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Abstract 

 

Artificial intelligence is increasingly becoming a part of everyday life. This raises the question whether 

clinical neurology can benefit from these novel methods to increase diagnostic accuracy. Several 

recent studies have used machine learning classifiers to predict whether subjects suffer from a 

neurological disorder. This article discusses whether these methods are ready to make their entrance 

into clinical practice. The underlying principles of classification will be explored, as well as the 

potential pitfalls. Strengths of machine learning methods are that they are unbiased and very 

sensitive to patterns emerging from small changes spread across a large number of variables. 

Potential pitfalls are that building reliable classifiers requires large amounts of well-selected data and 

extensive validation. Currently, machine learning classifiers offer neurologists a new diagnostic tool 

which can aid in the diagnosis of cases with a high degree of uncertainty. 
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Machine learning is an increasingly popular technique in clinical research, but is there a place for 

artificial intelligence in clinical practice? In Alzheimer’s disease (AD), a seminal multicentric study 

from 2008 demonstrated that classifiers based on MRI images performed as well as clinicians [1]. 

Numerous studies have followed since (for reviews in AD, which will be used as an illustrative 

example: see [2, 3]), but why hasn’t machine learning found its way to the bedside 10 years later? 

This article discusses the strengths and weaknesses of artificial intelligence classifiers. I will focus on 

classifiers used for automated diagnosis, i.e. the classifier will propose a diagnosis. This goes beyond 

the use of biomarkers for confirmation of a clinical suspicion, where the clinician interprets the result 

in a specific clinical context.  

 

Relevant machine learning principles 

Machine learning classifiers perform pattern recognition. They use a large number of variables as 

input, which means they are essentially multivariate analysis techniques. The classifier “learns” to 

predict the outcome (or “class”, e.g. healthy or AD) based on a large set of variables (e.g. voxels of an 

MRI, age, APOE carrier status, health records…). Using a training dataset with a definite diagnosis, 

the classifier is trained (“learns”) to separate between the 2 classes based on a combination of the 

input variables (e.g. pattern of atrophy, pace of decline…) . An important question is which gold 

standard to use for classification of the training set (e.g. neuropathology, amyloid PET). Since a bigger 
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training set (including disease mimics, healthy controls, …) increases reliability, sometimes a tradeoff 

will be necessary between sample size and diagnostic gold standard. 

Support vector machines (SVM), currently a popular method, can illustrate how machine learning 

works. The subsequent discussion of strengths and limitations can be extrapolated to other methods, 

e.g. neural networks (NN), …. SVMs are typically used for binary classification (e.g. healthy vs AD) 

whereas NN map onto a large possible number of outcomes. However, multiclass SVMs do exist. To 

illustrate the underlying principles, I will focus on the binary SVM case. Theoretically, the input 

variables of the SVM classifier can be projected to a high-dimensional space, in which each 

dimension represents one variable. For a classifier trained to separate subjects with AD from healthy 

controls, input variables such as age, education level, neuropsychological test scores, voxels of the 

subject’s MRI, lumbar punction results, etc. can be mapped to a high-dimensional space, with each of 

these variables representing one dimension. In this high-dimensional space, the classifier is the 

hyperplane which separates the data points belonging to the 2 classes. In two dimensions, this 

hyperplane can be visualized as a line (Fig 1). The type of hyperplane is determined by the user. Most 

frequently, SVMs are set to generate linear hyperplanes (a straight line in 2D - Fig 1A, or a flat surface 

in 3D). Allowing non-linear solutions can result in the generation of oddly shaped hyperplanes (a 

curvy line in 2D - Fig 1B, or a rippled surface in 3D).  
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Figure 1: Linear versus non-linear binary SVMs. The hyperplane (dotted line) visualizes how the 

classifier separates healthy subjects from AD patients in an example with only 2 input variables (1 

variable could be age, 1 voxel of an MRI, a neuropsychological test score, …). The separation can be 

either A) linear, which is visualized as a straight line in 2 dimensions or B) non-linear. 

 

 

Correct validation of the classifier 

A reliable classifier needs to generalize to unseen data. The capacity to generalize implies that the 

learned differences between the classes in the training dataset are likely due to the underlying 

pathology or disease process. The classifier should be tested on data that was not part of the training 

dataset: testing on training data would lead to an overoptimistic classification accuracy [4]. Cross 

validation is a frequently used technique to demonstrate that a classifier can generalize to new data. 

During cross validation, all subjects from a given dataset are split up into a number of groups (i.e. 

“folds”, e.g. 5). Each fold is then used once as a test dataset, while the training dataset consists of the 

other folds. Classification accuracy is based on the average accuracy across the folds.  
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Along with the classification accuracy, a test of significance should be reported, e.g. a p-value. This is 

necessary because the absolute value of classification accuracy does not provide evidence that the 

classifier performs better than expected by chance. Random permutation labelling can be used to 

calculate a p-value: the class labels of the dataset are randomly assigned and the classification 

procedure is repeated over and over (e.g. 10,000 times) to generate a distribution of all theoretically 

possible accuracies. The true classification accuracy is then compared to the distribution obtained 

with random labels to derive a p-value. Obviously, classifiers used in clinical practice should often 

perform a lot better than merely being better than expected by chance.  

Another important measure of the diagnostic ability of a classifier is the Area Under the Curve (AUC) 

of the receiver operating characteristic (ROC) curve of the classifier. This is particularly relevant for 

rare diseases. Recall that the ROC curve plots the false positive rate (= 1 - specificity) versus the true 

positive rate (= sensitivity). A bad classifier might fail to detect the few true positive cases of a rare 

disease and label them as negative. This classifier would then have a high accuracy (low absolute 

number of misclassified cases), but a low sensitivity and small AUC. 

 A high classification accuracy combined with a significant p-value and a large AUC is only one of the 

basic requirements which determine whether a classifier can generalize to the extent that it can be 

used in clinical practice. Often, cross validation implies that the test dataset is closely related to the 

training dataset (same scanner, same population, …). Ideally, the test dataset should be acquired in 

another center, in order to demonstrate reliable classification performance. The SVM’s settings can 

also influence generalization: if a non-linear hyperplane is allowed (Fig 1B), the risk of overfitting is 

increased. Overfitting means that during training, a solution is found which can optimize 

classification in the training dataset but cannot generalize to unseen data. Intuitively, one can 

imagine that the use of non-linear hyperplanes can lead to solutions that are idiosyncratic to the 

training dataset (Fig 1B: the hyperplane is locally curved to perfectly separate all data points). 
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What classifiers can learn 

Once a classifier is built which can classify unseen data from another study center or population, can 

one reliably use it in clinical practice? I would argue against this, and rather seize the opportunity to 

dissect the classifier. A machine learning classifier becomes more trustworthy if the internal 

workings, i.e. which variables lead to successful classification, are clear. For instance, age is a risk 

factor for AD, so it is reasonable to include age as a contributing variable. However, the weight 

assigned to age cannot be excessively high: even in the case that classification would reach 

significance based solely on age, this is clearly undesirable. For SVMs, the weight each variable 

contributes to the classification of the training set can be determined. Similar strategies exist for 

other machine learning methods, although some are less straightforward, e.g. Deep Taylor 

decomposition for NN [5]. Scientifically, the inspection of the weights is an opportunity to discover 

new contributing variables and to discard others. Misclassified cases should be examined: systematic 

errors (e.g. classification of all subjects under 60 years old as not having AD) are a cause for concern. 

Misclassification can also reveal that critical input variables are missing. For instance, an amnestic 

syndrome with hyperacute onset has a low probability to arise due to AD, but misclassification might 

occur if a “speed of onset” variable is not included. 

 

What neurologists can learn from classifiers 

Human supervision is obviously still required to generate a reliable diagnostic classifier. Next, several 

scenarios are conceivable where missing data undermine the use of the classifier: e.g. a subject who 

cannot have an MRI scan, an illiterate subject unable to perform certain cognitive tests etc. Does this 

mean that it is still too premature to implement machine learning classifiers into clinical practice? 

No, since classifiers can provide useful additional information to the clinical neurologist. A strength of 

machine learning is its sensitivity to pick up patterns arising from a combination of small effects 

spread across a high number of variables. Such patterns can be hard to detect for a human observer. 
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Classifiers might facilitate decision making when a neurologist is faced with a high degree of 

uncertainty, e.g. a suspicion of in AD in a patient with comorbidities in the absence of CSF/PET 

biomarkers. In such a situation, a classifier might be useful to translate the clinician’s suspicion into 

objective measures by quantifying the presence or absence of variables contributing to a diagnosis.  

For clinical research purposes, studies often report contributing variables and their respective 

weights from the training dataset. For implementation in clinical practice, it would be very useful to 

have the classifier explicitly list which contributing variables are driving classification for the index 

patient. Secondly, humans are inherently prone to a certain amount of bias, which does not affect 

artificial intelligence. Relevant to diagnostics is the concept of “confirmation bias”, i.e. the tendency 

to interpret new findings (for instance the result of a diagnostic test) in a way that confirms one’s 

hypothesis [6].  

 

Conclusion 

Machine learning classifiers are ready to be developed as a tool which can assist clinical neurologists 

to make a diagnosis, but they cannot replace clinical judgement. If clinicians were to introduce 

classifiers to aid them in decision making, they are advised to examine the validation method and 

internal workings of the classifier to judge its reliability. An important step in quality control entails 

elucidating which input variables drive classification. Currently, the lack of large multicentric samples 

and the required amount of validation are slowing down the introduction of classifiers in everyday 

clinical practice. However, in combination with the advancement in data mining of electronic health 

records, the diagnostic accuracies of classifiers will continue to rise in the next decade. Taking 

everything into account, machine learning techniques have the potential to become very powerful 

diagnostic tools and reliable aids to clinical neurologists. 
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