
NICE: AN ALGORITHM FOR NEAREST INSTANCE
COUNTERFACTUAL EXPLANATIONS

A PREPRINT

Dieter Brughmans and David Martens

April 16, 2021

ABSTRACT

In this paper we suggest NICE: a new algorithm to generate counterfactual explanations for het-
erogeneous tabular data. The design of our algorithm specifically takes into account algorithmic
requirements that often emerge in real-life deployments: the ability to provide an explanation for all
predictions, being efficient in run-time, and being able to handle any classification model (also non-
differentiable ones). More specifically, our approach exploits information from a nearest instance to
speed up the search process. We propose four versions of NICE, where three of them optimize the
explanations for one of the following properties: sparsity, proximity or plausibility. An extensive
empirical comparison on 10 datasets shows that our algorithm performs better on all properties than
the current state-of-the-art. These analyses show a trade-off between on the one hand plausiblity
and on the other hand proximity or sparsity, with our different optimization methods offering the
choice to select the preferred trade-off. An open-source implementation of NICE can be found at
https://github.com/ADMAntwerp/NICE.

1 Introduction

In the past decade, machine learning models have been succesfully deployed in many high-stakes decision making
such as credit scoring [20], fraud detection [29, 2], and clinical healthcare [2]. However, due to the non-linearity of
the models or high-dimensionality of the underlying data, for many models high performance has come at a cost of
explainability [24, 41, 33]. The inability to explain automated decisions that impact individuals undermines the trust
between data subject and data controllers [41]. Post-hoc explanation methods such as counterfactual explanations aim
to reinstall this trust while keeping the performance of the decision mechanism [41]. Several laws have also pushed
on providing explanations for algorithmic decision-making. One example is the Fair Credit Reporting Act in the
United States [37]. It requires data controllers to provide specific reasons that negatively influence a data subject’s
credit score. Counterfactual explanations are a great fit here as they provide a set of minimum features required to
change the predicted outcome. Another example comes from the General Data Protection Regulation (GDPR) in
the European Union. Article 14 states that data subjects have the right to obtain meaningful information about the
logic involved in automated decision making [9]. Current classification models have a high complexity and many
parameters. Explaining the inner working of such a model will not be meaningful to a data subject. Counterfactual
explanations on the other hand, highlight a set of input features that, when changed, alter the predicted decision [24].
These input features are much more understandable to humans as the form of counterfactual explanations has deep
foundations in philosophy [18, 21, 34] and social sciences [26]; for it is similar to how a person thinks about a decision
by asking the question: what could I have changed to achieve a different outcome? Additionally, counterfactual
explanations allow data controllers to explain instances without disclosing any trade secrets or private data [1].

It is clear that in theory counterfactual explanations fit the legislative requirements and have the ability to make black-
box machine learning models transparent and accountable. Spurred by these benefits, in recent years many coun-
terfactual algorithms have been developed for tabular data (see e.g. the overviews by [39, 16]). However, most of
them focus on generating counterfactuals without taking into account the algorithmic requirements in deployment.
Consider for example custom fraud detection. In a country as Belgium, custom administration processes around 9.5
declarations every second [38]. Each of these cases have the potential for different forms of fraud such as illegal drug

ar
X

iv
:2

10
4.

07
41

1v
1

 [
cs

.L
G

]
 1

5
A

pr
 2

02
1

A PREPRINT - APRIL 16, 2021

traffic, importation of counterfeit goods, valuation fraud, smuggling, product misclassification and the manipulation
of the origin of goods. Predictive algorithms are used in this context to identify high-risk targets which are further in-
vestigated by custom officers [38, 6]. Counterfactual explanations can be of great value here to improve collaboration.
The set of features in this explanation can clarify which form of fraud might be committed, or what the main evidences
for predicted fraud are (e.g. country risk, article code, weight and so on), thereby speeding up further investigations.
Custom officers check many high-risk cases each minute, so explanation algorithms will have to match this speed
to make them useful. This computational efficiency requirement also guarantees that these algorithms can be easily
scaled without the need of excessive infrastructure. An additional requirement is that all observations can be explained
in this domain. The absence of an explanation might give the (potentially wrong) impression that the predictive model
is not certain about its prediction, undermining the trust in the predictive model and making it difficult for custom
officers to act upon the output.

If we return to the example of credit scoring in the US, we notice the same requirements. In this case explanations
for negative decisions are required by law, rendering counterfactual algorithms that cannot explain all of these credit
rejection predictions, useless. Also computational inefficiency is costly here. In credit scoring, the data subjects are
potential customers. Imagine a consumer applying for a loan at a bank. A number of variables are asked, such as
income, profession, etc. to assess the credit risk. The classification model, which is efficient by design as well, as
not to have the consumer wait for minutes or hours to get a decision, will provide a decision swiftly. In case the
application is rejected, it is just as important to have an efficient explanation algorithm to come with a reasoning for
the rejection. Having the consumer just sit there and wait is arguably unacceptable or at least bad business practise.
A recent example in this domain is the Apple Card. Applicants, who are denied for this credit card, were enrolled
in a ”Path to Apple Card”[31]. This program suggests personalized actions that positively influence someones credit
score such as decreasing debt or making payments on time. If the algorithmic requirements are met, counterfactual
explanations could be a perfect fit for this application. One can imagine other domains such as clinical healthcare,
where high impact decisions are made under time pressure, again requiring fast algorithms with perfect coverage.

Machine learning in general is a fast evolving field where models vary over applications and time. Current state-
of-the-art classification models, might be outperformed in a few years. To ensure that counterfactual algorithms
remain useful when classification models change, and to give data controllers full freedom over the choice of these
models, there is a preference for model-agnostic explanation algorithms. This implies that the classification model
is used simply as an output generating machine, based on provided input. We have thus identified three important
algorithmic requirements. First, we have computational efficiency. Second, perfect coverage, which means we want
the counterfactual algorithm to generate explanations for every prediction. And finally we have the required access,
which preferably limits itself to the inputs and outputs of the models, making the algorithm model-agnostic. We can
already note that there are situations where a trade-off occurs between these properties. For example, many of the
current counterfactual algorithms specify a loss function that has to be optimized. At the moment this optimization is
only computationally efficient for differentiable classification models. For this group of algorithms, model-agnosism
comes at a cost of computational efficiency.

Figure 1: Example of counterfactual explanations for loan approval.

In Figure 1 we show a simplified example of a counterfactual explanation in the domain of credit scoring. In this
example a person’s loan will be approved or denied based on their income and age. The graph shows a two-dimensional
feature space. The black line represents a classification model that splits the feature space in two areas: if a person
lands on the area on the left, his loan will be denied, if he lands on the other side, his loan will be approved. Now

2

A PREPRINT - APRIL 16, 2021

a person represented by the black dot applies for a loan. She has an income of $32,000 and is 39 years old. The
classification model denies the loan. If this person receives a raise, increasing her income by $8,000, she would land
on white dot number 1 in the feature space where her loan will be approved. This $8,000 increase in income is an
example of a counterfactual explanation. It is the change that has to be made to an observation in order to change
its predicted class. This raise would result in the person being 39 years old and earning $40,000, which is called the
counterfactual instance.

In this paper, we propose Nearest Instance Counterfactual Explanations (NICE), a new algorithm to find counterfactual
explanations for tabular data with both numerical and categorical variables (summarized hereafter as heterogeneous).
This type of data is widely used in machine learning applications where individuals are impacted, such as credit
scoring, clinical healthcare, recruitment or fraud detection. Explanations are extremely important in this context as a
wrong decision can have serious consequences [7].

Our key contribution is an algorithm that exploits information from a nearest instance in the training set to (1) generate
explanations in a reasonable time, (2) for any classification model and (3) for any observation. We also show that these
properties are not compromising the quality of our explanations. On the contrary, with an extensive comparison we
found that NICE meets this functional requirements and delivers a higher quality than the current state-of-the-art.

2 Related work

Martens and Provost [24] were the first to introduce a counterfactual evidence method named SEDC1 to explain
document classification. Their method has been extended to behavioural data [33], images [39] and finally tabular
data [10]. The optimization strategy of NICE is based on these works.

Wachter et al. [41] stated the problem as a loss function to be optimized. With this approach it is easy to impose
desired properties on the explanations by adding extra terms to this loss function. Mothilal et al. [27] added a diversity
parameter to generate multiple counterfactual explanations for each observation. Others implemented an autoencoder
(AE) [22, 4] or prototype [22] loss, resulting in explanations closer to the data manifold. However, for heterogeneous
tabular data, these loss functions face some challenges. First of all, they have difficulties handling nominal variables.
Some solve this problem by one hot encoding the variables and adding an extra loss term to enforce a correct encod-
ing [27, 14]. Others map the features into an ordinal vector space [5, 22]. A more substantial problem is that these
loss functions can only be solved efficiently when the gradients are available, which is only the case for differentiable
models. To date, the best performing models for tabular data often include tree-based ensembles [30, 20]. In this case,
the gradients have to be calculated numerically which causes a bottleneck. Van Looveren and Klaise [22] have reduced
this bottleneck by adding the distance to the training data to the loss function, causing the optimization to converge
faster.

The concept of using nearest neighbours from the training set to create explanations has also been explored before.
The most basic of this approaches is the What-if Tool (WIT) from Google [42]. This algorithm directly uses the nearest
neighbour from a different class as explanation. This approach is very similar to one of the versions of NICE and as the
experiments will show, these explanations already have some very desirable properties. Hence, these neighbours do
tend to lie far from the instance to explain. Further optimization of this instance, which NICE does, is therefore often
needed. Keane and Smyth [17] developed a Case-Based Reasoning (CBR) algorithm to find explanations from nearest
neighbours. They start by finding so called native counterfactuals. These are pairs of differently classified points from
the training data that differ by one or two features (called difference features). They use these native counterfactual as
example cases. To explain an instance, the nearest native counterfactual pair is selected and only the difference features
of this case are changed in the original instance. We differ from these methods with our optimization strategy. We apply
a best-first heuristic approach that guarantees to find a counterfactual which is a hybrid between the nearest neighbour
and the instance to explain. NICE also provides the choice between, sparse, proxy and plausible explanations. We
also go further in our experiments by testing on a wide variety of datasets and metrics and by benchmarking ourselves
against many existing counterfactual algorithms.

Previous research has pointed out several important properties of counterfactual explanations [16, 39]. Proximity
refers to the distance between the input data and the counterfactual instance. Ideally, both instances are close to
each other, making the explanations easier to act upon. For example, when providing explanations in a credit approval
context, it is clear that an explanation that suggest a $8,000 raise is better than one that suggests a $10,000 one. Another
closely related property is sparsity which refers to the number of features in an explanation. It is often claimed that
sparser explanations are better as they are less complex. This statement stems from psychological research which
finds that people can only process five to nine pieces of information at once [25]. Especially when working with high

1Pronounced as ”Set See”.

3

A PREPRINT - APRIL 16, 2021

dimensional features spaces, a sparsity constraint is useful to ensure explanations remain comprehensible for humans.
In Figure 1, counterfactual 1 is sparser than counterfactual 2. If a loan applicant only wants to change her income
and does not want to wait until she gets older, counterfactual 1 is probably a better explanation for her. Pawelczyk
et al. [32] pointed out that sparse counterfactual explanations may be vulnerable to classification model changes over
time. The counterfactual instance possibly ends up in an area far from the data manifold where these models predict
with high uncertainty. When a different classification model is trained on the same data, the previous explanation
might no longer be valid. In our loan approval example this would correspond to a case where an applicant is told to
raise her income by $8,000. However, when she returns to the bank, another model has been put into production and
her loan request is again rejected. Such occurrences would diminish confidence in counterfactual explanations. In the
rest of this paper we will call this concept cross-model robustness. One property of counterfactual explanations that
can avoid this problem is plausibility. It measures the closeness of the counterfactual instance to the data manifold.
If an explanation in the loan approval example such as counterfactual 3 suggests that the person waits until she is 140
years old, this explanation is clearly not plausible as it lies far outside of the data manifold. Compared to the previous
two, this property is more conceptual and cannot be measured directly. Proxies that have been used to measure
plausibility are: the distance to the k-nearest neighbours [3] from the training data, the local outlier factor [15] and
the reconstruction error from an AE trained on the training data [23, 22]. Some studies have shown that there is an
inherent trade-off between sparsity and plausibility [3, 22]. Our experiments confirm this result: no single method
succeeds in scoring the best on all properties. Different applications therefore require different explanations. NICE
provides this flexibility to select the most appropriate explanation.

3 Methodology

In this section, we propose NICE: a nearest neighbour-based approach to generate counterfactual explanations. As we
will show in the experiments, using these real instances from the training data substantially decreases runtime while
also increasing desirable properties of the explanations such as proximity, plausibility and sparsity. We first explain
the search process of our algorithm step by step. Afterwards, we provide more information about the different reward
functions used to guide this process.

Assume an m-dimensional feature space X ⊂ Rm consisting of both categorical and numerical features, a feature
vector x ∈ X has a corresponding label denoted as y ∈ Y = {−1, 1} and a classification model f is trained which
maps Rm in the class score vector such that f(x) ∈ [−1, 1] and leads to a predicted class ŷ. A counterfactual instance
xc for x0 minimizes the distance d(x0,xc) under the condition that ŷ0 6= ŷc. Our algorithm is very flexible in its
distance metric as it does not need the categorical variables to be mapped in an ordinal vector. In this paper, We choose
the Heterogeneous Euclidean Overlap Method (HEOM) as a distance metric [43]. For each feature (F), the distance
is calculated according to Formula (1), while the total distance is simply the L1-norm of all feature distances. The
L1-norm is known to induce sparsity when minimized, which is a preferred property of counterfactual explanations.
Furthermore, this metric guarantees that the contribution of each feature to the total distance is between 0 and 1. This
makes it easy to add a cost multiplier to each feature, forcing the explanation to avoid certain features and prefer
others.

dF (a, b) =

1 if a 6= b for categorical F
0 if a = b for categorical F
|a−b|

range(F) for numerical F
(1)

Figure 2 shows the process by which NICE searches for a counterfactual explanation. We start by selecting the nearest
neighbour xnn from the training set, for which holds: ŷ0 6= ŷnn and ynn = ŷnn. xnn can already be used as a
counterfactual instance and has some desirable properties. First, it is a real observation which makes it by definition
plausible. In addition, the second condition implies that the observation is correctly classified by f . Therefore xnn

corresponds to an area in Rm where the predictions of f are arguably more justified. If classification model f would
be replaced by a different one g, trained on the same data, there would be a higher probability that xnn is also a
counterfactual instance. We will refer to this version without optimization as NICE (none).

In the next steps, we will optimize certain properties of our explanations by using x0 and xnn. The resulting coun-
terfactual instance will always be a combination of these two instances. This significantly reduces our search space
and consequently the runtime of our algorithm. The top two rows of Figure 2 show two data instances of x0 and xnn,
with six features. The black squares represent the feature values for which both instances overlap. The white and
gray squares respectively represent the feature values of x0 and xnn for the remaining features. In a first iteration
we start from x0 and create all possible combinations in which one non-overlapping feature is replaced with the value
of xnn: x1,1 uses the value of the second feature from xnn, x1,2 uses the value of the third feature, and x1,3 uses

4

A PREPRINT - APRIL 16, 2021

Figure 2: Optimization steps of NICE with the sparsity reward function

the value of the fifth feature. For each of these new hybrid instances we calculate the outcome of a reward function
R(x), which will be discussed in Section 3.1. The instance with the highest value for R(x) has the most desirable
properties. We first check if this instance is predicted as the opposite class of x0. If so, we have our counterfactual
explanation and stop the search. In our example, this is not the case and we continue our search with x1,3. In the next
iteration, we check the non-overlapping features of x1,3 and xnn. Again, we create all possible new combinations
where one feature of x1,3 is replaced by the feature value of xnn. At this point, the candidate with the highest reward
function (x2,2) is predicted as a different class, so now we have found a counterfactual explanation. If this had not
been the case, NICE will continue in the same way until an explanation is found. The beauty of this design is that we
will always end up with an explanation, as after the last iteration there is only one candidate left which is xnn, for
which we know that it is a counterfactual instance.

3.1 Reward Functions

We suggest three reward functions. Each one will measure the effect of a perturbation on the score per unit of sparsity,
proximity or plausibility. In the remainder of the paper, we will call these three versions: NICE (spars), NICE (prox)
and NICE (plaus). Our reward function assumes a linear relationship between f(x) and the concerned property.
Despite the fact that this relationship is non-linear for most classification models, the experiments show that our best-
first heuristic approach with these reward functions perform very well.

3.1.1 Sparsity

Sparsity happens to be the most straightforward property to optimize with our approach. By simply selecting the
perturbation which has the highest prediction score at each iteration, we are effectively optimizing for sparsity as
shown in Reward function (2).

R(x) = ŷ · f(xi−1,Rmax)− f(x)

sparsity(xi−1,Rmax ,x)
= ŷ · (f(xi−1,Rmax)− f(x)) (2)

This function compares the score and sparsity of each candidate x with that of the best candidate xi−1,Rmax from
the previous iteration. The sparsity difference between these instances is by definition one because we exactly add one
extra feature to the explanation candidate each iteration. This allows us to remove the denominator from the formula.
We then end up with a reward function that is exactly the same as the one used by SEDC [10]. The difference is that
we replace the feature values with those of xnn, while SEDC uses the mean or mode of these features. The factor ŷ
ensures that the sign of our reward function is correct for both classes.

5

A PREPRINT - APRIL 16, 2021

3.1.2 Proximity

Proximity refers to the distance from the original data point x0 to xc. In the reward function below we have replaced
the sparsity measure of function (2) with a proximity measure.

R(x) = ŷ · f(xi−1,Rmax)− f(x)

d(x0,x)− d(x0,xi−1,Rmax)
(3)

This function effectively calculates the decrease in prediction score per unit of distance. Sparsity and proximity often
go hand in hand, and (as our results will show) both optimization methods often lead to the same explanation.

3.1.3 Plausibility

We use the AE reconstruction error as a proxy for plausibility. An AE uses a neural network to project an instance
onto a latent space and then tries to reconstruct this instance [19]. The error represents how successful the instance is
reconstructed. When we train an AE on our training data, we can use the reconstruction error of an instance to measure
how similar it is to this data. A higher error represents a data point farther from the data manifold.

R(x) = ŷ · f(xi−1,Rmax)− f(x)

(AEerror(xi−1,Rmax)−AEerror(x))−1
(4)

This reward function behaves differently from the two previous ones. First, it is possible that the hybrid instance has
an AE error that is larger than the AE error of any of the two real observations. This is not the case with proximity and
sparsity where the minimum is bounded by x0 and the maximum by xnn. It is even most likely that the AE error is
larger for both those instances because it is not a real observation from the dataset. Second, the relationship between
the score and the AE error is the most non-linear of all three, which is a challenge for our linear optimization strategy.
Despite these downsides, the results show that it still is a valid optimization strategy. Also note that Formula (2) is part
of the plausibility reward function (4). Therefore we are also optimizing for sparsity and the resulting explanation will
be a balance between these two properties.

4 Experiments

We test NICE on eight datasets from the UCI repository [8] and two larger datasets retrieved from kaggle [13, 36].
Most datasets contain heterogeneous features and many relate to decisions with impact on individuals, such as from the
credit scoring (credit a, german and HCDR), clinical healthcare (cmc, hypothyroid and ICU) and marketing (churn)
domains. We train two classification models on each dataset. Namely, A Random Forest classifier (RF) and an
Artificial Neural Network (ANN). The data is split in 80% training data and 20% test data. The hyperparameters of
each model are trained using a five-fold cross-validation. Finally, explanations are generated for all test instances (with
a maximum of 1000 instances). Performance metrics and details about the datasets are shown in Table 1, where all our
experiments are run on a Dell Lattitude 5501 notebook with an Intel i7-8665u CPU and 16 GB of working memory.

AUC
(ANN)

AUC
(RF) Instances Explained

Instances Features Cat.
Features

Num.
Features

credit a 0.913 0.925 690 138 15 10 5
cmc 0.637 0.680 844 169 9 7 2
german 0.744 0.738 1,000 200 20 17 3
hypothyroid 0.972 0.996 3,163 633 25 18 7
churn 0.923 0.923 5,000 1,000 18 3 15
clean2 0.999 0.999 6,598 1,000 166 0 166
magic 0.877 0.991 19,020 1,000 10 0 10
adult 0.898 0.917 48,842 1,000 12 8 4
ICU 0.868 0.882 91,713 1,000 184 8 176
HCDR 0.740 0.731 307,511 1,000 120 16 104

Table 1: Descriptive statistics and performance metrics of all datasets.

We compare our counterfactual algorithm to four existing ones. Each of which has similarities with NICE. The
first algorithm is the What-if Tool (WIT) [42]. This interactive tool selects the nearest instance from the training
set that is classified in a different class. Besides two small differences, this method is exactly the same as NICE

6

A PREPRINT - APRIL 16, 2021

(none). First, WIT selects a counterfactual instance from the complete trainingset and not only the correctly classified
ones. Second, the distance metric is slightly different: for numerical features it standardizes the differences with the
standard deviation and not the range of the feature values in the trainingset. The second algorithm is the Case-Based
Reasoning system (CBR) for counterfactual explanations [17]. Just like NICE and WIT it also uses nearest instances
to find counterfactual. The difference is the optimization method, which limits the search to explanations that have a
maximum sparsity of two features. If an explanation is found, it is therefore always very sparse. Also different from
NICE, this method does not guarantee that an explanation will be found. The third algorithm in our comparison is
SEDC for tabular data [10]. The optimization method is exactly the same as NICE (spars). The difference between
both algorithms is their search space. Whereas NICE replaces feature values with those of the nearest instance, SEDC
replaces them with the respective mean or mode of each feature. The last algorithm is CFproto [22]. The process
of this algorithm is quite different from NICE. CFproto defines a loss function, which it optimizes. What makes this
method better than its peers is that it has found a way to work with categorical data in the loss function and is also
faster in optimizing it, compared to its gradient-based peers. The purpose of this algorithm is very similar to that
of NICE (plaus). It tries to find a balance between close and plausible explanations and uses the training data to
achieve this. In our experiments each algorithm is given access to the training data and the class prediction score of the
classification model. The speed of CFproto would surely improve when given access to the gradients of the ANN. But
to level the playing field we used the model-agnostic version of CFproto in all our experiments. In the next sections
we compare all four versions of NICE with WIT, CBR, SEDC and CFproto. We distinguish between the properties of
the algorithm and the properties of the explanations. Finally, we also look at the differences between the versions of
NICE and provide guidance on their use. A complete overview of all results can be found in Appendix 6.

4.1 Algorithmic requirements

First, we check if all reviewed algorithms meet the algorithmic requirements [35]. These properties are often over-
looked but are nevertheless important, as they determine whether these algorithms can be implemented in real-world
applications. The three main properties are access, time and coverage [16]. The required access of all these algorithms
is the same. Each one needs access to the training data and the scoring output of the classification model. Cover-
age refers to the percentage of instances for which a counterfactual explanation is found. Finally, time measures the
duration it takes to come up with this explanation.

Table 2 panel A shows the average coverage and time over all data sets with the best performing algorithm in bold face.
It is immediately noticeable that CFproto needs much more time to generate explanations than all other algorithms.
To generate explanations for a RF, CFproto takes on average more than 3 minutes. All others are able to generate
explanations in around 1 second or less. When we compare the different versions of NICE, we notice that NICE
(none) is the fastest. This makes sense as it does not optimize the explanation after finding a nearest neighbour.
Of the optimization versions of NICE, the sparsity version is the fastest followed by the proximity and plausibility
versions respectively. Again this makes sense, as calculating the distance or AE error slows down the algorithm at
each iteration. The AE error is clearly the most computationally expensive which makes NICE (plaus) the slowest of
our three implementations. Yet, even this version continues to generate explanations in around 1 second on average.
In addition, these experiments were performed on a basic notebook. The nearest neighbor search and part of NICE’s
optimization could easily be parallelized, which would reduce the required time even further. As a result, we conclude
that except for CFproto all these algorithms are fast enough to be used in real-time applications.

The reported coverage in Table 2 truly shows the strength of NICE. By construction, all versions have a 100% coverage.
In reality, anything less than perfect coverage is often not accepted. However, no other algorithm besides WIT complies
with this requirement. For SEDC and CBR, this is the main drawback: with respective coverages between 69.0-76.3%
or 42.2-59.2%, these algorithms are not useful in many real-world applications where the algorithm should be able to
generate an explanation for all predictions. SEDC did always have a perfect coverage on one of both classes. SEDC
replaces feature values with their mean or mode. After the maximum number of replacements, the algorithm ends
with an instance consisting of only means or modes. If we are looking for a counterfactual instance that belongs to
the predicted class of this instance, it will therefore always be found. In some applications such as fraud detection,
credit scoring and clinical healthcare, we are mostly interested in explanations for one class. If this matches the class
with perfect coverage for SEDC, it is a valid option. CBR limits its search to so called ‘good counterfactuals’ [17]
which have a maximum sparsity of two features. If it would allow more features in its explanations, the coverage
could increase. This would however also have an effect on the sparsity of all explanations because the algorithm has
no mechanism to search for the sparsest one as it just takes the closest case. CFproto performs better than these two
algorithms. With a 97% coverage for the ANN, it is a valid option to explain this model. However for the RF, the
coverage drops to 73%. We suspect that the reason for this is that f(x) is smoother for a ANN than an RF with small
changes in x. For a RF, small changes in the input vector often have no effect on the predicted score, which may be
challenging for the optimizer.

7

A PREPRINT - APRIL 16, 2021

R
an

do
m

Fo
re

st
(R

F)
A

rt
ifi

ci
al

N
eu

ra
lN

et
w

or
k

(A
N

N
)

N
IC

E
(
n
o
n
e
)

N
IC

E
(p
r
o
x

)
N

IC
E

(s
p
a
r
s

)
N

IC
E

(p
l
a
u
s

)
W

IT
C

B
R

SE
D

C
C

Fp
ro

to
N

IC
E

(n
o
n
e

)
N

IC
E

(p
r
o
x

)
N

IC
E

(s
p
a
r
s

)
N

IC
E

(p
l
a
u
s

)
W

IT
C

B
R

SE
D

C
C

Fp
ro

to

Pa
ne

lA
:P

ro
pe

rt
ie

s
of

th
e

co
un

te
rf

ac
tu

al
al

go
ri

th
im

s.
T

he
re

su
lts

ar
e

av
er

ag
ed

ov
er

al
ld

at
as

et
s

fo
re

ac
h

cl
as

si
fic

at
io

n
m

od
el

.
C

ov
er

ag
e

(%
)

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
42

.2
69

.0
73

.5
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

59
.2

76
.3

97
.2

Ti
m

e
(m

s)
98

.6
41

8.
2

18
9.

2
13

14
.6

14
5.

7
94

3.
3

15
9.

5
23

42
22

.1
84

.6
16

2.
9

96
.9

46
3.

4
14

2.
7

64
3.

5
39

.0
25

57
7.

3
C

M
ro

bu
st

ne
ss

(%
)

68
.8

34
.4

38
.7

52
.7

62
.7

26
.6

34
.8

23
.2

86
.4

56
.3

54
.5

67
.0

75
.0

35
.2

29
.2

38
.6

Pa
ne

lB
:A

ve
ra

ge
ra

nk
s

fo
re

ac
h

co
un

te
rf

ac
tu

al
pr

op
er

ty
.O

n
al

lp
ro

pe
rt

ie
s,

th
e

nu
ll-

hy
po

th
es

is
of

in
di

ff
er

en
tr

an
ks

is
re

je
ct

ed
at

a
si

gn
ifi

ca
nc

e
le

ve
lo

f5
pe

rc
en

tw
ith

a
Fr

ie
dm

an
R

an
k

te
st

.
T

he
N

em
en

yi
cr

iti
ca

ld
iff

er
en

ce
fo

ra
ll

m
et

ri
cs

is
0.

12
.

Ti
m

e
1.

51
5.

16
3.

31
6.

30
2.

25
4.

97
4.

82
7.

69
1.

95
5.

17
3.

36
6.

21
2.

69
4.

65
4.

21
7.

76
Pr

ox
im

ity
5.

78
2.

09
2.

32
4.

04
5.

53
6.

52
5.

26
4.

45
6.

35
2.

28
2.

59
4.

31
5.

98
5.

92
4.

70
3.

88
Sp

ar
si

ty
6.

01
2.

88
2.

07
4.

10
5.

94
5.

82
4.

12
5.

07
6.

51
2.

89
2.

24
4.

25
6.

43
4.

99
3.

84
4.

84
A

E
-E

rr
or

3.
79

4.
56

4.
49

3.
53

3.
72

6.
40

4.
14

5.
36

3.
93

4.
68

4.
66

3.
92

3.
92

6.
05

4.
09

4.
75

5N
N

di
st

an
ce

2.
20

4.
72

4.
77

3.
46

2.
18

6.
74

6.
15

5.
77

2.
21

4.
90

4.
87

3.
63

2.
23

6.
49

6.
12

5.
56

Pa
ne

lC
:T

he
pe

rc
en

ta
ge

of
ex

pl
an

at
io

ns
fo

rw
hi

ch
ea

ch
m

od
el

sc
or

ed
be

st
on

a
m

et
ri

c.
Ti

m
e

58
.8

0.
0

0.
0

0.
0

28
.0

2.
0

11
.7

0.
0

44
.3

1.
2

6.
3

0.
0

20
.0

17
.8

15
.3

0.
0

Pr
ox

im
ity

1.
7

55
.4

34
.7

16
.0

2.
0

5.
5

7.
8

23
.6

0.
8

49
.0

30
.1

14
.4

1.
5

8.
2

13
.6

27
.4

Sp
ar

si
ty

2.
2

39
.8

77
.1

29
.7

2.
3

16
.2

39
.6

12
.6

1.
8

47
.8

68
.7

31
.7

2.
4

29
.8

45
.6

9.
5

A
E

E
rr

or
24

.2
7.

5
7.

0
21

.7
25

.4
8.

4
32

.6
11

.2
26

.8
6.

8
6.

8
14

.9
26

.3
10

.3
32

.5
14

.6
5N

N
di

st
an

ce
69

.5
8.

1
5.

5
27

.5
71

.0
4.

2
5.

6
4.

4
69

.8
6.

5
5.

8
25

.0
68

.9
6.

1
4.

2
4.

4
Ta

bl
e

2:
Su

m
m

ar
iz

ed
re

su
lts

of
al

le
xp

er
im

en
ts

.

8

A PREPRINT - APRIL 16, 2021

Based on these findings, we can conclude that NICE and WIT have the most desirable algorithmic properties. The
perfect coverage ensures that these algorithms can be used in applications where explanations are required by law
such as under Fair Credit Reporting Act [37]. All versions of NICE also have an efficient runtime. This is a must for
high-stakes decision making under time pressure like fraud detection, credit scoring and clinical healthcare. Appendix
6 shows that all versions of NICE scale well with the number of features. Even for the largest datasets with over 180
features, it has an average runtime of less than 3 seconds and a maximum of 10 seconds. This makes NICE useful in
Fraud detection and other domains were many predictions are made each second and scalability is a priority. Taking in
account all algorithmic requirements, we conclude that NICE and WIT are the best option for any generic classification
model. The other algorithms are useful in specific situations.

4.2 Explanation Requirements

We compare all algorithms on three main requirements for the explanations: sparsity, proximity and plausibility. The
first two are well defined as discussed before. Plausibility is less straightforward to measure. The AE error is a good
proxy but will bias the comparison in favor of NICE (plaus), as it is the only algorithm that optimizes for this metric.
Therefore we added two more metrics to measure plausibility: the average distance to the 5 nearest neighbours (5NN)
and a measure taken from [32] which we call cross-model robustness. It is argued that if counterfactual instances re-
spect the data-manifold, they are less vulnerable to classification model uncertainty or changes over time [32]. We can
measure this by checking the percentage of instances for which an explanation is also valid for another classification
model trained on the same data. We use two classification models in our experiments, so we can easily check whether
an explanation for one model is also an explanation for the other.

The imperfect coverage of CBR, SEDC and CFproto makes the comparison challenging. Uncovered instances are
typically harder to explain, which result in explanations with inferior properties for the algorithms that are able to
explain them. For this reason, simple averages over all covered instances for each respective algorithm (see Appendix
6) can give a biased view. Furthermore, the overlapping sample of instances that are covered by all algorithms is very
small and biased to the algorithms with lower coverage. On top of that, the values for different datasets are often not
comparable. This is the case for sparsity, proximity, AE error and 5NN distance. For these metrics, we rank the data
for each observation, giving a rank of 1 to the best performing explanation algorithm and a rank of 8 to the worst.
If no counterfactual is available, we give this algorithm the worst rank for this observation. If there is a tie, we use
the average rank. We report the averages over all datasets of these ranks in panel B of Table 2 and submit them to
the Friedman test [11, 12] with a significance of 5%. If this test reject the null hypothesis of indifferent rank-means,
we calculate the critical difference using a Nemenyi test [28]. When a pair-wise difference between average ranks
exceeds this critical value, we conclude that their difference is statistically significant. The lowest ranks for each
metric in Table 2 are in bold face and underlined. Ranks that are not significant worse than the lowest one are just in
bold face. Of course, low coverage has a major impact on the ranks, which mainly explains the poor performance of
SEDC and CBR on these tests. To illustrate the influence of the coverage, we show another metric. In panel C of Table
2 the percentage of explanations, for which each algorithm has the best performance on a metric, is shown.2 Because
these results are also expressed in percentages, they can be easily related with coverage. Finally, for cross-model
robustness we just show the percentage of observations which are resistant to classification model changes.

For all means, the Friedman test rejects the null hypothesis of indifference. All metrics are compared over the same
number of observations and algorithms, causing the critical difference to be always 0.12. Most differences are statis-
tically significant according to he post-hoc Nemeyi test. Two notable exceptions, which we will return to later, are the
mutual differences between firstly NICE (none) and WIT and secondly NICE (spars) and NICE (prox).

We first look at the proximity of all explanations. All algorithms have some sort of proximity constraint. Being in
direct form or induced by a sparsity constraint. The best performing algorithm in terms of proximity is NICE (prox)
for both classification models with a significant difference. A close second is NICE (spars) followed by NICE
(plaus). NICE (none) is among the worst performing algorithms based on proximity. Despite the perfect coverage,
it is the second-last-ranked algorithm for an ANN . This shows how challenging it is to find a close explanation in
the observations of the training set. Next, we take a look at sparsity. The main aim of both SEDC, CBR and NICE
(spars) is to generate the most sparse counterfactual possible. The latter clearly appears to be the winner here. For
both classification models it has by far the lowest average rank (2.07 and 2.24). Again SEDC and CBR are amongst
the worst performing algorithms based on their rank. The percentage best in panel C shows that this is mainly because
of their lower coverage. If an explanation is found, it is the sparsest of all explanations around half of the time for both
algorithms. For example, SEDC finds counterfactual explanations in 69.0% of the cases for a RF, and of those it has
the sparsest solution of all algorithms in 57.3% (=39.6/69.0) of the time. But also based on this metric, NICE (spars)
has the best performance by providing the sparsest explanation in 77.1% of all observations.

2Note that the sum of each metric is not always equal to 100 percent. This is due to draws between the best scoring algorithms.

9

A PREPRINT - APRIL 16, 2021

Finally, we take a look at the plausibility of all counterfactual explanations. Both NICE (plaus) and CFproto’s main
goal is to generate explanations which lie close to the data manifold. The average ranks for the AE error lie closer to
each other than the proximity and sparsity ranks. For a RF, NICE (plaus) scores the best on this metric as expected.
For an ANN, NICE (plaus), NICE (none) and WIT are better than the other algorithms, but there is no significant
difference between them. In the ranks for the average 5NN distance, we see the same three algorithms appearing at
the top. NICE (none) and WIT are tied for the first place followed by NICE (plaus). Finally, we also see this pattern
in the cross-model robustness. NICE (none) is the best performing algorithm with 68.8% and 86.4% of cross-model
stability for the RF and ANN respectively. This is higher than the 62.7% and 75.0% for WIT. NICE (none) only
looks for counterfactual instances among the correctly classified observations from the training set, which avoids areas
of uncertainty in the feature space. As we have seen before, this comes with a cost of proximity and a benefit in
computing time. In third place, we have again NICE (plaus) were 52.7% and 67% of the explanations are robust to
changes in the classification model. CFproto underperforms in terms of plausibility. If we zoom in on the results of the
ANN, where coverage is no problem for CFproto, we see that NICE (plaus) scores significantly better than CFproto
for all metrics but proximity. NICE’s other two optimization techniques are even significantly better for every single
metric. Based on these results, we would not recommend to use CFproto to generate counterfactual explanations. The
same goes for SEDC and CBR, which are less useful in a general setup due to their low coverage. In specific situations
where a perfect coverage can be guaranteed, such as for one of the classes with SEDC, these algorithms may still
be optimal as they have proven to generate high quality explanations. For WIT and all implementations of NICE we
do see the potential general value. Also note that both SEDC and CFproto are not limited to tabular data. For other
applications such as explaining images, these algorithms can also be useful [40, 22].

Again, All these show that a trade-off must always be made between plausibility on the one hand and proximity or
sparsity on the other hand. None of the algorithms perform best on all metrics, but all implementations of NICE
represent a good trade-off. When plausibility is desired, potentially at the expense of proximity, NICE (none) is the
best option. Imagine, for example, a situation where the classification model often changes drastically. The high cross-
model robustness then ensures that the explanations usually remain usable when adjusting the classification model.
When we take a small step to the proximity side of the spectrum, we have WIT. This algorithm generates slightly
closer explanations at the expense of cross-model robustness and computation time. In the middle of the spectrum we
have NICE (plaus) this method scores well on all metrics and provides a good trade-off. When proximity or sparsity
may come at a cost of plausibility, we advice to select NICE with their respective optimization method. And note
again that in these situations the plausibility is still not that bad. With NICE, the counterfactual instance is always a
combination of two existing observations, which is favorable for plausibility.

5 Conclusion

In this paper, we introduced NICE, an algorithm to generate counterfactual explanations for heterogeneous tabular
data. NICE is able to provide fast explanations for different types of classification models with a perfect coverage,
thereby making it suitable for real-world applications where these algorithmic properties are expected. In the extensive
experiments, we have shown that the four versions of NICE provided results with favorable properties compared to
existing algorithms. Once again we notice a trade-off between on the one hand plausiblity and on the other hand
proximity or sparsity. Our different optimization methods offer the choice to select the preferred trade-off. NICE
exploits information from the training data to decrease the search time, guarantee perfect coverage and increase the
plausibility of counterfactual explanations. A downside of this approach is that the training data is required, which
is not always the case. Think for example of settings where third party APIs are used to make predictions. Future
research should test these algorithms in real-life settings and use feedback from all stakeholders in the predictive
decision making process. A multidisciplinary approach with data scientists, domain experts and end users is needed
to further improve the properties of counterfactual explanations and see for which applications they are most valuable.
Furthermore, it would be interesting to test if NICE’s approach could be extended to different datatypes such as
behavioural, image or time-series data.

10

A PREPRINT - APRIL 16, 2021

References

[1] Solon Barocas, Andrew D Selbst, and Manish Raghavan. “The hidden assumptions behind counterfactual ex-
planations and principal reasons”. In: Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency. 2020, pp. 80–89.

[2] Alison Callahan and Nigam H Shah. “Machine learning in healthcare”. In: Key Advances in Clinical Informatics.
Elsevier, 2017, pp. 279–291.

[3] Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. “Multi-objective counterfactual explana-
tions”. In: International Conference on Parallel Problem Solving from Nature. Springer. 2020, pp. 448–469.

[4] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, and
Payel Das. “Explanations based on the missing: Towards contrastive explanations with pertinent negatives”. In:
Advances in neural information processing systems 31 (2018), pp. 592–603.

[5] Amit Dhurandhar, Tejaswini Pedapati, Avinash Balakrishnan, Pin-Yu Chen, Karthikeyan Shanmugam, and
Ruchir Puri. “Model agnostic contrastive explanations for structured data”. In: arXiv preprint arXiv:1906.00117
(2019).

[6] Luciano A Digiampietri, Norton Trevisan Roman, Luis AA Meira, Jorge Jambeiro Filho, Cristiano D Ferreira,
Andreia A Kondo, Everton R Constantino, Rodrigo C Rezende, Bruno C Brandao, Helder S Ribeiro, et al.
“Uses of artificial intelligence in the Brazilian customs fraud detection system”. In: Proceedings of the 2008
international conference on digital government research. 2008, pp. 181–187.

[7] Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable machine learning”. In: arXiv
preprint arXiv:1702.08608 (2017).

[8] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. URL: http://archive.ics.uci.
edu/ml.

[9] European Parliament. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing of personal data and on the free move-
ment of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). 2016.

[10] Carlos Fernández-Lorı́a, Foster Provost, and Xintian Han. Explaining Data-Driven Decisions made by AI Sys-
tems: The Counterfactual Approach. 2020. arXiv: 2001.07417 [cs.LG].

[11] Milton Friedman. “The use of ranks to avoid the assumption of normality implicit in the analysis of variance”.
In: Journal of the american statistical association 32.200 (1937), pp. 675–701.

[12] Milton Friedman. “A comparison of alternative tests of significance for the problem of m rankings”. In: The
Annals of Mathematical Statistics 11.1 (1940), pp. 86–92.

[13] Home Credit Group. Home Credit Default Risk. https://www.kaggle.com/c/home-credit-default-
risk/data. Accessed: 2020-09-15. 2018.

[14] Shalmali Joshi, Oluwasanmi Koyejo, Warut Vijitbenjaronk, Been Kim, and Joydeep Ghosh. “Towards realistic
individual recourse and actionable explanations in black-box decision making systems”. In: arXiv preprint
arXiv:1907.09615 (2019).

[15] Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Hiroki Arimura. “DACE: Distribution-Aware Counter-
factual Explanation by Mixed-Integer Linear Optimization”. In: Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, Christian Bessiere (Ed.). International Joint Conferences
on Artificial Intelligence Organization. 2020, pp. 2855–2862.

[16] Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. “A survey of algorithmic recourse:
definitions, formulations, solutions, and prospects”. In: arXiv preprint arXiv:2010.04050 (2020).

[17] Mark T Keane and Barry Smyth. “Good Counterfactuals and Where to Find Them: A Case-Based Technique
for Generating Counterfactuals for Explainable AI (XAI)”. In: arXiv preprint arXiv:2005.13997 (2020).

[18] Boris Kment. “Counterfactuals and explanation”. In: Mind 115.458 (2006), pp. 261–310.
[19] Mark A Kramer. “Nonlinear principal component analysis using autoassociative neural networks”. In: AIChE

journal 37.2 (1991), pp. 233–243.
[20] Stefan Lessmann, Bart Baesens, Hsin-Vonn Seow, and Lyn C Thomas. “Benchmarking state-of-the-art classi-

fication algorithms for credit scoring: An update of research”. In: European Journal of Operational Research
247.1 (2015), pp. 124–136.

[21] David Lewis. Counterfactuals. John Wiley & Sons, 2013.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/2001.07417
https://www.kaggle.com/c/home-credit-default-risk/data
https://www.kaggle.com/c/home-credit-default-risk/data

A PREPRINT - APRIL 16, 2021

[22] Arnaud Van Looveren and Janis Klaise. “Interpretable Counterfactual Explanations Guided by Prototypes”. In:
CoRR abs/1907.02584 (2019). arXiv: 1907.02584. URL: http://arxiv.org/abs/1907.02584.

[23] Divyat Mahajan, Chenhao Tan, and Amit Sharma. “Preserving causal constraints in counterfactual explanations
for machine learning classifiers”. In: arXiv preprint arXiv:1912.03277 (2019).

[24] David Martens and Foster Provost. “Explaining Data-Driven Document Classifications”. In: MIS Quarterly 38.1
(2014), pp. 73–100. ISSN: 02767783, 21629730. URL: https://www.jstor.org/stable/26554869.

[25] George A Miller. “The magical number seven, plus or minus two: Some limits on our capacity for processing
information.” In: Psychological review 63.2 (1956), p. 81.

[26] Tim Miller. “Explanation in artificial intelligence: Insights from the social sciences”. In: Artificial Intelligence
267 (2019), pp. 1–38. ISSN: 0004-3702. DOI: https://doi.org/10.1016/j.artint.2018.07.007. URL:
http://www.sciencedirect.com/science/article/pii/S0004370218305988.

[27] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. “Explaining machine learning classifiers through
diverse counterfactual explanations”. In: Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency. 2020, pp. 607–617.

[28] Peter Nemenyi. “Distribution-free multiple comparisons”. In: Biometrics. Vol. 18. 2. International Biometric
Soc 1441 I ST, NW, SUITE 700, WASHINGTON, DC 20005-2210. 1962, p. 263.

[29] Eric WT Ngai, Yong Hu, Yiu Hing Wong, Yijun Chen, and Xin Sun. “The application of data mining techniques
in financial fraud detection: A classification framework and an academic review of literature”. In: Decision
support systems 50.3 (2011), pp. 559–569.

[30] Randal S Olson, William La Cava, Patryk Orzechowski, Ryan J Urbanowicz, and Jason H Moore. “PMLB:
a large benchmark suite for machine learning evaluation and comparison”. In: BioData mining 10.1 (2017),
pp. 1–13.

[31] Path to Apple Card. https://support.apple.com/en-us/HT211030. Accessed: 2021-04-09.
[32] Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. “On Counterfactual Explanations under Predictive

Multiplicity”. In: Conference on Uncertainty in Artificial Intelligence. PMLR. 2020, pp. 809–818.
[33] Yanou Ramon, David Martens, Foster Provost, and Theodoros Evgeniou. “A comparison of instance-level coun-

terfactual explanation algorithms for behavioral and textual data: SEDC, LIME-C and SHAP-C”. In: Advances
in Data Analysis and Classification (2020), pp. 1–19.

[34] David-Hillel Ruben. Explaining explanation. Routledge, 2015.
[35] Kacper Sokol and Peter Flach. “Explainability fact sheets: a framework for systematic assessment of explainable

approaches”. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. 2020,
pp. 56–67.

[36] Global Women in Data Science Conference The Global Open Source Severity of Illness Score Consortium.
Intesnive Care Unit. https://www.kaggle.com/c/widsdatathon2020/data. Accessed: 2020-09-15.
2020.

[37] United States Congress. An Act to amend the Federal Deposit Insurance Act to require insured banks to maintain
certain records, to require that certain transactions in U.S. currency be reported to the Department of the
Treasury, and for other purposes. 1970.

[38] Jellis Vanhoeyveld, David Martens, and Bruno Peeters. “Value-added tax fraud detection with scalable anomaly
detection techniques”. In: Applied Soft Computing 86 (2020), p. 105895.

[39] Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual Explanations for Machine Learning: A Re-
view. 2020. arXiv: 2010.10596 [cs.LG].

[40] Tom Vermeire and David Martens. “Explainable Image Classification with Evidence Counterfactual”. In: arXiv
preprint arXiv:2004.07511 (2020).

[41] Sandra Wachter, Brent Mittelstadt, and Chris Russell. “Counterfactual explanations without opening the black
box: Automated decisions and the GDPR”. In: Harv. JL & Tech. 31 (2017), p. 841.

[42] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda Viégas, and Jimbo Wilson.
“The what-if tool: Interactive probing of machine learning models”. In: IEEE transactions on visualization and
computer graphics 26.1 (2019), pp. 56–65.

[43] D Randall Wilson and Tony R Martinez. “Improved heterogeneous distance functions”. In: Journal of artificial
intelligence research 6 (1997), pp. 1–34.

12

https://arxiv.org/abs/1907.02584
http://arxiv.org/abs/1907.02584
https://www.jstor.org/stable/26554869
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
http://www.sciencedirect.com/science/article/pii/S0004370218305988
https://support.apple.com/en-us/HT211030
https://www.kaggle.com/c/widsdatathon2020/data
https://arxiv.org/abs/2010.10596

A PREPRINT - APRIL 16, 2021

6 Appendix
NICE
(none)

NICE
(prox)

NICE
(spars)

NICE
(plaus) WIT CBR SEDC CFproto

Time (ms)
credit a 4.1 35.5 11.1 94.4 5.2 11.4 26.2 55,839.9
cmc 4.4 35.2 11.5 83.5 7.0 28.1 18.2 49,537.2
german 7.5 53.6 22.7 147.0 5.8 45.4 17.4 49,490.7
hypothyroid 7.2 68.7 27.1 178.2 5.7 42.0 35.7 55,958.0
churn 4.7 45.4 13.7 95.2 5.0 37.4 15.9 52,275.2
clean2 9.5 259.6 83.9 1977.9 11.4 31.6 153.6 58,903.6
magic 82.2 1301.8 433.1 2297.1 86.1 1495.0 369.8 774,119.0
adult 49.6 271.7 87.0 387.4 52.1 589.3 156.3 468,297.2
ICU 114.4 463.5 209.3 3006.4 188.9 1135.4 227.8 132,912.9
HCDR 436.0 579.0 498.7 1453.2 690.3 3404.2 91.9 124,440.4

Coverage (%)
credit a 100.0 100.0 100.0 100.0 100.0 88.4 74.6 12.3
cmc 100.0 100.0 100.0 100.0 100.0 87.0 90.5 88.8
german 100.0 100.0 100.0 100.0 100.0 33.5 59.5 74.5
hypothyroid 100.0 100.0 100.0 100.0 100.0 34.0 99.7 70.6
churn 100.0 100.0 100.0 100.0 100.0 55.7 21.5 71.0
clean2 100.0 100.0 100.0 100.0 100.0 0.5 61.8 31.6
magic 100.0 100.0 100.0 100.0 100.0 79.3 96.0 100.0
adult 100.0 100.0 100.0 100.0 100.0 81.9 65.1 64.5
ICU 100.0 100.0 100.0 100.0 100.0 3.1 48.0 89.5
HCDR 100.0 100.0 100.0 100.0 100.0 26.0 100.0 91.7

Sparsity
credit a 6.85 2.46 1.56 4.16 6.73 1.95 2.07 3.71
cmc 2.17 1.63 1.48 1.80 2.14 1.67 1.67 2.21
german 6.81 2.48 1.99 4.40 6.73 1.81 1.39 2.19
hypothyroid 6.36 3.63 3.24 4.91 6.36 1.99 3.85 5.13
churn 13.55 2.42 2.12 6.39 13.55 1.82 1.41 7.79
clean2 138.88 19.48 17.00 98.86 138.88 2.00 12.29 62.25
magic 9.99 5.55 4.64 7.99 9.99 1.95 1.82 3.56
adult 3.15 1.41 1.37 1.59 3.14 1.69 2.50 1.75
ICU 101.12 13.91 10.40 76.03 100.56 1.87 8.52 79.56
HCDR 36.04 5.91 3.25 21.61 35.41 1.88 3.74 21.31

Proximity
credit a 2.87 1.18 1.24 2.02 2.81 1.19 1.45 1.25
cmc 0.89 0.73 0.75 0.81 0.85 0.74 1.19 1.11
german 4.56 1.40 1.53 3.05 4.47 1.81 1.21 1.31
hypothyroid 1.85 1.15 1.25 1.53 1.85 0.77 1.92 1.36
churn 1.35 0.41 0.42 0.75 1.34 0.41 0.50 0.86
clean2 10.18 1.86 2.56 7.35 10.18 0.81 3.11 5.17
magic 0.31 0.19 0.20 0.27 0.31 0.45 0.32 0.14
adult 1.12 0.39 0.41 0.46 1.11 0.81 1.97 0.57
ICU 14.32 1.65 2.10 10.76 13.78 0.86 1.80 6.94
HCDR 5.71 0.76 0.99 3.58 5.26 1.26 1.46 3.06

Table 3: Average Time,Coverage,Sparsity and Proximity for each dataset under with a Random Forest classification
model

13

A PREPRINT - APRIL 16, 2021

NICE
(none)

NICE
(prox)

NICE
(spars)

NICE
(plaus) WIT CBR SEDC CFproto

AE error
credit a 0.1085 0.1117 0.1107 0.1075 0.1079 0.1073 0.1058 0.1155
cmc 0.1324 0.1355 0.1347 0.1325 0.1292 0.1342 0.1096 0.1398
german 0.1341 0.1437 0.1429 0.1356 0.1331 0.1522 0.1405 0.1458
hypothyroid 0.0701 0.0840 0.0823 0.0749 0.0701 0.0853 0.0495 0.0765
churn 0.1510 0.1605 0.1600 0.1552 0.1500 0.1532 0.1595 0.1683
clean2 0.2985 0.3072 0.3065 0.2918 0.2985 0.3254 0.2921 0.2833
magic 0.5524 0.5544 0.5543 0.5491 0.5525 0.5339 0.5148 0.5608
adult 0.0576 0.0604 0.0605 0.0601 0.0577 0.0594 0.0548 0.0626
ICU 0.2503 0.2558 0.2563 0.2503 0.2490 0.2628 0.2566 0.2438
HCDR 0.3274 0.3294 0.3290 0.3275 0.3273 0.3333 0.3229 0.3350

5NN Distance
credit a 1.34 2.04 2.03 1.71 1.34 2.26 1.83 2.12
cmc 0.35 0.42 0.40 0.38 0.34 0.45 0.33 0.50
german 3.01 4.07 4.01 3.47 2.97 4.66 4.23 4.45
hypothyroid 0.48 0.87 0.79 0.66 0.48 0.74 0.93 0.74
churn 0.81 1.09 1.08 0.99 0.81 1.10 1.10 1.09
clean2 3.57 5.79 6.04 4.90 3.57 5.90 6.69 5.88
magic 0.17 0.21 0.21 0.18 0.17 0.25 0.28 0.25
adult 0.25 0.44 0.44 0.41 0.26 0.44 0.50 0.50
ICU 7.93 11.76 11.83 9.28 7.86 13.10 13.75 10.92
HCDR 3.28 4.89 4.84 3.95 3.26 4.92 5.05 5.85

Cross-Model Robustness (%)
credit a 84.1 73.9 76.1 79.7 81.9 71.0 48.6 6.5
cmc 52.1 55.6 55.6 53.3 52.7 52.1 46.7 38.5
german 80.5 44.5 48.0 62.0 73.5 24.5 34.5 43.5
hypothyroid 42.7 24.0 25.6 28.8 42.7 11.8 27.3 19.1
churn 80.1 56.5 57.0 64.1 76.6 37.7 16.6 19.3
clean2 99.8 5.7 20.5 68.3 99.8 0.2 24.7 18.0
magic 22.7 22.1 22.3 22.4 22.5 54.3 54.5 20.0
adult 53.5 38.2 38.2 38.8 53.1 44.8 46.8 13.6
ICU 89.0 19.6 23.0 63.1 55.5 1.6 16.3 23.1
HCDR 82.4 59.8 69.5 69.3 78.6 20.0 50.6 43.4
Table 4: Average Plausibility metrics for each dataset under a Random Forest classification model

14

A PREPRINT - APRIL 16, 2021

NICE
(none)

NICE
(prox)

NICE
(spars)

NICE
(plaus) WIT CBR SEDC CFproto

Time (ms)
credit a 1.6 15.8 3.6 63.4 2.1 5.9 7.8 16294.1
cmc 2.1 18.1 4.7 35.9 3.5 11.1 6.5 14023.1
german 3.3 27.7 10.6 89.1 2.8 29.6 9.4 18201.0
hypothyroid 3.2 38.9 14.6 90.6 2.6 21.6 15.0 16877.5
churn 1.8 28.1 5.1 52.1 2.0 19.5 6.4 13615.4
clean2 8.0 243.4 56.6 887.8 9.0 58.0 43.0 13817.4
magic 2.4 23.7 5.1 30.7 2.9 47.6 4.7 12110.2
adult 4.8 22.6 8.5 44.9 5.4 142.2 10.4 15087.6
ICU 100.3 335.5 127.0 1242.6 202.7 1392.3 122.4 61370.2
HCDR 483.2 474.7 477.1 960.8 794.0 2912.9 34.4 47679.0

Coverage (%)
credit a 100.0 100.0 100.0 100.0 100.0 63.8 65.2 59.4
cmc 100.0 100.0 100.0 100.0 100.0 94.1 83.4 98.2
german 100.0 100.0 100.0 100.0 100.0 35.0 70.5 98.5
hypothyroid 100.0 100.0 100.0 100.0 100.0 21.2 61.0 98.7
churn 100.0 100.0 100.0 100.0 100.0 94.3 25.6 100.0
clean2 100.0 100.0 100.0 100.0 100.0 7.7 82.5 100.0
magic 100.0 100.0 100.0 100.0 100.0 94.3 95.6 100.0
adult 100.0 100.0 100.0 100.0 100.0 84.4 66.7 87.4
ICU 100.0 100.0 100.0 100.0 100.0 20.5 98.7 99.4
HCDR 100.0 100.0 100.0 100.0 100.0 76.5 100.0 100.0

Sparsity
credit a 6.89 1.43 1.28 4.71 6.65 1.95 1.44 5.23
cmc 2.34 1.51 1.41 1.85 2.24 1.72 1.69 2.39
german 6.90 2.54 2.08 4.21 6.87 1.64 1.95 3.12
hypothyroid 6.43 3.72 3.53 4.61 6.43 1.98 3.09 5.61
churn 13.56 2.43 2.21 7.05 13.58 1.99 1.96 6.90
clean2 138.67 17.51 13.34 70.46 138.60 1.99 5.65 60.90
magic 9.99 3.09 2.58 5.96 9.99 1.92 2.05 5.14
adult 3.28 1.90 1.75 2.05 3.20 1.71 2.27 2.14
ICU 99.28 12.21 5.66 60.36 98.58 1.90 7.06 72.41
HCDR 35.55 2.53 1.79 17.04 34.73 1.85 2.84 15.96

Proximity
credit a 2.93 1.19 1.22 2.21 2.79 1.31 1.37 2.40
cmc 1.14 0.97 0.98 1.05 1.07 1.10 1.34 1.24
german 4.66 1.85 1.95 3.01 4.62 1.64 1.78 1.83
hypothyroid 2.10 1.62 1.65 1.79 2.09 1.00 1.54 1.45
churn 1.39 0.45 0.47 0.84 1.38 0.62 0.63 0.90
clean2 10.18 2.77 3.00 5.70 10.16 1.03 2.18 4.66
magic 0.50 0.31 0.31 0.40 0.48 0.57 0.41 0.28
adult 1.26 0.80 0.81 0.87 1.21 0.97 1.72 0.73
ICU 13.29 1.78 2.30 8.49 12.96 1.17 2.54 160.42
HCDR 5.59 0.77 0.89 2.98 5.04 0.86 1.62 3.66

Table 5: Average Time, Coverage, Sparsity and Proximity for each dataset under an Artificial Neural Network classi-
fication model

15

A PREPRINT - APRIL 16, 2021

NICE
(none)

NICE
(prox)

NICE
(spars)

NICE
(plaus) WIT CBR SEDC CFproto

AE error
credit a 0.1092 0.1122 0.1120 0.1108 0.1091 0.1100 0.1102 0.1187
cmc 0.1456 0.1475 0.1470 0.1474 0.1440 0.1482 0.1211 0.1434
german 0.1334 0.1390 0.1383 0.1337 0.1324 0.1482 0.1317 0.1499
hypothyroid 0.0624 0.0734 0.0719 0.0681 0.0631 0.0847 0.0702 0.0707
churn 0.1598 0.1677 0.1675 0.1642 0.1578 0.1527 0.1630 0.1692
clean2 0.2986 0.3026 0.3018 0.2965 0.2987 0.3210 0.2970 0.2851
magic 0.3115 0.3147 0.3150 0.3115 0.3120 0.3240 0.2870 0.3195
adult 0.0579 0.0593 0.0594 0.0589 0.0580 0.0592 0.0550 0.0602
ICU 0.2467 0.2539 0.2543 0.2497 0.2472 0.2593 0.2453 0.2483
HCDR 0.3255 0.3271 0.3269 0.3255 0.3249 0.3274 0.3217 0.3360

5NN Distance
credit a 1.38 2.08 2.06 1.67 1.39 2.07 2.05 3.00
cmc 0.38 0.43 0.42 0.40 0.37 0.50 0.38 0.59
german 3.08 3.93 3.88 3.51 3.02 4.47 4.08 4.69
hypothyroid 0.54 0.74 0.73 0.68 0.55 0.79 1.26 0.83
churn 0.82 1.09 1.08 0.98 0.81 1.23 1.16 1.07
clean2 3.58 6.04 6.05 5.30 3.58 6.30 6.20 6.24
magic 0.20 0.26 0.26 0.22 0.20 0.24 0.33 0.27
adult 0.25 0.38 0.37 0.34 0.26 0.45 0.61 0.54
ICU 7.44 11.37 11.29 9.28 7.48 12.94 11.40 165.36
HCDR 3.26 4.84 4.80 4.07 3.28 4.81 4.73 6.39

Cross-Model Robustness (%)
credit a 91.3 72.5 71.7 85.5 76.1 47.1 30.4 6.5
cmc 84.6 74.6 74.6 79.3 63.9 71.6 36.1 45.0
german 93.0 66.0 65.0 73.5 88.0 14.5 45.5 62.0
hypothyroid 100.0 69.5 66.8 71.9 88.3 10.9 24.3 54.8
churn 98.9 81.0 81.9 86.9 92.2 50.4 16.3 59.3
clean2 100.0 8.3 7.8 46.2 99.7 1.6 4.2 11.1
magic 96.8 74.1 72.4 86.4 70.6 66.0 65.8 48.8
adult 93.8 88.0 86.2 90.5 80.7 60.8 33.1 60.2
ICU 38.4 18.8 15.1 24.3 33.0 7.7 13.3 18.5
HCDR 80.3 52.2 47.9 58.8 64.2 36.2 40.9 22.3

Table 6: Average plausibility metrics for each dataset under an Artificial Neural Network classification model

16

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Reward Functions
	3.1.1 Sparsity
	3.1.2 Proximity
	3.1.3 Plausibility

	4 Experiments
	4.1 Algorithmic requirements
	4.2 Explanation Requirements

	5 Conclusion
	6 Appendix

