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Abstract 

Over the last years, technological innovation in Radiotherapy (RT) led to the introduction of Magnetic 

Resonance-guided RT (MRgRT) systems. 

Due to the higher soft tissue contrast compared to on-board CT-based systems, MRgRT is expected to 

significantly improve the treatment in many situations. MRgRT systems may extend the management of 

inter- and intra-fraction anatomical changes, offering the possibility of online adaptation of the dose 

distribution according to daily patient anatomy and to directly monitor tumor motion during treatment 

delivery by means of a continuous cine MR acquisition. 

Online adaptive treatments require a multidisciplinary and well-trained team, able to perform a series of 

operations in a safe, precise and fast manner while the patient is waiting on the treatment couch. 

Artificial Intelligence (AI) is expected to rapidly contribute to MRgRT, primarily by safely and efficiently 

automatising the various manual operations characterizing online adaptive treatments. Furthermore, AI is 

finding relevant applications in MRgRT in the fields of image segmentation, synthetic CT reconstruction, 

automatic (on-line) planning and the development of predictive models based on daily MRI. 

This review provides a comprehensive overview of the current AI integration in MRgRT from a medical 

physicist’s perspective. Medical physicists are expected to be major actors in solving new tasks and in taking 

new responsibilities: their traditional role of guardians of the new technology implementation will change 

with increasing emphasis on the managing of AI tools, processes and advanced systems for imaging and data 

analysis, gradually replacing many repetitive manual tasks. 

 

Keywords: Artificial Intelligence, Deep Learning, MR-guided Radiotherapy, Online Adaptive Radiotherapy, 

MR-Linac 
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1. Background  

In recent years, the development of artificial intelligence (AI) started to change the world we live in, bringing 

innovations in social life, technology and health care that were unimaginable a decade ago. Especially the 

fast growing utilization of deep learning (DL) methods has enabled breakthroughs in multiple applications 

[1]. In radiotherapy (RT), AI has already proven to be a valuable tool to support oncological workflows, 

providing significant improvements in many steps of patient care from diagnosis to treatment delivery [2,3].  

At the heart of the expansion of AI is the current exponential growth of the amount of available information 

in digital format. For the same reason, there is great potential for a widespread use of AI in RT, a highly 

computerized medical speciality, including digital diagnostic and positioning imaging data, treatment plans, 

treatment delivery records, follow-up imaging, as well as clinical and molecular data [4].  

A considerable amount of this potential lies within the area of image and data processing: as an example, it is 

nowadays possible to train an artificial neural network (NN) to automatically perform specific tasks that are 

currently carried out manually, or to predict the outcome or associated toxicity of a therapeutic treatment in 

advance, guiding treatment decisions [5,6]. Given the amount and variety of available data, the number of 

implemented and foreseeable applications is hard to estimate [2,4].  

However, the advent of AI in radiation oncology (RO) and its fruitful and correct implementation also 

represents a major challenge, requiring both vision and guidance, as well as major changes in tasks and 

responsibilities of all the actors of the radiotherapy chain, including medical physicists [7,8]. Modern RT has 

always been inextricably linked to technological innovation, and has benefitted from continuous 

development of increasingly advanced and complex image-guided radiotherapy (IGRT) systems, resulting in 

amazing advancements in treatment delivery accuracy  [9,10].  

MR-guided radiotherapy (MRgRT) systems represent one of the latest frontiers of technological innovation, 

combining a linear accelerator (Linac) with an on-board magnetic resonance (MR) imaging system.  

While the clinical introduction of these systems was only a few years ago, promising clinical benefits already 

emerged, promising to represent a major step forward in the clinical management of several tumour types 

[11–14]. To date, two commercial MRgRT systems are in clinical use, mainly differing in the magnetic field 

(B) strength of the on-board MR scanner: MRIdian Linac (ViewRay, Mountain View, California, USA) joins 

a 6 MV Flattening Filter Free (FFF) Linac with a 0.35 T MR imaging system, while Unity (Elekta, 
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Stockholm, Sweden) mounts a 7 MV FFF Linac combined to a 1.5 T MR scanner [15,16]. An example of 

MR images obtained using these hybrid systems is illustrated in Figure 1. 

 

Figure 1 - Example of MR images acquired using hybrid machines for a pelvic case (left) and an abdominal case 

(right): in the upper part two examples of MR images acquired using 1.5 T on-board MR scanner (T2-weighted MRI for 

pelvis and T1-weighted with fat suppression for the abdomen).In the lower part, two MR images acquired using a 0.35 

T MR scanner (TRUFI acquisition for pelvic case and T1 weighted with navigator for the abdominal case) 

 

On-board MR imaging (MRI) offers higher soft tissue contrast compared to standard imaging modalities 

such as Cone Beam Computed Tomography (CBCT), resulting in better visualization of anatomy and a 

significant reduction in contouring and patient positioning uncertainties [17]. Furthermore, using techniques 

like diffusion-weighted MRI, dynamic contrast enhanced (DCE) MRI or T1 and T2 mapping, MR facilitates 

multi-parametric quantitative imaging that is expected to enable more personalized treatment concepts 

approaches [18,19]. Another important advantage is the possibility of directly monitoring tumour motion 

during RT delivery by means of continuous and non-invasive cine-MR acquisition. Currently, this can be 

performed with 4-8 frames per second in a single sagittal plane or 5 frames per second in three orthogonal 

planes, depending on the technology used [20,21].  
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In addition to advanced intra-fraction motion management, MRgRT technology offers the possibility to 

online adapt the treatment plan based on the patient's daily anatomy, allowing effective management of inter-

fraction variations that may occur over the course of the treatment [22,23].  

Figure 2 reports an example of inter-fraction variation that may occurred during an abdominal MRgRT 

treatment of five fractions. 

 

Figure 2 - Example of inter-fraction variability during a five fraction MRgRT treatment of a patient affected by 

pancreatic cancer. The following contours from the day of simulation are projected onto the fraction: GTV (red), 

duodenum (green), stomach (orange) and bowel bag (yellow) 

This procedure, often requiring a multi-disciplinary and highly qualified team and executed while the patient 

stays in treatment position, is known as online adaptive MRgRT: to date, it is performed mainly manually, 

requiring long execution times and tight manual checklists, as many of the single workflow steps are subject 

to human error [23–25]. With daily pre-treatment MRI, additional functional imaging and in-treatment cine-

MRI, a huge amount of information is available, often overwhelming human capabilities. Therefore, AI-

driven image analysis and predictive models can be a powerful tool in optimally exploiting this patient-

specific information. Furthermore, there is a strong need for automation of manual processes in online 

adaptive treatments, as they currently have a significant impact on treatment time and as such impact on an 

efficient use of this technology [26,27].   

The aim of this work is to provide a comprehensive overview of the current integration of AI in the field of 

MRgRT from a medical physics perspective. The objective is to show what is already applied in clinical 
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practice and what is under development, as well as to highlight what is expected in the next years aiming to 

increase treatment efficiency and improve personalisation of MRgRT treatments.  

 

2. Materials and Methods 

The work has been divided into six sections, covering the main areas of AI applications in MRgRT (see 

Figure 3): for each section, a dedicated literature analysis was carried out with the aim of providing an 

overview of the current scientific activity in each field.  

In some of the investigated areas (synthetic CT (sCT) generation, autosegmentation, 3D motion management 

and predictive modelling), several MRgRT-related studies have been published, preluding a possible clinical 

implementation in the near future. In other areas, such as automation in planning and QA, only a few 

MRgRT-specific experiences have been reported so far, but it is to be expected that they will play a 

significant role in the coming years. 

 

Figure 3- Number of AI-based experiences in MRgRT field according to Scopus database in December 2020 

A literature search was performed in the Scopus database considering December 2020 as last update and 

combining four general key-title words (“MR-guided Radiotherapy” OR “MRgRT” AND “Deep Learning” 

OR “Artificial Intelligence”) with specific key words for each section. A summary of the keywords is 
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reported in Table 1 of supplementary materials. Only original papers written in English language were 

considered in the literature analysis. In addition, inclusion criteria were defined for each topic, with the aim 

of focusing on experiences related to AI in MRgRT. A comprehensive list of inclusion and exclusion criteria 

for each section is reported in Table 2 of supplementary materials.  

The review concludes with a final paragraph where the expected clinical benefits for the patient and the main 

ethical issues related to AI integration in MRgRT are presented and discussed.  

 

3. Synthetic CT generation  

To date, the clinical workflow of MRgRT generally requires a two-step simulation, consisting of an MR 

acquisition on the hybrid machine followed by a CT acquisition. Important to note is that the two procedures 

have to be executed with the patient in the same treatment position and within a short time interval to 

minimize anatomical changes as much as possible [11,22].  

The CT image acquisition is a mandatory step in the current workflow, as it provides the electron density 

(ED) map on the basis of which the dose distribution is calculated. The simulation MR image is needed for 

contouring of the target volume and the organs at risk (OARs) as well as a reference image for patient setup. 

On low field MRgRT systems the ED map is usually derived by fusing the acquired CT image with the 

simulation MRI by means of deformable image registration. Such procedures are repeated during the online 

adaptive treatment and possible differences in terms of air bubbles or body shape are compensated by means 

of dedicated structures with assigned bulk ED values [28,29]. 

On high field MRgRT systems, the ED map is usually obtained by rigidly registering the planning CT during 

simulation and then assigning bulk ED values during online adaptive treatments [30].  

Both strategies can lead to suboptimal results during online adaptive procedures, especially in the presence 

of hollow OARs (such as bowel, stomach, rectum), where the different filling status can lead to large 

changes in the ED map, reflecting a significant inter-fraction variability [11,31]. 

An accurate ED map assignment is a crucial aspect in RT in general to have a good estimation of the dose 

but is even more crucial in MRgRT treatments. The dose distribution is influenced by the presence of the 

magnetic field and non-negligible effects may occur when the radiation beams pass through tissue 

inhomogeneities, both in the presence of low and high magnetic fields [32,33]. 
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In this context, the idea of removing the CT acquisition from the MRgRT clinical workflow using an AI-

based system able to generate a synthetic CT (sCT) image from the acquired MRI has grown in recent years, 

with several research groups already demonstrating its feasibility on both low and high field MRI [34–36]. 

The idea of implementing an MR-only RT workflow would bring considerable benefits in daily clinical 

practice. First, it would significantly simplify the clinical workflow, making it more rapid and efficient and 

opening the possibility of treating the patient in the same simulation session, carrying significant advantages 

especially in case of patients requiring urgent palliative care or patients in pain [37]. 

The use of sCT generated from daily MRI would also remove the uncertainties due to CT-MR image 

registration and would save the patient additional exposure to ionizing radiation, ensuring that the only dose 

delivered to the patient is the one needed for treatment purposes [38,39]. 

The idea of removing the CT acquisition from a clinical RT workflow is antecedent to the advent of MR-

Linac systems, as demonstrated by different experiences reporting the idea of performing the treatment 

planning directly on MR images acquired using an external MR scanner or a MR simulator [40,41].  

The advantages offered by the MR-only RT workflow in terms of enhancement of image quality and 

reduction of imaging exposure are also valid if the RT treatment is planned on MRI and then delivered on 

conventional CBCT-based linac systems. For these reasons, several attempts have been made even before the 

introduction of AI to allow for treatment planning directly on MR images, mostly by generating ED maps 

starting from an atlas or using bulk approaches, consisting of segmenting the MR image in a fixed number of 

density levels (i.e. air, lung, fat, soft-tissue and bone) and assigning an ED bulk value to each level of 

segmentation [42,43]. Through these strategies, sufficiently good dose accuracy was reported, even in the 

presence of a magnetic field. A comprehensive analysis of the performance achievable using these methods 

can be found in several reviews on this topic [40,44,45]. The main disadvantage of these methods is that they 

are time consuming, making them difficult to use in online adaptive treatments.  

The advent of AI is slowly revolutionising this area, offering DL-based systems able to produce ED maps on 

a voxel-by-voxel basis, ensuring shorter execution times and equivalent or higher accuracy in the sCT image 

generation with respect to atlas-based or bulk strategies [35]. The time required to produce a volumetric sCT 

image is a key-parameter in the evaluation of a sCT generation algorithm, especially in the context of 
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MRgRT. Times exceeding the order of a few minutes are not compatible with the online adaptive workflow, 

limiting the application only to offline procedures.  

Several experiences based on DL strategies demonstrated the feasibility of providing volumetric sCT images 

in less than 30 seconds if the algorithms are integrated on Central Processing Unit (CPU) architectures (i.e. 

21 sec in [34] and 15 sec in [35]) and in less than 10 seconds if Graphical Processing Unit (GPU)-based 

networks are considered (i.e. 5.6 sec in [34] and 5.7 sec in [46]).  

Beyond the generation time, the quality of a sCT image is generally evaluated in terms of image and dose 

accuracy. The image accuracy is generally quantified by the mean error (ME) and the mean absolute error 

(MAE), where the first one represents the mean difference between the HU values reported in the sCT image 

and the corresponding ones in the CT, while the second considers for each voxel the difference in absolute 

value. ME is considered as an indicator of systematic offset errors in the sCT generation, while the MAE is 

considered as a metric of accuracy [40]. 

In addition to these parameters, the quality of a sCT can be evaluated by considering the dose accuracy, since 

the main purpose of generating these synthetic images is to be used as a basis of dose calculation of MR-

based RT treatment plans. Dose accuracy is usually estimated considering the differences between the dose 

distribution calculated on sCT and the corresponding one obtained on the original CT. Such comparison is 

mainly quantified in terms of gamma analysis, generally considering 2%/2mm or 3%/3mm as tolerance 

criteria [40,43]. Beyond the gamma comparison, dose accuracy is also quantified in terms of Dose Volume 

Histogram (DVH) analysis, evaluating the variation in the estimation of DVH parameters when the treatment 

plan is calculated considering the ED map obtained from sCT rather than CT. The most observed parameters 

are generally the minimum, mean and maximum dose to some reference structures, such as PTV or OARs in 

proximity to the target [29,36,44]. 

Table 1 reports the main studies on AI for generation of synthetic CTs based on a review of the literature 

performed in December 2020 on Scopus, following the keywords and inclusion criteria detailed in the 

supplementary materials. All studies were described in terms of DL-algorithm used, anatomical region 

analysed, magnetic field to which MR images were acquired, image and dose accuracy of the sCT images 

obtained, and time to generate the sCT. 
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     Number Pts Image accuracy Gamma Analysis  

Ref DL  
Magnetic 

Field 
MR sequence  

Anatomic 

Site 
Train Test MAE (SD) ME (SD) 

3%/ 

3mm 

2%/ 

2mm 

1%/ 

1mm 

Time to sCT 

generation (sec) 

[46] 
GAN 

1.0 T T1C 
Brain 15 IV 89.3 (10.3) NA NA NA NA 5.7   

CNN Brain 15 IV 102.4 (11) NA NA NA NA NA 

[47] U-Net 3T T1 Brain 47 13 81.0 (14.6) NA NA NA NA NA 

[48] GAN 1 .5 T T1 Brain 63 14 47.2 (11) NA NA 99.2 (0.8) 94.6 (2.9) NA 

[49] 2D CNN 1 .5T T1 Brain 18  IV 84.8 (17.3) -3.1 (21.6) NA NA NA 9   

[50] 

dense cycleGAN NA T1 Brain 24  IV 55.7 NA NA NA NA >60 

U-Net 1 .5 T T2 Brain 28 6 65.4 (4.1) NA NA NA NA NA 

cycleGAN 1 .5 T T2 Brain 28 6 93.9 (5.9) NA NA NA NA NA 

[34] cGAN 1.5 T T1 Brain 40 20 61 (14) NA 99.9 (0.1) 99.5 (0.8) NA 10-20   

[51] DSPC 0.35T TRUFI Breast 48 4 NA 17.7 (4.3) NA 98 NA NA 

[35] GAN 1 .5 T T2 H&N NA 8 82.8 (48.6) -3.9 (12.8) NA NA NA 35   

[52] CNN 3 T T2 H&N 22 12 75 (9) 9 (11) 98.7 (1.4) 95.6 (2.9)  240 

[53] 
cGAN 3T mDixon H&N 12 11 66.9 (7.3) 15.7 (12.7) NA NA NA 45   

cycleGAN 3T mDixon H&N 12 11 82.3 (6.4) 27.5 (15.1) NA NA NA <90   

[54] cGAN 3T T1; T2; T1C+ T1Dixon H&N 30 15 75.2 (11.5) 1.3 (14.8)  99.0 NA NA 

[55] MCMP-GAN 1.5 T T1;T2 H&N 32  IV 75.7 (14.6) NA NA NA NA <10   

[56] U-Net 1.5 T T2 H&N 22 10 131 (24) -6(13) NA NA NA 7   

[57] U-Net 1.5 T T1;T2 Abdomen 54 12 57 (12) -5(12) NA 99.7 (0.5) NA NA 

[58] 
cGAN 0.35T TRUFI Abdomen 12  IV 89.8 (18.7) NA 99 (0.8) 98.7 (1.5) NA NA 

cycleGAN 0.35T TRUFI Abdomen 12  IV 94.1 (30) NA 99 (0.7) 98.5 (1.6) NA NA 

[59] U-NET 3T T1-Dixon Abdomen 15 31 NA NA NA NA NA NA 

[60] RU-ACGAN NA mDixon Abdomen 10  IV NA NA NA NA NA NA 

[61] BPGAN NA T1 Abdomen 10 NA 5.1 (0.5) NA NA NA NA NA 

[62] cGAN 1.5T; 3T T1 Abdomen 21  IV 72.9 (18.2) NA NA NA >99 NA 

[36] cGAN 
0.35T TRUFI Abdomen 80 20 78.7 (18.5) 10.83 (12.9) 99.8 (0.2) 98.7 (1.1) 90.8 (4.5) 110 (40)   

0.35T TRUFI Pelvis 80 20 54.3(11.9) 1.3 (8.6) 99.2 (0.2) 99 (0.7) 89.3 (4.8) 175 (43)   

[63] CNN 3T T2 Pelvis 39  IV NA NA 99.2 (0.5) 98.5 (0.7) 94.6 (5.6) NA 

[64] eCNN 3T T2 Pelvis 15 12 30 (10.4) 2.8 (10.3) NA NA NA NA 

[65] CNN 3T T1 Pelvis 10 16 29.8 (7.6) NA NA NA NA NA 

[34] cGAN 3T Dixon Pelvis 32 30 61 (9) 2 (8) 97 91 NA 5.6   

[66] U-Net 1 .5T T2 Prostate 36 15 29.9 (4.8) 6.7 (5.4) 99.8 99.4 98.0 3.8–7.6 

[67] 
2D CNN 1.5 T T1 Prostate 20  IV 40.5 (5.4) NA NA NA NA 5.5   

3D CNN 1.5 T T1 Prostate 20  IV 37.6 (5.1) NA NA NA NA 5.5   

[35] 

U-Net L2 

3T T2 Prostate 25 14 

34.4 (7.7) -1(14.2) NA NA 99.2 (1) 15   

U-Net PL 36.8 (6) 3.3 (13.6) NA NA 99.3 (0.8) 15   

GAN L2 34.1 (7.5) -1.1 (13.7) NA NA 99.1 (1) 15   

GAN PL 34.9 (6.4) 4.1 (13.9) NA NA 99.3 (0.9) 15   

GAN MPL 35.6 (6.2) 1.9 (13.3) NA NA 99.2 (0.8) 15   

GAN WMPL 35.1 (6.8) 1.2 (14.0) NA NA 99.3 (0.8) 15   

[50] dense cGAN NA T2 Prostate 20  IV 50.8 NA NA NA NA >60 

[68] cGAN 1.5T T2 Rectum 46 44 35.1 (27.2;40.3) 0.4 (-7;-12.4) 100 (0.1) 99.8 (0.2) 99.5 (0.2) NA 

Table 1 - Main experiences emerged from the literature analysis on synthetic CT generation considering the different DL architectures, the anatomical site, the MR sequence 

used, the magnetic field strength and the main image and dosimetric indicators. Abbreviations: GAN: Generative Adversarial Network, T1C:T1 contrast; MAE: Mean Absolute 

Error, ME: Mean Error; cGAN: conditional GAN; IV: internal validation; NA: not Available  
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The main DL architectures used for sCT generation are the U-Net and the Generative Adversarial Networks 

(GAN).  

U-Net consists of a series of convolutions followed by a series of deconvolutions, with skip-connections 

between the opposing convolution and deconvolution layers [69–71] 

GAN is an emerging technique for both (semi-)supervised and unsupervised learning and consists of two 

competitive networks termed the generator and discriminator. In these architectures, the training is carried 

out by deriving backpropagation through a competitive pair network process: the generator produces images 

that are evaluated by the discriminator in comparison to real images. The optimisation is concluded when the 

discriminator is no longer able to classify the results of the generator as real or fake [72]. 

The feasibility of generating sCT images using DL approaches was firstly demonstrated in the brain region 

by Han et al, who proposed a 2D deep CNN able to obtain sCT images from 1.5 T T1-weighted MRI. 

Modifying the U-Net architecture proposed by Ronneberger et al some years before, the authors obtained a 

neural network able to generate sCT images in 9 sec, reaching accuracy levels comparable to those 

achievable using atlas-based methods [49,73]. 

Han's work was the precursor of several studies that followed in successive years, with the aim of extending 

this approach to other anatomical sites, while also considering MR images acquired at different magnetic 

field strengths or characterised by different image acquisition parameters [49]. With regard to the brain, 

different experiences were reported in the following years, all focused on 1.5T MRI, with the most promising 

results in terms of image accuracy obtained on 1.5 T T1-w MR images using a GAN architecture [48,74]. 

Kazemifar et al reported a MAE of 47.2±11 HU on adult patients, while Maspero et al reported 61±14 HU 

on paediatric cases. The 2%/2mm gamma passing rates were higher than 99% in both cases [48,75].  

The most investigated site is the pelvis, with most studies published for different MR sequences and field 

strengths, mainly considering variants of CNN and GAN architectures. It is also in this site where the best 

results in terms of image and dose accuracy are reported, promoting a rapid implementation in clinical 

practice as demonstrated by some early experiences [76,77]. 

To the contrary, abdomen seems to represent one of the most challenging regions for sCT generation, likely 

due to the unpredictable presence of air bubbles in the hollow organs that can vary during the course of 

MRgRT treatment, leading to significant variation in the ED map and related dose distribution [32,33]. 
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Only three experiences report a dose accuracy analysis on the sCT images generated in the abdomen: 

considering a 2%/2mm gamma passing rate, Florkow et al reported values higher than 99% using a U-Net on 

1.5 T MR images, while Fu et al and Cusumano et al reported results between 98% and 99% using GAN 

architectures on 0.35 T MRI [36,58,78]. Such results are of great importance in the context of MRgRT, as 

they pave the way towards online adaptive procedures using sCT images as ED maps. 

Some early experiences demonstrate the feasibility of sCT generation in head and neck and breast sites, 

although further studies including larger cohorts of patients are recommended before implementing MR-only 

radiotherapy workflows at a clinical level in these anatomical sites [51,52,79].  

To the authors knowledge, no experiences using AI are reported in literature regarding the lung region, likely 

due to the large heterogeneity of thoracic tissues which makes the sCT generation more challenging. In 

conclusion, sCT generation using an AI approach is expected to play an important role in MRgRT in the next 

years, both to reduce geometric uncertainties and to make the clinical workflow more efficient. Especially in 

the pelvic and abdominal regions, where several experiences have already demonstrated clinical feasibility, 

gradual clinical introduction is expected to rapidly occur. 

 

4. Automatic segmentation  

The possibility to develop AI-based systems able to ensure the automatic and reliable full delineation of the 

therapy volumes in RT has been explored for several years, reaching remarkable results especially for CT 

and MR imaging modalities [80–82]. In case of MRgRT applications, in addition to the anatomical accuracy, 

such systems should also be fast, preferably generating a contour set in the order of a few minutes to make 

the online adaptive procedure tolerable for the patient [26]. 

Contour propagation through deformable image registration (DIR) and multi atlas-based systems were used 

during the past two decades to offer automatic segmentation (AS), producing results which can still be 

optimised in terms of time and quality of contours [83,84]. 

Recent studies have shown the feasibility of ML or DL approaches for AS, reporting faster results and 

greater generalizability to image data of new patients when compared to previous AS techniques [85,86]. 

Contouring results achieved to date can be directly ready for clinical use or may require some manual 

revisions, but in either scenario ensure significant time savings when compared to the time needed to 
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perform the entire procedure from scratch [87,88]. As such, AI approaches may successfully support 

clinicians during the online adaptive procedure.  

The performance of AS systems are generally evaluated on the basis of similarity metrics that describe the 

degree of agreement between the contours generated by the automatic system and those manually segmented 

by one or more experts in the field, which are considered as ground truth [89]. 

Yeghiazaryan et al. classified these similarity metrics in three main categories, depending on if the 

comparison is carried out in terms of the size of contours (size based methods), on the degree of overlap 

(overlap based methods) or on the distance between the contours (surface distance based methods) [90]. 

A detailed mathematical representation of the most commonly used similarity metrics classified per category 

is reported in Table 3 of Supplementary Materials. 

AS methods on MR images struggle with different challenges, typically related to the investigated anatomic 

site. Table 2 summarises the main characteristics and findings of AI-based experiences in automatically 

generating contours of therapeutic volumes from MR images as reported in literature.  

As reported in Table 2, the main type of DL network used for AS is currently the Convolutional Neural 

Network (CNN), in both 2D or 3D modality. CNNs are widely used not only for AS, but also for sCT 

generation and image processing in general, after its success in the ImageNet large scale visual recognition 

challenge, a competition for object detection and classification run annually from 2010 [71,91–94]. The 

CNN is a DL network that aims to imitate the process of the human brain visual cortex, by using a number of 

trainable parameters that is smaller compared to other DL architectures [91].  

The network optimisation is carried out using a cost function and an optimiser: the different network weights 

are tuned by the optimiser with the aim of minimising the cost function, using ad-hoc strategies to avoid 

optimisation problems [71]. Common CNN-based architectures typically used for segmentation tasks are 

encoder-decoder networks such as the popular U-Net, which has shown to be powerful in both AS and sCT 

generation. In the following paragraphs, the main concerns and challenges encountered in DL-based AS are 

reported per site. 
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Ref. Site B(T) 
MR-

Linac 

MR 

Sequence 
AI technique Training 

Pts # 

(train/validatio

n/test) 

Eval. Metrics 

Manual 

ground truth 

with IOV 

VOI Key findings 

[95] Prostate 1.5 T N T2 
DL + Atlas+ 

DIR 

Unsupervised pre-training and 

Supervised fine tuning 
NS/NS/66 DC, HD, MSD 

No 

 
Target 

A mixed approach based on DL, Atlas and DIR 

ensures good results but at the cost of large 

computational times (45 min) 

[96] Prostate NS NS NS FCN Semi-supervised learning 30/NS/10 DC 
No 

 
Target 

Labeled data can effectively be integrated by 

unlabeled ones for training the network, thus 

reducing the amount of necessary data. 

[97] Prostate 1.5 T N T2 
DeepLabV3+, 

U-Net 

Transfer learning for 

DeepLabV3+ Training from 

scratch for U-Net 

40/10/NS DC, SDC No Target 

Pretraining on large datasets can be effective in 

reducing the necessary amount of data required 

for training 

[98] Prostate 1.5 T Y T2 

3D U-Net and 

DL to generate 

DVF 

LF based on DVF, overlapping 

segments, or both 
5/NS/NS 

DC, 95%HD, 

CRE 
No Target 

A mixed approach based on DL and DIR 

ensures faster and better results than an Atlas-

based method 

[99] Prostate 3 T N T1 (Dixon) 
CNN 

(DeepMedic) 
LF based on DC 97/NS/53 

DC, 95%HD, 

MSD 
No OARs 

DeepMedic performs better than 3D U-net and 

an Atlas-based approach 

[100] Prostate 1.5 T N T1 (mDixon)/ T2 
Machine 

Learning 
NS 65/NS/NS 

DC, 95%HD, 

CRE, AVD 
Yes Target & OARs 

Validation of a commercial AS based on ML: 

AS consistent with manual ground truth 

[88] Rectum 3 T N T2 2D U-Net LF based on DC 93/NS/NS 
DC, HD, MDA, 

JC 
Yes Target 

AS was consistent with ground truth including 

2-observers variability 

[101] Pancreas 1.5 T N 
3D T1 / 

2D T2 

Sparse 

Dictionary 

Learning 

K-means singular value 

decomposition 
12/NS/NS DC, HD, CRE No Target 

Dictionary Learning was more accurate and 

computationally faster than traditional AS 

algorithms. It requires initial human supervision 

at image acquisition. 

[102] Pancreas 3 T N T1-DCE CNN LF based on cross entropy 27/ NS/13 DC, HD, MSD Yes Target 
AS of pancreas head GTV was fast (~10 

seconds) and accurate 

[103] Pancreas 0.35 T Y TRUFI SVM Active learning NS/NS/4 DC, HD No OARs 
First example of fast enough full AS (~ 2 

minutes) for online adaptive MRgRT. 

[104] Abdomen 0.35 T Y TRUFI 
CNN + two 

correction CNNs 
Piecewise training 100/10/10 DC, HD No OARs 

The use of correction CNN ensures high results 

for AS of all the abdominal organs 

[105] Abdomen 3 T N T1/Dixon 
2D CNN (Dense 

U-Net) 

Deeply supervised and 

multiview learning 
66//16/20 

DC, 95%HD, 

JC, MSD 
No OARs 

Accurate AS in abdomen can be performed by a 

2D network, faster and simpler than a 3D net, if 

multislice input is performed. 

[106] H&N 1.5 T Y DWI 
CNN (3D U-Net 

like) 

LF based on DC, and dropout 

of 20% 
48/NS/51 DC,  DADC Yes (on a subset) Target 

Accurate and fast AS of lymph nodes on DW-

MR images acquired using diagnostic MR 

scanner and MR-Linac both. 

[107] H&N 3 T N T1 / T2 
3D CNN 

(VoxResNet) 

Trained from scratch on 4-

channels input patches 
715/103/203 DC, MSD Yes Target 

VoxResNet guarantees AS results comparable 

with manual contours from multiple human 

experts. 

 

Table 1- Summary of the main properties and key-findings from the studies on AS obtained from the literature research. Abbreviations: IOV (Inter-Observer Variability), DIR (Deformable image registration) DL (Deep 

Learning), LF (Loss Function), ML (Machine Learning), NS (Not Specified), NA (Not Applicable), DVF (Deformable Vector Field), FCN (Fully Convolutional Network), CNN (Convolutional Neural Network), DC (Dice 

Coefficient or ratio), SDC (Surface Dice Coefficient or ratio), HD (Hausdorff distance (maximum)), x%HD (Hausdorff distance (x-th percentile)), MSD (Mean Surface Distance), CRE (Centroid Registration Error), AVD 

(Average Volume Difference), MDA (Mean Distance to Agreement), JC (Jaccard Coefficient), DADC (variation of Apparent Diffusion Coefficient) 
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4.1 Pelvis 

The main concern of AS in prostate is the inhomogeneity in image intensity around the gland boundary and 

the inter-patient shape variations.  

As a transition towards DL-based AS, Guo Y et al first extracted a feature hierarchy from prostate MR 

images by DL [95]. These features were used for atlas selection and a DIR model is sequentially used to 

refine prostate segmentation. The evaluation based on similarity metrics was satisfactory, whereas the long 

computing time (45 min) limited the method to off-line implementations only. One of the factors that limited 

the initial diffusion of DL-based AS methods was the need for large amounts of expert-labelled data to train 

the neural networks. To overcome this issue and obtain high quality contours with a limited amount of data, 

strategies such as “semi-supervised” or “transfer learning” have been critical, leading to improved results 

with respect to standard supervised training from scratch [96,97].  

Another strategy for automatic delineation during adaptive MRgRT is using a DL network to automatically 

analyse the contour set created on the simulation MRI and generate a deformation vector field (DVF), which 

can be used to adapt the simulation contours to the anatomy of the day. 

To test if a DL-based estimation of a DVF is faster than using traditional DIR methods, Eppenhof et al 

trained a 3D U-Net through a loss function which can alternatively be focused on the DVF, or on the 

segmentation overlap, or a combination of both. They observed that the AI approach ensured better results 

than a reference DIR method (Elastix, https://elastix.lumc.nl/), together with a time reduction factor of about 

10-2 [98]. Recently, strategies to perform full AS of pelvic OARs have also been proposed; a necessary task 

to speed up the on-line adaptive process. In this context, Savenije et al compared the use of two DL networks 

(DeepMedic and 3D U-Net) with a commercial atlas based solution, observing better results with the DL 

strategies in terms of delineation accuracy and execution time [99].  

Beyond DL approaches, AS in the pelvic district can also be obtained using ML methods, as reported by 

Kuisma et al, who clinically validated a commercial solution (Philips RTdrive Core 2.0, Philips Medical 

Systems, Netherlands) comparing the results provided by the AS system to those obtained using manual 

segmentation, including an inter-observer variability analysis [100]. 
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4.2 Abdomen 

The main challenges for multi-organ AS of abdominal MRI are represented by the huge variability in terms 

of shape and volume of the digestive organs (i.e. stomach, duodenum, bowel loops), together with the 

difficulty of having MR images without motion artefacts.  

In case of pancreatic lesions, Gou et al compared three model-free methods with an ML approach (Sparse 

Dictionary Learning, SDL), including the impact of two different input scans (3D T1-w and 2D T2-w MRI). 

For both MR sequences, SDL was found to be the most accurate and fastest algorithm [101].  

Next, Liang Y et al trained a CNN on 56 DCE-MR images for AS of pancreatic head tumours. At evaluation, 

AS differences with the ground truth were within inter-observer variability, with the advantage of requiring 

only 10 seconds for a full procedure if processed on a current GPU, paving the way towards online adaptive 

MRgRT clinical applications [102]. 

As regards segmentation of MR images acquired using low field MR-Linac, Liang et al proposed a support 

vector machine (SVM) approach mixed with a feature-based registration able to obtain high quality contours 

of liver, kidneys and spinal cord in 2 minutes, a time sufficient for online adaptive procedures [103]. 

Using a DL architecture consisting of a CNN supported by a correction network able to provide additional 

information about the shape and position of organs, Fu et al reported satisfactory results not only for liver 

and kidneys, but also for stomach, bowel, and even for the duodenum (further affected by inter-observer 

variability in recognition of its boundaries) [87]. AS per patient was fast (5 sec) and even with manual 

corrections, the network reduced contouring time to 25% with respect to the time required to perform the 

whole procedure manually from scratch. Nevertheless, AI approaches for full 3D multi-organ AS, although 

capturing the essential volumetric information about the shape and relative position of the abdominal organs, 

are still often too computationally- and time-expensive. As a fast alternative, Chen et al developed a new DL 

technique called ALAMO (Automated deep Learning-based Abdominal Multi-Organ segmentation), which 

combines a U-net architecture with a multi-channel additional 2D network to capture the 3D information 

[105]. Using the ALAMO technique on T1-w 3T MR images of 20 test patients, the authors reported high 

values of segmentation accuracy for most of the organs delineated (DICE ranging from 0.87 to 0.96 for nine 

abdominal organs, 0.8 for the duodenum), while ensuring processing times of about 18 sec, perfectly 

compatible with online procedures. 
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4.3 Head and Neck 

As regards the head and neck region, Gurney-Champion et al trained a 3D U-net on DW 1.5 T MR images 

from 51 head and neck patients to automatically delineate lymph-node chains. Fast (55 ms) and accurate 

(within inter-observer variability) results were observed considering DW-images acquired using a diagnostic 

scanner and an MR-Linac [106]. 

With the aim of testing the ability of DL methods in AS of GTV for the complex case of nasopharyngeal 

carcinoma, Lin L et al trained a 3D U-Net and a 3D CNN with 4-channel input (VoxResNet-like) on a cohort 

of 813 patients [107]. The test phase was carried out on 203 patients and showed that the VoxResNet-like 

network outperformed U-net, ensuring no need for expert manual re-editing in almost 90% of cases. 

AS was fast (about 40 sec) and able to reduce the time of human editing workload to 40%. Considering the 

manual contours from 2 (+1) experts as ground truth, 8 additional experts were compared to the AS. 

Equivalent values resulted for the similarity metrics, but with smaller interquartile variations from AS, 

illustrating the usefulness of AS in reducing inter-observer variability. 

 

5. Quantitative imaging and outcome prediction  

Under the title “predictive models applied to imaging acquired before and during radiotherapy” many 

different areas can be classified. A large part belongs to the domain of treatment response prediction based 

on image-based biomarkers and/or anatomical changes induced by radiation, to identify early-on those 

patients who will benefit from adaptive procedures, as already demonstrated in some treatment sites (i.e. 

rectal cancer, H&N) [11,23,108,109]. The extension of these concepts evolved towards the potential 

modifications of the treatment on the basis of the results of predictive models to limit toxicities and/or to 

safely increase the tumour dose [14,110]. The use of MRI-derived parameters for outcome prediction 

precedes the advent of MRgRT systems and is not limited to these: due to its better soft-tissue contrast over 

traditional CT based imaging and the availability of multi-parameters image sequences, MRI has emerged as 

one of the most promising imaging modalities in this field [17,111]. 

Several MRI-based predictive models have been developed in these years, not directly involving the MRgRT 

technologies but potentially applicable to these systems: the quantitative analysis of clinical imaging has 

exponentially grown with the advent of Radiomics, an image analysis strategy consisting in defining a region 
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of interest (ROI) on clinical images, extracting from that region a series of numerical parameters (called 

features) and possibly combining them with other clinical or genomic information to generate predictive 

models [112]. ROI delineation, feature extraction and model elaboration are the three main processes 

characterising the radiomic workflow. In early experiences, the ROIs were manually delineated by clinical 

specialists, radiomic features were extracted applying mathematical procedures and the models were 

elaborated using classical statistical methods (i.e. logistic regression)[113]. 

Modern AI has brought important innovations to Radiomics, offering the possibility of automating the ROI 

delineation process, introducing neural networks able to directly infer image features from the ROI and 

proposing advanced ML and DL algorithms for the predictive model elaboration [114].  

Despite the recent introduction of MRgRT technology in clinical practice, the number of radiomics models 

obtained using MR images acquired with these systems is growing in recent years, also because the large 

amount of images available from a single patient, which makes this technology particularly suitable for delta 

Radiomics [115]. Compared to Radiomics, which analyses clinical images acquired at a single time point, 

delta Radiomics studies the temporal variation of radiomic features extracted from a series of images 

acquired over the course of treatment. The technique follows the idea that the variation of a radiomic feature 

over the course of therapy contains indications on the patient sensitivity and response to the on-going 

therapy, significantly improving the accuracy of the prediction [116,117]. Several experiences have 

highlighted the potential of delta radiomics, not only in MR but also in other imaging modalities. However, 

due to the larger amount of data needed to generate evidence compared with radiomics, multi-institutional 

experiences including large cohorts of patients are limited [118–120]. It is worth mentioning that increasing 

attention is given to the robustness of AI-based predictive models due to repeated issues of 

repeatability/reproducibility of the models among different institutions, which is particularly difficult for 

MRI due to the difficulty of image standardization. [5,121].  

The main experiences reporting predictive models generated using on-board MRI are discussed in the 

following paragraphs, separately for high and low field systems. It should be noted that, due to the still 

relatively recent introduction of MRgRT technologies in the clinic, most of these experiences are based on a 

limited number of patients and with only short-term follow-up. 
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As a matter of fact, we may expect a rapid improvement in the reliability and usability of predictive models 

based on MRgRT-images due to the rapid increase of available patient data (possibly within multi-centric 

consortia). At the same time, methodologies are further refined, putting robustness and generalizability of the 

models as a first priority. For the same purpose, procedures of signal normalisation and image pre-processing 

are also expected to become increasingly important in the radiomic workflow, to compensate for the known 

variability between different MR diagnostic scanners and even more between on-board MR scanners 

implemented into different MRgRT systems [122,123].  

 

5.1 Experiences on high field systems 

The first experiences on high field hybrid systems were focused on phantom studies, with the aim of 

characterising the image quality offered by a 1.5T on-board MR scanner of a MRgRT system for radiomic 

purposes. Wang et al observed on a phantom analysis that the interference of MV X-Rays on MR imaging 

was minimal and that the image quality offered by the MRgRT scanner was comparable to those obtained 

using a diagnostic scanner with the same magnetic field strength [124].  

Kooreman et al have assessed the feasibility of performing quantitative imaging on a 1.5T MR-Linac system, 

acquiring T1-w, T2-w, DW and DCE imaging of a phantom on four different hybrid systems, observing 

values in terms of accuracy, reproducibility and repeatability of the MR sequences that makes feasible and 

reliable quantitative imaging approaches on high field MRgRT systems [125]. To the best of our knowledge, 

the only clinical experience reporting quantitative imaging analysis on high field MRgRT systems is those 

reported by Lorentz et al, who  observed on four prostate cases a significant variation in delta-radiomic 

profiles of bladder and rectal wall adjacent to the prostate, considering serial T2-weighted MR images 

acquired during MRgRT treatment [126]. However, thanks to recent findings [124,125], it should be in 

principle possible to apply on any high field MRgRT systems models elaborated on MR images acquired 

using a 1.5 T diagnostic scanner, once the compatibility in terms of MR sequence parameters is verified. A 

complete list of the predictive models elaborated on 1.5 T diagnostic MR scanners is reported in Table 4 of 

Supplementary Materials. Considering the known variability of MRI-based models for acquisition 

parameters, it is strongly advised to perform an external validation study on a cohort of patient data acquired 

using MRgRT technology before applying a predictive model in clinical practice [59,70]. 
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5.2 Experiences on low field systems 

During the early period of MRgRT implementation, the question was raised whether the image quality 

offered by on-board low field MR scanners was sufficient to perform quantitative analysis, especially 

considering that these systems exhibited characteristics not usual in terms of image sequence and magnetic 

field strength. Different hypothesis-generating studies were conducted on low field MR images, with the aim 

of demonstrating the feasibility of extracting image-based biomarkers. These experiences reported promising 

preliminary results in predicting treatment response, supporting the need to set-up more advanced studies 

including larger cohorts of patients [117,128,129].The first preliminary experience was reported by Boldrini 

et al, who identified two delta radiomics features on low field MR images of 16 patients affected by locally 

advanced rectal cancer (LARC) able to predict clinical complete response after MRgRT [117]. These 

features, measuring the variation of two parameters (least length according to principal component analysis 

and grey level non uniformity based on run length matrix) after two weeks of treatments, reported higher 

discriminative performance with respect to radiomics features calculated at a single time-point, results are 

partially confirmed in successive validation studies [130]. However, no predictive model was proposed due 

to the small number of patients.  

Two experiences were reported in pancreatic cancer, which is one of the most interesting regions considering 

the benefits and the potentialities of the online adaptive MRgRT procedures [11]. 

Simpson et al first proposed two predictive models based on Random Forest and LASSO regression, both 

able to predict the treatment outcome in 20 patients affected by unresectable pancreatic cancer with an AUC 

of 0.81. The models analysed the variation of radiomic features on all five MRgRT treatment fractions, 

identifying as most predictive parameters two textural features based on co-occurrence and size zone 

matrices [128]. On the same anatomical region, Cusumano et al identified a delta radiomics feature, the 

variation of the cluster shade calculated on the co-occurrence matrix when a biologically effective dose value 

of 40 Gy was reached, able to predict local control one year after the end of treatment with an AUC of 0.78. 

The study was conducted on 35 patients belonging to two institutions and used a linear logistic regression for 

model elaboration [116]. Other experiences on low field MRgRT systems were focused on the analysis of 

Apparent diffusion coefficient (ADC) maps. In a first experience using an MRI-Cobalt system, Yang et al 

reported the feasibility of DWI acquisition on a 0.35 T MRgRT system, measuring an ADC value in 
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agreement with the reference within 5% of error in longitudinal direction [129]. From this observation, the 

same authors observed that a delta radiomics analysis of ADC maps is able to predict the treatment effective 

score (TES) of patients affected by soft tissue sarcoma. Including delta radiomic features extracted from 

longitudinal DW MR images in an SVM, the authors were able to predict the TES on 30 patients, reporting 

an AUC value of 0.91±0.05 [131].   

Beyond these experiences focused on radiomic analysis, a series of predictive models based on the 

evaluation of simple morphological indicators are being introduced into the MRgRT community, with the 

advantage of being simpler to calculate and more prone to be immediately useable: as mentioned before, the 

use of ML and DL algorithms in predictive modelling is indeed a debated topic in the scientific community, 

as these algorithms act as black-box systems, limiting their clinical interpretability of the models, and then 

their clinical diffusion. A relevant example in this context is represented by the Early Regression Index 

(ERI), a morphological parameter that aims to model tumour regression during the first weeks of 

neoadjuvant radio-chemotherapy by means of a function of the tumour volume measured on MR images 

acquired at simulation and at mid-therapy, on the basis of radiobiological considerations [108]. An example 

of volumetric regression in case of rectal cancer using MRgRT technology is reported in Figure 4. 

In a first experience on rectal cancer, Fiorino et al demonstrated that this simple parameter, if calculated on 

MR images acquired with a 1.5 T diagnostic scanner, was able to identify patients who would have 

pathological complete response during RT treatment, with an AUC of 0.81 calculated on 64 patients, with 

extension and confirmation of these findings on a larger population [108,132]. The same parameter was also 

tested in an external validation study carried out on 52 patients treated with two 0.35T MRgRT systems, 

reporting high discriminative performance (AUC=0.93) also on low field MRgRT systems [133].  

Although first applied to model rectal cancer regression, a recent preliminary experience has also evaluated 

the feasibility of using this index for outcome prediction of patients affected by cervical cancer, reporting an 

AUC of 0.84 on 16 patients [134]. 

In conclusion, the use of predictive models in MRgRT is expected to grow in the next few years, making 

optimal use of the information that can be extracted from the daily MR acquisitions. Considering that 

technological development is leading to a strong acceleration of the online adaptive procedure, it is 

reasonable to expect that in the near future the acquisition of images in parallel with the adaptive procedure 



22 
 

will be possible, opening the possibility of developing predictive models on MRI sequences different from 

those used for patient positioning, further improving their predictive capabilities. 

 

Figure 4 - Example of rectal cancer regression observed using an MRgRT technology on axial (top), sagittal (middle) 

and coronal (bottom) acquired during simulation, mid therapy and end treatment 

 

6. Advanced imaging and motion management  

An on-board MR scanner, with its ability to provide high soft tissue contrast without ionising radiation, 

offers great potential to efficiently manage intra-fraction motion without external surrogates and efficiently 

monitor short and long-term breathing variations [135,136]. 

To date, the clinical on-board high temporal resolution dynamic MR acquisition during treatment delivery is 

only available in 2D modality; therefore, the current MRgRT systems do not provide detailed information on 

the 3D target motion trajectory or out-of-plane OARs motion [16,137]. AI strategies have recently been 

proposed to infer the 3D motion trajectory from multi-slice 2D images or even reconstruct 3D acquisitions, 

opening the way towards real-time volumetric motion management strategies [138].  

The first AI-based experiences on online MR imaging were focused on the elaboration of tracking algorithms 

designed for 2D MR images, with the aim of auto-segmenting the lesion in real-time and estimating its 2D 

position. In 2011, Cervino et al proposed two tracking algorithms for tumour motion estimation from 2D 



23 
 

cine MRI of the lungs. The first consisted of a template matching (TM) technique in combination with a 

diaphragm-based surrogate signal, while the second was an ANN based on principal component analysis 

(PCA) [139]. In a cohort of 5 patients imaged using a 3T MR scanner, the authors observed that the TM 

technique performed better than the ANN and that out-of-plane motion could also be tracked using the 

diaphragm as a motion surrogate. Subsequently, a pulse-coupled neural network (PCNN) was proposed for 

lung AS on low field MR images (0.5 T), reporting 87-92% of agreement with respect to manual contouring 

and a centroid tracking accuracy within 1.5 mm [140]. 

Fast et al then applied the PCNN architecture proposed in [141] on 1.5 T MR images, comparing the results 

with those achieved using a conventional algorithm based on multi-template (MT) and intensity-based DIR. 

In the study the authors observed that MT-DIR algorithms performed slightly better than PCNN, but the 

neural network training was performed on a set of only 10 images, while in [140] the PCNN was trained on 

30 images [141]. Automatic real-time segmentation of lung lesions was also demonstrated with ML methods, 

combining a sequential Monte Carlo (MC) method based on Bayesian probability (named particle filtering) 

with an autoregressive model in a 2D motion prediction algorithm that sequentially tracks, contours and 

predicts the tumour position 250 ms in advance using 1.5T MR images acquired at 4 frames/second. With 

root mean square (RMS) tracking errors averaged over 7 patients of 1.3±0.5 mm and 2.0 ±0.8 mm with and 

without prediction, respectively, the authors showed the advantages of the model proposed [142]. 

In the following years, several ML or DL algorithms for robust estimation of 2D motion trajectories were 

proposed and different experiences have shown the possibility to predict 2D motion of targets different from 

lung cancer or to simultaneously track multiple ROIs in the same image [143]. Dhont et al also illustrated the 

use of a tracking-learning-detection methodology to recover from brief moments of out of slice motion of the 

target in 2D motion tracking [144,145].  

Several DL-based methods have been proposed to speed up the image reconstruction step of the real-time 

MR acquisitions, as this step represents the largest component of latency in the MRgRT treatment delivery. 

Terpstra et al compared four combinations of conventional and DL-based methods, with the aim of obtaining 

an architecture for fast reconstruction of 1.5 T 2D cine MRI and to accurately estimate the motion of 

abdominal lesions [146]. Based on data from a cohort of 135 cases, the authors identified as best 

combination the use of a conventional method for image reconstruction (Non-Uniform Fast Fourier 
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Transform, NUFFT) and a DL architecture for motion quantification (SPyNET), obtaining an imaging frame 

rate of 25 Hz with a RMSE<1 mm. DL approaches have also produced interesting results in cardiac MR 

imaging, which represents a challenging area for MR acquisition due to the intrinsic high frequency motion 

of the heart [147–149]. A convolutional recurrent neural network was recently proposed on 2D cine MR 

acquisitions, demonstrating the possibility of reconstructing high quality cardiac MR images from highly 

under-sampled k-space data [148,150,151]. Ghodrati et al. explored and optimised the network structures and 

loss functions used in DL-based cardiac cine image reconstruction [152].  

Besides 2D applications, there is a growing interest towards 3D applications as breathing-induced tumour 

motion often follows a three dimensional motion path due to phenomena like hysteresis, baseline drift or 

cardiac motion [135,136,151,153,154]. Several groups have investigated the possibility to extract 3D motion 

information from the real-time 2D images, registering the 2D MR images with 3D MRI volumes acquired at 

the same imaging condition and then generating models based on PCA analysis of the deformation vector 

fields obtained by the registration of 2D and 3D MR images [155–157]. 

However, these approaches suffered from different limitations due to the fact that the 3D MRI volumes 

showed image artifacts due to retrospective sorting and a comparative phantom study demonstrated to fail in 

predicting 3D motion when deviation from the average breathing cycle were present on 2D MR images 

[158]. Alternative approaches were proposed to overcome the lack of data to train 4D motion models by 

using surrogate signals derived from 2D MR images [159,160]. Another possibility is represented by the 

combination of single and multi-slice MR image information, as reported by Ginn et al who demonstrated 

the feasibility of obtaining out of slice tumour motion information from the analysis of 2D MR images by 

using ML models trained on the DVFs calculated among  the 10 most recent images and a reference image 

[161,162]. While the model agreed well with gating directly on high frame-rate images, out-of-plane motion 

remains an issue and the use of an internal image-based surrogate will likely be more precise.  

With regards to 3D MR acquisitions in real-time, high quality 3D MRI at acquisition speeds capable of 

capturing breathing-induced motion, or with a total system latency below 500 milliseconds as recommended 

by the AAPM Task Group report 76, is currently not available on MRgRT systems, due to spatial-temporal 

limitations in the image acquisition [163].These acquisitions are much more time consuming due to the need 

to encode a third spatial dimension, and it requires a substantial boost in achievable acceleration factors in 
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order to perform these acquisitions in real time. Although non-Cartesian k-space sampling methods, such as 

spirals, could be used to further accelerate the acquisition, the nuances of non-Cartesian image reconstruction 

and the numerous challenges in sampling trajectory calibration and image blurring are important issues to be 

addressed. Some research groups have focused on post-processing methods to increase the spatial resolution 

of 3D MR data that were acquired through sparse sampling at high temporal resolution in order to obtain 

qualitative volumetric MRI in real-time. To this end, DL-based super-resolution (SR) techniques have been 

particularly promising. Kim et al. proposed a combination of 3D dynamic keyhole imaging with a cascaded 

DL-based SR model [164]. Through this technique, high-temporal (420 ms) but low-spatial resolution 

(6×6×6 mm3) 3D MRI data acquired on a clinical MRgRT system could be converted to a 4 times higher in-

plane spatial resolution (1.5×1.5×6 mm3) with only a limited increase (<100 ms) in total acquisition time 

[164].  A recent experience demonstrated that the reduced through-plane spatial resolution can be improved 

by using a super-resolution technique based on an enhanced deep residual network in a framework called 

SMORE (Synthetic Multi-Orientation Resolution Enhancement), that can be applied to both 3D and 2D data 

where it also succeeds in removing anti-aliasing artefacts [165].  

 

7. Automatic planning 

Treatment planning is one of the most time consuming and operator dependent steps in the RT workflow. In 

the last years, many advancements through AI have led to the development of different automatic treatment 

planning (ATP) approaches which aim to reduce human intervention and workload, ideally standardising and 

improving the quality of treatment plans in parallel [166,167].  

In general, ATP has been an area of active research since several years with a growing body of literature. 

However, it has not been thoroughly investigated in the context of MRgRT. The ATP approach in MRgRT 

would not differ substantially from conventional RT, except from two main aspects; the need to consider the 

presence of the magnetic field in dose calculations and the requirement to provide fast results in terms of 

plan generation, to make the technique suitable for online adaptive procedures.   

The feasibility of integrating an ATP strategy within an online adaptive RT workflow have already been 

investigated in CBCT-guided radiotherapy, with a commercial solution recently made available [168].  
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It is expected that online adaptation may be optimal when coupled to MRgRT due to superior soft tissue 

contrast and absence of imaging radiation dose. Based on the current literature, three main ATP paradigms 

have been proposed for clinical practice [167,169]: 

- Knowledge-based planning (KBP), which uses prior knowledge and experience to predict an achievable 

dose in a new patient of a similar population or to derive a better starting point for further manual 

optimisation. 

- Template-based (TB) automatic planning, which generates a treatment plan starting from a user-defined 

protocol with goals and objectives. 

- Multi-criteria optimisation (MCO), which identifies the optimal plan on a previously created once the 

Pareto surface has been created starting from the definition of a wish-list containing clinical objectives 

These different ATP approaches are here revisited in the MRgRT perspective, especially considering the 

online adaptive procedure since off-line ATP in MRgRT can be considered similar to what is done in 

conventional RT. TB planning is to some extent already manually implemented during the online adaptive 

MRgRT procedure. Since the starting point of the adapted plan is the plan optimised during simulation, 

clinical objectives are already defined and the plan proposed by the optimiser during the online adaptation 

aims to satisfy the wish-list defined during simulation. What is missing is the implementation of an AI 

system which simulates the reasoning behaviour of a human planner to automatically adjust the optimisation 

parameters during the online optimisation. The KBP approach could be interesting for the MRgRT 

application to obtain a fast prediction with dose constraints compliance given the daily relationship among 

target and OARs, as already demonstrated in different experiences [170,171].   

Concerning the MCO approach, the “a posteriori” solution (which consists in the generation of a database of 

pareto optimal plans that can be interactively navigated by the planner to choose the clinically optimal plan) 

is not suitable for MRgRT, mainly due to time constraints [172]. The a priori MCO solution, which consists 

in generating a single pareto-optimal plan based on a site-specific protocol defined by the clinicians, can 

instead be an efficient solution for MRgRT online adaptive applications as it directly provides a single 

planning solution. Some commercial solutions based on this technique for MRgRT are expected to be 

available in the next years [173]. To date, the only published experience on ATP in MRgRT was performed 

on a high field MR-Linac. In a cohort of 23 patients affected by LARC, the use of MCO demonstrated 
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superior automated plans over the manual plans in terms of OARs dose sparing, reduction of MU delivered 

(-13% using ATP) and computation treatment time (-15% using ATP) [174]. Wang et al have recently 

published a review on DL applications incorporated in the main steps of ATP: beam selection, dose 

prediction, fluence generation and delivery parameters generation [175]. As another AI-based ATP strategy, 

deep reinforcement learning appears to be extremely suitable, even though some further development should 

be performed before considering it for clinical implementation [176]. Due to a limited number of MRgRT 

units in the world and the consequent reduced number of patients treated with this technology, multi-

institutional studies are needed to collect large amounts of MR-based treatment plans to train MRgRT-

specific ATP systems. The diffusion of automatic systems for treatment planning in MRgRT will allow more 

reliable adaptive procedures, allowing treatment personalisation on the basis of image-based, dose-based or 

genome-based biomarkers, as already demonstrated in some preliminary experiences [177–179] 

 

8. Automation in QA  

Medical physicists spend a substantial amount of their time in an RT department working on QA tasks, 

independently of the presence of MRgRT units; such tests are related to machine characterisation 

(commissioning, patient specific QA, periodic QA, end-to-end), to the equipment used for measurements or 

to the software adopted in daily clinical activity [22]. As these tests can take between 20 to 150 minutes for a 

single patient, there is a potential for AI tools not only to streamline the process reducing the time needed but 

also to standardise decisions and minimise errors. In an online adaptive MRgRT treatment, AI solutions for 

patient specific QA would have a high clinical impact, especially considering the fact that the QA result has 

to be provided in a few seconds, while the patient is waiting in treatment position [180,181]. In vivo 

dosimetry systems based on inorganic scintillators are under development to provide real-time dosimetric 

information during beam delivery, but they are still far from clinical implementation also because they are 

not able to provide 3D measurements at this stage of development [182,183]. The AI growth is leading the 

automatization of a lot of QA processes in conventional RT, and it is reasonable to assume that most of these 

innovations will soon be implemented in MRgRT as well, although no dedicated experiences have been 

published so far. McNutt et al showed that using data collected over several years on patient specific QA, it 

is possible to perform a more thorough evaluation of the key QA steps and to automate and personalise the 
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QA methods, resulting in a more efficient and safe evaluation for each individual patient [184]. A new 

patient treatment could be compared to the one of similar patients in their patient cohort and any dissimilarity 

can be detected and further investigated. Thanks to this approach, guideline adherence, patient contours, plan 

quality, pre-treatment verification results can be checked [184].  

This comparison can be performed using simple statistical methods or more sophisticated classification 

models based on ML or DL, which require a large amount of data and collaborative continuous efforts to 

make the models portable and usable in different institutions. 

With the aim of detecting potential errors in a treatment plan, Kalet et al developed a ML approach based on 

a Bayesian network for chart checking. The network was constructed using a RO ontology and employed an 

expectation maximisation algorithm to develop the conditional probability tables, using as database of the 

historic clinical data from their clinical oncology information management system [185].  

These probabilistic descriptions allowed verification of treatment plan parameters to be within the normal 

scope of practice and therefore the detection of potential outliers to be flagged for further investigation.  

Other groups have developed knowledge-based methods for dose and DVH predictions to be used for plan 

quality assessment. The plan produced for a specific patient is compared to the predicted plan obtained using 

the ATP system, as such allowing an easy identification of the plans that require further optimisation [186].  

A similar approach was proposed by Nguyen et al, who created  a CNN-based system able to predict the 

optimal dose distribution for each single patient in case of prostate cancer [187].  

Regarding patient specific QA, two different approaches have been reported in literature to minimise or even 

avoid the pre-treatment measurements required for this specific task. The first approach consists in 

identifying the most challenging plans to be checked, while the second approach consists in predicting the 

gamma passing rate starting from a series of plan information data such as dose features, plan complexity, 

machine model, beam energy, type of multi leaf collimator (MLC) and jaw positions  [188,189].  

Lam et al proposed three ML algorithms able to predict the results of 2%/2mm gamma passing rates obtained 

with portal dosimetry for IMRT QA. The authors observed a prediction accuracy of these algorithms ranging 

from 95% and 98% [190]. Li et al proposed a ML architecture consisting of a Poisson Lasso (PL) regression 

model that predicts the individual gamma passing rate, followed by a RF classification model that classifies 

the QA result as “pass” or “fail”. The  system was reported to have reliable results once the original data was 
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pre-processed to compensate for the original tendency of PL model in overestimating the gamma passing 

rates of challenging VMAT plans [191]. As discussed, these ML approaches also have the advantage of 

interpretability and they allow to discriminate the features that have the highest impact on the results. On the 

other side, these models have low portability as they are highly dependent on different factors that are 

institution-dependent, such as the systems used for pre-treatment verification, the evaluation methodology 

chosen and the treatment unit. DL methods have also been proposed to extract features from the dataset that 

can be used to model and classify pre-treatment verification results [192–195]. Lastly, it is worth 

mentioning that the integration of DL and radiomics could have great potential in the growth of automation 

in QA, as reported by a recent experience by Nyflot et al, which demonstrated that a DL model can detect the 

presence of treatment delivery errors from the radiomic analysis of patient-specific QA dose maps.  In the 

future, it is reasonable to expect that thanks to the support of modern AI-based systems it will be possible to 

automate QA procedures in MRgRT as well, so reducing the time needed for plan specific verifications 

without compromising safety and quality of online adaptive procedures. 

 

9. Clinical considerations and final remarks  

The present work reports the state of art in AI applications for MRgRT. While in some of the evaluated 

fields several studies have already been published and broad clinical use is to be expected within the near 

future, this seems further away in other fields. However, all the fields discussed are subject to ongoing 

research aiming to address specific clinical needs. From a clinical point of view, AI is expected to allow 

faster adaptive treatments for the patients in the near future, thanks to the development of suitable online 

procedures characterised by treatment times comparable to those typical of conventional RT. This process is 

not limited to MRgRT but involves other approaches using different in-room imaging systems, such as 

CBCT, and commercially available solutions started to appear [168].  

With regard to online adaptive treatments, the main anticipated clinical advantage that AI has to offer is the 

reduction of the treatment time slot. Shortening adaptive treatments will also reduce intra-fraction organ 

variability, thereby ensuring not only less exhausting but also safer treatments for patients, with a significant 

impact not only for breath hold treatments, but also for free-breathing ones [196,197].  
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In addition to making treatment procedures faster, it is reasonable to assume that the development of AI-

based systems capable of predicting treatment outcome may support in the future more advanced concepts of 

adaptive radiotherapy, where not only the shape of the dose distribution is adapted to anatomical 

modifications, but also the whole therapeutic approach. An example of this concept is the adaptation of the 

dose prescription, increasing the fractional dose during RT in case of poorly responding patients, with the 

aim of increasing the therapeutic efficacy. An important AI contribution is also expected in dose escalation 

studies, where it is necessary to define new dosimetric constraints for OARs. Several dose escalations studies 

have already been started in MRgRT with the aim of defining new dose constraints that reflect the 

improvement in terms of accuracy in dose delivery obtained with these modern technologies.   

The room for AI application mentioned in this review, despite the limited published experience, is huge with 

relevant potentials for clinically relevant improvements. On-line ATP and automated QA have the potential 

to better quantify the complex effects of various different influencing parameters on the applied dose to the 

patient, thereby potentially making it easier to establish standards and to adhere to best practices. Especially 

in these aspects, collaborative multi-institutional efforts on training AI-models are warranted. In general, 

guidelines and recommendations are also necessary for the translation of AI methods from research to a 

broad implementation in clinical practice. It will be the responsibility of medical physicists to analyse 

uncertainties, discover limitations, elaborate thresholds and action levels in order to assess their impact on 

patient treatments [3]. On the other side, companies and vendors of AI systems have the responsibility of 

providing sufficient information and more open access to the original data on which they based the 

development of their artificial systems [198].  

Another aspect that has to be necessarily addressed for a full and safe clinical implementation of AI in 

MRgRT concerns ethics. A clear assignment of responsibility has to be defined in case of an error performed 

by an AI-based system. This represents a central issue in the whole clinical landscape and also in all the 

applications that are exploited in clinical medicine by AI today and likely translating into new tasks for 

commissioning and QA of AI-based systems for medical physicists [3,199]. In conclusion, the integration of 

AI will presumably improve the quality of MRgRT treatments significantly in the coming years and may 

also play a key role in the endeavour to individualise cancer treatments.  

  



31 
 

References 

[1] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44. 
https://doi.org/10.1038/nature14539. 

[2] Francolini G, Desideri I, Stocchi G, Salvestrini V, Ciccone LP, Garlatti P, et al. Artificial Intelligence in 
radiotherapy: state of the art and future directions. Med Oncol 2020;37:50. 
https://doi.org/10.1007/s12032-020-01374-w. 

[3] Vandewinckele L, Claessens M, Dinkla A, Brouwer C, Crijns W, Verellen D, et al. Overview of artificial 
intelligence-based applications in radiotherapy: Recommendations for implementation and quality 
assurance. Radiotherapy and Oncology 2020;153:55–66. 
https://doi.org/10.1016/j.radonc.2020.09.008. 

[4] Bibault J-E, Giraud P, Burgun A. Big Data and machine learning in radiation oncology: State of the art 
and future prospects. Cancer Letters 2016;382:110–7. https://doi.org/10.1016/j.canlet.2016.05.033. 

[5] Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial Intelligence in Medicine: Where Are We Now? 
Academic Radiology 2020;27:62–70. https://doi.org/10.1016/j.acra.2019.10.001. 

[6] Lambin P, van Stiphout RGPM, Starmans MHW, Rios-Velazquez E, Nalbantov G, Aerts HJWL, et al. 
Predicting outcomes in radiation oncology—multifactorial decision support systems. Nature Reviews 
Clinical Oncology 2013;10:27–40. https://doi.org/10.1038/nrclinonc.2012.196. 

[7] Fiorino C, Jeraj R, Clark CH, Garibaldi C, Georg D, Muren L, et al. Grand challenges for medical physics 
in radiation oncology. Radiother Oncol 2020;153:7–14. https://doi.org/10.1016/j.radonc.2020.10.001. 

[8] Thompson RF, Valdes G, Fuller CD, Carpenter CM, Morin O, Aneja S, et al. Artificial intelligence in 
radiation oncology: A specialty-wide disruptive transformation? Radiotherapy and Oncology 
2018;129:421–6. https://doi.org/10.1016/j.radonc.2018.05.030. 

[9] Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin 
Oncol 2012;9:688–99. https://doi.org/10.1038/nrclinonc.2012.194. 

[10] Fiorino C, Guckemberger M, Schwarz M, van der Heide UA, Heijmen B. Technology-driven research for 
radiotherapy innovation. Mol Oncol 2020;14:1500–13. https://doi.org/10.1002/1878-0261.12659. 

[11] Boldrini L, Cusumano D, Cellini F, Azario L, Mattiucci GC, Valentini V. Online adaptive magnetic 
resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiat Oncol 
2019;14:71. https://doi.org/10.1186/s13014-019-1275-3. 

[12] Murray J, Tree AC. Prostate cancer - Advantages and disadvantages of MR-guided RT. Clin Transl 
Radiat Oncol 2019;18:68–73. https://doi.org/10.1016/j.ctro.2019.03.006. 

[13] Chiloiro G, Boldrini L, Meldolesi E, Re A, Cellini F, Cusumano D, et al. MR-guided radiotherapy in rectal 
cancer: First clinical experience of an innovative technology. Clin Transl Radiat Oncol 2019;18:80–6. 
https://doi.org/10.1016/j.ctro.2019.04.006. 

[14] Corradini S, Alongi F, Andratschke N, Belka C, Boldrini L, Cellini F, et al. MR-guidance in clinical reality: 
current treatment challenges and future perspectives. Radiat Oncol 2019;14:92. 
https://doi.org/10.1186/s13014-019-1308-y. 

[15] Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clinical and Translational Radiation 
Oncology 2019;18:98–101. https://doi.org/10.1016/j.ctro.2019.04.007. 

[16] Lagendijk JJW, Raaymakers BW, van Vulpen M. The magnetic resonance imaging-linac system. Semin 
Radiat Oncol 2014;24:207–9. https://doi.org/10.1016/j.semradonc.2014.02.009. 

[17] Pollard JM, Wen Z, Sadagopan R, Wang J, Ibbott GS. The future of image-guided radiotherapy will be 
MR guided. Br J Radiol 2017;90:20160667. https://doi.org/10.1259/bjr.20160667. 

[18] Gurney-Champion OJ, Mahmood F, van Schie M, Julian R, George B, Philippens MEP, et al. 
Quantitative imaging for radiotherapy purposes. Radiotherapy and Oncology 2020;146:66–75. 
https://doi.org/10.1016/j.radonc.2020.01.026. 

[19] Yang Y, Cao M, Sheng K, Gao Y, Chen A, Kamrava M, et al. Longitudinal diffusion MRI for treatment 
response assessment: Preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. 
Med Phys 2016;43:1369–73. https://doi.org/10.1118/1.4942381. 

[20] Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. 
Semin Radiat Oncol 2014;24:196–9. https://doi.org/10.1016/j.semradonc.2014.02.008. 



32 
 

[21] Lagendijk JJW, Raaymakers BW, van Vulpen M. The magnetic resonance imaging-linac system. Semin 
Radiat Oncol 2014;24:207–9. https://doi.org/10.1016/j.semradonc.2014.02.009. 

[22] Kurz C, Buizza G, Landry G, Kamp F, Rabe M, Paganelli C, et al. Medical physics challenges in clinical 
MR-guided radiotherapy. Radiation Oncology 2020;15:93. https://doi.org/10.1186/s13014-020-
01524-4. 

[23] Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A. Online Adaptive Radiation Therapy. Int J Radiat 
Oncol Biol Phys 2017;99:994–1003. https://doi.org/10.1016/j.ijrobp.2017.04.023. 

[24] Bohoudi O, Bruynzeel AME, Senan S, Cuijpers JP, Slotman BJ, Lagerwaard FJ, et al. Fast and robust 
online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic 
cancer. Radiother Oncol 2017;125:439–44. https://doi.org/10.1016/j.radonc.2017.07.028. 

[25] Lamb J, Cao M, Kishan A, Agazaryan N, Thomas DH, Shaverdian N, et al. Online Adaptive Radiation 
Therapy: Implementation of a New Process of Care. Cureus 2017;9:e1618. 
https://doi.org/10.7759/cureus.1618. 

[26] Güngör G, Serbez İ, Temur B, Gür G, Kayalılar N, Mustafayev TZ, et al. Time Analysis of Online 
Adaptive Magnetic Resonance–Guided Radiation Therapy Workflow According to Anatomical Sites. 
Practical Radiation Oncology 2020;0. https://doi.org/10.1016/j.prro.2020.07.003. 

[27] Placidi L, Cusumano D, Boldrini L, Votta C, Pollutri V, Antonelli MV, et al. Quantitative analysis of MRI-
guided radiotherapy treatment process time for tumor real-time gating efficiency. Journal of Applied 
Clinical Medical Physics n.d.;n/a. https://doi.org/10.1002/acm2.13030. 

[28] Olberg S, Green O, Cai B, Yang D, Rodriguez V, Zhang H, et al. Optimization of treatment planning 
workflow and tumor coverage during daily adaptive magnetic resonance image guided radiation 
therapy (MR-IGRT) of pancreatic cancer. Radiat Oncol 2018;13:51. https://doi.org/10.1186/s13014-
018-1000-7. 

[29] Kim J, Garbarino K, Schultz L, Levin K, Movsas B, Siddiqui MS, et al. Dosimetric evaluation of synthetic 
CT relative to bulk density assignment-based magnetic resonance-only approaches for prostate 
radiotherapy. Radiat Oncol 2015;10:239. https://doi.org/10.1186/s13014-015-0549-7. 

[30] Paulson ES, Ahunbay E, Chen X, Mickevicius NJ, Chen G-P, Schultz C, et al. 4D-MRI driven MR-guided 
online adaptive radiotherapy for abdominal stereotactic body radiation therapy on a high field MR-
Linac: Implementation and initial clinical experience. Clinical and Translational Radiation Oncology 
2020;23:72–9. https://doi.org/10.1016/j.ctro.2020.05.002. 

[31] Mittauer KE, Hill PM, Bassetti MF, Bayouth JE. Validation of an MR-guided online adaptive 
radiotherapy (MRgoART) program: Deformation accuracy in a heterogeneous, deformable, 
anthropomorphic phantom. Radiother Oncol 2020;146:97–109. 
https://doi.org/10.1016/j.radonc.2020.02.012. 

[32] Cusumano D, Teodoli S, Greco F, Fidanzio A, Boldrini L, Massaccesi M, et al. Experimental evaluation 
of the impact of low tesla transverse magnetic field on dose distribution in presence of tissue 
interfaces. Physica Medica 2018;53:80–5. https://doi.org/10.1016/j.ejmp.2018.08.007. 

[33] Raaijmakers AJE, Raaymakers BW, Lagendijk JJW. Experimental verification of magnetic field dose 
effects for the MRI-accelerator. Phys Med Biol 2007;52:4283–91. https://doi.org/10.1088/0031-
9155/52/14/017. 

[34] Maspero M, Savenije MHF, Dinkla AM, Seevinck PR, Intven MPW, Jurgenliemk-Schulz IM, et al. Dose 
evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis 
MR-only radiotherapy. Phys Med Biol 2018;63:185001. https://doi.org/10.1088/1361-6560/aada6d. 

[35] Largent A, Barateau A, Nunes J-C, Mylona E, Castelli J, Lafond C, et al. Comparison of Deep Learning-
Based and Patch-Based Methods for Pseudo-CT Generation in MRI-Based Prostate Dose Planning. Int J 
Radiat Oncol Biol Phys 2019;105:1137–50. https://doi.org/10.1016/j.ijrobp.2019.08.049. 

[36] Cusumano D, Lenkowicz J, Votta C, Boldrini L, Placidi L, Catucci F, et al. A deep learning approach to 
generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. 
Radiother Oncol 2020;153:205–12. https://doi.org/10.1016/j.radonc.2020.10.018. 

[37] Mittauer KE, Hill PM, Geurts MW, De Costa A-M, Kimple RJ, Bassetti MF, et al. STAT-ART: The Promise 
and Practice of a Rapid Palliative Single Session of MR-Guided Online Adaptive Radiotherapy (ART). 
Front Oncol 2019;9. https://doi.org/10.3389/fonc.2019.01013. 



33 
 

[38] J J, T N, K S. The rationale for MR-only treatment planning for external radiotherapy. Clinical and 
Translational Radiation Oncology 2019;18. https://doi.org/10.1016/j.ctro.2019.03.005. 

[39] Owrangi AM, Greer PB, Glide-Hurst CK. MRI-only treatment planning: benefits and challenges. Phys 
Med Biol 2018;63:05TR01. https://doi.org/10.1088/1361-6560/aaaca4. 

[40] Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat 
Oncol 2017;12:28. https://doi.org/10.1186/s13014-016-0747-y. 

[41] Vanquin L, Boydev C, Korhonen J, Rault E, Crop F, Lacornerie T, et al. Radiotherapy treatment planning 
of prostate cancer using magnetic resonance imaging. Cancer/Radiotherapie 2019;23:281–9. 
https://doi.org/10.1016/j.canrad.2018.09.005. 

[42] Jonsson JH, Karlsson MG, Karlsson M, Nyholm T. Treatment planning using MRI data: an analysis of 
the dose calculation accuracy for different treatment regions. Radiat Oncol 2010;5:62. 
https://doi.org/10.1186/1748-717X-5-62. 

[43] Johnstone E, Wyatt JJ, Henry AM, Short SC, Sebag-Montefiore D, Murray L, et al. Systematic Review of 
Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging-
Only Radiation Therapy. Int J Radiat Oncol Biol Phys 2018;100:199–217. 
https://doi.org/10.1016/j.ijrobp.2017.08.043. 

[44] Cusumano D, Placidi L, Teodoli S, Boldrini L, Greco F, Longo S, et al. On the accuracy of bulk synthetic 
CT for MR-guided online adaptive radiotherapy. Radiol Med 2019. https://doi.org/10.1007/s11547-
019-01090-0. 

[45] Prior P, Chen X, Gore E, Johnstone C, Li XA. Technical Note: Is bulk electron density assignment 
appropriate for MRI-only based treatment planning for lung cancer? Med Phys 2017;44:3437–43. 
https://doi.org/10.1002/mp.12267. 

[46] Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating synthetic CTs from magnetic 
resonance images using generative adversarial networks. Med Phys 2018. 
https://doi.org/10.1002/mp.13047. 

[47] Gupta D, Kim M, Vineberg KA, Balter JM. Generation of synthetic CT images from MRI for treatment 
planning and patient positioning using a 3-channel U-net trained on sagittal images. Frontiers in 
Oncology 2019;9. https://doi.org/10.3389/fonc.2019.00964. 

[48] Kazemifar S, McGuire S, Timmerman R, Wardak Z, Nguyen D, Park Y, et al. MRI-only brain 
radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep 
learning approach. Radiotherapy and Oncology 2019;136:56–63. 
https://doi.org/10.1016/j.radonc.2019.03.026. 

[49] Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med 
Phys 2017;44:1408–19. https://doi.org/10.1002/mp.12155. 

[50] Lei Y, Harms J, Wang T, Liu Y, Shu H-K, Jani AB, et al. MRI-only based synthetic CT generation using 
dense cycle consistent generative adversarial networks. Medical Physics 2019;46:3565–81. 
https://doi.org/10.1002/mp.13617. 

[51] Olberg S, Zhang H, Kennedy WR, Chun J, Rodriguez V, Zoberi I, et al. Synthetic CT reconstruction using 
a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Medical Physics 
2019;46:4135–47. https://doi.org/10.1002/mp.13716. 

[52] Dinkla AM, Florkow MC, Maspero M, Savenije MHF, Zijlstra F, Doornaert PAH, et al. Dosimetric 
evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-
dimensional convolutional neural network. Med Phys 2019;46:4095–104. 
https://doi.org/10.1002/mp.13663. 

[53] Klages P, Benslimane I, Riyahi S, Jiang J, Hunt M, Deasy JO, et al. Patch-based generative adversarial 
neural network models for head and neck MR-only planning. Med Phys 2020;47:626–42. 
https://doi.org/10.1002/mp.13927. 

[54] Qi M, Li Y, Wu A, Jia Q, Li B, Sun W, et al. Multi-sequence MR image-based synthetic CT generation 
using a generative adversarial network for head and neck MRI-only radiotherapy. Medical Physics 
2020;47:1880–94. https://doi.org/10.1002/mp.14075. 



34 
 

[55] Tie X, Lam S-K, Zhang Y, Lee K-H, Au K-H, Cai J. Pseudo-CT generation from multi-parametric MRI using 
a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal 
carcinoma patients. Medical Physics 2020;47:1750–62. https://doi.org/10.1002/mp.14062. 

[56] Wang Y, Liu C, Zhang X, Deng W. Synthetic CT Generation Based on T2 Weighted MRI of 
Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN). Frontiers in 
Oncology 2019;9. https://doi.org/10.3389/fonc.2019.01333. 

[57] Florkow MC, Zijlstra F, Willemsen K, Maspero M, van den Berg CAT, Kerkmeijer LGW, et al. Deep 
learning–based MR-to-CT synthesis: The influence of varying gradient echo–based MR images as input 
channels. Magnetic Resonance in Medicine 2020;83:1429–41. https://doi.org/10.1002/mrm.28008. 

[58] Fu J, Singhrao K, Cao M, Yu V, Santhanam AP, Yang Y, et al. Generation of abdominal synthetic CTs 
from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy. 
Biomedical Physics and Engineering Express 2020;6. https://doi.org/10.1088/2057-1976/ab6e1f. 

[59] Liu L, Jolly S, Cao Y, Vineberg K, Fessler JA, Balter JM. Female pelvic synthetic CT generation based on 
joint intensity and shape analysis. Phys Med Biol 2017;62:2935–49. https://doi.org/10.1088/1361-
6560/62/8/2935. 

[60] Qian P, Xu K, Wang T, Zheng Q, Yang H, Baydoun A, et al. Estimating CT from MR Abdominal Images 
Using Novel Generative Adversarial Networks. Journal of Grid Computing 2020;18:211–26. 
https://doi.org/10.1007/s10723-020-09513-3. 

[61] Xu K, Cao J, Xia K, Yang H, Zhu J, Wu C, et al. Multichannel Residual Conditional GAN-Leveraged 
Abdominal Pseudo-CT Generation via Dixon MR Images. IEEE Access 2019;7:163823–30. 
https://doi.org/10.1109/ACCESS.2019.2951924. 

[62] Liu Y, Lei Y, Wang T, Kayode O, Tian S, Liu T, et al. MRI-based treatment planning for liver stereotactic 
body radiotherapy: Validation of a deep learning-based synthetic CT generation method. British 
Journal of Radiology 2019;92. https://doi.org/10.1259/bjr.20190067. 

[63] Arabi H, Dowling JA, Burgos N, Han X, Greer PB, Koutsouvelis N, et al. Comparison of synthetic CT 
generation algorithms for MRI-only radiation planning in the pelvic region, 2018. 
https://doi.org/10.1109/NSSMIC.2018.8824321. 

[64] Bahrami A, Karimian A, Fatemizadeh E, Arabi H, Zaidi H. A new deep convolutional neural network 
design with efficient learning capability: Application to CT image synthesis from MRI. Medical Physics 
2020;47:5158–71. https://doi.org/10.1002/mp.14418. 

[65] Leynes AP, Larson PEZ. Synthetic CT generation using MRI with deep learning: How does the selection 
of input images affect the resulting synthetic CT? vol. 2018- April, 2018, p. 6692–6. 
https://doi.org/10.1109/ICASSP.2018.8462419. 

[66] Chen S, Qin A, Zhou D, Yan D. Technical Note: U-net-generated synthetic CT images for magnetic 
resonance imaging-only prostate intensity-modulated radiation therapy treatment planning. Medical 
Physics 2018;45:5659–65. https://doi.org/10.1002/mp.13247. 

[67] Fu J, Yang Y, Singhrao K, Ruan D, Chu F-I, Low DA, et al. Deep learning approaches using 2D and 3D 
convolutional neural networks for generating male pelvic synthetic computed tomography from 
magnetic resonance imaging. Medical Physics 2019;46:3788–98. https://doi.org/10.1002/mp.13672. 

[68] Bird D, Nix MG, McCallum H, Teo M, Gilbert A, Casanova N, et al. Multicentre, deep learning, 
synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning. Radiotherapy and 
Oncology 2021;156:23–8. https://doi.org/10.1016/j.radonc.2020.11.027. 

[69] Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, et al. Deep learning in medical imaging 
and radiation therapy. Med Phys 2019;46:e1–36. https://doi.org/10.1002/mp.13264. 

[70] Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, et al. Deep convolutional neural 
networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med 
2019;95:64–81. https://doi.org/10.1016/j.artmed.2018.08.008. 

[71] Hesamian MH, Jia W, He X, Kennedy P. Deep Learning Techniques for Medical Image Segmentation: 
Achievements and Challenges. J Digit Imaging 2019;32:582–96. https://doi.org/10.1007/s10278-019-
00227-x. 

[72] Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative Adversarial 
Networks. ArXiv:14062661 [Cs, Stat] 2014. 



35 
 

[73] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. 
ArXiv:150504597 [Cs] 2015. 

[74] Neppl S, Landry G, Kurz C, Hansen DC, Hoyle B, Stöcklein S, et al. Evaluation of proton and photon 
dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head 
scans. Acta Oncologica 2019;58:1429–34. https://doi.org/10.1080/0284186X.2019.1630754. 

[75] Maspero M, Bentvelzen LG, Savenije MHF, Guerreiro F, Seravalli E, Janssens GO, et al. Deep learning-
based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy. 
Radiotherapy and Oncology 2020;153:197–204. https://doi.org/10.1016/j.radonc.2020.09.029. 

[76] Bird D, Henry AM, Sebag-Montefiore D, Buckley DL, Al-Qaisieh B, Speight R. A Systematic Review of 
the Clinical Implementation of Pelvic Magnetic Resonance Imaging-Only Planning for External Beam 
Radiation Therapy. Int J Radiat Oncol Biol Phys 2019;105:479–92. 
https://doi.org/10.1016/j.ijrobp.2019.06.2530. 

[77] Tenhunen M, Korhonen J, Kapanen M, Seppälä T, Koivula L, Collan J, et al. MRI-only based radiation 
therapy of prostate cancer: workflow and early clinical experience. Acta Oncol 2018;57:902–7. 
https://doi.org/10.1080/0284186X.2018.1445284. 

[78] Florkow MC, Guerreiro F, Zijlstra F, Seravalli E, Janssens GO, Maduro JH, et al. Deep learning-enabled 
MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours. 
Radiotherapy and Oncology 2020;153:220–7. https://doi.org/10.1016/j.radonc.2020.09.056. 

[79] Largent A, Marage L, Gicquiau I, Nunes J-C, Reynaert N, Castelli J, et al. Head-and-Neck MRI-only 
radiotherapy treatment planning: From acquisition in treatment position to pseudo-CT generation. 
Cancer/Radiotherapie 2020;24:288–97. https://doi.org/10.1016/j.canrad.2020.01.008. 

[80] Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in Auto-Segmentation. Semin Radiat 
Oncol 2019;29:185–97. https://doi.org/10.1016/j.semradonc.2019.02.001. 

[81] González-Villà S, Oliver A, Valverde S, Wang L, Zwiggelaar R, Lladó X. A review on brain structures 
segmentation in magnetic resonance imaging. Artif Intell Med 2016;73:45–69. 
https://doi.org/10.1016/j.artmed.2016.09.001. 

[82] Valentini V, Boldrini L, Damiani A, Muren LP. Recommendations on how to establish evidence from 
auto-segmentation software in radiotherapy. Radiother Oncol 2014;112:317–20. 
https://doi.org/10.1016/j.radonc.2014.09.014. 

[83] Rigaud B, Simon A, Castelli J, Lafond C, Acosta O, Haigron P, et al. Deformable image registration for 
radiation therapy: principle, methods, applications and evaluation. Acta Oncol 2019;58:1225–37. 
https://doi.org/10.1080/0284186X.2019.1620331. 

[84] Vrtovec T, Močnik D, Strojan P, Pernuš F, Ibragimov B. Auto-segmentation of organs at risk for head 
and neck radiotherapy planning: From atlas-based to deep learning methods. Med Phys 
2020;47:e929–50. https://doi.org/10.1002/mp.14320. 

[85] Zabel WJ, Conway JL, Gladwish A, Skliarenko J, Didiodato G, Goorts-Matthews L, et al. Clinical 
Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate 
Radiation Therapy. Pract Radiat Oncol 2021;11:e80–9. https://doi.org/10.1016/j.prro.2020.05.013. 

[86] Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, van der Stoep J, et al. Clinical evaluation of 
atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol 2018;126:312–
7. https://doi.org/10.1016/j.radonc.2017.11.012. 

[87] Fu Y, Mazur TR, Wu X, Liu S, Chang X, Lu Y, et al. A novel MRI segmentation method using CNN-based 
correction network for MRI-guided adaptive radiotherapy. Med Phys 2018;45:5129–37. 
https://doi.org/10.1002/mp.13221. 

[88] Wang J, Lu J, Qin G, Shen L, Sun Y, Ying H, et al. Technical Note: A deep learning-based 
autosegmentation of rectal tumors in MR images. Med Phys 2018;45:2560–4. 
https://doi.org/10.1002/mp.12918. 

[89] Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and 
tool. BMC Med Imaging 2015;15:29. https://doi.org/10.1186/s12880-015-0068-x. 

[90] Yeghiazaryan V, Voiculescu I. Family of boundary overlap metrics for the evaluation of medical image 
segmentation. J Med Imaging (Bellingham) 2018;5:015006. https://doi.org/10.1117/1.JMI.5.1.015006. 



36 
 

[91] Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol 
Med 2018;98:126–46. https://doi.org/10.1016/j.compbiomed.2018.05.018. 

[92] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in 
medical image analysis. Med Image Anal 2017;42:60–88. 
https://doi.org/10.1016/j.media.2017.07.005. 

[93] Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep Learning for Brain MRI Segmentation: 
State of the Art and Future Directions. J Digit Imaging 2017;30:449–59. 
https://doi.org/10.1007/s10278-017-9983-4. 

[94] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual 
Recognition Challenge. Int J Comput Vis 2015;115:211–52. https://doi.org/10.1007/s11263-015-0816-
y. 

[95] Guo Y, Gao Y, Shen D. Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse 
Patch Matching. IEEE Trans Med Imaging 2016;35:1077–89. 
https://doi.org/10.1109/TMI.2015.2508280. 

[96] Feng Z, Nie D, Wang L, Shen D. SEMI-SUPERVISED LEARNING FOR PELVIC MR IMAGE SEGMENTATION 
BASED ON MULTI-TASK RESIDUAL FULLY CONVOLUTIONAL NETWORKS. Proc IEEE Int Symp Biomed 
Imaging 2018;2018:885–8. https://doi.org/10.1109/ISBI.2018.8363713. 

[97] Elguindi S, Zelefsky MJ, Jiang J, Veeraraghavan H, Deasy JO, Hunt MA, et al. Deep learning-based auto-
segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate 
radiotherapy. Phys Imaging Radiat Oncol 2019;12:80–6. https://doi.org/10.1016/j.phro.2019.11.006. 

[98] Eppenhof K a. J, Maspero M, Savenije MHF, de Boer JCJ, van der Voort van Zyp JRN, Raaymakers BW, 
et al. Fast contour propagation for MR-guided prostate radiotherapy using convolutional neural 
networks. Med Phys 2020;47:1238–48. https://doi.org/10.1002/mp.13994. 

[99] Savenije MHF, Maspero M, Sikkes GG, van der Voort van Zyp JRN, T J Kotte AN, Bol GH, et al. Clinical 
implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for 
prostate radiotherapy. Radiat Oncol 2020;15:104. https://doi.org/10.1186/s13014-020-01528-0. 

[100] Kuisma A, Ranta I, Keyrilainen J, Suilamo S, Wright P, Pesola M, et al. Validation of automated 
magnetic resonance image segmentation for radiation therapy planning in prostate cancer. Physics 
and Imaging in Radiation Oncology 2020;13:14–20. https://doi.org/10.1016/j.phro.2020.02.004. 

[101] Gou S, Lee P, Hu P, Rwigema J-C, Sheng K. Feasibility of automated 3-dimensional magnetic resonance 
imaging pancreas segmentation. Adv Radiat Oncol 2016;1:182–93. 
https://doi.org/10.1016/j.adro.2016.05.002. 

[102] Liang Y, Schott D, Zhang Y, Wang Z, Nasief H, Paulson E, et al. Auto-segmentation of pancreatic tumor 
in multi-parametric MRI using deep convolutional neural networks. Radiother Oncol 2020;145:193–
200. https://doi.org/10.1016/j.radonc.2020.01.021. 

[103] Liang F, Qian P, Su K-H, Baydoun A, Leisser A, Van Hedent S, et al. Abdominal, multi-organ, auto-
contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, 
multi-level fusion approach. Artif Intell Med 2018;90:34–41. 
https://doi.org/10.1016/j.artmed.2018.07.001. 

[104] Fu Y, Mazur TR, Wu X, Liu S, Chang X, Lu Y, et al. A novel MRI segmentation method using CNN-based 
correction network for MRI-guided adaptive radiotherapy. Med Phys 2018;45:5129–37. 
https://doi.org/10.1002/mp.13221. 

[105] Chen Y, Ruan D, Xiao J, Wang L, Sun B, Saouaf R, et al. Fully automated multiorgan segmentation in 
abdominal magnetic resonance imaging with deep neural networks. Med Phys 2020;47:4971–82. 
https://doi.org/10.1002/mp.14429. 

[106] Gurney-Champion OJ, Kieselmann JP, Wong KH, Ng-Cheng-Hin B, Harrington K, Oelfke U. A 
convolutional neural network for contouring metastatic lymph nodes on diffusion-weighted magnetic 
resonance images for assessment of radiotherapy response. Physics and Imaging in Radiation 
Oncology 2020;15:1–7. https://doi.org/10.1016/j.phro.2020.06.002. 

[107] Lin L, Dou Q, Jin Y-M, Zhou G-Q, Tang Y-Q, Chen W-L, et al. Deep Learning for Automated Contouring 
of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology 2019;291:677–86. 
https://doi.org/10.1148/radiol.2019182012. 



37 
 

[108] Fiorino C, Gumina C, Passoni P, Palmisano A, Broggi S, Cattaneo GM, et al. A TCP-based early 
regression index predicts the pathological response in neo-adjuvant radio-chemotherapy of rectal 
cancer. Radiother Oncol 2018;128:564–8. https://doi.org/10.1016/j.radonc.2018.06.019. 

[109] Castelli J, Simon A, Lafond C, Perichon N, Rigaud B, Chajon E, et al. Adaptive radiotherapy for head 
and neck cancer. Acta Oncol 2018;57:1284–92. https://doi.org/10.1080/0284186X.2018.1505053. 

[110] Tanderup K, Lindegaard JC, Kirisits C, Haie-Meder C, Kirchheiner K, de Leeuw A, et al. Image Guided 
Adaptive Brachytherapy in cervix cancer: A new paradigm changing clinical practice and outcome. 
Radiother Oncol 2016;120:365–9. https://doi.org/10.1016/j.radonc.2016.08.007. 

[111] van der Heide UA. MR-guided radiation therapy. Physica Medica 2016;32:175. 
https://doi.org/10.1016/j.ejmp.2016.07.284. 

[112] Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, et al. Radiomics: 
extracting more information from medical images using advanced feature analysis. Eur J Cancer 
2012;48:441–6. https://doi.org/10.1016/j.ejca.2011.11.036. 

[113] Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the 
bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology 
2017;14:749–62. https://doi.org/10.1038/nrclinonc.2017.141. 

[114] Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B. Radiomics and 
Artificial Intelligence for Biomarker and Prediction Model Development in Oncology. Comput Struct 
Biotechnol J 2019;17:995–1008. https://doi.org/10.1016/j.csbj.2019.07.001. 

[115] Thorwarth D, Ege M, Nachbar M, Mönnich D, Gani C, Zips D, et al. Quantitative magnetic resonance 
imaging on hybrid magnetic resonance linear accelerators: Perspective on technical and clinical 
validation. Physics and Imaging in Radiation Oncology 2020;16:69–73. 
https://doi.org/10.1016/j.phro.2020.09.007. 

[116] Cusumano D, Boldrini L, Yadav P, Casà C, Lee SL, Romano A, et al. Delta Radiomics Analysis for Local 
Control Prediction in Pancreatic Cancer Patients Treated Using Magnetic Resonance Guided 
Radiotherapy. Diagnostics 2021;11:72. https://doi.org/10.3390/diagnostics11010072. 

[117] Boldrini L, Cusumano D, Chiloiro G, Casà C, Masciocchi C, Dinapoli N, et al. Delta Radiomics for rectal 
cancer response prediction with hybrid 0.35 T Magnetic Resonance guided Radiotherapy (MRgRT) : a 
hypothesis generating study for an innovative personalized medicine approach. La Radiologia Medica 
2018. 

[118] Jeon SH, Song C, Chie EK, Kim B, Kim YH, Chang W, et al. Delta-radiomics signature predicts treatment 
outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol 
2019;14:43. https://doi.org/10.1186/s13014-019-1246-8. 

[119] Alahmari SS, Cherezov D, Goldgof D, Hall L, Gillies RJ, Schabath MB. Delta Radiomics Improves 
Pulmonary Nodule Malignancy Prediction in Lung Cancer Screening. IEEE Access 2018;6:77796–806. 
https://doi.org/10.1109/ACCESS.2018.2884126. 

[120] Fave X, Zhang L, Yang J, Mackin D, Balter P, Gomez D, et al. Delta-radiomics features for the prediction 
of patient outcomes in non-small cell lung cancer. Sci Rep 2017;7:588. 
https://doi.org/10.1038/s41598-017-00665-z. 

[121] Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the 
challenges. Magn Reson Imaging 2012;30:1234–48. https://doi.org/10.1016/j.mri.2012.06.010. 

[122] Cusumano D, Dinapoli N, Boldrini L, Chiloiro G, Gatta R, Masciocchi C, et al. Fractal-based radiomic 
approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol 
Med 2018;123:286–95. https://doi.org/10.1007/s11547-017-0838-3. 

[123] Dinapoli N, Barbaro B, Gatta R, Chiloiro G, Casà C, Masciocchi C, et al. Magnetic Resonance, Vendor-
independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After 
Radiochemotherapy of Rectal Cancer. Int J Radiat Oncol Biol Phys 2018. 
https://doi.org/10.1016/j.ijrobp.2018.04.065. 

[124] Wang J, Yung J, Kadbi M, Hwang K, Ding Y, Ibbott G. Assessment of image quality and scatter and 
leakage radiation of an integrated MR-LINAC system. Medical Physics 2018;45. 
https://doi.org/10.1002/mp.12767. 



38 
 

[125] Kooreman ES, van Houdt PJ, Nowee ME, van Pelt VWJ, Tijssen RHN, Paulson ES, et al. Feasibility and 
accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiother Oncol 2019;133:156–62. 
https://doi.org/10.1016/j.radonc.2019.01.011. 

[126] Lorenz JW, Schott D, Rein L, Mostafaei F, Noid G, Lawton C, et al. Serial T2-Weighted Magnetic 
Resonance Images Acquired on a 1.5 Tesla Magnetic Resonance Linear Accelerator Reveal Radiomic 
Feature Variation in Organs at Risk: An Exploratory Analysis of Novel Metrics of Tissue Response in 
Prostate Cancer. Cureus 2019;11:e4510. https://doi.org/10.7759/cureus.4510. 

[127] Cusumano D, Meijer G, Lenkowicz J, Chiloiro G, Boldrini L, Masciocchi C, et al. A field strength 
independent MR radiomics model to predict pathological complete response in locally advanced 
rectal cancer. Radiol Med 2020. https://doi.org/10.1007/s11547-020-01266-z. 

[128] Simpson G, Spieler B, Dogan N, Portelance L, Mellon EA, Kwon D, et al. Predictive value of 0.35 T 
magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of 
pancreatic cancer: A pilot study. Med Phys 2020;47:3682–90. https://doi.org/10.1002/mp.14200. 

[129] Yang Y, Cao M, Sheng K, Gao Y, Chen A, Kamrava M, et al. Longitudinal diffusion MRI for treatment 
response assessment: Preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. 
Med Phys 2016;43:1369–73. https://doi.org/10.1118/1.4942381. 

[130] Cusumano D, Boldrini L, Yadav P, Gao Y, Chiloiro G, Musurunu B, et al. Delta radiomics for rectal 
cancer response prediction using low field magnetic resonance guided radiotherapy: an external 
validation. Phys Med 2021. 

[131] Gao Y, Kalbasi A, Hsu W, Ruan D, Fu J, Shao J, et al. Treatment effect prediction for sarcoma patients 
treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted 
MRIs. Physics in Medicine and Biology 2020;65. https://doi.org/10.1088/1361-6560/ab9e58. 

[132] Broggi S, Passoni P, Gumina C, Palmisano A, Bresolin A, Burgio V, et al. Predicting pathological 
response after radio-chemotherapy for rectal cancer: Impact of late oxaliplatin administration. 
Radiother Oncol 2020;149:174–80. https://doi.org/10.1016/j.radonc.2020.05.019. 

[133] Cusumano D, Boldrini L, Yadav P, Yu G, Musurunu B, Chiloiro G, et al. External Validation of Early 
Regression Index (ERITCP) as Predictor of Pathologic Complete Response in Rectal Cancer Using 
Magnetic Resonance-Guided Radiation Therapy. Int J Radiat Oncol Biol Phys 2020;108:1347–56. 
https://doi.org/10.1016/j.ijrobp.2020.07.2323. 

[134] Cusumano D, Catucci F, Romano A, Boldrini L, Piras A, Broggi S, et al. Evaluation of an Early Regression 
Index (ERITCP) as Predictor of Pathological Complete Response in Cervical Cancer: A Pilot-Study. 
Applied Sciences 2020;10:8001. https://doi.org/10.3390/app10228001. 

[135] Cusumano D, Dhont J, Boldrini L, Chiloiro G, Teodoli S, Massaccesi M, et al. Predicting tumour motion 
during the whole radiotherapy treatment: a systematic approach for thoracic and abdominal lesions 
based on real time MR. Radiother Oncol 2018;129:456–62. 
https://doi.org/10.1016/j.radonc.2018.07.025. 

[136] Dhont J, Vandemeulebroucke J, Burghelea M, Poels K, Depuydt T, Van Den Begin R, et al. The long- 
and short-term variability of breathing induced tumor motion in lung and liver over the course of a 
radiotherapy treatment. Radiother Oncol 2018;126:339–46. 
https://doi.org/10.1016/j.radonc.2017.09.001. 

[137] Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol 2019;18:98–101. 
https://doi.org/10.1016/j.ctro.2019.04.007. 

[138] Paganelli C, Whelan B, Peroni M, Summers P, Fast M, van de Lindt T, et al. MRI-guidance for motion 
management in external beam radiotherapy: current status and future challenges. Phys Med Biol 
2018;63:22TR03. https://doi.org/10.1088/1361-6560/aaebcf. 

[139] Cerviño LI, Du J, Jiang SB. MRI-guided tumor tracking in lung cancer radiotherapy. Physics in Medicine 
and Biology 2011;56:3773–85. https://doi.org/10.1088/0031-9155/56/13/003. 

[140] Yun J, Yip E, Gabos Z, Wachowicz K, Rathee S, Fallone BG. Neural-network based autocontouring 
algorithm for intrafractional lung-tumor tracking using Linac-MR. Medical Physics 2015;42:2296–310. 
https://doi.org/10.1118/1.4916657. 



39 
 

[141] Fast MF, Eiben B, Menten MJ, Wetscherek A, Hawkes DJ, McClelland JR, et al. Tumour auto-
contouring on 2d cine MRI for locally advanced lung cancer: A comparative study. Radiotherapy and 
Oncology 2017;125:485–91. https://doi.org/10.1016/j.radonc.2017.09.013. 

[142] Bourque AE, Carrier J-F, Filion É, Bedwani S. A particle filter motion prediction algorithm based on an 
autoregressive model for real-time MRI-guided radiotherapy of lung cancer. Biomed Phys Eng Express 
2017;3:035001. https://doi.org/10.1088/2057-1976/aa6b5b. 

[143] Mirzapour SA, Mazur T, Sharp G, Salari E. Intra-fraction motion prediction in MRI-guided radiation 
therapy using Markov processes. Phys Med Biol 2019;64:195006. https://doi.org/10.1088/1361-
6560/ab37a9. 

[144] Dhont J, Vandemeulebroucke J, Cusumano D, Boldrini L, Cellini F, Valentini V, et al. Multi-object 
tracking in MRI-guided radiotherapy using the tracking-learning-detection framework. Radiother 
Oncol 2019;138:25–9. https://doi.org/10.1016/j.radonc.2019.05.008. 

[145] Kalal Z, Mikolajczyk K, Matas J. Tracking-Learning-Detection. IEEE Trans Pattern Anal Mach Intell 
2012;34:1409–22. https://doi.org/10.1109/TPAMI.2011.239. 

[146] Terpstra ML, Maspero M, d’Agata F, Stemkens B, Intven MPW, Lagendijk JJW, et al. Deep learning-
based image reconstruction and motion estimation from undersampled radial k-space for real-time 
MRI-guided radiotherapy. Phys Med Biol 2020;65:155015. https://doi.org/10.1088/1361-
6560/ab9358. 

[147] Ghodrati V, Bydder M, Ali F, Gao C, Prosper A, Nguyen K-L, et al. Retrospective respiratory motion 
correction in cardiac cine MRI reconstruction using adversarial autoencoder and unsupervised 
learning. NMR Biomed 2020:e4433. https://doi.org/10.1002/nbm.4433. 

[148] El-Rewaidy H, Fahmy AS, Pashakhanloo F, Cai X, Kucukseymen S, Csecs I, et al. Multi-domain 
convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI. Magn 
Reson Med 2021;85:1195–208. https://doi.org/10.1002/mrm.28485. 

[149] Zhou J, Peng Z, Song Y, Chang Y, Pei X, Sheng L, et al. A method of using deep learning to predict 
three-dimensional dose distributions for intensity-modulated radiotherapy of rectal cancer. J Appl 
Clin Med Phys 2020;21:26–37. https://doi.org/10.1002/acm2.12849. 

[150] Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D. Convolutional Recurrent Neural 
Networks for Dynamic MR Image Reconstruction. IEEE Transactions on Medical Imaging 2019;38:280–
90. https://doi.org/10.1109/TMI.2018.2863670. 

[151] Ke Z, Cheng J, Ying L, Zheng H, Zhu Y, Liang D. An unsupervised deep learning method for multi-coil 
cine MRI. Phys Med Biol 2020;65:235041. https://doi.org/10.1088/1361-6560/abaffa. 

[152] Ghodrati V, Shao J, Bydder M, Zhou Z, Yin W, Nguyen K-L, et al. MR image reconstruction using deep 
learning: evaluation of network structure and loss functions. Quant Imaging Med Surg 2019;9:1516–
27. https://doi.org/10.21037/qims.2019.08.10. 

[153] Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, et al. Precise and real-
time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during 
radiotherapy. Int J Radiat Oncol Biol Phys 2002;53:822–34. https://doi.org/10.1016/s0360-
3016(02)02803-1. 

[154] Küstner T, Fuin N, Hammernik K, Bustin A, Qi H, Hajhosseiny R, et al. CINENet: deep learning-based 3D 
cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci 
Rep 2020;10:13710. https://doi.org/10.1038/s41598-020-70551-8. 

[155] Stemkens B, Tijssen RHN, de Senneville BD, Lagendijk JJW, van den Berg CAT. Image-driven, model-
based 3D abdominal motion estimation for MR-guided radiotherapy. Phys Med Biol 2016;61:5335–55. 
https://doi.org/10.1088/0031-9155/61/14/5335. 

[156] Harris W, Ren L, Cai J, Zhang Y, Chang Z, Yin F-F. A Technique for Generating Volumetric Cine-
Magnetic Resonance Imaging. Int J Radiat Oncol Biol Phys 2016;95:844–53. 
https://doi.org/10.1016/j.ijrobp.2016.02.011. 

[157] Rabe M, Paganelli C, Riboldi M, Bondesson D, Schneider MJ, Chmielewski T, et al. Porcine lung 
phantom-based validation of estimated 4D-MRI using orthogonal cine imaging for low-field MR-
Linacs. Phys Med Biol 2020. https://doi.org/10.1088/1361-6560/abc937. 



40 
 

[158] Paganelli C, Portoso S, Garau N, Meschini G, Via R, Buizza G, et al. Time-resolved volumetric MRI in 
MRI-guided radiotherapy: an in silico comparative analysis. Phys Med Biol 2019;64:185013. 
https://doi.org/10.1088/1361-6560/ab33e5. 

[159] McClelland JR, Modat M, Arridge S, Grimes H, D’Souza D, Thomas D, et al. A generalized framework 
unifying image registration and respiratory motion models and incorporating image reconstruction, 
for partial image data or full images. Phys Med Biol 2017;62:4273–92. https://doi.org/10.1088/1361-
6560/aa6070. 

[160] Tran EH, Eiben B, Wetscherek A, Oelfke U, Meedt G, Hawkes DJ, et al. Evaluation of MRI-derived 
surrogate signals to model respiratory motion. Biomed Phys Eng Express 2020;6:045015. 
https://doi.org/10.1088/2057-1976/ab944c. 

[161] Ginn J, Lamb J, Ruan D. Online target volume estimation and prediction from an interlaced slice 
acquisition - A manifold embedding and learning approach. Lecture Notes in Computer Science 
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 
2019;11850 LNCS:78–85. https://doi.org/10.1007/978-3-030-32486-5_10. 

[162] Ginn JS, Ruan D, Low DA, Lamb JM. Multislice motion modeling for MRI-guided radiotherapy gating. 
Med Phys 2019;46:465–74. https://doi.org/10.1002/mp.13350. 

[163] Kissick MW, Mackie TR. Task Group 76 Report on ‘The management of respiratory motion in radiation 
oncology’ [Med. Phys. 33, 3874–3900 (2006)]. Med Phys 2009;36:5721–2. 
https://doi.org/10.1118/1.3260838. 

[164] Kim T, Park JC, Gach HM, Chun J, Mutic S. Technical Note: Real-time 3D MRI in the presence of motion 
for MRI-guided radiotherapy: 3D Dynamic keyhole imaging with super-resolution. Medical Physics 
2019;46:4631–8. https://doi.org/10.1002/mp.13748. 

[165] Zhao C, Shao M, Carass A, Li H, Dewey BE, Ellingsen LM, et al. Applications of a deep learning method 
for anti-aliasing and super-resolution in MRI. Magn Reson Imaging 2019;64:132–41. 
https://doi.org/10.1016/j.mri.2019.05.038. 

[166] Wang et al. Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future 2019. 
[167] Hussein M, Heijmen BJM, Verellen D, Nisbet A. Automation in intensity modulated radiotherapy 

treatment planning—a review of recent innovations. BJR 2018;91:20180270. 
https://doi.org/10.1259/bjr.20180270. 

[168] EthosTM therapy AI Technical Brief 2019. 
[169] Moore KL. Automated Radiotherapy Treatment Planning. Semin Radiat Oncol 2019;29:209–18. 

https://doi.org/10.1016/j.semradonc.2019.02.003. 
[170] Cagni E, Botti A, Micera R, Galeandro M, Sghedoni R, Orlandi M, et al. Knowledge-based treatment 

planning: An inter-technique and inter-system feasibility study for prostate cancer. Phys Med 
2017;36:38–45. https://doi.org/10.1016/j.ejmp.2017.03.002. 

[171] Rago M, Placidi L, Polsoni M, Rambaldi G, Cusumano D, Greco F, et al. Evaluation of a generalized 
knowledge-based planning performance for VMAT irradiation of breast and locoregional lymph 
nodes-Internal mammary and/or supraclavicular regions. PLoS One 2021;16:e0245305. 
https://doi.org/10.1371/journal.pone.0245305. 

[172] Teichert K, Süss P, Serna JI, Monz M, Küfer KH, Thieke C. Comparative analysis of Pareto surfaces in 
multi-criteria IMRT planning. Phys Med Biol 2011;56:3669–84. https://doi.org/10.1088/0031-
9155/56/12/014. 

[173] Breedveld S, Storchi PRM, Keijzer M, Heemink AW, Heijmen BJM. A novel approach to multi-criteria 
inverse planning for IMRT. Phys Med Biol 2007;52:6339–53. https://doi.org/10.1088/0031-
9155/52/20/016. 

[174] Bijman R, Rossi L, Janssen T, de Ruiter P, Carbaat C, van Triest B, et al. First system for fully-automated 
multi-criterial treatment planning for a high-magnetic field MR-Linac applied to rectal cancer. Acta 
Oncologica 2020;59:926–32. https://doi.org/10.1080/0284186X.2020.1766697. 

[175] Wang M, Zhang Q, Lam S, Cai J, Yang R. A Review on Application of Deep Learning Algorithms in 
External Beam Radiotherapy Automated Treatment Planning. Front Oncol 2020;10:580919. 
https://doi.org/10.3389/fonc.2020.580919. 



41 
 

[176] Shen C, Nguyen D, Chen L, Gonzalez Y, McBeth R, Qin N, et al. Operating a treatment planning system 
using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-
modulated radiation therapy treatment planning. Med Phys 2020;47:2329–36. 
https://doi.org/10.1002/mp.14114. 

[177] Castriconi R, Fiorino C, Passoni P, Broggi S, Di Muzio NG, Cattaneo GM, et al. Knowledge-based 
automatic optimization of adaptive early-regression-guided VMAT for rectal cancer. Physica Medica 
2020;70:58–64. https://doi.org/10.1016/j.ejmp.2020.01.016. 

[178] Placidi L, Lenkowicz J, Cusumano D, Boldrini L, Dinapoli N, Valentini V. Stability of dosomics features 
extraction on grid resolution and algorithm for radiotherapy dose calculation. Phys Med 2020;77:30–
5. https://doi.org/10.1016/j.ejmp.2020.07.022. 

[179] Scott JG, Berglund A, Schell MJ, Mihaylov I, Fulp WJ, Yue B, et al. A genome-based model for adjusting 
radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol 2017;18:202–11. 
https://doi.org/10.1016/S1470-2045(16)30648-9. 

[180] Li HH, Rodriguez VL, Green OL, Hu Y, Kashani R, Wooten HO, et al. Patient-specific quality assurance 
for the delivery of (60)Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic 
field. Int J Radiat Oncol Biol Phys 2015;91:65–72. https://doi.org/10.1016/j.ijrobp.2014.09.008. 

[181] Chen X, Ahunbay E, Paulson E, Chen G, Li X. A daily end-to-end quality assurance workflow for MR-
guided online adaptive radiation therapy on MR-Linac: Daily end-to-end QA workflow for MR-Linac. 
Journal of Applied Clinical Medical Physics 2019;21. https://doi.org/10.1002/acm2.12786. 

[182] Madden L, Archer J, Li E, Jelen U, Dong B, Roberts N, et al. First measurements with a plastic 
scintillation dosimeter at the Australian MRI-LINAC. Phys Med Biol 2019;64:175015. 
https://doi.org/10.1088/1361-6560/ab324b. 

[183] Cusumano D, Placidi L, D’Agostino E, Boldrini L, Menna S, Valentini V, et al. Characterization of an 
inorganic scintillator for small-field dosimetry in MR-guided radiotherapy. J Appl Clin Med Phys 
2020;21:244–51. https://doi.org/10.1002/acm2.13012. 

[184] McNutt TR, Moore KL, Wu B, Wright JL. Use of Big Data for Quality Assurance in Radiation Therapy. 
Semin Radiat Oncol 2019;29:326–32. https://doi.org/10.1016/j.semradonc.2019.05.006. 

[185] Kalet AM, Gennari JH, Ford EC, Phillips MH. Bayesian network models for error detection in 
radiotherapy plans. Phys Med Biol 2015;60:2735–49. https://doi.org/10.1088/0031-9155/60/7/2735. 

[186] Tol JP, Dahele M, Delaney AR, Slotman BJ, Verbakel WFAR. Can knowledge-based DVH predictions be 
used for automated, individualized quality assurance of radiotherapy treatment plans? Radiat Oncol 
2015;10:234. https://doi.org/10.1186/s13014-015-0542-1. 

[187] Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z, et al. A feasibility study for predicting optimal radiation 
therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci 
Rep 2019;9:1076. https://doi.org/10.1038/s41598-018-37741-x. 

[188] Valdes G, Scheuermann R, Hung CY, Olszanski A, Bellerive M, Solberg TD. A mathematical framework 
for virtual IMRT QA using machine learning. Med Phys 2016;43:4323. 
https://doi.org/10.1118/1.4953835. 

[189] Valdes G, Chan MF, Lim SB, Scheuermann R, Deasy JO, Solberg TD. IMRT QA using machine learning: A 
multi-institutional validation. J Appl Clin Med Phys 2017;18:279–84. 
https://doi.org/10.1002/acm2.12161. 

[190] Lam D, Zhang X, Li H, Deshan Y, Schott B, Zhao T, et al. Predicting gamma passing rates for portal 
dosimetry-based IMRT QA using machine learning. Med Phys 2019;46:4666–75. 
https://doi.org/10.1002/mp.13752. 

[191] Li J, Wang L, Zhang X, Liu L, Li J, Chan MF, et al. Machine Learning for Patient-Specific Quality 
Assurance of VMAT: Prediction and Classification Accuracy. Int J Radiat Oncol Biol Phys 2019;105:893–
902. https://doi.org/10.1016/j.ijrobp.2019.07.049. 

[192] Tomori S, Kadoya N, Takayama Y, Kajikawa T, Shima K, Narazaki K, et al. A deep learning-based 
prediction model for gamma evaluation in patient-specific quality assurance. Med Phys 2018. 
https://doi.org/10.1002/mp.13112. 



42 
 

[193] Mahdavi SR, Tavakol A, Sanei M, Molana SH, Arbabi F, Rostami A, et al. Use of artificial neural network 
for pretreatment verification of intensity modulation radiation therapy fields. Br J Radiol 
2019;92:20190355. https://doi.org/10.1259/bjr.20190355. 

[194] Kimura Y, Kadoya N, Tomori S, Oku Y, Jingu K. Error detection using a convolutional neural network 
with dose difference maps in patient-specific quality assurance for volumetric modulated arc therapy. 
Phys Med 2020;73:57–64. https://doi.org/10.1016/j.ejmp.2020.03.022. 

[195] Interian Y, Rideout V, Kearney VP, Gennatas E, Morin O, Cheung J, et al. Deep nets vs expert designed 
features in medical physics: An IMRT QA case study. Med Phys 2018;45:2672–80. 
https://doi.org/10.1002/mp.12890. 

[196] Cusumano D, Dhont J, Boldrini L, Chiloiro G, Romano A, Votta C, et al. Reliability of ITV approach to 
varying treatment fraction time: a retrospective analysis based on 2D cine MR images. Radiat Oncol 
2020;15:152. https://doi.org/10.1186/s13014-020-01530-6. 

[197] van Sörnsen de Koste JR, Palacios MA, Bruynzeel AME, Slotman BJ, Senan S, Lagerwaard FJ. MR-
guided Gated Stereotactic Radiation Therapy Delivery for Lung, Adrenal, and Pancreatic Tumors: A 
Geometric Analysis. Int J Radiat Oncol Biol Phys 2018;102:858–66. 
https://doi.org/10.1016/j.ijrobp.2018.05.048. 

[198] Brouwer CL, Dinkla AM, Vandewinckele L, Crijns W, Claessens M, Verellen D, et al. Machine learning 
applications in radiation oncology: Current use and needs to support clinical implementation. Phys 
Imaging Radiat Oncol 2020;16:144–8. https://doi.org/10.1016/j.phro.2020.11.002. 

[199] Keskinbora KH. Medical ethics considerations on artificial intelligence. J Clin Neurosci 2019;64:277–
82. https://doi.org/10.1016/j.jocn.2019.03.001. 

 

 

 


