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Samenvatting

Nanomaterialen kunnen uiterst interessante eigenschappen vertonen voor een verscheidenheid
aan veelbelovende toepassingen, gaande van zonnecrème tot batterijen voor elektrische auto’s.
Een nanometer is een miljard keer kleiner dan een meter. Op deze schaal kunnen de materi-
aaleigenschappen volledig verschillen van bulkmaterialen op grotere schaal. Bovendien hangen
de eigenschappen van nanomaterialen sterk af van hun exacte grootte en vorm. Kleine ver-
schillen in de posities van de atomen, in de grootte-orde van een picometer (nog eens duizend
maal kleiner dan een nanometer), kunnen de fysische eigenschappen al drastisch beı̈nvloe-
den. Daarom is een betrouwbare kwantificering van de atomaire structuur van kritisch belang
om de evolutie naar materiaalontwerp mogelijk te maken en inzicht te verwerven in de re-
latie tussen de fysische eigenschappen en de structuur van nanomaterialen. Daarnaast kan de
atomaire structuur van nanomaterialen ook veranderen in de loop van de tijd ten gevolge van
verschillende fysische processen. Het onderzoek dat in deze thesis gepresenteerd wordt, maakt
het mogelijk om de dynamische structuurveranderingen van nanomaterialen betrouwbaar te
kwantificeren op atomaire schaal door gebruik te maken van transmissie elektronenmicroscopie
(TEM).
Een ideale beeldvormingstechniek voor kwantificering van nanomaterialen is elektronenmi-
croscopie, meer bepaald in de zogenaamde ringvormige donkerveld raster transmissie elek-
tronenmicroscopie (ADF STEM) beeldvormingsmodus. In kristallijne nanomaterialen zijn de
atomen georganiseerd in atoomkolommen. Door dergelijke nanomaterialen te oriënteren langs
een zone-as, met de atoomkolommen parallel aan de kijkrichting, kunnen beelden opgenomen
worden met atomaire resolutie. De driedimensionale (3D) atomaire structuur van het nano-
materiaal wordt dan geprojecteerd in die tweedimensionale (2D) beelden. Om informatie over
de ontbrekende derde dimensie te bekomen, is een kwantitatieve analyse noodzakelijk. De
intensiteit van atomaire resolutie ADF STEM beelden is gepiekt op de posities van de atoom-
kolommen en gevoelig aan de chemische samenstelling en dikte van het nanomateriaal. Een
ADF STEM beeld is dus meer dan een bovenaanzicht van de atoomkolommen. Atoomkolom-
men met meer atomen zullen namelijk intenser zijn in het ADF STEM beeld. Dit maakt ADF
STEM beelden zeer bruikbaar voor het tellen van het aantal atomen in de atoomkolommen
van kristallijne nanomaterialen. De telresultaten kunnen dan op hun beurt gebruikt worden
om de 3D atomaire structuur te reconstrueren, met behulp van een zogenaamde structuurrelax-
atie. Daarom worden in deze thesis kwantitatieve methoden ontwikkeld voor het tellen van het
aantal atomen in elke atoomkolom van monoatomaire nanokristallijn materialen.
Het startpunt is de kwantificering van de ADF STEM beeldintensiteiten met behulp van een pa-
rametrisch model dat eerder in het domein van de kwantitatieve electronenmicroscopie geı̈ntro-
duceerd werd. Dit model bestaat uit een superpositie van 2D Gaussfuncties en maakt het mo-
gelijk om de posities van de atoomkolommen in het beeld te schatten, alsook de zogenaamde
verstrooiingsdoorsnede voor elke atoomkolom. De verstrooiingsdoorsnede van een atoomko-
lom komt overeen met de totale intensiteit aan verstrooide elektronen van de atoomkolom naar
de detector en is rechtstreeks gerelateerd aan het type en aantal atomen in de atoomkolom.
Voor een monoatomair kristallijn nanomateriaal neemt de verstrooiingsdoorsnede monotoon
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toe wanneer het aantal atomen in de atoomkolom toeneemt. Daarom is het parametrische
model voor de kwantificering van ADF STEM beeldintensiteiten een erkende aanpak in de
kwantitatieve elektronenmicroscopie.
Wanneer het nanomateriaal echter gekanteld is, zodat de atoomkolommen niet langer perfect
evenwijdig met de kijkrichting georiënteerd zijn, worden de ADF STEM beeldintensiteiten
van de atoomkolommen uitgesmeerd. Bovendien neemt de verstrooiingsdoorsnede van een
atoomkolom af ten gevolge van een dergelijke tilt van het nanomateriaal, wat tot telfouten kan
leiden. Daarom onderzoek ik in deze thesis een nieuw parametrisch model, met elliptische in
plaats van symmetrische Gaussische pieken. Dit elliptisch model blijkt inderdaad kwalitatief
een betere beschrijving voor de beeldintensiteiten dan het symmetrisch model. Met behulp
van een simulatiestudie voor een platinum nanokristal wordt het echter duidelijk dat de fysis-
che parameters van de atomaire structuur, zoals de positie en verstrooiingsdoorsnede van de
atoomkolommen, niet nauwkeuriger geschat worden. De extra inspanning voor het schatten
van het meer gecompliceerde elliptisch model is dus niet nodig. Mijn aanbeveling is daarom
om het bestaande symmetrisch parametrisch model voor de kwantificering van ADF STEM
beeldintensiteiten ook te gebruiken in geval van een kleine hoeveelheid specimen tilt.
Er bestaan reeds twee verschillende manieren om atomen te tellen gebruikmakend van de ver-
strooiingsdoorsneden geschat op basis van een ADF STEM beeld: op basis van beeldsim-
ulaties en op basis van statistische parameterschattingtheorie. De beeldsimulatie-gebaseerde
methode vergelijkt de geschatte verstrooiingsdoorsneden uit het experiment rechtstreeks met
verstrooiingsdoorsneden die bepaald worden uit beeldsimulaties voor verschillende diktes. De
statistiek-gebaseerde methode schat het aantal atomen in elke atoomkolom daarentegen door
de set van geschatte verstrooiingsdoorsneden uit het experimenteel beeld te ontbinden in ver-
schillende componenten die elk overeenstemmen met een verzameling atoomkolommen met
hetzelfde aantal atomen. Beide methoden werden succesvol toegepast voor de analyse van
ADF STEM beelden opgenomen met een hoge elektronendosis. Veel interessante nanomateri-
alen worden beschadigd echter onder invloed van de intense elektronenbundel. Om ongewenste
schade en structuurverandering te vermijden, moet de elektronendosis voor dergelijke stralings-
gevoelige nanomaterialen verlaagd worden. Vergelijkbaar met een gedimde lichtbron bij een
lichtmicroscoop, zorgt een lage elektronendosis in de elektronenmicroscoop ook voor ruis in de
beelden. Dit is uitdagend voor een betrouwbare kwantificering, en daarom zijn geavanceerde
kwantitatieve methoden nodig die goed presteren bij een lage signaal-ruis verhouding. Daarom
introduceer ik in deze thesis een zogenaamde hybride statistiek-simulaties gebaseerde meth-
ode voor het tellen van atomen. Deze methode verwerkt voorkennis uit beeldsimulaties recht-
streeks in het statistisch kader van de statistiek-gebaseerde telmethode. Door de nauw ver-
weven combinatie van statistische parameterschattingstheorie en beeldsimulaties is deze tel-
methode robuuster en kunnen atomen geteld worden bij een lagere elektronendosis. Een hoge
dosis ADF STEM beeld van een stabiele gouden nanorod wordt gebruikt om de telresultaten
van de hybride methode te valideren. Verder worden gesimuleerde beelden van een platinum
nanodeeltje gebruikt om aan te tonen dat betrouwbaar tellen van atomen zelfs mogelijk is voor
getilte nanomaterialen, dankzij de parametrische relatie die de voorkennis uit beeldsimulaties
in het statistisch model verwerkt. De verbeterde robuustheid voor een lage signaal-ruis ver-
houding wordt gedemonstreerd aan de hand van een experimenteel en een gesimuleerd ADF
STEM beeld van een klein katalytisch platinum nanodeeltje, waarvoor betrouwbaar tellen van
het aantal atomen voorheen niet mogelijk was. De hybride methode opent zo mogelijkheden
voor de kwantitatieve analyse van werkelijk stralingsgevoelige nanomaterialen.
Om de betrouwbare kwantificering van dynamische structuurveranderingen van nanomateri-
alen op atomaire schaal mogelijk te maken, wordt de telmethode uitgebreid van één beeld naar
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een tijdreeks. Daartoe introduceer ik het zogenaamde hidden Markov model in het domein
van de elektronenmicroscopie. Dankzij de optimale eigenschappen voor het modelleren en
analyseren van tijdreeksen, werden hidden Markov modellen in andere wetenschapsdomeinen
eerder al succesvol toegepast, bijvoorbeeld voor spraakherkenning en uitlijning van sequen-
ties van aminozuren in eiwitten. Het hidden Markov model stelt ons inderdaad in staat om
op basis van een tijdreeks het aantal atomen in elke atoomkolom in elk beeld beter te tellen
dan met de hybride telmethode, die weliswaar ontworpen werd voor de analyse van een enkel
beeld. Zo wordt het hidden Markov model gebruikt om de veranderingen in de morfologie
van een katalytisch platinum nanodeeltje, die veroorzaakt werden door de bestraling met de
elektronenbundel, te kwantificeren op basis van een experimentele tijdreeks van ADF STEM
beelden.
Een belangrijke parameter van het hidden Markov model, die zorgt voor de verbeterde tel-
prestaties, is de zogenaamde transitiekans. Deze parameter wordt gebruikt om expliciet de
mogelijkheid tot veranderingen in de atomaire structuur tijdens de tijdreeks te modelleren.
De transitiekans geeft weer hoeveel kans een atoomkolom met een zekere dikte heeft om één
of meerdere atomen te verliezen of bij te krijgen gedurende de tijdreeks. Op basis van de
geschatte transitiekans kan de globale kans op structuurveranderingen voor het nanomateriaal
tijdens de tijdreeks gekwantificeerd worden. Dit kan gebruikt worden om een dosisonafhanke-
lijke werkzame doorsnede te kwantificeren op basis van het experiment. Wanneer de structuur-
veranderingen veroorzaakt worden door oppervlaktediffusie, kan deze werkzame doorsnede
zelfs gebruikt worden om de drempelenergie voor oppervlaktediffusie te schatten uit het ex-
periment. De drempelenergie die op deze manier geschat wordt voor een experimentele tijd-
reeks van een wigvormig platinum nanomateriaal komt goed overeen met de eerder berekende
theoretische waarde voor dit type materiaal. Dit bevestigt dat het hidden Markov model de
dynamische structuurveranderingen op atomaire schaal betrouwbaar kwantificeert.
Het hidden Markov model voor het tellen van atomen kan ook toegepast worden op in situ
experimenten. Zo werden beelden opgenomen van een katalytisch gouden nanodeeltje bij een
verhoogde temperatuur in de elektronenmicroscoop. Het aantal atomen geteld door het hidden
Markov model wordt gecombineerd met moleculaire dynamica om de veranderingen in de 3D
atomaire structuur in functie van de tijd te karakteriseren. Tenslotte wordt nog een simulaties-
tudie uitgevoerd om aan te tonen wat de mogelijkheden zijn van het hidden Markov model voor
de betrouwbare kwantificering van de atomaire structuur in geval van variabele omgevingscon-
dities zoals een geleidelijk aan toenemende temperatuur of een afwisselende gasstroom.
Kortom, het hidden Markov model voor het tellen van atomen is veelbelovend voor het on-
thullen en kwantificeren van de atomaire structuur wanneer deze verandert in de tijd, bijvoor-
beeld via oppervlaktediffusie, door dosis gerelateerde effecten of tijdens in situ experimenten.

 De take-home boodschap van deze thesis is dat ik statistische modellen heb gebruikt om de
veranderingen in de structuur van een nanomateriaal op atomaire schaal betrouwbaar te kwan-
tificeren in functie van de tijd. Ik heb dit gerealiseerd door methodes te ontwikkelen waarmee
ik het aantal atomen “achter elkaar” kan tellen in elke atoomkolom van een nanomateriaal, en
dit op basis van beelden opgenomen met een elektronenmicroscoop. Een belangrijk verschil
met telmethodes voor de analyse van een enkel beeld is het schatten van de kans dat een atoom-
kolom atomen zal verliezen of bijkrijgen van het ene naar het andere beeld in de tijdreeks. Deze
kwantitatieve methode kan het ontrafelen van de tijdsafhankelijke structuur-eigenschappen re-
latie van een nanomateriaal mogelijk maken, wat uiteindelijk kan leiden tot efficiënter design
en productie van nanomaterialen voor innovatieve toepassingen.
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Summary

Nanomaterials can exhibit highly interesting properties for a variety of promising applications,
ranging from sunscreen to batteries in electrical cars. A nanometer is a billion times shorter
than a meter. At this scale, a material’s properties can be radically different as compared to
bulk materials at larger scales. Furthermore, the properties of nanomaterials are strongly size
and shape dependent. Small differences in the atomic positions, of the order of a picometer
(yet a thousand times smaller than a nanometer), can already drastically change physical prop-
erties. Therefore, a reliable quantification of the atomic structure is of crucial importance in
order to evolve towards materials design and to understand the structure-properties relationship
of nanomaterials. Additionally, the atomic structure of nanomaterials can change over time, as
a result of various physical processes. The research presented in this thesis enables the reli-
able quantification of dynamic structural changes of nanomaterials at the atomic scale using
transmission electron microscopy (TEM).
An ideal imaging technique for quantification of nanomaterials is electron microscopy, specif-
ically an imaging mode called annular dark field scanning transmission electron microscopy
(ADF STEM). In crystalline nanomaterials, the atoms are organised in atomic columns. Atomic
resolution images can be achieved by orienting the nanomaterial in a main zone axis orienta-
tion, such that the atomic columns are parallel to the viewing direction. In the two-dimensional
(2D) images of the nanomaterial, the three-dimensional (3D) atomic structure is projected. In
order to retrieve information from the missing third dimension, quantitative analysis of the
images is necessary. The intensities of atomic resolution ADF STEM images are peaked at
the atomic column positions. Interestingly, the intensities are also sensitive to the chemical
content of the nanomaterial and are thickness dependent. Therefore, an ADF STEM image is
more than a “top view” of the atomic columns. Atomic columns that contain more atoms will
appear brighter in the ADF STEM images. ADF STEM images can therefore be used to count
the number of atoms in each atomic column of a monatomic crystalline nanomaterial. These
counting results can be used to reconstruct the 3D atomic structure using a so-called struc-
tural relaxation method. Therefore, the quantitative methods developed in this thesis mainly
focus on counting the number of atoms in each atomic column of monatomic nanocrystalline
materials.
As a starting point, the ADF STEM image intensities are quantified using a parametric imag-
ing model that has been introduced in the field of quantitative STEM, prior to this thesis. This
model consists of superimposed 2D Gaussian functions, and provides estimates for the posi-
tions of the atomic columns in the image and for the so-called scattering cross sections. The
scattering cross section of an atomic column corresponds to the total intensity scattered from
the atomic column towards the detector. This is directly related to the type and number of atoms
in the atomic column. In case of a monatomic crystalline nanomaterial, the scattering cross
sections increase monotonically with the number of atoms in the atomic column, making them
particularly suitable for atom-counting. Therefore, the use of the parametric imaging model
for the quantification of ADF STEM image intensities has become a recognised approach in
quantitative electron microscopy.
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However, when the nanomaterial is tilted, such that the atoms in the atomic columns are no
longer oriented parallel to the viewing direction, an elongation of the intensity of the atomic
columns in the ADF STEM images is observed. Furthermore, such sample tilt leads to a de-
crease of the scattering cross section for an atomic column, which may lead to errors during
atom-counting. Therefore, in this thesis, I investigate a novel parametric model with elliptical
rather than symmetrical Gaussian peaks. Qualitatively, this elliptical model indeed seems to
be a better description for the image intensities as compared to the symmetrical model. How-
ever, a simulations study of a platinum nanocrystal reveals that the accuracy of the estimated
physical parameters related to the atomic structure, such as the atomic column positions and
the scattering cross sections, does not significantly improve as compared to the existing model.
Therefore, it is not worth the extra effort required to fit the more complicated elliptical model.
I recommend the use of the existing symmetrical parametric imaging model for the quantifica-
tion of ADF STEM images, even in the presence of small amounts of sample tilt.
Two approaches for atom-counting using the scattering cross sections estimated from an ADF
STEM image have been developed prior to the research presented in this thesis, based either
on image simulations or on statistical parameter estimation theory. In the image simulations-
based approach, counting results are obtained by directly comparing the scattering cross sec-
tions estimated from the experimental image to scattering cross sections obtained from image
simulations at different thicknesses. The statistics-based method on the other hand estimates
the number of atoms in each atomic column by decomposing the set of scattering cross sec-
tions estimated from the experimental image in different components corresponding to sets of
atomic columns with the same number of atoms. Both methods have been applied successfully
to the analysis of ADF STEM images with a high electron dose. However, many interesting
nanomaterials easily damage when the incident electron beam intensity is too high. In order to
avoid unwanted changes to the atomic structure under investigation, the electron dose needs to
be reduced for such beam-sensitive nanomaterials. Comparable to the use of a dimmed light
source in light microscopy, imaging using a low electron dose in electron microscopy results in
more noisy images. This poses a challenge for reliable quantification, and requires advanced
quantitative methods with a performance that can cope with a low signal-to-noise ratio. To this
purpose, I introduce a so-called hybrid statistics-simulations based method for atom-counting
in this thesis. In this method, prior knowledge from image simulations is directly incorporated
into the statistical framework of the statistics-based atom-counting procedure. As a result of
this interwoven combination of statistical parameter estimation theory and image simulations,
the atom-counting procedure becomes more robust and atom-counting can be performed reli-
ably at lower electron doses. A high dose ADF STEM image of a stable gold nanorod is used to
validate the counting results obtained by the hybrid method. Furthermore, simulated images of
a platinum nanoparticle are used to demonstrate how the parametric relationship used to include
the prior knowledge from image simulations even allows reliable atom-counting in the presence
of sample tilt. The improved robustness to a low signal-to-noise ratio is demonstrated using an
experimental and simulated ADF STEM image of a small catalytic platinum-iridium nanopar-
ticle for which reliable atom-counting from a single image could not be achieved before. The
hybrid method opens up possibilities for the quantitative analysis of truly beam-sensitive nano-
materials.
In order to enable the reliable quantification of dynamic structural changes of nanomaterials at
the atomic scale, the atom-counting procedure is extended from a single ADF STEM image to
a time series of ADF STEM images. To this purpose, I introduce the so-called hidden Markov
model in the field of electron microscopy. Hidden Markov models are successfully used in
other fields of science for applications such as speech recognition and sequence alignment of
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protein structures, owing to their optimal properties for modelling and analysing time series
data. Indeed, using this hidden Markov model to perform time series atom-counting allows us
to significantly surpass the performance of the hybrid method, which was developed for single
frame analysis. In this manner, beam-induced changes in the morphology of a catalyst platinum
nanoparticle could be quantified from an experimental time series of ADF STEM images.
A key parameter of the hidden Markov model that gives rise to this major improvement in the
atom-counting performance is the so-called transition probability. This parameter is used to
explicitly include the possibility of structural changes during the time series in the model. The
transition probability represents the probability that an atomic column with a given thickness
gains or loses one or more atoms from one frame to the next during the time series. Using
the estimated transition probability, the probability of structural changes for the nanomaterial
throughout the time series can be quantified. This can be used to estimate a dose independent
measure, called the cross section (not to be confused with the previously mentioned scattering
cross section), from the experiment. When the structural changes are caused by surface diffu-
sion, this cross section can even be used to estimate the threshold energy for surface diffusion
from the experiment. The threshold energy estimated in this manner from an experimental time
series of a platinum wedge-shaped nanomaterial is in close agreement with theoretical calcu-
lations previously performed for this type of material. This confirms that the hidden Markov
model can be used to reliably characterise dynamic structural changes at the atomic scale.
The hidden Markov model for atom-counting can also be applied to in situ experiments. For
example, a catalytic gold nanoparticle was imaged at a constant elevated temperature inside the
microscope. The counting results obtained using the hidden Markov model are combined with
molecular dynamics relaxation in order to quantify the changes in the 3D atomic structure over
time. Finally, a simulations study is used to demonstrate the possibilities of the hidden Markov
model for a reliable quantification of the atomic structure in variable environmental conditions
such as a gradually increasing temperature or an alternating gas flow.
In summary, the hidden Markov model for atom-counting is promising for revealing and quan-
tifying the atomic structure when it evolves over time, for example, via surface diffusion, due
to beam effects or during in situ experiments.

 The take-home message from this thesis is that I have used statistical models to reliably quantify
the changes in the structure of a nanomaterial at the atomic scale as a function of time. I
could realise this by developing methods to count the number of atoms “behind” each other
in the atomic columns of the nanomaterial from electron microscopy images. An important
difference with single frame counting procedures is that the probability for atomic columns
to lose or gain atoms from one frame to the next during the time series is estimated. This
quantitative method opens up new possibilities for unravelling the time dependent structure-
properties relation of a nanomaterial, which can ultimately lead to the more efficient design
and production of nanomaterials with innovative applications.
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1
General introduction

1.1 The relevance of nanomaterials

The goal of the research discussed in this thesis is to develop methods for the reliable char-
acterisation of nanomaterials. Since academia is largely funded by government funding (read:
tax payer’s money), we start this introduction by explicitly stepping down from the ivory tower
we’re sometimes accused of living in [Berebichez 2019]. In this part we will therefore discuss
the relevance of nanomaterials, not only for scientists, but for every single one of us. Over the
last decades, nanotechnology and nanomaterials have become buzzwords. Most people have
heard of nanoparticles, although not always with a positive connotation. Generalisations across
different samples of particles composed of what is nominally the same material can lead to un-
justifiable fear in the public opinion about all nanomaterials [Berube 2008]. Nanomaterials can
exhibit highly interesting properties for a variation of promising applications. Therefore, the
reliable study of nanomaterials is highly relevant. This brings us to the following question:
what are nanomaterials exactly? Nanomaterials are materials with at least one dimension in the
nanometer (nm) range, usually up to 100 nm, although there is still some debate about whether
the physical dimensions are sufficient to define nanomaterials [Williams 2007]. A nanometer is
a billion times smaller than a meter. As a comparison, a human hair has a diameter of approxi-
mately one micrometer (µm) - a million times smaller than a meter, as shown schematically in
Figure 1.1. The infamous coronavirus has a diameter of 60-140 nm [Zhu 2020].
Nowadays, nanomaterials are being used in an increasing number of applications. Recently, the
Belgian news was buzzing with concerns about the mouth masks that were freely distributed
by the federal government [De Maeseneer 2021]. Those masks had an antimicrobial silver and
titanium dioxide nanocoating. Silver nanoparticles are shown to have a higher efficiency as
an antimicrobial agent as compared to bulk silver [Wilkinson 2011]. However, research using
electron microscopy of the masks revealed that the nanoparticles are not only inside the fibers of
the mask, but also on top [Sciensano 2021]. Upon inhalation, nanoparticles can have potentially
harming effects in the human body, depending on their structural characteristics [Schmid 2016,
Hadrup 2020]. A reliable characterisation during the production of the nanomaterials for such
applications is therefore crucial.
Another application of nanomaterials in everyday life is sunscreen with titanium dioxide and
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Figure 1.1: Length scale of daily life objects down to the size range of nanomaterials. Figure adapted
from [Claes 2018].

zinc oxide nanoparticles. These nanoparticles are used in the emulsion because they provide
an efficient absorption of ultraviolet (UV) light, while maintaining transparency [Lu 2018].
Industrial and technological applications include batteries and catalysts. For example in hy-
drogen fuel cells, catalysts are used to facilitate the electrochemical reaction [Coralli 2019].
Nanoparticles are highly interesting for catalysis because of the high surface area to volume ra-
tio [Chen 2020]. However, the size of the nanoparticles used as catalysts has a crucial impact on
the degradation of the catalyst [Sandbeck 2020]. Furthermore, nanomaterials are essential for
the design of next generation lithium batteries in order to make them smaller, lighter and more
powerful, for applications such as smartphones and electric cars [Lu 2016, Manthiram 2017].
Small differences in the atomic positions, of the order of a picometer (pm, 1000 times smaller
than a nanometer), can drastically change the properties of a nanomaterial [Kisielowski 2001,
Van Dyck 2012]. For example, such small changes in the interatomic distances can turn an in-
sulator into a conductor [Locquet 1998], or can cause embrittlement, leading to fracture of the
nanomaterial [Muller 1999, Wade 2016]. Furthermore, catalytic properties of a nanomaterial
can even depend on single atoms [Thomas 2015,Egerton 2018]. When a single atom can make
or break the desired properties of a nanomaterial, a reliable characterisation of the nanomateri-
als is essential, in order to evolve towards materials design. Materials science ultimately aims
at understanding how the synthesis of a material influences its structure, and thus the material’s
properties and performance. Knowledge of the interrelationships among a material’s proper-
ties, performance, processing and structure allows us to evolve from experimental observation,
theoretical understanding and description of existing materials towards theoretical predictions
and the actual production of new materials [Olson 2000, Yang 2012].

1.2 The relevance of statistical models

In order to achieve a reliable characterisation of nanomaterials, statistical models have been
developed for the analysis of the properties such as atomic positions with the required preci-
sion [den Dekker 2005, Van Aert 2005, Van Aert 2009]. In this thesis, statistical model-based
parameter estimation will therefore be applied in order to characterise the atomic structure of
nanomaterials based on a dataset acquired using an electron microscope. The acquisition of this
dataset is discussed in the next section. First, we consider the relevance of statistical modelling
in order to interpret a given dataset in a more general context. The use of statistical models to
characterise an experimental dataset is widely used in various fields of science.
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When we talk about statistics - perhaps after thinking this was a topic you did not like in high
school - some of the things that might come to mind are your chances to win the lottery, the
average age and age distribution of the citizens in your city or the number of goals and assists
made by your favourite football team. These are examples of chance theory and descriptive
statistics. Often, descriptive statistics are sufficient to describe the average responses. While
this can already provide insights in population distributions, modelling the distribution allows
to go one step further. An example of statistical modelling that has recently become very tangi-
ble to the general public is the modelling of the evolution of the current pandemic. Modelling
of the evolution of the number of hospitalisations and new infections can be used to model and
even predict the effect of various health measures [Abrams 2021]. In order to make predictions,
here the model components were constructed in a stochastic manner, to account for the inher-
ent uncertainties in the number of infections as time progresses. An important advantage of
statistical modelling is that the precision and accuracy can be quantified. As such, experiment
design can be used to determine the optimal experimental conditions. In this manner, for ex-
ample, the optimal experimental setup for quantification of the transmission between subjects
in a pharmaceutical dose-response study could be determined [Price 2018].
An interesting model for the analysis of time dependent data such as the detection of epi-
demics [Rath 2003, Watkins 2009] is the so-called hidden Markov model. An often used
dummy example to demonstrate this model is represented in Figure 1.2. The story goes as
follows. Suppose that you are residing in an underground facility with no direct connection
to the outside. The only way to know whether it is sunny, cloudy or rainy outside is to see
whether external visitors bring an umbrella or not. The state of the weather is hidden, and the
observations only contain indirect information on the state of that day. Through the analysis of
a time series of observed data using a hidden Markov model, the hidden state sequence, in this
case the sequence of the weather state, can be retrieved. The hidden Markov model indeed has
real applications for weather forecasting [Khadr 2016, Joshi 2017], and can be found in many
more scientific applications. Examples are application to gene sequencing [Eddy 2004], speech
recognition [Gales 2007] and robotics [Kúlic 2008].
The arrows in Figure 1.2 represent probabilities, and as such, the hidden Markov model can
be written as a parametric model, for which the parameters need to be estimated. Statistical
parameter estimation deals with the estimation of the model parameters based on the dataset.
Different types of estimators can be constructed to obtain an estimate for the model parameters.
An important estimator often used to accurately and precisely estimate model parameters is the
so-called maximum likelihood estimator. Applications of this type of parameter estimation
can be found in various fields of science. For example, maximum likelihood estimation has

Figure 1.2: Dummy example of a hidden Markov model used to model the hypothetical situation where
the state of the weather (sunny, cloudy or rainy) can only be observed indirectly via an open or closed
umbrella.
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been applied in survey research to estimate the proportions of yes and no answers to survey
questions, surpassing the effect of subjects that refuse to answer or they may provide a socially
desirable answer [Cruyff 2016]. In health sciences, the maximum likelihood estimator is often
applied to structural equation modelling [Beran 2010], used for example to understand the
relation between the size of newborns and the systolic blood pressure of these children at a
later age [Dahly 2009].
In this thesis, nanomaterials will be studied using model-based statistical parameter estimation.
Therefore, in the remainder of this introductory chapter, we illustrate how we can observe
nanomaterials and how the observations can be quantified and related to the atomic structure
of the nanomaterial.

1.3 “Looking” at nanomaterials

Because of the small size, we cannot simply look at a nanomaterial. Even magnifications
achieved by a regular light microscope are not sufficient. A light microscope has a resolu-
tion limited to the order of 100 nm, owing to the relatively large wavelength of optical light
(400-700 nm) [Heintzmann 2006]. Although superresolution provides a way to circumvent the
diffraction limit [Heintzmann 2009], probing nanomaterials using a smaller wavelength enables
a more precise study of the atomic structure. Possible candidates are X-rays, neutrons and elec-
trons, with wavelengths that are up to a factor 100000 smaller [Cullity 1978,Howard 1994,Hen-
derson 1995]. Alternatively, scanning tunnelling and atomic force microscopy provide infor-
mation about the local surface structure without the need for lenses and beam irradiation, with
atomic resolution [Wiesendanger 1994, Gross 2010]. X-ray and neutron diffraction techniques
do not only provide information about the surface but about the inside of the material as well,
albeit averaged structure information [Zanchet 2000]. Diffraction techniques are therefore very
useful for the analysis of periodic materials, such as crystals, whereas they do not suffice for
the analysis of nanomaterials which are usually aperiodic. An excellent technique to study
nanostructures that provides non-averaged information about the entire material is atomic res-
olution transmission electron microscopy (TEM) because of the strong interaction of elec-
trons with small volumes of matter [Henderson 1995]. A TEM instrument can be operated in
imaging or diffraction mode. Electron diffraction allows the collection of data from smaller
samples as compared to X-ray diffraction, even down to single crystals using electron diffrac-
tion tomography, at lower electron doses as compared to imaging modes of the TEM [Palati-
nus 2017,Gemmi 2019]. Imaging modes of the TEM on the other hand provide direct structure
information. In convential TEM, a parallel electron beam is used to illuminate the sample,
whereas in scanning transmission electron microscopy (STEM), the electron beam is focussed
onto the sample and scanned in a two-dimensional (2D) raster pattern. The accelerated elec-
trons used in the TEM interact with the interior of the nanomaterial and contain information
about the positions and types of the atoms. When the scattered electrons are collected using an
annular detector, the imaging mode is referred to as annular dark field (ADF) STEM. Interest-
ingly, ADF STEM image intensities are sensitive to the chemical content of the nanomaterial
and are thickness dependent [Nellist 2000].
High-technology developments in the lens design have greatly improved the image resolu-
tion [Haider 1998]. Nowadays, state-of-the-art instruments are available with a resolution of the
order of 50 pm [Erni 2009, Takayanagi 2011, Akashi 2015]. For most atom types, this exceeds
the point where the electrostatic potential of the atoms is the limiting factor [Van Dyck 2003].
This makes (S)TEM a particularly suitable technique for the study of nanomaterials. In ad-
dition, detectors behave more and more like ideal quantum detectors [Ruskin 2013], mak-
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ing the microscope itself less restricting. Therefore, the quality of experimental images is
mainly set by the unavoidable presence of electron counting noise and environmental distur-
bances [Jones 2013, Jones 2015].

1.4 Quantitative electron microscopy of nanomaterials

Looking at nanomaterials is one thing. However, in order to evolve towards new materials
design and to understand physical properties of nanomaterials of different sizes and shapes, a
quantitative interpretation of the images is required. As discussed earlier, the properties of a
nanomaterial are strongly size dependent. As a validation for the production process, the distri-
bution of the minimal external particle diameter can be quantified from low magnification TEM
images [Verleysen 2019]. Many physical properties of nanomaterials, however, are determined
by the local atomic structure. Therefore, in the field of atomic resolution electron microscopy,
quantitative methods are becoming increasingly important for a reliable structure determina-
tion of a nanomaterial in three dimensions (3D). In order to study the atomic structure, numbers
need to be extracted from the electron microscopy images, which ultimately allow one to quan-
tify the positions and types of the atoms present in the nanomaterial. Therefore, quantitative
electron microscopy is an essential tool in the characterisation of nanomaterials. Quantitative
electron microscopy implies that images are treated as datasets, rather than assessed visually,
in order to extract physical quantities such as size, positions of the atoms, thickness and type
of atoms with high accuracy and precision. In this section, we discuss quantitative electron mi-
croscopy in general. A more detailed discussion on the concepts used to perform quantitative
STEM in this thesis is given in Chapter 2.
Quantitative electron microscopy can be performed through comparison of the experimental
image intensities to image simulations or by using statistical model-based techniques. When
experimental image intensities are directly compared to image simulations on a pixel-by-pixel
basis, an accurate and precise knowledge of all microscope parameters such as detector effi-
ciency and aberrations is crucial [LeBeau 2008b,Dwyer 2012]. Furthermore, image intensities
from the experimental electron microscopy image should first be put on an absolute scale.
In TEM, quantification through comparison with image simulations is hampered by the so-
called Stobbs factor, an often reported scaling problem between the simulated and experimen-
tal image contrast [Hÿtch 1994]. A lot of research has been invested to explain the origins
of this discrepancy and achieve TEM image simulations on an absolute scale [Thust 2009,
Van Dyck 2011,Forbes 2011,Krause 2013]. Alternatively to the comparison with image simu-
lations, the so-called exit wave can be used to quantify the atomic structure from TEM images
[Wang 2010,De Backer 2011,Wang 2012a]. The exit wave is the complex wave function of the
electron as it exits the specimen at the bottom surface. This wave function contains information
on the specimen, but upon detection of the coherent TEM image intensity, the phase informa-
tion is lost. Therefore, the phase should be reconstructed, using focal series reconstruction,
off-axis holography, or using a phase plate [Allen 2004,Erni 2010,Van Dyck 2010,Linck 2012].
For ADF STEM, the scaling problem between simulations and experimental images does not
exist. Moreover, there is no phase problem, as this is an incoherent imaging technique. Further-
more, the robustness to microscope aberrations as well as the sensitivity to thickness improves
significantly when the total intensity scattered from each atomic column is used as a mea-
sure for quantification, rather than the individual pixels or the peak intensities [E 2013, Mar-
tinez 2014a, Martinez 2018]. This integrated intensity is the so-called scattering cross sec-
tion and can be quantified by integrating the intensities in a Voronoi cell around the atomic
column positions [E 2013]. Alternatively, a parametric imaging model consisting of a super-
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position of 2D Gaussian peaks can be fitted to the image intensities [Van Aert 2009]. The
scattering cross sections are then quantified by the volumes under the 2D Gaussian peaks.
The scattering cross sections have been used to determine the composition of nanomateri-
als [Van Aert 2009, Boschker 2011, Huijben 2013, Martinez 2014b], and to count the number
of atoms in each atomic column of monatomic [LeBeau 2010, Van Aert 2011, Van Aert 2013,
De Backer 2013,Jones 2014,De Backer 2015b,De Backer 2015a,De wael 2017] and mixed ele-
ment [van den Bos 2016,van den Bos 2019] nanomaterials. Furthermore, the parametric imag-
ing model provides precise estimates for the atomic column positions with a precision that sur-
passes the spatial resolution limit of the electron microscope [den Dekker 2005,Van Aert 2005].
When the electron dose is low, it becomes more challenging to correctly identify all atomic
columns present in the STEM image. In such case, the maximum a posteriori (MAP) probabil-
ity rule can be used to reliably detect each atomic column [Fatermans 2018, Fatermans 2019].

Figure 1.3: Comparison of the 3D reconstructions based on atom-counting with energy minimisation
and those obtained by atomic resolution tomography. Figure reproduced from [De Backer 2017].

Images of nanomaterials provide 2D information about the 3D nanomaterials. However, in
order to relate the properties to the atomic structure and evolve from materials science to ma-
terials design, a precise and accurate knowledge of the atomic structure in 3 dimensions is
required. Electron tomography was designed to image nanomaterials in 3 dimensions. Over
recent years, this has even evolved to atomic resolution electron tomography [Bals 2014]. Re-
cently, the reconstruction of the 3D atomic structure of highly disordered nanomaterials was
achieved [Yang 2021]. The main drawback of electron tomography is the long acquisition time
for acquiring a tilt series, which is of the order of an hour, although fast acquisition schemes
have been developed [Vanrompay 2018]. Many interesting nanomaterials are not stable enough
to survive electron beam irradiation for such a long period [Meyer 2014, Egerton 2019]. In
structural biology, damage due to beam irradiation is avoided by using cryo electron mi-
croscopy to reconstruct biological assemblies in 3D using so-called single particle analysis.
Here, several images of different particles - presumed identical - are aligned and averaged
[Frank 2006, Agard 2014, Rosenthal 2016]. In order to study only one nanoparticle, this can-
not be applied. Therefore, retrieving the 3D atomic structure information from a few view-
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ing directions or even from a single image is very promising in order to shorten acquisition
times, to prevent beam damage, and avoid practical issues concerned with controlled tilt-
ing of a nanoparticle. Different approaches have been suggested, such as discrete tomogra-
phy [Van Aert 2011, Bals 2011], iterative refinement by comparison on an absolute scale to
image simulations [Jia 2014] and the combination of atom-counting with a structure relax-
ation [Bals 2012, Jones 2014, Geuchies 2016, De Backer 2017, Peters 2017, Altantzis 2019].
Recently, in [De Backer 2017], the 3D atomic structure obtained by relaxation of 2D counting
results from a single viewing direction was validated using 3D atomic structure from atomic
resolution electron tomography, as shown in Figure 1.3. From this work, it is clear that atom-
counting from 2D images is a reliable approach to obtain 3D structural information, especially
from nanostructures without voids which are roughly symmetrical along the electron beam in
the electron microscope. Therefore, the methods for (2D) atom-counting developed in this the-
sis open up opportunities for the reliable quantification of the 3D atomic structure from low
dose images and from time series of STEM images.

1.5 Quantification of dynamic structural changes

Many interesting phenomena are related to dynamic† behaviour of nanomaterials. A reliable
quantification of crystal growth and nucleation, for example, plays a critical role in many physi-
cal and biological phenomena [Zhou 2019]. Depending on their size, the dynamics of nanopar-
ticles can be very different [Batson 2008]. Atoms that lie on the surface facets of a catalyst
nanoparticle can diffuse as a function of time, leading to dynamic changes in the active sites
of the catalyst [Somorjai 1975,Tian 2007,Wang 2012b]. Furthermore, transformation between
energetically excited configurations of small clusters [Bals 2012] or in situ studies of trans-
formations of catalytic nanoparticles [Cao 2018] can give valuable insights in the properties.
Nanomaterials in an electron microscope are exposed to the electron beam. Therefore, in many
cases, beam-induced effects may occur during the experiment. Averaging all frames of a time
series can therefore lead to a misinterpretation of the atomic structure [Peter 2017].
Different time-resolving techniques exist for the study of nanomaterials with very high tempo-
ral resolution, up to the order of femtoseconds (1 fs = 10−15 s). In ultrafast electron diffraction
and microscopy, for example, packets of electrons are created using femtosecond pulses to
stroboscopically illuminate the specimen [Barwick 2008]. In dynamic transmission electron
microscopy (DTEM), nanosecond pulses with higher current density are used to form the im-
age [Armstrong 2007,Browning 2012]. Using ultrafast X-ray imaging, intermediate states and
mechanistic pathways that the molecules pass through as they transform can be studied owing
to the very high temporal resolution [Chapman 2011, Lindenberg 2017]. A drawback of these
techniques, however, is the limited spatial resolution [LaGrange 2012].
For many processes, however, (sub-)second temporal resolution can be sufficient, making it
possible to achieve a higher spatial resolution in order to obtain local structural information at
atomic resolution [Kotakoski 2014,Han 2015,Liu 2019]. In such cases, TEM or STEM images
are acquired sequentially. In this manner, atomic scale dopant diffusion has been studied as a
function of time [Ishikawa 2014]. By lowering the electron dose and dose rate, reversible atom
displacements could be captured at video rates [Kisielowski 2013].
Despite the advantages of the STEM imaging mode, the high beam currents used in STEM
imaging make the technique less suitable for the study of beam-sensitive nanostructures. Fur-

†Note that the term “dynamic” is often used in a different context to imply the presence of multiple scattering in thick
samples [Glaeser 1993]. Here, the term dynamic changes is used to refer to changes as a function of time.
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thermore, small beam-sensitive nanoparticles are very sensitive and will exhibit small amounts
of sample tilt [Li 2008, Altantzis 2019]. In order to minimise radiation damage, the electron
dose, i.e. the number of incident electrons used to record an electron microscopy image per
unit of area in the material, should be reduced [Buban 2010,Egerton 2019]. Comparable to the
use of a dimmed light source in light microscopy, imaging using a low electron dose in electron
microscopy will result in more noisy images. This poses a challenge for reliable quantification,
and requires advanced quantitative methods with a performance that can overcome a low signal-
to-noise ratio. Alternative scan strategies have been developed to reduce the electron dose and
the sensitivity to sample drift during acquisition [Béché 2016,Prabhakara 2020]. Furthermore,
fast scanning approaches have been developed in STEM [Mittelberger 2018, Ishikawa 2020,
Mullarkey 2020] that enable to achieve high temporal resolution and spatial resolution at the
same time, through the acquisition of a time series. This introduces additional noise originat-
ing from the scanning. In order to overcome this limitation, rigid and non-rigid registration can
be performed on the time series [Jones 2013, Yankovich 2014, Jones 2015]. Recently, a con-
volutional neural network was even developed to perform additional reconstruction of STEM
images to compensate for different types of (scan) distortions [Altantzis 2019]. In this manner,
STEM becomes a suitable instrument for the quantification of dynamic structural changes at
the atomic scale, even at low electron doses and high scanning speeds. As mentioned earlier,
hidden Markov models are highly useful for the reliable analysis of sequential data. Therefore,
in this thesis, I introduce this model in the field of electron microscopy, in order to reliably
quantify atomic scale dynamic structural changes from sequential STEM images.

1.6 Thesis outline

The goal of the research presented in this thesis is to use statistical parameter estimation the-
ory and image simulations to obtain accurate and precise information on the atomic structural
changes of nanomaterials as a function of time using annular dark field scanning transmission
electron microscopy.

In Chapter 2, an introduction to the specific concepts of quantitative scanning transmission
electron microscopy (STEM) used throughout this thesis is given. The principles of STEM
image formation and simulation are briefly discussed and the principles of statistical parameter
estimation theory are introduced. Next, a parametric imaging model for the quantification of
STEM image intensities, and two currently existing approaches for atom-counting, based either
on comparison to image simulations or on statistical parameter estimation theory, are discussed.
In Chapter 3, an alternative parametric imaging model using elliptical rather than symmetrical
peaks is investigated in order to quantify STEM image intensities in the presence of sample
tilt. In Chapter 4, a hybrid statistics-simulations based approach for atom-counting is proposed
to overcome limitations for small nanoparticles and for low electron doses of the current state-
of-the-art atom-counting procedures. A validation using simulations and an experimental gold
nanorod is performed, and the possibilities of this new method for atom-counting from lower
dose acquisitions are demonstrated using experimental and simulated images of a small plat-
inum/iridium nanoparticle. In Chapter 5, a novel methodology is presented to measure dynamic
structural changes from a STEM time series at the atomic scale by performing reliable atom-
counting as a function of time. This method is based on the so-called hidden Markov model
and explicitly aims at an accurate and precise quantification of the changes, without misinter-
preting noise fluctuations. The performance is demonstrated using simulations and by means of
a comparison to the hybrid atom-counting methodology, which was not specifically designed



1.6. Thesis outline 9

for time series analysis. An interesting parameter of the hidden Markov model that allows for
improved atom-counting reliability from time series is the so-called transition probability. In
Chapter 6, this transition probability is related to physical probabilities and cross sections for
structural changes. Furthermore, the hidden Markov model for atom-counting from time series
is applied to various experimental examples and the effect of variable environmental conditions
causing structural changes is considered. Finally, in Chapter 7, general conclusions are drawn
and future perspectives are discussed.
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2
Introduction to quantitative scanning

transmission electron microscopy

2.1 The scope of this chapter

Quantitative electron microscopy refers to the image processing of electron microscopy im-
ages in order to extract quantitative information about the material’s structure and composi-
tion, whereas in qualitative electron microscopy the images are interpreted visually, without
extracting any numerical data. In order to predict properties of materials using ab initio cal-
culations, positions of the atoms need to be known with a high precision, in the picometer
range [Kisielowski 2001, Van Dyck 2012]. Therefore, the quantitative interpretation of high
resolution electron microscopy images of nanomaterials is an essential step towards materials
design. In the field of atomic resolution electron microscopy, quantitative methods are be-
coming increasingly important for a reliable structure determination of a nanomaterial in three
dimensions (3D) [Galindo 2007,De Backer 2016,Wang 2016,Nord 2017,de la Peña 2017,Mad-
sen 2018]. In this chapter, the concepts of quantitative STEM that will be used throughout the
remainder of this thesis are introduced.
Different approaches for the quantitative interpretation of scanning transmission electron mi-
croscopy (STEM) images exist. Either the image intensities are directly compared to image
simulations, or an approach based on statistical parameter estimation theory can be followed.
When experimental image intensities are directly compared to image simulations on a pixel-by-
pixel basis, an accurate and precise knowledge of all microscope parameters such as detector
efficiency and aberrations is crucial [LeBeau 2008b, Dwyer 2012]. The robustness to micro-
scope aberrations as well as the sensitivity to thickness improves significantly when the total
intensity scattered from each atomic column is used as a measure for quantification, rather than
the individual pixels or the peak intensities [E 2013,Martinez 2014a,Martinez 2018]. This inte-
grated intensity is the so-called scattering cross section and can be quantified reliably by fitting
a parametric imaging model consisting of a superposition of Gaussian peaks to the image in-
tensities [Van Aert 2009]. These scattering cross sections are highly suitable for atom-counting
from monatomic nanomaterials, owing to their monotonic increase with increasing atomic col-
umn thickness. At present, two procedures for atom-counting exist. The first method is based
on a direct comparison of the experimental scattering cross sections to scattering cross sec-

11
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tions determined from image simulations [LeBeau 2010, Jones 2014]. The second method on
the other hand uses considers the unavoidable presence of noise, and therefore uses statistical
parameter estimation theory to determine the most likely number of atoms corresponding to
each atomic column based on the set of scattering cross sections estimated from the experi-
ment [Van Aert 2011, Van Aert 2013, De Backer 2013].

In Section 2.2, we will introduce the principle of STEM and describe the imaging mode that
will be used throughout this thesis. Electron microscopy image simulations are briefly in-
troduced in Section 2.3. The goal of this section is not to provide the full theory of image
simulations for electron microscopy, but rather to discuss some practical considerations. Then,
in Section 2.4, statistical parameter estimation theory for STEM images is introduced. We
discuss the accuracy and precision of estimated parameters, and introduce the concepts Fisher
information and Cramér-Rao lower bound (CRLB). This measure will be used to assess the
precision of the parameter estimation of the methods introduced in the Chapters 4 and 5. Next,
in Section 2.5, the parametric imaging model for the quantification of STEM image intensities
is introduced for nanomaterials aligned in zone axis orientation. In Sections 2.6 and 2.7, we
describe how the scattering cross sections can be used for atom-counting, respectively by us-
ing image simulations, or by using statistical parameter estimation theory. The advantages and
limitations of these atom-counting approaches are illustrated. Finally, general conclusions on
quantitative STEM are summarised in Section 2.8.

2.2 Annular dark field scanning transmission electron microscopy
(ADF STEM)

In a STEM, schematically shown in Figure 2.1, the electron beam is focused into a fine probe,
which is scanned across the sample in a two-dimensional (2D) raster. For each probe position,
the electrons scattered towards the detector are integrated to determine the image intensity. An
image of the sample is formed, displaying the integrated scattered intensities at the different
probe positions. Different imaging modes exist for a STEM, depending on the type of signal
that is collected, and the detector geometry. In annular dark field (ADF) STEM, the inner angle
of the annular detector (β1 in Figure 2.1) exceeds the probe convergence angle (α in Figure 2.1).
Depending on the detector inner angle, imaging modes are called low angle (LA, 2α > β1 > α),
medium angle (MA, 3α > β1 > 2α) or high angle (HA, β1 > 3α) ADF STEM respectively
[Hovden 2012]. Alternatively, in annular bright field (ABF) STEM, the detector inner and outer
angle are smaller than the probe convergence angle [Okunishi 2009, Findlay 2009]. In bright
field (BF) STEM, the detector collects the central transmitted beam, resulting in a coherent
image [De Graef 2003].
In the detector plane, a coherent convergent beam electron diffraction (CBED) pattern is formed.
The intensity of one pixel in the ADF STEM image is determined by summing the CBED pat-
tern over the area of the annular detector. Alternatively, the entire CBED pattern can nowa-
days be acquired on a pixelated detector, allowing to save a 2D image at each probe posi-
tion, resulting in four-dimensional (4D) STEM [Yang 2015, Ophus 2019]. From such a 4D
STEM dataset, it is then also possible to create 2D ADF STEM images with desired angular
ranges [Fang 2019]. The contrast in the ADF STEM images arises from the overlap regions
between the diffracted discs in the CBED pattern. The size of the hole in the annular de-
tector largely determines the nature of the intensity in the final image. The higher the inner
collection angle of the detector, the more incoherent the signal. As a result, the intensities
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Figure 2.1: Schematic representation of the image formation in the scanning transmission electron
microscope (STEM) [Van Aert 2016].

can be modelled as the convolution of a point spread function of the microscope and an ob-
ject function determined by the projected potential of the atomic structure in the case of thin
specimens [Nellist 2000]. In ADF STEM, both elastic and thermal diffuse (inelastic) scattered
electrons reach the annular detector. At high enough scattering angle, diffraction contrast does
not contribute, and the scattering can be described using Rutherford scattering, leading to Z-
contrast [De Graef 2003]. Importantly, at high angles, thermal diffuse scattering (TDS) also
plays a significant role in the image intensity. TDS arises from the thermal vibrations of the
atoms in the crystal around their equilibrium positions. The small displacements of the atoms
from their equilibrium position slightly destroys the translational symmetry, resulting in dif-
fuse intensity in between the Bragg reflections. TDS contributes to the incoherent nature of the
ADF STEM image [Pennycook 2011].
As an additional benefit of the STEM for the quantitative study of nanomaterials, simultaneous
to the acquisition of an ADF STEM image, a second annular detector - or even a pixelated
detector - can be used, for example to obtain an ABF image, which is useful for imaging
light elements [Okunishi 2009, Findlay 2009, Lozano 2018, Fatermans 2020]. Furthermore,
it is possible to simultaneously perform electron energy loss spectroscopy (EELS) or energy-
dispersive X-ray (EDX) spectroscopy. This can aid chemical mapping of the atoms present in
the nanomaterials [Dwyer 2013].
Owing to the incoherent nature of the ADF STEM images, intensities in ADF STEM images in-
crease with increasing number of atoms in an atomic column [Anderson 1997]. This makes this
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imaging mode particularly suitable for quantitative analysis of nanomaterials through atom-
counting. Importantly, the total intensity scattered from an atomic column with two atoms
does not simply equal twice the intensity scattered from a single atom, due to the so-called
channelling effect [Loane 1988, Van Dyck 1996]. Traditionally, high angle annular dark field
(HAADF) STEM is used to for the quantification of the atomic structure through atom-counting.
However, optimal experiment design has shown that the HAADF STEM regime is not neces-
sarily optimal for atom-counting. In order to extract the most precise counting results using the
same electron dose, optimal imaging modes for quantification - rather than for visual interpre-
tation - should be derived, balancing the detector collection area against the coherence of the
image intensity [De Backer 2015a].
In the remainder of this thesis, model-based quantification of ADF STEM images will be used
to characterise nanomaterials. Both image simulations and a statistical framework will be used
for this quantification. These techniques are the topic of the remainder of this chapter.

2.3 Image simulations

In this section, we will briefly introduce image simulations for scanning transmission elec-
tron microscopy. The aim of this section is to describe the main principles, and discuss some
practical aspects of setting up simulations correctly in order to obtain physically relevant im-
ages. Image simulations can serve as a reference for comparison of experimental electron
microscopy images, and can as such help to perform quantitative STEM. To this purpose, the
different parameters of the microscope used to acquire experimental images need to be repro-
duced. Equally important, but often overlooked, is the set-up of several simulation parameters
to ensure realistic results. The aim of this section is not to reproduce the theory of image
simulations, but to stress a few important aspects of image simulations to perform quantitative
STEM. A full quantum mechanical derivation and detailed description of image simulations
can be found in [Kirkland 2010].
Different approaches for advanced image simulations have been implemented for different
modes of electron microscopy. Two main approaches exist for the calculation of the inter-
action of the electrons with thick specimens, using Bloch waves [Allen 2003, Findlay 2003,
Kirkland 2010, Yamazaki 2013] or using the so-called multislice method [Cowley 1959, Bol-
lig 1996,Ishizuka 2002,Croitoru 2006,Kirkland 2010,Dwyer 2010,Lobato 2015,Lobato 2016].
Recently, those two approaches have also been combined, in order to improve the speed, at the
expense of a small loss in accuracy [Ophus 2017]. For thin specimens, the interaction of the
electron probe with the specimen can be described by a multiplication of the electron probe
with a transmission function depending on the specimen potential. For thick specimens, the
multislice approach most accurately describes the electron-specimen interaction. In this ap-
proach, the sample is divided in several thin slices, as illustrated in Figure 2.2. In each slice, a
transmission function is calculated and multiplied with the wave function. The resulting wave
function after the slice is then propagated through free space to the next slice. The slice thick-
ness should be chosen small enough, or coinciding with the lattice periodicity perpendicular to
the slicing direction [Kirkland 2010].
Thermal vibrations of the atoms can be included in the image simulations using an absorptive
potential [Ishizuka 2002, Allen 2003], the frozen phonon model [Loane 1991, Muller 2001,
Koch 2002, Rosenauer 2007, Rosenauer 2008], or the more rigorous but equivalent quan-
tum excitation of phonons based on a full quantum mechanical treatment [Van Dyck 2009,
Forbes 2010, Allen 2015]. In the absorptive potential approach, the thermal vibrations of the
atoms in the specimen are described by a damping factor that causes the intensity of diffracted
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Figure 2.2: Schematic representation of the multislice method [Alania 2017].

beams to decrease, in order to account for the electrons that did not follow Bragg scattering.
The frozen phonon model, on the other hand, models the thermal vibrations of the atoms in the
specimen using many frozen phonon configurations. Each electron “sees” a different configu-
ration, since the time the electron is inside the specimen and can interact with it is much smaller
as compared to the period of thermal vibrations [De Graef 2003, Van Dyck 2009]. In each dif-
ferent configuration, the atoms are displaced compared to their crystalline positions according
to a Debye-Waller factor [Gao 1999]. This material parameter can be obtained for example
from molecular dynamics simulations, and is often assumed homogeneous for the whole speci-
men, although small variations on the image intensities can arise from inhomogeneous thermal
vibration [Aveyard 2014]. This method is more time consuming as compared to the absorptive
potential, since several multislice calculations are performed for different configurations of the
atoms in the specimen, and averaged - after detection - to yield the final image [Van Dyck 2011].
The frozen phonon approach has been shown to be the most complete approach, as it is equiv-
alent to a full quantum mechanical treatment if sufficient frozen phonon configurations are
used [Van Dyck 2009]. Agreement with the absorptive potential is reached at certain detector
angles and atom types [Findlay 2003, Rosenauer 2007, Alania 2018]. In this thesis, the image
simulations have been performed using the MULTEM software package, which implements
multislice calculations and the frozen phonon model [Lobato 2015, Lobato 2016].
Image simulations are performed using experimental parameters such as the acceleration volt-
age, probe convergence angle, aberrations of the incident electron beam and detector geometry
as an input. The experimental set-up is matched accurately in order for the simulations to agree
with the experiment [Findlay 2013,Martinez 2015,Jones 2016]. During the image simulations,
the electron probe wave function is defined such that the integrated intensity of the incident
electrons is equal to unity [Kirkland 2010]. As such, simulated image intensities are expressed
as fractions of the incident electron dose. In order to use the image simulations for compar-
ison with experimental images, both types of images therefore need to be put on an absolute
scale, by taking into account the detector sensitivity [LeBeau 2008b, Rosenauer 2009, Mar-
tinez 2015, Krause 2016]. After image simulation, source size is included as a convolution
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with an effective source size, typically taken as a Gaussian [Kirkland 2010].
In order to perform quantitative ADF STEM using simulated images, not only the specimen
and microscope parameters should be carefully reproduced. Simulation-specific parameters
such as simulation box size and potential sampling, both in real and reciprocal space, are also
essential in order to obtain reliable image simulations. In real space, the pixel size of the po-
tential sampling is determined by the simulation box size and the number of sampling points.
Sufficient sampling avoids aliasing artefacts [Richardson 1978]. Additionally, in order to ob-
tain a good sampling in reciprocal space, the simulation box size should be sufficiently large
(50Å for example), even if the goal is to simulate a nanoparticle with smaller dimensions. A
large simulation box yields a small pixel size for reciprocal space sampling (1/50Å−1 in the
aforementioned example). This set-up can be accomplished by adding a border of vacuum
around the specimen when the sample size is smaller. Furthermore, this vacuum is useful in
order to avoid so-called wrap-around errors when simulating a finite crystal [Kirkland 2010].
The wrap-around error arises from self-interference of the electron probe. Specifically, when
the electron probe extends beyond the boundary of the simulation box, as it is wrapped around
and re-enters the simulation box as a result of the periodicity requirement for the Fourier trans-
forms performed during the image simulations [Richardson 1978]. Finally, sufficient sampling
is also required to ensure enough coverage of the reciprocal space. The maximum spatial fre-
quency in the simulations should exceed the maximum spatial frequency that corresponds to
the outer detector angle, as well as the maximum spatial frequency at which the transfer func-
tion of the atom is still contributing [Van Dyck 2003]. A larger covering of the reciprocal space
is always better, but also more time consuming. In practice, the reciprocal space should at least
be covered up to 10Å−1. More details on good practices for image simulations can be found
in [Kirkland 2010].
The quantitative methods presented in the remainder of this thesis rely on image simulations
as well as on statistical parameter estimation theory. Therefore in the next section, some basic
principles of parameter estimation are introduced.

2.4 Accurate and precise model-based statistical parameter
estimation

In order to perform a reliable quantitative analysis of STEM data, statistical parameter es-
timation theory has been introduced in the field of electron microscopy [den Dekker 2005,
Van Aert 2005, Van Aert 2009]. This statistical framework considers the data recorded during
a STEM experiment as the outcome of a statistical event. Therefore, the observed data should
be regarded as a stochastic variables X = (X1, · · · , XM). The expectation value of a stochastic
variable Xm is expressed as follows:

E[Xm] =
∫ +∞

−∞

xm p(x)dx, (2.1)

in case of continuous observed data. In this expression, p(x) represents the continuous joint
probability density function of the stochastic variables X, where x = (x1, · · · , xM)T are contin-
uous independent variables related to the observed data, used to evaluate the joint probability
density function. For discrete data, the integral should be replaced by a summation, and p(x)
is referred to as the joint probability function.
The variance of a stochastic variable Xm is defined as follows:

var(Xm) = E
[
(Xm − E [Xm])2

]
. (2.2)
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In model-based statistical parameter estimation, the joint probability (density) function p(x) is
described as a parametric model p(x|θ) depending on one or more parameters θ = (θ1, · · · , θK)T

[van den Bos 2007]. Different estimators θ̂k can be constructed to estimate the value of the
parameter θk. Therefore, the estimator is also regarded as a stochastic variable, with an accuracy
and precision that can be assessed using the expectation value and variance. Accurate and
precise estimates of the unknown parameter(s) θk of this model can then be used to reliably
quantify relevant physical parameters based on the experimental dataset. An estimator θ̂k of a
parameter θk is accurate, or unbiased, if the expectation value coincides with the true value of
the parameter. In this case, the bias is zero:

E[θ̂k] − θk = 0. (2.3)

For estimators of multiple parameters, the variance of equation (2.2) is generalised to the co-
variance matrix:

cov(θ̂, θ̂) = E
[(
θ̂ − E

[
θ̂
]) (
θ̂ − E

[
θ̂
])T

]
, (2.4)

=


var(θ̂1) cov(θ̂1, θ̂2) · · · cov(θ̂1, θ̂K)

cov(θ̂2, θ̂1) var(θ̂2) · · · cov(θ̂2, θK)
...

. . .
...

cov(θ̂K , θ̂1) cov(θ̂K , θ̂2) · · · var(θ̂K)

 . (2.5)

Each different estimator θ̂k that can be constructed to estimate the same unknown parameter
θk can have a different precision, quantified by var(θ̂k). For unbiased estimators, the attainable
precision is quantified by the Cramér-Rao lower bound, which defines the lower bound on the
variance [Rao 1945, Cramér 1946]:

cov(θ̂, θ̂) ≥ F−1
θ , (2.6)

with θ̂ the estimator of the parameters θ, and Fθ the Fisher information matrix, which is defined
as follows:

Fθ = −E
[
∂2 ln p(X|θ)
∂θ∂θT

]
, (2.7)

where p(x|θ) represents the joint probability (density) function.
The efficiency of an unbiased estimator can now be defined as the ratio of the Cramér-Rao
lower bound and the variance of the estimator. An estimator whose efficiency tends to unity for
an increasing sample size is called asymptotically efficient [van den Bos 2007]. An example
of an unbiased estimator whose variance asymptotically reaches the Cramér-Rao lower bound
is the maximum likelihood estimator (MLE). A maximum likelihood estimate of the parameter
vector can then be obtained by maximising the likelihood function:

θ̂ = arg max
t

L(t) (2.8)

where the likelihood is derived from the joint probability (density) function by evaluating it at
the observed data points x = (x1, · · · , xM)T as a function of the independent variables t that are
substituted for the unknown parameters θ and used to evaluate the likelihood function during
the maximisation procedure:

L(t) = p(x|t). (2.9)
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Under the assumed statistical model, described by the joint probability (density) function, the
maximum likelihood estimates of the parameters are most likely to have produced the observed
data. Throughout this thesis, maximum likelihood estimators will be used to draw conclusions
on the atomic structure of nanomaterials studied using electron microscopy. In a quantitative
STEM experiment, the aim is to quantify the atomic structure properties, such as atomic col-
umn positions, number of atoms, the type of atoms present in the nanomaterial, which are
not directly observed, but can be studied using STEM images. The observations are in first
instance the pixel values of the STEM image, related to these atomic structure properties.
Model-based parameter estimation theory aims at estimating the parameters of a parametric
model that describes the expectation values of the observed data as a function of the relevant
physical parameters.
In the next section, we will discuss how the image intensities from an ADF STEM image are
interpreted as a dataset for statistical parameter estimation theory.

2.5 Parametric imaging model for ADF STEM images

In this section, we will discuss how experimental atomic resolution ADF STEM images can be
treated in order to perform a reliable quantitative analysis. To this purpose, the pixel values wkl

for each pixel (k, l) of a K × L ADF STEM image are summarised in a vector:

w = (w11,w12, · · · ,wKL). (2.10)

This is the set of observations obtained from the ADF STEM experiment. An example is shown
in Figure 2.3a for a gold nanorod. The inset of the figure shows a magnified part of the image.
Each set of observations obtained from an experiment performed under the same experimental
conditions will unavoidably be different due to the presence of noise. In other words, any
other image acquired of the same gold nanorod under the same conditions will display slightly
different pixel values. Therefore, the pixel intensities are stochastic variables. The expectation
value of the ADF STEM image intensity at pixel (k, l) can be described using a parametric
imaging model:

E[wkl] = fkl(θ), (2.11)

with θ the parameter vector that contains the unknown parameters. In the parametric imag-
ing model, ADF STEM image intensities are modelled as incoherent contributions originat-
ing from the different atomic columns in the crystalline nanomaterial. As discussed in Sec-
tion 2.2, the image intensities in an ADF STEM image increase with an increasing atomic
mass number Z and with increasing specimen thickness. Furthermore, image intensities are
peaked at the atomic column positions. The expectation values of the image intensities are
therefore modelled as a superposition of 2D Gaussian peaks [Van Aert 2009, De Backer 2013,
De Backer 2016, De Backer 2021a]. The expectation value of the image intensity at pixel (k, l)
with position (xk, yl) in the image is given by:

fkl(θ) = ζ +
N∑

n=1

ηn exp
(
−

(xk − βxn)
2 + (yl − βyn)

2

2ρ2

)
. (2.12)

In this expression, ζ is a constant background present in the image, ρ is the width of the 2D
Gaussian peaks, ηn is the height of the nth Gaussian peak, βxn and βyn are the x- and y-coordinate
of the nth atomic column, and N is the total number of atomic columns in the image. The
unknown parameters are summarised in the parameter vector:

θ = (βx1 , ..., βxN , βy1 , ..., βyN , ρ, η1, ..., ηN , ζ)T. (2.13)
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Figure 2.3: (a) HAADF STEM image of a gold nanorod [Van Aert 2013]. (b) Estimated parametric
imaging model consisting of superimposed 2D Gaussian peaks. (c) Set of estimated scattering cross
sections, estimated using Equations (2.14) and (2.15).

The parametric model of Equation (2.12) is fitted to the experimental ADF STEM image using a
least squares criterion, which is identical to the maximum likelihood estimator for independent
and identically normally distributed pixel values [van den Bos 2007, De Backer 2016]. In this
manner we obtain a least squares estimate for the unknown parameter vector:

θ̂ = arg min
t

K∑
k=1

L∑
l=1

(wkl − fkl(t))2. (2.14)

This is done using an iterative optimisation algorithm, which was implemented efficiently in
the StatSTEM software package [De Backer 2016]. The parametric model estimated for the
gold nanorod in this manner is shown in Figure 2.3b. Starting values for the atomic column
positions can be obtained manually or from a simple peak finding routine. However, especially
for low electron doses, noise in the images can make it difficult to discern the individual atomic
columns, and a statistical approach is recommended. The so-called maximum a posteriori
(MAP) rule for detection of atomic columns was specifically designed for challenging images
with low doses or very light elements [Fatermans 2018, Fatermans 2019]. In this manner, the
least squares estimates (β̂xn , β̂yn) are an accurate and precise estimate for the atomic column
positions [den Dekker 2005, Van Aert 2005, De Backer 2016].
Furthermore, the so-called scattering cross section for each atomic column n can be estimated
as the volume under the 2D Gaussian peaks in the model:

V̂n = 2πη̂nρ̂
2. (2.15)

The scattering cross section is a measure for the total intensity of electrons scattered from an
atomic column in the nanomaterial towards the ADF STEM detector. The set of scattering
cross sections estimated from the gold nanorod in this manner is shown in Figure 2.3c. Al-
ternatively, the scattering cross section can also be estimated from the ADF STEM images
directly, without statistical parameter estimation, by integrating the experimental intensities in
Voronoi cells [E 2013]. In this approach, however, the overlap between neighbouring atomic
columns is not taken into account, and it was shown that the volumes of the 2D Gaussian
peaks are more reliable for a correct quantification [De Backer 2016]. Scattering cross sections
increase with increasing sample thickness and with increasing atomic mass number Z. They
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have therefore been used to analyse atomic composition [Van Aert 2009, Rosenauer 2011,
Martinez 2014b] and for atom-counting [LeBeau 2008a, Van Aert 2011, De Backer 2013,
Jones 2014, De Backer 2015b]. The procedure for atom-counting using scattering cross sec-
tions will be discussed in more detail in the next part of this chapter.

2.6 Image simulations-based atom-counting

Two approaches exist for counting the number of atoms in each atomic column of a nanomate-
rial in a main zone axis orientation from ADF STEM images. The first approach uses a direct
comparison of the experimental image intensities with image intensities obtained from image
simulations. The second approach is independent of image simulations and uses statistical pa-
rameter estimation theory. This will be the topic of Section 2.7. In this part, we discuss the
procedure for atom-counting using image simulations.
This first atom-counting procedure is based on a direct comparison of the scattering cross sec-
tions estimated from the experimental image with scattering cross sections obtained from care-
fully performed image simulations [LeBeau 2010, Jones 2014]. In the remainder of this the-
sis, this method will be referred to as the image simulations-based method for atom-counting.
To this purpose, a so-called library of simulated scattering cross sections is created. An ex-
ample of such a library corresponding to the gold nanorod shown previously in Figure 2.3
is shown in Figure 2.4a. The scattering cross sections are obtained from image simulations
of a bulk crystal of the same element and crystallographic orientation as the nanomaterial in
the experiment. Note that scattering cross sections are preferred over peak intensities as a
measure for atom-counting, thanks to their robustness to aberrations [Martinez 2014a]. Fur-
thermore, they increase monotonically with thickness, whereas the peak intensities reach a
plateau [De Backer 2015a, Martinez 2018]. Importantly, the image simulations are performed
using the same microscope parameters such as acceleration voltage, detector angles etc., as the
experiment. Note that channelling causes a non-linear increase of the scattering cross sections
with increasing thickness [Van Dyck 1996]. Therefore, image simulations are performed for a
range of sample thicknesses. Using multislice simulations, running multiple calculations can
be avoided by saving intermediate results at slices in steps of the lattice parameter c. Additional
computation time can be saved by only scanning one unit cell of the bulk crystal. It is impor-
tant to note that a sample with larger xy-dimensions should be used during the simulations,
even when scanning only one unit cell, in order to avoid wrap-around errors and use sufficient
sampling, as mentioned before in Section 2.3. In order to obtain the scattering cross sections
from the image simulations, the intensities from the simulated unit cell can be summed, or the
central column can be fitted using the parametric imaging model introduced in the previous
section. In the latter case, an additional convolution with a Gaussian is performed, in order to
account for the source size broadening caused by spatial incoherence of the incident electron
probe [Klenov 2007, Kirkland 2010].
From these image simulations, scattering cross sections are quantified for the material of in-
terest, using the used experimental imaging parameters, as a function of the number of atoms
in an atomic column. Note that the library has to be tailored to each individual experiment.
Image intensities in the simulated ADF STEM images are expressed in fractions of the inci-
dent electron dose. Therefore, in order to allow for a quantitative comparison, the ADF STEM
image intensities of the experimental image need to be normalised to the incident electron
beam by taking into account the detector sensitivity [LeBeau 2008b, Rosenauer 2009, Mar-
tinez 2015, Krause 2016]. Atom counts can then be assigned to each atomic column based on
the closest match between the (normalised) experimental and simulates scattering cross sec-
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Figure 2.4: (a) Library with scattering cross sections determined from simulations at different thick-
nesses. (b) Set of scattering cross sections estimated from the parametric imaging model of the HAADF
STEM image of a gold nanorod shown in Figure 2.3. Atom-counts are obtained by a direct comparison
of the scattering cross sections estimated from the experimental image with scattering cross sections
obtained from image simulations.

tions. In Figure 2.4, the principle of this atom-counting method is visualised.
This image simulations-based method for atom-counting is therefore very intuitive and sim-
ple to implement. Among several applications, this approach was used to count the num-
ber of atoms from a wedge-shaped gold film [LeBeau 2010] and catalyst platinum nanopar-
ticles [Jones 2014, Aarons 2017]. An important limitation of this atom-counting approach
is that small mismatches between the actual and the simulated experimental set-up, such as
a different detector inner angle or sample tilt, can influence the simulated image intensities
significantly. These systematic errors can remain undetected and the reliability of the quan-
titative analysis therefore depends solely on the accuracy of the simulations to match the ex-
periment [Van Aert 2013, Jones 2016]. Furthermore, this method does not provide a mea-
sure for the precision of the atom-counts. It is worth noting that over the last few years,
techniques for the characterisation of these experimental parameters have strongly improved
[Jones 2016, Dwyer 2012, Findlay 2013, Mehrtens 2013, Martinez 2015, Krause 2016].
Alternatively, atoms can be counted using a statistical parameter estimation theory framework.
In this statistics-only based method, simulations are no longer needed, and undetected system-
atic errors can be avoided, as will be discussed in the next section.

2.7 Statistics-based atom-counting

The scattering cross sections estimated from an ADF STEM image are inherently random in
nature as a consequence of various noise contributions such as electron counting statistics,
instabilities of the microscope, different vertical onset of columns of the same number of atoms,
vacancies, relaxation at the boundaries, contamination, intensity transfer between columns, and
the influence of neighbouring columns of different number of atoms. Scattering cross sections
corresponding to various atomic columns with a given number of atoms g will therefore not be
identical, but fluctuate around an average scattering cross section µg. This distribution can be
modelled as a Gaussian distribution for each thickness g present in the sample [Van Aert 2011,
Van Aert 2013,De Backer 2013,De Backer 2021b]. Together, this results in a Gaussian mixture
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model with G Gaussian components†, where G is the number of different thicknesses present
in the sample:

fmix

(
Vn|Ψ

stat
G

)
=

G∑
g=1

πgN
(
Vn|µg, σ

)
, (2.16)

with

N
(
Vn|µg, σ

)
=

1
√

2πσ
exp

(
−

(Vn − µg)2

2σ2

)
, (2.17)

the Gaussian components. The joint probability density function of all scattering cross sections
is then given by

p(V|Ψstat
G ) =

N∏
n=1

G∑
g=1

πgN
(
Vn|µg, σ

)
. (2.18)

The mixing proportion πg of the gth component indicates which fraction of the columns in the
image have a specific number of atoms corresponding to the gth component, i.e. the weight of
the gth component in the Gaussian mixture model. Furthermore, in this expression µg represents
the location, i.e. the average scattering cross section value, of the gth component in the mixture
model and σ the width of the components, while Vn represents the stochastic variable related
to the nth scattering cross section, estimated by Equation (2.15). The stochastic variables for
all scattering cross sections are summarised in the vector V. The vector Ψstat

G is the parameter
vector containing all unknown parameters to be estimated in a Gaussian mixture model with G
components:

Ψstat
G = (π1, ..., πG−1, µ1, ..., µG, σ)T. (2.19)

Note that πG is not estimated, since the sum of all G mixing proportions must equal one, and
therefore πG = 1 −

∑G−1
g=1 πg. This means that 2G parameters need to be estimated to determine

the mixture model completely, and therefore be able to count atoms.
The width of the components σ relates to the amount of fluctuation on the scattering cross
sections corresponding to atomic columns with the same thickness. It is common practice to
assume homoscedastic components, i.e. a constant width σ for all components, in order to
estimate the contribution of all noise contributions in a robust manner [De Backer 2013].
The parameters Ψstat

G of the probability distribution of the scattering cross sections are esti-
mated, by maximising the likelihood function. As described earlier in Section 2.4, the ex-
pression for the likelihood function has the same functional form as the joint probability den-
sity function, but is evaluated as a function of the parameters rather than as a function of the
stochastic variables related to the observed data. Specifically for this expression, the observed
scattering cross sections V̂, estimated from the ADF STEM image as described in Section 2.5,
are inserted:

L(Ψstat
G ) = p(V̂|Ψstat

G ) =
N∏

n=1

fmix

(
V̂n|Ψ

stat
G

)
. (2.20)

The parameter estimates are iteratively calculated using the expectation maximisation (EM)
algorithm [Dempster 1977]. In Figure 2.5a, the Gaussian mixture model from Equation (2.16)
with parameters estimated using the maximum likelihood estimation in this manner for the gold
nanorod of Figure 2.3 is plotted on top of the set of scattering cross sections represented in a

†Throughout this thesis, the term Gaussian peaks will be used for the 2D Gaussians used in the parametric imaging model
introduced in Section 2.5, while the term Gaussian components will be used for the 1D Gaussian distributions that model the
distribution of the scattering cross sections for a given thickness.
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Figure 2.5: (a) Set of scattering cross sections estimated from the parametric imaging model of the
HAADF STEM image of a gold nanorod shown in Figure 2.3. The solid black curve shows the estimated
Gaussian mixture model, whereas the coloured curves indicate the individual components. (b) ICL
criterion. The arrow indicates the selected number of components of the Gaussian mixture model.
(c) The estimated locations of the Gaussian mixture model are validated by the library from image
simulations. (d) Atom-counts for the gold nanorod obtained by the statistics-based method for atom-
counting.

histogram. Note that the parameters are estimated independently from the arbitrary choice of
the number of bins used to represent the scattering cross sections in a histogram.
So far, we have considered the estimation of the probability distribution of the scattered intensi-
ties presuming a specific number of components G. However, due to the noise, it is impossible
to accurately determine the correct number of components based on a visual interpretation of
the set of scattering cross sections displayed in the histogram. Furthermore, this would be
subjectively dependent on the chosen number of bins to represent the scattering cross sections
in the histogram. Therefore, an order selection criterion which balances the model likelihood
against the model complexity is introduced to select the correct number of components G. The
model order corresponds to a local minimum in the order selection criterion evaluated as a func-
tion of the number of components. Many different information criteria exist [McLachlan 2000],
but the Integrated Classification Likelihood (ICL) criterion [Biernacki 2000] has been shown to
have the best performance for atom-counting [De Backer 2013]. The ICL criterion is expressed
as follows:

ICL(G) = −2 log L(Ψ̂stat
G ) + 2EN(τ̂) + d log N, (2.21)

with−2 log L(Ψ̂stat
G ) the likelihood term depending on the estimated parameters Ψ̂stat

G and 2EN(τ̂)+
d log N the penalty term depending on the sample size N, the number of parameters d = 2G
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and an entropy term:

EN(τ̂) = −
G∑

g=1

N∑
n=1

τg

(
V̂n|Ψ̂

stat
G

)
log τg

(
V̂n|Ψ̂

stat
G

)
, (2.22)

with τg

(
V̂n|Ψ̂

stat
G

)
the posterior probability that the estimated scattering cross section of the nth

column V̂n belongs to the gth component. This entropy term favours mixture models with well-
separated components, in order to estimate physically relevant Gaussian mixture models. The
ICL criterion for the gold nanorod is shown in Figure 2.5b. The arrow indicates the selected
local minimum at 47 components. The selection of this local minimum was aided by prior
knowledge on the symmetric shape of the nanorod, and is validated by comparison with inde-
pendent image simulations, as shown in Figure 2.5c.
For the true number of components G, the obtained locations µg of the components correspond
to the average scattering cross sections for sets of atomic columns with the same number of
atoms. Counting results can therefore be obtained by assigning the scattering cross section of
each atomic column to the component of the estimated probability distribution with the largest
probability for this scattering cross section. The precision of the counting results is therefore
limited by the overlap between the Gaussian components.
For the gold nanorod example, the counting results were obtained with single atom sensitivity
in this manner, and are shown in Figure 2.5d.

Figure 2.6: (a) Number of atoms in each column of a nanoparticle. There are no atomic columns
with 1 or 3 atoms. (b) Gaussian mixture model plotted on top of the set of estimated scattering cross
sections using the same colour scale as in (a) to indicate the number of atoms. (c) Intensity/thickness
graph, displaying the estimated locations of the Gaussian mixture model as a function of the component
number (in black) and as a function of the number of atoms in an atomic column (in blue). There are 7
components, while the maximum thickness is 9 atoms.

Note that G does not automatically equal the maximum thickness present in the sample. This
is illustrated in Figure 2.6, using a hypothetical Pt nanoparticle. The number of atoms in
each atomic column of the nanoparticle is illustrated in Figure 2.6a. The nanoparticle has a
maximum thickness of 9 atoms in an atomic column. There are no atomic columns with 1
or 3 atoms in the nanoparticle. Therefore, only G = 7 components need to be estimated in
the Gaussian mixture model, shown in Figure 2.6b. It is important to correctly relate each
component of the Gaussian mixture model to a number of atoms in an atomic column. This
subjective manual intervention will be avoided in the hybrid statistics-simulations based atom-
counting method which will be introduced in Chapter 4.
Using the statistical parameter estimation theory framework, atoms can be counted with single
atom sensitivity from ADF STEM images of model-like nanomaterials which are relatively



2.8. Conclusions 25

stable under the incoming electron beam, i.e. large nanoparticles and/or images recorded using
a high electron dose [Van Aert 2013, De Backer 2013]. When the electron dose is low and
very small nanoparticles are analysed, reliable counting results can no longer be obtained from
a single image using the statistics-based method, as demonstrated in [De Backer 2015b] for a
small Pt/Ir nanoparticle. The statistics-based counting procedure was performed independent
from image simulations in order to obtain counting results of the Pt/Ir nanoparticle at different
electron doses. The comparison with independent image simulations was used to validate the
accuracy of the counting results. This validation could be achieved for the high electron doses,
but is no longer possible for lower electron doses. The analysis revealed that the inaccurate
selection of the model order could be attributed to the lowering of the electron dose, which
causes the components of the Gaussian mixture model to overlap more. The reduced electron
dose leads to less precise measurements of the scattering cross sections resulting in insufficient
statistics for the determination of the number of components by the evaluation of the ICL
criterion. In Chapter 4, a new atom-counting method will be proposed to overcome these
limitations. The ADF STEM image of this Pt/Ir nanoparticle with the lowest electron dose
will be analysed in Section 4.8 to demonstrate the potential of this hybrid statistics-simulations
based method for atom-counting.

2.8 Conclusions

In this chapter, an overview of the basic concepts of quantitative STEM was given. We de-
scribed the principle of the image formation for ADF STEM, and the main features of the
image intensities. The Z-contrast and thickness dependence of this imaging mode, make it par-
ticularly suitable for quantification. Therefore, throughout this thesis, ADF STEM images will
be used to determine quantitative atomic structural information. Next, we introduced image
simulations and highlight some important aspects to take into account when performing image
simulations for quantitative analysis of STEM images. In this thesis we will use statistical
parameter estimation theory in order to accurately and precisely quantify the atomic structure.
Therefore, some of the basic concepts of model-based parameter estimation have been intro-
duced. This framework enables us to estimate the parameters of a parametric imaging model
that can be used to quantify ADF STEM image intensities of a nanomaterial oriented along
a main zone axis. This model provides accurate and precise estimates for the atomic column
positions and for the scattering cross sections, which quantify the total intensity of electrons
scattered towards the annular detector from a given atomic column. Finally, these scattering
cross sections are used to count the number of atoms in each atomic column of a nanomate-
rial. We have described two possible approaches. The first is based on a direct comparison
with image simulations. This approach is very intuitive, but prone to errors if a mismatch be-
tween experimental and simulated parameters remains undetected. The second approach for
atom-counting employs the framework of statistical parameter estimation theory. This method
provides accurate and precise counting results. The method is independent from image sim-
ulations. An important advantage is that the statistical framework provides a measure for the
precision of the counting results. At high electron dose and/or for large nanoparticles this
method was shown to provide atom counts with single atom sensitivity. However, when the
electron dose is lowered, it is no longer possible to retrieve reliable counting results.
The concepts introduced in this chapter will be used and extended in the remainder of this
thesis. In Chapter 3, an alternative parametric imaging model is proposed in order to quantify
the ADF STEM image intensities of nanomaterials which are slightly tilted away from a main
zone axis orientation. In Chapter 4, a new approach for atom-counting from ADF STEM
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images will be introduced that combines the two approaches introduced in this chapter. Finally,
in Chapters 5 and 6, this counting procedure will be further extended to allow the reliable
analysis of a time series of ADF STEM images.



3
Quantitative analysis of ADF STEM

images of tilted nanomaterials

3.1 Introduction

The parametric imaging model introduced in Section 2.5 was developed for quantitative anal-
ysis of ADF STEM image intensities of nanomaterials in zone axis orientation. However,
aligning the sample in exact zone axis orientation might not always be possible for vari-
ous reasons, such as sample bending in very thin specimens [Brown 2017]. Many interest-
ing nanoparticles, for example for catalytic applications, are very small and therefore highly
sensitive to small amounts of tilt [Li 2008, Altantzis 2019]. This can affect the quantifi-
cation of the atomic structure from the ADF STEM image intensities [De Backer 2015b].
The effects of tilt on high resolution ADF STEM images have been studied using multislice
calculations [Maccagnano-Zacher 2008, So 2012], revealing that the contrast between back-
ground and bright column intensities is decreased when the specimen is tilted slightly off
zone-axis orientation. This can be explained using electron channelling theory [Loane 1988,
Van Dyck 1996, E 2013, MacArthur 2015]. An atomic column aligned with the incident
beam exhibits a small lensing effect on the beam, keeping the intensity on the atomic col-
umn [Loane 1988, Van Dyck 1996, van den Bos 2016, van den Bos 2019]. This leads to a
larger scattering cross section than the sum of the individual scattering cross sections of the
separate atoms in the atomic column. Tilting the sample away from zone axis orientation
reduces the channelling and leads to a decrease in the intensity scattered from the atomic col-
umn towards the annular detector, as compared to the zone axis oriented situation [Garcia-
Gutierrez 2004, Yu 2008, Langlois 2010, E 2013, MacArthur 2015]. Nonetheless, the crystal
lattice remains clearly visible for specimen tilts up to one degree in different directions and for
a range of specimen thicknesses. While acquiring images, a small amount of tilt can there-
fore remain unnoticed despite the decrease in contrast, as the intensity range displayed when
acquiring the images is rescaled [Jones 2016].
Empirically, sample tilt also causes an elongation of the atomic columns in the ADF STEM

This chapter is based on [De wael 2021].
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images. An often posed research question is therefore whether the parametric imaging model
consisting of symmetrical Gaussian peaks can still yield a reliable quantification. The ef-
fect of sample tilt on quantitative ADF STEM has previously been studied by estimating
scattering cross sections as a function of tilt using integration of intensity in Voronoi cells
[MacArthur 2015]. However, the scattering cross sections are estimated more reliably when
overlap between neighbouring atomic columns is taken into account [De Backer 2016]. In a
tilted specimen, these overlapping intensities will become even more important, and a para-
metric imaging model consisting of overlapping peaks to model the expected values of the
ADF STEM image intensities is essential. The Gaussian peaks were shown to provide an
adequate description of the experimental ADF STEM image intensities [den Dekker 2005,
Van Aert 2005]. We therefore propose to use two-dimensional (2D) elliptical Gaussian peaks
rather than 2D symmetrical Gaussian peaks, in order to better describe the elongated ADF
STEM image intensities in the presence of sample tilt. In this chapter, we investigate whether
physical parameters such as scattering cross sections or atomic column positions can be esti-
mated more reliably using a parametric imaging model that consists of superimposed 2D ellip-
tical Gaussian peaks. In Section 3.2, the proposed parametric imaging model is introduced. In
Section 3.3, the possibilities and limitations of the elliptical imaging model are studied using
ADF STEM images of a simulated Pt(110) nanocrystal with variable sample tilt. The amount
of elongation of the atomic columns is quantified by the elliptical model† and the effect of sam-
ple tilt on the estimated atomic column positions, intercolumn distance and scattering cross
sections is studied using the proposed elliptical model and compared to the results obtained
using the existing symmetrical model. Finally, in Section 3.4, we formulate conclusions and
make a suggestion for the most reliable quantification of ADF STEM images in the presence
of small sample tilts.

3.2 Parametric imaging model in the presence of tilt

In Section 2.5, we introduced a parametric imaging model for ADF STEM image intensities
of nanoparticles consisting of 2D symmetrical Gaussian peaks. Here, we describe a parametric
imaging model consisting of 2D elliptical Gaussian peaks, rather than symmetrical peaks. The
pixel values wkl for each pixel (k, l) of a K × L ADF STEM image are summarised in a vector:

w = (w11,w12, · · · ,wKL). (3.1)

This is the set of observations obtained from the ADF STEM experiment. Each set of obser-
vations obtained from an experiment performed under the same experimental conditions will
unavoidably be different due to the presence of noise. Therefore, the set of observed image
intensities of an ADF STEM are stochastic variables. The aim of statistical parameter estima-
tion theory is to describe the expectation values of the observations as a function of relevant
physical parameters:

E[wkl] = fkl(Θ), (3.2)
with Θ the parameter vector that contains the unknown parameters. In the presence of sample
tilt, we now propose the following expression for the expectation value of the image intensity
at pixel (k, l) with position (xk, yl) in the image is given by:

fkl(Θ) = ζ +
∑N

n=1 ηn exp
(
−

[cosα(xk−βxn)+sinα(yl−βyn)]2

2ρx2 −
[− sinα(xk−βxn)+cosα(yl−βyn)]2

2ρy2

)
(3.3)

†The terms symmetrical/elliptical model are used to refer to the superposition of 2D symmetrical/elliptical Gaussian peaks
jointly fitted to all atomic columns, not to individual symmetrical/elliptical Gaussian peaks fitted to the individual atomic
columns.
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In this expression, ζ is a constant background present in the image, ρx is the width of the 2D
elliptical Gaussian peaks in the x-direction, ρy is the width of the 2D elliptical Gaussian peaks
in the y-direction, α is the angle that describes the orientation of the elliptical Gaussian peaks,
ηn is the height of the nth Gaussian peak, βxn and βyn are the x- and y-coordinate of the nth atomic
column, and N is the total number of atomic columns in the image. The unknown parameters
are summarised in the parameter vector:

Θ = (βx1 , · · · , βxN , βy1 , · · · , βyN , ρx, ρy, α, η1, · · · , ηN , ζ)T. (3.4)

Figure 3.1: 2D elliptical Gaussian peak with different elongations ρx/ρy and angles α.

In Figure 3.1, the influence of the parameters ρx, ρy and α introduced specifically to describe
the ellipticity of the Gaussian peaks is illustrated. These parameters can either be imposed
to be the same for all atomic columns in the estimation process, as in Equation (3.3), or can
be different for each atomic column. However, in case of sample tilt, we expect the effective
elongation of the atomic column intensities to be all in the same direction. For atomic columns
with varying thickness, however, it is necessary to fit different widths in x and y direction, since
the same amount of sample tilt will lead to a larger effective elongation in case of a thicker
atomic column, as the difference in projected xy-position between the top and bottom atom is
larger.

fkl(Θ) = ζ +
∑N

n=1 ηn exp
(
−

[cosα(xk−βxn)+sinα(yl−βyn)]2

2ρxn
2 −

[− sinα(xk−βxn)+cosα(yl−βyn)]2

2ρyn
2

)
(3.5)

with the parameter vector Θ now given by:

Θ = (βx1 , · · · , βxN , βy1 , · · · , βyN , ρx1 , · · · , ρxN , ρy1 , · · · , ρyN , α, η1, · · · , ηN , ζ)T. (3.6)

The parametric model is fitted to the experimental ADF STEM image using a least squares
criterion. In this manner we obtain a least squares estimate for the unknown parameter vector:

Θ̂ = arg min
t

K∑
k=1

L∑
l=1

(wkl − fkl(t))2. (3.7)

This is done using an iterative optimisation algorithm in the same manner as for the symmetrical
model introduced in Section 2.5. The so-called scattering cross section for each atomic column
n can now be estimated as the volume under the 2D elliptical Gaussian peaks in the model:

V̂n = 2πη̂nρ̂xρ̂y. (3.8)
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Figure 3.2: (a) Visualisation of a Pt(110) nanocrystal of 4× 3 unit cells, with a thickness of 6 unit cells.
The tilt direction used in the simulation study is shown schematically. (b) Simulated ADF STEM image
of the Pt(110) nanocrystal in zone axis orientation. Red dots indicate the columns used to determine
the position bias and scattering cross sections as a function of tilt in Figures 3.5a and 3.6. The arrows
indicate the columns for which the nearest and next nearest neighbour distance is assessed in Figure
3.5b. (c) Simulated ADF STEM image of the Pt(110) nanocrystal with a sample tilt of 60 mrad. Yellow
crosses indicate the positions of the top atoms of each atomic column, while red crosses indicate the
estimated atomic column positions by the elliptical model. Image intensities are expressed in fractions
of the incident electron dose on the same scale in (b) and (c), colour bar labels indicate the range of
intensities present in the image.

The scattering cross section is a measure for the total intensity of electrons scattered from an
atomic column in the nanomaterial towards the ADF STEM detector.
In the next section, we demonstrate the quantification of ADF STEM images using the elliptical
Gaussians by analysing a simulated Pt nanocrystal at different tilt angles. The possibilities and
limitations of this approach are investigated through comparison with the existing parametric
model defined previously in Section 2.5.

3.3 Possibilities and inherent limitations

In order to study the possibilities and limitations of quantification using a superposition of
elliptical 2D Gaussian peaks, we simulated a Pt(110) nanocrystal with a sample tilt ranging
from 0 to 60 mrad - approximately 3.5◦ - towards a [100] zone axis orientation. We consider
a nanocrystal with two different thicknesses, respectively 6 and 18 unit cells, corresponding to
16.64Å and 49.92Å. The atomic structure of the Pt(110) nanocrystal at 6 unit cells thickness
used for the simulation study is shown in Figure 3.2a. Figure 3.2b and 3.2c show simulated
ADF STEM images of the sample in zone axis orientation and with 60 mrad tilt towards a [100]
zone axis orientation, respectively. The tilting direction is indicated schematically in Figure
3.2a. The parameters of the image simulations are summarised in Table A.1 of Appendix A.
The nanocrystal is created with a homogeneous thickness by replicating the crystal unit cell in
the x, y and z directions. As a result, there are two types of atomic columns in the nanocrystal,
corresponding to the corners or the central atom of the projected unit cell of a face centered
cubic (FCC) lattice. This leads to a variation in the number of atoms per atomic column of
only 1 atom. Therefore, the elongation will be approximately the same for all atomic columns,
and the images are fitted using the model with constant width for each direction, expressed by
Equation (3.3).
In Figure 3.3, we display the residual intensities obtained by subtracting the simulated im-
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Figure 3.3: Residual intensities of the tilted Pt(110) nanocrystal from Figure 3.2c after fitting with
a superposition of (a) symmetrical and (b) elliptical 2D Gaussian peaks. Intensities are expressed in
fractions of the incident electron dose on the same scale in (a) and (b), colour bar labels indicate the
range of intensities present in the image.

age intensities of the tilted Pt(110) nanocrystal [Figure 3.2c] from the fitted image intensities
obtained respectively by the symmetrical and the elliptical 2D Gaussian peaks. By visualis-
ing the intensities on the same colour scale, we can now easily understand why one would
want to consider fitting 2D elliptical Gaussian peaks: the residual intensities for this tilted Pt
nanocrystal are up to a factor of 3.5 smaller as compared to the commonly used symmetrical
model, yielding a qualitatively better description of the ADF STEM image intensities in the
presence of sample tilt. In the remainder of this section we will quantitatively study whether
this improvement can also yield better estimates of physical parameters such as atomic column
positions and scattering cross sections. Furthermore, the model also provides an estimate for
the angle, which can be used to determine the tilting direction. Based on the widths in the x and
y direction, we can study the elongation of the atomic columns, which is related to the amount
of sample tilt.

Figure 3.4: Aspect ratio ϵ of the atomic columns estimated using a parametric imaging model with
elliptical Gaussian peaks, evaluated as a function of the amount of sample tilt for the Pt nanocrystal, as
shown in Figure 3.2, at 6 and 18 unit cells thickness (16.64Å and 49.92Å).
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3.3.1 Atomic column elongation

The elliptical model, expressed by Equation (3.3), allows us to quantify the amount of elonga-
tion visible in the tilted image using the aspect ratio of the ellipse:

ϵ =
ρx

ρy
≤ 1. (3.9)

The aspect ratio is equal to or smaller than one by definition. This is achieved by consistently
defining ρx as the smallest width of the ellipse after the parameter estimation procedure. The
aspect ratio ϵ decreases with increasing sample tilt. This is shown in Figure 3.4 for two different
thicknesses of the Pt(110) nanocrystal of Figure 3.2. For a larger sample thickness, the aspect
ratio decreases faster with increasing sample tilt. When the sample thickness is known, the
combination of image simulation and elliptical fitting can be used to estimate the amount of
sample tilt.

3.3.2 Atomic column positions

Next, we assess the accuracy of the estimated atomic column positions using the proposed
elliptical parametric imaging model and compare this to the existing parametric model with
symmetrical Gaussians. To this purpose, we quantify the bias of the position estimate for the
atomic columns indicated by red dots in Figure 3.2b, which have the same z-height in the FCC
crystal lattice. The results are summarised in Figure 3.5a for different amounts of sample tilt
and sample thickness. The bias of the position estimate is quantified as the distance between
the reference coordinate and the estimated position coordinate. During this analysis, we have
set the reference position of an atomic column in a tilted sample equal to the xy-position of the
top atom of that atomic column. In Figure 3.2c, the estimated and reference coordinates are
plotted on top of the image with red and yellow crosses respectively. A shift of the estimated
atomic column positions as compared to the actual position of the top atoms occurs when the
sample is tilted. This was noted before, especially for annular bright field (ABF) STEM images
[So 2012, Zhou 2016, Gao 2018, Fatermans 2020]. The bias of the estimated atomic column
positions increases with increasing sample tilt and sample thickness. At 18 unit cells thickness,
for example, the bias on the estimated atomic column position is 11.4% of the nearest neighbour
distance at a sample tilt of 16 mrad (approximately 1◦). Despite this bias, the intercolumn
distance is still estimated accurately, as shown in Figure 3.5b for the thickness of 18 unit cells.
The estimated intercolumn distance by the elliptical model differs at most 1.8 pm from the
reference value. This enables us to reliably quantify the lattice parameter using the proposed
imaging model.
Finally, we see that the accuracy of the estimated position coordinate and the intercolumn dis-
tance is identical for the parametric imaging model using symmetrical or elliptical 2D Gaussian
peaks up to 50 mrad (almost 3◦) in case of 18 unit cells thickness (approximately 50 Å). Only at
larger tilt angles, the bias on the estimated intercolumn distances by the symmetrical model in-
creases from maximum 1.3 pm to 4.5 pm. A drawback of the elliptical model on the other hand
is the increased parameter space, which can lead to less precise parameter estimates. There-
fore, when the goal is to quantify the atomic column positions from an ADF STEM image of
a slightly tilted sample, we recommend to use the existing parametric imaging model, rather
than increasing the complexity of the model.
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Figure 3.5: (a) Bias between the actual atomic column position - equal to the position of the top atom
- and the atomic column position estimated using a parametric imaging model with elliptical and sym-
metrical Gaussian peaks, evaluated as a function of the amount of sample tilt for the Pt nanocrystal
at 6 and 18 unit cell thickness (16.64Å and 49.92Å). The bias was calculated for the atomic columns
indicated with red dots in Figure 3.2b. (b) Distance between two nearest neighbour atomic columns
and between two next nearest neighbour atomic columns, indicated respectively using a yellow and a
green arrow in Figure 3.2b, estimated using a parametric imaging model with elliptical and symmetrical
Gaussian peaks, evaluated as a function of the amount of sample tilt for the Pt nanocrystal at 18 unit
cells thickness. Full lines indicate the reference value, determined from the lattice parameters.

3.3.3 Scattering cross sections

The total intensity scattered from an atomic column towards the annular detector is quantified
by the so-called scattering cross section, which can be estimated by the volume under the 2D
Gaussian peaks of the parametric imaging model given by Equation (2.12). As mentioned be-
fore, tilting of a sample away from zone axis orientation reduces the channelling effect, leading
to a decrease in the contrast and in the peak intensity at the atomic column positions. This
effect is indeed observed when we evaluate the scattering cross sections estimated according to
Equation (2.15) as a function of sample tilt, shown by the pluses in Figure 3.6.
One might expect that the elliptical model introduced in this chapter yields more reliable esti-
mates for the total scattered intensity from each column, since the model seems to empirically
better describe the shape of the atomic columns of tilted nanomaterials in ADF STEM im-
ages, as was shown by the residual image intensities in Figure 3.3. We therefore estimate the
scattering cross sections from the elliptical model of Equation (3.3), using Equations (3.7) and
(3.8). The crosses in Figure 3.6 show the estimated scattering cross sections from the proposed
elliptical model as a function of sample tilt. Note that they are identical to the scattering cross
sections estimated by the existing symmetrical model, for both sample thicknesses considered
in this study. We therefore conclude that we do not gain extra intensity information by adapting
the parametric imaging model using elliptical peaks.
Note that lens aberrations such as coma can also cause elongation of the atomic columns,
which might potentially be mistaken as sample tilt [So 2012]. It was however shown pre-
viously that the scattering cross section estimated from the parametric imaging model using
2D symmetrical Gaussian peaks is robust to inaccuracies in both cylindrically symmetrical
and non-cylindrically symmetrical aberrations [Martinez 2018]. Therefore, we do not expect
problems for the quantification of slightly aberrated ADF STEM images with the existing sym-
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Figure 3.6: Scattering cross sections estimated using a parametric imaging model with elliptical and
symmetrical Gaussian peaks, evaluated as a function of the amount of sample tilt. The scattering cross
sections were estimated for a set of atomic columns with equal thickness indicated by the red dots in
Figure 3.2b.

metrical Gaussian model.
Finally, it is important to realise that this elliptical model, like the existing symmetrical model,
does not allow us to reliably count the number of atoms using a direct comparison to zone
axis image simulations. Therefore, when a small amount of sample tilt remains undetected, the
image simulations-based atom-counting procedure, introduced in Section 2.6, will yield inac-
curate counting results. Furthermore, the statistics-based atom-counting procedure, introduced
in Section 2.7, can also suffer from sample tilt, leading to an underestimation of the order
of the Gaussian mixture model used to unravel the different thicknesses present in the sam-
ple [De Backer 2015b]. This underestimation was detected through independent comparison
of the results obtained by the statistical analysis and the image simulations. In the next chapter,
a hybrid statistics-simulations based method for atom-counting is introduced which immedi-
ately incorporates prior knowledge from image simulations in the statistical analysis through a
parametric relationship. In this manner, counting from tilted nanomaterials in a reliable man-
ner will become possible, despite the decrease of the scattering cross sections with increasing
sample tilt. Optimisation of the imaging parameters such as probe convergence angle and col-
lection angles of the annular detector can further aid towards a tilt-robust image quantification
by balancing the elastic and thermal diffuse scattering (TDS) contributions to the ADF STEM
signal [MacArthur 2015].

3.4 Conclusions and discussion

In this chapter, we investigated a parametric imaging model consisting of overlapping 2D el-
liptical Gaussian peaks. Our goal was to ascertain whether this model can quantify the ADF
STEM images of slightly tilted nanomaterials more reliably than the existing parametric imag-
ing model, which consists of overlapping 2D symmetrical Gaussian peaks. Intuitively, such an
elliptical model might seem better suited for the description of the elongated atomic columns
observed in tilted ADF STEM images. This can be clearly understood by visualising the resid-
ual intensities, i.e. the difference between the ADF STEM image intensities and the fitted
intensities by the model. The elliptical model yields significantly smaller residual intensities
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as compared to the existing symmetrical model. Qualitatively, it can therefore be considered
as a better model. On the other hand, the elliptical model is more complex, and therefore fit-
ting the parameters is more time consuming, as compared to the symmetrical model. For the
zone axis orientation image of Figure 3.2b, the elliptical fitting takes 2 times longer. At higher
tilt angles, even more computation time is needed to fit the extra parameters. For the simu-
lated image with sample thickness of 6 unit cells at a tilt angle of 60 mrad, shown in Figure
3.2c, fitting the elliptical model took 3 times longer than fitting the symmetrical model. For
the sample thickness of 18 unit cells the time difference was even a factor of 6. Furthermore,
an increased parameter space generally leads to less precise parameter estimates. Therefore,
it is important to quantitatively study what can be gained from using this elliptical model for
quantitative ADF STEM in terms of physical parameters. To this purpose, we investigated a
simulated Pt(110) nanocrystal at different tilt angles. A benefit of the elliptical model is that it
allows us to quantify two properties of the tilted sample which are not quantified by the exist-
ing symmetrical model: the elongation of the atomic columns and the angle of the elongation.
The angle quantifies the direction of sample tilt, while the elongation is strongly related to the
amount of sample tilt. Furthermore, we have shown that the proposed elliptical model yields
equivalent atomic column position estimates as compared to the existing symmetrical model
up to 50 mrad sample tilt. Although the estimated atomic column positions are shifted with
respect to the positions of the top atom of each atomic column, the intercolumn distances are
quantified accurately. In this manner, both parametric imaging models can still be used to ob-
tain reliable structural information from ADF STEM images of tilted nanomaterials. Finally,
we quantified the scattering cross section at different tilt angles up to 60 mrad - approximately
3.5◦ - using both models. The scattering cross sections decrease with increasing sample tilt in
the same manner, regardless whether they are estimated from the elliptical or the symmetrical
model. This intensity loss is entirely caused by a loss of the channelling conditions, and cannot
be (partially) retrieved by an elliptical Gaussian peak to fit rather than a symmetrical Gaussian
peak. Note that this implies that the scattering cross sections from tilted nanomaterials can
not be used to count the number of atoms using a simulations-based atom-counting procedure.
The statistics-based approach for atom-counting on the other hand might still reveal a correct
clustering of the scattering cross sections, but the unavoidable mismatch with the independent
image simulations impedes truly reliable atom-counting in the presence of tilt. Therefore, in
the next chapter, a hybrid statistics based atom-counting procedure is proposed to overcome
this limitation.
In conclusion, we do not consider fitting the larger parameter space of the model with over-
lapping 2D elliptical Gaussian peaks worth the extra effort over fitting the existing model of
overlapping 2D symmetrical Gaussian peaks, since we do not gain more reliable quantitative
estimates for the atomic column positions and scattering cross sections. The comparison shown
in this chapter confirms that the existing parametric imaging model - which consists of over-
lapping 2D symmetrical Gaussian peaks - remains a very reliable method for the quantitative
analysis of ADF STEM images in the presence of sample tilt. Correct lattice parameters can
still be retrieved using the estimated atomic column positions. The scattering cross sections
decrease with sample tilt, but an increased complexity of the parametric model does not help
to retrieve (part of) this intensity loss. In short, we advise the use of overlapping 2D Gaussian
peaks - previously implemented in the freely available StatSTEM software [De Backer 2016]
- for the quantification of the ADF STEM image intensities, even in the presence of a small
amount of sample tilt.
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4
Hybrid statistics-simulations based method

for atom-counting from an ADF STEM image

4.1 Introduction

By counting the number of atoms in each atomic column from two-dimensional (2D) annu-
lar dark field scanning transmission electron microscopy (ADF STEM) images recorded under
a few different viewing directions, a three-dimensional (3D) reconstruction of the structure
can be obtained [Van Aert 2011, Bals 2011], allowing for the quantification of the shape and
size of the nanoparticle. Furthermore, atom-counting results from a single viewing direction
can be combined with structural energy minimisation [Bals 2012, Jones 2014, Geuchies 2016,
De Backer 2017, Altantzis 2019], in order to obtain a visualisation of the 3D atomic struc-
ture from a 2D image without the need for the large electron doses and long acquisition times
generally required for electron tomography. We have discussed two existing approaches for
atom-counting, based on image simulations (Section 2.6) or based on statistical parameter the-
ory (Section 2.7) in Chapter 2. The image simulations-based method for atom-counting is
very intuitive, but highly sensitive to small mismatches between the actual and the simulated
experimental set-up, such as a different detector inner angle or sample tilt. The described
statistics-based method on the other hand is independent of image simulations and results in
atom-counts with single atom sensitivity [Van Aert 2013], provided that the inherent limita-
tions of the method are not exceeded [De Backer 2013, De Backer 2015b]. The method be-
comes less reliable for very small nanoparticles due to the limited number of columns present
in the image and for low electron doses, due to the low signal-to-noise ratio. The increasing
relevance of radiation damage, not only in biological studies, but also in the study of nanos-
tructures [Meyer 2014], demands a method that allows for a reliable quantitative analysis of
low dose images with a low signal-to-noise ratio. A hybrid statistics-simulations based method
is proposed to overcome the limitations of the statistics-based method, and thus progress to-
wards the quantitative analysis of small, beam-sensitive materials [De wael 2017]. This hybrid
method will be realised by incorporating prior knowledge, obtained from carefully performed

This chapter is based on [De wael 2017].
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Figure 4.1: Hypothetical set of scattering cross sections represented in a histogram. The blue lines
show the Gaussian components for each thickness, with locations µg and width σ. The sum of Gaussian
components, weighted by their mixing proportions πg, yields the Gaussian mixture model, shown by the
black line. The (average) distance between the locations is expressed by δ. The overlap between the
components (highlighted in yellow) depends on the relative width of the components σ/δ and limits the
atom-counting precision.

image simulations, into the statistics-based method.
In Section 4.2 we introduce the hybrid statistics-simulations based method for atom-counting
and derive the probability distribution of the scattering cross sections. In Section 4.3, we dis-
cuss the estimation of the parameters of the probability distribution, and assess the accuracy
and precision of the estimated parameters. Next, an order selection criterion is introduced in
Section 4.4. In Section 4.5, we verify whether the well-established statistics-based and the
newly proposed hybrid methods yield equivalent counting results for model-like systems, i.e.
large nanoparticles or ADF STEM images recorded using high electron doses. Next, we com-
pare the performance for atom-counting of the hybrid statistics-simulations based method with
the statistics-based method for atom-counting in more detail in Section 4.6. In Section 4.7, we
demonstrate the capability of the hybrid method to achieve reliable counting results, despite the
presence of sample tilt, using a simulated Pt nanoparticle. Finally, we show where the hybrid
method for atom-counting exceeds the limitations of the statistics-based method by means of
an experimental example and image simulations in Section 4.8, before drawing conclusions in
Section 4.9.

4.2 Probability distribution of scattering cross sections

As mentioned before in Section 2.7, the unavoidable presence of noise in the experimental
images causes fluctuations on the values of the scattering cross sections of atomic columns
with identical thickness g around an average scattering cross section value µg. Represented
in a histogram, we therefore do not see isolated peaks corresponding to the different numbers
of atoms in a column, but broadened components, often overlapping each other, as shown in
Figure 4.1. The distribution of the scattering cross sections can be modelled as a Gaussian
distribution for each thickness g present in the sample (blue lines in Figure 4.1), resulting in
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the Gaussian mixture model (black line in Figure 4.1), expressed by Equation (2.16).
Here, in order to overcome the limitations of the statistics-based method discussed in Sec-
tion 2.7, we will incorporate prior knowledge from image simulations in the probability dis-
tribution of the scattering cross sections. It is important to note that such a hybrid statistics-
simulations based method for atom-counting is not equivalent to statistics-based methods for
atom-counting, validated using independent image simulations. When the scattering cross sec-
tions are normalised with respect to the incident electron beam, comparison with image simu-
lations is possible, using a so-called library of simulated scattering cross sections as described
in Section 2.6. An intuitive first suggestion could be to combine the statistics-based and the
image simulations-based atom-counting procedures by fixing the locations of the Gaussian
components at the library values, rather than estimating these parameters freely. In this case,
only the widths and mixing proportions of the Gaussian components would still be estimated.
In this manner, the benefits of prior knowledge from image simulations could be combined
with the benefits of a statistical framework such as an estimate for the precision of the counting
results which can be derived from the width of the Gaussian components.

(a) (b)

Figure 4.2: The effect of small mismatches between experimental and simulation parameters such as
detector inner angle or sample tilt on the library of simulated scattering cross sections evaluated as a
function of the number of atoms in an atomic column can be approximated as a linear scaling. Libraries
are shown for Au in [100] zone axis orientation with (a) different detector inner angles and (b) different
amounts of sample tilt around the [001] axis. Solid lines show how the library can be scaled to fit the
libraries for different detector inner angles or different tilt values.

However, systematic errors in the image simulations are difficult to detect, and therefore this
is not an optimal approach. Figure 4.2 shows simulated scattering cross sections evaluated
as a function of the number of atoms per column for different values of the detector inner
angle or sample tilt. The solid lines in both figures indicate that linearly scaled libraries are
a good approximation for the scattering cross sections simulated using different parameters.
In Figure 4.2a, simulated scattering cross sections for Au in [100] zone axis obtained with
different detector inner angles 57 mrad, 60 mrad and 62 mrad are shown. The scattering cross
sections simulated using an inner angle of 60 or 62 mrad can be approximated by linearly
scaling the scattering cross sections corresponding to 57 mrad, acting as the library in this
example. These detector inner angles correspond to reasonable measurement errors in the
detector inner angle of up to ±5 mrad [Jones 2016]. The procedure for measuring the detector
inner angle is described in [Martinez 2015]. The scattering cross sections are less sensitive to
the outer detector angle [Jones 2016]. In Figure 4.2b, simulated scattering cross sections are
shown for a sample tilt around the [001] axis, up to 15 mrad, which can experimentally still
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yield an atomic resolution image [MacArthur 2015, Jones 2016]. Small sample tilt can easily
remain undetected due to a rescaling of the intensity range of the observed data during an
experiment, but leads to a loss of contrast and a decrease in the scattering cross sections, which
becomes more apparent at higher thickness. Also in this case, the scaled library for the sample
in zone axis is an acceptable approximation for the scattering cross sections corresponding to
different sample tilt values.
Therefore, rather than freely estimating the locations µg, they will now be restricted to a linear
scaling factor a multiplied with the library valuesMg resulting from simulations:

µg = aMg. (4.1)

The Gaussian mixture model of Equation (2.16) is therefore altered:

fmix (Vn|ΨG) =
G∑

g=1

πgN
(
Vn|aMg, σ

)
, (4.2)

with

N
(
Vn|aMg, σ

)
=

1
√

2πσ
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(
−

(Vn − aMg)2

2σ2

)
, (4.3)

the Gaussian components. The joint probability density function of the (normalised) scattering
cross sections is therefore given by:

p(V|ΨG) =
N∏

n=1

G∑
g=1

πgN
(
Vn|aMg, σ

)
. (4.4)

The mixing proportion πg of the gth component represents the probability for an atomic column
to have precisely g atoms. Note that in this manner the component index g will automatically
coincide with the number of atoms g in an atomic column. This is in contrast with the statistics-
based method where the total number of components G corresponding to all atomic columns
did not necessarily equal the maximum number of atoms in any of the atomic columns, as
visualised in Figure 2.6. In case no atomic columns with 3 atoms are present in the sample, for
example, the hybrid method will estimate the mixing proportion π3 = 0. The locations of the
components in the mixture models µg = aMg correspond to the location of the gth component in
the mixture model, and therefore to the average scattering cross section for an atomic column
of the sample with exactly g atoms. The width of the components is denoted by σ and Vn

represents the stochastic variable related to the scattering cross section of atomic column n.
All scattering cross sections are summarised in the vector V. The vector ΨG is the parameter
vector containing all unknown parameters to be estimated in a Gaussian mixture model with G
components:

ΨG = (π1, ..., πG−1, a, σ)T. (4.5)

Note that πG is not estimated, since the sum of all G mixing proportions must equal one, and
therefore πG = 1 −

∑G−1
g=1 πg. This means that G + 1 parameters need to be estimated, instead of

2G parameters for the statistics-based method.

4.3 Parameter estimation

The parameters summarised by the parameter vectorΨG defined in Equation (4.5) are estimated
by maximising the likelihood function. As described earlier in Section 2.4, the expression for
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the likelihood function has the same functional form as the joint probability density function,
but is evaluated as a function of the parameters rather than as a function of the stochastic
variables related to the observed data. Therefore, the stochastic variables V from Equation (4.4)
are substituted by the observed scattering cross sections V̂, estimated from the ADF STEM
image as described in Section 2.5. The likelihood function is therefore expressed as follows:

L(ΨG) = p(V̂|ΨG) =
N∏

n=1

G∑
g=1

πgN
(
V̂n|aMg, σ

)
. (4.6)

The likelihood is maximised with respect to the unknown parameters using an Expectation-
Maximisation (EM) algorithm [Dempster 1977]. This algorithm consists of two steps that are
repeated iteratively until convergence of the likelihood is reached. In the E-step, the likelihood
function is evaluated, and during the M-step updates for the parameter estimates are calculated
in order to maximise the (log) likelihood. The update formulas are obtained by solving the
likelihood equation:
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(4.7)

= 0,

where τg

(
V̂n|ΨG

)
is calculated in the E-step for each iteration k, according to Equation (4.15).

The parameter updates are expressed as follows:
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By means of simulations, the following starting values for the parameters were found to result
in unbiased estimates for the parameters of the mixture model for the statistics-based atom-
counting procedure [De Backer 2013], and will be used for the hybrid method as well:

π(0)
g =

1
G
, (4.11)

for the mixing proportions, and

σ(0) =
max(V̂) −min(V̂)

2G
, (4.12)
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for the width of the components. For the starting values of the scaling parameter, different
values are used, ranging between a minimum and maximum expected scaling value, usually
between 0.7 and 1.3. For each different starting value of the scaling parameter, the algorithm is
iterated until convergence is reached. The final estimates Ψ̂G of the parameters in the mixture
model with G components are then given by the set of estimated parameters for the highest
likelihood was reached after convergence.
The parameter estimates of the parameter vector ΨG are used to determine counting results.
To this purpose, each atomic column is assigned the number of atoms corresponding to the
highest probability based on the estimated probability distribution. In the following, we will
demonstrate the accuracy and precision of the parameter estimates obtained in this manner.

4.3.1 Accuracy & precision

In the present section, we evaluate the accuracy and precision of the estimated parameters.
Ultimately, in order to perform a reliable quantitative analysis, the parameters of the probability
distribution of the scattering cross sections, given by Equation (4.5), need to be estimated as
accurately and precisely as possible. A statistical estimator of a parameter is accurate when the
expectation value of the estimator equals the actual value of the corresponding parameter. For
such an unbiased estimator, a lower bound on the variance exists, which expresses the highest
attainable precision. This lower bound on the variance is given by the so-called Cramér-Rao
lower bound [Rao 1945, Cramér 1946], defined earlier in Section 2.4, and calculated for the
hybrid method for atom-counting in Appendix 4A.
In order to assess the accuracy and precision of the estimated parameters by the hybrid method,
100 noise realisations were created by performing random draws from a Gaussian mixture
model with 5 components and parameters πg, a and σ for which the input values are given in
Table 4.1. For each noise realisation, the mixing proportions πg for the different components
are multinomially distributed with equal probabilities. Furthermore, an equally spaced library
is used. The relative width of the components, defined as the ratio between the width of the
components σ and the average difference between the locations of successive components δ,
visualised in Figure 4.1, equals σ/δ = 0.25. The average number of observations per compo-
nent equals N/G = 20. The values of the estimated parameters, obtained for the true number
of components G, are summarised in Table 4.1 and confirm that the parameter estimates are
accurate, as the input value of each parameter is enclosed by the 95% confidence interval on
the sample mean. Table 4.2 summarises the sample variances of the parameter estimates for
the same sets of scattering cross sections used to validate the accuracy, together with a 95%
confidence interval and the Cramér-Rao lower bound for each parameter. We conclude that
the Cramér-Rao lower bound is indeed attained, as the 95% confidence intervals on the sam-
ple variances include the Cramér-Rao lower bound for each parameter. Thus, the parameter
estimates are obtained with the highest possible precision by the hybrid method.
An important drawback of the statistics-based method is the underestimation of the value of
the width of the components σ in case of a small average number of columns per compo-
nent N/G [De Backer 2013]. In order to assess the accuracy of the estimated width of the
components, noise realisations were again created by performing random draws from Gaus-
sian mixture models with 10 components, in the same manner as described before. Different
combinations of N/G and σ/δ were used, and 100 noise realisations were performed for each
of these combinations. In Figure 4.3 the estimated width of the components is evaluated as
a function of the true width of the components, for different values of the average number of
columns per component N/G. Estimated widths are shown for both the statistics-based method
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Parameter Input value Sample mean 95% confidence interval
Lower bound Upper bound

π1 0.2 0.2005 0.1922 0.2088
π2 0.2 0.1979 0.1901 0.2057
π3 0.2 0.1987 0.1901 0.2073
π4 0.2 0.1990 0.1913 0.2066
π5 0.2 0.2039 0.1951 0.2128
a 1 0.9990 0.9970 1.0011
σ 0.25 0.2468 0.2427 0.2508

Table 4.1: Accuracy of the parameter estimates that determine the Gaussian mixture model estimated
by the hybrid method. The sample means are computed from parameter estimates obtained from 100
noise realisations of the Gaussian mixture model and compared with the input values of the model
parameters.

Parameter CRLB Sample variance 95% confidence interval
Lower bound Upper bound

π1 0.0017 0.0018 0.0013 0.0023
π2 0.0018 0.0016 0.0017 0.0020
π3 0.0018 0.0019 0.0013 0.0025
π4 0.0018 0.0015 0.0015 0.0019
π5 0.0017 0.0021 0.0016 0.0026
a 9.8 · 10−5 11.0 · 10−5 8.9 · 10−5 14.0 · 10−5

σ 4.4 · 10−4 5.5 · 10−4 3.4 · 10−4 6.2 · 10−4

Table 4.2: Precision of the parameter estimates that determine the Gaussian mixture model estimated
by the hybrid method. The sample variances are computed from parameter estimates obtained from 100
noise realisations of the Gaussian mixture model and compared with the Cramér-Rao lower bound for
the model parameters.

and the hybrid method, with 95% confidence intervals. We conclude from Figure 4.3 that the
hybrid method provides more accurate estimates for the width of the components as compared
to the statistics-based method, which severely underestimates the width of the components at
low values of N/G. The parameter estimates for the width σ obtained by the hybrid method are
thus more reliable, resulting in more reliable atom-counts, as compared to the statistics-based
method. Furthermore, this implies that the hybrid method allows for a more accurate estimate
of the relative width of the components σ/δ, which determines the overlap between Gaus-
sian components, so as visualised in Figure 4.1. Therefore, the precision of the atom-counts
themselves - inherently determined by the amount of overlap between the components - can be
quantified more accurately. Very recently, the finite atom-counting precision estimated in this
manner was used in a Bayesian genetic algorithm to reconstruct the 3D atomic structure based
on 2D atom-counting results [De Backer 2021c].

4.4 Assessing the model order of the mixture model using an or-
der selection criterion

The above described parameter estimation procedure assumes a given number of components
G. As mentioned before, the number of components G is equal to the maximum thickness,
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(a) (b)

Figure 4.3: Accuracy of the estimated width of the components σ. The estimated width of the compo-
nents is evaluated as a function of the true value of σ used in the Gaussian mixture models for (a) the
statistics-based method and (b) the hybrid method.

and is therefore equal to the length of the library needed to incorporate the prior knowledge
from image simulations in the statistical framework. In this thesis, we will refer to the number
of components in the context of the hybrid method as the “library length”. Unfortunately,
this library length G is not known beforehand. In principle, a large enough library length
can be used to obtain the same correct model, since mixing proportions of components that
exceed the maximum thickness can be estimated zero. However, in practice, a smaller scaling
parameter a in combination with non-zero mixing proportions often results in a better fit of
the Gaussian mixture model to the underlying scattering cross sections. The resulting model
has a higher likelihood, but is not the correct model. A selection criterion therefore needs to
be used to determine the physically meaningful library length, required to estimate the correct
probability distribution of the scattering cross sections. Such a criterion includes a likelihood
term, as well as a penalty term. Many different information criteria exist, accounting for the
complexity of the estimated model in a different manner [McLachlan 2000]. The Integrated
Classification Likelihood (ICL) criterion was shown to have the best performance for atom-
counting [De Backer 2013]:

ICL(G) = −2 log L(Ψ̂G) + 2EN(τ̂) + d log N, (4.13)

with a negative log likelihood term −2 log L(Ψ̂G), and a penalty term 2EN(τ̂)+d log N depend-
ing on the sample size N, the number of parameters d = G+ 1 to be estimated, and the entropy,
expressed by
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A large library length is penalised, while a larger likelihood is favoured. The entropy term
favours mixture models with well-separated components, as to obtain a physically meaningful
trade-off between the goodness of fit and the complexity of the model.
In Section 4.5, we will discuss the practical application of the ICL criterion for the hybrid
method in more detail, using the Au nanorod that was previously also discussed in Section 2.7.

4.5 Atom-counting from an ADF STEM image of a Au nanorod

Figure 4.4: (a) HAADF STEM image of a gold nanorod [Van Aert 2013]. (b) Set of estimated scattering
cross sections. The solid black curve shows the estimated Gaussian mixture model, whereas the coloured
curves indicate the individual components. (c) ICL criterion, with two axes, indicating library length
and estimated value of the scaling parameter a. (d) Atom-counts for the gold nanorod. (e) Difference in
atom-counts between the hybrid method and the statistics-based method.

In this section, an experimental HAADF STEM image of a gold (Au) nanorod, previously
also shown in Figure 2.5, will be analysed in order to illustrate the methodology of the hy-
brid method for atom-counting. The number of atoms in this Au nanorod could already
be counted reliably using the statistics-based atom-counting method [Van Aert 2013], as an
agreement between independent image simulations and the estimated locations of the com-
ponents in the Gaussian mixture model was then found within the expected 5%-10% error
range [Van Aert 2013, Rosenauer 2011, LeBeau 2008a]. Therefore, this well-conditioned ex-
perimental example can be used to validate the results obtained with the hybrid method. The
image was recorded by Bart Goris and Gerardo Martinez along the [100] zone axis at the Qu-
AntEM, a double corrected FEI Titan3 working at 300 kV, and is shown in Figure 4.4a. A
library of simulated scattering cross sections was created, as described in Section 2.6.
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The scattering cross sections calculated from the refined model of the experimental image are
shown in Figure 4.4b. In an ideal case, we would observe separated components, corresponding
to sets of atomic columns with the same number of atoms. However, due to the unavoidable
presence of noise, these components are broadened and they therefore overlap each other. This
broadening is described by the probability distribution given by Equations (4.4) and (4.3). Such
a probability distribution is then estimated for each library length ranging between 1 and 100.
The values of the ICL criterion, given by Equation (4.13), for each of these library lengths are
evaluated in Figure 4.4c. The top axis indicates the estimated scaling parameter corresponding
to the models at different library lengths. In this example, the minimum at a library length
equal to 51 is selected, corresponding to a scaling parameter of a = 0.99, reflecting the high
accuracy of the measured experimental parameters. The estimated probability distribution at
this library length is shown as a full black curve in Figure 4.4b. The individual components
are shown in colour, corresponding to the number of atoms per column. In Figure 4.4d, each
atomic column was assigned the number of atoms corresponding to the highest probability
based on the estimated probability distribution from Figure 4.4b.

The interpretation of the ICL criterion obtained by the hybrid method slightly differs from the
interpretation of the ICL criterion as obtained by the statistics-based method, discussed pre-
viously in Section 2.7. We are still looking for a local minimum, but additional information
is provided by the value of the scaling parameter and can be used to determine the correct
local minimum. Usually, multiple local minima, corresponding to different values of the scal-
ing parameter, are present in the ICL criterion. If the experiment was conducted carefully,
discrepancies between actual and simulated experimental conditions are expected to be small,
i.e. within the expected 5%-10% error range [Van Aert 2013,Rosenauer 2011,LeBeau 2008a].
This would imply a scaling value approximately equal to 1. However, it is inadvisable to dis-
card other local minima based only on their unexpected scaling values. A local minimum at a
scaling value which differs strongly from 1 can be selected as the minimum of interest when
one can explain the nature of these large discrepancies, e.g. by means of additional image
simulations using different values for sample tilt or inner detector angle. If this is not the case,
the local minimum corresponding to a scaling value close to 1 is selected as the minimum of
interest.

Note that inclined grey lines with slope log N are added to the plot of the ICL criterion. In
the ICL criterion in Figure 4.4c, we see linear features where the values increase parallel to
the grey lines, i.e. with the same slope of log N. These features indicate that the estimated
probability distribution for these library lengths is essentially the same. In fact, the mixing
proportions of components corresponding to a library length exceeding the first library length
of the feature are estimated equal to zero. As a consequence, the entropy term and the likelihood
term for these library lengths remain the same, leaving d log N as the only changing term in
the expression for the ICL criterion given by Equation (4.13). Such linear features indicate a
very good mathematical fit to the data, and can be used for interpretation of the ICL minimum.
However, such features may not always be present due to for example large amounts of noise,
as for the example given here. If such features appear and coincide with a scaling value close
to 1, we can choose the first library length of the feature as the minimum of interest.

Figure 4.4e displays the difference between the atom-counts obtained by the hybrid method
and the statistics-based method for each atomic column. On average the number of atoms per
column differs by only 1.02 atoms between both methods. This confirms the reliability of the
results obtained with the hybrid method. In the next section, the performance of the hybrid
method will be examined in detail and compared to the statistics-based method.
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4.6 Atom-counting performance

The atom-counting performance can be quantified by the percentage of correctly counted
atomic columns. Therefore, we will calculate this percentage for different combinations of
the average number of columns per component N/G and the relative width of the components
σ/δ for the hybrid method, as well as for the statistics-based method. The relative width of the
components σ/δ is large when the signal-to-noise ratio is low, as is for example the case for low
dose images. In such cases, the fluctuations of the scattering cross section values for atomic
columns with the same thickness are large, causing subsequent Gaussian components to over-
lap significantly. This overlap is illustrated in Figure 4.1. Atomic columns in the tails of the
Gaussian components are then attributed to the wrong number of atoms, since the overlapping
neighbouring Gaussian component yields a higher probability. The average number of columns
per component N/G can be related to the size of the particle. A small particle corresponds to
a small value of N/G. The values of σ/δ and N/G determine how difficult it is to count the
number of atoms. They can therefore be referred to as the conditions for atom-counting. Note
that the value of N/G can be increased during an experiment by increasing the number of
atomic columns by for example imaging a larger field of view. The largest improvement in the
percentage of correctly counted atomic columns attained by the hybrid method is expected at
difficult conditions for atom-counting, corresponding to noisy images of small nanoparticles.

Figure 4.5: The average number of columns per component needed to obtain 50%, 85% or 95% cor-
rectly counted atomic columns by the hybrid method or the statistics-based method, for a certain relative
width of the components. Pink and cyan error bars correspond to the images analysed respectively in
Figures 4.8 and 4.9.

Noise realisations were created by performing random draws from Gaussian mixture models
with 10 components, as described in Section 4.3.1. The values of σ and N are varied. For
each combination, 100 such noise realisations were performed. The percentages of correctly
counted atomic columns, after evaluation of the ICL criterion, are displayed in Figure 4.5. The
ICL criterion, defined by Equation (4.13), was evaluated between library lengths 8 and 12. The
interpretation of the ICL criterion as discussed in Section 4.5 was applied in order to select the
minimum of interest. The average number of columns per component N/G required to correctly
count 50%, 85% and 95% of the atomic columns is evaluated as a function of the relative
width of the components σ/δ. The percentage of correctly counted atomic columns increases
with increasing average number of columns per component N/G and decreasing relative width
of the components σ/δ. However, the required N/G to reach a given percentage with the
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hybrid method is lower than the N/G needed to reach the same percentage using the statistics-
based method for constant σ/δ. In other words, the hybrid method does indeed outperform
the statistics-based method, especially for small nanostructures. Note that the percentage of
correctly counted atomic columns is determined by the selection of the library length after
an evaluation of the ICL criterion on the one hand, and by the overlap between the Gaussian
components, limiting the precision, on the other hand. We conclude from the results in Figure
4.5 that the most significant improvement is achieved at high values of σ/δ. These results
therefore suggest the possibility of reliably counting the number of atoms in samples where
counting was previously impossible, specifically in images of small, beam-sensitive particles
recorded using a lower electron dose.
In the remainder of this chapter, the hybrid method will be applied to two non-model like
systems: a tilted Pt nanoparticle and a Pt/Ir nanoparticle imaged using a low electron dose.

4.7 Atom-counting in the presence of sample tilt

The scaling relationship of Equation (4.1) was introduced to account for a possible mismatch
between experimental and simulated conditions, such as a difference in detector angles or sam-
ple mistilt. In this section, we will explicitly impose such a mismatch, by considering simu-
lated ADF STEM images of a hypothetical Pt nanoparticle with various amounts of sample tilt,
while the image simulations for the library were performed in zone axis orientation. The effect
of sample tilt on the quantification of ADF STEM image intensities was previously studied in
Chapter 3. Scattering cross sections decrease when the sample is tilted away from zone axis
orientation, due to a loss of the channelling conditions [Loane 1988, Van Dyck 1996, E 2013,
MacArthur 2015]. We concluded that this loss in intensity can not be recovered by altering
the parametric imaging model fitted to the ADF STEM image intensities using 2D elliptical
Gaussians, although the residual intensities on a pixel by pixel basis are in fact smaller. There-
fore, the validation of the counting results obtained from a tilted sample by the statistics-based
method for atom-counting using independent image simulations of the crystal in zone axis
orientation is not straightforward. Nonetheless, reliable atom-counting is possible, using the
hybrid method introduced in this chapter. In this section, we apply the hybrid method to an
example with sample tilt. To this purpose, we simulated ADF STEM images of a hypothetical
Pt nanoparticle for which the atomic structure is shown in Figure 4.6a. Images were simu-
lated corresponding to zone axis orientation, shown in Figure 4.6b, and with different amounts
of sample tilt, up to 40 mrad, shown in Figure 4.6c. Simulation parameters are summarised
in Appendix A. Furthermore, we create a library of scattering cross sections with the same
microscope settings, corresponding to a zone axis oriented Pt crystal, as described in Section
2.6. Note that the ADF STEM images are analysed without noise, i.e. at infinite dose. In this
manner, we can evaluate how well the scaling parameter a can compensate for the sample tilt,
without mixing the interpretation of the results with dose effects.
Figure 4.7a evaluates the estimated scaling parameter as a function of the sample tilt, as well
as the percentage of correctly counted atomic columns. The hybrid method achieves more than
95% correctly counted atomic columns, even in the presence of sample tilt. At all tilt angles,
at most one or two atomic columns are miscounted by 1 atom, as shown in Figure 4.7b-e.
The ground truth number of atoms per atomic column is visualised in Figure 2.6a of Section
2.7, where this hypothetical Pt nanoparticle was previously used to demonstrate the difference
between component number and number of atoms in the statistics-based method.
As expected, the scaling parameter is estimated close to 1 for the zone axis orientation. Then,
after a plateau at small tilt angles, similar to the results of [MacArthur 2015], the scaling pa-
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Figure 4.6: (a) Visualisation of the Pt nanoparticle. The tilt direction used in the simulation study is
shown schematically. (b) Simulated ADF STEM image of the Pt nanoparticle in zone axis orientation.
(c) Simulated ADF STEM image of the Pt nanoparticle with a sample tilt of 40 mrad.

Figure 4.7: (a) Estimated scaling parameter and percentage of correctly counted atomic columns using
the hybrid method for atom-counting from simulated ADF STEM images of the hypothetical Pt nanopar-
ticle shown in Figure 4.6, evaluated as function of sample tilt. (b-d) Difference counts as compared to
the ground truth (Figure 2.6a) at 0, 10, 25 and 40 mrad sample tilt respectively.

rameter decreases with increasing sample tilt. This demonstrates the applicability of the hybrid
method for atom-counting in case of sample tilt, which is often unavoidable for small, beam-
sensitive nanoparticles. Beam-sensitive nanomaterials furthermore should be images using a
low electron dose, in order to avoid radiation damage. Therefore, in the next section, an ex-
perimental low dose image is analysed for which reliable atom-counting was previously not
possible using the statistics-based counting procedure.

4.8 Atom-counting from a low dose ADF STEM image of a Pt/Ir
nanoparticle

In the present section, the hybrid method is used to count the number of atoms in a challeng-
ing experimental, relatively low dose image of a small Pt/Ir particle, shown in Figure 4.8a
and previously discussed in Section 2.7. The particle was supported on a three-dimensional
carbon black support and was received in powder form dusted onto a carbon coated copper
grid. The image was taken by Armand Béché at the QuAntEM, a double corrected FEI Titan3

working at 300 kV. The difference in atomic number between Ir (Z=77) and Pt (Z=78) is only
one, causing a difference of less than 3% in the scattering cross sections up to 15 atoms in
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a projected atomic column. Therefore, Pt and Ir can be analysed together for the purpose of
counting the number of atoms per column. The library of simulated scattering cross sections
was created, as described in Section 2.6, assuming Pt only. Using the statistics-based method,
a significant mismatch between the estimated locations and the simulated scattering cross sec-
tions was found [De Backer 2015b]. This can be understood from Figure 4.5, where the pink
error bar corresponds to the estimated N/G and σ/δ values for this low dose image. It was
shown that the statistics-based method underestimates the model order due to the insufficient
electron dose [De Backer 2015b].

Figure 4.8: (a) Experimental ADF STEM image of a platinum-iridium nanoparticle recorded using an
electron dose of 6.5 · 104 e−/Å2 [De Backer 2015b]. (b) Set of estimated scattering cross sections. The
solid black curve shows the estimated Gaussian mixture model, whereas the coloured curves indicate
the individual components. (c) ICL criterion, with two axes, indicating library length and estimated
value of the scaling parameter a. (d) Atom-counts for the platinum-iridium nanoparticle. (e) Scattering
cross sections evaluated as a function of the number of atoms per column.

Figure 4.8 summarises the analysis of this relatively low dose image of the Pt/Ir particle using
the hybrid method. The set of estimated scattering cross sections is shown in Figure 4.8b. By
assessing the ICL criterion as a function of the library length and the scaling parameter, the
minimum of interest is chosen at the significant local minimum which occurs at library length
13, as indicated in Figure 4.8c. The estimated scaling parameter at this library length is close to
the expected value of 1. The resulting estimated probability distribution of the scattering cross
sections is shown in Figure 4.8b by a black curve. The individual components that compose
the distribution are displayed in different colours. In Figure 4.8d, each atomic column was
assigned the number of atoms corresponding to the highest probability based on the estimated
probability distribution. The intensity/thickness graph in Figure 4.8e evaluates the estimated
locations by the statistics-based method, the estimated locations by the hybrid method, and the
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simulated scattering cross sections (library), as a function of the number of atoms per column.
A mismatch between estimated cross sections and simulated cross sections is no longer found
by the hybrid method, since the scaling parameter is estimated almost equal to 1. The hybrid
method therefore enables us to overcome the limitations of the statistics-based method. Note
that the local minimum in the ICL criterion at library length 16 should also be considered. The
corresponding scaling parameter of 0.8 can however not be explained. High dose experiments
on the same day confirm that the detector inner angle was accurately determined and visual
interpretation of the image excludes a large sample tilt [De Backer 2015b]. Therefore, we have
sufficient arguments to accept the local minimum at the scaling value closest to 1.

Figure 4.9: (a) Hypothetical ADF STEM image corresponding to a low electron dose of 103 e−/Å2,
based on the platinum-iridium nanoparticle from Figure 4.8. (b) Set of estimated scattering cross sec-
tions. The solid black curve shows the estimated Gaussian mixture model, whereas the coloured curves
indicate the individual components. (c) ICL criterion, with two axes, indicating library length and
estimated value of the scaling parameter a. (d) Atom-counts for the simulated low dose image of a
nanoparticle. (e) Difference in atom-counts between original image and the simulated lower dose im-
age.

Thus far, we have shown that the hybrid method enables us to reliably count the number of
atoms per column in an experimental image from which reliable atom-counting was previously
impossible due to an insufficient electron dose. In order to investigate the possibilities at even
lower electron doses, a hypothetical low dose image of the small nanoparticle is now treated
with the hybrid method. This analysis is summarised in Figure 4.9. The simulated image
is obtained by performing a Poisson distributed random draw from the model fitted to the
Pt/Ir nanoparticles, corresponding to an electron dose of only 103 e−/Å2. The resulting image
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is shown in Figure 4.9a. The estimated scattering cross sections obtained from this image
are displayed in Figure 4.9b. Based on the ICL criterion from Figure 4.9c, the minimum of
interest is chosen at a library length of 13, as was also the case for the original image of the
Pt/Ir nanoparticle. The corresponding scaling parameter is estimated equal to a = 0.99. The
estimated probability distribution at this library length is shown in Figure 4.9b. The lowering of
the electron dose resulted in a broadening of the components estimated in the Gaussian mixture
model from σ/δ = 0.3960 ± 0.0049 (pink error bar in Figure 4.5) to σ/δ = 0.4243 ± 0.0056
(cyan error bar in Figure 4.5), resulting unavoidably in a more limited precision. However, the
correct library length is still retrieved, despite the low electron dose. Atom-counts are shown
in Figure 4.9d. The atom-counts obtained from the analysis of this low dose image of the Pt/Ir
nanoparticle differ no more than ±1 atom as compared to the results obtained from the original,
relatively low dose image of the Pt/Ir nanoparticle, as shown by the difference map in Figure
4.9e.
We conclude from the results in the present section that the hybrid method for atom-counting
holds promise for quantitative analysis of challenging, beam-sensitive nanoparticles, thanks to
its ability to overcome challenges presented by very low electron doses.

4.9 Conclusions

In this chapter, an improved method for atom-counting from ADF STEM images of monatomic
crystalline nanostructures has been presented. This method was shown to exceed the limita-
tions of the existing atom-counting methods, by directly combining image simulations and
statistical parameter estimation theory. The method exploits prior knowledge obtained from
image simulations, without suffering from the unknown accuracy of the experimental parame-
ters used in these image simulations. We have demonstrated that the parameters are estimated
accurately and precisely. Interestingly, the relative width of the Gaussian components that de-
scribe the fluctuations of scattering cross sections that correspond to atomic columns with the
same thickness, is estimated more accurately. This leads to a more reliable quantification of
the atom-counting precision.
Similarly to the statistics-based method, an order selection criterion is required for the selection
of the physically correct number of components in the probability distribution of the scattering
cross sections. We demonstrated how the linear scaling parameter, that is introduced in the
hybrid method in order to incorporate the library values in the probability distribution, can
facilitate the interpretation of this order selection criterion. In this manner, this becomes a less
subjective part of the quantitative analysis.
Counting results have been validated using a high dose image of a gold nanorod. A simulation
study shows that the largest improvement in atom-counting performance is realised for low
dose images of small nanoparticles, conditions for which the statistics-based method can no
longer obtain reliable atom-counts. Furthermore, image simulations of a hypothetical platinum
nanoparticle demonstrate that reliable atom-counting is even possible in the presence of sample
tilt with the hybrid method. The improved low-dose performance is confirmed by the analysis
of a small platinum-iridium nanoparticle imaged using a relatively low electron dose, which
could not be analysed reliably using the statistics-based method, and by the successful analysis
of a simulated image at an even lower electron dose.
It should be noted that the description of the performance for atom-counting in Section 4.6
in fact assumes that the linear scaling relationship between simulated scattering cross sections
and experimental scattering cross sections accurately describes the combined effect of mea-
surement errors in different experimental input parameters of the image simulations. Although
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it is shown that this linear scaling relationship provides a good first approximation, especially
for thin samples, the performance of the hybrid method may improve by refining this para-
metric function. Nonetheless, we have shown that the hybrid method is a promising first step
towards reliable atom-counting from low electron dose images of beam-sensitive materials.
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Appendix 4A: Cramér-Rao lower bound

We introduced the Cramér-Rao lower bound in Section 2.4 for a general estimator, and will now
apply this to the hybrid method for atom-counting. For unbiased estimators, the Cramér-Rao
lower bound defines the lower bound on the variance [Rao 1945, Cramér 1946]:

cov(Ψ̂G, Ψ̂G) ≥ F−1
ΨG
, (4.16)

with Ψ̂G the vector containing the estimators of the parameters summarised in the parameter
vector ΨG, and FΨG the Fisher information matrix, which is defined as follows for the hybrid
method for atom-counting:

FΨG = −E

∂2 ln p(V|ΨG)
∂ΨG∂Ψ

T
G

∣∣∣∣∣∣
ΨG=Ψ0

 , (4.17)

where E expresses the expectation value. In this expression, p(V|ΨG) represents the joint prob-
ability density function, in this case determined by the Gaussian mixture model fmix(V|ΨG),
defined in Equations (4.6)-(4.2). This Gaussian mixture model describes the probability distri-
bution of the set of scattering cross sections V, and is determined by the unknown parameters
expressed by the parameter vector ΨG, given in Equation (4.5). The vector Ψ0 contains the ac-
tual values of the parameters to be estimated. In practice, the following integral is numerically
integrated:

FΨG = −N
∫ ∞

−∞

∂2 ln fmix(V |ΨG)
∂ΨG∂Ψ

T
G

∣∣∣∣∣∣
ΨG=Ψ0

fmix(V |ΨG)dV , (4.18)

with N the total number of columns in the image.
Notation is simplified as follows:

N(Vn|aMg, σ) = Ng, (4.19)
fmix(Vn|ΨG) = fmix, (4.20)

p(V|ΨG) = p. (4.21)

The necessary first and second order derivatives to obtain the Fisher information matrix for all
parameters in the parameter vector ΨG are listed here:

∂ ln p
∂πi

=

N∑
n=1

Ni − NG

fmix
, (4.22)

∂ ln p
∂a

=

N∑
n=1

1
fmix

G∑
g=1

πgNg
(Vn − aMg)Mg

σ2 , (4.23)

∂ ln p
∂σ

=

N∑
n=1

1
fmix

G∑
g=1

πgNg

(
(Vn − aMg)2

σ3 −
1
σ

)
, (4.24)

and

∂2 ln p
∂πi∂πk

= −

N∑
n=1

(Ni − NG)(Nk − NG)
f 2
mix

, (4.25)
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∂2 ln p
∂πi∂a
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Finally, the lower bound on a function of estimated parameters is determined by Equation
(4.31).

cov(γ̂) ≥
∂γ(θ)
∂θT

F−1
θ

∂γ(θ)T

∂θ
(4.31)

Since πG = πG(π1, π2, ..., πG−1) = 1−
∑G−1

g=1 πg, the lower bound on the variance of πG is expressed
as follows:

var(πG) ≥
∂πG(θ)
∂θT

F−1
(π1π2...πG−1)

∂πG(θ)T

∂θ
, (4.32)

with
∂πG(θ)
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and
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∂
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 = −1. (4.34)
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Using these expressions, we obtain all elements of the Fisher information matrix of Equation
(4.18).



5
Hidden Markov model for atom-counting

from an ADF STEM time series

5.1 Introduction

In the previous chapter a so-called hybrid statistics-simulations based method for atom-counting
from an ADF STEM image was introduced. This approach allows us to reliably count the
number of atoms in a nanomaterial, also at lower electron doses, as compared to the statistics-
based atom-counting procedure, introduced in Section 2.7. However, this approach was de-
signed for the analysis of a single ADF STEM image. In many cases, the atomic structure
of the nanomaterial of interest will not remain constant through time. The atomic structure
can change for example via adatom dynamics [Chang 2014, Furnival 2018], surface diffusion
and reconstruction [Surrey 2012, Schneider 2014, Cherepanov 2004, Buffat 2003, Yu 2019],
beam effects [Iijima 1986, Batson 2008, Egerton 2010, Lee 2013] or during in situ experi-
ments [Taheri 2016, Altantzis 2019]. As such, the insight in the structural dynamics is missing
from the analysis of only a single electron microscopy image. Therefore, we suggest an ap-
proach for atom-counting from a time series of ADF STEM images, using a so-called hidden
Markov model [De wael 2020a, De wael 2020b]. Hidden Markov models were successful
in other fields of science for applications such as speech recognition, sequence alignment of
protein structures, electrocardiogram characterisation and condition-based maintenance of in-
dustrial machines [Rabiner 1989, Bilmes 1998, Eddy 2004, Bishop 2006, Dymarski 2011] and
have optimal properties for modelling and analysing time series data. Here, for the first time,
we apply hidden Markov models to ADF STEM data.
We start by introducing the general framework of the hidden Markov model in Section 5.2.
Next, in Section 5.3, we discuss in detail how this model can be used to determine the prob-
ability distribution of the scattering cross sections, which enables atom-counting from a time
series of ADF STEM images. Then, in Section 5.4, we discuss the estimation of the parameters
of this probability distribution using an iterative Expectation-Maximisation algorithm, called
a Baum-Welch algorithm in the context of hidden Markov models. These estimated parame-
ters can then be used to retrieve the most likely counting results for the entire time series by

This chapter is based on [De wael 2020a, De wael 2020b].
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applying the Viterbi algorithm. Next, we study the accuracy and precision of the parameter
estimation, in order to assure that we can perform a reliable quantification. Finally, in Section
5.5, we discuss the performance for atom-counting of this hidden Markov model and show the
improvement as compared to the hybrid method for atom-counting from the previous chapter,
before concluding this chapter in Section 5.6.

5.2 The hidden Markov model

A hidden Markov model consists of two layers. The first layer is “hidden”, and is observed
only indirectly through the observed sequence that constitutes the second layer of the hidden
Markov model. These two layers are respectively shown in light and dark grey in the schematic
representation of a general hidden Markov model in Figure 5.1a. In the following, ht will
represent the hidden state at time t, and ot will represent the observation at the same time t.
The hidden state sequence is called H = {h1, · · · ,hT }, with T the length of the time series, and
the observed sequence is called O = {o1, · · · , oT }. The first layer is a first order Markov chain.
This implies that the state at a given time t depends only on the previous state, at time t − 1,
and not on the state of the system before that [Drake 1967]:

p(ht|ht−1,ht−2, · · · ,h1) = p(ht|ht−1). (5.1)

The (hidden) states of the Markov chain have an initial probability p(h1) - blue in Figure 5.1,
and can subsequently change state with a probability p(ht|ht−1), called the transition probability
- green in Figure 5.1. Each hidden state is observed via an observation ot, with a probability
p(ot|ht), called the emission probability - red in Figure 5.1. The joint probability density func-
tion of the hidden state sequence H and the observed sequence O can be expressed as follows:

p(H,O) = p (h1)
T∏

t=2

p (ht|ht−1)
T∏

t′=1

p (ot′ |ht′) . (5.2)

In the remainder of this chapter, we will specifically consider discrete hidden states that change
according to discrete transition probabilities, and that emit continuous observations according
to a continuous emission probability. The (discrete) transition probabilities that describe the
state changes in the Markov chain are therefore summarised by a transition matrix, while a
continuous probability density function will be used to model the emission probability.
In the context of atom-counting, the hidden states of the first layer correspond to the number
of atoms in each atomic column at each image of the time series. This is schematically shown
in the top row of Figure 5.1b. The number of atoms in each atomic column of the nanoparticle
in each frame can only be observed indirectly through the ADF STEM images - shown in the
bottom row of Figure 5.1b, from which scattering cross sections can be estimated, as described
in Section 2.5. The transition probabilities will be related to the probability for an atomic
column to lose or gain atoms from frame to frame during the time series. In this manner, the
hidden Markov model will allow for the quantification of structural changes in nanoparticles.
In the next section, we will discuss in detail how the hidden Markov model can be applied to
atom-counting from time series of ADF STEM images.

5.3 Probability distribution of scattering cross sections

In order to apply hidden Markov models to atom-counting, we will consider the number of
atoms in each atomic column n in each image t of the time series as a hidden state, visualised in
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Figure 5.1: Schematic representation of the hidden Markov model. (a) General hidden Markov model.
(b) Hidden Markov model for atom-counting from time series of ADF STEM images.

the top row of Figure 5.1b. A specific type of hidden Markov models, called the factorial hidden
Markov model is used, in which the states are factorised [Ghahramani 1997]. We introduce the
notation h(n)

t to represent the hidden state (number of atoms) at time t for atomic column n. In
the context of hidden Markov models, this is commonly chosen as a binary vector, rather than
directly expressing the value of the hidden state, as this will facilitate further calculations. The
gth element of this binary vector, h(n)

tg , equal to 1 if the number of atoms in the atomic column
n in frame t equals g, otherwise h(n)

tg = 0. The observations for each atomic column n at each
time t are the scattering cross sections

ô(n)
t = V̂n, (5.3)

estimated from the ADF STEM images using Equations (2.14) and (2.15), as described in
Section 2.5. This is visually represented in the bottom row of Figure 5.1b.
In order to understand the meaning of the initial, transition and emission probability (blue,
green and red in Figure 5.1 respectively) introduced in the previous section in the context of
time series atom-counting, we first consider the limit of atom-counting from a single ADF
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STEM image. Indeed, for a single image, the probability distribution of the scattering cross
sections should correspond to that of the single frame counting procedure, previously expressed
in Equations (4.2)-(4.4):

p(O) =
N∏

n=1

G∑
g=0

πgN
(
on|aMg, σ

)
, (5.4)

with on the stochastic variable related to the scattering cross section of atomic column n in the
single frame. All scattering cross sections are summarised in the vector O. In order to see
the analogy, we approach the single frame counting procedure as an incomplete data problem.
In this approach, the component indices g of the Gaussian mixture model are considered as
hidden data. It is important to note that the component index g corresponds immediately to the
number of atoms g in the atomic column, as a result of Equation (4.1) introduced for the hybrid
approach discussed in the previous chapter. The complete data description then corresponds to
the joint observations of the scattering cross sections with the corresponding (hidden) number
of atoms for each atomic column. We can define H = {h(n)} as the matrix that contains these
hidden states, expressed by binary vectors with elements h(n)

g = 1 if and only if atomic column n
contains precisely g atoms. This leads to the following joint probability density for the hidden
states H and the observations O:

p(O,H) =
N∏

n=1

G∏
g=0

(
πgN

(
on|aMg, σ

))h(n)
g
, (5.5)

which reduces to Equation (5.4) after marginalising over all combinations of possible hidden
states H. In this expression, h(n)

g is the stochastic variable related to the binary vector that
expresses the hidden state.
By substituting T = 1 in Equation (5.2), and comparing this with Equation (5.5), it follows
that the emission probability p(ot|ht) - red in Figure 5.1 - should be modelled using a Gaussian
distribution around the average scattering cross sections at given thickness. The probability to
observe a scattering cross section with value o(n)

t when g atoms are in the atomic column, is
modelled by a Gaussian emission probability as follows:

p(o(n)
t |h

(n)
tg ) = N

(
o(n)

t |µg, σ
)
, (5.6)

with mean value µg and width σ. In this expression, the average scattering cross section for an
atomic column with g atoms is determined by µg = aMg, with a a linear scaling parameter and
Mg the library value, i.e. the scattering cross section determined from image simulations, for an
atomic column with g atoms, as in Chapter 4. In this manner, we include prior knowledge from
image simulations, but allow for small deviations between the parameters used for the image
simulations and the actual experimental imaging conditions by estimating the linear scaling
parameter a.
The mixing proportions πg are equivalent to the initial probabilities used in the hidden Markov
model - blue in Figure 5.1, and quantify the probability that an atomic column will have g
atoms. The initial probabilities will be written as ιg in the remainder of this chapter:

p(h(n)
1g ) = ιg. (5.7)

The extension from single frame to time series atom-counting is done by introducing the dis-
crete transition probabilities p(ht|ht−1). The probability that an atomic column n has j atoms at
a given time t and g atoms at the next time t + 1 is written as

p(h(n)
t+1,g|h

(n)
t, j ) = A jg. (5.8)
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All possible transition probabilities A jg are summarised in the transition matrix

A =
{
A jg

}
. (5.9)

The mixing proportions correspond to the probability of having g atoms in an atomic column.
During the time series, these probabilities are modified by the transition probabilities A jg. We
can therefore derive mixing proportions at each frame t, to quantify how the probability of
having g atoms in an atomic column is changed after each transition from one frame to the
next. The mixing proportion at frame t = 1 is given by

π(1)
g = ιg. (5.10)

In a frame t > 1, the probability of having g atoms in an atomic column depends on the
probabilities for all possible transitions j→ g from frame t−1 to frame t, and on the probability
distribution for the different thicknesses j in the previous frame, such that:

π(t)
g =

G∑
j=0

π(t−1)
j A jg. (5.11)

In Section 6.2, we will use this expression to link the transition probabilities to a physical
cross section related to structural changes. Note that the transition probabilities defined in this
manner do not pose any restrictions on the physical mechanism causing the changes in the
atomic structure during the time series.
We now obtain the following joint probability density function of the observed sequence O and
hidden state sequence H for the factorial hidden Markov model for atom-counting:

p(O,H|Ω) =
N∏

n=1

G∏
g=0

(
ιg
)h(n)

1g (5.12a)

×

T∏
t=2

N∏
n=1

G∏
j=0

G∏
g=0

(
A jg

)h(n)
t−1, jh

(n)
tg (5.12b)

×

T∏
t=1

G∏
g=0

N∏
n=1

(
N(o(n)

t |aMg, σ)
)h(n)

tg
, (5.12c)

with h(n)
tg and o(n)

t the stochastic variables related to the number of atoms g and the scattering
cross section of atomic column n in frame t, summarised in H and O respectively. Note that
we have now included the explicit dependence on the parameter vector Ω in the complete
data likelihood function of Equation (5.12). The parameter vector summarises all unknown
parameters of the hidden Markov model:

Ω =
(
ι0, ι1, · · · , ιG−1, A00, · · · , A0,G−1, A10, · · · AG,G−1, a, σ

)T
. (5.13)

In Equation (5.12), G is the maximum number of atoms in any atomic column of the time
series and T is the number of frames in the time series. The product over the number of atoms
starts from 0, in order to allow atomic columns to be absent in some of the frames. The initial
probability ιg expresses the probability for an atomic column to contain g atoms in the first
frame. Only G initial probabilities are estimated, since

G∑
g=0

ιg = 1. (5.14)
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The transition probability A jg expresses the probability that an atomic column has j atoms in
one frame and g atoms in the next frame. All transition probabilities, for 0 ≤ j ≤ G and
0 ≤ g ≤ G are summarised in the (G+1)× (G+1) transition matrix A. Only (G+1)G transition
probabilities are estimated, since

G∑
g=0

A jg = 1, ∀0 ≤ j ≤ G. (5.15)

The incomplete data likelihood is derived from Equation (5.12) after marginalising over all
combinations of possible hidden state sequences H:

p(O|Ω) =
∑

H

p(O,H|Ω)

=

N∏
n=1


G∑

g(n)
1 =0

· · ·

G∑
g(n)

T =0

ιg(n)
1

T∏
t=2

Ag(n)
t−1g(n)

t

T∏
t′=1

N

(
o(t′)

n |aMg(n)
t′
, σ

) , (5.16)

where g(n)
t expresses the effective number of atoms in a column n at a given time t. When

gn
t = k, this is equivalent to h(n)

tk = 1, while all other elements of the state vector h(n)
t are zero.

This expression indeed reduces to the Gaussian mixture model from Equation (5.4) for T = 1.
In this manner, it is clear that the factorial hidden Markov model for atom-counting from a time
series can be considered as a generalisation of the hybrid statistics-simulations based method
for atom-counting from the previous chapter.
Next, we will discuss how to estimate the parameters of the factorial hidden Markov model
for atom-counting, which has been implemented in the freely available StatSTEM software
package [De Backer 2016, De wael 2020a, De wael 2020b].

5.4 Parameter estimation

5.4.1 Baum-Welch algorithm

The parameters of the factorial hidden Markov model are estimated using an Expectation-Max-
imisation (EM) algorithm [Dempster 1977,McLachlan 1996]. For hidden Markov models, this
algorithm was formulated by Baum et al. before the appearance of the EM algorithm, and
it is therefore typically called the Baum-Welch algorithm in the context of hidden Markov
models [Baum 1968]. The EM algorithm is an iterative updating algorithm, consisting of two
steps: an E-step, and an M-step. During the E-step, the likelihood is evaluated, and this quantity
is maximised during the M-step.
The complete data likelihood for the factorial hidden Markov model for atom-counting has the
same functional form as the joint probability density function expressed in Equation (5.12), but
is evaluated as a function of the model parameters Ω:

L(Ω) = p(Ô,H|Ω)

=

N∏
n=1

G∏
g=0

(
ιg
)h(n)

1g

×

T∏
t=2

N∏
n=1

G∏
j=0

G∏
g=0

(
A jg

)h(n)
t−1, jh

(n)
tg
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×

T∏
t=1

G∏
g=0
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n=1

(
N(ô(n)

t |aMg, σ)
)h(n)

tg
. (5.17)

In practice, the parameter estimates are obtained by maximising the following auxiliary func-
tion, which is in fact the expectation value of the logarithm of the complete data likelihood
function [Baum 1968, Rabiner 1989, McLachlan 2000, Bishop 2006]:

Q(Ω,Ωold) = E
[
ln p(Ô,H|Ω)

]
=

N∑
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G∑
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[
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E
[
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]
lnN

(
ô(n)

t |aMg, σ
)
. (5.18)

In order to evaluate the likelihood, or equivalently this auxiliary function, the expectation val-
ues E

[
h(n)

tg

]
and E

[
h(n)

t−1, jh
(n)
tg

]
need to be determined. This is done during the E-step of the EM

algorithm, and is described in more detail in Appendix 5A. Note that when T = 1, the expec-
tation value E

[
h(n)

tg

]
is equivalent to Equation (4.15) used during the E-step of the Expectation-

Maximisation algorithm for the hybrid method, discussed in Section 4.3. These expectation
values can then be used during the M-step to determine the updates for each parameter in the
parameter vector Ω. The update formulas are expressed by the following equations:

ι(k+1)
g =

∑N
n=1 E

[
h(n)

1g

](k)

∑N
n=1

∑G
j=0 E

[
h(n)

1 j

](k) , (5.19)
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σ(k+1) =
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Note that when T = 1, these update formulas for ιg, a and σ are equivalent to the update
formulas for the πg, a and σ expressed by Equations (4.8), (4.9) and (4.10) used during the M-
step of the Expectation-Maximisation algorithm for the hybrid method, discussed in Section
4.3.
The expected values E

[
h(n)

tg

]
and E

[
h(n)

tg h(n)
t−1, j

]
of the hidden states are evaluated during each

iteration k of the E-step of the EM algorithm. Note that when T = 1, the expectation value
E

[
h(n)

tg

]
is equivalent to Equation (4.15) used during the E-step of the Expectation-Maximisation

algorithm for the hybrid method, discussed in Section 4.3. The iterative parameter updates are
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initialised by starting values. For the initial probabilities and transition probabilities, uniform
starting values are used:

ι(0)
g =

1
G + 1

, (5.23)

A(0)
jg =

1
G + 1

, (5.24)

where G+1 is the number of different thicknesses considered during the analysis, as the count-
ing is allowed to start from 0 atoms. In this manner, no prior knowledge on the thickness distri-
bution of the nanostructure or the amount of structural changes that might occur during the time
series is included in the parameter estimation procedure. The scaling parameter is initialised by
a = 1, which implies that we expect no or only small deviations between the parameters used
to perform the image simulations and the actual experimental settings. Estimating the scaling
parameter will nonetheless allow for some small variations, enabling us to account for small
mismatches between experiment and image simulation. The width is initialised by

σ(0) =
max(Ô) −min(Ô)

2(G + 1)
. (5.25)

The maximum number of atoms in an atomic column G that is considered during the analysis
should be chosen larger than the maximum number of atoms one might expect from prior
knowledge about the material such as sample preparation or additional information resulting
from extra viewing directions.

5.4.2 Retrieving counting results: Viterbi algorithm

Once the parameters of the hidden Markov model are estimated, we can use them to determine
the counting results. We could determine the individually most likely number of atoms in
atomic column n at time t as

q(n)
t = arg max

0⩽g⩽G

(
E

[
h(n)

tg

])
, for 1 ⩽ t ⩽ T. (5.26)

In fact, this would correspond to the procedure for retrieving counting results using the hybrid
method discussed in Chapter 4, if this would be used to collectively analyse the scattering cross
sections of a time series. This so-called collective hybrid method for atom-counting, which
will be used in Chapter 6 to compare the performance of the hidden Markov model with single
frame approaches, then discards the time aspect, and analyses all scattering cross sections in
a single vector, as if they would have originated from a single frame. Then, after finding the
most likely number of atoms that corresponds to each scattering cross section, the counts can
be reattributed to the different frames of the time series.
However, the transition probability from t − 1 to the state at time t may be estimated equal
or close to zero during the hidden Markov model parameter estimation, causing this state to
be invalid or highly unlikely. Therefore, an algorithm is required to consider the entire time
series, given the set of estimated transition probabilities: the Viterbi algorithm will determine
the most likely hidden state sequence H [Viterbi 1967, Forney 1973]. A derivation of this path
backtracking algorithm is provided in Appendix 5A.
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5.4.3 Accuracy & precision

Now that we have introduced the algorithm to perform the parameter estimation of the hidden
Markov model for atom-counting, we will evaluate the accuracy and precision of the estimated
parameters using a simulation example. In Section 2.4, we introduced the concepts of accuracy
and precision, and the Cramér-Rao lower bound (CRLB). The CRLB expresses the highest at-
tainable precision for an accurate estimator. In order to perform a reliable quantitative analysis,
the parameters of the probability distribution should be estimated accurately and precisely.
In order to assess accuracy and precision, we study a hypothetical hidden Markov model with
T = 6 frames, N = 20 atomic columns in each frame and a maximum number of atoms in a
column of G = 2, without taking columns with zero atoms into account. We use a relative width
of the Gaussian emission probability of σ/δ = 0.1. The initial probabilities are uniformly dis-
tributed, and from frame to frame the number of atoms changes according to a transition matrix
with a Gaussian distribution around the diagonal. Input values for the transition probabilities,
and all other parameters of the hidden Markov model, are listed in the second column of Table
5.1. In the emission probability, we use a Pt library that consists of simulated scattering cross
sections, i.e. the library valuesMg, obtained from HAADF STEM image simulations using the
MULTEM software [Lobato 2014, Lobato 2015, Lobato 2016] for Pt(110) at 300 keV, using a
21 mrad semi-convergence angle, 58-190 mrad detector collection range, and a pixel size of 9.1
pm. This library corresponds to the experimental images of a Pt wedge that will be discussed in
Sections 6.3 and 6.2. In the second column of Table 5.2, we list the Cramér-Rao lower bound
for each parameter. The derivation of the Cramér-Rao lower bound is given in more detail in
Appendix 5B.

Parameter Input value Sample mean 95% confidence interval
Lower bound Upper bound

ι1 0.5000 0.4970 0.4758 0.5182
ι2 0.5000 0.5030 0.4818 0.5242
A11 0.7742 0.7752 0.7568 0.7937
A12 0.2258 0.2248 0.2063 0.2432
A21 0.2258 0.2385 0.2201 0.2570
A22 0.7742 0.7615 0.7430 0.7799
a 1.0000 1.0006 0.9993 1.0018
σ 1.110 · 10−3 1.114 · 10−3 1.100 · 10−3 1.127 · 10−3

Table 5.1: Accuracy of the parameter estimates of the hidden Markov model for atom-counting. The
sample means are computed from parameter estimates obtained from 100 noise realisations of the hidden
Markov model and compared with the input values of the model parameters.

In order to study whether the parameter estimation as described before in Section 5.4 is per-
formed accurately and precisely, we created 100 noise realisations of this hypothetical hidden
Markov model. For each noise realisation, multinomially distributed random draws from the
initial probabilities described above are used. For the transition probabilities, multinomially
distributed random draws are performed from each row of the input transition matrix, and the
scattering cross sections for each frame of the observed sequence for the time series are drawn
randomly from the Gaussian emission probability. From these noise realisations, 95% confi-
dence intervals on the mean and variance of the estimated parameters are calculated and sum-
marised in Tables 5.1 and 5.2. From these results, we can conclude that parameter estimation
is performed accurately and very precisely. For the initial probabilities ιg, scaling parameter a
and width σ, we even have most precise parameter estimation, as the CRLB for these parame-
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Parameter CRLB Sample variance 95% confidence interval
Lower bound Upper bound

ι1 0.0139 0.0113 0.0088 0.0155
ι2 0.0139 0.0113 0.0088 0.0155
A11 0.0027 0.0085 0.0067 0.0117
A12 0.0027 0.0085 0.0067 0.0117
A21 0.0027 0.0086 0.0067 0.0117
A22 0.0027 0.0086 0.0067 0.0117
a 3.46 · 10−3 4.18 · 10−3 3.22 · 10−3 5.64 · 10−3

σ 3.94 · 10−7 4.72 · 10−7 3.64 · 10−7 6.37 · 10−7

Table 5.2: Precision of the parameter estimates of the Hidden Markov model for atom-counting. The
sample variances are computed from parameter estimates obtained from 100 noise realisations of the
hidden Markov model and compared with the Cramér-Rao lower bound for the model parameters.

ters falls within the 95% confidence intervals on the variance. The 95% confidence interval on
the sample variance of the transition probabilities however, does not include the Cramér-Rao
lower bound. In Figure 5.2, the precision of the estimated transition probabilities is evaluated
as a function of the length of the time series T . At larger lengths, the sample precision of the
estimated transition probabilities approaches closer to the Cramér-Rao lower bound, indicating
that the maximum likelihood estimates reach the Cramér-Rao lower bound.

Figure 5.2: Accuracy (a) and precision (b) of the estimated transition probabilities A jg as a function of
the length of the time series T . When the number of frames T increases, the sample precision (displayed
with 95% confidence intervals) approaches the Cramér-Rao lower bound (CRLB).

We conclude that we can reliably use this procedure to estimate the parameters of the hidden
Markov model for atom-counting, and thus perform a reliable quantification of the number of
atoms in a time series of ADF STEM images of a changing nanostructure.

5.5 Atom-counting performance

In order to illustrate the benefits of the hidden Markov model for atom-counting from a time
series of ADF STEM images, introduced in Chapter 5, we compare its performance to the hy-
brid statistics-simulations based method for atom-counting from Chapter 4, which was shown
to outperform the statistics- and simulations-based atom-counting procedures. For the hybrid
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method, the scattering cross sections of all frames of the time series are jointly analysed, such
that the counting results are based on the same set of observations as the hidden Markov model.
The counting results are then extracted per frame from this so-called collective analysis, anal-
ogous to the collective analysis performed previously in [De Backer 2015b] and [Varamb-
hia 2016]. In the remainder of this thesis, we will call this approach the collective hybrid
method for atom-counting. First, we will study the performance as a function of electron dose
for a fixed length of time series. Later in this section, we will also study the effect of the length
of the time series on the atom-counting performance of the hidden Markov model.

5.5.1 Dose-dependent performance

We will study the performance using hypothetical time series generated from known counting
results. We start by comparing the atom-counting performance of the hidden Markov model
to that of the collective hybrid method at different electron doses. To this purpose we create
different hidden state sequences, based on the atomic structure of a changing Pt nanoparticle
with 215 atomic columns, and a thickness up to 15 atoms, similar to the experimental example
discussed in Section 6.4. We allow the number of atoms in each atomic column to change by
±1 from frame to frame throughout the time series, with a probability of 10%. An example
of the 3D atomic structure of the Pt nanoparticle and how it changes over time is shown in
Figure 5.3a. Note that, in this manner, we do not impose that the hidden state sequence is a
Markov chain. As such, we can assess the accuracy of modelling the changes in the number
of atoms during the time series as a Markov chain determined by discrete initial and transition
probabilities. From the hidden state sequence, a set of scattering cross sections is generated,
corresponding to the number of atoms in each atomic column. A Pt library was simulated that
matches the experimental conditions of the Pt nanoparticle that will be discussed in Section 6.4.
The scattering cross sections of each atomic column are generated from this Pt library, using
Poisson random draws in order to replicate the uncertainty from the finite electron dose. Ad-
ditionally, scan-distortion is included in the simulation of the scattering cross sections. Based
on a previous study, the effect of scan-distortion has been modelled as a normal distribution,
with an experimentally determined variance of 4.5 ·10−4µg, with µg the average scattering cross
section of an atomic column with g atoms [Van Aert 2019].
For each electron dose, 200 different noise realisations of such time series were constructed. In
Figure 5.3b, 95% confidence intervals on the average percentage of correctly counted atomic
columns by the hidden Markov model and the collective hybrid method are evaluated as a
function of the electron dose. The hidden Markov model counts the number of atoms in each
column more accurately, both at low electron doses, where Poisson noise dominates, and at high
electron dose, where the scan-distortion is the dominant noise contribution [Van Aert 2019].
The sequence of the number of atoms in each column in the hypothetical time series were
generated without imposing a discrete transition matrix. Nonetheless, it is possible to extract a
transition matrix that describes the changes in the state sequence, by considering the underlying
sequence of numbers of atoms as a Markov chain. This ground truth transition matrix is shown
in Figure 5.3c and 5.3d, for a noise realisation at low and high electron dose respectively.
In Figure 5.3e-5.3h, we show the estimated transition matrices using both methods for the
respective low and high dose noise realisations.
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Figure 5.3: (a) Example of the 3D atomic structure of the changing Pt nanoparticle discussed in Section
5.5.1. (b) Percentage of correctly counted atomic columns, with a 95% confidence interval as a function
of the electron dose in each individual frame. (c-h) Ground truth and estimated transition matrices using
the hidden Markov model analysis and the collective hybrid method with electron dose 5 · 102 e−/Å2

and 105 e−/Å2.



5.5. Atom-counting performance 69

Figure 5.4: Comparison of the performance for atom-counting from a time series of the hidden Markov
model and the collective hybrid method for atom-counting, at different noise levels σ/δ, evaluated as a
function of the length of the time series T .

The transition matrix for the collective hybrid method was estimated by considering the ob-
tained atom-counting results as a Markov chain. The transition matrix summarises the esti-
mated structural changes of the nanoparticle: diagonal elements correspond to the probabilities
that the number of atoms in an atomic column with a given thickness does not change from one
frame to the next and off-diagonal elements in the lower and upper triangle correspond to the
probabilities for an atomic column to lose or gain atoms respectively. From the comparison of
Figure 5.3g and 5.3h with the respective ground truth in Figure 5.3c and 5.3d, it is clear that
the collective hybrid method overinterprets intensity variations during the time series as actual
thickness changes, both at low and high electron doses. From Figure 5.3e and 5.3f on the other
hand, it is clear that the hidden Markov model far more accurately retrieves the transition prob-
abilities, in agreement with the findings in Section 5.4.3. The interpretation of the transition
probabilities in terms of dynamic structural changes of nanoparticles at the atomic scale will
be discussed in more detail in Section 6.2.

5.5.2 Time-dependent performance

Next, we study the effect of the length of the time series on the performance for atom-counting.
The results summarised in Figure 5.3 confirm that the hidden Markov model can be applied
to a time series of a nanomaterial with random changes in the number of atoms in an atomic
column from frame to frame. Therefore, for the next step in our study of the atom-counting
performance, we can generate the hidden state sequences using known transition probabilities
and initial probabilities. A set of hypothetical time series of scattering cross sections with dif-
ferent lengths was generated by creating hidden state sequences corresponding to N = 100
atomic columns with up to G = 10 atoms in an atomic column. Uniform initial probabilities
ιg were used, which represents a uniform distribution of thicknesses ranging between 1 and the
maximum thickness G in the first frame. No missing atomic columns were included in the state
sequences. The number of atoms in each state sequence is then changed according to a tran-
sition matrix A with a Gaussian spread around the diagonal with full width at half maximum
(FWHM) equal to 1.5, shown in Figure B.1 of Appendix B. This implies that some structural
changes will occur during the time series, but the probability that large jumps in the number of
atoms, i.e. ±2 or more, are generated from frame to frame is small. A unitary transition matrix
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would imply no structural changes. The observed sequences of scattering cross sections are
created using a Gaussian emission probability N(o(n)

t |aMg, σ), with average scattering cross
section equal to the scattering cross sectionsMg obtained from HAADF STEM image simu-
lations of Pt(110) using the MULTEM software [Lobato 2014, Lobato 2015, Lobato 2016] at
300 keV, using a 21 mrad semi-convergence angle, 58-190 mrad detector collection range, and
a pixel size of 9.1 pm. This library corresponds to the experimental images of the Pt wedge
discussed in Sections 6.3 and 6.2, and which have previously been analysed in [Van Aert 2019]
as well. The relative width of the Gaussian emission probability considered in the simulation
to study the performance is σ/δ = 0.3 and 0.7. This width accounts for fluctuations of the scat-
tering cross sections around the average value, caused by various effects such as scan noise,
counting statistics or neighbouring atomic columns. Note that this simulation set-up implic-
itly assumes that all structural changes are described by the transition matrix, regardless of the
process that causes the changes.

Figure 5.5: Performance for atom-counting from a time series of the hidden Markov model at different
noise levels σ/δ, evaluated as a function of the length of the time series T and the number of atomic
columns in each frame N, while the product N × T was kept constant.

The parameters used to generate the hypothetical hidden Markov models are summarised in
Table B.1 of Appendix B. At each length of the time series T and noise level, i.e. relative
width of the Gaussian emission probability σ/δ, 100 noise realisations of the hypothetical
time series with the above mentioned settings were analysed. In Figure 5.4, we evaluate the
average percentage of correctly counted atomic columns from the hypothetical time series, with
a 95% confidence interval, obtained by the hidden Markov model and the collective hybrid
method. From these results, it is clear that the hidden Markov model counts the number of
atoms more reliably than the collective hybrid method, especially for longer time series. Note
that in the case of T = 1, both methods indeed yield exactly the same result, as mentioned
before in Section 5.3. Adding even only a few extra frames allows the hidden Markov model
to quickly exceed the performance of the collective hybrid method. One could argue that this
improvement of the counting performance with an increasing time series length T is simply the
result of the better statistics obtained by analysing the increasing set of N × T scattering cross
sections. This is however not the main reason for the improved performance. We demonstrate
this by analysing hypothetical hidden Markov models with the same parameters used for the
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Figure 5.6: Histogram showing all scattering cross sections of a hypothetical time series, colour coded
according to the number of atoms in an atomic column: blue for 3 atoms, green for 4 atoms, red for
5 atoms and grey for any different number of atoms. (a) Ground truth. (b) Atoms counted using the
collective hybrid method, with the estimated Gaussian mixture model. (c) Atoms counted using the
hidden Markov model.

analysis shown in Figure 5.4, as summarised in Table B.1 of Appendix B, but with a constant
total number of scattering cross sections T × N = 1000 considered during the analysis. Figure
5.5 shows the average percentage of correctly counted atomic columns with 95% confidence
intervals for the analysis of these hypothetical hidden Markov models as a function of the
number of frames in the time series T and the number of atomic columns in each frame N. For
the collective hybrid method, increasing the number of atomic columns N or the number of
frames T would both result in a larger set of scattering cross sections that are jointly analysed.
For the hidden Markov model on the other hand, there is a difference, and increasing the number
of frames improves the atom-counting performance, as shown in Figure 5.5. In other words,
it is beneficial to increase the length of the time series, rather than increasing the number of
atomic columns in each frame of the time series.

5.5.3 Understanding the origin of the improved performance

The improved performance of the hidden Markov model over the collective hybrid method for
the same noise level (i.e. the same relative width of the Gaussian emission probability σ/δ) can
therefore be attributed to the inclusion of transition probabilities to explicitly model structural
changes over time. By increasing the number of frames T , the amount of frame transitions in-
creases. Moreover, the precision with which the transition probabilities that model the changes
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in the number of atoms in an atomic column through time can be estimated also increases, as
demonstrated in Section 5.4.3. Instead of estimating one set of mixing proportions πg for the
entire time series, as is the case for the collective hybrid method, initial probabilities ιg and
transition probabilities A jg are estimated by the hidden Markov model analysis, to allow for
changes in the distribution of different thicknesses in the nanostructure from frame to frame.
In this manner, we previously defined the frame dependent mixing proportions π(t)

g in Equa-
tions 5.10 and 5.11. Modelling the transition probabilities allows us to use the Viterbi path
backtracking algorithm, discussed in Section 5.4.2, to determine the number of atoms in each
atomic column in each frame of the time series by considering the most likely sequence, rather
than the most likely number of atoms to fit the scattering cross section values in each frame
separately. In this manner, we exceed the limitations imposed by the overlapping Gaussian
distributions. To demonstrate this, a hypothetical time series with up to G = 6 atoms thickness
was created using parameters summarised in the last column of Table B.1 of Appendix B. Fig-
ure 5.6a shows the set of scattering cross sections of the entire time series. The scattering cross
sections corresponding to atomic columns with 3, 4 and 5 atoms are colour-coded in blue,
green and red respectively. The scattering cross sections that correspond to atomic columns
with 1, 2 or 6 atoms are all in grey. Figures 5.6b and 5.6c show the same colour-codings for the
atomic columns that are counted as 3, 4 and 5 atoms respectively, using the collective hybrid
method for atom-counting and the hidden Markov model for atom-counting. In the collective
hybrid method, atomic columns in the tails of the Gaussian components are miscounted when
components overlap [Figure 5.6b]. This limitation is no longer present for the hidden Markov
model [Figure 5.6c], thanks to the Viterbi path backtracking algorithm which exploits the in-
formation on the structural changes captured by the transition probabilities. This means that
the hidden Markov model for atom-counting from a time series of ADF STEM images yields
more accurate counting results, as compared to the existing atom-counting approach.

5.6 Conclusions

In this chapter, we have introduced the theoretical framework for the hidden Markov model for
atom-counting from a time series of ADF STEM images. The framework is constructed as an
extension of the single frame counting procedure using the hybrid method for atom-counting
introduced in Chapter 4. For a single frame, both approaches are indeed identical. We have
derived the probability distribution of the scattering cross sections estimated from each ADF
STEM image in the time series, and have discussed the parameter estimation. The parameter
estimation algorithm has been implemented in the freely available StatSTEM software pack-
age [De Backer 2016]. We show that the parameters are estimated accurately and precisely.
The ultimate lower bound on the precision of the parameters, expressed by the Cramér-Rao
lower bound, is asymptotically attained. The sample variance of the transition probabilities
approaches closer to the lower bound as the length of the time series increases. Therefore,
the accurate and precise parameter estimates of the hidden Markov model can yield a reliable
quantification of the number of atoms in a time series. Furthermore, we have discussed the
possibilities and limitations of the hidden Markov model for atom-counting from time series
of ADF STEM images. We demonstrated a significant improvement in the atom-counting per-
formance, both at low and at high electron dose, corresponding to a high and low noise level,
quantified by the relative width of the Gaussian distributions σ/δ. Furthermore, we show that
the percentage of correctly counted atomic columns increases when more frames are added to
the time series analysis. By considering time series with a constant total number of atomic
columns, redistributed over one or more frames, we confirm that the length of the time series
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indeed causes this improvement. When selecting the imaging parameters for acquiring an ADF
STEM time series, increasing the number of frames is therefore preferred over increasing the
number of atomic columns in each frame of the time series by for example imaging a larger
field of view. The improved performance of the hidden Markov model over the collective hy-
brid method for the same noise level is attributed to the inclusion of transition probabilities to
explicitly model structural changes over time. These transition probabilities are used during the
Viterbi algorithm which allows us to surpass the limitations posed by the overlap between dis-
tributions of the scattering cross sections of atomic columns with different thicknesses. In the
next chapter, we discuss the physical interpretation of the transition probabilities and further
demonstrate the time series atom-counting procedure using relevant experimental applications.
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Appendix 5A: Parameter estimation

Baum-Welch algorithm

The parameters of the factorial hidden Markov model are estimated using the iterative Expectation-
Maximisation (EM) or Baum-Welch algorithm [Baum 1968,Dempster 1977,McLachlan 1996].
The algorithm consists of two steps: an E-step, and an M-step. During the E-step, the likeli-
hood is evaluated, and this quantity is maximised during the M-step. In practice, the param-
eter estimates are obtained by maximising the following auxiliary function, which is in fact
the expectation value of the logarithm of the complete data likelihood function of Equation
(5.17) [Baum 1968, Rabiner 1989, McLachlan 2000, Bishop 2006]:

Q(Ω,Ωold) =
∑

H

p(H|Ô,Ωold) ln p(Ô,H|Ω)

= E
[
ln p(Ô,H|Ω)

]
=

N∑
n=1

G∑
g=0

E
[
h(n)

1g

]
ln ιg

+

T∑
t=2

N∑
n=1

G∑
j=0

G∑
g=0

E
[
h(n)

t−1, jh
(n)
tg

]
ln A jg

+

T∑
t=1

N∑
n=1

G∑
g=0

E
[
h(n)

tg

]
lnN

(
ô(n)

t |aMg, σ
)
. (5.27)

In order to evaluate the likelihood, or equivalently this auxiliary function, the expectation val-
ues E

[
h(n)

tg

]
and E

[
h(n)

t−1, jh
(n)
tg

]
need to be determined. This is done during the E-step of the

EM algorithm. Note that when T = 1, the expectation value E
[
h(n)

tg

]
is equivalent to Equa-

tion (4.15) used during the E-step of the Expectation-Maximisation algorithm for the hybrid
method, discussed in Section 4.3. These expectation values can then be used during the M-step
to determine the updates for each parameter in the parameter vector Ω.

E-step

In this step, the likelihood is evaluated, and the expectation values that occur in the update
formulas in the M-step are determined. First, we introduce the following notation:

γ(h(n)
tg ) = E

[
h(n)

tg

]
, (5.28)

ξ(h(n)
t−1, j, h

(n)
tg ) = E

[
h(n)

t−1, jh
(n)
tg

]
. (5.29)

The derivation is similar to the E-step of the general Baum-Welch algorithm, but factorised
over the atomic columns n. The expectation value of a binary variable, equals the probability
for this binary variable to be equal to 1. Therefore, the expectation values can be written as the
following probabilities:

γ(h(n)
tg ) = E

[
h(n)

tg

]
= p

(
h(n)

tg = 1|Ô,Ω
)
, (5.30)
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the posterior probability that atomic column n contains g atoms at time t, often called the state
occupation probability, and

ξ(h(n)
t−1, jh

(n)
tg ) = E

[
h(n)

t−1, jh
(n)
tg

]
= p

(
h(n)

t−1, j = 1, h(n)
tg = 1|Ô,Ω

)
, (5.31)

the joint posterior probability that atomic column n contains j atoms at time t − 1 and g atoms
at time t.
Equations (5.30) and (5.31) are determined using a so-called forward-backward algorithm
[Bishop 2006]. Therefore, the probabilities are rewritten using Bayes’ theorem and condi-
tional independence properties of hidden Markov models. In order to simplify the notation, we
omit the explicit dependence on Ω in the following:

γ(h(n)
tg ) = p

(
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)
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)
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tg = 1
)

p
(
Ô
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)
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(
ô(n)
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T |h
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)
p
(
Ô

) , (5.32)

and

ξ(h(n)
t−1, jh
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. (5.33)

Forward-Backward algorithm
We can now define the forward variables α(h(n)

tg ) and the backward variables β(h(n)
tg ) that are used

during the forward-backward algorithm to determine Equations (5.32) and (5.33):

α(h(n)
tg ) = p

(
ô(n)

1 , · · · , ô
(n)
t , h

(n)
tg = 1

)
(5.34)

β(h(n)
tg ) = p

(
ô(n)

t+1, · · · , ô
(n)
T |h

(n)
tg = 1

)
(5.35)

In practice, additional scaling factors cn
t are used, analogous to the description given in [Bishop 2006],

but with an additional factorisation over the atomic columns n:

α̂(h(n)
tg ) = p

(
h(n)

tg = 1|ô(n)
1 , · · · , ô

(n)
t

)
=
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(
ô(n)
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(n)
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(n)
tg = 1

)
p
(
ô(n)

1 , · · · , ô
(n)
t

)
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=
α(h(n)

tg )∏t
q=1 cn

t
, (5.36)

with

c(n)
t = p(ô(n)

t |ô
(n)
1 , ..., ô

(n)
t−1). (5.37)

In this way, we can rewrite Equations (5.32) and (5.33) as follows:

γ(h(n)
tg ) = α̂(h(n)

tg )β̂(h(n)
tg ), (5.38)

ξ(h(n)
t−1, jh

(n)
tg ) = α̂(h(n)

t−1, j)A jgN(ô(n)
t |aMg, σ)β̂(h(n)

tg ), (5.39)

with the forward and backward variables determined recursively. For computational reasons,
an additional normalisation of ξ(h(n)

t−1, jh
(n)
tg ) is performed. Initialisation of the scaled forward

variable is done by

α̂(h(n)
1g ) =

ιgN(ô(n)
1 |aMg, σ)

c(n)
1

. (5.40)

Then we forwards propagate through time (hence the name), in order to recursively obtain the
next forward variables:

α̂(h(n)
tg ) =

1

c(n)
t

N(ô(n)
t |aMg, σ)

G∑
j=1

α̂(h(n)
t−1, j)A jg.

Initialisation of the scaled backward variable is done by

β̂(h(n)
Tg) = 1. (5.41)

Then we backwards propagate through time (hence the name), in order to recursively obtain
the other backward variables:

β̂(h(n)
tg ) =

1

c(n)
t+1

G∑
j=1

N(ô(n)
t+1|aM j, σ)β̂(h(n)

t+1, j)Ag j. (5.42)

The likelihood is obtained as the product of the scaling parameters c(n)
t that are used to avoid

numerical issues with the forward-backward algorithm:

p(Ô) =
N∏

n=1

T∏
q=1

c(n)
q . (5.43)

M-step

The update formulas for the model parameters are calculated in the M-step using the expected
values γ(h(n)

tg ) = E
[
h(n)

tg

]
and ξ(h(n)

t−1, j, h
(n)
tg ) = E

[
h(n)

t−1, jh
(n)
tg

]
calculated during the E-step. These

expressions are obtained by maximising the expectation value of the log likelihood from Equa-
tion (5.27), while taking into account that ιG and A jG ∀0 ≤ j ≤ G need not be estimated, since∑G

g=0 ιg = 1 and
∑G

g=0 A jg = 1. This results in the following expressions:
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∑N
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]
∑N

n=1
∑G

j=0 E
[
h(n)

1 j

] , (5.44)



Appendix 5A: Parameter estimation 77

A jg =
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a =
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σ =
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Viterbi algorithm

Once the parameters of the hidden Markov model are estimated, we can use them to determine
the counting results. The transition probability from t−1 to the state at time t may be estimated
equal or close to zero during the hidden Markov model parameter estimation, causing this state
to be invalid or highly unlikely at time t. Therefore, an algorithm is required to consider the
entire time series, given the set of estimated transition probabilities. The goal of the Viterbi
path backtracking algorithm for hidden Markov models is to determine the most likely hidden
state sequence H [Viterbi 1967, Forney 1973].
In order to retrieve the state sequence, the so-called best score δ(n)(t, g) is introduced. This
records the highest probability out of all possible state sequences that could account for the
first t observations and that end in state g at time t:

δ(n)(t, g) = max
h(n)

1 ···h
(n)
t−1

P(h(n)
1 , · · · ,h

(n)
t−1, h

(n)
tg = 1, ô(n)

1 · · · ô
(n)
t |Ω). (5.48)

The best score at the next time t + 1 can be retrieved using a recursion relation:

δ(n)(t + 1, j) = max
g

[
δ(n)(t, g) · Ag j

]
N(ô(n)

t+1|aM j, σ). (5.49)

In order to keep the numerical range of the best score computationally feasible, in practice this
expression is normalised for each time t and each atomic column n. In order to retrieve the most
likely state sequence, we need to keep track of the argument that maximises this expression.
Note that this is not affected by the additional normalisation. Therefore, an argument array
ϕ(n)(t, g) is introduced.
We can now summarise the Viterbi algorithm as follows. First, we initialise the best score and
the argument array:

δ(n)(1, g) = ιgN(ô(n)
1 |aMg, σ), (5.50)

ϕ(n)(1, g) = 0. (5.51)

Then the recursion formula is applied for each next time t:

δ(n)(t, g) = max
0⩽ j⩽G

[
δ(n)(t − 1, j)A jg

]
N(ô(n)

t |aMg, σ), (5.52)

ϕ(n)(t, g) = arg max
0⩽ j⩽G

[
δ(n)(t − 1, j)A jg

]
. (5.53)

Next, we perform a termination step at time T :

P̂ = max
0⩽g⩽G

[
δ(n)(T, g)

]
, (5.54)
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ĥ(n)
T = arg max

0⩽g⩽G

[
δ(n)(T, g)

]
. (5.55)

Finally, path backtracking is performed in order to determine the most likely hidden state se-
quence:

ĥ(n)
t = ϕ

(n)(t + 1, ĥ(n)
t+1) (5.56)
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Appendix 5B: Cramér-Rao lower bound

We introduced the Cramér-Rao lower bound in Section 2.4 for a general estimator, and will
now apply this to the hidden Markov model for atom-counting. For unbiased estimators, the
Cramér-Rao lower bound defines the lower bound on the variance [Rao 1945, Cramér 1946]:

cov(Ω̂, Ω̂) ≥ F−1
Ω , (5.57)

with Ω̂ the vector containing the estimators of the parameters summarised in the parameter
vector Ω, and FΩ the Fisher information matrix, which is defined as follows for the hidden
Markov model for atom-counting:

FΩ = −E

∂2 ln p(O|Ω)
∂Ω∂ΩT

∣∣∣∣∣∣
Ω=Ω0

 , (5.58)

where E expresses the expectation value. In this expression, p(O|Ω) represents the joint proba-
bility density function, given by Equation (5.16), which describes the probability distribution of
the observed sequence of scattering cross sections O, determined by the unknown parameters
expressed by the parameter vector Ω, defined by Equation (5.13). The vector Ω0 contains the
actual values of the parameters to be estimated. Note that the joint probability density function
is expressed by the incomplete data likelihood of the hidden Markov model, as this is in fact
the problem solved by the parameter estimation using the Baum-Welch algorithm, described
in Section 5.4.1. The highest attainable precision of the unknown parameters in the parameter
vector Ω is not determined by the hidden state sequence H. The incomplete data likelihood
is obtained by summing Equation (5.12) over all possible hidden state sequences H. Equation
(5.16) can be written as follows:

p(O|Ω) =
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)
, (5.59)

where we have introduced the abbreviated notation p
(
O(n)|Ω

)
which represents the incomplete

data likelihood for the observed sequence of atomic column n. In this expression, g(n)
t expresses

the effective number of atoms in a column n at a given time t. When gn
t = k, this is equivalent

to h(n)
tk = 1, while all other elements of the state vector h(n)

t are zero. In practice, the following
multiple integral is numerically integrated, using Monte Carlo integration [Kroese 2011]:
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1 do(n)
2 · · · do(n)

T .(5.61)

In order to obtain the Fisher information matrix following Equation (5.61), the second order
derivatives of the logarithm of the incomplete data likelihood with respect to the parameters of
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the hidden Markov model are calculated. For two general parameters Ω1 and Ω2, this second
order derivative is expressed as follows:

∂2 ln p
∂Ω1∂Ω2

= −
1
p2

∂p
∂Ω1

∂p
∂Ω2
+

1
p
∂2 p
∂Ω1∂Ω2

, (5.62)

where we used the abbreviated notation

p = p
(
O(n)|Ω

)
. (5.63)

We further abbreviate the notation by omitting the index n from the effective number of atoms in
a column at a given time, since the derivation is independent of the column index, and introduce
an abbreviated notation for the Gaussian function that describes the emission probability:

gt = g(n)
t , (5.64)

N (t)
g = N

(
o(t)

n |aMg, σ
)
. (5.65)

The necessary first and second order derivatives to obtain the Fisher information matrix using
Equation (5.63) for all parameters in the parameter vector Ω are listed here:
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Using these expressions, we obtain all elements of the Fisher information matrix of Equation
(5.61).
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Measuring dynamic structural changes at the

atomic scale from ADF STEM time series

6.1 Introduction

Different time-resolving techniques, such as dynamic transmission electron microscopy [Arm-
strong 2007, Browning 2012], ultrafast electron diffraction [Siwick 2003, Zewail 2006, Bar-
wick 2008, Ruan 2009, Ischenko 2014], and ultrafast X-ray imaging [Rischel 1997, Linden-
berg 2017] have been developed in order to study structural dynamics with very high temporal
resolution. Since these techniques sacrifice direct atomic resolution imaging, high-resolution
transmission electron microscopy [Jia 2014], off-axis electron holography [Linck 2012] or an-
nular dark field (ADF) scanning transmission electron microscopy (STEM) [Van Aert 2011,
Van Aert 2013] are needed to obtain local structural information at atomic resolution and
sub-second temporal resolution. This time resolution is adequate in order to study transient
atomic scale phenomena [Isaacson 1977, Liao 2014, Kotakoski 2014, Mishra 2017, Liu 2019,
Zhou 2019, Altantzis 2019]. The concomitant advantage for ADF STEM images is that the
intensities are peaked at the atomic column positions and depend monotonically on the atomic
mass number Z and the thickness of the material enabling to count the number of atoms in
each atomic column. In the previous chapter, we have introduced the hidden Markov model for
atom-counting from an ADF STEM time series. When the atom-counting results are combined
with structural energy minimisation [Bals 2012, Jones 2014, Geuchies 2016, De Backer 2017,
Altantzis 2019], we can obtain a visualisation of the three-dimensional (3D) atomic structure
from a two-dimensional (2D) image without the need for the large electron doses and long ac-
quisition times generally required for electron tomography. Although high-resolution electron
tomography has been used to investigate the atomic structure of nanoparticles in 3D, the com-
bination with in situ measurements is far from straightforward because of several technical and
more fundamental reasons. The main limitation is the time required to collect a tilt series of
images, which is typically equal to 1 or several hours, although fast acquisition schemes have
recently been developed [Vanrompay 2018]. Since catalysts are in active and non-equilibrium

This chapter is based on [De wael 2020a, De wael 2020b, Liu 2021].
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states, conventional tomography approaches cannot be applied to investigate the fast changes
that supported catalyst nanoparticles undergo when being exposed to a relevant environment.
The hidden Markov model can be used to measure dynamic structural changes at the atomic
scale during a time series based on the reliable counting results. We derive the probability
for such structural changes in Section 6.2. In Section 6.3, an experimental time series of a Pt
wedge is analysed using the hidden Markov model. A cross section for surface diffusion can
be estimated for this Pt wedge, which is then compared to the theoretical value for this type of
material. Next, in Section 6.4, we analyse a catalyst Pt nanoparticle using the hidden Markov
model, and study the stability of its facetted morphology, which is of great importance for the
activity of the catalyst. In Section 6.5, the hidden Markov model is then applied to a supported
Au nanoparticle imaged at a constant elevated temperature. The obtained counting results are
combined with molecular dynamics simulations to investigate the 3D atomic structure. Finally,
we consider the structural changes driven by time-varying experimental conditions in Section
6.6. We simulate such changes by generating time series corresponding to multiple transition
matrices, and study the applicability of the hidden Markov model with only one transition
matrix. The chapter is concluded in Section 6.7.

6.2 Probability and cross section related to structural changes

So far, we have shown that the hidden Markov model yields more reliable counting results for
the analysis of a time series of a changing nanostructure. In order to obtain these atom-counts,
the parameters of the hidden Markov model are estimated as discussed in Section 5.4. An
important parameter of the hidden Markov model is the transition matrix A, as this is used
to model the probability that the number of atoms in an atomic column changes, and thus
the probability of structural changes. In this section, we will discuss the link between the
transition matrix and the cross section related to the process that drives the structural changes
throughout the time series. Intensity variations during a time series can be caused either by
noise fluctuations, or by actual structural changes. The hidden Markov model estimates two
separate parameters to model both contributions. The noise is modelled by the width σ of
the Gaussian emission probability, and the structural changes are modelled by the transition
matrix A. We will assess the accuracy of the estimated probability of structural changes using
a combined measure for the G(G + 1) estimated transition probabilities and the G estimated
initial probabilities:

P =

∑G
g=0 πg(1 − Agg)

G + 1
. (6.1)

This expresses the weighted average probability that the number of atoms in an atomic column
changes during the time series, as 1 − Agg corresponds to the probability that the number of
atoms in an atomic column will not stay the same from frame to frame. The weights πg corre-
spond to the probability for an atomic column to have g atoms in any frame of the time series
and follow from the estimated transition and initial probabilities:

πg =
1

T − 1

T−1∑
t=1

π(t)
g , (6.2)

with π(t)
g the probability for an atomic column to have g atoms at time t, as defined in Equation

(5.11). Note that, when all parameters are estimated accurately, these weights πg are equivalent
to the mixing proportions estimated from the collective hybrid method.
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In order to validate the physical interpretation of the estimated transition matrix in terms of
atomic structural changes, we created 50 noise realisations of a hypothetical time series. The
parameters of the hidden Markov model used to create these time series are equal to the param-
eters estimated from the experimental time series of the Pt wedge shown in Section 6.3. The
structural changes of this Pt wedge will also be analysed further in this section. The width of
the Gaussian emission probability σ is varied to obtain different noise levels. The width σ can

be related to the electron dose d through σ =
√
µg

d when only Poisson noise is present, with µg

the scattering cross section for g atoms in an atomic column [Van Aert 2019]. In this manner,
at the average sample thickness, the noise levels σ/δ used during the following analysis can
be translated to electron doses ranging between 7 × 104 e−/Å2 and 9 × 102 e−/Å2. Table 6.1
summarises the 95% confidence intervals for the mean estimated values of the probability of
structural changes P from Equation (6.1) and the relative width of the Gaussian emission prob-
ability σ/δ, at the different noise levels, together with the ground truth of these parameters. The
percentage of correctly counted atomic columns is also summarised using a 95% confidence
interval. Furthermore, results are shown for an analysis of 50 noise realisations of a hypotheti-
cal time series with the same settings, but with a more diffuse transition matrix, as to allow for
more structural changes during the time series. This transition matrix is shown in Figure B.2
of Appendix B. In this manner, we can assess the accuracy of the estimated parameters that
quantify noise and structural changes. For a small underlying probability of structural changes
P, the estimated values of P and σ/δ are accurate up to high noise levels. This indicates that
intensity variations due to structural changes are indeed quantified by the transition matrix A,
while noise fluctuations are quantified by the width of the Gaussian emission probability σ.
When the underlying probability of structural changes P is larger, the estimated values of P
and σ/δ still remain accurate up to a reasonably high noise level, but are slightly more inac-
curate, as well as less precise, at high noise levels. This also leads to a lower percentage of
correct atom-counts. We conclude that the separation of noise fluctuations from atomic struc-
tural changes is reliably done by the hidden Markov model analysis for small values of P, even
at a low electron dose, i.e. at large σ/δ. When the probability of structural changes P is larger,
the separation of noise and structural changes can still be performed reasonably well, although
slight inaccuracies arise when the electron dose is lowered, making it more difficult to discern
the origin of the fluctuations in the scattering cross sections from frame to frame.
Therefore, when the electron dose is sufficiently high, i.e. when σ/δ is sufficiently low, Equa-
tion (6.1) reliably describes the probability of structural changes. In this manner, we can now
estimate the probability of structural changes from an experimental ADF STEM time series.
This will be applied to the examples in the next two sections.

6.3 Analysis of a Pt wedge time series

In this section, we illustrate the proposed hidden Markov model for time series atom-counting
using an experimental time series of a Pt wedge, shown in Figure 6.1a. The time series consists
of T = 6 frames and was previously also analysed in [Van Aert 2019]. The consecutive ADF
STEM images of the Pt wedge were recorded by Armand Béché, using a beam current of 37
pA and pixel size 9.1 pm, corresponding to an electron dose of 2.8×104 e−/Å2. All consecutive
ADF STEM images of the Pt wedge are shown in Figure B.3 of Appendix B.
In order to apply the hidden Markov model to an experimental series [Figure 6.2a], several
preprocessing steps are required. These are schematically shown in Figure 6.2. On the one
hand, we want to compare the experimental image intensities to simulated intensities. There-
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P (%) σ/δ correct atom-counts (%)
95% CI 95% CI 95% CI

ground lower upper ground lower upper lower upper
truth bound bound truth bound bound bound bound

12.42 12.69 0.1 0.0998 0.1002 99.99 100.00
12.35 12.70 0.3 0.2990 0.3010 97.16 97.28

12.55 12.38 12.81 0.5 0.4968 0.5003 88.69 89.00
11.67 12.44 0.7 0.6945 0.6998 79.02 79.53
11.55 12.74 0.9 0.8908 0.8972 69.83 71.12
59.01 59.38 0.1 0.1000 0.1004 99.99 100.00
59.01 59.47 0.3 0.2974 0.2992 92.89 93.05

59.52 59.60 60.34 0.5 0.4818 0.4888 75.88 76.16
61.50 63.26 0.7 0.6603 0.6762 61.54 62.07
63.72 66.70 0.9 0.8363 0.8525 50.07 51.35

Table 6.1: Accuracy of the probability of structural changes P, the relative width of the Gaussian
emission probability σ/δ and the atom-counts estimated by the hidden Markov model.

Figure 6.1: (a) Experimental ADF STEM images of the time series of the Pt wedge discussed in Section
6.3. (b) Counting results obtained by the hidden Markov model analysis. (c) Transition matrix estimated
by the hidden Markov model analysis.

fore, the ADF STEM image intensities need to be normalised to the incident electron beam, as
mentioned earlier in Section 2.6. On the other hand, the theoretical framework of the hidden
Markov model assumes that we can track each atomic column n through the entire series. In
order to reliably quantify the changes for each atomic column of the nanostructure, the time
series needs to be aligned [Figure 6.2b]. This is achieved using rigid registration to account
for sample drift and/or rotation. One can also apply non-rigid registration of the images to
compensate for scan distortions in order to improve the precision of the quantification of the
ADF STEM images performed during the next steps [Jones 2015]. Next, the atomic column
positions need to be reliably quantified in each frame [Figure 6.2c]. In case of high electron
dose recordings, a simple peak finding routine is sufficient. However, when the electron dose is
low, and the noise level in the images is high, it becomes difficult to distinguish atomic columns
from noise fluctuations. It is however crucial to correctly select all atomic columns. This can
be done using the maximum a posteriori (MAP) probability rule, as mentioned in Section 2.5.
Using these atomic column positions, a parametric imaging model is fitted to each ADF STEM
image as described in Section 2.5. From this model, the scattering cross sections can now be
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estimated for each atomic column [Figure 6.2d]. In order to apply the hidden Markov model
to the ADF STEM time series, the atomic columns of the nanostructure are tracked in each
image, and the scattering cross sections of each atomic column are sorted accordingly [Figure
6.2e]. Together, the scattering cross sections of all atomic columns in each ADF STEM image
of the time series are the input for the hidden Markov model analysis [Figure 6.2f]. The output
of the hidden Markov model is the set of atom-counting results for each ADF STEM image of
the time series [Figure 6.2g].

Figure 6.2: Workflow for atom-counting from a time series of ADF STEM images using hidden Markov
models.

The counting results for the ADF STEM time series of the Pt wedge, obtained in this manner,
are summarised in Figure 6.1b. The counting results obtained for each image of the time series
are shown in Figure B.4 of Appendix B. The hidden Markov model analysis also provides an
estimate for the transition probabilities. The transition matrix A estimated for this time series is
shown in Figure 6.1c. The white diagonal line plotted on top of the transition matrix indicates
the transitions where the number of atoms in an atomic column stays the same. The upper and
lower triangles contain the probabilities for an atomic column to respectively gain or lose one
or more atoms. The physical interpretation of these transition probabilities was discussed in the
previous section. This is now applied, and we estimate the probability of structural changes for
this experimental ADF STEM time series of the Pt wedge. Using Equation (6.1), the probability
of structural changes is estimated equal to P = 12.6%. We do not expect structural changes to
be caused by sputtering of atoms from the surface, only by surface diffusion, since the threshold
energy for sputtering Pt atoms from a convex surface with step sites is 379 keV, well above
the incident electron energy of 300 keV [Egerton 2010, Van Aert 2019]. In order to relate the
probability of structural changes to the probability of surface displacement, a factor of 1

2 should
be added in Equation (6.1), to account for the top and bottom surface of the nanostructure:

Psd =
1
2

∑G
g=0 πg(1 − Agg)

G + 1
. (6.3)

The cross sectionσsd and probability Psd for surface displacement are related as follows [Van Aert 2019]:

Psd = σsdd
Nad

N
, (6.4)
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with d the electron dose, N the total number of atomic columns, and Nad the number of adatoms.
An adatom is an atom that lies on top of the surface. Therefore, the coordination number of
an adatom is lower than that of atoms embedded in surface facets or in the bulk of the particle.
Here, the number of adatoms Nad is estimated equal to the number of atoms with coordination
number less than or equal to 6 in the symmetrical 3D atom configuration based on the atom-
counting. In this manner, we estimate the cross section related to surface diffusion for this Pt
wedge to be equal to σsd = (5.60±0.05)×10−6Å2 from the probability of surface displacement
Psd = 6.3% and the estimated fraction of adatoms Nad

N = 0.4. The error bar in this expression
is equal to the standard deviation of the mean estimated cross section from 100 hypothetical
time series using the same parameters estimated for the experimental Pt wedge. This value for
the cross section related to surface displacement corresponds to a surface diffusion threshold
energy of 1.09 eV [Egerton 2013]. This is in close agreement with the theoretical threshold
energy for surface diffusion for Pt(110), which is calculated as 1.07 eV, corresponding to a cross
section of σsd = 16×10−6Å2 [Halicioglu 1979]. The underestimation of the cross section by the
hidden Markov model analysis can be understood since the estimated transition probabilities
describe net structural changes from frame to frame. These net structural changes can however
be the result of multiple hops of atoms, potentially in opposite directions, yielding a smaller
amount of net changes after the frame is acquired as compared to the actual amount of structural
changes. In this manner, we unavoidably underestimate the cross section related to surface
diffusion. However, this methodology gets a closer match with the theory as compared to the
current state-of-the-art analysis of variance method, where a cross section of σsd = (0.74 ±
0.20) × 10−6Å2 was estimated [Van Aert 2019], and is therefore a promising approach for the
reliable quantification of physical cross sections from experimental ADF STEM time series.

6.4 Analysis of a catalyst Pt nanoparticle time series

In this section, we apply the hidden Markov model to an experimental time series of a catalyst
Pt nanoparticle. ADF STEM images were recorded by Aakash Varambhia and Lewys Jones,
on a JEOL ARM200CF fitted with a probe-aberration corrector using an acceleration voltage
of 200 kV, a probe convergence angle of 22.48 mrad, an annular detector ranging from 52-248
mrad, a dwell time of 4µs and an electron dose of 1.38 · 104 e−/Å2 per frame. All images of
the time series are shown in Figure B.5 of Appendix B. In order to apply the hidden Markov
model, several preprocessing steps were applied to the time series, as discussed in Section
6.3. The images from the time series were corrected for drift and other distortions using non-
rigid registration [Jones 2015]. Coordinates of the atomic columns were selected in each frame
using the maximum a posteriori probability (MAP) rule for atomic column detection introduced
in [Fatermans 2018]. As such, we could reliably determine all atomic columns present in the
nanoparticle throughout the time series.
During the time series, the Pt nanoparticle tilts slightly away from zone axis orientation and
back, which affects the scattering cross sections, as shown in Chapter 3. However, the hidden
Markov model only estimates one linear scaling parameter for all frames of the time series.
Therefore, the scattering cross sections of the individual frames need to be compensated for
tilt, prior to the hidden Markov model analysis. In order to perform such a tilt compensation, a
reference frame for which the nanoparticle is in zone axis orientation is selected from the time
series. For this reference frame, no elongation of the atomic columns is observed. Furthermore,
the reference frame of the time series is chosen such that the ICL criterion of the hybrid method
for atom-counting, discussed in Section 4.4, shows a clear local minimum corresponding to a
scaling parameter close to 1. This implies a close match between the experimental and simula-
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tion settings, while sample tilt would cause a decrease in the scattering cross section values and
therefore also a decrease in the estimated scaling parameter as compared to the zone axis ori-
entation, as discussed in Section 4.7. The number of atoms is then counted from this reference
frame using the hybrid method for atom-counting. Next, we can assume that the total number
of atoms in the nanoparticle remains constant throughout the time series. This assumption is
valid since the threshold energy for sputtering Pt atoms from a convex surface with step sites
is 379 keV [Egerton 2010], well above the incident electron energy of 200 keV. We therefore
do not expect sputtering of atoms from the surface, only surface diffusion [Van Aert 2019].
Based on this assumption, the scattering cross sections are divided by the scaling parameter
that yields approximately the same total number of atoms as the reference value from a single
frame analysis. As such, the decrease in the scattering cross sections due to the sample tilt is
compensated. Next, dynamic structural changes are determined from the time series analysis
using a hidden Markov model, of which the results are shown schematically in Figure 6.3. The
counting results for all frames are shown in Figure B.6 of Appendix B.

Figure 6.3: (a) The experimental ADF STEM time series of a Pt nanoparticle. (b) From the estimated
hidden Markov model, the hidden state sequence is retrieved.

Figure 6.4: (a) The Pt nanoparticle shows clear facets along the beam direction. Atomic columns in
{111} facets are indicated. (b) Number of atoms in the {111} facets indicated in (a). (c) Estimated
transition probability matrix.
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The HAADF STEM projection images reveal the facetted shape of the Pt nanoparticle. The
{111} facets, on occasion decorated by additional atoms [Wang 2012b], are indicated by green
crosses in Figure 6.4a. Using the counting results from our hidden Markov model analysis,
we can now quantify the evolution of the number of atoms in these facets for each frame of
the time series (Figure 6.4b). While the total number of atoms in the Pt nanoparticle remains
the same, the number of atoms in the {111} facets along the beam direction decreases and the
Pt nanoparticle gradually loses its facetted morphology during electron beam irradiation. This
result is consistent with earlier observations of the same type of Pt nanoparticles [Jones 2014]
and can be explained by beam-induced surface diffusion. The hidden Markov model analysis
has the added advantage that it enables us to quantify the probability for surface diffusion.
From the transition probabilities shown in Figure 6.4c it follows that the average probability
for a surface atom to move to another column equals 4.6%. This value was determined as
discussed in Section 6.2. Taking into account the electron dose, the experimental value for
the average cross section for surface diffusion is estimated equal to σsd = 3.3 · 10−6 Å2, as
described in Section 6.2. This cross section for surface diffusion includes the contributions of
different migration mechanisms, such as hopping, atomic exchange, and vacancy diffusion, and
from different types of surfaces [Oura 2003, Egerton 2019]. This value is of great importance
in order to unravel dominant mechanisms and surfaces in the diffusion process and to gain new
insights in surface related phenomena such as catalysis and nanoparticle growth.

6.5 Analysis of in situ heating of Au nanoparticles

In the previous section, we have discussed a time series of a catalyst Pt nanoparticle, where
images were acquired at room temperature. The Au nanoparticle that will be discussed in
this section is imaged at elevated temperatures, as this affects its catalytic activity. This work
has been performed in collaboration with Pei Liu, Ece Arslan Irmak et al. [Liu 2021]. I was
responsible for performing the atom-counting of the time series using the hidden Markov
model. Supported Au nanoparticles smaller than 3-5 nm are highly effective catalysts in a
wide range of catalytic reactions, e.g. CO oxidation and the water-gas shift reaction [Hvol-
bæk 2007, Haruta 1989, Zhang 2011, Paier 2013, Wang 2015]. It is generally recognised that
the activity of Au nanoparticles depends on their size and surface structure. However, the
general shape and surface facets of supported nanoparticles are also highly dependent on en-
vironmental conditions, such as pressure [Yoshida 2012, Uchiyama 2011, Liu 2020] or tem-
perature [Schlexer 2019, Foster 2019, Barnard 2009]. Quantitative investigations of the atomic
configuration at the surface under relevant conditions are thus essential to reveal the active sites
of the nanoparticles. Supported nanoparticles are used as thermal catalysts since it is expected
that the morphology of the nanoparticles is stable at elevated temperatures. Experimentally
imaging changes of the 3D atomic structure of catalytic nanoparticles at high temperature is
technically challenging. However, studying the facet distribution and surface dynamics in 3D
is an essential tool toward design and control over the catalyst structure and performance. In
this section, first, the equilibrium morphology of CeO2 supported Au nanoparticles at room
temperature is investigated. Next, the dynamic structural changes of the nanoparticles at high
temperatures are characterised in 3D, by applying molecular dynamics (MD) simulations to
the counting results obtained from the hidden Markov model. The experimental images in this
section were acquired by Pei Liu.
In order to study the equilibrium shape of the CeO2 supported Au nanoparticles, ten con-
secutive time frames were averaged based on a rigid and non-rigid image registration proce-
dure [Jones 2015]. Prior to averaging, an in-house developed deep convolutional neural net-
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Figure 6.5: Schematic illustration of the methodology to obtain a 3D model for Au nanoparticles on
a CeO2 substrate. (a) Raw HAADF STEM image of a Au nanoparticle on a CeO2 support at room
temperature. (b) Restored, registered and averaged image (based on ten consecutive frames). (c) Total
number of atoms in each atomic column. (d) The final 3D model obtained through MD simulations.
The colour code corresponds to the coordination number (CN) of each atom. CN=6: atom located on a
corner, CN=7: atom located at an edge between two facets, CN=8: atom that is part of a {100} facet,
CN=9: atom that is part of a {111} facet, CN=10 or CN=11: atom located in the second layer of an
edge, CN=12: inner atom.

work (CNN) approach for STEM image restoration was applied to each individual time frame,
enabling us to correct distortions in the images [Altantzis 2019]. Figure 6.5a shows an uncor-
rected image of a Au nanoparticle on CeO2 at room temperature. The analysis of this image was
performed by Ece Arslan Irmak. The number of atoms in each of the atomic columns of the Au
nanoparticle was counted from the averaged image, shown in Figure 6.5b, using the statistics-
based atom-counting method introduced in Section 2.7. The counting results were validated
using scattering cross sections obtained from independent image simulations by taking the de-
tector sensitivity [Krause 2016] and the temperature-dependent root mean square deviation of
Au atoms into account. The counting results, displayed in Figure 6.5c, were used to generate a
3D starting configuration by positioning the atoms in each atomic column parallel to the beam
direction based on an Au crystalline structure and symmetrically around a central plane. By
means of MD simulations that employ the embedded atom method [Grochola 2005], a relaxed
3D model for the structure of the nanoparticle was obtained, as illustrated in Figure 6.5d. Dur-
ing the MD simulations, the substrate was assumed to have a constant thickness, and a model
for CeO2 was generated based on the fluorite structure [Balaji Gopal 2017, Da Silva 2007]. To
incorporate the interaction between the particle and the substrate, we used the Lennard-Jones
potential. All MD simulations were performed by taking the substrate effect into account,
although the substrate is not displayed in the figures.
Using a similar methodology, the non-equilibrium shape transformations for CeO2 supported
Au nanoparticles at elevated temperature are investigated. For this purpose, a time series of
images at 400◦C was acquired by Pei Liu. The individual images were restored using the
CNN, and in contrast to the procedures for Figures 6.5, no averaging of consecutive images
was performed. The temporal resolution of the time series is equal to 0.629 s, corresponding to
a frame size of 1024 by 1024 pixels and dwell time of 0.5 µs. At these temperatures, it has been
shown previously that entire surface layers of atoms abruptly displace, a phenomenon which is
referred to as layer jumping [Liu 2020]. The number of atoms in each atomic column in each
frame of T = 46 consecutive ADF STEM images was counted using the hidden Markov model.
The observations and counting results are displayed for 5 consecutive frames of interest around
such a layer jumping event in Figure 6.6a and 6.6b. Note that the analysis was performed on
a longer time series as compared to the series shown here, in order to ensure reliability of the
hidden Markov model analysis for a larger T , as demonstrated in Section 5.5.
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Figure 6.6: Reversible shape transformation of the supported Au nanoparticle. (a) Time series HAADF-
STEM images of a supported Au nanoparticle at 400◦C (b) Atom counting results of the Au nanoparticle
at different time frames obtained using the hidden Markov model. The total number of columns and the
total number of atoms are listed for each time snapshot. (c) The change in the number of atoms for all
atomic columns between consecutive time frames. (d) 3D relaxed structure of the Au nanoparticle at
each time frame. The atoms are presented in different colours according to the coordination numbers,
as in Figure 6.5d. (e) Averaged total potential energy per atom for each time shot.
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The estimated transition matrix is shown in Figure 6.7. From this transition matrix, it is clear
that the number of atoms in most of the atomic columns does not change from frame to frame.
This is also clear from the difference maps in Figure 6.6c, illustrating the counting difference
between the consecutive frames. The blue colour code indicates a decreasing number of atoms,
and the red colour code corresponds to an increase in the number of atoms. There are however
a few significant changes where the number of atoms changes from 0 to around 5 or vice
versa. This corresponds to atomic columns that appear and disappear from frame to frame.
This observation is related to the layer jump. Figure 6.6 demonstrates that a layer on the (010)
surface facet disappears on the third frame and reappears in frame 4.

Figure 6.7: Transition matrix from the hidden Markov model analysis of 46 subsequent ADF STEM
images of the Au nanoparticle at 400◦C. For this Au nanoparticle, 5 frames of interest are shown in
Figure 6.6.

Based on the counting results, input structures for MD simulations were created by Ece Arslan
Irmak, and the results are illustrated in Figure 6.6d and Figure 6.6e. The nanoparticle in Figure
6.6 has a morphology similar to the equilibrium shape of such Au nanoparticles at elevated
temperature, with {100} and {111} surface facets [Liu 2021]. Based on the 3D models, we can
see that an entire (100) plane disappears and reappears (pink atoms in Figure 6.6e). Moreover,
from the MD simulations, the potential energy was extracted for each system. In the potential
energy curve, shown in Figure 6.6d, it can be seen that the energy slightly increases after
frame 2. This means that the particle becomes less stable around the event of the layer jump.
Afterwards, the potential energy decreases and the particle becomes more stable again. It can
be seen in Figure 6.6e that for the model corresponding to frame 4, the layer (in pink) is not in
exact agreement with the original plane (frame 1 and 2) and deviates from a perfect (010) facet.
In frame 5, however, the facet is recovered, and the potential energy decreases. Our 3D models
indicate that the process of layer jumping cannot be simply considered as a reversible rigid
displacement of an entire facet. Indeed, there is a significant change in the surface structure
and sites (e.g. frame 3 and 4).
The methodology that is presented here enables direct description of dynamic changes in the
3D atomic structure in a quantitative manner, at high temperature. Moreover, it is clear from
the experiments that events such as layer jumping are accompanied by intermediate disordered
structures with higher potential energies, which may have an influence on the catalytic activity
of the particle. The results can be regarded as realistic 3D input structures and can directly
be used as an input for further simulation studies to connect the structure of these catalytic
nanoparticles to their activity. The method used in the present work could eventually be ex-
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tended to a gaseous environment, which will enable real-time 3D characterisations for in situ
and operando catalytic reactions.
In conclusion, by combining atom-counting using the hidden Markov model with MD relax-
ation, the surface dynamics, including atomic layer jumping, which is most likely driven by
surface atom diffusion, of a supported Au nanoparticle at elevated temperature could be inves-
tigated in 3D at atomic resolution.

6.6 Multiple transition matrices

So far, we have assumed that the experimental conditions driving the structural changes, such
as electron irradiation, temperature or gas flow, are time-invariant. In such cases, the hidden
Markov model summarises all structural changes in one transition matrix A. In order to in-
corporate nanomaterials in real applications, a fundamental understanding of the mechanisms
behind atomic structure evolutions under variable environmental conditions is of crucial im-
portance. We therefore need to test whether the method presented here can be used to reliably
quantify, for example, changes during reduction and oxidation reactions. To this purpose, we
will look at the atomic structure of a Pt catalyst nanoparticle, shown in Figure 6.8a, previously
studied in an alternating hydrogen (H2) and oxygen (O2) flow using the existing state-of-the-art
atom-counting procedure for single ADF STEM images [Altantzis 2019]. During the gas flow
experiment, the Pt nanoparticle changes from a facetted to a round morphology and vice versa.
Therefore, the underlying transition probabilities are not the same for each frame transition. In
fact, two alternating transition matrices can be recognised, as illustrated in Figure 6.8a. In this
section, we examine the effect on the quantification when we nonetheless assume one transition
matrix during the estimation procedure.
To this purpose, we created a hypothetical time series with T = 10 frames, based on the atom-
counts that were previously quantified from the single ADF STEM images of a catalyst Pt
nanoparticle in an H2 and O2 environment [Altantzis 2019]. The initial probabilities ιg are
set equal to the mixing proportions quantified previously for the Pt nanoparticle in an H2 en-
vironment. A direct Markov chain analysis of a transition from the atom-counts previously
quantified for the Pt nanoparticle in an H2 environment to the atom-counts quantified in the
O2 environment yields the transition matrix for the first process AH2→O2 , shown in Figure 6.8b.
Figure 6.8c shows the transition matrix for the inverse process AO2→H2 . Note that Figure 6.8b
clearly shows non-zero probabilities for transitions of 0 atoms to multiple atoms, which indi-
cate the appearance of extra atomic columns during the transition from a facetted to a round
morphology. The frame transitions of the state sequence are then generated alternately from
the two transition matrices AH2→O2 and AO2→H2 . The number of atoms in an atomic column
ranges between 0 and G = 26, and the total number of atomic columns analysed in each frame
is N = 2457. The observed sequence of scattering cross sections is created using a Gaus-
sian emission probability with average scattering cross sections equal to the Pt library values
Mg previously also used in the simulations in Sections 5.5 and 6.2. The relative width of the
Gaussian emission probability is σ/δ = 0.1 and 0.7, which corresponds approximately to an
electron dose of respectively 105 e−/Å2 and 2 × 103 e−/Å2 per frame, assuming Poisson noise
only. These parameters are also summarised in Table B.2 of Appendix B. At each noise level
σ/δ, 50 noise realisations of the observed sequence have been analysed. The hidden Markov
model analysis is performed assuming a maximum thickness of G = 30 atoms. Figure 6.8d
shows the transition matrix estimated from a time series with σ/δ = 0.1 by the hidden Markov
model which assumes only one transition matrix during the time series. This estimated transi-
tion matrix for the time series with alternating structural changes is close to the average of both
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Figure 6.8: (a) A Pt catalyst nanoparticle in an alternating hydrogen and oxygen flow changes morphol-
ogy from facetted to round and vice versa, analysed previously using single frame atom-counting [Al-
tantzis 2019]. These structural changes can be described by alternating transition matrices. (b-c)
Transition matrices 1 & 2, estimated from the atom-counts previously quantified in [Altantzis 2019] us-
ing a direct Markov chain analysis for the changes from facetted to round morphology and vice versa
respectively. (d) Transition matrix estimated using a hidden Markov model assuming only one transition
matrix from a hypothetical time series corresponding to a Pt nanoparticle with alternating facetted and
round morphology with σ/δ = 0.1.

underlying transition matrices (AH2→O2 and AO2→H2 , shown in Figure 6.8b and 6.8c), weighted
with the number of times a frame transition occurred driven by each type of transition matrix (5
and 4 times respectively, in case of this time series with 10 frames and alternating gaseous envi-
ronment). The percentages of correctly counted atomic columns for the different time series are
summarised in the first two columns of Table 6.2 using 95% confidence intervals obtained from
the 50 noise realisations. Next, we compare these results to the performance discussed in Sec-
tion 5.5. The analysis shown in Figures 5.4 and 5.5 yields (99.99±0.01)% and (64.66±0.67)%
correctly counted atomic columns for T = 10 at σ/δ = 0.1 and 0.7 respectively. From Table
6.2, it follows that the performance for atom-counting from a time series with two underlying
transition matrices using the hidden Markov model as described in this thesis remains unaf-
fected for low enough σ/δ, corresponding to high enough electron doses. However, at higher
σ/δ, or equivalently at lower electron doses, the performance is slightly worse as compared
to atom-counting from a time series with only one underlying transition matrix, as discern-
ing between noise and structural changes becomes more challenging. Nonetheless, the hidden
Markov model, with (58.00±0.78)% correctly counted atomic columns as summarised in Table
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6.2, still outperforms the collective hybrid analysis, which reached only (51.44 ± 0.82)% cor-
rectly counted atomic columns for T = 10 and σ/δ = 0.7, as shown in Figure 5.4. We conclude
that at high electron doses the assumption of a constant transition matrix does not pose any
restrictions for applying the hidden Markov model for counting the number of atoms in a time
series of ADF STEM images of an in situ experiment with strongly alternating environmental
conditions. When the electron dose is lower, the performance for atom-counting decreases, but
nonetheless reasonably reliable counting results can still be obtained.

correct atom-counts (%) PH2→O2 (%) PO2→H2 (%)
expected value 70.09 64.20

σ/δ = 0.1 (95% CI) [99.99; 100.00] [69.65; 70.08] [63.92; 64.29]
σ/δ = 0.7 (95% CI) [57.28; 58.72] [65.87; 68.37] [64.85; 67.17]

Table 6.2: Performance for atom-counting and accuracy of the estimated probability of structural
changes P for the two processes of the variable gas flow illustrated in Figure 6.8.

One should however be careful when interpreting the transition probabilities in terms of physi-
cal cross sections in the same manner as discussed in Section 6.2. In order to estimate physical
cross sections related to the two separate processes, we analyse the estimated atom-counts of
the time series as a Markov chain with two transition matrices. The probabilities of structural
changes for both processes can then be estimated from these two transition matrices, similarly
to the approach discussed in Section 6.2. The counting results obtained from this analysis can
be regarded as a Markov chain. Because we know which process drives the structural changes
at each of the transitions, we are able to estimate a Markov chain with two transition matrices
A1 and A2, instead of one. We can again derive a probability of structural changes from each
transition matrix, according to Equations (6.5) and (6.6):

P1 =

∑G
g=0 π

[1]
g (1 − [A1]gg)

G + 1
, (6.5)

P2 =

∑G
g=0 π

[2]
g (1 − [A2]gg)

G + 1
. (6.6)

In this expression, the weights π[x]
g , with x = 1, 2, are determined by which type of transition

occurs from frame to frame:
π[x]

g =
1
Tx

∑
t∈Tx

π(t)
g , (6.7)

with Tx the set of Tx frames that change to the next frame according to transition matrix Ax,
with x = 1, 2. In this expression, π(t)

g remains the same, as defined by Equation (5.11).
The probabilities of structural changes PH2→O2 and PO2→H2 estimated in this manner from the
hypothetical time series discussed above are summarised in the last two columns of Table 6.2
using 95% confidence intervals on the mean estimated value, together with the expected val-
ues. The expected probabilities of structural changes PH2→O2 and PO2→H2 are estimated using
Equation (6.1) from the transition matrices AH2→O2 and AO2→H2 obtained from the previously
quantified counting results, shown in Figure 6.8b and 6.8c. At a low noise level σ/δ, the hidden
Markov model accurately estimates the probabilities of structural changes for both processes.
When the noise increases, the estimated probabilities are slightly inaccurate, as it becomes
more difficult to separate structural changes from noise fluctuations. These results show that
through post-processing of the results obtained from the hidden Markov model analysis, prob-
abilities of structural changes and even cross sections can still be quantified for the different
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physical processes causing structural changes during a time series with alternating environ-
mental conditions.
We can now go a step further, and consider more than two transition matrices. In order to test
the performance for atom-counting of the hidden Markov model analysis for, for example, an in
situ heating experiment where the temperature is increased gradually, we simulated a hypothet-
ical observed sequence of scattering cross sections. The observed sequence is generated from
a state sequence corresponding to T = 22 frames. The initial probabilities ιg are uniformly dis-
tributed. The number of atoms in an atomic column ranges between 0 and G = 10, and the total
number of atomic columns analysed in each frame is N = 100. The observed sequence of scat-
tering cross sections is created using a Gaussian emission probability with average scattering
cross sections equal to the same Pt library valuesMg used in the previous example discussed in
this section. The relative width of the Gaussian emission probability is σ/δ = 0.3 and 0.7. The
transition matrix that describes the structural changes in the state sequence is changed at each
frame transition. At each transition from frame to frame, a transition matrix with a Gaussian
spread around the diagonal is used, each time with an increasing value for the FWHM, in order
to mimic the increasing mobility of the atoms in the nanostructure when the temperature in-
creases. The transition matrices used for this simulation are shown in Figure B.7 of Appendix
B. The parameters for this simulation study are also summarised in Table B.2 of Appendix
B. At a low and high noise level (σ/δ = 0.3 and 0.7), we obtain a percentage of respectively
93.6% and 60.8% correctly counted atomic columns during the time series. This performance
is close to the results shown previously in Figure 5.4, where at T = 22 the respective obtained
percentages of correct atom-counts are (94.34± 0.13)% and (68.00± 0.41)%. This implies that
we can still obtain reasonably reliable counting results from a time series with non-constant
underlying transition matrix.
In conclusion, it is possible to use the existing framework of hidden Markov model for atom-
counting when the underlying driving process is non-constant. This opens up possibilities for
the analysis of in situ heating or gas flow experiments.

6.7 Conclusions

In this chapter, we have discussed applications of the hidden Markov model for atom-counting
from time series of ADF STEM images, introduced in Chapter 5, for measuring dynamic struc-
tural changes at the atomic scale. We show that the transition probabilities can be used to de-
termine the probability of structural changes from one frame to the next during the time series.
We validated that intensity variations during the time series that result from structural changes
are estimated by the transition matrix, while noise fluctuations are estimated by the width of
the Gaussian emission probability. When the probability of structural changes is small, this is
valid for all noise levels. When the probability of structural changes is larger, the separation of
noise and structural changes can still be performed reasonably well, although slight inaccura-
cies arise when the electron dose is lowered, making it more difficult to discern the origin of
the fluctuations in the scattering cross sections from frame to frame.
We could therefore reliably quantify the probability of structural changes for an experimental
ADF STEM time series of a Pt wedge using the hidden Markov model analysis. For this Pt
wedge, the structural changes occur due to beam-induced surface diffusion. From the probabil-
ity of structural changes, we can therefore quantify the cross section for surface diffusion, and
its corresponding threshold energy for surface diffusion. We conclude that the cross section for
surface diffusion is inherently underestimated by the hidden Markov model as compared to the
expected theoretical value, since the estimated transition probabilities describe net structural
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changes from frame to frame. These net structural changes can be the result of multiple hops
of atoms, potentially in opposite directions, yielding a smaller amount of net changes after the
frame is acquired as compared to the actual amount of structural changes. Nonetheless, we can
provide a reasonable lower bound for the cross section related to surface diffusion, since this
methodology gets a closer match with the theory as compared to the current state-of-the-art
analysis of variance method [Van Aert 2019]. The hidden Markov model is therefore a promis-
ing approach for the reliable quantification of physical cross sections from experimental ADF
STEM time series.
Next, we discussed the application of the hidden Markov model for an experimental ADF
STEM time series of a Pt nanoparticle with catalytic properties. The analysis of the cata-
lyst Pt nanoparticle reveals that the particle gradually loses its facetted morphology, due to
beam-induced surface diffusion. We also estimated a cross section for surface diffusion for this
nanoparticle. The value includes the contributions of different migration mechanisms, such as
hopping, atomic exchange, and vacancy diffusion, and from different types of surfaces. The
cross section for structural changes is therefore of great importance in order to unravel dom-
inant mechanisms and surfaces in the diffusion process and to gain new insights in surface
related phenomena such as catalysis and nanoparticle growth.
Then, the analysis of a thermal catalyst Au nanoparticle was discussed. The atom-counting
results, obtained using the hidden Markov model analysis of this supported Au nanoparticle at
elevated temperature, are combined with a molecular dynamics relaxation. This allows us to
study the surface dynamics in 3D. The catalytic properties of this thermal catalyst are related to
the facets and surface dynamics. Our quantification reveals that the process of layer jumping,
which was also studied previously for this type of nanoparticles, cannot be simply considered
as a reversible rigid displacement of an entire facet. Indeed, there is a significant change in the
surface structure and sites.
The frames of the Au nanoparticle time series were all acquired at the same elevated temper-
ature during an in situ heating experiment. In the last part of this chapter, we also consider
the possibility of in situ experiments with variable environmental conditions such as a gradu-
ally increasing temperature or an alternating gas flow. Therefore, we consider a hypothetical
time series generated using two transition matrices based on an alternating gas flow experiment,
where a Pt nanoparticle was previously shown to change from a round to a facetted morphology
and vice versa. We show that, even when the structural changes are caused by two transition
matrices, we can still reliably count the number of atoms without alterations to the parame-
ter estimation of the hidden Markov model. We even show that reliable counting is possible
when the transition matrix changes for each frame transition during the time series, for example
during a heating experiment where the temperature is increased in steps. We should however
quantify the probability of structural changes with caution. If we know when the environmental
conditions change, it is nonetheless possible to estimate the probabilities of structural changes
and even cross sections for the different physical processes causing structural changes during
a time series with alternating environmental conditions. This can be achieved through post-
processing of the results obtained from the hidden Markov model analysis. In conclusion, it is
possible to use the hidden Markov model presented in this thesis for atom-counting when the
underlying driving process is non-constant. This opens up possibilities for the analysis of in
situ heating or gas flow experiments.

In general, we have shown that the hidden Markov model allows us to obtain more reliable
counting results from a time series of ADF STEM images as compared to the existing single
frame counting procedures thanks to the explicit modelling of the structural changes using the
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transition probabilities. The hidden Markov model even allows us to quantify the probability of
structural changes and relate it to a dose independent cross section related to the physical pro-
cess(es) that cause the changes during the time series. As such, the hidden Markov model for
atom-counting is promising for revealing and quantifying the atomic structure when it evolves
over time via adatom dynamics, surface diffusion, beam effects or during in situ experiments.
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7
General conclusions and future perspectives

The goal of the research presented in this thesis was to develop model-based quantitative tech-
niques to reliably measure dynamic structural changes at the atomic scale from a time series of
annular dark field scanning transmission electron microscopy (ADF STEM) images. In order
to achieve this goal, advanced atom-counting procedures for single frames and for time series
have been proposed. To this purpose, statistical parameter estimation theory and image simu-
lations were used extensively and intertwined to develop truly hybrid approaches.

As a starting point, the ADF STEM image intensities are quantified using a parametric imaging
model. The intensities of atomic resolution ADF STEM images are peaked at the atomic col-
umn positions and sensitive to the chemical content and thickness of the nanomaterial. By es-
timating the parameters of a model with superimposed two-dimensional (2D) Gaussian peaks,
the atomic column positions and the so-called scattering cross sections of the atomic columns
can be estimated. The scattering cross section quantifies the total intensity of electrons scat-
tered towards the annular detector from an atomic column and can be estimated as the volume
of the Gaussian peaks in the parametric imaging model. The scattering cross sections of a
monatomic crystalline nanomaterial increase monotonically with the number of atoms in the
atomic column, making them particularly suitable for atom-counting.
The use of the parametric imaging model for the quantification of ADF STEM image intensities
has therefore become a recognised approach in quantitative electron microscopy of nanomate-
rials oriented along a main zone axis. However, in the presence of sample tilt away from a zone
axis orientation, an elongation of the intensity scattered from the atomic columns is observed
in the ADF STEM images. Therefore, in our experience, an often posed research question in
the quantitative STEM community is whether elliptical Gaussians should be used, rather than
symmetrical Gaussians. In this thesis, we provide an answer to this question by implementing
a parametric imaging model that consists of superimposed 2D elliptical, rather than symmet-
rical, Gaussian peaks. The parameters of this model are estimated in a least squares sense,
and the possibilities and limitations of the model are quantitatively studied, using ADF STEM
image simulations of platinum (Pt) nanocrystals at various amounts of sample tilt. The residual
intensities after fitting the elliptical model to the ADF STEM image of the tilted nanocrystal
are indeed significantly smaller as compared to the residual intensities after the fit with the
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symmetrical model. A benefit of the elliptical model is that it allows us to quantify the elonga-
tion of the atomic columns and the angle of the elongation. The angle quantifies the direction
of sample tilt, while the elongation is strongly related to the amount of sample tilt. However,
the accuracy of the estimated atomic column positions and scattering cross sections can not
be improved upon by the elliptical model as compared to the symmetrical model. Further-
more, the parameter space is larger, which generally leads to less precise parameter estimation.
Therefore, our recommendation for a reliable quantification of ADF STEM image intensities
is the use of the freely available StatSTEM software package which efficiently implements the
parametric model that consists of superimposed 2D symmetrical Gaussian peaks, even in the
presence of small amounts of sample tilt away from a main zone axis orientation.

Two approaches for atom-counting based on the scattering cross sections have been developed
prior to the research presented in this thesis, based either only on image simulations or only on
statistical parameter estimation theory. In the image simulations-based approach, the scatter-
ing cross sections of the atomic columns estimated from the experimental ADF STEM image
are directly compared to a so-called library of scattering cross sections obtained from image
simulations performed at different thicknesses. This simulations-based method is very simple
and intuitive. However, the accuracy of the atom-counts critically depends on potentially un-
detected mismatches between experiment and simulations. The statistics-based method on the
other hand, is independent of image simulations, and takes the inherently random nature of the
scattering cross sections into consideration. An important advantage of this method is the pos-
sibility to quantify the precision of the atom-counting results. However, this method also has
its limitations. Specifically, the performance of the statistics-based method for atom-counting
is highly sensitive to small nanoparticles and low electron doses, leading to fewer data points
per thickness and high noise levels respectively.
In order to overcome the limitations of these two existing procedures for atom-counting, we
have introduced a so-called hybrid statistics-simulations based method for atom-counting. In
this method, prior knowledge from image simulations is directly incorporated into the statisti-
cal framework by including the library values in the statistical model. Small undetected mis-
matches between simulated and experimental microscope/sample parameters, such as detector
inner angle or sample tilt, can easily occur. The effect of such a mismatch on the scattering
cross sections can be described by a linear scaling. Therefore, the hybrid method estimates the
average scattering cross sections equal to the scaled library values, where the scaling parameter
is estimated to account for any possible mismatch between experiment and simulations. As a
result, the atom-counting procedure becomes more robust and atom-counting can be performed
reliably at lower electron doses. In this manner, the hybrid method opens up possibilities for
the quantitative analysis of truly beam-sensitive nanomaterials.
Indeed, we have shown in this thesis that the hybrid method for atom-counting outperforms
the current state-of-the-art statistics-based atom-counting method. Simulations show that a
lower electron dose is required to reach the same level of accuracy for the counting results.
The counting procedure is validated using a high dose experimental ADF STEM image of a
stable gold (Au) nanorod. Next, simulated ADF STEM images of a Pt nanoparticle at various
tilt angles are analysed. Reliable atom-counting remains possible, owing to the linear scaling
parameter of the hybrid method that can account for the sample tilt. Finally, reliable counting
results could be obtained from a low dose experimental ADF STEM image of a platinum-
iridium (Pt/Ir) nanoparticle for which this was not feasible using the statistics-based method.
Using a simulation based on this low dose experimental ADF STEM image, the capabilities
of the hybrid method are demonstrated for the analysis of images recorded using even lower
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electron doses.
It is important to note that there is a fundamental difference between the hybrid statistics-
simulations based atom-counting method presented in this thesis, and the previously used com-
bination of the statistics-based atom-counting method, validated using the library obtained from
image simulations. By incorporating the prior knowledge from image simulations directly into
the statistical framework, this approach is more robust, and atom-counting is directly put on an
absolute scale. In this manner, unravelling the relation between estimated components of the
probability distribution of the scattering cross sections and the number of atoms is straightfor-
ward, which is highly useful in order to realise atom-counting from a time series.

In order to extend the atom-counting procedure from a single ADF STEM image to a time
series, we have introduced the so-called hidden Markov model in the field of electron micro-
scopy. In this model, two layers can be recognised: a “hidden” state sequence, and an observed
sequence. In the case of atom-counting, the hidden states correspond to the number of atoms in
each atomic column in each frame of the time series. Those states are only indirectly observed
via the scattering cross sections estimated from the ADF STEM images. In fact, when only
one frame is considered, this method is equivalent to the hybrid statistics-simulations based
atom-counting procedure. During a time series of ADF STEM images, the atomic structure
can change from frame to frame. This can be modelled explicitly using the so-called transi-
tion probabilities, summarised by the transition matrix. The transition probabilities summarise
the probability that an atomic column gains or loses atoms from one frame to the next during
the time series. Estimating the transition matrix is the key to the improved performance for
atom-counting achieved by the hidden Markov model as compared to the hybrid method. As a
consequence, the performance of the hidden Markov model further improves when the length
of the time series increases.
Additionally, the probability that the atomic structure changes from one frame to the next dur-
ing the time series can be derived from the transition matrix. Indeed, the hidden Markov model
allows to reliably distinguish between intensity fluctuations caused by structural changes and
noise fluctuations. The probability of structural changes can therefore be used to reliably char-
acterise the dynamic changes in the time series. Taking into account the electron dose, the
cross section related to structural changes can be derived from the probability of structural
changes. Two experimental examples were discussed for which a cross section related to struc-
tural changes could be quantified, a Pt catalyst nanoparticle and a Pt wedge. The structural
changes for these two experimental time series could be attributed to surface diffusion. Sput-
tering, i.e. the removal of atoms from the sample, could be excluded based on the incident
electron energy. In this manner, a cross section for surface diffusion could be quantified. In
case of the Pt nanoparticle, this cross section for surface diffusion includes the contributions
from different surface orientations. For the Pt wedge, only one surface orientation is present,
and the cross section for surface diffusion estimated from the Pt wedge can be compared to
the theoretical value. In this manner, a close agreement with the expected theoretical cross
section and threshold energy for surface diffusion is found. In the presence of sputtering, the
probability of structural changes can not be related directly to a threshold energy for surface dif-
fusion, as an interplay of various dynamic processes determines the atomic structural changes.
The probability of structural changes in this case summarises the joint effect of sputtering and
surface diffusion, and can be used to unravel dominant mechanisms and surfaces in dynamic
processes such as the diffusion process and to gain new insights in surface related phenomena
such as catalysis and nanoparticle growth.
Owing to the improved reliability for atom-counting of the hidden Markov model, a reliable 3D
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atomic structural characterisation for an experimental time series of an in situ heated supported
catalytic Au nanoparticle could be obtained by combining the (2D) time series counting results
with a molecular dynamics relaxation. In this manner, the facets and surface dynamics of a ther-
mal catalyst could be quantified in three dimensions (3D). As a next step, using a simulations
study, we advance towards the application of the hidden Markov model to in situ experiments
with variable environmental conditions such as a gradually increasing temperature or an alter-
nating gas flow. Although caution is advised upon attributing a physical interpretation to the
estimated transition probabilities, we show that it is indeed possible to use the hidden Markov
model when the underlying process that causes the dynamic structural changes is non-constant.
This opens up possibilities for the analysis of in situ heating or gas flow experiments. In sum-
mary, the hidden Markov model for atom-counting is promising for revealing and quantifying
the atomic structure when it evolves over time via adatom dynamics, surface diffusion, beam
effects or during in situ experiments.

The quantitative methods presented in this thesis can be applied to a range of monatomic nano-
materials. In future work, it would be interesting to extend this framework to the quantifi-
cation of dynamic structural changes in heterogeneous nanomaterials as well. At present,
only a simulations-based method for atom-counting from heterogeneous nanomaterials ex-
ists [van den Bos 2016, van den Bos 2019]. This method is based on a direct comparison of
the experimental and simulated scattering cross sections. To this purpose, the so-called lensing
model was introduced to enable efficient simulations of scattering cross sections for all possi-
ble combinations of mixed atomic columns. In a sense, this set of simulated scattering cross
sections is a heterogeneous library, which could be included in the statistical framework of the
hidden Markov model. The hidden states in this case correspond to the total number of the
atomic columns and the different types of each atom in the atomic column. In this manner, the
parameter space is increased tremendously. Therefore, the combination with multiple detectors
and/or spectroscopic information is envisaged, in order to increase the available dataset as well.
Scattering cross sections for two different types of atomic columns that are highly similar in
HAADF STEM can, for example, differ significantly in LAADF STEM. Using the principles
of optimal experimental design, the ideal detector settings can be extracted from a 4D STEM
dataset in order to correctly unravel the set of scattering cross sections. Furthermore, scatter-
ing cross sections estimated from EDX and EELS can be used to unravel the types of atoms
present in the atomic columns. In this manner, the hidden Markov model for atom-counting
could be extended to the reliable measurement of dynamic structural changes in heterogeneous
nanomaterials.
In order to estimate the 3D atomic structure, based on the 2D atom-counting results, a structural
relaxation method can be used. In this thesis, the counting results were combined with molec-
ular dynamics, and very recently, counting results obtained using the hidden Markov model
have been combined with a Bayesian genetic algorithm [De Backer 2021c]. As a next step,
the hidden Markov model could be generalised such that the hidden states correspond to the
3D atomic structure, and can be inferred directly from the ADF STEM images, circumventing
the intermediate 2D counting results altogether. In this case, factorising the hidden states over
the atomic columns will no longer be possible, leading to a highly complex state space. This
might be beyond the scope of the hidden Markov model, but could quite possibly be achieved
using artificial neural networks. In this case, the training dataset could be constructed using the
two-step process of atom-counting and then relaxing the structure. Alternatively, 3D atomic
structures and corresponding image simulations can be used to train the artificial neural net-
work directly.
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Indeed, artificial neural networks are a highly interesting approach in order to develop fast
quantitative methods. After training, neural networks are simply matrix multiplications, which
can be performed (close to) real-time. Real-time quantification of the atomic structure, in par-
allel with the acquisition of experimental time series, can guide the experiment in order to study
dynamic processes in a controlled manner, with optimal distribution of the electron dose over
the time series. This opens up opportunities for the reliable quantification of extremely noisy
images, for example, due to the low electron dose required for truly beam-sensitive nanos-
tructures or due to a gaseous or liquid environment during in situ experiments. Furthermore,
it would make quantitative electron microscopy more easily accessible for a wide range of
applications, pushing the field of materials science towards materials design.
In this thesis, we have progressed towards this ultimate goal of reliable and fast quantitative
electron microscopy. As a general conclusion, the interwoven combination of statistical pa-
rameter estimation theory and careful image simulations allows to accurately and precisely
quantify the atomic structure for (monatomic) nanocrystalline materials. The inclusion of im-
age simulations in a statistical framework allows us to exceed the limitations of independent
statistics- or image simulations-based methods, while retaining an estimate for the accuracy
and precision of the quantitative results. In this manner, the reliable quantification of atomic
scale structural changes even becomes possible.
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Appendix A: Image simulation parameters

The parameters of the image simulations I performed in Sections 3.3 and 4.7 are summarised
respectively in Tables A.1 and A.2. Multislice simulations were performed using MULTEM
[Lobato 2014, Lobato 2015, Lobato 2016], as described in Section 2.3.

Parameter Value
Acceleration voltage 300 kV
Spherical aberration Cs 1 nm
Defocus C1 14.03Å
Zero defocus reference plane 10.82Å
Specimen thickness 6 & 18 unit cells (16.64Å & 49.92Å)
Simulation box size (xy) 50 × 50Å2

Probe convergence angle α 21 mrad
Annular detector inner angle 70 mrad
Annular detector outer angle 180 mrad
Number of phonon configurations 50
Spatial incoherence of source FWHM 1Å
Pixel size of simulated image 0.10Å
Pixel size to sample atomic potential 0.046Å
Pixel size to sample reciprocal space 0.02Å−1

Maximum reciprocal lattice vector 10.8 Å−1

Slice thickness 1.39Å
Debye-Waller factor 0.5705Å2 [Gao 1999]
Zone axis [110]
Tilt axis [11̄0]
Rotation center center of mass

Table A.1: Parameters used for the multislice simulations of the Pt(110) nanocrystal discussed in Sec-
tion 3.3.
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Parameter Value
Acceleration voltage 200 kV
Spherical aberration Cs 0 nm
Defocus C1 0Å
Zero defocus reference plane 17.83Å
Specimen thickness 23.58Å
Simulation box size 50.09 × 50.11 × 35.66Å3

Probe convergence angle α 22.48 mrad
Annular detector inner angle 51.73 mrad
Annular detector outer angle 248.41 mrad
Number of phonon configurations 30
Spatial incoherence of source FWHM 1Å
Pixel size of simulated image 0.125Å
Pixel size to sample atomic potential 0.039Å
Pixel size to sample reciprocal space 0.02Å−1

Maximum reciprocal lattice vector 12.77 Å−1

Slice thickness 1.39Å
Debye-Waller factor 0.3836Å2 [Gao 1999]
Zone axis [110]
Tilt axis [11̄0]
Rotation center center of mass

Table A.2: Parameters used for the multislice simulations of the Pt nanoparticle in Figure 4.6.



Appendix B: Supplemental tables & figures

Value
Parameter Figure 5.4 Figure 5.5 Figure 5.6

T 1 to 40 1, 2, 5, 10, 20 10
N 100 1000/T 60
G 10 10 6
ιg uniform uniform uniform

A jg Gauss diagonal Gauss diagonal Gauss diagonal
(FWHM=1.5) (FWHM=1.5) (FWHM=1.5)

a 1 1 1
Mg Pt(110) Pt(110) Pt(110)
σ/δ 0.3 and 0.7 0.3 and 0.7 0.7

Table B.1: Parameters of the hypothetical hidden Markov models used to obtain the results from Figures
5.4, 5.5 and 5.6 in Section 5.5.

Value
Parameter 2 A’s gradually changing A’s

T 10 22
N 2457 100
G 26 10
ιg estimated from atom-counts uniform

in H2 [Altantzis 2019]
A jg estimated from atom-counts Gauss diagonal FWHM = 1 to 3

for H2 → O2 and O2 → H2 [Altantzis 2019]
a 1 1
Mg Pt(110) Pt(110)
σ/δ 0.1 and 0.7 0.3 and 0.7

Table B.2: Parameters of the hypothetical hidden Markov models used to study the effect of two transi-
tion matrices and of gradually changing transition matrices in Section 6.6.
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Figure B.1: Transition matrix with a Gaussian spread around the diagonal with FWHM = 1.5 used in
Section 5.5.

Figure B.2: More diffuse transition matrix, based on the estimated transition matrix for the Pt wedge
time series, used to obtain the results in Table 6.1 of Section 6.2.

Figure B.3: ADF STEM images of the time series of the Pt wedge discussed in Section 6.2.
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Figure B.4: Counting results obtained by the hidden Markov model analysis of the time series of Figure
B.3.

Figure B.5: Experimental ADF STEM time series recorded of the Pt nanoparticle discussed in Section
6.4. Time progresses along the rows.
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Figure B.6: Counting results obtained by the hidden Markov model for the time series from Figure B.5.

Figure B.7: Transition matrices with a Gaussian spread around the diagonal with an increasing value
for the FWHM (1 to 3, in steps of 0.1), and therefore an increasing probability of structural changes P,
discussed in Section 6.6.



Bibliography

[Aarons 2017] J. Aarons, L. Jones, A. Varambhia, K.E. MacArthur, D. Ozkaya,
M. Sarwar, C.-K. Skylaris, and P.D. Nellist. Predicting the
Oxygen-Binding Properties of Platinum Nanoparticle Ensembles
by Combining High-Precision Electron Microscopy and Density
Functional Theory. Nano Letters, vol. 17, 4003–4012, 2017.

[Abrams 2021] S. Abrams, J. Wambua, E. Santermans, L. Willem, E. Kuylen,
P. Coletti, P. Libin, C. Faes, O. Petrof, S.A. Herzog, P. Beutels,
and N. Hens. Modelling the early phase of the Belgian COVID-
19 epidemic using astochastic compartmental model and studying
its implied future trajectories. Epidemics, vol. 35, 100449, 2021.

[Agard 2014] D. Agard, Y. Cheng, R.M. Glaeser, and S. Subramaniam. Chap-
ter Two - Single-Particle Cryo-Electron Microscopy (Cryo-EM):
Progress, Challenges, and Perspectives for Further Improvement.
Advances in Imaging and Electron Physics, vol. 185, 113–137,
2014.

[Akashi 2015] T. Akashi, Y. Takahashi, T. Tanigaki, T. Shimakura, T. Kawasaki,
T. Furutsu, H. Shinada, H. Müller, M. Haider, N. Osakabe, and
A. Tonomura. Aberration corrected 1.2-MV cold field-emission
transmission electron microscope with a sub-50-pm resolution.
Applied Physics Letters, vol. 49, 074101, 2015.

[Alania 2017] M. Alania. Quantification of 3D atomic positions for nanoparti-
cles using scanning transmission electron microscopy: statistical
parameter estimation, dose-limited precision and optimal experi-
mental design. PhD thesis, University of Antwerp, 2017.

[Alania 2018] M. Alania, I. Lobato, and S. Van Aert. Frozen lattice and absorp-
tive model for high angle annular dark field scanning transmis-
sion electron microscopy: A comparison study in terms of inte-
grated intensity and atomic column position measurement. Ultra-
microscopy, vol. 184, 188–198, 2018.

[Allen 2003] L.J. Allen, S.D. Findlay, M.P. Oxley, and C.J. Rossouw. Lattice-
resolution contrast from a focused coherent electron probe. Part
I. Ultramicroscopy, vol. 96, 47–63, 2003.

[Allen 2004] L.J. Allen, W. McBride, N.L. O’Leary, and M.P. Oxley. Exit wave
reconstruction at atomic resolution. Ultramicroscopy, vol. 100,
91–104, 2004.

113



114 Bibliography

[Allen 2015] L.J. Allen, A.J. D’Alfonso, and S.D. Findlay. Modelling the in-
elastic scattering of fast electrons. Ultramicroscopy, vol. 151,
11–22, 2015.

[Altantzis 2019] T. Altantzis, I. Lobato, A. De Backer, A. Béché, Y. Zhang,
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[Béché 2016] A. Béché, B. Goris, B. Freitag, and J. Verbeeck. Development
of a fast electromagnetic beam blanker for compressed sensing
in scanning transmission electron microscopy . Applied Physics
Letters, vol. 108, 093103, 2016.

[Beran 2010] T.N. Beran, and C. Violato. Structural equation modeling in med-
ical research: a primer. BMC Research Notes, vol. 3, 267, 2010.

[Berebichez 2019] D. Berebichez. Science is an ivory tower - Communicating sci-
ence for the masses, 2019.

[Berube 2008] D.M. Berube. Rhetorical gamesmanship in the nano debates over
sunscreens and nanoparticles. Journal of Nanoparticle Research,
vol. 10, 23–37, 2008.

[Biernacki 2000] C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture
model for clustering with the integrated classification likelihood.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, 719–725, 2000.

[Bilmes 1998] J.A. Bilmes. A Gentle Tutorial of the EM Algorithm and its Appli-
cation to Parameter Estimation for Gaussian Mixture and Hidden
Markov Models. International Computer Science Institute Berke-
ley, vol. TR-97-021, 1998.

[Bishop 2006] C. Bishop. Pattern Recognition and Machine Learning. New
York: Springer-Verlag, 2006.

[Bollig 1996] B. Bollig, H.G. Fischer, and E. Kubalek. Multislice simulation
of high-resolution scanning transmission electron microscopy Z-
contrast images of semiconductor heterointerfaces. Scanning,
vol. 18, 291–300, 1996.

[Boschker 2011] H. Boschker, M. Huijben, A. Vailionis, J. Verbeeck, S. Van Aert,
M. Luysberg, S. Bals, G. Van Tendeloo, E.P. Houwman,
G. Koster, D.H.A. Blank, and G. Rijnders. Optimized fabrica-
tion of high-quality La0.67Sr0.33MnO3 thin films considering all
essential characteristics. Journal of Physics D: Applied Physics,
vol. 44, 205001, 2011.



116 Bibliography

[Brown 2017] H.G. Brown, R. Ishikawa, G. Sánchez-Santolino, N.R. Lugg,
Y. Ikuhara, Allen L.J., and N. Shibata. A new method to detect and
correct sample tilt in scanning transmission electron microscopy
bright-field imaging. Ultramicroscopy, vol. 173, 76–83, 2017.

[Browning 2012] N.D. Browning, M.A. Bonds, G.H. Campbell, J.E. Evans,
T. LaGrange, K. L. Jungjohann, D.J. Masiel, J. McKeown,
S. Mehraeen, B.W. Reed, and M. Santala. Recent developments
in dynamic transmission electron microscopy. Current Opinion in
Solid State and Materials Science, vol. 16, 23–30, 2012.

[Buban 2010] J.P. Buban, Q. Ramasse, B. Gipson, N.D. Browning, and
H. Stahlberg. High-resolution low-dose scanning transmission
electron microscopy. Journal of Electron Microscopy, vol. 59,
103–112, 2010.

[Buffat 2003] P.A. Buffat. Electron diffraction and HRTEM studies of multiply-
twinned structures and dynamical events in metal nanoparticles:
facts and artefacts. Materials Chemistry and Physics, vol. 81,
368–375, 2003.

[Cao 2018] K. Cao, T. Zoberbier, J. Biskupek, A. Botos, R.L. McSweeney,
A. Kurtoglu, C.T. Stoppiello, A.V. Markevich, E. Besley, T.W.
Chamberlain, U. Kaiser, and A.N. Khlobystov. Comparison of
atomic scale dynamics for the middle and late transition metal
nanocatalysts. Nature Communications, vol. 9, 3382, 2018.

[Chang 2014] H. Chang, M. Saito, T. Nagai, Y. Liang, Y. Kawazoe, Z. Wang,
H. Wu, K. Kimoto, and Y. Ikuhara. Single adatom dynamics
at monatomic steps of free-standing few-layer reduced graphene.
Scientific Reports, vol. 4, 6037, 2014.

[Chapman 2011] H.N. Chapman, P. Fromme, [. . . ], and J.C.H. Spence. Femtosec-
ond X-ray protein nanocrystallography. Nature, vol. 470, 73–77,
2011.

[Chen 2020] E. Chen, M. Bevilacqua, C. Tavagnacco, T. Montini, C.-M. Yang,
and P. Fornasiero. High surface area N/O co-doped carbon mate-
rials: Selective electrocatalysts for O2 reduction to H2O2. Catal-
ysis Today, vol. 356, 132–140, 2020.

[Cherepanov 2004] V. Cherepanov, and B. Voigtländer. Influence of material, sur-
face reconstruction, and strain on diffusion at the Ge(111) sur-
face. Physical Review B, vol. 69, 125331, 2004.

[Claes 2018] N. Claes. 3D Characterization of coaded nanoparticles and soft-
hard nanocomposites. PhD thesis, University of Antwerp, 2018.

[Coralli 2019] A. Coralli, B.J.M. Sarruf, P.E.V. de Miranda, L. Osmieri, S. Spec-
chia, and N.Q. Minh. Chapter 2 - Fuel Cells. Science and Engi-
neering of Hydrogen-Based Energy Technologies, 39–122, 2019.



117

[Cowley 1959] J.M. Cowley, and A.F. Moodie. The scattering of electrons by
atoms and crystals. III. Single-crystal diffraction patterns. Acta
Crystallographica, vol. 12, 360–367, 1959.

[Cramér 1946] H. Cramér. Mathematical Methods of Statistics. New York:
Princeton University Press, 1946.

[Croitoru 2006] M.D. Croitoru, D. Van Dyck, S. Van Aert, S. Bals, and J. Ver-
beeck. An efficient way of including thermal diffuse scattering in
simulation of scanning transmission electron microscopic images.
Ultramicroscopy, vol. 106, 933–940, 2006.
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Roman characters

Character Page Explanation
a 40 linear scaling parameter
A jg 61 transition probabilities for the number of atoms in an atomic column

to go from j to g atoms from one frame to the next
A 61 transition matrix
c 20 crystal lattice parameter in the z-direction
c(n)

t 76 scaling factor
d 23 number of parameters of the model

85 electron dose
E 16 expectation value
fkl 28 expectation model for the ADF STEM image intensity at pixel (k, l)
fmix 22 Gaussian mixture model
Fθ 17 Fisher information matrix for parameters θ
g 21 component index of the Gaussian mixture model

40 number of atoms in an atomic column
g(n)

t 62 effective number of atoms in a column n at a given time t
G 22 number of components of the Gaussian mixture model

40 maximum number of atoms in an atomic column
ht 58 hidden state at time t
h(n)

t 59 hidden state (number of atoms) at time t for atomic column n
h(n)

tg 59 binary hidden state index: equal to 1 if the number of atoms in atomic
column n in frame t equals g, otherwise equal to 0

h(n)
g 60 binary hidden state index: equal to 1 if the number of atoms in atomic

column n in the single frame equals g, otherwise equal to 0
H 58 hidden state sequence
k 18 pixel index in x-direction

41 iteration index
K 18 number of image pixels in x-direction
l 18 pixel index in y-direction
L(t) 17 likelihood function
L 18 number of image pixels in y-direction
Mg 40 library value corresponding to an atomic column with g atoms
n 18 atomic column index
N 18 total number of atomic columns in the image
N 22 Gaussian distribution
Nad 88 number of adatoms
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on 60 stochastic variable related to the scattering cross section of atomic
column n in a single frame

ot 58 observation at time t
o(n)

t 60 stochastic variable related to the scattering cross section of atomic
column n in frame t

ô(n)
t 59 observed scattering cross section for atomic column n in frame t

O 58 (stochastic variable relate to) observed sequence
Ô 63 sequence of observed scattering cross sections
O(n) 79 observed sequence for atomic column n
p(x) 16 joint probability (density) function
P 84 probability of structural changes
Psd 87 probability of surface diffusion
q(n)

t 64 number of atoms in atomic column n at time t
Q(Ω,Ωold) 74 auxiliary function for Baum-Welch algorithm
t 58 time series frame index
t 17 independent variables
T 58 number of frames in a time series
T 17 transposed vector
V̂n 19 estimated scattering cross section of atomic column n
Vn 22 stochastic variable related to the nth scattering cross section
V 22 vector summarising the stochastic variables for all scattering cross

sections
wkl 18 pixel values for pixel (k, l)
w 18 vector summarising all pixel values
Xm 16 stochastic variable
X 16 vector summarising stochastic variables
xk 18 x-coordinate corresponding to pixel index k in the image
xm 16 independent variable related to the observed data
x 16 vector summarising the independent variables related to the observed

data
x 17 vector summarising the observed data points
yk 18 y-coordinate corresponding to pixel index l in the image

Greek characters

Character Page Explanation
α 12 probe convergence angle

29 angle that describes the orientation of the elliptical Gaussian peaks
α(h(n)

tg ) 75 forward variable
α̂(h(n)

tg ) 76 scaled forward variable
β1 12 inner angle of the annular detector
βxn 18 x-coordinate of the nth atomic column
βyn 18 y-coordinate of the nth atomic column
β(h(n)

tg ) 75 backward variable
β̂(h(n)

tg ) 76 scaled backward variable
γ(h(n)

tg ) 74 posterior probability that atomic column n contains g atoms at time t
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δ 38 (average) distance between the locations of a Gaussian mixture
model

65 (average) difference between the mean values of the Gaussian emis-
sion probabilities

ϵ 32 aspect ratio of an elliptical Gaussian
ζ 18 constant background present in the image
ηn 18 height of the nth Gaussian peak
θk 17 parameter
θ̂k 17 parameter estimator
θ 17 parameter vector

18 parameter vector of the parametric imaging model
Θ 28 parameter vector of the elliptical parametric imaging model
ιg 60 initial probability for an atomic column to have g atoms
µg 22 location of the gth component in the Gaussian mixture model

60 mean of the Gaussian emission probability
ξ(h(n)

t−1, jh
(n)
tg ) 75 joint posterior probability that atomic column n contains j atoms at

time t − 1 and g atoms at time t
πg 22 mixing proportion of the gth component

40 equal to the probability for an atomic column to have g atoms in the
hybrid approach

π(t)
g 61 probability for an atomic column to have g atoms at time t
ρ 18 width of 2D Gaussian peaks
ρx 29 width of 2D elliptical Gaussian peaks in the x-direction
ρxn 29 width of the nth 2D elliptical Gaussian peak in the x-direction
ρy 29 width of 2D elliptical Gaussian peaks in the y-direction
ρyn 29 width of the nth 2D elliptical Gaussian peak in the y-direction
σ 22 width of Gaussian components

60 width of the Gaussian emission probability
σ/δ 38 relative width of the components of a mixture model

65 relative width of the Gaussian emission probabilities for different
thicknesses

σsd 87 cross section related to surface diffusion
τg

(
V̂n|Ψ̂G

)
44 posterior probability function

Ψstat
G 22 parameter vector of the Gaussian mixture model with G components

in the statistics-based method
ΨG 40 parameter vector of the Gaussian mixture model with G components

in the hybrid method
Ω 61 parameter vector of the hidden Markov model

Abbreviations

Character Page Explanation
2D 4 two-dimensional
3D 5 three-dimensional
4D 12 four-dimensional
Å 16 angstrom, 10−10 meter
ABF 12 annular bright field
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ADF 12 annular dark field
arg max 17 argument that maximises a function
BF 12 bright field
CBED 12 convergent beam electron diffraction
cov 17 covariance matrix
CNN 91 convolutional neural network
EDX 13 energy-dispersive X-ray spectroscopy
EELS 13 electron energy loss spectroscopy
EM 22 Expectation-Maximisation
e− 50 electrons
eV 88 electron volt
FWHM 69 full width at half maximum
HAADF 12 high angle annular dark field
ICL 23 Integrated Classification Likelihood
kV 45 kilovolt
keV 65 kiloelectron volt
LAADF 12 low angle annular dark field
MAADF 12 medium angle annular dark field
MAP 6 maximum a posteriori
MD 90 molecular dynamics
MLE 17 maximum likelihood estimator
µm 1 micrometer, 10−6 meter
mrad 30 milliradian
nm 1 nanometer, 10−9 meter
pm 2 picometer, 10−12 meter
TDS 13 thermal diffuse scattering
TEM 4 transmission electron microscopy
STEM 4 scanning transmission electron microscopy
var 16 variance
Z 13 atomic mass number
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A. Béché, S. Bals, P.D. Nellist, Nondestructive nanoparticle characterisation using a
minimum electron dose in quantitative ADF STEM: how low can one go?, EMC 2016,
The 16th European Microscopy Congress, Lyon, France, August 2 - September 2, 2016.

• S. Van Aert, A. De wael, K.H.W. van den Bos, J. Gonnissen, A. De Backer, L. Jones, M.
Alania, G.T. Martinez, P.D. Nellist, Minimum electron budget for maximum structural in-
formation of beam-sensitive nanoparticles using quantitative scanning transmission elec-
tron microscopy, MRS 2016, Phoenix, USA, March 28 - April 1, 2016, 2408003.

• S. Van Aert, A. De wael, K.H.W. van den Bos, J. Gonnissen, A. De Backer, L. Jones,
M. Alania, G.T. Martinez, P.D. Nellist, Minimum electron budget for maximum struc-
tural information of beam-sensitive nanoparticles using quantitative scanning transmis-
sion electron microscopy, ACMM 2016, Melbourne, Australia, January 31 - February 4,
2016, 69.

• S. Van Aert, A. De Backer, A. De wael, K.H.W. van den Bos, J. Gonnissen, G.T. Mar-
tinez, Precise nanoparticle atom-counting using a mininum electron budget, Microscopy
Conference - MC2015, Göttingen, Germany, September 6-11, 2015, IM2.042.

• A. De Backer, A. De wael, J. Gonnissen, G.T. Martinez, A. Béché, K.E. MacArthur, L.
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