Universiteit
Antwerpen

This item is the archived peer-reviewed author-version of:

Model-driven round-trip engineering for TinyOS-based WSN applications

Reference:
Marah Hussein, Kardas Geylani, Challenger Moharram.- Model-driven round-trip engineering for TinyOS-based WSN applications

Journal of Computer Languages - ISSN 2665-9182 - 65(2021), 101051
Full text (Publisher's DOI): https://doi.org/10.1016/J.COLA.2021.101051
To cite this reference: https://hdl.handle.net/10067/1789500151162165141

uantwerpen.be

\‘\‘LE

Institutional repository IRUA

Model-driven Round-trip Engineering for TinyOS-based WSN Applications

Hussein Marah!?, Geylani Kardas*2, Moharram Challenger®*

L Johannes Kepler University Linz, Austria
2 International Computer Institute, Ege University, Turkey
3 Department of Computer Science, University of Antwerp, Belgium
4AnSyMo/CoSys Core Lab, Flanders Make Research Center, Flanders, Belgium
Thussein.marah@jku.at
2geylani.kardas@ege.edu.tr
3moharram.challenger@uantwerpen.be

Abstract

Wireless Sensor Network (WSN) applications working on TinyOS operating system
is widely used in various areas. However, the requirement of managing the power con-
straints makes TinyOS different from ordinary systems and hence building WSNs with
TinyOS can be a challenging and time-consuming task. As successfully applied in many
other domains, model-driven engineering (MDE) can facilitate the design and imple-
mentation of such applications. Within this context, the researchers have performed
noteworthy studies on deriving various MDE approaches and tools. However, these
studies do not support the synchronization between TinyOS application models and
the generated programs especially when any change is made in the programs. Hence,
in this paper, we introduce a model-driven round-trip engineering (RTE) methodology
in which both the MDE of TinyOS applications and synchronization between TinyOS
instance models and corresponding code are provided with the use of a toolchain.
A domain-specific modeling language, called DSMLA4TinyOS is used for the MDE of
such applications while existing TinyOS programs can be reverse engineered in an en-
vironment, called RE4TinyOS. Models retrieved from the existing programs can be
automatically processed again with DSML4TinyOS. Evaluation results showed that
it is possible to obtain the configurations of the TinyOS applications completely just
modeling with DSML4TinyOS whereas the same process leads the automatic creation
of almost half of the module parts of these applications. Moreover, the time required
for developing such systems from scratch decreased approximately to its half. The re-
sults also showed that both model-code synchronization and the integration of existing
TinyOS applications which do not have system models previously, into the proposed
MDE are possible with using RE4TinyOS. RE4TinyOS succeeded in the reverse en-
gineering of all main parts of the TinyOS applications taken from the official TinyOS
Github repository and generated models were able to be visually processed in the MDE
environment for further modifications.

Keywords: Model-driven Engineering, Round-trip Engineering, Wireless Sensor
Networks, TinyOS, DSML4TinyOS, RE4TinyOS

*Corresponding author

10

15

20

25

30

35

40

45

1 Introduction

Due to having low-power micro-controllers and spatially dispersed sensors, Wireless Sen-
sor Networks (WSNs) [1] are used in many application domains (e.g. healthcare [2], field
monitoring [3], transportation [4], military [5] and smart buildings [6]) to control both the
status of physical objects and the surrounding circumstances like sound, pressure, vibration,
light, temperature, and motion. Moreover, WSNs also enable the acquisition of long-term
industrial environmental data for the Internet of Things (IoT) applications [7].

One of the widely used operating systems for WSNs is TinyOS [8]. TinyOS is an open-
source operating system for WSNs, developed in the University of California, Berkeley. It is a
lightweight and flexible operating system that offers a set of services such as communication,
timers, sensing, storage and these services can be reusable to compose larger applications.
These features make TinyOS a reliable and efficient system for programming, configuring and
running low-power wireless devices [8][9]. However, especially the requirement of managing
the power constraints makes TinyOS different from ordinary systems and hence building
WSNs with TinyOS can be a challenging and time-consuming task. Moreover, the developers
need to have deep knowledge and skills in the special programming language of TinyOS,
called nesC to implement such systems [9]. Adoption to this language may be difficult and
again time-consuming for the programmers.

As successfully applied in many other domains (e.g. [10, 11, 12, 13]), model-driven engi-
neering, (MDE), mostly supported with the use of domain-specific languages (DSLs) [14, 15]
or domain-specific modeling languages (DSMLs) [16], can also provide a convenient way of
developing TinyOS applications for WSNs by leveraging the abstraction level before delving
into programming with nesC and hence help minimizing the abovementioned difficulties of
WSN development. Within this context, there are many studies taking into account the
use of MDE (e.g. [17, 18, 19, 20, 21, 22, 23]) and / or proposing new DSLs / DSMLs (e.g.
[24, 25, 26, 27]) for WSN and TinyOS application development. However, these studies
do not support the synchronization between TinyOS application models and the generated
nesC programs especially when any change is made in the programs. Mostly, following
the code generation from the models, the auto-generated code is modified to completely
meet with the requirements of the TinyOS applications. Furthermore, the applications may
naturally evolve according to the changing requirements in the future. After the code mod-
ifications are performed, related changes will make models at different levels asynchronous
and inconsistent [28]. Thus we need to propagate these changes to the models and ensure a
proper model-code synchronization [29] for TinyOS application models. Hence, in this pa-
per, we introduce a model-driven round-trip engineering (RTE) methodology in which both
the MDE of TinyOS applications and synchronization between TinyOS instance models and
corresponding code are provided with the use of a toolchain.

As depicted in Figure 1, evolution of the TinyOS models can be managed within the
proposed model-driven RTE process which is a combination of the forward and reverse
engineering of TinyOS models. TinyOS models can be designed and created with using
a DSML called DSML4TinyOS and the corresponding TinyOS code can be automatically
generated. When this code is modified and becomes TinyOS code', this modified code can be
processed in a reverse engineering platform, called RE4TinyOS, to retrieve the corresponding
modified model (still an instance of TinyOS metamodel) which properly reflects the changes
in the application code. RE4TinyOS enables retrieving TinyOS application models from any
existing nesC code. In addition to support the reverse engineering of such applications, use
of RE4TinyOS also integrates with the current MDE process brought by the DSML4TinyOS

50

55

60

65

70

TinyOS MetaModel

Conforms To Conforms To

Original TinyOS | pjatform-Specific
Model Modeling

Model to Code
Transformation

TinyOS Code' TinyOS Code Eafget Platform
oae

Figure 1: Forward and reverse engineering for TinyOS applications

Modified TinyOS
Model

Reverse Engineering
Buuaauibug premio4

language to construct a complete model-driven RTE [30] process for TinyOS applications.

This study is an extended version of our previous study introduced in [31]. Tt differs from
the latter by including: 1) a complete model-driven RTE methodology composed of forward
engineering and reverse engineering steps, 2) an improved case study of using this new RTE
methodology showing how TinyOS applications can be both modeled and generated as well
as modifications made in the TinyOS programs can be automatically reflected to the models,
3) an evaluation of using the proposed RTE toolchain in the development of eight different
TinyOS applications with changing complexities. In this evaluation, application generation
and development time performances of using the proposed DSML are measured and the
analysis of the applied reverse engineering process is assessed.

The remainder of the paper is organized as follows: Section 2 gives the related work in
this area. Proposed model-driven RTE methodology is discussed in Section 3 with all its
steps and the tools. The usability of this methodology is demonstrated with a case study
in Section 4. Quantitative analysis and qualitative assessment of using the RTE toolchain
are discussed in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

In recent years, there is a significant interest of the researchers to apply MDE and its
techniques for WSN and IoT development (e.g. [24, 20, 21, 26, 23, 27]). In these studies,
the main goal of applying MDE approach is to facilitate the task of developing, building and
deploying different WSN and IoT applications [19, 32]. Various recent surveys and reviews
(e.g. [19, 33, 13, 34, 35, 36]) also discuss the wide use of MDE for WSN and IoT as well as
its applicability e.g. with visual programming environments.

Vicente-Chicote et al. [17] define three levels of abstraction which allow designers to build
domain-specific models, component-based architecture descriptions and platform-specific
models for the WSN application development. Automatic model transformations are imple-
mented between these abstraction levels for the MDE of such WSN applications. Baobab

75

80

85

90

95

100

105

110

115

120

metamodeling framework, introduced in [37], enables defining functional and non-functional
aspects of a WSN separately as software models, validates them and generates code auto-
matically within an MDE perspective. Similarly, ScatterClipse, a generative plugin-oriented
tool-chain, is proposed in [38] to develop WSN applications running on the ScatterWeb sen-
sor boards by using MDE. The tool aims to automate and standardize the generation of
application system families for these sensor boards.

Mozumdar et al. [39] propose a system development framework based on Simulink to
design and implement sensor network components at both protocol and application layers.
Following modeling and simulation steps, it is possible to generate application code from
the simulated models for different target operation systems. Thang and Geihs [40] address
the problem of optimizing power consumption and memory usage in the application design
process and introduces an approach that integrates Evolutionary Algorithms with MDE
where the system metamodels are generated to select the optimal model according to some
performance criteria. Another modeling framework [18] allows developers to model sepa-
rately the WSN software architecture and the features of the low-level hardware as well as
the physical environment of the nodes of a WSN. The framework is capable of generating
code from the created models which can be used for specific purposes such as analysis.

The study in [41] brings an MDE approach for prototyping and optimization of WSN
applications while Veiset and Kristensen [42] introduce the use of Coloured Petri Net models
for generating TinyOS protocol software. Likewise, the use of a DSL, called SenNet, for WSN
application development is proposed in [25, 43] to prepare WSN applications using multi-
abstraction levels. Rodrigues et al. first introduce a layered WSN application development
approach [44] to meet the system development requirements of both novice and experienced
programmers and then they provide an improved version of their development model [22]
which aims at facilitating the development tasks required for Wireless Sensor and Actuator
Network (WSAN) applications inside an MDA-based process. The proposed infrastructure
is composed of a platform-independent model (PIM), a platform-specific model (PSM), and
a transformation process which allows modeling and generation of these applications.

Another DSL, called LWiSSy, is introduced in [24] to model WSAN systems based on
the three dimensions, namely developer profile, specification granularity and design. The
developer profile considers domain or network experts while specification granularity ranges
from network to single node programming. Finally, design dimension is specified with using
a metamodel. Code generation is provided again according to MDA specifications. Tei et
al. [20] define an MDD-based stepwise software development process for WSNs by both
enabling separation of concerns and bringing reusable solutions for network-related issues.
Based on their evaluation, this new process improves WSN software development by signif-
icantly reducing the modeling steps for node-level and group-level processes. Taking into
consideration the event-driven mechanism and protothread architecture of Contiki operating
system, Durmaz et al. [21] introduce a metamodel for IoTs. This metamodel is extended
in [23] to create a modeling environment which provides generating programs for Contiki-
based IoT systems. The use of this new IoT modeling environment is exemplified for the
implementation of a smart fire detection system.

Barricelli and Valtolina [26] investigate the use of a visual language’s elements to indi-
rectly manage physical devices and their data streams without the need to know technical
specification of the devices, the applications, and the data. For this purpose, a rule language
is developed for the eWellness domain which allows coaches and trainers to express complex
rules and temporal constraints for team sports through a visual interface. Similarly, Smart
Block [27] benefits from the features of the visual block programming to create IoT appli-

125

130

135

140

145

150

155

160

165

cations. Originating from IoT automation, Smart Block supports writing IoT applications
in the event-condition-action (ECA) style which is implemented with Google Blockly. The
use of this language also enables checking the redundancy, inconsistency, and circularity in
the ECA rules before generating code for the application.

The above mentioned studies provide various noteworthy approaches both for model-
ing WSN and IoT applications in different abstraction levels and code generation for these
applications, mostly assisted with tools. Moreover, some of them specifically support the
development of TinyOS applications within the MDE perspective. However, to the best of
our knowledge, none of them considers the reflection of changes made after in the gener-
ated code to the corresponding application models, i.e. an approach for constructing the
synchronization between WSN/IoT model and code does not exist. In addition, with a
few exceptions (e.g. [24, 20, 27]) the evaluation of the proposed MDE approaches in these
studies is mostly limited with single case studies showing how these approaches can be ap-
plied. We believe that the methodology, introduced in this paper, may contribute to these
efforts by filling this gap as well as supporting the round-trip engineering of TinyOS WSN
applications within a toolchain consists of both generating code from TinyOS application
models and retrieving models from the existing code automatically.

Taking into consideration of applying reverse engineering and/or round-trip engineering
in the context of MDE, various adoptions exist for different domains as surveyed in [45]. Per-
haps one of the most popular approaches is MoDisco [46], which follows the MDE concepts
and techniques to represent the legacy software systems in a different formalism by using
reverse engineering. The infrastructure of MoDisco introduces generic components that can
be used in the model-driven reverse engineering process (e.g., generic metamodels, model
navigation, model transformation and model customization). Favre et al. [47] describe an
operation for generating MDA models that combines the process of static and dynamic
analysis. Model recovery is illustrated with the reverse engineering of Java code to get class
and state diagrams. Fruitful applications of model-driven reverse engineering can also be
seen in e.g. transforming legacy COBOL code into models [48], model discovery from Java
source code to extract the business rules [49], generating GUI models of the explicit layouts
especially for Java Swing user interfaces [50], restoring extended entity-relationship schema
from NoSQL property graph databases [51] and even achieving reusable and evolvable model
transformations [52]. Also, another different approach is presented in [53] to achieve model
synchronization from model transformations implemented by using Atlas Transformation
Language (ATL). With a unidirectional transformation between metamodels, the approach
can automatically synchronize models in the metamodels by disseminating changes over
these models.

The study conducted in [54] tries to tackle the issues when developing control algo-
rithms for mechatronic by proposing a round-trip engineering approach which allows a
semi-automatic integration of hardware properties into the control model. Another study
[55] aims at applying a round-trip engineering process for NoSQL database systems. The
developed framework is based on MDE and combines the forward and reverse engineering
to enrich the created models. A programming toolkit for native Java applications based
on the round-trip engineering is presented in [56]. This toolkit provides a visualization
to the source code so the code can be edited and changes can be reflected to the design
model. Similarly, Buchmann et al. [57], provides a round-trip engineering tool which sup-
ports a bidirectional transformation between class diagrams and Java source code. However,
round-trip engineering of WSN and TinyOS applications is not addressed again in all these
studies.

170

175

180

185

190

195

DSMLATinyOS Generated nesC
Instance Model Code

%
H Forward Engineering H
1 oo () moo [
[
Figure 2: Overview of the proposed forward engineering approach

3 Round-trip Engineering Methodology

In this section, our RTE methodology for developing TinyOS applications is discussed. In
many MDE processes, model transformations are applied between source and target models,
usually from higher to lower abstraction levels. Changes on the artifacts achieved from the
transformation processes are inevitable, so, it is important to preserve the coherency of
the whole system and keep the source and target consistent [28]. Thus, the role of RTE
engineering is to provide a bidirectional synchronization mechanism which embodies a path
where a bidirectional synchronization is provided across the models. RTE also enables
moving forward and backward inside the whole process without losing the trace [58].

As we stated before, there are two main parts of our RTE methodology: the first part
covers the MDE of TinyOS applications in accordance with MDA by applying a forward
engineering (FE) process. In this part, TinyOS applications are modeled and the corre-
sponding code is generated using the DSML4TinyOS modeling environment. The second
part of the RTE allows software models to be recovered from an existing TinyOS applica-
tion using the reverse engineering (RE) features brought by the RE4TinyOS environment.
Changes made in an existing TinyOS application are automatically reflected into the model
of this application hence the model-code synchronization is provided. These two parts of the
methodology can be operated in a lifecycle, making model-driven RTE possible for TinyOS
applications. Following subsections discuss these parts of the methodology.

3.1 Forward Engineering with DSML4TinyOS

In the proposed methodology, model-driven development of TinyOS applications is provided
using a DSML, called DSML4TinyOS. DSML4TinyOS language is supported with an IDE in
which the graphical syntax of the language is used for creating TinyOS application models
and then the corresponding code is generated from these models by automatically applying
the translational semantics of the language, which is a well-known and widely applied tech-
nique in MDE (e.g. [59, 60]). As illustrated in Figure 2, this top-down software development
process leads to the FE of TinyOS applications in which an automatic transformation from
system models at a higher abstraction level to TinyOS (nesC) code at a more concrete level
is possible by using only DSML4TinyOS.

DSML4TinyOS is a tool-supported DSML which facilitates the development of TinyOS

200

205

210

215

220

225

applications according to MDE principles and techniques. Its tool enables TinyOS de-
velopers to develop applications from scratch by visually modelling these applications and
generate code as the final artefact. The abstract syntax of DSML4TinyOS language is based
on the metamodel we introduce in [61]. Originating from TinyOS programming language
(nesC), this metamodel includes the meta-entities and their relations for modeling TinyOS
applications. TinyOS applications mainly have two parts, "Module” and ”Configuration”.
These parts are also called components and they compose the core of the TinyOS applica-
tion structure. These components must be linked together to execute the programs. The
”"Module” part is responsible to define the interfaces as "uses” or ”provides”, also, it im-
plements the application’s desired functions. A module defines ”Events” and ” Commands”
and it owns a C-like syntax on its implementation part. The ” Configuration” works as ”wire
station” for the TinyOS application, where the components used in the "Module” file are
defined and linked together to create the complete program [9].

The tool supporting DSML4TinyOS has an EMF-based graphical modeling environment
which enables creating DSML4TinyOS instance models according to DSML4TinyOS syntax
and semantics definitions. Related modeling environment (see Figure 3) is built on the
widely used Sirius platform.

Concept Notation Concept Notation
Mote (((-))) Application
Module Configuration
Components Interface

Module_Signature Configuration_Signature

HEAO|E)| &2
L @ 63| 131 01 || el

Component nesC
Function Wiring
Event Command
Configuration Implementation (/) Module Implementation (/)
Task _:ﬁ

Table. 1: DSML4TinyOS concrete syntax notations

Table 1 lists the graphical notations used for the concrete syntax of the DSML4TinyOS
language. TinyOS application models can be created by simply adding the language ele-
ments from the menu of the DSML4TinyOS tool. Implementation of the modeled applica-
tions can be automatically achieved via the code generation. In section 4, we will discuss
both the example model shown in Figure 3 and nesC code (see Listing 2 and Listing 3)
generated from this instance model. DSML4TinyOS benefits from the features of Acceleo !
code generator to perform the code/text (M2T) transformations to generate the templates
of the implementation files from instance TinyOS models. In addition, to improve the per-
formance of the DSML4TinyOS, a static semantics in the modeling environment is defined

L Acceleo M2T Language, https://www.eclipse.org/acceleo/

230

235

240

245

and domain rules, such as name conflicts, are implemented as constraints to automatically
check the application instance models designed by the developers before generating code.
These constraints are implemented in Acceleo Query Language(AQL) 2. The static seman-
tics improves the quality of models and accordingly the quality of the generated code.

4 myProgram tinyos_metamodel 7 & new Application diagram 52

5 Resource Set Br@i-|f|lO-w-mBla-|@B-[@A6sx -|@m i

p : e/tinyos_testl0_MyProgram_or/yl inyos. -
4 () Moted
4 Application MyProgram
[compenent Medule Compenent
Meodule MyProgramC
2 48> Module Signature
[E] interface Leds
[E) interfoce Boot
[E] Inteface Timer<TMilli> as AllLedBlink
4 <22 Module Implementation

€2 nes C uint8_t counter =0;
(& Event Boot.booted()
& Event AllLedBlink fired()
Include Decleration Timer.h
4 [Component Configuration Companent
4 T Configuretion MyProgramAppC
€8> Configuration Signature

4 €22 Configuration Implementation
< B Wiing
€+ nes C MyProgramC Boot -> MainC
€ nes C MyProgramC AllLedBlink -> AllLedTimer

€2 nes C MyProgramC Ledis - LedsC

% Components MyProgram<
4 Components MainC
B Components LedsC

- . T awwsn s e
Selection | Parent | List Tree| Table Treewith Columns

Figure 3: DSML4TinyOS graphical modeling environment

As mentioned above, TinyOS application models, conforming to the TinyOS metamodel,
are stored as XMI files and they can be modified inside the DSML4TinyOS tool by adding
or removing components. These changes are automatically reflected into the correspond-
ing application code again by the tool. Similarly, the TinyOS application models retrieved
by the RE4TinyOS interpreter (discussed in the next subsection) from the existing imple-
mentations can also be shown and processed again inside DSML4TinyOS tool. Hence, the
synchronization of the system model and the existing implementation is realized in case of
any modification made on the model or the code.

3.2 Reverse Engineering with RE4TinyOS

This section discusses the second part of the RTE methodology which enables the MDE-
based RE of WSN applications running on TinyOS. Figure 4 gives a straightforward depic-
tion of how RE works according to MDE concepts to convert the TinyOS code to a TinyOS
model for any application.

TinyOS applications are written in a special programming language, called nesC for
networked embedded systems. The nesC programming model combines the features of C
programming language with the special needs in the WSN domain such as event-driven
execution and component-oriented design [62]. In this study, we introduce the RE4TinyOS
tool, which is designed to read any TinyOS application code written in nesC as the input and
automatically generate the counterpart domain model representing this TinyOS application.
Each RE output model is a serialized DSML4TinyOS instance and these models can be

2Acceleo Query Language, https://www.eclipse.org/acceleo/documentation/aql.html

250

255

260

265

270

275

automatically opened in the graphical modeling environment of DSML4TinyOS for further
processing if needed.

TinyOS Application TinyOS Model
%
E Reverse Engineering H

U ooe (:Z) oo H

Figure 4: Overview of the proposed reverse engineering approach

To recognize the syntax and all the valid components (symbols, characters and expres-
sions) of a particular programming language, a language recognizer or language interpreter
is needed to read the elements and differentiate them from other normal statements of this
language [63]. The language recognizer is used for different purposes like building a compiler
or maybe analyze parts of the code to perform some operations. As it is well-known, parsing
is the process of syntax analysis and breaks down the syntax of the language into smaller
structures of symbol strings conforming to the formal rules and the grammar that govern
the language. Also, parsers or syntax analyzers provide the identification of the languages.
Since our aim is to retrieve the model of the WSN application from its program code, parsing
is an essential process to identify and analyze the input TinyOS code.

We followed a two-step method to create the environment required to the reverse en-
gineering of TinyOS applications. The first step is to design the parser, called TinyOS
parser, that can read any TinyOS code, and by parsing the input, we can obtain the useful
or desired parts of the TinyOS code in order to use them to build the model. The second
step is implementing this parser design as a Java application that can read any TinyOS
application code and extract the main elements and components from the code and hence
build the TinyOS model.

Among many alternatives for the parser generator (e.g. ANTLR?, GNU Bison*, Gold?®,
Ragel®, Yacc”), ANTLR was utilized to build the TinyOS parser in this study. ANTLR
(ANother Tool for Language Recognition) is a well-known computer-based language recog-
nition tool, or more specifically a parser generator [64]. Features such as having a simple
design, facilitating both lexing and parsing, providing various tools to inspect the parse
tree and debugging the grammar as well as its flexibility to support various programming
languages caused us to prefer ANTLR.

During a parser design, writing the grammar is a very crucial phase. It is the phase
where the parser designers write the rules (Lexer and Parser rules) depending on analyzing
the target system for their domains which in our case is the TinyOS system (i.e., the rules

3ANTLR, https://www.antlr.org/

4GNU Bison, https://www.gnu.org/software/bison/

5Gold, http://www.goldparser.org/

6Ragel, https://github.com/adrian-thurston/ragel

"Yacc, https://www.tuhs.org/cgi-bin/utree.pl?file=V6 /usr/source/yacc

280

285

290

are written according to what type of input that will be parsed and what are the important
information and parts are needed to be extracted). Listing 1 includes a small fragment from
the parser rules we created by using ANTLR. In this parser implementation, more than 300
lines of grammar were prepared besides the lexer rules.

Listing 1: Excerpts from TinyOS parser rules

compilationUnit
(includeDeclarationModule* componentDeclaration)? (includeDeclarationConfiguration*
< componentDeclaration EOF) ;
includeDeclarationModule
'#' INCLUDE qualifiedName ;
includeDeclarationConfiguration
'#' INCLUDE qualifiedName ;
qualifiedName
: singleline ;
componentDeclaration
: moduleDeclaration
| configurationDeclaration ;
//This part is for the module file
moduleDeclaration
: moduleSignature moduleImplementation ;
moduleSignature
: MODULE moduleName '('? ')'? moduleSignatureBody ;
moduleName
: singleline ;
moduleSignatureBody
'{'" usesOrProvides* '}' ;
usesOrProvides
: usesState
| providesState ;
usesState
: USES INTERFACE usesInterfaceDescription* ';'
| USES '{' (INTERFACE usesInterfaceDescription ';')* '}' ;
providesState
: PROVIDES INTERFACE providesInterfaceDescription* ';'
| PROVIDES '{' (INTERFACE providesInterfaceDescription ';')* '}' ;

The above excerpts show the general structure of the written parser rules. For instance,
the line that starts with “compilationUnit”, is considered as the start point of the whole
parsing process. It states that two options exists; the first for the TinyOS model and the
second for the TinyOS configuration that ends with “EOF” condition. The “component-
Declaration” line includes two main parts which are “moduleDeclaration” and “configura-
tionDeclaration” respectively. The separator character ‘I’ declares that when the parsing
process starts it has two options, module or configuration as they are the two main files of
any TinyOS application. “moduleDeclaration” contains the details of the declaration. It
has two parts which are “moduleSignature” and “modulelmplementation” respectively. It
is worth indicating that these two parts are not separated by the ‘I’ character, which means

10

295

300

305

310

315

320

325

that any module should have both signature and implementation.

Since our aim is to build models by parsing TinyOS programs, the metamodel for
TinyOS, which we previously introduced in [61], was considered as the main reference
model and the TinyOS Parser was written and designed with consistency to the TinyOS
metamodel.

The next step after creating the TinyOS Parser is to use this parser and hence benefit
from its features. ANTLR has the property to transform or, in more specific words, generate
codes from ANTLR-based parsers to several commonly-used programming languages like
Java, Python, JavaScript, Go, C++ and Swift [64]. In our case, the target language is Java.
An overview of the constructed TinyOS parser is shown in Figure 5.

parser grammar -

Generates AST from

lexer grammar

Implements AST in

Reads input
nesC

Figure 5: Parsing process for TinyOS applications

As depicted in the previous figure, our TinyOS Parser is taking the produced tokens
from the Lexer and constructs a data structure known as Abstract Syntax Tree (AST) for
the parsed TinyOS code. The created AST here records how the input structure and the
components have been recognized by the TinyOS Parser. By default, the runtime library in
ANTLR provides a mechanism for walking through the constructed AST and this operation
is called a tree-walking. In our approach, the primary provided parse-tree-walker mechanism
called “Parse-Tree Listener” [64] was used to walk the built tree of the TinyOS applications.
Finally, the “Parse-Tree Listener” is integrated and implemented in a Java application-
specific code which reads TinyOS programs (nesC codes) as input and calls every node in
the constructed tree of the parsed TinyOS code by providing a subclass for every TinyOS
Parser grammar that enables the application to enter and exit from every triggered node in
order to obtain and extract the required information to build theTinyOS model from the
code.

Since the Eclipse Modeling Framework (EMF) uses the XML Metadata Interchange
(XMI) standard to express models by mapping their corresponding information and write
all this information into the XMI file extension, this standard was utilized to build the
TinyOS models inside the developed Java application. The Java application could extract
all the required and important information from the input files (nesC code) and convert this
information into a TinyOS model, i.e. XMI file containing a representation of the TinyOS
application according to the TinyOS metamodel.

Above described processes of using TinyOS parser and the Java application are combined
together to create the TinyOS Interpreter executed by the RE4TinyOS tool (Figure 6).

11

330

335

340

345

350

355

TinyOS Interpreter
nesC XMl

Ny]
D TinyOS AST D
[[]

TinyOS Parser TinyOS Java

Figure 6: TinyOS Interpreter structure

The generated XMI files containing the model representations of the input TinyOS ap-
plications can be opened inside the DSML4TinyOS modeling tool without any human in-
tervention. Hence, these model instances conforming to the TinyOS metamodel, can be
visually seen and ready for modifications if needed.

To summarize, by applying the RE4TinyOS methodology, the software model of an
existing TinyOS application can be achieved automatically. For this purpose, a developer
only needs to give the code file of the related TinyOS application as the input for our
REA4TinyOS tool. The built-in interpreter generates the corresponding model. This model
is XMI serialized and can be opened and visually edited inside the DSML4TinyOS tool.
If needed, any change made in the model is reflected into the code without any developer
intervention.

4 Case Study

To demonstrate the usability of the proposed RTE methodology, a case study is discussed
in this section. This case study exemplifies how the synchronization between TinyOS mod-
els and the corresponding code can be provided with the use of both DSML4TinyOS and
REA4TinyOS tools together within a model-driven RTE process. Figure 7 depicts the ap-
plication of our RTE methodology for this purpose. First, a software developer creates
the model of the required TinyOS application in DSML4TinyOS from scratch and the cor-
responding code for this design is automatically generated. Then, the developer modifies
the application code e.g. due to a change request and the corresponding TinyOS model,
which is the updated version of the initial model, is generated inside RE4TinyOS. Finally,
this updated model can be re-opened in the IDE of DSML4TinyOS and used for further
processing.

In this study, let us consider the MDE of an application for a TinyOS mote (a WSN
node), which displays the light emitting diodes (LEDs) on this mote when needed. The
application, simply called MyProgram for the demonstration purposes, uses the “Boot”
interface, executes the event “Boot.booted()” and calls the three LEDs via commands. In
the “Boot.booted()” event, the command “AllLedBlink.startPeriodic(1000)” will be called.
This command initializes a timer that gives interrupts for every 1000 milliseconds. Also, the

12

360

365

370

TinyOS Model modification and customization

RE4TinyOS @

ANTLR + JAVA

TinyOS Insert the Modify TinyOS
Model from L L
- modified application
the Modified application (if needed)
Code pp

Modified TinyOS TinyOS Parser
Instance Model

Modification Iteration :

| DSML4TinyOS

Timyos i
: Instance _JU>
. Model N S
: TinyOS TinyOS 5
: S Application Code =]
I> : Application) f =32
: : Modeling Generation Slte)
: Analysis : 55
: Environment o
Developer : o
&

Analysis Iteration Design Iteration

apoD uonesiiddy soAull feuiq

TinyOS applications design and generation

Figure 7: Using RTE to develop TinyOS applications

application displays a counter on the three LEDs of the mote. It uses the timer interface
“Timer<TMilli>as AllLedBlink” and executes the second event by firing the timer in the
event “AllLedBlink.fired()”. Inside this event, the three commands are called. The event
will call the command “Leds.led0On()”, “Leds.led10n()”, and “Leds.led20n()” one by one
corresponding to each “Counter” value.

The above described TinyOS application was modeled graphically using DSML4TinyOS.
Figure 8 shows the model of this application (as a DSML4TinyOS instance). This instance
model represents the two parts of the required program (‘Module’ and ‘Configuration’) in a
single model.

When a developer completes the design of a TinyOS application model in the IDE of
DSML4TinyOS, corresponding nesC code for this design can be automatically generated
inside the same IDE according to the Acceleo-based translational semantics of the DSML.
Regarding our case study, following two listings include some code fragments generated from
the above model (shown in Figure 8) for the module part (Listing 2) and the configuration
part (Listing 3) of the related TinyOS application.

13

JuleN <- 300g DWelBoIdAN
Jsau

&>

JOWILPATIIY < JullgpaTiIv OwelBoIdAN

5P <- sPaTOWEIBOIAN j00g spa1 AUIGPRTIIY € <IIINL>IaWIL

Julew Jspel JawiILpaTIIV se ODIIINIWIL Mau DwelboidAN OpaiyugpsTIy Opa3o0q-yoog ‘0= Je3unod 3"gIuIN
Jsau
m_m m_m a_p) Q) &
I _

uopInB|juos wonwInGuG npow inpow

<D <& <& <
[IRCITTY _ _ yiawiL
ﬁ "..s_.xa__..s" " npou " e

dddywtiboidAn JwelBoIdAN

jusuodwo) Joneinbiyuod

jusuodwd> sinpon

=

welboidA

Figure 8: Graphical model of the original TinyOS application

14

Listing 2: nesC Module code auto-generated from the original application model

#include "Timer.h"
module MyProgramC Esafe(){
uses interface Leds;
uses interface Boot;
uses interface Timer<TMilli> as AllLedBlink;
}
implementation {
uint8_t counter =0;
event void Boot.booted() {
/* Turn the three leds on */
call Leds.led00n();
call Leds.led10n();
call Leds.led20n();
/* call the timer every 1000 milliseconds */
call AllLedBlink.startPeriodic(1000);
}
event void AllLedBlink.fired() {
counter++;
if (counter & 0x1) {
call Leds.led0On(); }
else { call Leds.led00ff();}
if (counter & 0x2) {
call Leds.led10n();}
else { call Leds.led10ff();}
if (counter & 0x4) {
call Leds.led20n(); }
else { call Leds.led20ff();}
}

Listing 3: nesC Configuration code auto-generated from the original application model

#include "Timer.h"

configuration MyProgramAppC {

}

implementation {
components MyProgramC;
components MainC;
components LedsC;
components new TimerMilliC() as AllLedTimer;
MyProgramC.Boot -> MainC;
MyProgramC.AllLedBlink -> AllLedTimer;
MyProgramC.Leds -> LedsC;

15

375 Listing 4: Modified nesC Module code of the application

#include "Timer.h"
#include "printf.h"
module MyProgramC Esafe() {
uses interface Leds;
uses interface Boot;
uses interface Timer <TMilli> as AllLedBlink;
uses interface Timer <TMilli> as RedLedBlink;
uses interface Timer <TMilli> as GreenLedBlink;
uses interface Timer <TMilli> as YellowLedBlink;
}
implementation {
uint8_t counter;
task void printTask() {
printf("Print task\n");}
event void Boot.booted() {
for (counter = 0; counter <= 31; counter++) {
if (counter == 10)
call RedLedBlink.startOneShot (counter);
else if (counter == 20)
call GreenLedBlink.startOneShot(counter);
else if (counter == 30)
call YellowLedBlink.startOneShot(counter);
else printf("It will not blink any led\n"); }
call AllLedBlink.startPeriodic(50);
dbg ("MyProgramC", "Application booted.\n");
post printTask();
}
event void AllLedBlink.fired() {
call Leds.led00n();
call Leds.led10n();
call Leds.led20n(); }
event void RedLedBlink.fired() {
printf("Blink the red led\n");
call Leds.ledOToggle();}
event void GreenLedBlink.fired() {
printf("Blink the green led\n");
call Leds.led1Toggle();}
event void YellowLedBlink.fired() {
printf("Blink the yellow led\n");
call Leds.led2Toggle();}

When any change made in the application code, these changes can be reflected to the
corresponding model with using the RE4TinyOS tool. Now, let us suppose that a developer
wants to modify the above program with adding three new timers and a task. In the

16

380

385

390

395

400

modified application, every interface will blink just one specific led: “Timer<TMilli>as
RedLedBlink” will blink the red led, “Timer<TMilli>as GreenLedBlink” will blink the green
led and “Timer<TMilli>as YellowLedBlink” will blink the yellow led respectively. Hence,
every event will be triggered independently: “RedLedBlink.fired()” will trigger the red led
timer, “GreenLedBlink.fired()” will trigger the green led timer and “YellowLedBlink.fired()”
will trigger the yellow led timer. Inside “Boot.booted()” event, a ”for loop” with including
an "if statement” is added to the code to test the counter, call one of the timers that will
be fired and call the command to turn on the LED. Also, a new task is added and it will be
called in “Boot.booted()” event. Following code listings (Listing 4 and Listing 5) include
the modified versions of the module and configuration components of our TinyOS program
in which the added / changed parts are highlighted in cyan color.

Listing 5: Modified nesC Configuration code of the application

#include "Timer.h"

#include "printf.h"

configuration MyProgramAppC {}

implementation {
components MyProgramC, MainC, LedsC;
components new TimerMilliC() as AllLedTimer;
components new TimerMilliC() as RedLedTimer;
components new TimerMilliC() as GreenLedTimer;
components new TimerMilliC() as YellowLedTimer;
MyProgramC.Boot - > MainC;
MyProgramC.AllLedBlink - > AllLedTimer;
MyProgramC.RedLedBlink - > RedLedTimer;
MyProgramC.GreenLedBlink - > GreenLedTimer;
MyProgramC.YellowLedBlink - > YellowLedTimer;
MyProgramC.Leds - > LedsC;

To propagate above code modifications to the model of the application, RE4TinyOS
tool was used. New version of the program was given as input to the RE4TinyOS and the
tool successfully produced the serialized file for the model. This model was opened in the
DSML4TinyOS modeling environment (see Figure 9) and it was examined that RE4TinyOS
maintained the synchronization between the model and the code by automatically insert-
ing new model elements and changing existing elements (e.g. “Boot.booted()” event was
changed due to its new function implementation). As can also be seen from Figure 9,
the modifications were seamlessly integrated into the modified model with retaining the
unchanged model components.

17

5Pl < SPRTIWRIBOIGAN oL PaTMO|jA < UlgPRTMO|[A DWRIB oI
gseu gsau

&> &

10| PO URRID) < ul|gPTUSRID IWEIBOIIAN

&

Surep < 1008 weIBoidN
osau osau

Jowi| pa1pRY <- Yul|gPaTPaY I eIBoIIIN JBWILPATIIY < JUNFPRTIIY DWeI60IAN
Jsau osau

4

JOUWILPITMOIOA SE ODIIIAOWIL MOU

Jawi pausalg se (DNIALBWI| MaU

4_.

Jow paTPoY S8 (DIIIAUOWIL MOU

oL PaTY S WL Mou

JuigpaTuBaID S <AL e AulgPETMOlIRA SE <I|IIAL > Joun] 1008
- Juijgpapey se <IN >ewi|
- AuNGPATINY 52 <AL > 3w spay
SweIboIdAN
Opaiyyungpailly Opaiyduigpalmolsa pe1oogioog (paiyijulgpaipey (pailyyuigpe usain H91UN0d 1 gIuIN OyseLyund

DD P
S S

Qsau

&
t

[]
=

Juie ﬁ yspal

()

ﬁ uaée%me%s
Lysowi,

A\v m
4 ;.

SddywitiBoigh

1wauoduwio) mo.:e nByuod

DR

t 1

1 L

09} mwAMa We z A\% V
iy]

(oyes@ SHEIBOIGIN

wouodud sinpo

weiBordhin

Figure 9: Graphical model of the modified TinyOS application

18

405

410

415

420

425

430

435

440

5 Evaluation

An evaluation of using both DSML4TinyOS and RE4TinyOS environments inside the pro-
posed model-driven RTE toolchain was performed by taking into consideration the devel-
opment of eight TinyOS applications, each for different domain with changing complexities,
i.e. the number of sensors, type of network devices, structure of the messages and network
events vary in the modeled applications. The TinyOS applications considered in this study
are well-known in the WSN research community. All of them were originally developed by
other TinyOS developers, most of them from the University of California. The complete
implementations of all these applications are publicly available from the official TinyOS
repository in Github [65]. For the construction of the evaluation study and the assessment
of the achieved artefacts, we followed our multi-case evaluation method which we previously
applied in the assessment of various DSMLs and MDE processes (e.g. [66, 67, 68, 69]) for
different domains. Quantitative analysis and qualitative assessment steps of this method
were updated and improved in this study for the usability evaluation of DSML4TinyOS and
RE4TinyOS environments as will be discussed below.

During our evaluation, at first, each WSN application were modeled in DSML4TinyOS
IDE according to the system specifications given in the GitHub distribution site. Then
code for each application was automatically generated from these models and this code was
compared with the complete implementation of the related application in TinyOS GitHub
repository. In addition, we also measured and compared the time elapsed for developing
these applications with and without using DSML4TinyOS to investigate how much it leads
to reducing the total effort of the developers, i.e. the end users of DSML4TinyOS. Hence, a
quantitative assessment of the language’s throughput and development time performances
was performed. In the second part of our evaluation, complete implementations of all these
TinyOS applications in GitHub were processed in the RE4TinyOS environment to evaluate
the capability of creating application models completely from already existing code which is
crucial to integrate the implementations of the third party WSN applications into the MDE
processes. In here, already existing code means the application was not previously designed
and implemented with using DSML4TinyOS and RE4TinyOS toolchain. Hence, it does not
own an application model to be used as an input for further system developments.

Before discussing the evaluation results, eight TinyOS applications used in the study are
briefly described below. For more information about these applications, please see [65].

AntiTheft

AntiTheft is a WSN application for detecting thefts, that uses various aspects of TinyOS
and its services. AntiTheft application can detect a theft by monitoring two events:

1. The change in the light level: It assumes that a stolen mote will be situated in a dark
place.

2. The change in the acceleration rate: When thieves steal anything, they usually move
too fast and run.

So, the application will report the theft by: 1) Alerting via turning on the light (e.g. a
red LED), 2) Making a beep sound, 3) Reporting to the other nodes within the range by
broadcasting messages and nodes will also turn on their red LEDs, 4) Reporting to a central
node using a multi-hop routing algorithm

19

445

450

455

460

465

470

475

BarrierBounce

This application uses the Active Message (AM) operations for the packet transmission and
reception. The application runs three independent threads, each thread has an infinite loop
that sends a packet and waits for receiving back the same packet. Three LEDs are used as
indicators if the messages were received successfully, where Thread 0, Thread 1, Thread 2
use LEDO, LED1, and LED2 respectively. The application is operated between two motes
and works in an asynchronous fashion.

MultihopOscilloscope

This is a data-collection application that works to sample its sensors in a periodic time
frame and then broadcasts the messages received from its sensors (e.g. for temperature or
light) after each reading. Also, a Java application is provided to display the readings from
the sensors.

MViz

The MViz is a multihop collection network application, where the nodes with specific IDs
are used as the collection roots. The application samples the sensor values from a specific
WSN platform and sends them to the collection roots. Then, these roots send the packets
to the serial port to visualize them on MViz Java network visualization tool.

PacketParrot

This application keeps logs for the packets when they are received from the radio channel to
the flash and erases the logs on subsequent power cycle. The application uses three LEDs.
It turns on the yellow led when the packet is received and turns off if the packet is logged
successfully. Also, it turns on the red LED after erasing the log packets it receives from
the radio to flash, while the green LED toggles when transmitting the logged packets. This
application is designed to show the LogWrite and LogRead abstractions on the TinyOS.

RadioStress

This application is designed to use three different threads to send three different messages
with unique IDs for the ActiveMessage (AM), which is the core of TinyOS communication
abstraction [8]. Upon receiving messages, the receiver will receive these messages depending
on their IDs using three different threads, and then it toggles one of the LEDs for every
message when the transmission is successful.

Sense

The Sense is a simple sensing application that periodically samples data from the sensors
by initializing a timer which will signal a "read event” and displays the bits of the sampled
readings on the LEDs of the nodes.

20

480

485

490

495

500

TestDissemination

This application is designed to send two constant data objects from a node with value
(TOS_NODE_ID mod 4 equals 1) to all the other nodes in the network. The sender will
send a 32-bit value and a 16-bit value and it will toggle its LEDO and LED1 and fires a
timer. When the receiver receives the correct message, it toggles its LEDO and prints the
message ”"Received new correct 32-bit value” if the 32-bit value is received and prints the
message " Received new correct 16-bit value” if the 16-bit value is received.

All of the the above applications were modeled from scratch inside the graphical editor of
DSML4TinyOS and corresponding code for the applications was generated. This generated
code was compared to the original code, i.e. complete implementation of each application
available at [65]. Accordingly, the percentage of the code generation was calculated by
comparing the lines of code (LoC) for the generated applications with the LoC of the original
applications. The bar chart in Figure 10 shows the comparison results for both Module and
Configuration parts of all these TinyOS applications.

Generation Performance

%100
%90
%80
%70
%60
%50
%40
%30
%20
%10

%0

2 & 2 Q
Y Q ~\\ (& o
\\ N O C X N ’b
S < 5y <° . 0(9\ 22 @ &
N N AN < S & e
v & & & 2
& & & € &

2 Q \

N &K O
X S
o\‘0 P2

M Generated Code In Module 1 Generated Code In Configuration

Figure 10: The percentage of the auto-generated code of Module and Configuration parts
for all TinyOS applications

As can be seen from the bar chart, LoC generation ratios of the module components of
AntiTheft, BarrierBounce, MultihopOscilloscope, MViz, PacketParrot, RadioStress, Sense
and TestDissemination applications are 39%, 51%, 44%, 51%, 46%, 45%, 58%, 40% re-
spectively. That means, for instance, approximately 42% LoC (delta code) need to be
added into the auto-generated code of the module part of the Sense application to achieve
the full implementation. However, the results also show that DSML4TinyOS succeeded in
generating the configuration parts of all TinyOS applications completely in this study.

The main reason of having low ratio of LoC generation for module parts in comparison
with the configuration parts is the modules for all TinyOS applications should inevitably
include the complete definitions of all fundamental application functions which are much

21

505

510

515

520

525

Development time performance
80

70

o |I II ‘I |I Il II i |I II

&c \) o°
O L &
NS
VS\ oS f—,<>

4

N W
o O©O o

Development time (min)

=
o

 Development without using DSML4TinyOS u Development with using DSML4TinyOS

Figure 11: Comparison of the time elapsed for developing WSN applications with and
without using DSML4TinyOS

more bigger than the TinyOS application configurations. Moreover, we also realized that
the many parts of the module components contain C-like selection and repetition statements
(control structures) as well as many variable definition and assignment commands. Related
statements and commands pertain to the platform-specific programming infrastructure and
naturally they are not defined in the metamodel of DSML4TinyOS language to provide a
higher abstraction level of modeling TinyOS applications. Since the graphical syntax of the
language only allows modeling WSN components and their relations according to TinyOS
specifications, code generated from these models needs to be extended with abovementioned
platform-specific statements and commands for the complete implementations.

It is worth indicating that the slight variability encountered in the ratios of the auto-
generated modules originates from the changing complexity and comprehensiveness of all
these applications used in this evaluation. The number and the complexity of the WSN
events and the functions covered by these applications directly affect the throughput of
the code generation mechanism in DSML4TinyOS since additional control structures and
definitions need to be inserted and these are not directly supported in DSML4TinyOS models
as discussed above. For instance, code generation ratio for the AntiTheft application was
relatively lower e.g. in comparison with the Sense application due to the complexity of both
the architecture of the related WSN and the composition of the monitoring events.

Taking into account all measurements made during MDE of all TinyOS applications
in this study, we can conclude that, on the average, approximately 47% of the module
parts of the TinyOS applications can be automatically generated by just modeling with
DSML4TinyOS while use of the language enables generating 100% of the configurations for
all applications.

Considering the impact of using the proposed MDE approach in the amount of effort

22

530

535

540

545

550

555

560

565

570

575

taken for the development of WSN applications, we measured the time elapsed for devel-
oping each application both with and without using DSML4TinyOS. During development
with using DSML4TinyOS and its tool, the total time elapsed for system modeling, code
generation and code completion steps was calculated. For the system development without
using the DSML, system analysis, design and implementation (coding the whole application
in nesC) steps in the conventional TinyOS application development process were taken into
account and the total elapsed time to complete all these steps for each case study was again
calculated. As the chart in Figure 11 shows, on the average, it took approximately 41 min-
utes to develop these WSN applications without using DSML4TinyOS while the utilization
of this DSML and its IDE enabled reducing the application development to 24 minutes on
the average. In other words, the time required to develop these applications decreased by
approximately 45%.

In the second step of our evaluation process, the usability of the RE4TinyOS environment
was assessed. Similar to the case study discussed in Section 4, nesC code generated by
DSML4TinyOS for these eight TiynOS applications were given as input to RE4TinyOS
and the serialized version of the corresponding instance models in XMI were automatically
produced by the built-in interpreter of RE4TinyOS. These models were successfully opened
in DSML4TinyOS. That result is somehow expected since the code initially processed by
RE4TinyOS was already previously generated by modeling in DSML4TinyOS. Hence, it
was easy to restore the corresponding models again from this application code. However,
we also experienced that RE4TinyOS succeeded in reflecting any changes made in the auto-
generated code of all these TinyOS programs into the corresponding system models as long
as the changes made on this code were correct according to nesC specifications. RE4TinyOS
was able to integrate any modification, addition or deletion of nesC program parts into the
existing DSML4TinyOS instance models of these applications leading the synchronization
between the updated versions of TinyOS application code and models.

Perhaps the most interesting part of the evaluation was to assess the efficiency of us-
ing RE4TinyOS for the reverse engineering of the already existing TinyOS applications
which were not previously designed and implemented with using DSML4TinyOS and/or
REATinyOS tools. For this purpose, we used the full implementations of these eight TinyOS
applications publicly available in TinyOS Github repository [65]. As previously indicated,
these applications were written by other developers and we did not make any change on
the related program files (TinyOS modules and configurations) before using them in this
evaluation.

When the complete code of all these eight TinyOS applications was given as input,
RE4TinyOS environment was again succeeded in automatically generating the serialized
versions of the TinyOS software models of all these applications, and the produced models
were processed and successfully opened in the DSML4TinyOS IDE. For instance, Figures
12 and 13 show the TinyOS models generated from the reverse engineering of the Sense and
AntiTheft applications downloaded from the TinyOS GitHub repository. As can be seen
from these screenshots, parts of the TinyOS applications including components, interfaces,
commands, and events are all now represented in DSML4TinyOS notation.

Evaluation made over the reverse engineering of these TinyOS applications confirms that,
if needed, RE4TinyOS tool can also be used independently from the MDE toolchain, i.e.
the TinyOS application that will be processed by the RE4TinyOS tool could be previously
implemented via using any other method and environment. The developers can achieve
software models of these existing applications. Furthermore, it is straightforward to visually
work on these recovered models at a higher level of abstraction, make modifications on them

23

JUIBW < 300g')35USS
osau

J5p3] < Spa1DIsUIS
osau

105USS <~ peayIISUBS
osau osau

DIIIAIBWIL <- J3W1L DISUSS

>))

Opaatyaui Opaiooqiioog (e3ep 379T3UIN I NS31 1 J0MI3)2U0OPEaIPEY 00T ADNINDIYS ONITdNYS 2Ulsap#

5 &

Josuas se (0suasoWaq Mau Sutep 5spa 09MAIBWIL MU Jesuss spa1 < 9TauIn>pesy Joog <UNAL>JBWIL
-) - - -
- - - -
- — — -
- - - -
wonwntyuos ainpow
<& <D
unném:mm #
)
oriambyuos) \]

Sddy 5suas

jusuodwo) Foneinbyuoy

yusuocwd ajnpoi

asuag

Figure 12: Graphical model of the reverse engineered Sense application

24

T —

.

oY 5 ULIH I (SONILIS SI0 V6u)

25

Figure 13: Graphical model of the reverse engineered AntiTheft application

580

585

590

595

600

605

610

615

620

and then reflect these changes to the exact implementations.

Our evaluation also showed that the models for all main parts of these TinyOS ap-
plications were retrieved by using RE4ATinyOS without any error. These retrieved parts
include event, task, component, interface, Command, Helper-function, and Wiring defini-
tions. Block structures of the application events were also retrieved. However, it was also
detected that the applied reverse engineering process was unable to completely represent
internal descriptions of some of these events (covering e.g. some selective and repetitive con-
trol statements and variable definitions which are too specific to the underlying language’s
syntax) as graphical components in the output model since corresponding meta-entities and
relations are missing in the TinyOS metamodel currently used by the RE4ATinyOS parser.
Although that caused the reverse engineering of these events incomplete, RE4TinyOS sup-
ported still keeping these unconverted specifications as annotations inside the serialized
model and when any changes made to the model in the visual editor, these specifications
were automatically integrated with the new code generated from the modified model.

Finally, a limitation on the visual appearance of the models retrieved from the legacy
applications was encountered since these models have no built-in layout information. When
the application models initially created in DSMLA4TinyOS are updated with too many com-
ponents due to the significant amount of modifications in the corresponding code, similar
visual impairments may occur again. This lack of layout information makes the look of the
model unorganized inside the IDE and some manual intervention is needed to re-organize
the graphical appearance of the new or updated elements of the model. Although, it is pos-
sible to automatically re-organize the appearance of the whole model using the features of
Sirius and/or Eclipse, this re-organization mostly spoils the layout of the unaltered elements
too. However, that technical limitation is originated from the layout mechanism of Eclipse
and can be eliminated e.g. using another graphical editing framework for DSML4TinyOS
IDE.

5.1 Threats to the validity

As it is the case in any experimental study, there are some threats to the validity of the
performed evaluation. The threats can be originated from different validity types including
internal validity, external validity, construct validity, and conclusion validity described in
[70].

Internal validity of our experiments relates to the degree to which the design, implemen-
tation and evaluation of all TinyOS applications in here are likely to prevent systematic
errors. To minimize such threats, we followed a strict protocol for both the MDE of these
applications and evaluating the results. Moreover, a multi-case evaluation method that was
observed to work efficiently before was also used in this study. Especially, this enabled us
to perform both the quantitative analysis of the throughput and time performance and the
qualitative assessment of the reverse engineering.

For the threats to external validity, generalization of the achieved results should be
considered. This threat was mitigated by especially considering eight different TinyOS
applications which were all known by the WSN research community and more importantly
all of them were implemented previously by the TinyOS developers who did not involve in the
design and implementation of the model-driven RTE toolchain being evaluated in this study.
For instance, the capability of the RE4TinyOS tool was assessed by the reverse engineering
of these third party TinyOS programs which were not previously modeled in DSML4TinyOS.
Similarly, use of both the graphical modeling and code generation features of DSML4TinyOS

26

625

630

635

640

645

650

655

660

665

were demonstrated during the conducted evaluation again with considering these already
existing TinyOS applications instead of fictitious / trivial ones just created for this study.

Construct validity refers to what extent the operational measures and the cases that
are studied really represent what the researchers has in mind. In our work, we aim at
evaluating the usability of this new model-driven RTE methodology and its toolchain for
the development of TinyOS applications. Code generation performance were measured
and the reverse engineering of the applications were tested by considering which parts /
components of the TinyOS programs can be retrieved and represented at the corresponding
models. The evaluation was made over eight different TinyOS applications. This number
can be found satisfactory when comparing with the similar MDE studies for WSNs and
TinyOS applications where mostly just single application development was considered to
demonstrate the usability. Furthermore, the TinyOS applications selected for our evaluation
have different complexities considering the structure of the WSNs-to-be-implemented by
means of the size and type of the sensors, devices and messages as given in their descriptions.
To mitigate this threat, this evaluation also included the MDE of the applications which
were ready to execute and accessible from the TinyOS repository.

Finally, for the conclusion validity, we need to consider the credibility of the achieved
results. Within this context, we believe that selecting multiple case studies with varying
complexities also helped to minimize the risk on the conclusion validity. For instance, the
quantitative analysis on the throughput performance showed that configuration parts of all
TinyOS applications can be generated completely from the models while only approximately
the half of each module can be generated. However, the results also showed that the dif-
ference between the individual rates of LoC generation for each module was not so high as
depicted in Figure 10 although the complexity and the size of the TinyOS applications may
vary.

6 Conclusion

A model-driven RTE methodology for the design and implementation of TinyOS applications
have been introduced in this paper. The methodology herein consists of two parts, forward
and reverse engineering. Forward engineering of the TinyOS applications is provided using
a DSML, called DSML4TinyOS and its IDE. WSN applications to be executed on TinyOS
are modeled by using the graphical syntax of DSML4TinyOS language. Both module and
configuration parts of the applications can be modeled. nesC code for the implementation
of the designed models is automatically generated in the same IDE over a series of model-to-
code transformations. Reverse engineering of the TinyOS applications is realized by using
another IDE, called RE4TinyOS. RE4TinyOS enables retrieving the application models
from TinyOS programs written in nesC, which paves the way for using these models inside
an MDE toolchain. Hence, any modification made in the application code can be reflected
into the application model and vice versa. Models retrieved by RE4TinyOS can be processed
inside DSML4TinyOS environment and can be updated with new TinyOS components if
needed. Both DSML4TinyOS and RE4TinyOS IDEs introduced in this paper are publicly
available at [71] including application examples.

The potential users of the proposed RTE methodology along with the supported IDE
can be both novice and expert TinyOS application developers. Novice developers who
have no or little TinyOS programming experience may quickly design and implement their
WSNs on TinyOS by using the modeling features of DSML4TinyOS. Specifically, MDE

27

670

675

680

685

690

695

700

705

710

environment supported with DSML4TinyOS may also facilitate WSN developers’ learning
and adaptation to TinyOS in case they are already familiar with the WSN domain or even
they own experience on using WSN platforms other than TinyOS. Developers experienced on
TinyOS programming may benefit from both applying the proposed framework and utilizing
DSML4TinyOS and RE4TinyOS since the evaluation in our study exposed that graphical
modeling and code generation from these models significantly reduced the development
effort. Furthermore, RTE brought by RE4TinyOS may assist the experienced users e.g.
in handling and updating already existing TinyOS applications to achieve more improved
versions of the same applications. Despite all these features and opportunities, model-
driven RTE tools introduced in this paper may still fail to fully support the software and
hardware heterogeneity encountered in various industrial WSN applications. For instance,
WSN application models created with DSML4TinyOS can be too complex and difficult to
manage as the heterogeneity in the WSN components of the developed system continuously
increases. In fact, this problem is not specific to our proposal and as also indicated in [72], it
is one of the current important challenges of applying MDE techniques on developing WSN
and ToT systems. Nevertheless, we need further investigation on DSML4TinyOS language’s
support on modeling heterogeneity to provide its wider adoption and use in the development
of large-scale industrial WSN applications.

Conducted multi-case evaluation showed that it is possible to obtain the configurations
of the TinyOS applications completely just modeling with DSML4TinyOS whereas the same
process leads the automatic creation of almost half of the module parts of these applications.
Interestingly, module generation rates are closer to each other in individual application basis
although the complexity of the applications vary. This result can be found promising in the
sense that the similar code generation ratios can be possible when other TinyOS applications
are developed with our MDE methodology. Our evaluation also showed that the time
required for developing TinyOS applications from scratch decreased approximately to its
half when DSML4TinyOS and its IDE are used. Moreover, we investigated the efficiency
of using RE4TinyOS environment for the reverse engineering of the applications which
are previously developed with or without using DSML4TinyOS. The results showed that
both model-code synchronization and the integration of existing TinyOS applications which
do not have system models previously, into the proposed MDE are possible with using
RE4TinyOS. Models for all main parts of the complete applications in the TinyOS Github
repository were successfully retrieved without any error. However, some of the internal
TinyOS event specifications of these existing applications could not be represented in the
newly generated models since corresponding meta-entities are missing in the current TinyOS
metamodel used by the RE4TinyOS parser. In our future work, we aim at first extending
this metamodel with some additional components for event internals and then improving
the parser features with the utilization of this new metamodel. Another feature that we
plan to integrate into RE4TinyOS, is the ability to add some elements automatically once
their counterparts are included in the model. For example, if “uses interface” definition for
a specific element is added in the “Module” file, then the counterpart element to be used to
wire the both components will be defined and added automatically in the “Configuration”
file. This feature can minimize the error-rate and increase the productivity especially during
the reverse engineering of the existing WSN applications.

Another future work will consider extending our model-driven RTE methodology to
support the development of WSN applications to be worked on other operating systems
and platforms. For instance, the syntax and semantics definitions of the current DSML
can be extended to support WSN operating systems other than TinyOS such as Contiki,

28

715

720

725

730

735

740

745

LiteOS, MANTIS and Nano-RK, so modeled WSN applications can be executed on various
platforms.

Acknowledgement

Hussein Marah would like to thank Turkish government for Turkiye Scholarships (YTB)
program. This research was partially supported by Flanders Make, a Flemish strategic
research center for the manufacturing industry.

References

[1] I. F. Akyildiz, M. C. Vuran, Wireless Sensor Networks, John Wiley & Sons, 2010.

[2] Y. Zhang, L. Sun, H. Song, X. Cao, Ubiquitous WSN for healthcare: Recent advances
and future prospects, IEEE Internet of Things Journal 1 (4) (2014) 311-318. doi:
10.1109/JI0T.2014.2329462

[3] T. H. Feiroz Khan, D. S. Kumar, Ambient crop field monitoring for improving con-
text based agricultural by mobile sink in WSN, Journal of Ambient Intelligence and
Humanized Computing 11 (1) (2020) 1431-1439. doi:10.1007/s12652-019-01177-6.

[4] X. Hu, L. Yang, W. Xiong, A novel wireless sensor network frame for urban transporta-
tion, IEEE Internet of Things Journal 2 (6) (2015) 586-595. doi:10.1109/JI0T.2015.
2475639.

[5] K. Ghosh, S. Neogy, P. K. Das, M. Mehta, Intrusion detection at international borders
and large military barracks with multi-sink wireless sensor networks: An energy efficient
solution, Wireless Personal Communications 98 (1) (2018) 1083-1101. doi:10.1007/
s11277-017-4909-5.

[6] H. Ghayvat, S. Mukhopadhyay, X. Gui, N. Suryadevara, WSN- and IoT-based smart
homes and their extension to smart buildings, Sensors 15 (5) (2015) 10350-10379. doi:
10.3390/5150510350.

[7] Q. Chi, H. Yan, C. Zhang, Z. Pang, L. D. Xu, A reconfigurable smart sensor interface for
industrial wsn in iot environment, IEEE Transactions on Industrial Informatics 10 (2)
(2014) 1417-1425. doi:10.1109/TII.2014.2306798.

[8] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, D. Culler, TinyOS: An operating system for sensor networks,
in: W. Weber, J. M. Rabaey, E. Aarts (Eds.), Ambient Intelligence, Springer Berlin
Heidelberg, 2005, pp. 115-148. doi:10.1007/3-540-27139-2_7.

URL https://doi.org/10.1007/3-540-27139-2_7

[9] P. Levis, D. Gay, TinyOS Programming, Cambridge University Press, 2009.

[10] J. Whittle, J. Hutchinson, M. Rouncefield, The state of practice in model-driven engi-
neering, IEEE Software 31 (3) (2014) 79-85. doi:10.1109/MS.2013.65.

29

750

755

760

765

770

775

780

785

790

[11] B. Lelandais, M.-P. Oudot, B. Combemale, Applying model-driven engineering to
high-performance computing: Experience report, lessons learned, and remaining chal-
lenges, Journal of Computer Languages 55 (1) (2019) 1-10. doi:10.1016/j.cola.2019.
100919.

[12] B. Terzi¢, V. Dimitrieski, S. Kordi¢, G. Milosavljevi¢, 1. Lukovié¢, Development and
evaluation of microbuilder: a model-driven tool for the specification of rest microservice
software architectures, Enterprise Information Systems 12 (8-9) (2018) 1034-1057. doi:
10.1080/17517575.2018.1460766.

[13] M. A. Mohamed, M. Challenger, G. Kardas, Applications of model-driven engineering
in cyber-physical systems: A systematic mapping study, Journal of Computer Languages
59 (1) (2020) 1-19. doi:10.1016/3.cola.2020.100972.

[14] M. Mernik, J. Heering, A. M. Sloane, When and how to develop domain-specific
languages, ACM Computing Surveys 37 (4) (2005) 316-344. doi:10.1145/1118890.
1118892.

[15] T. Kosar, S. Bohra, M. Mernik, Domain-specific languages: A systematic mapping
study, Information and Software Technology 71 (1) (2016) 77-91. doi:10.1016/j.
infsof.2015.11.001.

[16] F. Ulrich, Domain-specific modeling languages: Requirements analysis and design
guidelines, in: I. Reinhartz-Berger, A. Sturm, T. Clark, S. Cohen, B. Jorn (Eds.), Do-
main Engineering, Springer, 2013, pp. 133-157. doi:10.1007/978-3-642-36654-3_6.

[17] C. Vicente-Chicote, F. Losilla, B. lvarez, A. Iborra, P. Sanchez, Applying MDE
to the development of flexible and reusable wireless sensor networks, International
Journal of Cooperative Information Systems 16 (3-4) (2007) 393-412. doi:10.1142/
5021884300700172X.

[18] K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta, L. Mostarda, H. Muccini,
A model-driven engineering framework for architecting and analysing wireless sensor
networks, in: Proceedings of the Third International Workshop on Software Engineering
for Sensor Network Applications, SESENA ’12, IEEE Press, 2012, pp. 1-7. doi:10.
1109/SESENA.2012.6225729.

URL https://doi.org/10.1109/SESENA.2012.6225729

[19] 1. Malavolta, H. Muccini, A study on MDE approaches for engineering wireless sensor
networks, in: 2014 40th EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, 2014, pp. 149-157, ISSN: 2376-9505. doi:10.1109/SEAA.2014.61.
URL https://doi.org/10.1109/SEAA.2014.61

[20] K. Tei, R. Shimizu, Y. Fukazawa, S. Honiden, Model-driven-development-based step-
wise software development process for wireless sensor networks, IEEE Transactions on
Systems, Man, and Cybernetics: Systems 45 (4) (2015) 675-687. doi:10.1109/TSMC.
2014 .2360506.

[21] C. Durmaz, M. Challenger, O. Dagdeviren, G. Kardas, Modelling Contiki-Based IoT
Systems, in: R. Queirds, M. Pinto, A. Simdes, J. P. Leal, M. J. Varanda (Eds.), 6th
Symposium on Languages, Applications and Technologies (SLATE 2017), Vol. 56 of

30

795

800

805

810

815

820

825

830

OpenAccess Series in Informatics (OASIcs), Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany, 2017, pp. 5:1-5:13. doi:10.4230/0ASIcs.SLATE.2017.5.
URL http://drops.dagstuhl.de/opus/volltexte/2017/7940

[22] T. Rodrigues, F. C. Delicato, T. Batista, P. F. Pires, L. Pirmez, An approach based on
the domain perspective to develop WSAN applications, Software & Systems Modeling
16 (4) (2017) 949-977. doi:10.1007/s10270-015-0498-5.

[23] T. Asici, B. Karaduman, R. Eslampanah, M. Challenger, J. Denil, H. Vangelhuwe,
Applying model driven engineering techniques to the development of contiki-based
iot systems, in: 2019 IEEE/ACM 1st International Workshop on Software Engineer-
ing Research & Practices for the Internet of Things (SERP4IoT), 2019, pp. 25-32.
doi:10.1109/SERP4I0T.2019.00012
URL https://doi.org/10.1109/SERP4I0T.2019.00012

[24] P. Dantas, T. Rodrigues, T. Batista, F. C. Delicato, P. F. Pires, W. Li, A. Y. Zomaya,
Lwissy: A domain specific language to model wireless sensor and actuators network sys-
tems, in: 2013 4th International Workshop on Software Engineering for Sensor Network
Applications (SESENA), 2013, pp. 7-12. doi:10.1109/SESENA.2013.6612258.

URL https://doi.org/10.1109/SESENA.2013.6612258

[25] A. J. Salman, A. Al-Yasiri, Developing domain-specific language for wireless sensor
network application development, in: Internet Technology and Secured Transactions
(ICITST), 2016 11th International Conference for, IEEE, 2016, pp. 301-308.

[26] B. R. Barricelli, S. Valtolina, A visual language and interactive system for end-user
development of internet of things ecosystems, Journal of Visual Languages & Computing
40 (1) (2017) 1-19. doi:10.1016/j.jv1c.2017.01.004.

[27] N. Bak, B.-M. Chang, K. Choi, Smart block: A visual block language and its pro-
gramming environment for iot, Journal of Computer Languages 60 (1) (2020) 1-19.
d0i:10.1016/j.cola.2020.100999.

[28] T. Hettel, M. Lawley, K. Raymond, Model synchronisation: Definitions for round-trip
engineering, in: A. Vallecillo, J. Gray, A. Pierantonio (Eds.), Theory and Practice of
Model Transformations, Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2008, pp. 31-45.

[29] H. Giese, R. Wagner, From model transformation to incremental bidirectional model
synchronization, Software & Systems Modeling 8 (1) (2009) 21-43. doi:10.1007/
510270-008-0089-9.

[30] L. Favre, Model Driven Architecture for Reverse Engineering Technologies: Strategic
Directions and System Evolution, Engineering Science Reference, 2010, google-Books-
ID: e4ARLUAAACAAJ.

[31] H. M. Marah, M. Challenger, G. Kardas, RE4TinyOS: A reverse engineering method-
ology for the MDE of TinyOS applications, in: Proceedings of the 15th Conference on
Computer Science and Information Systems (FedCSIS 2020), Track on Software and
Systems Engineering, IEEE, 2020, pp. 741-757. doi:10.15439/2020F133.

URL https://dx.doi.org/10.15439/2020F133

31

835

840

845

850

855

860

865

870

[32] B. Karaduman, T. Agici, M. Challenger, R. Eslampanah, A cloud and contiki based
fire detection system using multi-hop wireless sensor networks, in: Proceedings of the
Fourth International Conference on Engineering & MIS 2018, 2018, pp. 1-5. doi:10.
1145/3234698.3234764.

URL https://doi.org/10.1145/3234698.3234764

[33] P. P. Ray, A survey on visual programming languages in internet of things, Scientific
Programming 2017 (1) (2017) 1-6. doi:10.1155/2017/1231430.

[34] F. Essaadi, Y. Ben Maissa, M. Dahchour, MDE-based languages for wireless sensor
networks modeling: A systematic mapping study, in: R. El-Azouzi, D. S. Menasche,
E. Sabir, F. De Pellegrini, M. Benjillali (Eds.), Advances in Ubiquitous Networking 2,
Lecture Notes in Electrical Engineering, Springer, 2017, pp. 331-346. doi:10.1007/
978-981-10-1627-1_26.
URL https://doi.org/10.1007/978-981-10-1627-1_26

[35] F. Paterno, S. Carmen, End-user development for personalizing applications, things,
and robots, International Journal of Human-Computer Studies 131 (1) (2019) 120-130.
doi:10.1016/j.1ijhcs.2019.06.002.

[36] E. Coronado, F. Mastrogiovanni, B. Indurkhya, G. Venture, Visual programming en-
vironments for end-user development of intelligent and social robots, a systematic re-
view, Journal of Computer Languages 58 (1) (2020) 1-20. doi:10.1016/j.cola.2020.
100970.

[37] B. Akbal-Delibas, P. Boonma, J. Suzuki, Extensible and precise modeling for wireless
sensor networks, Lecture Notes in Business Information Processing 20 (2009) 551-562.
doi:10.1007/978-3-642-01112-2_55.

[38] M. A. Saad, E. Fehr, N. Kamenzky, J. Schiller, ScatterClipse: A model-driven tool-chain
for developing, testing, and prototyping wireless sensor networks, in: 2008 IEEE Inter-
national Symposium on Parallel and Distributed Processing with Applications, 2008,
pp. 871-885, ISSN: 2158-9208. doi:10.1109/ISPA.2008.22.

URL https://doi.org/10.1109/ISPA.2008.22

[39] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, S. Olivieri, A framework
for modeling, simulation and automatic code generation of sensor network application,
in: Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON’08. 5th
Annual IEEE Communications Society Conference on, IEEE, 2008, pp. 515-522.

[40] N. X. Thang, K. Geihs, Model-driven development with optimization of non-functional
constraints in sensor network, in: Proceedings of the 2010 ICSE Workshop on Software
Engineering for Sensor Network Applications, SESENA 10, ACM, 2010, pp. 61-65.
doi:10.1145/1809111.1809128.

URL https://doi.org/10.1145/1809111.1809128

[41] R. Shimizu, K. Tei, Y. Fukazawa, S. Honiden, Model driven development for rapid
prototyping and optimization of wireless sensor network applications, in: Proceedings of
the 2Nd Workshop on Software Engineering for Sensor Network Applications, SESENA
11, ACM, 2011, pp. 31-36. doi:10.1145/1988051.1988058.

URL https://doi.org/10.1145/1988051.1988058

32

875

880

885

890

895

900

905

910

[42] V. Veiset, L. M. Kristensen, Transforming platform independent CPN models into code
for the TinyOS platform: A case study of the RPL protocol, in: PNSE+ModPE, 2013,
pp- 259-260.

[43] A. Salman, Reducing complexity in developing wireless sensor network systems using
model-driven development, phdthesis, University of Salford (2017).
URL http://usir.salford.ac.uk/44127/

[44] T. Rodrigues, P. Dantas, P. F. Pires, L. Pirmez, T. Batista, C. Miceli, A. Zomaya,
et al., Model-driven development of wireless sensor network applications, in: Embedded
and Ubiquitous Computing (EUC), 2011 IFIP 9th International Conference on, IEEE,
2011, pp. 11-18.

[45] C. Raibulet, F. A. Fontana, M. Zanoni, Model-driven reverse engineering approaches: A
systematic literature review, IEEE Access 5 (2017) 14516-14542. doi:10.1109/ACCESS.
2017.2733518.

[46] H. Brunelire, J. Cabot, G. Dup, F. Madiot, MoDisco: A model driven reverse en-
gineering framework, Information and Software Technology 56 (8) (2014) 1012-1032.
doi:10.1016/j.infsof.2014.04.007.

[47) L. Favre, L. Martinez, C. Pereira, MDA-based reverse engineering of object ori-
ented code, in: T. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P. Sof-
fer, R. Ukor (Eds.), Enterprise, Business-Process and Information Systems Model-
ing, Lecture Notes in Business Information Processing, Springer, 2009, pp. 251-263.
doi:10.1007/978-3-642-01862-6_21.

URL https://doi.org/10.1007/978-3-642-01862-6_21

[48] F. Barbier, S. Eveillard, K. Youbi, O. Guitton, A. Perrier, E. Cariou, Model-driven
reverse engineering of cobol-based applications, in: Information Systems Transformation,
Elsevier, 2010, pp. 283-299.

[49] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, J. Perronnet, A model driven reverse en-
gineering framework for extracting business rules out of a java application, in: A. Bikakis,
A. Giurca (Eds.), Rules on the Web: Research and Applications, Lecture Notes in Com-
puter Science, Springer, 2012, pp. 17-31. doi:10.1007/978-3-642-32689-9_3.
URL https://doi.org/10.1007/978-3-642-32689-9_3

[50] O. Sanchez Ramon, J. Sadnchez Cuadrado, J. Garcia Molina, Model-driven reverse en-
gineering of legacy graphical user interfaces, Automated Software Engineering 21 (2)
(2014) 147-186. doi:10.1007/s10515-013-0130-2.

[61] I. Comyn-Wattiau, J. Akoka, Model driven reverse engineering of NoSQL property
graph databases: The case of neodj, in: 2017 IEEE International Conference on Big
Data (Big Data), 2017, pp. 453-458. doi:10.1109/BigData.2017.8257957.

URL https://doi.org/10.1109/BigData.2017.8257957

[62] J. Sénchez Cuadrado, E. Guerra, J. de Lara, Reverse engineering of model transfor-
mations for reusability, in: D. Di Ruscio, D. Varr (Eds.), Theory and Practice of Model
Transformations, Lecture Notes in Computer Science, Springer International Publishing,
2014, pp. 186-201. doi:10.1007/978-3-319-08789-4_14.

33

915

920

925

930

935

940

945

950

[63] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, H. Mei, Towards automatic model
synchronization from model transformations, in: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, 2007, pp. 164—
173.

[54] K. Vanherpen, J. Denil, H. Vangheluwe, P. De Meulenaere, Model transformations for
round-trip engineering in control deployment co-design., in: SpringSim (TMS-DEVS),
2015, pp. 55-62.

[65] J. Akoka, I. Comyn-Wattiau, Roundtrip engineering of nosql databases, Enterprise
Modelling and Information Systems Architectures (EMISAJ) 13 (2018) 281-292.

[56] A. H. Eden, E. Gasparis, J. Nicholson, R. Kazman, Round-trip engineering with the
two-tier programming toolkit, Software Quality Journal 26 (2) (2018) 249-271.

[67] T. Buchmann, B. Westfechtel, Towards incremental round-trip engineering using model
transformations, in: 2013 39th Euromicro Conference on Software Engineering and Ad-
vanced Applications, IEEE, 2013, pp. 130-133.

[58] B. Hailpern, P. Tarr, Model-driven development: The good, the bad, and the ugly,
IBM systems journal 45 (3) (2006) 451-461.

[59] L. Licio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. K. Selim, E. Syriani,
M. Wimmer, Model transformation intents and their properties, Software & Systems
Modeling 15 (3) (2016) 647-684. doi:10.1007/s10270-014-0429-x.

[60] E. Syriani, L. Luhunu, H. A. Sahraoui, Systematic mapping study of template-based
code generation, Computer Languages, Systems & Structures 52 (1) (2018) 43—62. doi:
10.1016/j.c1.2017.11.003.

[61] H. M. Marah, R. Eslampanah, M. Challenger, DSML4TinyOS: Code Generation for
Wireless Devices, in: ACM/IEEE 21st International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), Model-Driven Engineering for the Internet-
of-Things (MDE4IoT), 2018, pp. 509-514.

[62] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, D. Culler, The nesC language:
A holistic approach to networked embedded systems, Acm Sigplan Notices 38 (5) (2003)
1-11.

[63] T. Parr, K. Fisher, LL(*): The foundation of the ANTLR parser generator, in: Pro-
ceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’11, ACM, 2011, pp. 425-436, event-place: San Jose, Cali-
fornia, USA. doi:10.1145/1993498.1993548.

URL https://doi.org/10.1145/1993498.1993548

[64] T. Parr, The Definitive ANTLR 4 Reference, 2nd Edition, Pragmatic Bookshelf, 2013.

[65] TinyOS_Github_Repository, TinyOS GitHub Application Repository (2017).
URL https://github.com/tinyos/tinyos-main/tree/master/apps

[66] M. Challenger, G. Kardas, B. Tekinerdogan, A systematic approach to evaluating
domain-specific modeling language environments for multi-agent systems, Software Qual-
ity Journal 24 (3) (2016) 755-795. doi:10.1007/s11219-015-9291-5.

34

955

960

965

970

[67] G. Kardas, B. T. Tezel, M. Challenger, Domain-specific modelling language for belief-
desire-intention software agents, IET Software 12 (4) (2018) 356-364. doi:10.1049/
iet-sen.2017.0094.

[68] S. Arslan, G. Kardas, Dsml4dt: A domain-specific modeling language for device tree
software, Computers in Industry 115 (1) (2020) 1-13. doi:10.1016/j.compind.2019.
103179.

[69] O.F. Alaca, B. T. Tezel, M. Challenger, M. Goulao, V. Amaral, G. Kardas, Agentdsm-
eval: A framework for the evaluation of domain-specific modeling languages for multi-
agent systems, Computer Standards & Interfaces 76 (1) (2021) 1-20. doi:10.1016/j.
csi.2021.103513.

[70] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimen-
tation in software engineering, Springer Science & Business Media, 2012.

[71] RTE_Github_Repository, Round-trip engineering for tinyos applications (2021).
URL https://github.com/husseinmarah/RTE

[72] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P. Pelliccione, R. Spalazzese,
Model-driven engineering for mission-critical iot systems, IEEE Software 34 (1) (2017)
46-53. doi:10.1109/MS.2017.1.

35

	Introduction
	Related Work
	Round-trip Engineering Methodology
	Forward Engineering with DSML4TinyOS
	Reverse Engineering with RE4TinyOS

	Case Study
	Evaluation
	Threats to the validity

	Conclusion

