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Abstract 

The fragment docking program SEED (Solvation Energy for Exhaustive Docking) is evaluated on 

15 different protein targets, with a focus on enrichment and hit rate. It is shown that SEED allows 

for consistent computational enrichment of fragment libraries, independent of the effective hit rate. 

Depending on the actual target protein, true positive rates ranging up to 27% are observed at a 

cutoff value corresponding to the experimental hit rate. The impact of variations in docking 

protocols and energy filters are discussed in detail. Remaining issues, limitations and use cases of 

SEED are also discussed. Our results show that fragment library selection or enhancement for a 

particular target is likely to benefit from docking with SEED, suggesting that SEED is a useful 

resource for fragment screening campaigns. A workflow is presented for the use of the program in 

virtual screening, including filtering and post-processing to optimize hit rates. 
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Introduction 

The vast drug-like chemical space has been estimated to contain over 1060 molecules.1 Needless 

to say, no currently available techniques come close to being able to screen a molecular library of 

this size. For this reason, fragment-based drug design (FBDD) has become a standard lead 

discovery approach in pharmaceutical industry since its introduction in the 1990s.2 The main 

advantage of fragment-based approaches is that the fragment space can be sampled more efficiently 

than the drug-like space.3, 4 The relatively low level of complexity of fragments also facilitates 

optimization by medicinal chemists, as well as increase efficiency and success rate of screening 

campaigns. In the past, the importance of ligand efficiency has also been discussed.5-7 Because 

fragment hits are so small, they are expected to bind very efficiently through strong contacts, and 

provide a more suitable starting point for lead optimization than large ligands for which key 

interacting groups are not so easily distinguished from less important functional groups. However, 

due to their limited number of functional groups, absolute binding affinities of fragments are low 

compared to those of drug-like molecules and binding is often promiscuous. Thus, identifying 

fragment hits remains challenging with any of the techniques currently used. 

Currently, FBDD is a drug discovery approach that mainly uses biophysical techniques for 

measuring protein-ligand binding affinities.8 In the past two decades, many efforts have been made 

to develop FBDD methods into valuable tools in both academia and industry. Biophysical 

techniques that are currently used for detection of fragment hits include nuclear magnetic resonance 

(NMR) spectroscopy, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), 

and X-ray crystallography.8-10 Each of these methods has its own advantages and disadvantages, 

so they are often combined in fragment screening campaigns.11 Virtual screening (VS), in which 

compounds are identified by computational methods including docking and shape-based similarity 



3 

 

screening,12 has become a highly effective approach.13-15 Fragment-based VS, in comparison, has 

been used less frequently. As mentioned before, the small size and relatively simple structure of 

fragments make it difficult to distinguish binders from non-binders. Minor differences in affinity 

are a major obstacle for VS, where factors like scoring function inaccuracies, energy 

approximations and limited conformational sampling also come into play. Furthermore, while 

many comparative studies have been published on docking of drug-sized small molecules, few 

studies describe the efficacy of fragment-based VS.16-19 Standardized, well-defined datasets of 

fragment screening experiments that contain hits and non-hits do not exist at the time of writing, 

so it can be difficult to perform any meaningful evaluation for fragment-based docking tools. 

As mentioned above, one of the advantages of FBDD is the ability to explore chemical space 

more efficiently. The relevant fragment space is, however, still orders of magnitude larger than the 

number of compounds that can be realistically validated by biophysical techniques.20 As such, in 

silico screening of these fragment libraries provides an efficient and low-cost alternative method 

to these existing biophysical techniques, and as such it can be a valuable technique to supplement 

fragment-based experimental techniques. 

SEED (Solvation Energy for Exhaustive Docking) is an open-source program for docking mainly 

rigid small molecules by an exhaustive search on discretized three-dimensional space. The 

development of SEED is hosted at https://gitlab.com/CaflischLab/SEED. The method was first 

published in 1999.21 The force field-based energy function used in SEED consists of four terms: 1) 

electrostatic and 2) van der Waals (vdW) interactions between protein and fragment, and 

electrostatic desolvation penalty of 3) protein and 4) fragment. An efficient numerical approach to 

the generalized Born equation was developed for calculating the electrostatic contribution to the 

binding free energy.22 As a consequence, the docking of a fragment takes about 1 to 10 sec 

depending on the definition of the binding site. Further details on the SEED docking protocol and 

https://gitlab.com/CaflischLab/SEED
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energy function can be found in the original papers and in the documentation at https://caflischlab-

seed.readthedocs.io/en/latest/index.html.21, 22 SEED has been used successfully in several fragment 

screening campaigns, with hit rates of up to 40%.23-27 A review on SEED campaigns up to 2017 

has been published recently.28 

Aside from SEED, very few tools exist that are dedicated to fragment docking. LUDI, a rule-

based docking program, is one of the only other specialized tools.29 Generally, traditional docking 

programs like Flexx,30 GOLD,31 DOCK,32 Glide33, Autodock34 and AutoDock VINA35 are also 

suitable for fragment docking, but evaluation of performance is largely absent.36, 37 In this work, a 

retrospective docking study is carried out for analyzing the performance of SEED on 15 different 

protein targets for which experimental fragment screening data containing hits and non-hits is 

available. In addition, a comparison is presented with Glide, a well-established docking tool. The 

libraries range in size from nearly 400 to 3,500 fragments, and the fraction of experimental hits 

ranges from 0.8% to 10.8%. The potential for enrichment is evaluated, and the impact of changes 

in protocols and filters on the performance of SEED are investigated. The optimal protocols for 

fragment-based screening in SEED are discussed, and a general workflow is suggested. 

Methods 

1. Datasets 

Table 1 shows the 15 datasets used for the assessment of SEED and the comparison with Glide. 

The table lists the target names, number of fragments in the libraries, the hit rates, experimental 

techniques of the in vitro screening campaigns, and the PDB id of the proteins used for the VS. In 

addition, the total number of fragments before filtering and some further comments are provided 

in Table S1 as supplementary material. X-ray determined binding poses for the hits in the SGC 

datasets are publicly available and are provided in this Associated content section. 
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We used the same fragment libraries for experimental and virtual screening. Minor differences 

in the virtual library are possible but are negligible and are related to fragments that failed the 

preprocessing (parametrization, missing structural information, etc.) for the docking software. The 

experimental library sizes and hit rates were left unaltered to allow for a fair comparison between 

experimental and virtual screening campaigns. 

Table 1. Properties of the 15 datasets included in this study. 

Target 

name 

Number of 

fragmentsa 

Number of 

hitsb 
Originc 

Experimental 

screening methodd 

PDB id: 

structure 1 / structure 2 

BACE 805 20 ZoBio SPR 5HDZ / 2QP8 

BLAC 734 6 ZoBio SPR 4KZ4 / 4KZ5 

BTK 2,467 64 Janssen ThermoFluor in-house only 

EPHA4 743 6 ZoBio % inhibition assay 2XYU / 2Y6O 

FALZ 395 8 SGC X-ray FALZA-x0177 / FALZA-x0309e 

HPK1 1,271 22 Janssen Displacement assay in-house only 

HSP90 724 69 ZoBio TINS 3K98 / 2YEC 

NUDT5 694 36 SGC X-ray 5QJ4 / 5QJA 

NUDT7 792 31 SGC X-ray 5QGP / 5QGY 

OGA 751 61 Janssen NMR 5UN9 / in-house 

PARP14 645 18 SGC X-ray 5QHV / 5QI3 

PCAF 534 7 ZoBio SPR 5FE8 / 5FE9 

PIM1 587 19 ZoBio X-ray 1XWS / 3R04 

NhDMX 736 10 ZoBio NMR in-house only 

KHK 380 41 Janssen X-ray in-house only 

aThe number of fragments is the size of the fragment library after filtering out molecules with >2 
rotatable bonds except for the FALZ, NUDT5, NUDT7, and PARP14 targets, for which the 
unfiltered libraries were screened. In Table S1 the size of the unfiltered libraries is given. bNumber 
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of hits in the filtered libraries. cSGC: Structural Genomics Consortium; Janssen: Janssen internal 
dataset; ZoBio: ZoBio internal dataset. dX-Ray: X-ray crystallography; SPR: Surface Plasmon 
Resonance; NMR: Nuclear Magnetic Resonance; TINS: Target Immobilized NMR Screening. 
eThe crystal structures are available at https://www.thesgc.org/ligand-bounds/falza. 

2. Preparation of protein structures and libraries of fragments 

It is generally known that small deviations in active site root-mean-square deviation (RMSD) 

can have a strong impact on VS results.38 Therefore, two different protein structures were prepared 

for each dataset (with exception of NhDMX) to account for the impact of small conformational 

changes in the binding site on the performance of the VS protocols. Reported results are 

subsequently the results of the best performing conformation for any given protocol. In case 

multiple holo-crystal structures were available, selection of the two structures was based on a visual 

inspection of the conformational differences with preference to those structures having large 

differences. The selected binding pockets for the targets of the datasets were defined based on 

available X-ray crystal structure data. The binding site chosen was the site where the largest number 

of ligands or fragments was located in holo-protein crystal structures. Hydrogens, missing atoms 

and side chains were modeled using the Biologics Modeling package in the Schrödinger Suite 

2019.39, 40 Explicit crystal water molecules were kept if they showed more than two interactions 

with protein residues and were consistently found in multiple crystal structures. Bond orders were 

assigned, and hydrogens were added. Next, the orientation of amide (Asn and Gln), hydroxyl (Ser, 

Thr, and Tyr), and thiol groups (Cys) and tautomeric state of His residues were optimized using 

the exhaustive sampling option. Protonation states of the titratable side chains were calculated at 

pH 7.4 using the Schrödinger Biologics Modeling package. Finally, hydrogen positions were 

minimized while heavy atoms were constrained using the Protein Preparation Wizard in Maestro.41 



7 

 

Fragment libraries were imported into MOE as SMILES and were converted to two-dimensional 

structures.42 Because SEED uses rigid conformations of the ligand for docking, molecules with 

more than two rotatable bonds were excluded except for the FALZ, NUDT5, NUDT7, and PARP14 

datasets. For these four sets, filtering out fragments with more than two rotatable bonds would lead 

to libraries containing less than 300 fragments. The libraries were then imported into Maestro in 

the SDF format, and 3D conformations were generated for all occurring protomers at pH 7 ± 1 

using the LigPrep module, preserving the tautomeric form defined in the library. Then, up to 64 

conformations were generated for docking with SEED for each fragment using ConfGen.43 

3. Dataset analysis 

The conformational differences in the binding site between both structures of the same target 

were measured using MOE.42 The protein sequences were first aligned and superimposed, and the 

RMSD was measured over all backbone atoms for the full protein and for all heavy atoms of 

residues within 4.5 Å of either ligand (Table S2). The number of rotatable bonds of the fragments 

was calculated using the Janssen in-house Third Dimension Explorer (3DX) tool.44 Fragment 

charges were calculated using MOE. 

4. Docking methods 

Docking by SEED 

The evaluation of the binding energy in the program SEED consists of a force field-based energy 

function with a continuum dielectric approximation of the protein-fragment electrostatic 

interactions and desolvation penalties by the generalized Born model.21, 22, 45 The partial charges 

and vdW parameters for the atoms in the protein and in the fragments were taken from the 

CHARMM36 all-atom force field and the CHARMM general force field (CGenFF), 

respectively.46-48 Importantly, CHARMM36 and CGenFF employ a consistent paradigm for the 
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determination of partial charges and vdW parameters. The molecular surface is assigned as a 

dielectric discontinuity surface and the dielectric constant was assigned a value of 2.0 and 78.5 for 

the volume occupied by the solute and solvent, respectively. 

The different docking and scoring options that were evaluated are summarized in Table 2. SEED 

offers three methods for the actual placement of the fragments: (1) polar docking in which 

fragments are positioned and oriented such that at least one favorable hydrogen bond with a residue 

in the binding site is formed, (2) apolar docking in which fragments are placed in the hydrophobic 

regions of the binding site, and (3) a combination of (1) and (2). The docking itself was carried out 

using up to 64 conformers per fragment pre-calculated by ConfGen. Two screening protocols were 

thoroughly evaluated: (1) docking by combining polar and apolar placement of multiple 

conformers with the total energy (Total) as scoring function (docking protocol DP1) and (2) polar 

docking alone of multiple conformers with Delec (see Table 2 for the definition) as scoring function 

(DP2). For the DP1 protocol, the influence of vdW efficiency filters (vdWE) of —1.1 kcal/mol or 

—1.6 kcal/mol per heavy atom were investigated. Robustness of the DP1 protocol was also tested 

by varying the multiplicative factors of the vdW energy and fragment desolvation penalty 

contributions, solvation grid spacing, active site definition, number of generated conformations per 

fragment, and the use of additional filters. As a result of an exploratory variation of parameters, the 

most generally applicable protocol included a 1.2 times rescaling of the vdW contribution, a 0.5 

times rescaling of the fragment desolvation penalty, an electrostatic efficiency filter of —0.1 

kcal/mol, a vdW efficiency filter of —1.1 kcal/mol or no vdW efficiency filter for superficial 

binding sites (in this study, only the NhDMX binding site did not warrant a vdW efficiency filter). 

Table 2. Energy terms in SEED, ranking methods, and derived docking protocols. Rationales for 

the selection of these particular terms, methods and protocols is given throughout the text. 
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Description Abbreviation in text 

Energy terms: 

Total energy of the interaction between fragment and protein Total 

Electrostatic interaction between fragment and protein, within implicit solvent ElinW 

ElinW minus the free energy of solvation of the fragment Delec 

Van der Waals interaction between fragment and protein vdW 

Ranking methods: 

Ligand efficiency (Total / number of non-hydrogen atoms of fragment) LE 

Electrostatic efficiency (ElinW / number of non-hydrogen atoms of fragment) ElectrE 

Van der Waals efficiency (vdW / number of non-hydrogen atoms of fragment) vdWE 

Docking protocols: 

Docking of multiple conformers of the fragment and scoring by Total DP1 

Polar docking of multiple conformers of the fragment and scoring by Delec DP2 

Docking by Glide 

In this study, the Glide docking tool was used to provide a baseline performance for fragment 

screening as it is one of the only tools that has previously been validated for fragment screening.18, 

19 The settings recommended by Schrödinger for fragment screening were used for Glide docking. 

The docking grid was created in such a way that it resembled the SEED sampling space as good as 

possible. Docking in Glide was done using the Standard Precision algorithm.33 The expanded 

sampling scheme was used, the number of poses per ligand for the initial phase of docking was 

increased to 50,000, the scoring window for keeping initial poses was increased to 500 kcal/mol, 

and the best 1,000 poses of every fragment were kept for energy minimization. The protein was 

kept rigid during docking. 



10 

 

5. Quality metrics 

To test the utility of the SEED tool, we focused mostly on evaluation of the screening power, a 

measure for the ability of a scoring function to prioritize true binders by ranking. Visual inspection 

of hit fragments was done to inspect for anomalies but was not used as a performance criterium. 

To investigate the screening power, the enrichment factor (EF), the true positive rate (TPR), the 

Area Under the Receiver Operating Characteristic (AUROC/AUROCx) and Power Metric (PM)49 

were used as metrics. 

The AUROC is defined as the area under the Receiving Operating Characteristic (ROC) curve, 

which is empirically constructed by plotting the true positive rate (TPR, see below) as a function 

of the false positive rate (FPR) for all possible thresholds. The AUROC can be interpreted as the 

probability that the docking protocol we are using will rank a randomly chosen positive control 

before a randomly chosen negative one50, 51 and it is used to quantify the model-wide screening 

performance. In order to test statistically whether the rankings derived from our protocols perform 

better than random on the specific datasets we analyzed, for each library we simulated the null 

model distribution of AUROCs under the assumption that the ranks of the actives are uniformly 

distributed.52, 53 For each case we used 1,000,000 samples, which were generated by randomly 

drawing the ranks of the actives without replacement.  

The EFx at x % of the ranked fragment library is calculated as: 𝐸𝐹𝑥 = #𝐻𝐼𝑇𝑆𝑠𝑒𝑙𝑁𝑠𝑒𝑙 × 𝑁𝑡𝑜𝑡#𝐻𝐼𝑇𝑆𝑡𝑜𝑡 (1) 

with EFx being the EF for the situation in which the top-x % of the ranked library is defined as 

hit, #HITSsel the number of true hits in the top-x % of the ranked library, #HITStot the number of 

true hits in the entire library, Ntot the total library size, and Nsel the size in compounds of the first 

x % of the ranked library. 
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The sensitivity metric, also called the TPR or recall, is calculated as: 

𝑇𝑃𝑅𝑥 = #𝐻𝐼𝑇𝑆𝑠𝑒𝑙#𝐻𝐼𝑇𝑆𝑡𝑜𝑡 (2) 

with TPRx being the TPR calculated for the situation in which the top-x % of the ranked library 

is defined as hit. 

The AUROCx metric is a cutoff-dependent extension of the AUROC and was derived by 

calculating the area under the ROC as defined by plotting the single TPRx as a function of the single 

false positive rate (FPRx), calculated for a given activity cutoff rate x %. The AUROCx is expected 

to oscillate locally around the value of 0.5 for uniform random ranking and to decrease linearly, in 

regions where no actives are ranked. 

Finally, the PMx metric was calculated according to:49 

𝑃𝑀𝑥 = 𝑇𝑃𝑅𝑥𝑇𝑃𝑅𝑥 + 𝐹𝑃𝑅𝑥 (3) 

The EF is a metric that is useful in evaluating the enrichment within a specified fraction of the 

scored library, relative to the experimental hit rate. However, this metric is strongly dependent on 

the total number of fragments and number of actives in the library. Notably, EF does not 

discriminate between hit fragments below the threshold value and does not hold into account any 

fragments that are not within the threshold, making it very dependent on the chosen threshold. The 

TPR metric expresses the percentage of fragments retrieved within a specified fraction of the scored 

library. It has most of the drawbacks of the EF but does not take into account the ratio of hits to 

non-binders, which reduces the variance on this metric. The AUROC is another commonly used 

metric with a statistical background, unlike the EF and the TPR. It is a measure of the docking 

performance over the full library. The main disadvantage of the AUROC is that there is no bias 

towards early retrieval of fragments, which is not representative of the aim of a virtual screening 
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experiment. Finally, the power metric is a statistically solid alternative for the TPR. It combines 

the TPR with the false positive rate so that it is no longer as sensitive to the threshold.  

In the context of virtual screening on prospective targets we are primarily interested in the early 

enrichment as resource constraints usually allow for experimental validation of only a (small) 

fraction of the compound library. For this reason, we have also considered metrics which focus on 

the early enrichment region of the virtual screens along with the AUROC, which is commonly used 

to evaluate docking performance.  

Results 

The SEED performance was mainly judged based on screening power, which is the ability of a 

scoring function to distinguish true binders from inactive compounds.54 While docking power (i.e. 

the correct prediction of the binding mode observed experimentally, e.g. in crystal structures) is 

also an important metric to be considered in fragment screening, the amount of binding pose 

information in the curated datasets is limited. However, previous reports have provided evidence 

that SEED is able to accurately predict binding poses of fragments.23-26, 55, 56 

1. Performance compared to random ranking 

Figure 1 compares the rankings from the different docking protocols (DP1, DP2, and Glide) with 

the histograms of the AUROCs for simulated uniformly distributed ranks of the actives. When two 

conformations of the same target were used for docking, we kept the scores for the best performing 

conformation with the protocol. The distributions are all centered around 0.5, which is the value 

commonly used as random baseline for binary classifiers, but their standard deviations depend on 

the specific composition of the library in terms of total number of compounds and actives.52 In our 

cases (as in virtual screening in general), the number of hits is much smaller than the number of 
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inactives and we observe a lower standard deviation for larger fractions of actives in libraries of 

the same size (compare for example EPHA4 and OGA), and for larger libraries containing a similar 

fraction of hits (compare BTK and PARP14). In order to test whether AUROCs above 0.5 are 

statistically better than random, we calculated p-values from the empirical cumulative distribution 

function of the null model. The p-values represent the probability that random ranking could 

achieve a performance equal to or better than the respective screening protocol.  

 

Figure 1. For each target, the AUROC metric for DP1 (blue dashed lines), DP2 (green dashed 

lines) and Glide (red dashed lines) is compared to the distribution of AUROCs for random ranking 
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of the actives (light blue histograms). The random null distributions were generated with 1,000,000 

samples by drawing the ranks of the actives uniformly without replacement. The reported p-values 

are calculated from the empirical cumulative distribution function of the AUROC null distribution 

and are used to test whether the screening protocols perform better than random on the overall 

library. The indicators for the DP1 and Glide protocol overlap for NUDT5. The active site of KHK 

is very hydrophobic. Using the DP2 protocol for this site results in almost no successfully docked 

fragments, so the DP2 protocol was omitted from the results. 

For most of the targets there is at least one screening protocol that achieves better-than-random 

performance. Specifically, DP1, DP2, and Glide rankings are better than the null model in 11, 5, 

and 7 cases respectively (at a significance level 𝛼 = 0.05). All the protocols are better than uniform 

ranking for BTK, EPHA4, NUDT5, PARP14 and KHK, whereas they all fail on BLAC, PIM1 and 

NhDMX. Figure S1 also shows the AUROC values for each individual protein conformation and 

for a “mixed approach” in which the highest score for any given fragment is used to calculate the 

AUROC, regardless of the protein conformation that originated the pose. The AUROC is an overall 

measure of performance, which considers the position of all the actives and is strongly deteriorated 

by actives that are docked in the wrong pose, as they usually rank poorly; this problem can 

particularly affect SEED when docking very flexible molecules. However, in the context of virtual 

screening, rankings with low AUROC can still be valuable if they manage to rank some actives in 

the top fraction of compounds. 

2. Comparing SEED with Glide 

In Figure 2, the performance in terms of early enrichment of the two docking protocols of SEED 

(DP1 and DP2) are compared to Glide. For each of the fifteen targets, the EF, PM and AUROCx 

metrics of the three different screens were calculated at cutoff values (the x variable in equation 1) 
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ranging between 0-10% in increments of 0.5%. Analysis of these data shows that there is no 

screening method that performs consistently better than the others, but some trends can be deduced. 
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Figure 2. Comparison of the AUROCx and PM (left y-axes) and EF (right y-axes) metrics as a 

function of the scoring cutoff that is used to separate predicted actives from inactives (x-axes), 

calculated from the DP1, DP2, or Glide dockings on each of the 15 targets. The reported values 

are generated from taking the scoring averages of the best performing conformation when two 

targets where available for each protocol. Gray-shaded areas indicate the experimental fraction 

of hits for each target set which is also reported in parentheses. The figure was generated by 

ranging the scoring cutoff between 0 and 10% in increments of 0.5%. For reasons of clarity, the 

maximum plotted value of the EF metric has been limited to 10. The active site of KHK is very 

hydrophobic. Using the DP2 protocol for this site results in almost no successfully docked 

fragments, so the DP2 protocol was omitted from the results. 

Focusing on Figure 2, it is clear that for some of the targets no convincing virtual screening 

results are obtained. This is particularly true for the three targets NUDT7, OGA and PIM1 for 

which the maximal EFs calculated using a cutoff of 5% on the ranked hitlist are all below or close 

to 2, the AUROCx values around 0.5 (implying a random model), and the PM metric between 0.5 

and 0.7. Virtual screening results for the other targets are better. We observe that SEED, using a 

combined polar and apolar docking approach and with the total energy as scoring function (DP1), 

performs in eight out of the 15 targets (BACE, BTK, FALZ, HPK1, HSP90, NUDT5, PARP14, 

KHK) better than or equal to the DP2 and Glide protocols. The other tested docking protocol of 

SEED (DP2), in which only a polar docking was used in combination with Delec as scoring 

function (Table 2), performs well in four out of the 15 targets (BLAC, HSP90, PARP14, NhDMX). 

Finally, good results are found for Glide in the case of five out of the 15 targets (BACE, BTK, 

EPHA4, PCAF, KHK). 
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In Table 3, a similar comparison between the three docking protocols is given. In this case, the 

sensitivity metric is used to compare the protocols and to analyze how well each of the methods is 

capable to identify hits within the cutoff limit imposed by the actual fraction of hits contained in 

the dataset (fHits). In the case of an ideal virtual screening model, the expected outcome for the 

TPRfHits metric in Table 3 would be 100%, meaning that all of the available hits in the dataset would 

be retrieved by the method using a cutoff equal to this fraction. Comparison of Table 3 with Figure 

2 reveals some interesting conclusions. There is a good agreement overall of the results from Figure 

2 with those from Table 3. Protocols and datasets that perform well in terms of the AUROCx and 

EF metrics also perform accordingly in terms of the sensitivity metric. This is especially the case 

for the majority of the 15 targets (BACE, BLAC, BTK, EPHA4, FALZ, HPK1, HSP90, NUDT5, 

PARP14, PCAF, NhDMX and KHK). For these cases, a good correlation between the TPRfHits and 

EF is observed, indicating a high enrichment at early cutoff fractions for some of the screening 

models.  For the three targets (NUDT7, OGA and PIM1) for which none of the three methods are 

performing well when evaluated by the calculated EF, PM and AUROCx values in Figure 2, a 

similar conclusion can be drawn from the TPRfHits metric in Table 3. 

However, from a practical point of view, this is not the desired screening power one expects from 

a typical virtual screening, especially when one wants to evaluate larger virtual datasets. Similar 

conclusions can be drawn for NUDT7, OGA and PIM1, and in particular the latter target seems to 

be the most problematic for all of the three evaluated virtual screening methods. One can therefore 

conclude that neither SEED nor Glide are performing well in the case of these three targets. If we 

combine the results of the AUROC measurements in Figure 1 and the TPRfHits values of Table 3, 

we can isolate the datasets for which the different screening protocols provide a consistent 

performance across the full library in combination with a significant early enrichment. As a 

baseline for good performance, we can select datasets for which the AUROC is statistically better 
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than a random distribution and for which the TPRfHits is more than twice the experimental hit rate. 

For DP1, this is the case for seven targets (BACE, BTK, FALZ, HPK1, NUDT5, PARP14, KHK). 

For DP2, this is only the case for three targets (HSP90, NUDT5, PARP14) and for Glide this is the 

case for five targets (BACE, BTK, EPHA4, PARP14, KHK). By combining the performance 

metrics, we can say that the DP1 protocol is more reliable than either the DP2 or Glide protocol. 

Table 3. Sensitivity analysis of the different docking protocols applied to each of the 15 targets. 

The cutoff value that was used to calculate the sensitivity (TPR) was set equal to the fraction of 

hits in each dataset (fHits). Bold TPR values indicate the sets that performed well according to 

Figure 2. 

Target name fHits: 

fraction of hits (%)a 

TPRfHits (%)b 

DP1 DP2 Glide 

BACE 2.5 5.0 0.0 10.0 

BLAC 0.8 0.0 16.7 0.0 

BTK 2.6 11.1 3.2 12.7 

EPHA4 0.8 0.0 0.0 16.7 

FALZ 2.0 25.0 0.0 0.0 

HPK1 1.7 4.6 0.0 0.0 

HSP90 9.5 18.8 24.6 2.9 

NUDT5 5.2 19.4 16.7 2.8 

NUDT7 3.9 6.4 0.0 0.0 

OGA 8.2 8.2 4.9 9.8 

PARP14 2.8 5.6 16.7 5.6 

PCAF 1.3 0.0 0.0 14.3 
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Target name fHits: 

fraction of hits (%)a 

TPRfHits (%)b 

DP1 DP2 Glide 

PIM1 3.2 0.0 0.0 0.0 

NhDMX 1.4 0.0 10.0 0.0 

KHK 10.8 26.8 -c 22.0 

aThe fraction of hit fragments in the library. bThe true positive rate (TPR) calculated at a cutoff 
value corresponding to the fHits value of each target. In an ideal screening model, this TPRfHits 
value should be equal to 100%. cThe active site of KHK is very hydrophobic. Using the DP2 
protocol for this site results in almost no successfully docked fragments, so the DP2 protocol was 
omitted from the results. 

3. Fragment flexibility 

The performance of SEED when docking more ‘flexible’ fragments was also tested and 

compared to Glide. All fragments having more than two rotatable bonds were defined as ‘flexible’ 

fragments. The performance of Glide was compared to the best performing protocol of SEED 

(DP1), using four different datasets for which a sufficient number of flexible fragments were 

available (BTK, KHK, OGA and HPK1). Instead of filtering each of the libraries for fragments 

with less than three rotatable bonds, the full libraries were used for screening. The number of 

fragments in each dataset can be found in Table S1. 

The results are summarized in Figure 3 and may be compared to the corresponding data in Figure 

2, the latter being generated for fragments with two or less rotatable bonds. While in the case of 

BTK, HPK1 and KHK as targets, DP1 outperformed Glide as a screening tool (Figure 2), this is 

no longer the case when more flexible fragments are used. It is interesting to note that in the case 

of BTK and HPK1, SEED performance is roughly the same with and without the addition of the 

flexible molecules, whereas Glide improves with the addition of the flexible set. On the contrary, 

for KHK both SEED and GLIDE worsen with respect to the case without flexible ligand. In fact, 

both protocols seem - from a qualitative point-of-view as shown in Figure 3 – to perform almost 
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equally well. This illustrates one of the limitations of SEED, namely that both protein and fragment 

are kept rigid to allow for fast screening, but this design choice comes at the cost of performing 

less well in the case when flexible molecules need to be screened. 

 

 

Figure 3. Comparison of the AUROCx and PM metrics (left y-axes) and EF (right y-axes) metrics 

as a function of the virtual screening cutoff (x-axes), calculated from the DP1 and Glide virtual 
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screens on four targets in combination with fragments containing more than two flexible torsions. 

The figure was generated using an identical protocol as for Figure 2. Panel labels describe the 

targets with both the actual number of hit fragments and experimental hit rates in parentheses. 

Discussion 

1. Datasets 

There is a low public availability of fragment docking datasets. Available datasets are often 

suboptimal for benchmarking due to a combination of low experimental hit rates and small library 

size, or conversely very high experimental hit rates and large library size. Therefore, some datasets 

in this study are not as useful for benchmarking compared to the sets that are often used in the 

assessment of docking tools for drug-like molecules. The lack of targets with available fragment 

X-ray data is still an issue. For example, several targets which were used for screening by X-ray 

crystallography had multiple fragment-binding pockets. As we cannot make a distinction between 

experimental hits that bind in the pocket selected for VS and fragment hits that bind elsewhere with 

most experimental screening procedures, the enrichments reported here for both SEED and Glide 

are likely significantly lower than the actual enrichments resulting from the screening studies. In 

other cases, inconsistencies could be seen in the hits found by different in vitro screening assays, 

which is a known issue.10 In some datasets, a significant portion of hits are likely false positives, 

as a result of either aspecific binding to the protein surface or detergents, or binding in different 

protein domains. Initially, 24 different targets were considered with datasets provided by Janssen, 

SGC and ZoBio. After considering the factors discussed here to the best extent, only 15 datasets 

remained for which the experimental data were robust enough to be included in the study.  

The fragment libraries in this study are also relatively small, resulting in a relatively high variance 

on the reported results. The libraries that were used range from 394 fragments to 3,521 fragments, 
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while fragment libraries can often contain in the order of 104-105 fragments. The number of 

experimental hits among the datasets varies between 0.8% and 10.8%. In datasets with high hit 

rates, it is expected to obtain lower EFs. These factors can result in noise on the results, while also 

making comparative metrics ambiguous. Despite these shortcomings, it was still possible to design 

a workflow that provides enrichment for nearly all tested datasets.  

2. Performance: SEED versus Glide 

From the results of this study it can be concluded that SEED generally outperforms Glide for 

screening of small fragments. The DP1 SEED protocol performs statistically better than random 

for 11 out of the 15 studied targets when considering the AUROC, while this is only the case for 7 

out of 15 targets with the Glide docking protocol. If we also consider the early enrichment based 

on the TPR metric in addition to the AUROC values, the DP1 SEED protocol performs well for 7 

targets while this is only the case for 5 targets with the Glide protocol. However, it goes without 

saying that both tools have their advantages and disadvantages. The Glide user interface is very 

user-friendly and allows for comparatively fast and easy protein and fragment preparation, which 

can be done completely in Maestro. SEED, in contrast, is a command line tool which relies on 

other programs for protein and fragment preparation. Also, Glide is not limited to rigid fragment 

docking. It has a fast algorithm that samples conformational space without relying on multiple 

input conformations, making it more suitable for larger, more flexible fragments. Finally, Glide 

also has the option of post-docking energy minimization of the best poses and can account for 

induced fit to some extent by allowing some binding site residues to rotate. Post-docking energy 

minimization is also possible in SEED, but it is limited to rigid body translation and rotation of the 

fragment only. On the other hand, SEED is an open source tool. It is more customizable than Glide 

to suit the needs of the user. Settings regarding sampling can be fine-tuned to find a balance 



24 

 

between efficiency and accuracy, and even the scoring function can be customized to adjust to the 

needs of the user. The SEED algorithm explores the space defined by the user exhaustively. This 

should, in practice, result in better reproducibility, exploration of all possible poses, and an accurate 

score being assigned to the top pose, assuming that an adequate diversity of conformations is 

provided in the case of flexible molecules.  

It is important to emphasize that the results reported in this study are based on the ability of both 

tools to rank fragments by raw scoring functions. In practice, various other considerations can be 

made, including analysis of incorrectly buried hydrogen bond donors and acceptors, visual 

inspection of binding poses, knowledge-based filtering of fragments and rescoring with other 

scoring functions.17, 57-61 By using these methods for further post-processing, one can drastically 

improve the hit rate in screening campaigns, as can be seen in successful campaigns.20, 62, 63 

3. Defining the binding site  

The selection of binding site residues for fragment docking in SEED is defined by the user in the 

input file. It is recommended to use SEED on targets for which a holo-protein crystal structure is 

available. As with regular small molecule docking, using a holo-protein crystal structure will help 

consider conformational changes in the binding pocket upon ligand binding as small rotamer 

changes in active site residues can already have a sizeable impact on docking results. They can 

either prevent fragments from being docked due to clashes if the site is too small or result in top 

fragment poses with unlikely contacts if the site is too big. Therefore, it is also suggested that there 

is a general idea of an expected binding motif if one expects good results from fragment docking. 

Bromodomains and protein kinases have well defined interactions with their natural ligand 

acetylated lysine and ATP co-substrate, respectively, which facilitates the preparation of a SEED 

docking run and contributes to the success of SEED campaigns on these targets.23-27, 56  
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Unlike many other docking tools, the binding site for SEED is not defined by a “docking box” 

in which non-exhaustive sampling is performed but is based on vectors generated according to 

user-picked residues to allow for exhaustive sampling by rotations around these vectors. With 

information about the binding motif, it is possible to limit the number of chosen residues, which 

improves performance in both binding pose prediction and enrichment. It is, however, also possible 

to use SEED without information about the binding site. In such case, tools exist that can help 

identify promising binding sites. For example, in the 29 structures from 15 different targets 

considered in this study, the SiteFinder module of MOE was able to recognize the screened binding 

site as the “best” binding site for 24 of the structures, and as the second-best binding site for 4 of 

the structures. Tools like SiteFinder only give an estimate of the region of interest though, as the 

binding site is usually larger than the region(s) in which fragments will bind with high efficiency. 

Other tools probing the binding site more precisely to find fragment binding hotspots also exist.64 

The biggest issue that remains is the possibility of conformational change upon ligand binding. A 

possible solution to this is to sample binding site flexibility through molecular dynamics 

simulations.63 In this study, we also attempted to find a way to correlate results with certain 

protocols to characteristics of the protein binding site. Unfortunately, we were unable to find any 

clear correlation. What we did find is that the standard DP1 SEED protocol which we recommend 

is outperformed by a protocol that utilizes the “ElinW” energy score for ranking some of the 

datasets. This is discussed in the next section. 

4. An unresolved issue: SEED and charged fragments 

A current known issue of the SEED scoring function, and an issue with force field-based methods 

in general, is that it is difficult to find a unifying scoring criterium that works for fragments with 

different formal charges. Models based on fixed partial charges cannot correctly capture 
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polarization, making it very difficult to distinguish between charged and uncharged molecules (we 

use the term uncharged fragment for molecules devoid of formal charges). As mentioned in Table 

2, the "Delec" energy is the difference between protein/fragment electrostatic energy and free 

energy of hydration. For charged fragments "Delec" is always very unfavorable (large and positive) 

because it is not possible to compensate their very favorable free energy of hydration by 

electrostatic interactions with the protein. This issue carries over to a ranking based on the total 

energy score. 

The SEED docking parameters used in this study result in charged fragments not being accurately 

ranked for binding sites with (several) charged side chains. While this is not a big concern if 

additional filters are included in a workflow such as discussed below, it might have an impact on 

the enrichment in cases where no additional post-processing is applied. BACE and BLAC have 

binding sites with negatively and positively charged side chains, respectively, and many of the hits 

are fragments bearing a formal charge opposite to the ones in the binding site. It has been previously 

established that regular SEED scoring protocols are not appropriate for ranking of charged 

fragments,56 and tests on the BACE and BLAC datasets have shown that a modified version of the 

DP1 protocol using the “ElinW” ranking method instead of the “Total” ranking method (see Table 

2) can significantly improve enrichment when charged fragments are expected to have contacts 

with charged residues. In fact, different rankings can be used separately to retrieve pools of 

compounds more enriched in polar, charged, and non-polar fragments. Considering the BLAC 

library none of the hits containing carboxylic acids passed the applied filters or ranked within the 

10% cutoff on the ranked hitlist in our initial screenings. When using an alternate protocol by 

sorting the ranked compounds by the “ElinW” ranking method, several of these hits were retrieved. 

Of the two hits for which crystal structures are available (PDBID: 4KZ7, 4KZ9), one was found 

within the top 10% of fragments with this protocol, with a pose similar to the crystal structure pose 
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(see Figure 4). The other fragment was ranked 691 out of 734 compounds but was found to bind to 

a different region after inspecting the crystal structure. 

While the “ElinW” ranking method yields better enrichment for BACE and BLAC, significant 

early enrichment for these targets is still obtained with the DP1 and DP2 protocol, respectively 

(see Figure 2). However, the pool of best ranked fragments using these protocols is vastly different 

compared to using the “ElinW” ranking method. More specifically, we observed that a bigger 

fraction of charged, polar and apolar fragments can be retrieved using the “ElinW” ranking 

method, DP2 protocol and DP1 protocol, respectively. In respect to these observations, we 

encourage the separate ranking of charged and uncharged compounds. This approach has been 

taken previously in SEED screening experiments as well.27, 56 

 

Figure 4. Using the “ElinW” ranking to correctly predict binding poses of charged fragments. The 

crystal structure pose of a fragment binding to the BLAC active site (PDBID: 4KZ7) is shown in 

gold sticks. The SEED top pose using the “ElinW” ranking is shown in green lines. While the 

carboxylate groups overlap very well in the binding poses, the bulky group of the fragment is not 

positioned correctly (RMSD = 3.3 Å). 
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5. Docking flexible fragments with SEED 

The performance of SEED when not using a filter on the number of rotatable bonds in a fragment 

was assessed. The results of this comparison showed that SEED performs worse when more 

flexible fragments are included in the library, while also performing slightly worse than Glide in 

this case. This is possibly due not to approximations in the scoring function itself but to the pose 

generation. The computational efficiency of screening flexible fragments is also something to keep 

in mind when using SEED. While Glide does not slow down significantly when fragment size 

increases, SEED is several times slower when docking flexible molecules, and this is because of 

two reasons. Firstly, flexible molecules are generally larger than rigid fragments, and have more 

functional groups. As SEED uses an exhaustive sampling algorithm, all functional groups will be 

positioned and sampled along the user-defined vectors, causing a significant increase in sampling 

per molecule. Secondly, Glide handles sampling of fragments with rotatable bonds relatively 

efficiently. In SEED on the other hands, multiple conformations of flexible molecules have to be 

docked individually. The number of input conformations needed for a sufficient amount of 

sampling increases exponentially with the number of rotatable bonds. However, lower enrichments 

are also obtained in Glide when using unfiltered libraries, compared to using a filter on the number 

of rotatable bonds. Because of this, virtual docking of large, flexible molecules is generally 

dissuaded. 

6. Use cases of SEED 

As this study was a validation of the ability of SEED to outperform random fragment selection 

and provide early enrichment of hits, no extensive post-processing was done in order to avoid any 

kind of bias. In reality, the SEED tool is a lot more flexible in usage than what is represented here. 

For the benchmarking, top percentages of ranked fragments were chosen to obtain representative 
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values. However, there is currently no single protocol which is suited for all fragment types. As 

such, it is highly recommended to not use raw percentage cut-offs for fragment docking. Even 

though the study demonstrates a significant enrichment of libraries, the use of a customized 

approach with manual postprocessing will likely lead to hit rates that are higher than presented in 

this study. From the results of screening 15 datasets and exploration of various parameters, we 

propose a workflow to be used for virtual fragment screening with SEED (Figure 5).  

Based on our results we believe that virtual screening with SEED is a useful approach to prioritize 

fragments for experimental follow-up. Given the commercial availability of very large fragment-

sized compound collections, custom libraries for specific targets are likely to have higher hit rates 

than a standard fragment library. Alternatively, a standard library can be augmented with fragments 

resulting from a virtual screen.  

 
Figure 5. Suggested SEED fragment screening workflow. ElectrE: electrostatic efficiency; vdWE: 

vdW efficiency. SEED2XR, ALTA: see reference for a detailed explanation of both workflows.28 
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Conclusions 

We have assessed the usefulness of the high-throughput docking program SEED for virtually 

screening libraries of fragments and conclude that the observed enrichments can be useful for 

selecting fragment libraries for experimental screening. While for flexible fragment docking Glide 

is faster than SEED, we found that SEED outperforms Glide in the majority of cases.  Experimental 

fragment screening results can be inconsistent, with inaccuracies caused by aspecific protein 

binding and weak binding, which give rise to false positives and false negatives, respectively. 

Furthermore, fragments can bind to alternative binding sites on a protein, resulting in additional 

false positive hits. Therefore, the true EFs for virtual fragment screening are probably higher than 

reported. Furthermore, applying appropriate post-processing and adjusting the used protocol or 

workflow on a case-to-case basis also has a significant impact on virtual screening results.  

Although SEED is able to provide significant fragment library enrichment, we observed that 

prediction of the correct binding pose is not reliable, especially in cases where fragments do not 

have a consistent binding motif in a binding site. Supplementing screening with X-ray 

crystallography is therefore essential before proceeding with fragment growing for hit or lead 

development. 

We developed a best performing SEED virtual fragment screening workflow, which combines 

three different protocols for charged, polar, and nonpolar fragments, respectively.  
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