SECC and GCS use
the fewest bandwidth resources, but the most processing resources. The computation time for
OPT-SECC is up to 2.4× higher than for ILP2STAGE. Further, the processing time of GCS, MEHR
and SUBG is about 100× lower than for ILP2STAGE and OPT-SECC. The processing time for
SUBG goes up sharply with increased offered load, as the number of recursions needed to find
a valid mapping increases. Again, MEHR provides the same placement quality as ILP2STAGE,
while requiring up to 100× less computation time. We conclude that for a two-stage approach,
with minimization of the VL bandwidth in the composition stage, greedy composition is a great
choice.

Online The online traces are shown in Figure 5.9. Initially, no resources are allocated. For
all four algorithms, the first requests can be accepted. Clearly, the acceptance ratio decreases
first for SUBG, as it performs the worst load balancing. Overall, the acceptance ratios for
OPT-SECC and GCS are the highest. The computation time for SUBG is very low for the first
requests, as finding a feasible solution is easy. As the SNe becomes more loaded, this recursive
algorithm must perform more backtracking operations, resulting in spikes in computation time.
The computation time for our proposed heuristic is fairly constant over time.

Service Function Tree VNF-FG

Offline The influence of LCs on the embedding of an SFT are shown in Figure 5.10. Again,
OPT-SECC outperforms the other algorithms in terms of acceptance ratio. For radius levels
< 6 (not visible), the difference in acceptance ratio between OPT-SECC and the algorithm
based on GCS is significantly larger than for the SFC scenario. The reason for this difference is
twofold. First, GCS does not consider that the current chain selection influences the universe
of elements that need to be covered in the next iterations. The only exception is when only the
root VNF has a degree > 1. Second, the embedding of one chain influences the costs of chains

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-27

0.04 0.06 0.08 0.1
0.8

0.85

0.9

0.95

1

(a) Average acceptance.

0.04 0.06 0.08 0.1

30

40

50

60

70

80

(b) Total bandwidth consumption.

0.04 0.06 0.08 0.1

100

150

200

(c) Total CPU consumption.

0.04 0.06 0.08 0.1

10
8

10
9

10
10

(d) Average computation time.

Figure 5.8: Influence of the offered load: SFC, offline, for 3 ranks.

5-28 CHAPTER 5

0 1000 2000 3000
0.8

0.85

0.9

0.95

1

(a) Acceptance.

0 1000 2000 3000

20

40

60

80

(b) Total bandwidth consumption.

0 1000 2000 3000

50

100

150

200

250

(c) Total CPU consumption.

0 1000 2000 3000

10
7

10
8

(d) Computation time.

Figure 5.9: SFC, online traces, for 5 ranks, radius = 9.

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-29

which share the same augmented VNFs. An unfortunate placement of an augmented VNF in
one iteration can lead to an increased bandwidth cost during subsequent iterations. Again,
the acceptance ratio for SUBG is the lowest because of inefficient bandwidth consumption.
GCS is up to 25× faster than OPT-SECC. For GCS, the number of PPs considered between
any two PMs (k), has a minor impact on bandwidth consumption. For k > 1, the algorithm
can prefer a lower loaded path over the shortest path, increasing the consumed bandwidth
slightly. In a more connected SNe, k is expected to have a higher impact. When the radius,
and consequently, the cardinalities of the candidate sets are sufficiently large, the computation
time is proportional to k. The number of lowest cost embeddings to consider for a chain (K),
only has a minor impact on the acceptance ratio. For K = 1 and K = 100, the computation
times are virtually identical, meaning that only rarely additional embeddings are explored.
Often, alternative embeddings for a given chain are limited, when many augmented VNFs
along this chain were already mapped in previous iterations. The impact of K will be larger
for more stringent processing capability constraints.

Online The online traces for an SFT are shown in Figure 5.11. Compared to the SFC
scenario, the computation times display a larger variance, as they strongly depend on the
out-degree of the VNFs. Again, initially all algorithms can place the incoming requests. Then,
the acceptance ratio drops rapidly for SUBG, due to inefficient bandwidth use. The acceptance
ratio of OPT-SECC is the highest, closely followed by GCS, and MEHR. For GCS, the average
acceptance rate for K = 1 and K = 100 are almost equal. Given a particular request and
SNe-loading, K = 100 is more likely be successful. However, K = 1 tends to place only cheaper
requests. Both effects seem to cancel each other out.

5.6.6 Conclusions

In order to make on-demand service composition and embedding an integral part of the future
Internet architecture, efficient placement algorithms are required. In this subsection, we
proposed algorithms to find an initial placement for service requests that arrive sequentially.
These novel algorithms differ from previous algorithms, in that they have better coordination
between the composition and embedding stages. Coordination between these stages can
greatly improve the quality of the placement but increases the solution space greatly. To this
end, we first formulated the problem as an ILP on an augmented VNF tree with precomputed
chains, satisfying the precedence requirements. Then, we proposed a fast heuristic based on
greedy chain selection and embedding. The improved load balancing and reduced hosting
costs in our algorithms outperformed the existing approaches in terms of acceptance and
provisioning cost, as shown through simulation.

5-30 CHAPTER 5

6 8 10
0.6

0.7

0.8

0.9

1

(a) Average acceptance.

6 8 10

30

40

50

60

70

80

(b) Total bandwidth consumption.

6 8 10
120

140

160

180

200

(c) Total CPU consumption.

6 8 10
10

8

10
9

10
10

(d) Average computation time.

Figure 5.10: Influence of LCs: SFT, offline, for 3 ranks.

COORDINATED ALLOCATION OF SERVICE REQUESTS IN NFV ENVIRONMENTS 5-31

0 1000 2000 3000
0.8

0.85

0.9

0.95

1

(a) Acceptance.

0 1000 2000 3000

20

40

60

80

(b) Total bandwidth consumption.

0 1000 2000 3000

50

100

150

200

250

(c) Total CPU consumption.

0 1000 2000 3000

10
7

10
8

10
9

(d) Computation time.

Figure 5.11: SFT, online traces, for 5 ranks, radius = 9.

Chapter 6

An improved NFV orchestration
model

This work was published in [C7]. An extended version is currently under re-
view [C3].

Similar to Chapter 5, this chapter is dedicated to the orchestration of NSs in a geo-distributed
NFV environment. This challenge is captured by Question III in Chapter 1. Again, we in-
vestigate how NSs can be orchestrated based on their SRs and how the coordination of the
composition and embedding subtasks can mitigate the issues arising from the heterogeneity in
the infrastructure. The major limitations of the previous chapter and related NFV orchestration
approaches were in the service model, i.e. the VNF-FG topology was assumed a tree. While the
content of traditional IT services was often managed centrally, many novel Internet services
require traffic aggregation, as discussed in Chapter 1. Therefore, this chapter investigates how
the SRs of NSs that require traffic aggregation can be modeled, and how these services can be
orchestrated in geo-distributed NFV environments.

Recently, network services are increasingly connecting computational elements within and
across datacenters. In the NFV environment, to successfully orchestrate a network service,
first a VNF-FG must be composed that realizes the required functionality. Second, this VNF-FG
must be embedded onto the infrastructure, that is increasingly becoming heterogeneous. To
efficiently allocate service demands, intelligent mechanisms and algorithms are needed to
effectively tailor the VNF-FG to the cloud network onto which the service will be deployed.
This chapter introduces the first service model supporting on-demand orchestration of services
with bidirectional chaining and delay constraints, optional VNFs and traffic aggregation.
Building on this service model, we propose algorithms looking for the optimization of the
order and number of VNF instances, to adapt the VNF-FG to the available resources in the
substrate network. Numerical experiments show that, through coordination of composition
and embedding tasks, our proposed algorithms can significantly improve the acceptance ratio,
compared to algorithms that perform these tasks in two separate stages.

6-2 CHAPTER 6

6.1 Introduction

In this chapter, we propose a more widely applicable service model that can produce VNF-FGs
of the DAG class, meaning that the traffic originating from multiple VNFs can be aggregated in
a single VNF instance. Further, our model supports more general chaining requirements and
optional performance enhancing VNFs. Through our proposed optimal algorithm that performs
both composition and embedding in one single stage, we demonstrate the importance of
considering the SNe during composition. This consideration of the SNe is especially important
when optional VNFs are involved that can either ease or complicate the embedding. To solve
the scalability problems related to the optimal solution of the problem, we present a fast
heuristic that can be used to orchestrate real-life services. This recursive heuristic, based on
subgraph isomorphism detection, extends a given PC by adding VNF and VL instances to the
VNF-FG and embedding them at the same time.

The structure of this chapter is the following. First, the related work is discussed in
Section 6.2. Subsequently, the combined composition and embedding problem is formulated as
an ILP in Section 6.3. Then, to deal with the computational complexity associated with finding
an exact solution, a fast heuristic based on subgraph isomorphism detection is proposed in
Section 6.4. Next, the proposed algorithms are evaluated in Section 6.5. Finally, Section 6.5.6
concludes this chapter.

6.2 Related work

In a recent survey, the resource allocation problem in NFV (NFV-RA) has been divided in three
main challenges [59]. 1) The composition challenge asks the following question: How to
concatenate the different VNFs efficiently in order to compose a NS in the most adequate
way, with respect to the operator goals?; 2) The embedding challenge that, after the VNFs are
composed, seeks to find where to efficiently allocate the VNFs in the network infrastructure
accomplishing the QoS service constraints; and 3) the SFC scheduling that seeks to answer the
question: How to execute each function in order to minimize the total execution time without
degrading the service performance and respecting all the precedences and dependencies
between the VNFs composing the NS?.

Most of the current work has been devoted to solve the second stage of the problem that
is a specific variant of the VNE problem [47]. It is well-known that the VNE problem is NP-
hard [48]; hence, a wide range of optimal and heuristic algorithms have been proposed in the
literature to solve it. Generally, these approaches consider processing and memory limitations
of the PMs onto which the virtual nodes are located and bandwidth limitations of the PLs over
which the VLs are routed. Further, authors have considered additional QoS constraints that are
important to practical applications. One important QoS constraint, especially for 5G services,
is the delay that a service can tolerate. For instance, the Small Cell Forum lists the maximum
allowed delay for the communication between C-RAN VNFs [36]. Hence, some researchers
consider a maximum delay on VL instances between VNFs [115]. In contrast, Luizelli et
al. consider a maximum end-to-end delay while embedding a SFC [82]. The investigators
compute the end-to-end delay of a SFC as the sum of the delays and VNF processing times.
While Luizelli et al. consider solely the propagation along a path in the SNe, other researchers

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-3

model the impact of workload variations on delay. For instance, Innoue et al. propose a
distributed approach to the VNE problem, that minimizes the migrations caused by uncertainty
in the delays using the Yuragi method. The authors model the VNF processing and forwarding
delays by applying queuing theory [75]. The calculated delay is based on the loading of
the underlying physical resources, i.e. hosting PM and single highest-loaded PL on the PP,
respectively.

While the aforementioned approaches do not consider the composition stage of the problem,
there are some recent proposals that face this problem. Authors of [66]were the first to propose
an exact ILP-based approach to solve the composition problem, even if this solution is not
scalable it can be taken as a first approximation to solve this stage. The first proposal to solve
both the composition and embedding stages was proposed in [86], here authors present an
uncoordinated solution where the composition is solved via a greedy heuristic and the resulting
SFC is embedded using an MIQCP.

The major limitations of [66, 86, 85] and Chapter 5 are in the composition model.
Compared to previous work, this chapter present the following novelties:

• an extended service model, including traffic aggregation and bidirectional chaining
requirements, optional VLs and support for both VL and end-to-end delay constraints;

• three new algorithms that can place requests which conform to this new service model;
and

• a detailed comparative study to the performance of the presented algorithms.

One algorithm is an optimal algorithm that coordinates both tasks, which can provide the
optimal solution when the provider is allowed to compose or tailor the VNF-FG. The other is an
algorithm that solves both tasks individually to optimality, in two separate stages. When the
provider is provided a precomposed VNF-FG that must be embedded, then the performance
will be comparable to this two-stage algorithm. The last proposal is an improved recursive
heuristic that can find a solution fast, extended to include latency constraints.

6.3 Problem formulation

This section formally introduces the problem studied in this work. The problem is to find a good
quality initial PC, given SRs and the SNe description. First, the composition and embedding
requirements are introduced. Second, an AG is introduced to simplify formulation of the
problem as an ILP. Third, four closely related problems are formulated as ILPs. The combined
composition and embedding problem is formulated as a 1-stage ILP that optimizes the service
composition and embedding at the same time. The corresponding formulations without and
with delay-constraints are provided in Section 6.3.3 and 6.3.5, respectively. Additionally, ILP
formulations are provided that can be used to perform VNF-FG composition and embedding
in two separate stages. The corresponding formulations without and with delay-constraints
are provided in Section 6.3.4 and 6.3.6, respectively. Throughout this work, an illustrative
use-case with limited dimensions is used to illustrate the concepts.

6-4 CHAPTER 6

Symbol Description
V Set of VNFs in the service.
L Set of VLs in the service.

Lout ⊂ L Set of egress VLs in the service.
Lin ⊂ L Set of ingress VLs in the service.

Lv
out ⊂ Lout Set of egress VLs of v ∈ V .
Lv

in ⊂ Lin Set of ingress VLs to v ∈ V .
Vini t ⊂ V Initial VNFs where the service originates.
Vterm ⊂ V Set of terminating VNFs.

rini t(v) : Vini t → R+ Initial data rate arriving at initial VNF v ∈ Vini t .
C (lout , lin) : Lout × Lin→ {0, 1} Binary parameter indicating if lin and lout are compatible.

M(lout) : Lout → Z+ Maximum number of VL instances flowing out of a VNF
instance via lout .

Lnex t
lout
⊂ Lin Set of ingress VLs that the traffic on lout ∈ Lout should

pass through next.
Lprev

lin
⊂ Lout Set of egress VLs that the traffic on lin ∈ Lin should have

passed through previously.
drel(v) : V → R+ The ratio of the processing requirement of VNF v, to the

ingress data rate at v.
rrel(lout) : Lout → R+ The ratio of traffic flowing out lout ∈ Lout , to the traffic

generation rate of VNF v ∈ V .

Table 6.1: Input parameters to the service composition.

6.3.1 Composition and embedding requirements

The notation used for the SRs is described in Table 6.1.

O
R

C
H

E
S

T
R

AT
IO

N
IN

N
FV

E
N

V
IR

O
N

M
E

N
T

S
W

IT
H

A
N

IM
P

R
O

V
E

D
S

E
R

V
IC

E
M

O
D

E
L

6-5

i7 x

i8 y

e8i10
d

e9i11 e

e6i5 l2

e5i4 l1

e7i6 l′1

e4n

i2

i3

1M2r

1d10T 270t

1d10T 270t1M1r

1d20T ∞t

3d20T ∞t
4d10T ∞t

3M1r

6d10T ∞t

21d10T ∞t

5M1r2d30T ∞t

20M1r

1M1r

2⋆ a

e1
b1⋆

e0
1d20T ∞t

2d20T ∞t

1M1r

1M1r

e2i0 p

e3i1 q

1M2r

1M3r

30d10T ∞t

20d20T ∞t

Sources Pre-processing Composition TargetsCaching network Post-processing

Figure 6.1: Service requirements for the illustrative use-case, grouped per VNF in gray rectangles. Arrows with intermittent lines whose
label start with an i and an e, represent ingress and egress VLs respectively. A solid line connecting lout ∈ Lout and lin ∈ Lin indicates
Clout ,lin

= 1. An arrowhead on this same line from lout to lin indicates that lin ∈ Lnex t
lout

. An opposite arrowhead indicates that lout ∈ Lprev
lin

.

For all v ∈ V , rini t(v)?, drel(v)d, T N (v)T and tN (v)t are indicated. Further, for all lout ∈ Lout : M(lout)M and rrel(lout)r are indicated and
t L(lout) =120 ms.

6-6 CHAPTER 6

The NS’s functionality is realized by a VNF-FG. In this section, the VNF-FG is considered a
DAG. This VNF-FG comprises VNF instances, interconnected by VL instances. A path in this
DAG, formed by an ordered set of VL instances, is referred to as an SFC. The VNF instances
in the VNF-FG are created based on a set of VNFs (V). Each VNF v ∈ V has a set of egress
VLs (Lv

out) and ingress VLs (Lv
in). The processing requirements of an instance of v ∈ V are

proportional to the total ingress bandwidth to the instance, by a factor drel(v).
An instance of VNF v1 ∈ V can communicate to an instance of VNF v2 ∈ V through a VL

instance, that is formed by connecting an egress VL of the source VNF instance lout ∈ Lv1
out to

an ingress VL of the target VNF instance lin ∈ Lv2
in. VL lout can be connected to lin i.f.f. both

VLs are compatible, i.e. C (lout , lin) = 1.
The VNF-FG must contain exactly one VNF instance of each initial VNF vini t ∈ Vini t and

terminal VNF vterm ∈ Vterm. An initial VNF vini t ∈ Vini t has no ingress VLs and generates traffic
at a rate rini t(vini t). For an instance of a non-initial VNF v ∈ V \ Vini t , the bandwidth on each
VL instance corresponding to egress VL l v

out ∈ Lv
out is proportional, by a factor rgen(lout), to

the total ingress bandwidth to this VNF instance. A VNF is terminal i.f.f. it does not have any
egress VLs.

In the VNF-FG, the chaining requirements for an instance v inst of VNF v ∈ V are the
following. On the one hand, there are requirements related to the neighborhood of v inst . First,
through each of its ingress VLs lin ∈ Lv

in, v inst must be connected to one parent. Second, v inst

can be connected to at most M(lout) children, through each of its egress VLs lout ∈ Lv
out . On

the other hand, there are bidirectional chaining requirements related to v inst . First, for any
terminal VNF instance that can be reached from v inst through its egress VL lout ∈ Lv

out , any SFC
to this descendant must contain all ingress VLs in Lnex t

v . The set of required ingress VLs that any
SFC from v inst to any terminal VNF instance must contain, will be denoted as N(v inst) ⊂ Lnex t .
Then, for any child ṽ inst of v inst that is connected via lout to lin, N(ṽ inst) = N(v inst)∪Lnex t

lout
\{lin}.

In other words, the ingress VLs that the traffic originating from a child VNF instance must pass
through prior to termination, are the required ingress VLs of its parents, plus the required
ingress VLs of lout , minus lout . VL lout is removed because this dependency is potentially
satisfied. Since a terminal VNF has no egress VLs, each of its instances vterm

inst must have
resolved all dependencies of its ancestors, i.e. N(vterm

inst) = ;. Egress VLs that are not in
Lprev are referred to as optional. It is assumed that optional VLs do not change the bandwidth
requirements along an SFC, otherwise the level of service would depend on the VNF-FG
composition. Further, for any initial VNF instance vini t

inst that can reach v inst through an
SFC that contains lin ∈ Lv

in, this SFC must contain all egress VLs in Lprev
lin

. The set of required

egress VLs that any SFC, from any initial VNF instance towards v inst contains, is denoted as
P(v inst) ⊂ Lprev . This set determines which children can be connected to v inst .

For the use-case, the chaining requirements are shown in Figure 6.1. This NS makes a
composition (VNF n) of two sources (VNFs a and b). VNF n aggregates the traffic flowing onto
its ingress VLs, i.e., i2, i3. In contrast, aggregation of traffic is not supported in [C2], [66, 85].
These ingress VLs each need to be connected to the egress VL of a and b respectively. Since e0

and i2 are interconnected, i.e. C (e0, i2) = 1, an instance of a and n can be interconnected via
a VL instance formed by connecting e0 to i2. In contrast, C (e1, i3) = 0 and b and n cannot be
directly interconnected; the flow on e1 must first flow through e2 and e3 of pre-processing VNFs
p and q. The VNF-FG can only comprise a single instance of each initial VNF, and M(e0) = 1.

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-7

b

a

q p
n l1

l2 d e x

y

20b20b10b

10b

10b
4b

1b 3b 6b

10b

2d

2d

20d

90d20d

60d
40d 10d 60d 20d

10d

(a) VNF-FG1: a composition that chains p after q and e after d.

b

a

qp
n l1

e d x

y

20b10b

10b

10b
4b

1b 2b 6b

10b

2d

2d

20d

30d 40d

60d
30d 10d 20d

10d

(b) VNF-FG2: minimal bandwidth composition, chaining p after q and e
after d.

Figure 6.2: Illustration of a valid VNF-FG for the use-case with annotation of processingd and
bandwidthb requirements.

Thus, the service can contain only a single instance of n. The terminal VNFs, i.e., x and y,
each require a copy of the composed NS from n. Additionally, these terminal VNFs can have
their own specific service delivery requirements. For instance, the ingress VL to x requires the
traffic on its ingress VL, i.e. i7, to have passed through the egress VL of post-processing VNF
d and e first. The sequence in which this stream passes through d and e does not matter for
the functionality of the service. Since M(e8) = 1, only a single stream can be processed by
any instance of d and e. VL i7 can be directly connected to e8 or e9 (solid line), but cannot be
directly connected to e4 (dotted line). While the ingress VL to x does require VNFs d and e,
the VL ingress to y, i.e. i8, does not. Moreover, since i8 is not compatible with e8 and e9, an
SFC arriving at i8 cannot have flown through d nor e.

The distribution of the composed NS from n towards the post-processing and target VNFs
is done by a hierarchical caching network. The first layer contains either l1 or l ′1, neither one’s
inclusion in the VNF-FG is strictly required. Caches l1 and l ′1 can serve post-processing VNFs
and instances of layer-two cache l2. VL l2 can serve up to 3 VNFs and is optional. While our
model supports bidirectional chaining requirements and optional VLs, [66, 85], [C2] consider
only chaining requirements from the initial VNF towards the terminal VNFs and mandatory
VLs.

Figure 6.2 shows two VNF-FG satisfying the chaining requirements of the use-case.
The VNF-FG in Figure 6.2a chains p after q and e after d. The caching hierarchy comprises

one instance of l1 and l2 each. The VNF-FG in Figure 6.2b chains q after p and d after e. This
composition has the minimum VL bandwidth. The caching hierarchy comprises one instance
of l1. In any composition, the total ingress bandwidth to composition instance (n) equals
4 + 6 = 10. Since rrel(e4) = 1, in both compositions, the egress bandwidth along the VL
instance from n to l1 equals 10.

The input parameters to the service embedding are listed in Table 6.3. The SNe comprises
a set of PMs (H), interconnected by directed PLs (E). The set of PMs on which a particular
VNF v ∈ V can be executed is given by Φ(v). The remaining processing capability of h ∈ H is

6-8 CHAPTER 6

x2

e2

n3
y3

l3

p3 d3

q1b1

a1 X1

X3

X2a20∇

b20∇ q42†

p104†
y160†

d180†

e252†
l148†
1 l158†

2

x264†a20†

b20†
n136†n236∇

p82∇

q154∇ l248∇
1

d392∇

e320∇

x454∇

y260∇

Figure 6.3: SN illustration comprising 3 switches X1, X2, X3. PLs between switches introduce
50 ms of delay. The other PLs introduce 1 ms. Bandwidth and processing capabilities all equal
100. VNF placement and corresponding delays of PCs using the VNF-FG of Figure 6.2a† and
Figure 6.2b∇ are annotated.

Symbol Description
H Set of PMs.
E Set of PLs.

φ(v) ⊂ H Set of PMs ∈ H that can host VNF v ∈ V .
D(h) Remaining processing capability of PM h ∈ H.

B(h1, h2) Remaining bandwidth capability of (h1, h2) ∈ E.
T L(h1, h2) Delay along (h1, h2) ∈ E.
T N (v, b) Processing delay of executing an instance of VNF v ∈ V with ingress bandwidth

b.
Table 6.3: Input parameters to the service embedding.

given by D(h). The remaining bandwidth capacity of (h1, h2) ∈ E is given by B(h1, h2). The
end-to-end delay model builds on the one used in [82]. While there, the authors compute the
maximum-end-delay in a single SFC, we perform this calculation for a DAG VNF-FG.

It is assumed that the end-to-end delay formed by any SFC in the VNF-FG from an initial
VNF instance towards an instance of v ∈ V must not exceed tN (v). Further, the delay of a
VL instance cannot exceed the maximum delay of its corresponding ingress VL lin ∈ Lin. The
propagation delay introduced by PL (h1, h2) ∈ E is given by T L(h1, h2). The delay introduced
when executing an instance of VNF v ∈ V with an ingress bandwidth of b is given by T N (v, b).

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-9

6.3.2 Augmented Graph

The VNF-FGs in Figure 6.2a and 6.2b comprise a single instance of VNF n each. The SFC that
arrives at n with source b first passes through q in Figure 6.2a and first passes through p in
Figure 6.2b. However, these two instances of n have the same ingress bandwidth; the SFCs
arriving at their ingress VLs have passed through the same required VLs; and their egress VLs
have the same chaining requirements towards the terminal VNFs. These two instances of n
will be called equivalent. Given the SRs in Section 6.3.1, two VNF instances, v inst

1 and v inst
2

are equivalent i.f.f. they (1) correspond to the same VNF v ∈ V ; (2) have identical ingress
VL dependencies (N) after the VNF instance and the same required egress VLs (P) appear
before the VNF instance; and (3) they have the same bandwidth and processing requirements.
This equivalence relation is denoted as v inst

1 ∼ v inst
2 . Since optional VNFs are assumed to

not change the bandwidth requirements and the bandwidth requirements are multiplicative;
condition (3) follows from (1) and (2). This property will be used in the AG, which serves
as a basis to describe any VNF-FG satisfying the SRs. This AG G(Θ,Ψ), comprises augmented
VNFs Θ, interconnected by augmented VLs Ψ, to represent VNF instances and their possible
interconnections. By construction, these augmented nodes and augmented VLs satisfy the
bidirectional chaining requirements.

The procedure to generate the AG comprises four steps; its procedure is described in
Algorithm 6.1. First, the augmented VNFs corresponding to the initial VNFs are generated
(Line 5) and added to Θ (Line 6). For these initial augmented VNFs, both N and P are empty.
Then, these augmented VNFs are added to queue q1 (Line 7). For vini t the ingress bandwidth
is rini t(v), this value is stored in map b (Line 8). In the second step, the egress VLs of the
augmented VNFs in q1 are explored. When an egress VL lout of θcur in q1 can be connected to a
VNF’s ingress VL lin, then a new augmented VNF instance, i.e., θnew, is created (Line 17). This
connection can be made i.f.f. lout and lin are compatible; and P(θcur)∪ lout contains all egress
VLs in Lprev

lin
. Augmented VNF θnew is added to Θ and its ingress augmented VL is added to Ψ

(Line 18). Augmented VNF θnew is added to q1 (Line 19) as its egress VLs must be explored,
and to q2 (Line 20), to be processed in the third step. This third step prunes invalid augmented
VNFs from the AG (Line 27). There can be two types of invalid augmented VNFs in the AG.
The first type is terminal augmented VNFs with remaining dependencies (N(θ) 6= ;) and
non-terminal augmented VNFs without any children. The second type are augmented VNFs
with missing parents. When an invalid node is removed from Θ, then the validity of its former
parents (Line 30) and children (Line 32) must be verified as well. Forth, the bandwidth and
processing requirements of the augmented VNFs are calculated (Line 36). Procedure BCALC

uses DP: if the value has been calculated before, then it is retrieved from map b (Line 41),
otherwise its value is calculated as the sum of the ingress bandwidths along each of its ingress
links (Line 46). Since the ingress bandwidth for an ingress VL lin ∈ Lin is independent of the
selected parent during the composition, the bandwidth of the first parent in the AG is used
(Line 47). For the use-case, the resulting AG is shown in Figure 6.4.

6.3.3 1-Stage Integer Linear Program (ILP1S)

In this section, we provide a formal description of our problem as an ILP [110], which can
be used to find an optimal solution to the combined problem of service composition and

6-10 CHAPTER 6

Algorithm 6.1 Procedure to generate the AG.
1: var Θ← ;,Ψ← ;, b← ;
2: procedure GENERATE(V, L)
3: q1← ;, q2← ; . 1st phase: initial VNFs
4: for each vini t ∈ Vini t do
5: θnew← new Θ(v= vini t , P=;, N=;)
6: Θ← [Θ,θnew]
7: q1← [q1,θnew]
8: b(θnew)← rini t (v)
9: end for

10: while |q1|> 0 do . 2nd phase: other VNFs
11: θcur ← q1.pop()
12: vcur ← v(θcur)
13: for each lout ∈ Lvcur

out do
14: for each lin ∈ Lvnew

in : vnew ∈ V,Clin ,lout
= 1 do

15: Pnew← P(θcur)∪ lout ∩ Lnex t

16: if Lnex t
lout
⊂ Pnew then

17: θnew← new Θ(v= vnew, P=Pnew, N={θcur , Lnex t
lout
})

18: Θ← θnew ∪Θ, Ψ← (θcur ,θnew)∪Ψ
19: q1← q1 ∪ (θnew)
20: q2← q2 ∪ (θnew)
21: end if
22: end for
23: end for
24: end while
25: while |q2|> 0 do
26: θcur ← q2.pop() . 3rd phase: prune AG
27: if INVALID(θcur) then
28: Θ← Θ \ θcur
29: Ψ← Ψ \ {(θs ,θcur) ∈ Ψ}
30: q2← q2 ∪ {θs : (θs ,θcur) ∈ Ψ}
31: Ψ← Ψ \ {(θcur ,θt) ∈ Ψ}
32: q2← q2 ∪ {θt : (θcur ,θt) ∈ Ψ}
33: end if
34: end while
35: for θ ∈ Θ do . 4rd phase: bandwidth calculation
36: BCALC(θ)
37: end for
38: end procedure
39: procedure BCALC(θ ,b)
40: if θ ∈ KEYS(b) then
41: return b(θ)
42: else
43: b(θ) = 0
44: for lin ∈ Lv(θ)

in do
45: for (θs ,θ) ∈ Ψ in(θ , lin) do
46: b(θ) = b(θ) + rrel (lout × (θs ,θ))BCALC(θs)
47: break
48: end for
49: end for
50: return b(θ)
51: end if
52: end procedure

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-11

l′1θ8

2b∅P ∅N

20b{e4, e8, e9}P ∅N
l1θ7

dθ11 eθ13

eθ12 dθ14

xθ15

yθ10

20b{e4, e8}P ∅N

bθ1

aθ0

10b{e4}P ∅N

10b{e4}P ∅N

10b{e4, e9}P ∅N10b{e4}P ∅N

10b{e4}P ∅N

10b∅P ∅N l2θ9

10b{e4}P ∅N
1b∅P ∅N

10b{e4}P ∅N

nθ6pθ2 qθ4

qθ3 pθ5

2b{e2}P {i3}1b∅P {i3}N

3b{e3}P {i3}N1b∅P {i3}N

Figure 6.4: AG for the use-case. Empty values of P and N are not shown.

Symbol Description
Θ Set of augmented VNFs in the AG.
Ψ Set of augmented VLs in the AG.

v(θ) : Θ→ V VNF corresponding to θ ∈ Θ.
Ψout(θ , lout) : Θ× Lout → Ψ Set of egress augmented VLs of θ ∈ Θ, corresponding to

lout ∈ Lv(θ1)
out .

Ψ in(θ , lin) : Θ× Lin→ Ψ Set of ingress augmented VLs of θ ∈ Θ, corresponding to
lin ∈ Lv(θ)

in .
b(ψ) : Ψ→ R+ Bandwidth requirement of augmented VL ψ ∈ Ψ
d(θ) : Θ→ R+ The processing requirement of augmented VNF θ ∈ Θ.

Table 6.4: Input parameters to the service composition for the ILP.

embedding for services with bidirectional chaining requirements and optional VLs. Table 6.4
lists the input parameters related to the VNF chains and service composition. These parameters
result from the AG generation algorithm described in Section 6.3.2. The input parameters
related to the service embedding are the same as for the original problem (Table 6.3). The
decision variables are listed in Table 6.5.

6-12 CHAPTER 6

Symbol Description
Xθ Integer indicating how many instances of augmented VNF θ ∈ Θ are in the

VNF-FG.
Yψ Integer indicating how many instances of augmented VL ψ ∈ Ψ are in the

VNF-FG.
xθ ,n Integer indicating how many instances of augmented VNF θ ∈ Θ are embedded

onto PM n.
yψ,(h1,h2) Integer indicating the number of VL instances corresponding to augmented link

ψ ∈ Ψ that are routed along (h1, h2) ∈ E.
σψ,h Integer indicating how many instances of augmented VL ψ ∈ Ψ originate at

h ∈ H.
τψ,h Integer indicating how many instances of augmented VL ψ ∈ Ψ terminate at

h ∈ H.

Table 6.5: Decision variables of the ILP.

Constraints The augmented VNFs corresponding to the terminal VNFs are selected.

Xθ = 1 : ∀θ ∈ Θ|v(θ) ∈ Vini t ∪ Vterm (6.1)

The number of embedded VNF instances equals the number of VNF instances in the VNF-FG.

Xθ =
∑

h∈H

xθ ,h : ∀θ ∈ Θ (6.2)

For each augmented VNF instance on a node, the corresponding ingress augmented VL
instances are provisioned.

∑

ψin∈Ψ in(θ ,lin)

τψin,h = xθ ,h : ∀h ∈ H,θ ∈ Θ, lin ∈ Lv(θ)
in (6.3)

For each egress VL lout ∈ Lv
out of an instance of VNF v ∈ V , the maximum number of

corresponding egress VL instances is M(lout). ∀θ ∈ Θ, lout ∈ Lv(θ)
out , h ∈ H :

∑

ψout∈Ψout (θ ,lout)

σψout ,h ≤ M(lout)xθ ,h (6.4)

The processing requirements for the VNFs are assumed additive. If an augmented VNF θ
is embedded onto h ∈ H, then its processing requirements d(θ) are allocated. For each PM
h ∈ H, the total processing requirements cannot exceed the node’s remaining capabilities.

∑

θ∈Θ

d(θ)xθ ,h ≤ D(h) : ∀h ∈ H (6.5)

VNF v ∈ V cannot be instantiated on PMs that are not in its candidate set φ(v) ⊂ H.

xθ ,h = 0 : ∀θ ∈ Θ, h ∈ H \φ(v(θ)) (6.6)

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-13

All VL instances in the VNF-FG are routed through the SNe. Multi-commodity flow constraints
dictate that for any augmented VL (θ1,θ2) ∈ Ψ the net number of VL instances leaving a certain
PM h1 equals the difference between the number of instances of θ1 and θ2 hosted on h1.
∀h1 ∈ H, (θ1,θ2) ∈ Ψ :

∑

(h1,h2)∈E

y(θ1,θ2),(h1,h2) −
∑

(h2,h1)∈E

y(θ1,θ2),(h2,h1)

= σ(θ1,θ2),h1
−τ(θ1,θ2),h1

.
(6.7)

If augmented VL ψ ∈ Ψ is routed along PL (h1, h2) ∈ E, then its required bandwidth b(ψ)
is allocated. The total bandwidth consumption on a PL cannot exceed the available bandwidth
capability B(h1, h2).

∑

ψ∈Ψ

b(ψ)yψ,(h1,h2) ≤ B(h1, h2) : ∀(h1, h2) ∈ E (6.8)

Objective function The objective of the resource allocation is to minimize resources con-
sumption, weighted by the scarcity of said resource.

L=
∑

θ∈Θ

∑

h∈H

d(θ)xθ ,h

D(h)
+
∑

ψ∈Ψ

∑

(h1,h2)∈E

b(ψ)yψ,(h1,h2)

B(h1, h2)
(6.9)

The objective is to minimize L subject to Equations 6.1 - 6.8.

6.3.4 2-Stage Integer Linear Program (ILP2S)

In this formulation, the optimization is performed in two stages. First, the VNF-FG is composed
based on the service requirements, without any knowledge about the SNe capabilities. During
composition the number of instances of each augmented VNF and augmented VL is determined.
Where in the SNe, these virtualized resources are embedded is not yet considered. In a second
stage, this VNF-FG is embedded onto the SNe, taking into account the remaining capabilities.
This algorithm is an improvement on related work that performs composition and embedding
in two separate stages. For instance, Ocampo et al. solely consider the composition problem
for VNF-FGs with a tree topology and without optional VLs. The authors try to find the minimal
bandwidth VNF-FG [66]. The authors in [53], [67], [79], [64] assume a precomposed VNF-FG
and solely focus on the VNE. The authors in [86] propose a 2-stage approach to the combined
problem. In their first stage, a greedy algorithm composes the minimal bandwidth VNF-FG. In
their second stage, the VNF-FG is embedded using a MIQCP.

Composition The terminal and initial VNFs are instantiated exactly once (Equation 6.1).
Further, each augmented VNF instance requires exactly one ingress VL instances corresponding
to each of its ingress VLs in Lv(θ)

in .

∑

ψin∈Ψ in(θ ,lin)

Iψin
= Xθ : θ ∈ Θ, lin ∈ Lv(θ)

in , (6.10)

6-14 CHAPTER 6

where Iψ is the number of instances of augmented VL ψ ∈ Ψ. For each instance of v ∈ V , the

number of egress VL instances for lout ∈ Lv
out is at most M(lout). ∀θ ∈ Θ, lout ∈ Lv(θ)

out :

∑

ψout∈Ψout (θ ,lout)

Iψout
≤ M(lout)Xθ (6.11)

ILP2S(B) minimizes the VNF-FG VL bandwidth in this stage. The same objective is used in
[86, 66].

B=
∑

ψ∈Ψ

b(ψ)Iψ (6.12)

ILP2S(C) minimizes the processing requirements.

C=
∑

θ∈Θ

d(θ)Xθ (6.13)

Embedding The resulting values of Iψ, Xθ from the first stage are added as constraints.
Further, for each augmented VL its number of instances equals the times that the augmented
VL originates and terminates on any PM in H.

Iψ =
∑

h∈H

σψ,h : ∀ψ ∈ Ψ (6.14)

and
Iψ =

∑

h∈H

τψ,h : ∀ψ ∈ Ψ (6.15)

Finally, the embedding is subject to the constraints in ILP1S and minimizes L (Equation 6.9).

6.3.5 1-Stage Integer Linear Program (ILP1S-DC)

In this section, we provide a formal description of our problem as an ILP [110], which can
be used to find an optimal solution to the combined problem of service composition and
embedding for services with bidirectional chaining requirements and optional VLs. The main
difference compared to the model presented in Section 6.3.3 is that this model supports a
maximum delay for each VL instance corresponding to ψ ∈ Ψ. Further, the model supports for
each VNF in v ∈ V , a maximum delay tN (v) from any initial VNF towards v ∈ V . Typically,
these delays are only relevant for terminal VNFs. The calculation of an exact end-to-end
delay for each VNF instance quickly becomes unmanageable if more than one instance of an
augmented VNF is allowed on a single PM. In this case, one needs to differentiate between
all VNF instances on the same PM and decide to which specific VNF instance on another PM
these are connected. However, in practical scenarios the collocation of multiple instances of
the same augmented VNF on one PM are often required, especially in small SNes. In order, to
make the ILP formulation relevant for both small and large problem instances, we will group
instances of the same augmented VNF that are collocated on the same PM in delay-groups.
Delay-groups correspond to a specific augmented VNF and PM. Instead of calculating the exact
delay for each VNF instance, separately, we calculate the upper-bound on the delay of any
instance in this delay-group. When the maximum number of VNF instances in the delay-group

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-15

Symbol Description
Θ Set of augmented VNFs in the AG.
Ψ Set of augmented VLs in the AG.

v(θ) : Θ→ V VNF corresponding to θ ∈ Θ.
Ψout(θ , lout) : Θ× Lout → Ψ Set of egress augmented VLs of θ ∈ Θ, corresponding to

lout ∈ Lv(θs)
out .

Ψ in(θ , lin) : Θ× Lin→ Ψ Set of ingress augmented VLs of θ ∈ Θ, corresponding to
lin ∈ Lv(θ)

in .
b(ψ) : Ψ→ R+ Bandwidth requirement of augmented VL ψ ∈ Ψ
d(θ) : Θ→ R+ The processing requirement of augmented VNF θ ∈ Θ.
t L(ψ) : Ψ→ R+ Maximum delay for augmented VL ψ ∈ Ψ.
tN (v) : V → R+ Maximum delay from any initial VNF towards v ∈ V .

G Set of delay-groups.
G (θ) : Θ→ G Set of possible delay-groups for augmented VNF θ ∈ Θ
h(g) : G→ H PM corresponding to delay-group g ∈ G.
I (g) Upper bound on the number of VNF instances in delay-group

g ∈ G (θ , h), for θ ∈ Θ and h ∈ H
K Set of ShP indices between any two PMs, i.e. {0, 1, . . . , |K | −

1}.
Phs ,ht ,k Ordered set of PLs on the kth-ShP between source PM hs ∈ H

and target PM ht ∈ H, for k ∈ K .

Table 6.6: Input parameters to the service composition for the ILP.

equals 1, then the delays calculated in the ILP are exact. Further, the ILP is described in terms
of the paths in the SNe between any two PMs, instead of the PLs, to improve scalability. The
|K | ShPs between any two PMs in the SNe are generated using the shortest algorithm proposed
by Martins et al. [113].

Table 6.6 lists the input parameters related to the VNF chains and service composition.
These parameters result from the AG generation algorithm described in Section 6.3.2. The
input parameters related to the service embedding are the same as for the original problem
(Table 6.3). The decision variables are listed in Table 6.7.

Composition constraints There must be exactly one VNF instance corresponding to each
initial and terminal VNF in the VNF-FG.

Xθ = 1 : ∀θ ∈ Θ|v(θ) ∈ Vini t ∪ Vterm (6.16)

Each augmented VNF instance requires exactly one ingress VL instance corresponding to each
of its ingress VLs in Lv(θt)

in .

∑

(θs ,θt)∈Ψ in(θt ,lin)

Y(θs ,θt) = Xθt
: θt ∈ Θ, lin ∈ Lv(θt)

in , (6.17)

where Yψ is the number of instances of augmented VL ψ ∈ Ψ.

6-16 CHAPTER 6

Symbol Description
Xθ Integer indicating how many instances of augmented VNF θ ∈ Θ are in the

VNF-FG.
Yψ Integer indicating how many instances of augmented VLψ ∈ Ψ are in the VNF-FG.
x g Integer indicating the number of VNF instances of θ ∈ Θ used in delay-group

g ∈ G (θ).
ugs ,gt ,k Integer indicating the number of VL instances between source delay-group gs ∈

G (θs) and target delay-group gt ∈ G (θt) that are routed along the kth ShP
between h(gs) and h(gt), where k ∈ K .

Ugs ,gt ,k Binary indicating if VL instances between source delay-group gs ∈ G (θs) and
target delay-group gt ∈ G (θt) are routed along the kth ShP between h(gs) and
h(gt), where k ∈ K .

Cgs ,gt
Binary indicating if there are VL instances between source delay-group gs ∈ G (θs)
and target delay-group gt ∈ G (θt), for (θs,θt) ∈ Ψ.

∆g Double indicating the maximum delay from any initial VNF towards delay-group
g ∈ G (θ),θ ∈ Θ.

δgs ,gt
Double indicating the product ∆gs

Cgs ,gt
for gs ∈ G (θs), gt ∈ G (θt), (θs,θt) ∈ Ψ.

Table 6.7: Decision variables of the ILP.

For each instance of v ∈ V , the number of egress VL instances for lout ∈ Lv
out is at most M(lout).

∀θs ∈ Θ, lout ∈ Lv(θs)
out :

∑

(θs ,θt)∈Ψout (θs ,lout)

Y(θs ,θt) ≤ M(lout)Xθs
(6.18)

Embedding constraints The number of embedded VNF instances equals the number of VNF
instances in the VNF-FG.

Xθ =
∑

g∈G (θ)

x g : ∀θ ∈ Θ (6.19)

The number of VNF instances for each delay-group g cannot exceed I (g).

x g ≤ I (g) : ∀g ∈ G (θ),θ ∈ Θ (6.20)

The kth ShP between hs = h(gs) and ht = h(gt), i.e. Phs ,ht ,k, is used for communication between
source delay-group gs and target delay-group gt if at least one of the VL instances between
these groups uses this path. ∀(θs,θt) ∈ Ψ, gs ∈ G (θs), gt ∈ G (θt), k ∈ K :

ugs ,gt ,k ≤ I (gt)Ugs ,gt ,k (6.21)

There is communication between source delay-group gs and target delay-group gt if at least
one VL instance interconnects gs and gt over any ShP. ∀(θs,θt) ∈ Ψ, gs ∈ G (θs), gt ∈ G (θt) :

∑

k∈K

ugs ,gt ,k ≤ |K |Cgs ,gt
(6.22)

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-17

Further on, auxiliary decision variables Ugs ,gt ,k and Cgs ,gt
will be used to calculate the delay

of each delay-group. For each VNF instance in a delay-group, the corresponding ingress VL
instances are provisioned. ∀θt ∈ Θ, gt ∈ G (θt), lin ∈ Lv(θt)

in :
∑

k∈K

∑

(θs ,θt)∈Ψ in(θt ,lin)

∑

gs∈G (θs)

ugs ,gt ,k = x gt
(6.23)

The delay for a delay-group corresponding to an initial VNF equals this initial VNF’s processing
delay. ∀θini ∈ Θ|v(θ) ∈ Vini , g ∈ G (θini) :

∆g = T N (v(θini), b(θini)) (6.24)

Further, the worst-case delay from any initial VNF towards any VNF instance in delay-group
gt is the maximum of the delay of any source delay-group gs that it is connected to, plus the
highest propagation delay from this source-group towards gt and the processing delay for the
target VNF instance. ∀(θs,θt) ∈ Ψ, gs ∈ G (θs), gt ∈ G (θt), hs = h(gs), ht = h(gt), k ∈ K :

∆gt
≥ δgs ,gt

+
∑

e∈Phs ,ht ,k

T L(e)Ugs ,gt ,k + T N (v(θt), b(θt)), (6.25)

where ∀(θs,θt) ∈ Ψ, gs ∈ G (θs), gt ∈ G (θt) :

δgs ,gt
=∆gs

Cgs ,gt
. (6.26)

This product indicates the delay contribution of delay-group gs on gt ; it can be linearized by
adding the following equations. ∀(θs,θt) ∈ Ψ, gs ∈ G (θs), gt ∈ G (θt) :

δgs ,gt
≤ T Cgs ,gt

, (6.27)

where T =maxv∈V tN (v);
δgs ,gt

≤∆gs
; and (6.28)

δgs ,gt
≥∆gs

− (1− Cgs ,gt
)T . (6.29)

For each delay-group, the total delay cannot exceed the maximum allowed delay of the
corresponding VNF.

∆g ≤ tN (v(θ)) : ∀θ ∈ Θ, g ∈ G (θ) (6.30)

For each egress VL lout ∈ Lv
out of an instance of v ∈ V , the maximum number of corresponding

egress VL instances is M(lout). ∀θs ∈ Θ, gs ∈ G (θs), lout ∈ Lv(θs)
out :

∑

k∈K

∑

(θs ,θt)∈Ψout (θs ,lout)

∑

gt∈G (θt)

ugs ,gt ,k ≤ M(lout)x gs
(6.31)

The processing requirements for the VNFs are assumed additive. If an augmented VNF θ is
embedded onto h ∈ H, then its processing requirements d(θ) are allocated. For each PM
h ∈ H, the total processing requirements cannot exceed the node’s remaining capabilities.

∑

θ∈Θ

∑

g∈G (θ):h(g)=h

d(θ)x g ≤ D(h) : ∀h ∈ H (6.32)

6-18 CHAPTER 6

If augmented VL ψ ∈ Ψ is routed along PL (h1, h2) ∈ E, then its required bandwidth b(ψ) is
allocated. The total bandwidth consumption on a PL cannot exceed the available bandwidth
capability B(e). ∀e ∈ E, hs = h(gs), ht = h(gt), K∗ = {k ∈ K : e ∈ Phs ,ht ,k} :

∑

(θs ,θt)∈Ψ

∑

gs∈G (θs)

∑

gt∈G (θt)

∑

k∈K∗
b(ψ)ugs ,gt ,k ≤ B(e) (6.33)

An augmented VL cannot be routed over a path in the SNe, which introduces a delay that
exceeds the maximum allowed delay for this VL instance. ∀(θs,θt) ∈ Ψ, gs ∈ G (θs), gt ∈
G (θt), k ∈ K ,

∑

e∈Phs ,ht ,k
T L(e)> t L(θs,θt) :

ugs ,gt ,k = 0 (6.34)

The number of instances of each augmented VL in the VNF-FG is the sum of all VL instances
between any two delay-groups.

Y(θs ,θt) =
∑

gs∈G (θs)

∑

gt∈G (θt)

∑

k∈K

ugs ,gt ,k : ∀(θs,θt) ∈ Ψ (6.35)

Objective function The objective of the resource allocation is to minimize resources con-
sumption, weighted by the scarcity of said resource.

L=
∑

θ∈Θ

∑

g∈G (θ)

d(θ)x g

D(h(g))
(6.36)

+
∑

(θs ,θt)∈Ψ

∑

gs∈G (θs)

∑

gt∈G (θt)

∑

k∈K:e∈Phs ,ht ,k

b(θs,θt)ugs ,gt ,k

B(e)

The objective is to minimize L subject to Equation 6.16 - 6.33.

6.3.6 2-Stage Integer Linear Program (ILP2S-DC(f))

In this formulation, the optimization is performed in two stages. The main difference compared
to the model presented in Section 6.3.4 is that this model supports a maximum delay for each
VL instance corresponding to ψ ∈ Ψ. Further, the model supports for each VNF in v ∈ V , a
maximum delay tN (v) from any initial VNF towards v ∈ V .

Composition ILP2-DC(B) minimizes the VNF-FG VL bandwidth subject to Equation 6.16
through 6.18 in this stage. The same objective is used in [86] and [66].

B=
∑

ψ∈Ψ

b(ψ)Yψ (6.37)

ILP2-DC(C) minimizes the processing requirements.

C=
∑

θ∈Θ

d(θ)Xθ (6.38)

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-19

Algorithm 6.2 Recursive heuristic.
1: var G(θ ,Ψ), G(H, E), B, D,κ, a
2: a← 0
3: M ← []
4: procedure REC(M)
5: if FINISHED(M) then
6: returnM . Success
7: else if a > α then
8: return ; . Backtrack limit exceeded
9: end if

10: C ← GENCANDIDATES(M) . Generate candidates
11: for each c ∈ C do
12: M ′← [M , c] . Add c to the mapping
13: M ′′← REC(M ′) . Recurse
14: ifM ′′ 6= ; then
15: returnM ′′ . Sucessful recursion
16: end if
17: a← a+ 1 . Backtrack
18: end for
19: return ; . Failure
20: end procedure

Embedding The resulting values of Yψ, Xθ from the first stage are added as constraints.
Finally, the embedding is subject to Equation 6.19 through 6.35 and minimizes L (Equa-
tion 6.36).

6.4 Recursive heuristic (REC)

Given the computational intractability of the exact algorithms presented in the previous section,
a recursive heuristic for the combined VNF-FG composition and embedding problem is proposed.

6.4.1 Algorithm description

REC (Algorithm 6.2) is a recursive procedure that terminates as soon as a valid mapping
is found. REC makes use of the GENCANDIDATES (Algorithm 6.3) function, generating the
candidates that can be added to the current mapping and the FINISHED function, inquiring
whether the current mapping satisfies all SRs.

The algorithm is an improvement on the recursive heuristic by Beck et al. [85], which
does not consider optional VLs, traffic aggregation, bidirectional chaining requirements and
delay constraints. This heuristic decides at the same time, which VL instance to add to the
VNF-FG and how to embed it. In order to avoid exploring all possible PCs, which would be
computationally intractable, the search space has to be limited. Because low-cost PCs tend to
avoid routing VLs over very long paths in the SNe, it makes sense to only consider a subset of
the possible candidates at each step of the algorithm.

Parameter κ limits the size of the candidate set to consider in each recursion step. Parameter
α limits the maximum number of backtracks that the algorithm can perform. Upon the
algorithm’s initiation, the number of backtracks that have been performed (a), is set to 0

6-20 CHAPTER 6

Algorithm 6.3 Candidates generating procedure.
1: var G(θ ,Ψ), G(H, E), B, D,κ
2: procedure GENCANDIDATES(M)
3: (θinst , lin) =GETMISSINGINGRESSVL(M)
4: if θinst != ; then . Add ingress VL instance
5: return INGRESSBFS(M ,θinst , lin)
6: else . Add terminal VNF instance
7: θterm =GETMISSINGTERMVNF(M)
8: C ← []
9: for h ∈ Ψ(v(θterm)) do

10: if D(h)≥ d(θterm) then
11: C ← [C , ((θterm,θterm), [h→ h])]
12: end if
13: end for
14: return C
15: end if
16: end procedure

(Line 2) and the mapping (M) is empty (Line 3). VariableM represent the current mapping
as a list of augmented VL to PP mappings.

REC(M) tries to find a valid mapping by extendingM . If REC(M) finds a valid mapping,
then it returns this mapping (Line 6). An empty set is returned if the backtracking limit has
been exceeded (Line 8), or if a valid mapping cannot be found by extending the current
mapping (M) (Line 19).

If the current mapping (M) does not satisfy all SRs and the backtrack limit has not been
exceeded, then the algorithm iterates over all possible candidates c ∈ C . In each iteration,
c is added toM ′, i.e. a copy ofM (Line 12). Next, the algorithm recursively searches for
a valid mapping by extendingM ′ (Line 13). If the resulting mapping (M ′′) is valid, then
this mapping is returned. Otherwise, the number of backtracks is incremented and the next
candidate in C is tried. If all candidates have been exhausted, then the algorithm returns ;.

The GENCANDIDATES(M) function generates the (VL, PP) mappings that can be added to
M . This procedure is described in Algorithm 6.3.

Initially, GETMISSINGINGRESSVL(M) searches for the first VNF instance that is missing an
ingress VL inM , together with this missing VL. GETMISSINGINGRESSVL(M) traverses the VNF
instances inM in order that they were added, and returns the first VNF instance θinst ∈ Θ(M)
with missing parents via lin ∈ Lv(θinst)

in that it encounters. If no missing combination is found,
(;,;) is returned. Based on the presence of an augmented VNF instance with a missing ingress
VL instance, one can distinguish between two cases. On the one hand, if an ingress VL is
missing, the candidate VL instances to resolve this missing parent together with their possible
PP embeddings are generated by INGRESSBFS(M ,θinst , lin). This function performs a BFS
search combined with a look-ahead mechanism that verifies Equations 6.16, 6.17 and 6.18, to
filter the candidates based on the current number of instances of each augmented VNF and VL
inM . This iterative procedure keeps track at each step of the upper bounds on the number
of instances of each augmented VL and VNF instance and the total maximum of terminal
VNF instances and calculates the corresponding values for each candidate augmented link.
When the maximum instances of a particular VNF is reduced to 0, or the total maximum of
terminal VNF instances is smaller than the cardinality of |Vterm|, then an augmented link is no

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-21

valid candidate. These upper bounds are calculated as follows. WhenM is empty, the upper
bounds are all set to∞. Then, the upper bound on the number of instances for the initial
VNFs are set to 1 (Equation 6.16). For instance, in the AG shown in Figure 6.4, Xθ0

≤ 1 and
Xθ1
≤ 1. Subsequently, each time an upper bound changes (decreases), the upper-bounds for

its children and siblings in the AG are re-evaluated (Equations 6.17 and 6.18). Since θ0 ≤ 1
and M(e0) = 1, it follows that Y(θ0,θ1) ≤ 1. Since each ingress VL of n must correspond to
exactly one VL instance and θ6 has only a single parent via i2, Xθ6

≤ 1. From M(e4) = 1, it
follows that Xθ7

≤ 1 and Xθ8
≤ 1, and so on. Since, θ7 and θ8 are siblings, they compete for

egress VL e4 of θ6. When in a later instance, either (θ6,θ7), or (θ6,θ8) is added to the VNF-FG,
it follows that the maximum number of instances of the other one is reduced to 0. Verifying the
upper bound on the total number of possible target VNFs is important, to avoid unnecessary
backtracks when the caching would not provide a high enough fan-out later on. For instance,
when an instance of θ7 is selected, at least one instance of θ9 has to be connected to θ7 to
serve more than 5 target VNF instances.

INGRESSBFS generates candidate PPs targeted to the PM on which this VNF instance with
missing parents is hosted, for each of these candidate ingress VLs. The BFS procedure finds
the closest PMs that can host the source VNF of this VL instance, while considering remaining
bandwidth and processing capabilities. The procedure returns at most κ candidates, located
at at-most 7 hops from the target VNF instance. Finally, these candidates are sorted in order
or increasing cost, as defined by Equation 6.36. On the other hand, when no VNF instance in
M is missing a parent, then the next missing terminal VNF vterm ∈ Vterm is added. In this case,
the candidate PMs in ψ(vterm) that have sufficient processing capability remaining to host this
VNF are added to the candidate list (Line 11).

The FINISHED(M) function verifies in the REC procedure (Line 5) if the SRs have been
satisfied. If the mapping (M) is not missing any ingress VL or terminal VNF instance, then this
mapping satisfies the SRs and the function returns TRUE. Otherwise FINISHED returns FALSE.

6.4.2 Illustration

The execution of the recursive algorithm is illustrated using the use-case; its SRs, target SN
and corresponding AG are depicted in Figure 6.1, 6.3 and 6.4 respectively. The steps of the
algorithm are listed in Table 6.8. The resulting PC of REC for a maximum end-to-end delay of
270 ms for each terminal VNF is shown in Figure 6.3. Since, the minimal bandwidth VNF-FG
cannot be embedded while respecting this delay-limit, the resulting PL for VNF-FG1 (see
Figure 6.2a) is shown for a maximum end-to-end delay of 500 ms.

The mapping steps are numbered (S). Candidate c is the VL instance (θs,θt) to PP
mapping that is added toM in that step and cost(c) denotes its contribution to the objective
function (Equation 6.36). The remaining delay budget for the source VNF instance of c is
given by R(θs). The mapping step relative to which c is added is given by O(S). When the
difference between S and O(S) exceeds one, the algorithm has backtracked, indicating that
the mappings between S and O(S) have been removed. In this case O(S) is underlined.

Step 0 corresponds to an empty mapping, i.e., M = ;. In step 1, no ingress VLs are
missing and an instance of terminal VNF x is added; its only candidate PM is x2. The cost

6-22 CHAPTER 6

S c cost(c) R(θs) O(S)
1 (θ15,θ15)→ [x2, x2] 0.20 270 0

2 (θ14,θ15)→ [d3, X3, X2, x2] 0.70 208 1

3 (θ12,θ14)→ [e2, X2, X3, d3] 0.60 136 2

4 (θ9,θ12)→ [l3, X3, X2, e2] 0.70 64 3

5 (θ7,θ9)→ [l3, l3] 0.60 54 4

6 (θ6,θ7)→ [n3, X3, l3] 0.40 42 5

7 (θ7,θ12)→ [l3, X3, X2, e2] 0.90 64 3

8 (θ6,θ7)→ [n3, X3, l3] 0.40 52 7

9 (θ13,θ15)→ [e2, X2, x2] 1.00 258 1

10 (θ11,θ13)→ [d3, X3, X2, e2] 0.70 186 9

11 (θ9,θ11)→ [l3, X3, d3] 0.60 164 10

12 (θ7,θ9)→ [l3, l3] 0.60 154 11

13 (θ6,θ7)→ [n3, X3, l3] 0.40 142 12

14 (θ0,θ6)→ [a1, X1, X3, n3] 0.14 60 13

15 (θ4,θ6)→ [q1, X1, X3, n3] 0.58 60 14

16 (θ5,θ6)→ [p3, X3, n3] 1.02 110 14

17 (θ3,θ5)→ [q1, X1, X3, p3] 0.29 48 16

18 (θ1,θ3)→ [b1, X1, q1] 0.04 26 17

19 (θ10,θ10)→ [y3, y3] 0.10 270 18

20 (θ7,θ10)→ [l3, X3, y3] 0.20 154 19

Table 6.8: Illustration of the execution of REC.

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-23

is the ratio of the instance’s CPU requirements to the remaining PM capability of x2, i.e.
20/100= 0.2. The remaining budget delay budget is the delay budget of x , i.e. 270 ms. In
step 2, it is detected that x2 misses a connection to i7. Hence, the candidate source augmented
VNFs are θ14 and θ13, which can be mapped to either PM d3 and e2 respectively. Augmented
VNF θ14 requires 10 processing units; θ15 requires an ingress bandwidth of 20 bandwidth
units over 3 hops. Hence, the cost for θ14 equals 10/100+ 20/100× 3 = 0.7, which is less
than for source augmented VNF θ13. The remaining budget for θ14 equals the remaining
budget for θ15 minus the processing delay of θ15 and the routing delay for (θ14,θ15), i.e.
270ms− 10ms− (1ms+ 50 ms+ 11ms) = 208 ms. In step 3, the ingress VL of θ14, i.e. i10 is
missing. The only augmented VL candidate for this VL instance is (θ12,θ14), which can only
be hosted on e2. In step 4, VNF l2 is placed onto PM l3 since it is the candidate with the lowest
cost. In step 5, VNF l1 is placed onto PM l3. In step 6, VNF n is placed onto PM n3, with a
remaining delay budget of 42 ms. Insufficient delay budget remains to add the first missing
ingress VL instance of n, i.e., i2. The remaining budget for an instance of a should at least
equal the processing delay of a, which is 20 ms. The processing delay of n is 20 ms and no
candidate source PM can be found for θ0 with the remaining delay budget of 22 ms. Therefore,
the algorithm backtracks to the mappingM after step 3.

In step 7, θ12 is directly connected to VNF l1, instead of via l2. The embedding cost is
higher than in step 4, namely 0.9 versus 0.7 because the generated candidates are considered
in order of increasing cost. In step 8, VNF n is again placed on PM n3. Compared to step
6, the delay budget of n is now slightly increased. The delay budget still does not suffice to
connect to an instance of VNF a placed onto PM a1. Therefore, the algorithm backtracks to
the mapping of step 1.

In step 9, VNF e is chained before VNF x . In step 10, VNF d is chained before VNF e,
effectively reversing the sequence tried before. In step 11, 12 and 13, VNFs l2, l1 and n are
mapped again. Note that due to alteration of the relative order of VNF d and e that the delay
budget of n is now 142 ms, instead of 42 ms. In step 14, enough delay budget (60 ms) remains
to place VNF a on PM a1. In step 15, the next missing ingress VL of n, i.e. i3 is addressed. VNF
q is chained before VNF n. The remaining budget (60 ms) is however not enough to connect a
p instance before q and the algorithm backtracks.

In step 16, VNF p is chained before n, instead op q. In step 17 and 18 VNF q and b can be
chained. In step 19, no mapped VNFs are missing ingress VLs and the second and last terminal
VNF is mapped to PM y3. Finally, in step 20, the ingress VL of VNF y , i.e. i8 is connected to l1.
No mapped VNFs have missing ingress VLs and all terminal VNFs are mapped, FINISHED(M)
returns true andM is returned.

6.5 Performance Evaluation

6.5.1 Requirements

Composition requirements The generated SRs are based on the use-case presented in
Section 6.3. The number of source and target VNFs are both uniformly distributed in 1 to
10. Source and target VNF have a single egress and ingress VL respectively. Each source
VNF is with a probability of 50% directly connected to VNF n, else it is connected through a

6-24 CHAPTER 6

chain of pre-processing VNFs to the n. The VNFs in these chains are unique, i.e. a VNF can
only appear in a single pre-processing or post-processing chain. All VNFs in these chains are
required. The number of VNFs in every pre- and post-processing chain are all independent and
uniformly distributed in 1 to 5. The caching VNF configuration and requirements are identical
to the use-case. For the other VNFs, rrel(l) and drel(v) are independent and uniformly selected
from {0.75, 1.0, 1.5} and {1, 2, 3} respectively. The initial bandwidths are all independent and
uniformly selected from {1, 2,3}.

Embedding constraints Transit-stub SGs are generated using the GT-ITM topology generator
on a 100× 100 grid [106]. Any two nodes in the transit network are connected by a PL with
a probability of 80%. Within a stub-network cluster this probability is 40%. Each PM in the
transit network is connected to 2 clusters, each comprising 9 PMs. Unless stated otherwise,
the number of transit nodes is 1, corresponding to 19 PMs. The PL bandwidths are uniformly
distributed with average Bavg and the ratio between the upper and lower range of the interval
equals 5. Similarly, the PM capabilities are uniformly distributed with average Davg , equal
to Davg = 100000. The delay introduced by a PLs (h1, h2) ∈ E is assumed proportional to the
Euclidean distance dist(h1, h2) between the two end-points. The delay corresponding to the
width of the grid is assumed 100 ms. The processing delays are assumed independent of the
PM on which they are executed. The processing delays for all VNFs are independent and
uniformly selected from {10, 20,30}.

The LCs are generated in the following way, a similar approach is taken in [78, 49], [C2]:
the VNFs are each assigned a preferred location, which corresponds to the location of a
randomly selected PM hpre f (v) ∈ H. The sources and targets can only be located on hpre f ,
the other VNFs can with a probability of 80% be located on any of the PMs that are within a
Euclidian distance ρ from hpre f (v) ∈ H : ∀v ∈ V .

φ(v) = {h ∈ H|Xh ≤ 0.8∩ dist(h, hpre f (v))≤ ρ}, (6.39)

where all Xh : h ∈ H are independent and uniformly distributed in [0;1] and dist(h1, h2) is
the Euclidean distance between PMs h1 and h2. The location constraints model a combination
of geographical and hardware related limitations. Further, the candidate set ψ(v) for v ∈ V
must at least contain one PM.

Service arrival Request arrival and service-rates are modeled as Poisson processes. The
arrival-rate (λ) equals 1 arrival per unit of time. The average duration of a request is the inverse
of its service rate (µ). For each parameter configuration, 10 random SNes are generated using
GT-ITM, each with a random assignment of location constraints and composition requirements.
In the following we distinguish between an offline scenario and an online scenario, in both
the requests are processed one-by-one. However, in the offline scenario, 100 requests are
processed that are active until the end of the simulation, i.e. µ→ 0, corresponding the scenario
where the cloud environment is initiated, and the pending requests are processed. In the
online scenario more requests are processed; in steady-state 100 requests are expected to be
active at the same time since λ

µ = 100.

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-25

Algorithm DCs Coordinated Section Routing
ILP1S no yes 6.3.3 IMCF
ILP2S(f) no no 6.3.4 IMCF
ILP1S-DC yes yes 6.3.5 |K |-ShP
ILP2S-DC(f) yes no 6.3.6 |K |-ShP
REC yes yes 6.2 BFS

Table 6.9: Evaluated algorithms.

6.5.2 Metrics

The following metrics are evaluated. The acceptance ratio indicates the fraction of requests
that is accepted. For a given service request, the acceptance ratio is 0 or 1 for rejection and
acceptance, respectively. The SG bandwidth is the total of the bandwidth resources consumed
in the SNe to route the VLs, per accepted request. The processing consumption is the total of
the CPU resources consumed, per accepted request. The CPU consumption of a given VNF-FG
is independent of the embedding. The computation time is the time required by the algorithm
to process a service request.

6.5.3 Evaluated algorithms

The evaluated algorithms are listed in Table 6.9. The ILPs are solved using Gurobi 7.5.2, a
hybrid solver, combining multiple solution techniques [114]. The ILP-based algorithms use 4
threads. If no solution can be found within 10 minutes, the request is rejected.

ILP1S, ILP2S(B), ILP2S(C) the algorithms presented in Section 6.3.3 and 6.3.4, using Integer
MCF (IMCF) routing; the algorithms do not support delay constraints. ILP1S solves the
combined composition and embedding problem in one stage and can thus reach the global
objective. ILP2S(f) solves the composition and embedding problems in two separate stages, it
minimizes function f in the first stage. Both stages are not coordinated. ILP2S(B) and ILP2S(C)
minimize the VNF-FG bandwidth and processing requirements respectively.

ILP1S-DC and ILP2S-DC(f) the algorithms presented in Section 6.3.5 and 6.3.6 respectively,
based on path-generation and supporting delay-constraints. Unless specified otherwise, the
maximum number of VNF instances per delay group I = 1 for each delay-group g ∈ G.
Further, a single ShP is generated between any two PMs in H, i.e. |K |= 1.

REC the recursive heuristic that coordinates composition and embedding, presented in
Section 6.4. GENCANDIDATES generates at most 10 candidates per iteration, i.e., κ = 10.
Further, the algorithm performs at most 10000 backtracks, i.e., α= 10000.

6.5.4 Simulation parameters

The key simulation parameters are:

6-26 CHAPTER 6

• ρ: geographical distance (radius) from the preferred PM, where a VNF can be placed.
It is a measure for the flexibility in the embedding: a low ρ corresponds to a very
location-constrained embedding;

• Bavg : the average PL bandwidth capability in the SNe.

• tN
max : the maximum allowed end-to-end delay for the terminal VNFs.

6.5.5 Results

Offline The impact of the average PL bandwidth capability Bavg is shown in Figure 6.5. In
this setup, there are no delay limitations, i.e. t L

max →∞, tN
max →∞ and ρ = 5. Overall,

the acceptance ratio goes up as Bavg increases and it is the highest for ILP1S and ILP1S-DC.
The acceptance ratio for the 1-phase ILP is up to 42% higher than for the 2-phase ILPs, while
requiring only 11×more time. Even though ILP1S-DC considers only a single ShP between any
two PMs, its acceptance ratio is only 2% lower than for ILP1S. Interestingly, the ShP routing
for ILP1S-DC results in a SN bandwidth consumption that is up to 8% lower than for ILP1S.
The acceptance ratio for REC is up to 12% lower than for ILP1S, but it can find a solution up to
252× faster. As the available PL bandwidth increases, REC performs fewer recursions to find a
feasible solution. The acceptance ratio for REC is up to 13% higher than for ILP2S-DC(C) and
up to 21% higher than for ILP2S-DC(B). While the performance of ILP2S-DC(B) and ILP2S(B)
are very similar, the performance of ILP2S-DC(C) is very different than for ILP2S(C). The
reason is that ILP2S-DC(C) can only use the ShP between any two PMs. Since the algorithm
minimizes the CPU resources instead of the VL bandwidth, the available bandwidth on some
PLs becomes a bottleneck, especially when the LCs are very strict (ρ = 5). ILP2S(C) can avoid
these overloaded links during routing, while ILP2S-DC(C) cannot. The VNF-FG with minimal
CPU requirements always features a caching hierarchy comprising an l1 instance and possibly
multiple l2 instances that need to be interconnected, while the other algorithms can use the
larger l ′1 instance, curbing the performance of ILP2-DC(C) for |K |= 1.

Whether a VNF-FG with minimal VL bandwidth or processing requirements is easiest to
embed, or which default composition strategy performs best depends strongly on both the
application and cloud environment. Hence, the performance of a 2-stage approach with a
given objective in the composition stage is dependent on the SNe conditions. Further, REC
explores multiple compositions only when it backtracks. Hence, its computation time and
placement quality depend on the order in which the candidates in GENCANDIDATES are ordered.
As an illustration consider its CPU consumption, which is up to 14% higher than for ILP1S. The
reason for this high CPU consumption is that the algorithm often places additional l2 caches
that are not particularly useful, such as in Figure 6.2a. Improvements to GENCANDIDATES,
which are considered out of scope for this article, can avoid this wasteful behavior. Overall,
the SG bandwidth consumption increases for all algorithms as the available PL bandwidth
increases. Interestingly as the available PL bandwidth increases, the CPU consumption per
accepted request decreases slightly for the coordinated approaches, while it increases for the
uncoordinated ones. Since most of the algorithms can place all requests for Bavg = 6000, this
value will be used for the remaining simulations.

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-27

2000 3000 4000 5000

0.5

0.6

0.7

0.8

0.9

1

(a) Average acceptance.

2000 3000 4000 5000

350

400

450

(b) Bandwidth consumption.

2000 3000 4000 5000

2600

2800

3000

3200

3400

(c) CPU consumption.

2000 3000 4000 5000

10
8

10
9

10
10

(d) Average computation time.

Figure 6.5: Influence of the PL bandwidth capability Bavg .

6-28 CHAPTER 6

5 10 15

0.75

0.8

0.85

0.9

0.95

1

(a) Average acceptance.

5 10 15

200

300

400

500

600

(b) Bandwidth consumption.

5 10 15

2400

2600

2800

3000

3200

(c) CPU consumption.

5 10 15

10
8

10
10

(d) Average computation time.

Figure 6.6: Influence of the radius (ρ) for Bavg = 6000.

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-29

500 550 600

0.85

0.9

0.95

(a) Average acceptance.

500 550 600

220

240

260

280

300

(b) Bandwidth consumption.

40 60 80

1000

1500

2000

2500

3000

(c) CPU consumption.

500 550 600

10
8

10
10

(d) Average computation time.

Figure 6.7: Influence of the maximum end-to-end latency for Bavg = 6000 and ρ = 10.

6-30 CHAPTER 6

Figure 6.6 shows the influence of the radius ρ. As ρ increases, the number of candidates
for each VNF, except for source and target VNFs, increases. The acceptance ratio for REC is very
close to that of ILP1S (within 1%). The performances of ILP2S(C), ILP2S(B) and ILP2S-DC(B)
are very similar, all have an acceptance ratio about 9% lower than for ILP1S. As ρ increases
the computation time increases strongly for the path-based ILPs. The computation time for
ILP1S-DC often exceeds the maximum allowed time of 10 minutes, causing the acceptance
ratio to drop for ρ exceeding 8. Observe that for higher ρ values ILP2S-DC(C) can place all
requests, the CPU consumption then converges to that for ILP2S(C). The acceptance ratio for
REC is up to 35% higher than for ILP2S(C), while requiring up to 1376× less computation
time.

Figure 6.7 shows the impact of the maximum end-to-end delay tN
max . As this maximum

delay increases the acceptance ratio and required computation time increases for all algorithms.
The acceptance ratio for REC can slightly exceed that of ILP1S-DC since not all paths between
any two PMs are considered. The bandwidth and CPU consumption is the highest for REC.
The acceptance ratio is highest for ILP1S-DC, it is up to 6% higher than for the 2-stage ILPs,
while requiring only 3× more computation time. For very strict delay constraints, ILP2S-
DC(B) outperforms REC, but for maximum delays of 575 ms and higher, REC outperforms
both 2-phase algorithms. The performance for strict delay-constraints is determined by its
backtracking limit. A higher backtracking limit can improve the acceptance ratio but comes at
the cost of an increased worst-case computation time. The performance of REC is up to 4%
lower than for ILP1S-DC, however it can find a solution up to 337× faster. The acceptance
ratio of ILP2S-DC(C) is the lowest.

Online

The online traces for a maximum end-to-end delay of 575 ms are shown in Figure 6.8.
In total 3000 requests are processed sequentially. In the online scenario, the traces are

smoothed by a moving average with a window of size 100 requests. In these traces the
acceptance ratio of ILP1S-DC and REC is the highest. The acceptance ratio for ILP2S-DC(B) is
a few % lower. It is the lowest for ILP2S-DC(C). The SN bandwidth consumption per accepted
request is the lowest for ILP1S-DC. The CPU consumption is the lowest for ILP2S-DC(C)
since this algorithm minimizes the CPU consumption in the composition phase and the CPU
consumption is independent of the embedding. The execution time is the lowest for REC, its
computation time shows a large spread. When finding a feasible solution is easy, the algorithm
finishes fast. If finding a solution is more difficult, the algorithm performs more backtracks,
resulting in an increased computation time. Ultimately, its computation time is limited by
the backtracking limit and the number of neighbors considered in each recursion step. The
execution time for the 2-phase ILPs is significantly higher than for REC, the execution time for
the 1-stage ILP is the highest.

6.5.6 Conclusions

In this section, we focused on the resource allocation challenges related to the orchestration of
NSs in NFV environments. We introduced a service model with improved applicability, that can

ORCHESTRATION IN NFV ENVIRONMENTS WITH AN IMPROVED SERVICE MODEL 6-31

500 1500 2500
0.94

0.95

0.96

0.97

0.98

0.99

1

(a) Average acceptance.

500 1500 2500

180

200

220

240

260

280

300

(b) Bandwidth consumption.

500 1500 2500

2000

2500

3000

3500

(c) CPU consumption.

500 1500 2500

10
8

10
9

10
10

(d) Average computation time.

Figure 6.8: Online traces for Bavg = 6000, ρ = 10 and tN
max = 575 ms.

6-32 CHAPTER 6

describe a richer class of VNF-FGs, while considering the NS delay constrains. We proposed an
optimal placement algorithm that can adapt the VNF-FG to the availability of resources in the
SNe, while considering the SRs. We demonstrated that our optimal algorithm can improve the
acceptance ratio by up to 42% while requiring only 11 times more computation time, compared
to algorithms that do not coordinate composition and embedding. Our proposed approach can
find the best PC for any cloud environment. Further, we proposed a heuristic that can find near-
optimal solutions that are within 1% of the optimum. Through coordination of the composition
and embedding, the heuristic offers a 35% improvement in acceptance ratio, compared to
uncoordinated approaches that minimize CPU consumption in the first stage, while being up
to 1376 times faster. Clearly, our approach can significantly improve the provider revenue
for a wide range of service orchestration scenarios, through better coordination of the service
composition and embedding tasks.

Chapter 7

Conclusions

This chapter sums up the main contributions and results of the thesis that were mainly directed
to investigating the research questions formulated in Section 1.3, in conjunction with the
exploitation of the research opportunities identified in Section 2.4.7.

Section 7.1 details the main results obtained throughout the development of the thesis.
Section 7.2 shows the participation of the author of this thesis in national and international
research projects and how the contributions of this thesis were developed following the main
objectives of these projects.

7.1 Main contributions and results

Chapter 3 investigates how to effectively replicate data across storage nodes in heterogeneous
cloud environments, as asked by Question I. We approach this problem as a runtime revenue
optimization problem, i.e., the GRMP. This problem is the task to periodically decide on the
optimal RL of a replicated stateful (data-)service over its required lifetime, while considering
at the same time the current replication state, the distribution of failures and recovery times,
the replication scheme and the agreed durability SLA. To maximize the provider revenue
(Subquestion Ia), we propose an exact algorithm, based on DP, which considers both a
dynamic replication model and SLAs regarding durability. Data loss (Subquestion Ib) and the
impact of management decisions can be modeled by extending the existing availability model
proposed by Google researchers [42]. This existing Markov model at the same time considers
correlated failure, the recovery time distribution and operational costs. We define additional
states that correspond to the decision to scale in or out a service, while waiting for these
decisions to take effect. Next, we investigate how the storage SLA impacts data-availability in
the optimal replication strategy (Subquestion Ic). Through extensive simulation results, we
demonstrated that the probability of data loss decreases as the provided reward for successful
storage of the data for the entire desired lifetime goes up. When the reward goes up, the
provider should incur greater storage and recovery costs to maximize his expected pay-off.
Further, we demonstrate that given a fixed reward per unit time, the expected pay-off for
the provider initially increases as the request duration goes up. However, as the request
duration further increases, the probability of data loss increases too. Eventually, the expected

7-2 CHAPTER 7

provider revenue decreases towards the agreed penalty for data loss. The cloud characteristics
(Subquestion Id) impact the optimal replication strategy in the following way. First, a reduced
failure probability, corresponding to an increased MTTF, calls for a reduced RL. When the
failure probability decreases, minimizing the operational costs becomes more important than
minimizing the probability of data loss. Similarly, when the operational costs increase, the
optimal RL decreases. Further, an increased correlation between storage node failures increases
the size of a failure burst, which makes it harder to protect against data loss. Finally, as per
Subquestion Ie, we compare how our proposed replication strategy performs, compared to
traditional replication strategies. We demonstrate that our proposed approach can significantly
improve provider revenue, compared to existing management algorithms. These existing
algorithms either always try to immediately restore the RL to a predefined value, or restore
the RL to its maximum value only when a minimum number of failures has been detected. In
both time-invariant and time-variant cloud environments, our algorithm can adapt the RL to
varying system parameters and maximize the expected reward.

Chapter 4 investigates how to protect NSs against node and link failure in heterogeneous
cloud environments, as per Question II. To deal with the scarcity of resources at the edge
of the network (Subquestion IIa), we propose an approach that avoids wasting resources on
applications whose availability requirements cannot be met. Further, due to the reliability
spread in the geo-distributed infrastructure, coupled with the resource scarcity at the edge
and the resource overhead associated with protections in the PC, we expect approaches that
introduce a fixed protection level across the entire infrastructure to perform poorly. Therefore,
we propose an approach that introduces protections only, where they are needed. Through
the introduction of duplicates, we can realize very fine-grained application-level protections
for stateless applications (Subquestion IIb). Each duplicate is a separate instance of the
application’s VNe. Bandwidth, memory and processing resources can be shared between
duplicates of the same application, since these applications are stateless and only one of the
duplicates must be active at the same time. We formulate the problem of placing services
with minimal cost, while guaranteeing a minimum availability for each application as an
optimization problem, i.e. the availability-aware SVNE problem. To guarantee a minimum
availability for an application (Subquestion IIc), an availability-model is needed that can
calculate the expected end-to-end availability for each valid PC, based on the failure distribution
of PMs and PLs. In our proposed availability-model (Subquestion IId), an application is
available if at least 1 of its duplicates is available. Our proposed model considers the correlation
between the failures of any two duplicates. Hence, our model does not require copies of the VNe
to be placed on disjoint subgraphs of the SNe, which is a common requirements of traditional
protection mechanisms. Finally, we compare the performance of our proposed algorithms
to traditional strategies (Subquestion IIe). Our ILP formulation of the availability-aware
SVNE problem, can be used to find an exact solution with minimal cost for smaller problem
instances. Compared to approaches that are not availability-aware or that introduce a fixed
level of protection, it can significantly reduce the placement cost and improve the number of
application requests that can be accepted. Due to the computational hardness of the problem,
finding exact solutions for larger problem instances is intractable. Therefore, we propose a
distributed fault-tolerant meta-heuristic based on GA: a distributed set of workers concurrently
search for the best SVNE. Additionally, we present a scalable centralized algorithm using the

CONCLUSIONS 7-3

paradigm of subgraph isomorphism: this heuristic approach provides ultra-fast placement of
applications at the expense of reduced optimality.

Chapter 5 focuses on research Question III. It investigates how to orchestrate NSs in
geo-distributed NFV environments. This task requires composition of the NS’s VNF-FG based
on its SRs and embedding of the composed VNF-FG on the SNe. In this chapter, the composition
of the VNFs is based on an existing service model that can generate VNF-FGs with a directed
tree topology (Subquestion IIIa). This service topology is applicable to services where content
is provided and distributed by the content provider. In this model, the NS must originate in
a single root VNF instance and terminate in a set of terminal VNF instances. The VNFs that
connect the root VNF instance to the terminal VNF instances can each only have a single ingress
VL instance, but possibly multiple egress VL instances. This composition model considers
precedence and compatibility constraints in the chaining, to restrict the sequence in which
the traffic can flow through the VL instances. Geo-distributed VNF environments are highly
heterogeneous, because of a combination of LCs, delay constraints and connectivity limitations.
Therefore, it is expected that the consideration of the SNe during VNF-FG composition can
significantly ease the embedding and improve the resulting placement quality. Therefore,
this chapter proposes two algorithms that can coordinate the composition and embedding
tasks (Subquestion IIIb). First, we formulate the combined composition and embedding
problem to find a minimum-cost PC as an ILP that can be used to find an exact solution
for smaller problem instances. Second, we propose a fast, greedy heuristic that iteratively
selects an SFC to add to the VNF-FG and embeds it at the same time. Finally, we compare the
performance of the proposed algorithms that can coordinate the composition and embedding
tasks to algorithms that perform these two tasks in separate stages (Subquestion IIIc). Through
extensive performance evaluations, we demonstrate that approaches that coordinate both tasks
can significantly improve the number of requests that can be accepted at the same time and
reduce the placement cost. More stringent LCs increase the heterogeneity of the environment
and cause the performance gap between coordinated and uncoordinated approaches to increase.
Increasing the flexibility with which the VNFs can be chained has a similar effect. Further,
when the workload increases, resources become scarcer and the acceptance decreases for all
approaches. However, the acceptance ratio of coordinated approaches can be up to 15% higher
than for uncoordinated approaches. The proposed greedy heuristic can find near-optimal
solutions.

Compared to Chapter 5, Chapter 6 proposes a novel service model with improved applica-
bility, together with the required resource allocation algorithms to orchestrate such services. It
focuses on Subquestion IIId, i.e., how to orchestrate NSs in NFV environments that require
traffic aggregation. The proposed service model can produce DAG VNF-FGs with support for
optional performance enhancing VNFs, bidirectional chaining constraints (e.g., for heteroge-
neous service delivery), traffic aggregation (e.g., fusion of sensor data in WSNs or composition
of multiple content sources) and end-to-end delay constraints. To deal with the computational
intractability associated with finding an exact solution (Subquestion IIa), we propose a recur-
sive heuristic that in each step adds a candidate VL instance to the composition and embeds
it at the same time. Again, we demonstrate that through coordination of the composition
and embedding tasks, the number of accepted applications and the placement cost can be
improved significantly over a wide range of cloud conditions and SRs.

7-4 CHAPTER 7

7.2 Research projects

The research contributions made by this thesis are made in the context of several research
projects. The author has actively participated in the set of projects summarized in Table 7.1.
States ’F’ and ’E’ indicate that at the time of writing the project is ’Finished’ or ’Executing’,
respectively.

Table 7.1: Research projects.

Project name Funding Duration State Industry partners

COST ACROSS European 14/11/2013 -
13/11/2017

F TNO (Netherlands),
Deutsche Telekom AG

iFEST Flemish 31/12/2014 -
30/12/2016

F ID&T, Playpass,
Sentiance, Sendrato,
Telenet, 3factr

EMD Flemish 01/01/2015 -
31/12/2016

F IMTECH ICT,
SDNsquare, Barco

5GUARDS Flemish 01/04/2017 -
31/03/2019

E Accelleran, Ericsson,
Orange, Rombit

FUSE Flemish 01/10/2017 -
30/09/2019

E E-BO Enterprises,
Axians, Barco

Autonomous Control for a Reliable Internet of Services (ACROSS) is a project funded by
European Cooperation in Science & Technology (COST) that focuses on the resource allocation
challenges related to the paradigm shift from the traditional information-oriented Internet
into an Internet of Services (IoS). These challenged are related to the deployment of large-
scale service chains, combining and integrating the functionality of huge numbers of other
services offered by third parties, including cloud services. The aim of this project is to create a
European network of expertise, from both academia and industry, aiming at the development
of autonomous control methods and algorithms for a reliable and quality-aware IoS. Within
the framework of this project, the author of this thesis performed a research stay of 1 month
under supervision of Prof. Rob van der Mei at the Stochastics department at CWI.

The improved Festival Experience with wearable Sensor Technology (iFEST) project is
realized in collaboration with imec, with project support from Flanders Innovation & En-
trepreneurship (VLAIO). The goal of the iFEST project is to improve the digital experience of
large events, such as music festivals, by developing a new generation of festival bracelets. The
author actively collaborated on addressing the infrastructural and computational challenges
that arise in setting up festival applications. These challenges are three-fold. First, as festivals
are typically located on geographically remote areas, there is little up-link connectivity or
computational infrastructure available nearby, resulting in connectivity issues. Second, the
infrastructural capabilities that festival locations offer are diverse. Small festivals may not have
the ability to invest in local infrastructure (and thus mainly rely on public cloud offerings),
while larger festivals often already have on-site infrastructure available. As the iFEST platform
needs to be portable, i.e., reusable on several festivals, it needs to address these heterogeneous
infrastructures. The proposed resource allocation algorithms to orchestrate reliable NSs in

CONCLUSIONS 7-5

these heterogeneous environments are presented in Chapter 4.
Elastic Media Distribution for online collaboration (EMD) is a project realized in collabo-

ration with imec, with project support from VLAIO. EMD pursues the creation of a flexible,
scalable and reliable cloud-based platform for the realtime and secure distribution of audio and
video content. In order to realize reliable NSs on top of best-effort computing and networking
environments, subject to both SNo- and SL-failure, availability-aware SVNE resource allocation
algorithms are needed. These algorithms are developed in Chapter 4.

5G qUAlity slicing foR the Deployment of Security services (5GUARDS) is a project realized
in collaboration with imec, with project support from VLAIO. It investigates the slicing capability
of 5G that enables dynamic resource allocation to match demand. 5GUARDS explores how
multiple security services with a wide range of requirements can be supported simultaneously
by 5G networks. Within the framework of the 5GUARDS project, the author of this thesis,
developed the NFV service models proposed in Chapters 5 and 6; and the corresponding
resource allocation algorithms to support on-demand orchestration.

Flexible federated Unified Service Environment (FUSE) is a project realized in collaboration
with imec, with project support from VLAIO. It addresses the challenges related to setting up
cross-organizational collaborations between software platforms operating in isolated domains.
FUSE develops a single service architecture that securely connects many software components
and domains flexibly and dynamically on a temporary basis. Within the framework of the
FUSE project, the author of this monograph developed the required network provisioning
algorithms to orchestrate the requested NSs and the algorithms to perform outcome-based
service optimization. The ideas for the network provisioning algorithms are presented in
Chapters 5 and 6. The developed algorithms to optimize the RL of replicated services in
order to maximize the provider revenue subject to SLAs regarding data loss, are presented in
Chapter 3.

Chapter 8

Future work

The contributions presented in this thesis can be used in several existing network virtualization
projects and testbeds with management systems that use orchestration algorithms to automati-
cally allocated service requests to SNe resources. The contributions introduced throughout
this thesis can still be improved, especially with regard to applicability. This chapter is divided
into two sections: Section 8.1 summarizes the possible scenarios where the contributions
introduced in this thesis can be applied. Section 8.2 details the possible enhancements that
can be made in order to evolve and improve the current state of the presented contributions.

8.1 Applicability of thesis contributions

The algorithms proposed in Chapter 3 decide on the RL that optimizes the provider revenue,
over a service’s lifetime. The approach is based on a dynamic failure model considering the
impact of correlated failures, time between failures and recovery times. These algorithms can
be applied to optimize the RL for very large-scale datacenters that have symmetry in their
structure, e.g. the failure behavior of nodes within a rack is homogeneous. An increased scale
results in more accurate estimation of the failure and replication parameters. Further, the
complexity of the solution only depends on the maximum RL and the length of a MI, not on
the dimensions of the SNe. When combined with monitoring data from a cloud monitoring
platform, e.g., Prometheus [116], and a homogeneous SNe, e.g. a single rack, the algorithms
can be readily applied to decide on the optimal RL of a replicated file system, e.g. HDFS.

The availability-aware SVNE algorithms can be used to orchestrate stateless NSs, e.g. video
streaming services, that have strict QoS requirements. The availability-model does require
accurate estimates on the availability distribution of the SNe components. To the best of our
knowledge, there are no practical VIM frameworks that support SVNE. Current VIMs, e.g.,
OpenStack [117], can protect against VNo failures, but not against VL failures.

The NFV service models presented in Chapters 5 and 6 can be used to orchestrate practical
NSs. Currently, there is no practical data model that supports partial ordering of VNFs in an
SFC. For instance, the TOCSA [30] model assumes a total ordering of the VNFs. The proposed
algorithms can be used to orchestrate services that adhere to the TOCSA model, however in
this scenario our algorithms cannot exploit any flexibility in the chaining. An extension of this

8-2 CHAPTER 8

model to support partial orderings, would allow this optimization.

8.2 Further improvement of the contributions

The contributions presented in this thesis can be further evolved and improved along the
following directions.

8.2.1 Application to 5G network slicing

The orchestration algorithms presented in this monograph generally assume that the controller
has full control over the routing of traffic flows through the SNe. It is assumed that this
controller can freely determine the PP in the SNe over which the traffic flows and that it can
reserve bandwidth on each PL along the PP. This assumption holds true in a network where all
interconnections are wired and the SDN-enabled switches can be configured by the controller.
Network slicing, which will be a key feature of the 5G standard, promises network operators
the capability to create multiple VNes on top of a common, shared physical infrastructure.
Partitioning of the network into VNes that can be controller using software will enable providers
to optimize each network slice for a specific objective, e.g., availability, throughput or latency.
The core network is mainly wired and can largely be controlled using SDN. In contrast, the
RAN comprises wireless resources, which are much harder to manage. Here, interference
among nearby User Equipment (UE) and basestations makes it difficult to provide performance
guarantees. Depending on the employed wireless technologies, frequency-; timeslot-; and
code-reservations must be carefully coordinated between nearby basestations. Dynamically
provisioning these resources, to adapt to changing workload and networking conditions, while
limiting the management overhead to an acceptable level, is very challenging. Therefore,
future research is needed into management algorithms that can enable performance isolation
between network slices that coexist at the RAN and to enable end-to-end orchestrations across
the RAN and core network.

8.2.2 Decentralized approach

The management approaches presented in this thesis assumed a single centralized controller
that is in charge of the entire cloud management. A centralized controller ultimately limits the
scalability of the cloud environment. This controller requires a complete view on the resources
available in the infrastructure and requires all relevant information to be transferred to a single
location, causing a significant management overhead. Further, a single centralized controller
presents a single point of failure. When the centralized controller fails, it will stop the entire
system from working. Clearly, a single point of failure is highly undesirable. Therefore, further
research is needed to develop the required resource allocation algorithms to implement such a
distributed controller, e.g., a hierarchical controller. A major challenge in this regard is to limit
the optimality gap between a centralized and a distributed controller.

FUTURE WORK 8-3

8.2.3 Practical realization through protocols

The orchestration algorithms developed in the monograph implement the resource allocation
functions, to be carried out by a single centralized management entity. As discussed above, a
centralized controller is undesirable for a reliable practical implementation. Instead, distributed
control is needed. These protocols regulate both resource- and service-discovery and resource
allocation. The design of these protocols is challenging as both the correct behavior of these
protocols by themselves and the interoperability with other protocols must be guaranteed.
To enable distributed control, further research is needed into the specification, testing and
verification of these supporting protocols.

Contributions

[C1] B. Spinnewyn, R. Mennes, J. Botero, and S. Latré, “Resilient application placement for
geo-distributed cloud networks,” Journal of Network and Computer Applications, vol. 85,
pp. 14–31, 2017.

[C2] B. Spinnewyn, P. H. Isolani, C. Donato, J. F. Botero, and S. Latré, “Coordinated ser-
vice composition and embedding of 5g location-constrained network functions,” IEEE
Transactions on Network and Service Management, pp. 1–1, 2018.

[C3] B. Spinnewyn, J. F. Botero, and S. Latré, “Delay-constrained nfv orchestration for hetero-
geneous cloud networks,” 2019, submitted to IEEE/ACM Transactions on Networking.

[C4] B. Spinnewyn and S. Latré, “Towards a fluid cloud: an extension of the cloud into the lo-
cal network,” in IFIP International Conference on Autonomous Infrastructure, Management
and Security. Springer, 2015, pp. 61–65.

[C5] B. Spinnewyn, B. Braem, and S. Latré, “Fault-tolerant application placement in hetero-
geneous cloud environments,” in 2015 11th International Conference on Network and
Service Management (CNSM), Nov 2015, pp. 192–200.

[C6] B. Spinnewyn, J. Botero, and S. Latré, “Cost-effective replica management in fault-
tolerant cloud environments,” in Network and Service Management (CNSM), 2017 13th
International Conference on. IEEE, 2017, pp. 1–9.

[C7] B. Spinnewyn, C. Donato, J. F. Botero, and S. Latré, “Effective nfv orchestration for
wide-ranging services across heterogeneous cloud networks,” in Proceedings of IM 2019
(accepted for publication). IEEE, nov 2019.

[C8] R. Mennes, B. Spinnewyn, S. Latré, and J. F. Botero, “Greco: A distributed genetic algo-
rithm for reliable application placement in hybrid clouds,” in 2016 5th IEEE International
Conference on Cloud Networking (CLOUDNET), Oct. 2016, pp. 14–20.

Bibliography

[1] J. Markoff, “Building the electronic superhighway,” The New York Times, Jan 1993.

[2] “Dropbox,” https://www.dropbox.com/?landing=dbv2, 2018, (Accessed on 11/29/2018).

[3] “Muziek voor iedereen - spotify,” https://www.spotify.com/be-nl/, 2019, (Accessed on
01/16/2019).

[4] “Youtube tv - watch & dvr live sports, shows & news,” https://tv.youtube.com/welcome/,
2018, (Accessed on 09/10/2018).

[5] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862 – 876, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128609003387

[6] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti, “A survey of
software-defined networking: Past, present, and future of programmable networks,” IEEE
Communications Surveys Tutorials, vol. 16, no. 3, pp. 1617–1634, Third 2014.

[7] C. Tankard, “What the gdpr means for businesses,” Network Security, vol. 2016, no. 6,
pp. 5 – 8, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1353485816300563

[8] “Netflix belgië - kijk series online, kijk films online,” https://www.netflix.com/be/, 2019,
(Accessed on 01/16/2019).

[9] R. Jimenez, “Integrating smartphones in spotify’s peer-assisted music streaming service,”
PhD dissertation, School of Information and Communication Technology (ICT), Commu-
nication Systems, 2013.

[10] “How spotify migrated everything from on-premise to google cloud platform - comput-
erworld,” https://www.computerworld.com.au/article/644574/how-spotify-migrated-
everything-from-on-premise-google-cloud-platform/, 2019, (Accessed on 01/17/2019).

[11] “Twitch,” https://www.twitch.tv/, 2018, (Accessed on 09/10/2018).

[12] C. Zhang and J. Liu, “On crowdsourced interactive live streaming: a twitch. tv-based
measurement study,” in Proceedings of the 25th ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video. ACM, 2015, pp. 55–60.

8-8 BIBLIOGRAPHY

[13] J. Deng, G. Tyson, F. Cuadrado, and S. Uhlig, “Internet scale user-generated live video
streaming: The twitch case,” in International Conference on Passive and Active Network
Measurement. Springer, 2017, pp. 60–71.

[14] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on the edge
computing for the internet of things,” IEEE access, vol. 6, pp. 6900–6919, 2018.

[15] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica et al., “A view of cloud computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[16] B. Jennings and R. Stadler, “Resource management in clouds: Survey and research
challenges,” Journal of Network and Systems Management, vol. 23, no. 3, pp. 567–619,
2015.

[17] “G suite - gmail, google documenten, drive, agenda en meer voor bedrijven,” https:
//gsuite.google.com/, 2018, (Accessed on 11/29/2018).

[18] “Online meeting software with hd video conferencing | gotomeeting,” https://www.
gotomeeting.com/, 2018, (Accessed on 11/29/2018).

[19] “What is aws? - amazon web services,” https://aws.amazon.com/what-is-aws/, 2018,
(Accessed on 11/29/2018).

[20] “Rackspace: Managed dedicated & cloud computing services,” https://www.rackspace.
com/, 2018, (Accessed on 11/29/2018).

[21] “Compute engine - iaas | compute engine | google cloud,” https://cloud.google.com/
compute/, 2018, (Accessed on 11/29/2018).

[22] “Apache openwhisk is a serverless, open source cloud platform,” https://openwhisk.
apache.org/, 2018, (Accessed on 11/29/2018).

[23] “Openlambda,” https://open-lambda.org/, 2018, (Accessed on 11/29/2018).

[24] “Azure functionsâĂŤserverless architecture | microsoft azure,” https://azure.microsoft.
com/en-us/services/functions/, 2018, (Accessed on 11/29/2018).

[25] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet
of things,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing.
ACM, 2012, pp. 13–16.

[26] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks,
vol. 54, no. 15, pp. 2787–2805, 2010.

[27] J. Al-Muhtadi, R. Campbell, A. Kapadia, M. D. Mickunas, and S. Yi, “Routing through
the mist: privacy preserving communication in ubiquitous computing environments,”
in Proceedings 22nd International Conference on Distributed Computing Systems, 2002,
pp. 74–83. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1022244

BIBLIOGRAPHY 8-9

[28] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: Architecture, challenges and applications,”
IEEE Network, vol. 26, no. 3, pp. 21–28, may 2012.

[29] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in your spare time,” ACM
SIGCOMM Computer Communication Review, vol. 37, no. 1, pp. 61–64, 2007.

[30] D. P. Paul Lipton, John Crandall, “Instance model for tosca version 1.0,” http://docs.oasis-
open.org/tosca/TOSCA-Instance-Model/v1.0/TOSCA-Instance-Model-v1.0.html, 2017,
(Accessed on 01/10/2019).

[31] “List of vnfs - functest - opnfv wiki,” https://wiki.opnfv.org/display/functest/List+Of+
VNFs, 2019, (Accessed on 01/24/2019).

[32] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” IBM Zurich Research
Laboratory, Tech. Rep. RFC 3234, 2002.

[33] B. Yi, X. Wang, K. Li, M. Huang et al., “A comprehensive survey of network function
virtualization,” Computer Networks, 2018.

[34] J. C. Linsey Miller, Nagesh Puppala, “Virtual video transcoding in the cloud,” Artesyn
Embedded Technologies, Intel, Dell, Tech. Rep., 04 2017.

[35] Y. Li and M. Chen, “Software-defined network function virtualization: A survey,” IEEE
Access, vol. 3, pp. 2542–2553, 2015.

[36] C. Somerville, “Small cell virtualization functional splits and use cases,” Small Cell Forum,
Tech. Rep. SFC159, 01 2016.

[37] M. Ersue, “Etsi nfv management and orchestration-an overview,” in Proc. of 88th IETF
meeting, 2013.

[38] J. Puchinger, G. R. Raidl, and U. Pferschy, “The multidimensional knapsack problem:
Structure and algorithms,” INFORMS Journal on Computing, vol. 22, no. 2, pp. 250–265,
2010.

[39] ISO/IEC-25010, “Systems and software engineering âĂŞ Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) âĂŞ System and software quality models.”
International Organization for Standardization, Geneva, CH, Standard, mar 2010.

[40] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible, “Improving perfor-
mance and availability of services hosted on iaas clouds with structural constraint-aware
virtual machine placement,” in Services Computing (SCC), 2011 IEEE International Confer-
ence on. IEEE, 2011, pp. 72–79.

[41] W. Wang, H. Chen, and X. Chen, “An availability-aware virtual machine placement
approach for dynamic scaling of cloud applications,” in Ubiquitous Intelligence & Computing
and 9th International Conference on Autonomic & Trusted Computing (UIC/ATC), 2012 9th
International Conference on. IEEE, 2012, pp. 509–516.

8-10 BIBLIOGRAPHY

[42] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso, C. Grimes, and
S. Quinlan, “Availability in globally distributed storage systems.” in OSDI, 2010, pp. 61–74.

[43] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin, “Lazy means smart: Reducing
repair bandwidth costs in erasure-coded distributed storage,” in Proceedings of International
Conference on Systems and Storage. ACM, 2014, pp. 1–7.

[44] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan, “Subtleties in tolerating correlated failures
in wide-area storage systems.” in Proceedings of the 3rd Symposium on Networked Systems
Design & Implementation, 2006.

[45] S. Ramabhadran and J. Pasquale, “Analysis of long-running replicated systems.” in
INFOCOM, vol. 2006, 2006, pp. 1–9.

[46] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A quantitative
comparison,” in Revised Papers from the First International Workshop on Peer-to-Peer
Systems, ser. IPTPS ’01. London, UK, UK: Springer-Verlag, 2002, pp. 328–338. [Online].
Available: http://dl.acm.org/citation.cfm?id=646334.687814

[47] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach, “Virtual network
embedding: A survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp. 1888–
1906, Fourth 2013.

[48] E. Amaldi, S. Coniglio, A. Koster, and M. Tieves, “On the computational complexity of
the virtual network embedding problem,” Electronic Notes in Discrete Mathematics, vol. 52,
pp. 213–220, 06 2016.

[49] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network embedding with
coordinated node and link mapping,” in INFOCOM 2009, IEEE. IEEE, 2009, pp. 783–791.

[50] M. Melo, S. Sargento, U. Killat, A. Timm-Giel, and J. Carapinha, “Optimal virtual network
embedding: Node-link formulation,” IEEE Transactions on Network and Service Management,
vol. 10, no. 4, pp. 356–368, 2013.

[51] A. Razzaq and M. S. Rathore, “An approach towards resource efficient virtual network
embedding,” in Evolving Internet (INTERNET), 2010 Second International Conference on.
IEEE, 2010, pp. 68–73.

[52] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embed-
ding through topology-aware node ranking,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 2, p. 38, 2011.

[53] J. Lischka and H. Karl, “A virtual network mapping algorithm based on subgraph isomor-
phism detection,” in Proc. of the 1st ACM workshop on Virtualized infrastructure systems
and architectures. ACM, 2009.

[54] S. Herker, A. Khan, and X. An, “Survey on Survivable Virtual Network Embedding
Problem and Solutions,” in Proceedings of ICNS 2013, The Ninth International Conference
on Networking and Services, mar 2013, pp. 99–104.

BIBLIOGRAPHY 8-11

[55] M. R. Rahman and R. Boutaba, “SVNE: Survivable virtual network embedding algorithms
for network virtualization,” IEEE Transactions on Network and Service Management, vol. 10,
no. 2, pp. 105–118, 2013.

[56] M. M. A. Khan, N. Shahriar, R. Ahmed, and R. Boutaba, “SiMPLE: Survivability in multi-
path link embedding,” in Proceedings of the 11th International Conference on Network and
Service Management, CNSM 2015, 2015, pp. 210–218.

[57] S. Chowdhury, R. Ahmed, M. M. ALAM KHAN, N. Shahriar, R. Boutaba, J. Mitra, and
F. Zeng, “Dedicated Protection for Survivable Virtual Network Embedding,” in IEEE
Transactions on Network and Service Management, 2016, pp. 1–1. [Online]. Available:
http://ieeexplore.ieee.org/document/7480798/

[58] G. A. WG, “5g architecture white paper,” 5GPPP Architecture Working Group, Tech. Rep.,
12 2017.

[59] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehensive survey,” IEEE
TNSM, vol. 13, no. 3, pp. 518–532, Sept 2016.

[60] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of resources in cloud computing
systems,” The Journal of Supercomputing, vol. 60, no. 2, pp. 268–280, 2012.

[61] Z. Zhong, K. Chen, X. Zhai, and S. Zhou, “Virtual machine-based task scheduling algorithm
in a cloud computing environment,” Tsinghua Science and Technology, vol. 21, no. 6, pp.
660–667, Dec 2016.

[62] R. Camati, A. Calsavara, and L. L. Jr, “Solving the Virtual Machine Placement Problem
as a Multiple Multidimensional Knapsack Problem,” in ICN 2014, The Thirteenth . . . ,
2014, pp. 253–260. [Online]. Available: http://www.thinkmind.org/index.php?view=
article{\&}articleid=icn{_}2014{_}11{_}10{_}30065

[63] A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding
with one-shot node and link mapping,” IEEE/ACM Trans. Netw., vol. 23, no. 3, pp. 1012–
1025, Jun. 2015. [Online]. Available: https://doi.org/10.1109/TNET.2014.2312928

[64] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating virtual network
functions,” in Network and Service Manage. (CNSM), 2015 11th Int. Conf. on. IEEE, 2015,
pp. 50–56.

[65] N. Bouten, J. Famaey, R. Mijumbi, B. Naudts, J. Serrat, S. Latré, and F. D. Turck, “Towards
nfv-based multimedia delivery,” in 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), May 2015, pp. 738–741.

[66] A. F. Ocampo, J. Gil-Herrera, P. H. Isolani, M. C. Neves, J. F. Botero, S. Latré, L. Zam-
benedetti, M. P. Barcellos, and L. P. Gaspary, “Optimal service function chain composition
in network functions virtualization,” in IFIP International Conference on Autonomous In-
frastructure, Management and Security. Springer, 2017, pp. 62–76.

8-12 BIBLIOGRAPHY

[67] M. Rost and S. Schmid, “Service chain and virtual network embeddings: Approximations
using randomized rounding,” CoRR, vol. abs/1604.02180, 2016. [Online]. Available:
http://arxiv.org/abs/1604.02180

[68] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware placement of
interdependent nfv middleboxes,” in IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, May 2017, pp. 1–9.

[69] O. Houidi, O. Soualah, W. Louati, M. Mechtri, D. Zeghlache, and F. Kamoun, “An efficient
algorithm for virtual network function scaling,” in GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Dec 2017, pp. 1–7.

[70] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente, “Cloud brokering
mechanisms for optimized placement of virtual machines across multiple providers,” Future
Generation Computer Systems, vol. 28, no. 2, pp. 358–367, 2012.

[71] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center networks with
traffic-aware virtual machine placement,” in INFOCOM, 2010 Proceedings IEEE. IEEE,
2010, pp. 1–9.

[72] R. N. Calheiros, R. Buyya, and C. A. F. D. Rose, “A heuristic for mapping virtual machines
and links in emulation testbeds,” in 2009 International Conference on Parallel Processing,
Sep. 2009, pp. 518–525.

[73] G. Somani, P. Khandelwal, and K. Phatnani, “Vupic: Virtual machine usage based place-
ment in iaas cloud,” arXiv preprint arXiv:1212.0085, 2012.

[74] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable virtual network
embedding in optical datacenter networks,” IEEE/OSA Journal of Optical Communications
and Networking, vol. 7, no. 12, pp. 1160–1171, 2015.

[75] K. Inoue, S. Arakawa, S. Imai, T. Katagiri, and M. Murata, “Noise-induced vne method
for software-defined infrastructure with uncertain delay behaviors,” Computer Networks,
vol. 145, pp. 118–127, 2018.

[76] A. Marotta and A. J. Kassler, “A power efficient and robust virtual network functions place-
ment problem,” in 28th International Teletraffic Congress (ITC 28), WÃijrzburg, Germany,
2016.

[77] C. Ghribi, M. Mechtri, O. Soualah, and D. Zeghlache, “Sfc provisioning over nfv enabled
clouds,” in 2017 IEEE 10th Int. Conf. on Cloud Computing (CLOUD), June 2017, pp. 423–
430.

[78] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained virtual network
embedding lc-vne algorithms towards integrated node and link mapping,” IEEE/ACM
Trans. on Networking, vol. 24, no. 6, pp. 3648–3661, December 2016.

[79] S. Haeri and L. TrajkoviÄĞ, “Virtual network embedding via monte carlo tree search,”
IEEE Transactions on Cybernetics, vol. 48, no. 2, pp. 510–521, Feb 2018.

BIBLIOGRAPHY 8-13

[80] T. Wang, X. Lu, and M. Hou, “Novel algorithm for distributed replicas management based
on dynamic programming,” Journal of Systems Engineering and Electronics, vol. 17, no. 3,
pp. 669–672, 2006.

[81] B. Meroufel and G. Belalem, “Managing data replication and placement based on avail-
ability,” AASRI Procedia, vol. 5, pp. 147–155, 2013.

[82] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, “Piecing together
the nfv provisioning puzzle: Efficient placement and chaining of virtual network functions,”
in Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on. IEEE,
2015, pp. 98–106.

[83] T. Lukovszki and S. Schmid, “Online admission control and embedding of service chains,”
in Int. Colloquium on Structural Information and Communication Complexity. Springer,
2015, pp. 104–118.

[84] Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin, “Virtual function placement
for service chaining with partial orders and anti-affinity rules,” Networks, vol. 71, no. 2,
pp. 97–106, 2018.

[85] M. T. Beck and J. F. Botero, “Scalable and coordinated allocation of service function
chains,” Computer Communications, vol. 102, no. Supplement C, pp. 78 – 88, 2017.

[86] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains of virtual network
functions,” in Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference on.
IEEE, 2014, pp. 7–13.

[87] S. Ghiasvand, F. M. Ciorba, R. Tschüter, and W. E. Nagel, “Lessons learned from spatial
and temporal correlation of node failures in high performance computers,” in Paral-
lel, Distributed, and Network-Based Processing (PDP), 2016 24th Euromicro International
Conference on. IEEE, 2016, pp. 377–381.

[88] R. Li, Y. Hu, and P. P. Lee, “Enabling efficient and reliable transition from replication to
erasure coding for clustered file systems,” IEEE Transactions on Parallel and Distributed
Systems, 2017.

[89] F. Chen, J.-G. Schneider, Y. Yang, J. Grundy, and Q. He, “An energy consumption model and
analysis tool for cloud computing environments,” in Proceedings of the First International
Workshop on Green and Sustainable Software. IEEE Press, 2012, pp. 45–50.

[90] J. Xu and J. a. B. Fortes, “Multi-objective Virtual Machine Placementin Virtualized Data
Center Environments,” in 2010 IEEE/ACM Int’l Conference on \& Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), ser. GREENCOM-CPSCOM ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 179—-188.

[91] Y. Ren, J. Suzuki, A. Vasilakos, S. Omura, and K. Oba, “Cielo: An evolutionary game
theoretic framework for virtual machine placement in clouds,” in Proceedings - 2014
International Conference on Future Internet of Things and Cloud, FiCloud 2014, aug 2014,
pp. 1–8.

8-14 BIBLIOGRAPHY

[92] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. De Turck, “Cost-Effective
feature placement of customizable multi-tenant applications in the cloud,” Journal of
Network and Systems Management, vol. 22, no. 4, pp. 517–558, 2014.

[93] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, “Virtual network
embedding: A survey,” IEEE Communications Surveys and Tutorials, vol. 15, no. 4,
pp. 1888–1906, 2013. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6463372

[94] H. Moens, B. Hanssens, B. Dhoedt, and F. De Turck, “Hierarchical network-aware place-
ment of service oriented applications in clouds,” in IEEE/IFIP NOMS 2014 - IEEE/IFIP
Network Operations and Management Symposium: Management in a Software Defined
World, 2014, pp. 1–8.

[95] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network resources to virtual
network components,” in Proceedings - IEEE INFOCOM, apr 2006, pp. 1–12.

[96] M. Ajtai, N. Alon, J. Bruck, R. Cypher, C. Ho, M. Naor, and E. Szemeredi, “Fault
tolerant graphs, perfect hash functions and disjoint paths,” in Proceedings., 33rd Annual
Symposium on Foundations of Computer Science, oct 1992, pp. 693–702. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=267781

[97] M. Mihailescu, S. Sharify, and C. Amza, “Optimized application placement for network
congestion and failure resiliency in clouds,” in 2015 IEEE 4th International Conference on
Cloud Networking, CloudNet 2015, oct 2015, pp. 7–13.

[98] M. J. Csorba, H. Meling, and P. E. Heegaard, “Ant system for service deployment
in private and public clouds,” in Proceeding of the 2nd workshop on Bio-inspired
algorithms for distributed systems - BADS ’10. ACM, 2010, p. 19. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1809018.1809024

[99] W.-L. Yeow, C. Westphal, and U. Kozat, “Designing and embedding reliable virtual
infrastructures,” Proceedings of the second ACM SIGCOMM workshop on Virtualized
infrastructure systems and architectures - VISA ’10, vol. 41, no. 2, p. 33, 2010. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1851399.1851406

[100] K. B. Laskey and K. Laskey, “Service oriented architecture,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 1, no. 1, pp. 101–105, 2009. [Online]. Available:
http://dx.doi.org/10.1002/wics.8

[101] P. D. Justesen, Multi-objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, 2009, vol. Confirmati.

[102] J. F. Gonçalves and M. G. C. Resende, “Biased random-key genetic algorithms for
combinatorial optimization,” Journal of Heuristics, vol. 17, no. 5, pp. 487–525, 2011.
[Online]. Available: http://link.springer.com/10.1007/s10732-010-9143-1

[103] J. Dean and S. Ghemawat, “Simplified data processing on large clusters,” Sixth Symp.
Oper. Syst. Des. Implement., vol. 51, no. 1, pp. 107–113, 2004.

BIBLIOGRAPHY 8-15

[104] L. LIU and M. T. ÖZSU, Eds., Multi-Tier Architecture. Boston, MA: Springer US, 2009,
pp. 1862–1865. [Online]. Available: http://www.springerlink.com/index/10.1007/978-
0-387-39940-9{_}652

[105] A. Broder, “Generating random spanning trees,” in 30th Annual Symposium
on Foundations of Computer Science, oct 1989, pp. 442–447. [Online]. Available:
http://www.computer.org/portal/web/csdl/doi/10.1109/SFCS.1989.63516

[106] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an internetwork,”
in Proceedings of IEEE INFOCOM ’96. Conference on Computer Communications, ser.
INFOCOM’96, vol. 2. Washington, DC, USA: IEEE Computer Society, 1996, pp. 594–602.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1895868.1895900

[107] “Amazon EC2 Instance Comparison,” https://aws.amazon.com/ec2/ instance-types,
2016. [Online]. Available: http://www.ec2instances.info

[108] “Nfv, network functions virtualisation and use-cases,” ETSI GS NFV 001 V1. 1.1 (2013-
10), Tech. Rep., 2013.

[109] Binz, Tobias and Breitenbücher, Uwe and Kopp, Oliver and Leymann, Frank, “TOSCA:
portable automated deployment and manage. of cloud applications,” in Advanced Web
Services. Springer, 2014, pp. 527–549.

[110] A. Schrijver, "Theory of linear and integer programming", ser. Interscience in discrete
mathematics and optimization. Wiley, New York, 1986.

[111] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness. W. H. Freeman and Company, 1979.

[112] P. Slavík, “A tight analysis of the greedy algorithm for set cover,” in Proc. of the twenty-
eighth annual ACM symposium on Theory of computing. ACM, 1996, pp. 435–441.

[113] E. Q. V. Martins and M. M. B. Pascoal, “A new implementation of yen’s ranking loopless
paths algorithm,” Quarterly J. of the Belgian, French and Italian Operations Research
Societies, vol. 1, no. 2, Jun 2003.

[114] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2016. [Online]. Available:
http://www.gurobi.com

[115] L. Shengquan, W. Chunming, Z. Min, and J. Ming, “An efficient virtual network embed-
ding algorithm with delay constraints,” in 2013 16th International Symposium on Wireless
Personal Multimedia Communications (WPMC), June 2013, pp. 1–6.

[116] “Prometheus - monitoring system & time series database,” https://prometheus.io/,
2019, (Accessed on 01/10/2019).

[117] “Build the future of open infrastructure.” https://www.openstack.org/, 2019, (Accessed
on 01/10/2019).

