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FOUR-DIMENSIONAL QUADRATIC FORMS OVER CpptqqpXq

PARUL GUPTA

Abstract. For quadratic forms in 4 variables defined over the rational func-
tion field in one variable over Cpptqq, the validity of the local-global principle
for isotropy with respect to different sets of discrete valuations is examined.

Classification (MSC 2010): 11E04,12E30, 12J10

Keywords: isotropy, local-global-principle, rational function field, valuation,
completion

1. Introduction

Let E be a field of characteristic different from 2 and let EpXq denote the
rational function field in one variable over E.

For E “ Cpptqq, the field of Laurent series in one variable over the complex
numbers, the quadratic form

Y 2

1
` tY 2

2
` tY 2

3
` XpY 2

1
` Y 2

2
` tY 2

4
q

in the variables Y1, Y2, Y3, Y4 over EpXq has no non-trivial zero, but it has a non-
trivial zero over the completion of EpXq with respect to any non-trivial valuation
on EpXq that is trivial on E. This is in contrast to the situation when E is
a finite field, by the Hasse-Minkowski Theorem (See [6, Chapter VI, Theorem
66.1]). Note that, in both cases, the field E has a unique extension of each degree
in a fixed algebraic closure.

By a Z-valuation, we mean a valuation with value group Z. A quadratic form is
isotropic if it has a non-trivial zero, otherwise it is anisotropic. In all generality, an
anisotropic quadratic form over EpXq of dimension at most 3 remains anisotropic
over the completion of EpXq with respect to some Z-valuation on EpXq that is
trivial on E; this follows for example from Milnor’s Exact Sequence [4, Theorem
IX.3.1]. The case of 4-dimensional quadratic forms is the first case over EpXq
where the validity of such a local-global principle for isotropy depends on the
base field E.

When E is a nondyadic local field, using a result of Lichtenbaum [5], one obtains
that a 4-dimensional anisotropic quadratic form over EpXq remains anisotropic
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over the completion of EpXq with respect to some Z-valuation on EpXq that is
trivial on E (see [1, Remark 3.8]). This resembles the case where E is a finite
field.

In contrast to the situations where E is a finite field or a local field, for
E “ Cpptqq the example of the quadratic form above shows that the local-global
principle for isotropy of 4-dimensional quadratic forms over EpXq fails with re-
spect to Z-valuations that are trivial on E. However, anisotropy of this quadratic
form can be detected over the larger field CpXqpptqq, by using Springer’s Theorem
(see [4, Proposition VI.1.9]).

Consider the more general situation where the field E is complete with respect
to a nondyadic Z-valuation v. In this case, a local-global principle for isotropy was
obtained in [1] using a geometric setup. Let Ov denote the valuation ring of v. By
a model for EpXq over Ov we mean a two-dimensional integral normal projective
flat Ov-scheme X whose function field is isomorphic to EpXq. Codimension-one
points on a model of EpXq over Ov correspond to certain Z-valuations on EpXq.
For a model X of EpXq over Ov let ΩX denote the set of Z-valuations given by
codimension-one points of X . Consider the set Ω “ Ť

X
ΩX where the union is

taken over all models X of EpXq over Ov. It follows from [1, Theorem 3.1 and
Remark 3.2] that an anisotropic quadratic form over EpXq remains anisotropic
over the completion of EpXq with respect to some Z-valuation in Ω. One may ask
whether this remains true if one replaces Ω by ΩX for some well-chosen model
X of EpXq over Ov.

The aim of this note is to show that this is not the case: if the residue field
of v is separably closed then, for any model X of EpXq over Ov, there exists an
anisotropic 4-dimensional quadratic form over EpXq which is isotropic over the
completion of EpXq with respect to any w P ΩX (Corollary 2). Let π P Ov be a
uniformiser of v. For any model X of EpXq over Ov, the set twpπq | w P ΩX u is
finite and hence it has an upper bound. However, for any positive integer r, the
quadratic form

ϕr “ pXr ´ πqY 2

1
` pXr`1 ` πqY 2

2
` πXY 2

3
` XpXr ` πqY 2

4

is anisotropic over EpXq, but it is isotropic over the completion of EpXq with
respect to any Z-valuation w on EpXq with wpπq ă r (Theorem). The con-
struction of ϕr is inspired by the example in [1, Remark 3.6] of an anisotropic
6-dimensional quadratic form over QppXq where p is an odd prime.

2. Results

We assume some familiarity with basic quadratic form theory over fields, for
which we refer to [4]. We first fix some notation and recall some results.

By a quadratic form or simply a form we mean a regular quadratic form.
Let E always be a field of characteristic different from 2 and let Eˆ denote its
multiplicative group. For a1, . . . , an P Eˆ the diagonal form a1X

2

1
` ¨ ¨ ¨ ` anX

2

n

is denoted by xa1, . . . , any.
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Let v be a Z-valuation on E. We denote the corresponding valuation ring, its
maximal ideal and its residue field respectively by Ov,mv and κv. For an element
a P Ov, let a denote the image a ` mv of a under the residue map Ov Ñ κv. The
completion of E with respect to v is denoted by Ev. We say that v is henselian
if it extends uniquely to every finite field extension of E. Complete discretely
valued fields are henselian (see [2, Theorem 1.3.1 and Theorem 4.1.3]). We recall
a consequence of Hensel’s Lemma:

Lemma. Let v be a henselian Z-valuation on E such that vp2q “ 0. Then

paq The form xu1, u2y over E is isotropic if and only if u1u2 P ´κˆ2

v .

pbq If κv is separably closed, then every 3-dimensional form over E is isotropic.

Proof: Since u1u2 P ´κˆ2

v the polynomial equation t2 ` u1u2 has a solution in
κv and since vp2q “ 0 it follows by Hensel’s Lemma [2, Theorem 4.1.3p4q] that
u1u2 P ´E2, whereby the quadratic form xu1, u2y over E is isotropic. Since κv is
separably closed with vp2q “ 0, we have that u P ´κˆ2

v for all u P Oˆ
v . Since every

3-dimensional quadratic form over E contains a 2-dimensional form isometric to
λx1, uy for some u P Oˆ

v and λ P Eˆ; pbq follows from paq. l

The set of all Z-valuations on EpXq is denoted by ΩEpXq. For r P N, we define

Ωr “ tw P ΩEpXq | wpEˆq “ iZ for some 0 ď i ď ru.
With this notation, Ω0 is the set of all E-trivial Z-valuations on EpXq. We
recall that any monic irreducible polynomial p P ErXs determines a unique Z-
valuation vp on EpXq which is trivial on E and such that vpppq “ 1. There is
further a unique Z-valuation v8 on EpXq such that v8pfq “ ´ degpfq for any
f P ErXszt0u. Moreover, every Z-valuation w on EpXq trivial on E is either
equal to v8 or to vp for some monic irreducible polynomial p P ErXs (see [2,
Theorem 2.1.4]), and in either of the two cases the residue field is a finite field
extension of E.

Theorem. Let v be a henselian Z-valuation on E such that vp2q “ 0. Assume

that κv is separably closed. Let π P Eˆ be such that vpπq “ 1 and let r P N. Then

the quadratic form

ϕr “ xXr ´ π,Xr`1 ` π, πX,XpXr ` πqy
is isotropic over EpXqw for every Z-valuation w P Ωr´1 but anisotropic over

EpXqw for some w P Ωr.

Proof: Set F “ EpXq. We first show that ϕr is isotropic over Fw for all w P Ωr´1.
Consider w P Ωr´1.

Case 1: wpπq “ 0 “ wpXq. Then κw is a finite extension ofE. Since v is henselian,
there is a unique extension v1 of v to κw, and v1 again henselian. Furthermore, it
follows by [2, Theorem 3.3.4] that v1pκˆ

wq is isomorphic to Z and κv1 is separably
closed. It follows by part pbq of the Lemma that every 3-dimensional quadratic
form over κw is isotropic. We have that w “ vp for some monic irreducible
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polynomial p P ErXs such that p ‰ X . Note that, in this case at least three
diagonal coefficients of ϕr are units in Ow. It follows by Springer’s Theorem [4,
Proposition VI.1.9] that ϕr is isotropic over Fw.

Case 2: 0 ď wpπq ă r and 1 ď wpXq. Let u “ pXrπ´1 ´ 1qpXpr`1qπ´1 ` 1q. Then
wpuq “ 0 and u “ ´1 P ´κˆ2

w . It follows by part paq of the Lemma that the form
π´1xXr ´ π,Xr`1 ` πy is isotropic over Fw. Thus ϕr is isotropic over Fw.

Case 3: wpXq ă 0 ď wpπq ă r. Note that κw is either a finite extension of E or
a rational function field over a finite extension of κv; since ´1 P κˆ2

v , we get in
either case that ´1 P κˆ2

w . Consider u “ p1 ` πX´pr`1qqp1 ` πX´rq. We have
that wpuq “ 0 and u “ 1 P κˆ2

w “ ´κˆ2

w . It follows by part paq of the Lemma that
the form X´pr`1qxXr`1 `π,XpXr `πqy is isotropic over Fw. Thus ϕr is isotropic
over Fw.

We have thus shown that ϕr is isotropic over Fw for every w P Ωr´1. Now we
show that ϕr is anisotropic over Fw for some w P ΩF .

Let E 1 “ Epsq, where s “ r
?
π. Then v extends uniquely to a valuation on E 1

which we again denote by v. Note that sr “ π in E 1 and hence vpπq “ rvpsq.
Then v1 “ rv is a Z-valuation on E 1.

Let L “ E 1pXq and let Y “ X

s
. Note that L “ E 1pY q. By [2, Corollary

2.2.2], there exists a unique extension of v1 to L such that vpY q “ 0 and Y is
transcendental of κv1 ; we further have that κw “ κv1pY q and wpLˆq “ v1pE 1ˆq “
Z. Since wpY q “ 0, we have that wpXq “ wpsq “ 1. We get that

ϕr “ xsrpY r ´ 1q, srpsY ` 1q, sr`1Y, sr`1Y pY r ` 1qy
Consider the forms ϕ1 “ xY r ´ 1, sY ` 1y and ϕ2 “ xY, Y pY r ` 1qy.

Since Y
r ´ 1, Y

r ` 1 R ´κˆ2

w , it follows by Springer’s Theorem [4, Proposi-
tion VI.1.9] that the quadratic form s´rϕr is anisotropic over Lw. Hence ϕr is
anisotropic over Lw. We obtain that ϕr is anisotropic over Fw|F . Note that,
wpπq “ wpsrq “ rwpsq “ r, thus w P Ωr. l

We now provide a different perspective to the above theorem. For a subset
Ω Ď ΩEpXq, we say that Ω has the finite support property if for every f P EpXqˆ

the set tw P Ω | wpfq ‰ 0u is finite. It is well-known that Ω0 has the finite support
property. When E carries a discrete valuation the set ΩEpXq does not have the
finite support property. However, for any model X of EpXq over Ov, the set ΩX

contains Ω0 and has the finite support property. We show the following:

Corollary 1. Let v be a henselian Z-valuation on E with vp2q “ 0. Assume that

κv is separably closed. Let Ω Ď ΩEpXq be a subset with the finite support property.

Then there exists an anisotropic 4-dimensional quadratic form over EpXq which

is isotropic over EpXqw for every w P Ω.

Proof: Let π P Eˆ be such that vpπq “ 1. Since Ω has the finite support property,
the set tw P Ω | wpπq ‰ 0u is finite. Set r “ 1 ` maxtwpπq | w P Ωu. Clearly
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Ω Ď Ωr´1. Then the form ϕr in the Theorem is isotropic over EpXqw for every
w P Ω, but anisotropic over EpXq. l

Corollary 2. Let v be a henselian Z-valuation on E with vp2q “ 0. Assume that

κv is separably closed. Let X be a regular model of EpXq over Ov. Then there

exists an anisotropic 4-dimensional quadratic form over EpXq which is isotropic

over EpXqw for every w P ΩX .

Proof: By [3, Chapter II, Lemma 6.1], for every element f P EpXqˆ the set
tw P ΩX | wpfq ‰ 0u is finite, hence the statement follows by Corollary 1. l
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