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Abstract A crucial characteristic of machine learning models in various domains
(such as medical diagnosis, financial analysis, or real-time process monitoring)
is the interpretability. The interpretation supports humans in understanding the
meaning behind every single prediction made by the machine, and enables the user
to assess trustworthiness before acting on the predictions. This article presents our
work in building an interpretable classification model based on association rule
mining and multi-objective optimization. The classification model itself is a rule
list, making a single prediction based on multiple rules. The rule list consists of IF
... THEN statements that are understandable to humans. We choose these rules
from a large set of pre-mined rules according to an interestingness measure which
is formulated as a function of basic probabilities related to the rules. We learned
the interestingness measure through multi-objective optimization, concentrating
on two objectives: the classifier’s size in terms of number of rules and prediction
accuracy. The model is called MoMAC, “Multi-Objective optimization to combine
Multiple Association rules into an interpretable Classification”. The experimen-
tal results on benchmark datasets demonstrate that MoMAC outperforms other
existing rule-based classification methods in terms of classification accuracy.

Keywords rule based classification - association rule mining - multi-objective
optimization - interestingness measures

1 Introduction

Machine learning models are often branded as black-boxes because they do not
clearly explain or identify the logic behind their predictions in terms that humans
can understand [32]. Especially in domains with significant social or financial im-
pact such as healthcare, criminal justice or financial analysis, interpretability of
the model is often extremely important. An interpretable model offers relevant in-
formation underlying the decision process to the domain expert, so they can assess
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trustworthiness, further analyse the decision process and take appropriate action.
Moreover, machine learning is susceptible to bias from training data which can
teach models to discriminate against protected groups without oversight or inter-
vention [25]. In such cases, interpretability can be useful to detect bias in machine
learning models. To tackle this black-box issue, different studies have followed two
possible strategies: creating models that are inherently interpretable or building
separate models that can explain the black-box model [32]. Our study follows the
former, creating an inherently interpretable model which gives its own explanation
about what the model actually computes.

The most well-known interpretable machine learning models are decision trees
and decision rules. Decision trees recursively split the feature space into partitions
to differentiate between classes. CART, ID3 and C4.5 are commonly used decision
tree methods [27,29]. Each split in these trees is determined in isolation without
considering the possible impact of future splits. As a result, these trees can fail to
capture the underlying characteristics of data, and often suffer from over-fitting.
However finding optimal decision trees is well-known as a NP-hard problem [3].
Meanwhile, decision rules are lists of if ... then ... statements in which the if
statements define a partition of the feature set and the then statements correspond
to the classes. A small and accurate decision list can be constructed corresponding
to the multivariate splits denoted by the rules. Compared to optimal decision trees,
searching for optimal decision rules is more practically feasible, because pre-mined
rules can reduce the search space to that of rule permutations as opposed to all
possible sets of splits.

Several methods have been proposed to find optimal decision rules. In gen-
eral, they can be grouped into two categories: rule-list based and rule-set based
approach. Rule-list based approach takes the order of rules into account, the rules
with high priority are considered first when making decision. CBA [21], CMAR
[20] and CPAR [42] are well-known associative classifiers which follow the rule-list
based approach. CBA and CMAR select their rules greedily from pre-mined rules
according to confidence and support of the rules while CPAR builds its rule list by
adding literals one by one using a gain score. To do a better rule ranking, Mattiev
et al.[23] and Rajab et al. [30] append the number of items in if statement to their
ranking factor list, besides confidence and support. In another study, Venturini et
al. [36] aims to scale associative classifiers for large datasets. They proposed to
split data into partitions, learning an independent model for each partition and
finally merging them into a single model. Rule-pruning techniques were also con-
sidered in order to retain only statistically significant rules, such as the minimum
x? threshold in Venturini et al. [36] and Fisher’s exact test in Sood et al [35].
Emerging pattern based classifiers [11,12,14,19] are also rule-list based methods.
They choose their rules from emerging patterns according to a score that was de-
rived from a support measure. Emerging patterns (EP) are the patterns of which
support changes significantly from one class to another class. Instead of using
greedy strategy, other studies [2,4,18,31,37,41] concentrated on searching fully
optimal rule lists. They developed exhaustive search or heuristic search strategies
to populate these rule lists. In the rule-set based approach, the order of rules is
not important. Classification models in this case are considered as a linear combi-
nation of decision rules; there is no “else” statement connecting these rules. As a
result, they are also referred to as rule ensembles. Lakkaraju et al. [17] proposed
a complex objective function to search for decision rule sets via a smooth local
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search. This objective function consists of misclassification error, rule count, rule
length, rule overlap, and fraction of classes. Other methods, including RuleFit [15],
MLRules [7], ENDER [8], and recently GLRM [38] and LIBRE [24], joined rules
into a linear combination form and learned the form through minimizing a loss
function indicating the penalty for wrong predictions. These rule ensemble learn-
ing algorithms differ greatly in terms of rule generation method and optimization
technique.

In this study, we approach building interpretable models as learning optimal
rule lists. These lists consist of several rules sorted according to their interesting-
ness. Any prediction on unseen data is based on decisions from the top K matching
rules instead of a single rule. To search for optimal rule lists, we exert a greedy
strategy in which we prioritize the pre-mined rules based on a relevance measure
and subsequently pick rules one by one following their priority until all training
samples are covered. We propose a new prioritizing measure from data to substi-
tute for confidence and support, which are popularly used in preceding studies of
associative classifiers. The main contributions of our paper can be summarized as
follows:

— We define the prioritizing measure as a parameterized function of the ba-
sic probabilities related to the rules. Thus, we can approximate the measure
through searching the right parameters for the function.

— We develop a novel method to approximate the above measure and build asso-
ciative classifier simultaneously. Our method is based on a multi-objective op-
timization technique, focusing on two objectives: the obtained classifier should
restrict the size of the rule list and achieve high accuracy in prediction. The op-
timization will search for the sufficient parameters so that their corresponding
measure can produce an associative classifier satisfying these objectives.

— We evaluate our classification model on 12 benchmark datasets, most of which
are obtained from UCI repository [13]. Experimental result shows that the
model can generate decision rule lists that give better prediction accuracy
than the state-of-the-art associative classifiers do.

We named our method MoMAC, i.e Multi-Objective optimization and Multiple
Association rules into interpretable Classification. MoMAC itself can be used for
both binary classification and multi-class classification problems. The source code
of MoMAC model is available at https://github.com/banhdzui/MoMAC-v1.git.

In the next section, we first present related work. This is followed by the
methodology section which describes in detail how we formulate interestingness
measure as well as how we search for an optimal rule list. Section 4 contains the
experimental results and discussion. The final section provides a conclusion and
hints towards future work.

2 Related work

The associative classifiers CBA, CMAR, and CPAR collected their rule lists greed-
ily based on ranking measures or interestingness measures. Confidence and support
were used in the case of CBA and CMAR because the measures define reliability
and generality of rules respectively. They were also commonly used in other stud-
ies [23,30,35,36] with other pre-defined measures for the same purpose. According



4 Danh Bui-Thi et al.

to the surveys of Geng et al. [16] and Sharma et al. [33], there are more than
30 interestingness measures that can be employed to prioritize rules. However,
different measures often provide conflicting rankings, resulting in associative clas-
sifiers with different performance. To illustrate this, we ran the CMAR algorithm
with a few different existing interestingness measures on different datasets. The
resulting micro F1 scores are shown in table 1. We observe a clear change in the
prediction accuracy of CMAR as a function of the different measures used. Certain
measures bring better performance than confidence in some of the datasets, but
their performance fluctuates across datasets as well (e.g. klosgen measure). We can
conclude that for many studies selecting the proper measure for ranking the rules
is a necessity in order to optimize the performance of the associative classifiers.
Emerging pattern (EP) based methods use their own measure, named growth_rate
which is the rate of antecedent’s support on a class C' and the remaining class. The
growth_rate was combined with support score to sort mined EPs. In another way,
Song et al. [34] proposed a measure, called predictive rate, which is the average
of k local predictability values. Each local predictability value is actually the pre-
diction performance of that rule in one local test set which is generated by k-fold
cross-validation. In 2008, Yang et al. [40] suggested a personalized association rule
ranking method based on Genetic Network Programming (GNP). The method
learns a ranking measure which is a linear combination of semantic similarity and
other well-known interestingness measures, includes support, confidence, lift and
chi-squared. However, the learning step needs support from experts (with domain
background) to have ground truth ranking. An extension of this method for a
non-linear measure is presented in their later study [39].

Datasets
Measures anneal breastcancer ter tonosphere pima tictactoe
confidence 0.913 0.947 0.771 0.893 0.763 0.994
change of support 0.814 0.964 0.775 0.883 0.769 0.942
jaccard 0.805 0.890 0.767 0.729 0.717 0.700
klosgen 0.348 0.889 0.765 0.873 0.759 0.975
lift 0.778 0.814 0.762 0.875 0.697 0.899
zhang 0.878 0.953 0.783 0.892 0.772 0.987

Table 1: Micro F1 scores of CMAR on different datasets using different interest-
ingness measures

Instead of using interestingness measures, the studies [2,4,18,31,37,41] built
their rule list based on search algorithms. These methods search for the rules that
can optimize some specific objective functions. Rijnbeek et al. [31] developed a
branch-and-bound search to find an optimal single rule in Disjunctive Normal Form
that optimizes user-defined performance constraints. Angelino et al. [2] devised the
CORELS algorithm, which is able to find optimal rule lists that are minimized in
both misclassification error and their size in terms of number of rules. They also
defined some tight bounds in order to reduce search space efficiently. Other studies
[4,18,37,41] chose to examining probabilistic rule lists and implemented Monte
Carlo search with or without tight bounds in their approach. One of the common
things among these methods is that they were designed for binary classification
problems.
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In general, the greedy strategy based methods, such as CBA, CMAR, CPAR
and EP-based classifiers choose their rule lists according to interestingness mea-
sures. These measures are pre-defined based on specific criteria, independently of
data. However, identifying which interestingness measure is the best fit for a given
dataset is not a trivial task. Other rule-list based models such as CORELS [2] and
SoftFRL [4] search for the rules that optimize classifiers’ performance on train-
ing data. Their search space includes pre-mined rules which can be very large.
To reduce the search space, some tight bounds have been exerted. Based on this
observation, we propose a novel method that is also based on a greedy strategy
but does not use pre-defined interestingness measures. We formulate the interest-
ingness measure as a parameterized function and learn it from training data. The
measure is approximated such that it is able to produce a classifier which gives
high performance in terms of accuracy on training data and is small in size to avoid
overfitting. In addition, most existing interestingness measures are defined from
basic probabilities related to the rules, combining them in different forms. Thus,
we propose to encode the measure as a small neural network of which the input
features are these basic probabilities. Searching for the weights of the network is
more practically feasible than working directly on rule permutations.

We modify the Apriori algorithm [1] to generate classification rules, which will
be used as pre-mined rules in our framework. Besides Apriori, several algorithms
have been proposed throughout the years for mining association [9,22]. They speed
up the rule mining process through different techniques, including parallel com-
puting and heuristic search. We can use these as a tool to generate the pre-mined
rules. Basically, we can divide these algorithms into exact and meta-heuristic based
approaches [10]. The meta-heuristic based approach is a trade-off between running
time and percentage of frequent itemsets extracted. In this work, we focus on se-
lecting interesting rules for associative classifiers. The interestingness of a rule is
defined in a measure which can depend on different criteria besides its support.
Thus, we opted for an exact approach with a low minsup for pre-mined rules,
attempting to get as many rules as possible.

3 The MoMAC approach

This section presents our method, Multi-objective Optimization to combine Mul-
tiple Association Rules into an Interpretable Classification(MoMAC), in detail.
At first, we describe the formulation of a data-driven interestingness measure.
Secondly, we demonstrate how the final rule list are selected when the interest-
ingness measure is known. Finally, the optimization framework learning a good
interestingness measure from the training data is presented.

3.1 Interestingness measure formulation

As we mentioned in section 2, several interestingness measures have been devised
to prioritize association rules and they can be used to build associative classifiers.
As none of these measures works best for all datasets, the best measure for each
dataset needs to be found or even created. To this end, we define a generic inter-
estingness measure in terms of basic probabilities and learn its form from available



6 Danh Bui-Thi et al.

data. This allows us to obtain the best fit of interestingness measure for a specific
dataset. As a result, we consider this measure as a “data-driven interestingness
measure”.

Based on existing interestingness measures, one can recognize that these inter-
estingness measures are created from basic probabilities related to the antecedent
and consequent of association rules. Therefore, we propose to represent rules as fea-
ture vectors x, of which features are these basic probabilities and develop a multi-
layer neural network to formulate our data-driven measure. Given an association
rule 7 : A — B, we use 15 basic probabilities in total. They are: P(A), P(A), P(B),
P(B), P(AB), P(AB), P(AB), P(AB), P(A)P(B), P(A|B), P(A[B), P(A|B),
P(A|B), P(B|A), P(B|A) where P(-) denotes the probability of the corresponding
event that is estimated from training data. These values are then encoded by a neu-
ral network and mapped into a single value which is corresponding interestingness
score I(r).

Figure 1 illustrates the structure of the neural network. It consists of |z,| input
nodes, two hidden layers and only one output node, Sigmoid is used as activation
function in every node. The hidden layers are configured so that they half in num-
ber for each subsequent layer, as is a common approach to condense information as
it passes through the network. The weights of the neural network are trained from
the data by optimizing an objective function which is the trade-off between the
misclassification error and the size of selected rule list. The details of the optimiza-
tion framework are presented in section 3.3. The trained interestingness measure
plays an important role in prioritizing association rules and predicting classes for
upcoming data.

Input layer Hidden layers Output layer
X : I(r)

o

Fig. 1: An illustration of a multi-layer neural network formulating the interesting-
ness measure. The input nodes correspond to basic probabilities of the rule, while
the output node represents the interestingness score. The network consists of 2
hidden layers which contain 8 and 4 hidden nodes, respectively.
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Algorithm 1 Rule selection based on database coverage

Input:
Training data D
Pre-mined association rules, Rules
A database coverage threshold K > 1. Default is K = 3.
An interestingness measure I(r)
Output: A subset of rules for classification C.

1: Put Rules in a priority queue @ whose priority is (I(r), supporty).

2: cover_count < 0 for each training sample.

3: while @ not empty and Jcover_count < K do

4: 1<+ dequeue(Q)

5:  for each sample D[i] with cover_count < K do
6: if D[i] match the rule r then

7 Increase cover_count of the i*" sample to 1
8: end if

9: end for

10: if the rule r covers at least one sample then
11: Add the rule r to C

12: end if

13: end while
14: Select a default class for remaining data (if yes).

3.2 Rule selection

Algorithm 1 illustrates how we select a subset of rules from pre-mined classification
rules for classifiers. Given a training data D, an interestingness measure I(r) and
a database coverage threshold K, the algorithm pushes the association rules into
a priority queue of which the priority is defined as the tuple (interestingness score,
support). Rules with a higher interestingness score are in higher priority, which are
dequeued first. In the case that interestingness scores of two rules are identical,
their supports are compared. Thanks to the priority queue, the rules are examined
one by one until the training data is fully covered or there is no more rule to check.
A data sample is considered as “covered” if it matches with at least K selected
rules. A data sample matches with a rule if the left hand side of the rule is a
subset of that sample. The algorithm is thus similar to the CMAR method [20]
in concept, but there are two major differences. First, we eliminate the pruning
step based on x? testing which CMAR uses to filter low positive correlated rules.
Secondly, we still add rules that do not make a correct decision into the final list
instead of ignoring them. These modifications enable the optimization framework
to learn a sufficient measure, without pruning step bias.

3.3 Optimization Framework

Assume that we build an associative classifier for a multi-class classification prob-
lem on a training dataset D = {(z;,y:;)}i~; where z; is sample features and
yi € {0, .., L — 1} indicates the class label of the it" data object; L is the number
of unique classes. The classifier consists of an ordered rule list R = (r1,72,..,7n)
and a default rule rg. Each association rule r; in R has the form of A; — B;
where A; is an item-set and B; is a class label while the default rule has the form
of true — Bp. As described in previous section, each rule r; is represented as a
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15-dimensional feature vector z,,. Given an interestingness measure I(r, W), an
associative classifier can be built using Algorithm 1. Here W denotes the weights
of the neural network which need to be learned.

To classify a data object z;, the classifier consults the first K rules in R of
which antecedents match with x;. Let Rx denote the indices of these matching
rules, then P(y; = l|x;) is computed as follows:

P(y; = l|lz;) = ﬁ O
where
2= Z I{szl}l(rj,W)+1{Bj¢l}% @)

JERK
1{B; =1} is the indicator function: it is equal to 1 if the consequent of r; is the
class label [; otherwise it is equal to 0. If none of the rules in R match with the
object, then only the default rule is used. In this case, P(y; = Bo|z;) = 1.0 and
P(y; # Bol|x;) = 0.0. Below is an example of computing P(y; = l|z;) for a 3-class
associative classifier. Suppose that there is a data object x matches with K = 3
following rules in the classifier:

—ri:a,a3 —=>1=0,I(r,W)=1.0
— r2:a5—>l:0, ](TQ,W):O.Q
—r3:az — 1 =2, I(Tg,W):0.8

then zg = 2.0,z = 0.15 and z2 = 0.85. According to equation 1, we have P(y =
0]z) = 0.67, P(y = 1]z) = 0.05 and P(y = 2|z) = 0.28. This means the object x is
classified to the class 0.

The optimization is in fact an iterative process between finding the interest-
ingness measure and building the associative classifier. Firstly, we choose some
random interestingness measures, constructing respective classifiers. We then run
the classifiers to predict training data, their performance is used as fitness to up-
date the current interestingness measures to their better instances. In this context,
we are modifying the parameters W to update the interestingness measure. The
optimal W would produce an associative classifier that is low in classification error
and small in size. Therefore, we formulate our problem in terms of a multi-objective
optimization as follows:

1
aI'gVIVnIIl(E Zﬁ(muyh RW)7 |RW‘)

=1
1 3
S-t-m > Llxj,y5 Rw) < ¢, X = {klyx = 1} 3)
! JEX
|Rw| < N

where, Ry denotes the rule list corresponding to the parameters W, |Ry| is the
size of the rule list Ry, £(x;,yi, Rw) is the classification error for a sample (x;, y;)
using K best matching rules. ¢ denotes the maximum average classification error
for each class and N denotes the maximum number of rules that can be included
in classifiers. Both ¢ and N are user-defined thresholds. As we can observe, the
optimal W need to deal with the trade-off between two conflicting objectives:
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the average classification error and the size of selected rule list. It also takes into
account constraints related to classification error for each class and maximum size
of the classifier. We compute L(x;,yi, Rw) according to:

L

L(zi,yi, Rw) = =Y W{yi = [HogP(y; = l|z:) (4)
=1

where 1{y; = [} is the indicator function; it is equal to 1 if the ground truth
label y; is I; otherwise it is equal to 0. The above cost function brings us a more
detailed look into classification error than just using binary values which represent
for correct and incorrect prediction. This can help the model to find a soft split
between classes.

To solve above problem, we use Non-dominated Sorting Genetic Algorithm
I, NSGAII [6], a Pareto-based multi-objective evolutionary algorithm. NSGAII is
derivative-free and it can be used for numerical optimization of non-linear or non-
convex continuous problems. NSGAII is an evolutionary algorithm, thus it works
on the repeated interplay of variation and selection. In the variation part, off-
springs are generated from parents that are selected using binary tournament selec-
tion. The crossover operator and mutation operator are simulated binary crossover
and poly-nominal mutation respectively. In the selection part, the best individuals
with respect to a ranking are selected as the new population. This ranking proce-
dure consists of two levels: non-dominated sorting and crowding distance sorting.
In non-dominated sorting, individuals p are sorted into their domination count,
which is the number of individuals which dominate p. Those individuals in the
first non-dominated front have their domination count as zero. To the individuals
who share same non-dominated rank, they would be ranked at second level ac-
cording to their crowding distance. The crowding distance values are computed as
the sum of individual distance values corresponding to each objective. When the
optimization process is done, non-dominated or Pareto optimal solutions can be
used as potential candidates for the last solution. A solution is non-dominated, or
Pareto optimal if none of the objective functions can be improved in value without
deteriorating some of the other objective values. For our problem, each assignment
of the weights W is an individual in NSGAII. We flatten them into a single vector
and run the algorithm to find the Pareto optimal solutions for the problem defined
in equation 3. Figure 2 shows the flowchart of the algorithm. Wi(k) denotes the i*"
individual at the k*" generation. At the start, a set of Ws are initialized randomly.
The individuals are then evolved through the variation and selection operators,
depending on their objective function values. The individuals remaining in the last
generation are the candidates for the optimal W. The green panel in the right side
illustrates how the objective functions are evaluated. Each individual Wi(k) defines
an interestingness measure, a Sigmoid function or a neural network. The measure
is then used in the rule selection procedure to generate an associative classifier.
When the procedure accomplishes, we also obtain the size of the classifier and its
classification error on training data.

Of the Pareto optimal solutions, some could bring classifiers that perform in
high accuracy on training data but are large in their size. This often happens when
rules having high confidence but low support are considered first. Besides these
solutions, there are some others produce classifiers that contain much less rules but
compensate this for their performance. Rules with high support but low confidence
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Fig. 2: The flowchart of the optimization process, searching Pareto optimal solu-
tions for W.

may be ranked on the top of rule lists in this case. The solutions placed between the
two extremes could be promising ones, which represent to different interestingness
measures. To provide an interactive view that allows users to select a desirable
solution, we display all found Pareto optimal solutions on a single 2D scatter plot
where the x-axis illustrates the classification error and the y-axis corresponds to
the size of classifiers. Alongside this information, classification error for each class
are shown as well. Figure 3 is an example of all Pareto solutions obtained on
Anneal dataset [13]. The common guideline that we followed was to use the model
at the hinge point between small classifiers and classification accuracy.

4 Experiments

In this section, we present a detailed experimental evaluation of the proposed
MoMAC algorithm. To demonstrate the added benefit of using a complex neural
network approach, we define a simple linear combination as a baseline comparison.
For this baseline, we apply a Sigmoid function to scale the interestingness value
to range [0, 1] as follows:

1

I(vaab) = m

(5)

where,

— x,: a feature vector of the rule r. It consists of the basic probabilities related
to the rule

— w: a weight vector associated to rule’s features

— b: a bias
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Fig. 3: An illustration of the non-dominated solutions on the Anneal dataset. The
top plot shows the classification error and the number of rules while the bottom
plot shows the classification error on every class. Each annotated point indicates
a non-dominated solution. From the plots, we can observe that the first solution
obtains the lowest training error, less than 0.2, with 160 rules. The number of
rules then decreases significantly at the solutions 3 and 20, while corresponding
training error increases slightly, around 0.005. These solutions provide the lowest
classification error for individual classes, except class@3. Therefore, solution 3 or
20 are good candidates for the optimal solution on the Anneal dataset.

The weights are learned in a similar manner as that of the neural network pre-
sented above. This baseline is referred to as MoMACSig in the results, while the
more advanced method that uses the neural network is referred to as MoMACNet.
We compare our linear MoMACSig and non-linear MoMACNet with other existing
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classification approaches in terms of classification accuracy, model size, and exe-
cution time. The comparisons include CBA [21], CMAR [20], CORELS [2], FRL
[4], SoftFRL [4], RuleFit [15], GLRM [38], LIBRE [24] and Random Forest (RF)
from scikit-learn library [28] with maz depth of 10 and 100 trees. We run NSGAII
algorithm with population size of 100 and used 10,000 function evaluations.

All methods are compared on 12 benchmark datasets collected from the UCI
repository [13], the T-cell receptor (TCR) dataset [5], and the NYCLU 2014 stop-
and-frisk dataset[26]. The goal of the TCR dataset is to predict the target T-
cell antigen based on the T-cell receptor beta-chain CDR3 amino acid sequence.
The NYCLU 2014 is explored to predict whether the stop can lead to an arrest.
Datasets containing continuous attributes are discretized first to ensure that they
only have categorical attributes. Pairs of attribute-value are then considered as
items in transaction databases.

To evaluate the performance of these classifiers, we use 5-fold cross validation
and compute the average micro F1 score. Along with the original CBA and CMAR
using confidence as a ranking score, multiple alternative versions of CBA and
CMAR were evaluated with the other interestingness measures from Geng et al.
[16]. For simplicity, we only report the CBA and CMAR, versions with the best
performance on each dataset as CBA+ and CM AR+ respectively.

4.1 Classification performance

Table 2 reports the average micro F1 score of the classification models on the
benchmark datasets: (a) for the multi-class classification models and (b) for the
binary classification models. Using the Friedman test, Fr for the Table 2(a) is 9.533
and for the Table 2(b) is 19.243. Both are larger than associate critical value of the
F distribution for o = 0.05, so we reject the null hypothesis. Figure 4 visualizes
the result of the post-hoc test, where we used Bonferroni-Dunn test to compare all
algorithms with MoMACNet. The diagrams show that the performance of CBA,
CBA+, CMAR, CMAR+, CORELS, SoftFRL and LIBRE are significantly worse
than MoMACNet, but the difference with Random Forest, RuleFit, GLRM and
MoMACSig was not found to be significant. However, MoMACNet has a lower
average rank compared to these methods on the experimental datasets, and thus
often more often scores as the best or one of the best methods.

Figure 5 illustrates the classification error of MoMACNet classifiers on training
and testing data of four datasets: breast cancer, credit, ionosphere, and pima.
These classifiers are created using Pareto optimal solutions found by NSGAII
algorithm. For simplicity, we sort the Pareto optimal solutions of each dataset in
ascending order of corresponding classifier’s size. They are then represented as
indices on x-axis from left to right. From the plots, we can observe that different
interestingness measures had been found. We derived classifiers from the obtained
measures, ranging the classifiers from small to large one. We also observe the
decrease of the error on training data when the models are based on more rules.
The solutions at the most left part of the plots tend to produce under-fitting
models while the ones at the most right part tend to generate over-fitting models.
The error on the testing data fluctuates among the solutions. However, in general
the error goes down when the model contains more rules and it then goes up when
the model grows over a limit.
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(a) Multi-class classification models
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] |
MoMACnet L softfrl

MoMACsig — ——— libre
gim — L corels
rulefit

(b) Binary classification models

Fig. 4: Comparison of MoMACNet against the others with the Bonferroni-Dunn
test. The top line in the diagram is the axis representing the average ranks of
methods. All classifiers with ranks outside the marked interval are significantly
different (p < 0.05) from MoMACNet.

4.2 Classifier size

Table 3 shows the average size of the rule-based classifiers on the benchmark
datasets with Table 3(a) for the multi-class classifiers and 3(b) for the binary clas-
sifiers. From the tables we can see that CORELS, CBA(+), SoftFRL and GLRM
are small classifiers in terms of rule quantity compared to RuleFit, CMAR(+), Mo-
MACSig and MoMACNet. CMAR and MoMAC tend to produce larger rule lists
compared to other methods like CBA, SoftFRL, CORELS due to their principle in
selecting rules: every training sample needs to be covered by K = 3 rules instead
of a single rule. If we narrow down the comparison to the methods that requires
high coverage, which includes MoMAC, RuleFit and CMAR, then the MoMAC
algorithms on average gives the smallest models. Moreover, the neural-network-
based interesting measure generates better models than the linear baseline in both
classification accuracy and model size.

4.3 Computation time

Figure 6 reports training time of four representative methods RuleFit, SoftFRL,
MoMACSig and MoMACNet on five datasets. We can observe a big difference
in the training time between the MoMAC methods and RuleFit. However, the
MoMAC models are trained much faster than SoftFRL in most datasets. The
computation time of MoMAC methods depends on the number of pre-mined rules
and the size of the training data. As we mined all possible rules from the data,
the number of the pre-mined rules can be very large for some datasets. In addi-
tion, repeatedly computing classification error during the optimization step takes
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Fig. 5: Classification error of MoMACNet classifiers on training and testing data
of different datasets. The x-axis represents Pareto optimal solutions, each which is
associated to a classifier. The solutions are sorted in ascending order of classifier’s
size and they are represented as indices from left to right of the axis.
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Fig. 6: Training time of four methods RuleFit, SoftFRL, MoMACSig and Mo-
MACNet on five datasets.



Methods
Datasets CBA CMAR CBA+ CMAR+ RF MoMACSwg MoMACNEet
anncal 0.923(0.021) | 0.913(0.032) | 0.923(0.021) | 0.913(0.032) | 0.945(0.024) | 0.938(0.028) 0.934(0.029)

breast cancer
credit
hiv-1 cleavage

0.953(0.020)
0.851(0.024)
0.863(0.044)

0.947(0.019)
0.856(0.026)
0.863(0.027)

0.953(0.020)
0.856(0.023)
0.877(0.031)

0.964(0.008)
0.858(0.025)
0.879(0.050)

0.964(0.006)
0.874(0.02)
0.907(0.022)

0.963(0.014)
0.876(0.026)
0.903(0.029)

0.967(0.017)
0.877(0.027)
0.912(0.012)

ionosphere 0.902(0.039) | 0.893(0.027) | 0.920(0.037) | 0.893(0.027) | 0.920(0.041) 0.920(0.019) | 0.936(0.022)
nyclu2014 0.811(0.007) | 0.773(0.021) | 0.812(0.007) | 0.787(0.008) | 0.812(0.011) | 0.818(0.007) | 0.818(0.008)
pima 0.754(0.044) 0.763(0.044) 0.771(0.032) 0.772(0.044) 0.756(0.037) 0.770(0.046) 0.777(0.030)
sonar 0.794(0.076) 0.769(0.068) 0.794(0.076) 0.769(0.068) 0.807(0.056) 0.788(0.044) 0.807(0.070)
ter 0.738(0.053) 0.771(0.020) 0.792(0.022) 0.798(0.016) 0.776(0.017) 0.782(0.020) 0.797(0.021)
tic tac toe 0.993(0.005) | 0.994(0.006) | 0.993(0.005) | 0.994(0.006) | 0.982(0.005) | 0.995(0.007) | 0.993(0.005)
vehicles 0.676(0.035) 0.684(0.033) 0.676(0.035) 0.684(0.033) 0.708(0.048) 0.697(0.040) 0.700(0.029)
waveform 0.790(0.010) 0.800(0.006) 0.790(0.010) 0.804(0.014) 0.821(0.010) 0.808(0.020) 0.812(0.012)
average rank 5.75 5.708 4.542 4.167 3.042 2.958 1.833
@
Methods
Datasets CORELS SoftFRL RuleFit GLRM LIBRE MoMACStg MoMACNet

breast cancer
credit

hiv-1 cleavage
ionosphere
nyclu2014
pima

0.934(0.014)
0.851(0.024)

0.901(0.046)
0.847(0.023)
0.721(0.051)
0.851(0.031)
0.804(0.009)
0.744(0.049)

0.957(0.012)
0.863(0.025)
0.923(0.03)
0.908(0.036)
0.790(0.021)
0.752(0.038)

0.958(0.012)
0.859(0.026)
0.934(0.016)
0.915(0.036)
0.814(0.006)
0.744(0.036)

0.961(0.011)
0.818(0.038)
0.857(0.032)
0.899(0.026)
0.77(0.015)
0.708(0.045)

0.963(0.014)
0.876(0.026)
0.903(0.029)
0.92(0.019)
0.818(0.007)
0.770(0.046)

0.967(0.017)
0.877(0.027)
0.912(0.012)
0.936(0.022)
0.818(0.008)
0.777(0.03)

sonar 0.729(0.066) | 0.716(0.036) | 0.804(0.06) 0.782(0.078) | 0.773(0.044) | 0.788(0.044) | 0.807(0.070)
tic tac toe 0.739(0.01) | 0.674(0.012) | 0.978(0.009) | 0.981(0.01) | 0.678(0.013) | 0.995(0.007) | 0.993(0.005)
average rank 5.625 6.1875 3.625 3.3125 5.625 2.1875 1.4375

(b)

[18Uer] 2AISS90X, 01 an(] possexddng o[91],

Table 2: Average micro F1 scores of the classification models on benchmark datasets, where (a) for multi-class classification models
and (b) binary classification models.

a1
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Methods
Datasets CBA CMAR CBA + CMAR~+ MoMACSig MoMACNet
anneal 75(8.276) 181(5.916) 75(8.276) 181(5.916) 182(42.226) 127.8(56.469)
breast cancer 64(2.345) 162.8(5.975) 64(2.345) 152.4(5.413) 75.6(20.44) 132(77.321)
credit 150.4(11.082) 404(19.609) 3.2(0.447) 435.4(23.776) 92(88.043) 70.8(41.632)
hiv-1 cleavage 171.2(25.233) 260.4(21.732) 196.4(20.852) 360(47.569) 235.2(92.654) 202.2(81.266)
ionosphere 65.4(3.507) 181.2(6.261) 65.2(3.834) 189.8(20.03) 87.8(18.089) 81.6(17.672)
nyclu2014 380.6(19.932) 162.8(19.93) 362.2(17.992) 45.2(6.496) 416.8(427.204) 463(510.944)
pima 182.2(11.798) 183.4(14.553) 25.2(2.049) 206.8(11.883) 220(108.187) 156.4(89.187)
sonar 61.2(6.723) 169.4(11.480) 61.2(6.723) 169.4(11.480) 133.4(35.381) 79.8(38.127)
ter 44.6(3.647) 78.8(5.07) 108.8(15.434) 137.6(40.82) 143(43.658) 135.8(50.241)
tic tac toe 28.2(1.304) 383(8.515) 28.2(1.304) 383(8.515) 137.6(4.393) 143.2(7.19)
vehicles 238(11.726) 661.8(25.917) 238(11.726) 661.8(25.917) 524.4(89.771) 427.2(149.401)
waveform 1161.4(16.965) | 2539(52.655) 1161.4(16.965) | 2588.8(56.327) | 2138.75(194.977) | 2511.75(405.381)
average rank 2 4.583 1.667 5.083 4.25 3.417
(a)
Methods

Datasets CORELS SoftFRL RuleFit GLRM LIBRE MoMACS:g MoMACNEet

breast cancer 2(0.0) 71.8(4.087) 197.4(9.263) 13.8(1.304) 10.2(1.304) 75.6(20.44) 132(77.321)

credit 2(0.0) 7.8(2.49) 185(4.062) 12.4(1.14) 85.2(10.686) 92(88.043) 70.8(41.632)

hiv-1 cleavage 2(0.0) 18(3.937) 212.4(6.387) 70.2(5.541) 26.2(4.147) 235.2(81.266) 202.2(81.266)

ionosphere 2(0.0) 25.6(3.975) 184.4(7.893) 32.2(2.387) 24.2(4.817) 87.8(18.089) 81.6(17.672)

nyclu2014 2(0.0) 14(3.082) 433.4(20.367) 25.6(1.14) 184.2(2.588) | 416.8(427.204) 463(510.944)

pima 2(0.0) 8.4(2.302) 124.2(8.075) 8.4(0.548) 81.8(9.706) 220(108.187) 156.4(89.187)

sonar 2(0.0) 17.2(2.049) | 205.4(16.994) 38.2(2.28) 35.4(3.912) 133.4(35.381) 79.8(38.127)

tic tac toe 2(0.0) 10(4.243) 65(4.637) 18(0.0) 234(13.472) 137.6(4.393) 143.2(7.190)

average rank 1 2.4375 6.125 3.3125 3.75 5.875 5.5

(b)

Table 3: Average number of rules of the rule-based classification models for the benchmark datasets: (a) multi-class classification
models and (b) binary classification models
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significant time when training data is large. Therefore, MoMAC methods are in
general slower than CBA, CMAR, CORELS, RuleFit, GLRM and Random Forest
but they are still competitive to Soft FRL.

4.4 Interpretability of the MoMAC model

Figure 7 is the snapshot of the optimal rule list generated by MoMACNet on
Winscosin breast cancer dataset. This optimal rule list consists of 91 rules whose
antecedents are cytological characteristics of breast fine-needle aspirates(FNAs)
which were valued on a scale of 1 to 10 and consequent can be benign or malignant.
The numbers on the right side of the rules are their interestingness scores. As the

bare nuclei=10 — class=malignant (0.9974)

uniformity of cell size=10 — class=malignant (0.9960)
clump thickness=10 — class=malignant (0.9957)

bare nuclei=10, mitoses=1 — class=malignant (0.9956)

uniformity of cell size=1 — class=benign (0.9925)

uniformity of cell size=8 — class=malignant (0.9924)

uniformity of cell size=8 — class=malignant (0.9924)

bare nuclei=1, mitoses=1 — class=benign (0.9924)

uniformity of cell size=1, normal nucleoli=1 — class=benign (0.9924)

clump thickness=5, marginal adhesion=1, bland chromatin=3 — class=benign (0.9918)
single epithelial cell size=4 — class=malignant (0.9917)

clump thickness=5, marginal adhesion=3, mitoses=1 — class=benign (0.9916)
Default: benign

Fig. 7: The snapshot of the optimal rule list generated by MoMACNet on Win-
scosin breast cancer dataset.

rule lists in the form of if ... then ... statements are interpretable to humans
themselves, we can understand what the model learned from the data. However,
understanding learned interestingness measure is difficult because we formulated
the measure as a fully-connected neural network, which is a black-box model.

5 Conclusion

In this study, we propose a new rule based classification model, MoMAC, for the
multi-class classification problem. The MoMAC model consists of an optimal rule
list that is greedily selected based on a data-driven interestingness measure. This
interestingness measure is learned from data through a multi-objective optimiza-
tion process which attempts to balance between classifier’s size and its perfor-
mance. Our experiments on benchmark datasets demonstrate significant gains of
MoMAC over the existing rule-based classification methods in terms of classifica-
tion accuracy. However, MoMAC method tends to generate larger rule lists than
others including CBA, CORELS, SoftFRL, GLRM and LIBRE. Longer training
time is also a drawback of the current implementation of MoMAC.
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We also identify some interesting directions for future work. Designing a suffi-
cient data structure to index rule lists can speed up searching satisfied rules. This
allows to reduce the computational cost of both training and predicting process,
especially for large datasets. We opted for Apriori algorithm, an exact approach, in
the experiment to generate pre-mined rules. However, the algorithm suffers from
a very high computational cost as well as a high memory cost on large datasets.
Using faster, more efficient algorithms for mining rules is also important to speed
up our framework. MoMAC model now works merely on positive association rules.
Extending the method so that it can include both positive and negative associa-
tion rules is a promising avenue to improve the resulting classifiers. In addition,
one can consider an extension to allow interpretation of the learned interestingness
measure beyond the current black box neural network approach. A related ques-
tion is whether there are general interestingness measures that are shared among
multiple datasets or data type groups.
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