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The added value of supervised Machine Learning (ML) methods to determine the Absolute Config-
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uration (AC) of compounds from their Vibrational Circular Dichroism (VCD) spectra was explored.

Among all ML methods considered, Random Forest (RF) and Feedforward Neural Network (FNN)
yield the best performance for identification of the AC. At its best, FNN allows near-perfect AC
determination, with accuracy of prediction up to 0.995, while RF combines good predictive accuracy
(up to 0.940) with the ability to identify the spectral areas important for the identification of the

AC. No loss in performance of either model is observed as long as the spectral sampling interval

used does not exceed the spectral bandwidth. Increasing the sampling interval proves to be the best

method to lower the dimensionality of the input data, thereby decreasing the computational cost

associated with the training of the models.

1 Introduction

Plenty of natural chemical compounds are chiral and their
stereoisomers tend to interact differently with other chiral com-
pounds. This is of great importance in for instance medicinal
chemistry, where stereoisomers produce different therapeutic ef-
fects when engaging their chiral biological target. As a conse-
quence, methods capable of reliably identifying the absolute con-
figuration (AC) of these compounds are of high interest. 12 Prob-
ably the best known method is X-ray diffraction. This method,
however, requires single crystals which are not always easily
available or require additional manipulations. NMR does not dis-
tinguish enantiomers and so its use requires derivatisation of the
compounds.3-°

Stereoisomers do not only interact differently with other chiral
compounds but with chiral fields in general. This difference in in-
teraction is exploited in so-called Circular Dichroism (CD) meth-
ods. There the difference is measured between the interaction of
a specific compound with left- and right-circularly polarised radi-
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ation. ® Probably the best-known CD method is electronic circular
dichroism (ECD). This is the chiral counterpart of UV-VIS spec-
troscopy and hence relies on transitions in electronic state and re-
quires the presence of chromophores. Infrared spectroscopy also
has a chiral counterpart, known as Vibrational Circular Dichroism
(VCD). As there are many more and better resolved vibrational
transitions than there are electronic transitions in VCD and ECD
respectively, VCD spectra usually offer much richer information to
extract the AC from experimental spectra.”-8 Moreover, VCD has
the important advantage that it does not require single crystals,
elaborate derivatisation or the presence of chromophores.

CD methods encapsulate the difference between enantiomers
in a very simple way: the CD spectra of enantiomers are each
other’s mirror image. If one enantiomer slightly prefers to absorb
left circularly polarised light at a specific wavelength, the other
enantiomer will show the same size preference for right circularly
polarised light at that same specific wavelength. Unfortunately,
there is no easy way to link a spectrum to an AC using e.g. tab-
ulated characteristics or empirical rules.® Methods such as VCD
therefore benefited greatly from the advent of efficient algorithms
to quantum chemically reliably compute VCD spectra for a cho-
sen AC of a compound. ! If the computed spectrum matches to
sufficiently large extent the experimental spectrum, a confident
assignment can be made.® Experience shows that Density Func-
tional Theory (DFT) calculations with a well-chosen functional
and basis set often give satisfactory agreement between theory
and experiment. Where needed, many extensions to these calcu-
lations, such as proper solvent handling or ways to concentrate
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on the essential parts of a molecule may help make calculations
better or even simply affordable. 11-16

As mentioned, empirical rules for AC assignment from an ex-
perimental spectrum remain unknown. The current alternative is
to compute spectra which must be done for every molecule and
even conformer thereof separately. This requires much extra ex-
pertise and is both time and resource consuming.

This paper therefore explores a third way. Our research hypoth-
esis is that Machine Learning (ML) techniques can extract yet un-
known spectral features from VCD spectra and in this way allow
determining the AC of new compounds. As the main strength of
VCD lies in its ability to identify enantiomers, the study focuses
on distinguishing enantiomers. Machine Learning (ML) meth-
ods have already been applied successfully in different areas in
chemistry, including spectroscopy, 17-3° but not VCD spectroscopy.
What follows is, to the best of our knowledge, the first critical and
elaborate investigation of the performance of ML methods to ex-
tract AC from VCD spectra.

2 Methodology

Our research methodology is based on the following observation:
the AC of a compound is encapsulated in its VCD spectrum al-
though in a rather opaque way. On the other hand, it is not un-
likely that similar molecules with the same AC would also encap-
sulate this information on the AC in a similar way. We propose to
use ML techniques to establish whether these techniques actually
show that the AC is encoded in VCD spectra in a tractable way
for ML techniques. Beyond establishing this, we wish to examine
whether ML can learn enough from a sufficiently large dataset to
allow determining the AC for new similar molecules. In the fol-
lowing sections, we present in detail the methodology on how we
prove that our central hypothesis actually holds.

2.1 Database design

As first step, we compose a database of spectral data. This dataset
should contain sufficient information to allow ML techniques to
extract the necessary knowledge to be able to assign the AC. Ide-
ally, one would have access to a wealth of experimental spectra
and use these as input. However, there are some problems with
this approach. On the one hand, there is simply not enough data
available and measuring more spectra comes at too high a cost.
Second, for each spectrum one needs rock solid proof that the AC
is known. This requires cross checking this information with at
least another method, such as another spectroscopic method, or
through the synthesis pathway. Both reasons entail that working
with experimental spectra is not an option.

Theoretically computed spectra do not suffer these problems.
One has without any doubt certainty of the absolute configuration
chosen. Therefore, we here use, instead of experimental spec-
tra, DFT computed spectra for a set of rigid compounds where
solvent effects are expected to play a minor role. By only con-
sidering rigid compounds, any accumulation of errors from the
conformational VCD spectra, along with the corresponding Boltz-
mann weights, can be prevented. Such an accumulation may in
an unpredictable fashion impact on the conclusions on the perfor-

2| Journal Name, [year], [vol.], 1-10

mance of ML methods. One would obviously also want to include
all possible elements, functional groups, etc. However, we largely
exclude functional groups that can interact strongly with their
environment. Even though DFT calculations on molecules with
such functional groups pose no problem and the spectra could
technically be used, the chemical value of the spectra is limited
so we chose not to use them. Obviously, once experimental spec-
tra become available in sufficient numbers, the dataset could be
extended to also include flexible molecules, molecules that in-
teract strongly with the environment etc. albeit that then the
challenge is to have absolute certainty on the AC of the experi-
mental sample. As will be discussed in section 3.1, the potential
lower chemical diversity introduced by using computed spectra
does not impact the diversity of the spectra themselves. We stress
that the only role played by DFT calculations here is to generate
the database and it is in no way used in the spectral analysis, as
only ML techniques are considered there. So, the DFT calcula-
tions are used as generators of data and not as analysers of data.

o-pinene is a well-known standard reference compound in the
VCD and ROA community. Due to its rigidity and minor solvent
dependence of its spectra, the VCD spectrum can be calculated
reliably using DFT methods. 30-38 In this work, we have chosen to
use the skeleton of o-pinene as a scaffold to generate a very large
number of other compounds by introducing a wide diversity of
side chains. These side chains, shown in Fig 1, were substituted
on six different carbon atoms in the scaffold, generating all possi-
ble substitution pattern combinations.
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Fig. 1 Decoration of the core structure of (-)-a-pinene. The carbon
atoms involved are similarly to R;_¢ defined as Cy_g.

Some restrictions were then applied. First, to avoid the cre-
ation of additional chiral centers, both C4, and Cg were always
substituted twofold with the same substituent. Additionally, hy-
drogen was not used as substituent at Cg, to prevent rendering
the compound achiral. Thirdly, structures with strong steric re-
pulsion were excluded from the database. As such, structures that
contained interatomic distances between their side chains smaller
than 0.75 A were omitted. This resulted in 3945 molecules shar-
ing the (-)-a-pinene core, for which the VCD spectra were cal-
culated. The spectra of the molecules sharing the (+)-c-pinene
core were obtained by mirroring the calculated spectra of the cor-
responding enantiomers. The label used to identify the AC of
the molecule was whether the molecule was based on the (-)- or
the (+)-a-pinene core structure. CIP-rules were not used as the
molecule contains two asymmetric carbons, labelled as (S,S) and
(R,R) respectively for a-pinene, whose labelling can change for
different decorations.

It should be noted that an imbalance in the dataset with respect
to the relative presence of certain substituents has been intro-
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Fig. 2 Relative representation of the substituents on the six different
sites C_g.

duced due to the abovementioned omission of certain structures
based on steric clashes, as illustrated in Figure 2. This can leave
certain structures underrepresented and more difficult to accu-
rately classify with ML models. The relative presence of t-butyl is
influenced the most, as it is the bulkiest substituent. Its complete
absence at C4 and Cq will not impact the performance measure,
as the model is not validated on structures decorated by t-butyl
on these positions. However, its strong underrepresentation at C;
might not provide enough samples in order for the ML model to
process the influence that it can have on the VCD spectrum. An
analysis of this is provided in Section D.

2.2 Computational DFT settings

For the 3945 decorated (-)-a-pinene structures, geometry opti-
misation and subsequent gas phase VCD calculations were per-
formed at b3pw91/6-31++G(d,p) level using Gaussian163°.
Lorentz broadening was performed on the resulting line spectra,
using a Full Width at Half Maximum (FWHM) of 10 cm~!, rang-
ing from 800 cm~! to 1800 cm™' with a sampling interval (SI) of
0.5cm™!.

2.3 ML methods

To fully gauge the capabilities of ML methods for VCD spec-
troscopy, multiple supervised and unsupervised methods were
considered. These are introduced succinctly below with their
main features and, where applicable, the so-called hyperparam-
eters that were optimised. For a more detailed description, we
refer to the documentation of scikit-learn4°.

Principal component analysis (PCA) 4!

Principle: PCA is a linear method of dimensionality reduction that
finds projections into lower-dimensional subspaces, such that the
variance captured in these spaces is maximised. After this, di-
mensional reduction can be performed by only using the first n
orthogonal components, which would capture the largest section
of the variation of the data.

Hyperparameters: Not applicable.

t-Stochastic neighbour embedding (t-SNE) 42

Principle: t-SNE is a method for visualisation of high-dimensional
data that can model complex, non-linear dependencies. A distri-
bution over pairs of samples is constructed both in the original
and an embedding space. Divergence between the two distribu-
tions is minimised such that samples similar in the original space
are placed close together in the embedding space with a high
probability.

Hyperparameters: measure of perplexity, exaggeration.

Decision tree

Principle: A tree-structured model with class labels in leaves and
descriptive features in branches. Trees are induced by recursively
splitting the dataset in smaller subsets in each branch, such that
the purity of the data (i.e. homogeneity of labels) in the leaves is
maximised.

Hyperparameters: Tree depth.

Logistic regression (LogReg)

Principle: The method applies the techniques of linear regression
to classification problems. A logistic function is fitted to rep-
resent the probability of the sample belonging to a certain class.
The predictive capabilities are typically improved by employing a
regularisation method, such as lasso (11)*3 and ridge (12)** reg-
ularisation, to penalise large weights in regression.
Hyperparameters: Regularisation method and strength.

Naive Bayes (NB) 4>

Principle: A probabilistic method that uses Bayes’ theorem to es-
timate the probability of a sample belonging to a certain class.
The approach relies on a strong assumption that the attributes
are conditionally independent.

Hyperparameters: Not applicable.

Support vector machines (SVM) ¢

Principle: A class of linear algorithms that finds a hyperplane sep-
arating two classes of data with as wide a margin as possible.
Non-linear classification can be performed efficiently by mapping
the inputs into high-dimensional feature spaces through invert-
ible mathematical operations.

Hyperparameters: Kernel employed for mapping, cost, soft or hard
margin.

k-Nearest neighbours (kNN) 47

Principle: Each sample is classified to the class, most common
among the k training points that are the closest to the sample ac-
cording to a distance measure, such as the euclidean distance.
Hyperparameters: Number of neighbours, distance metric and
weight.

Random forest (RF) 48

Principle: An ensemble learning technique that constructs a large
number of decision tree classifiers. Each tree is trained on a lim-
ited bootstrap sample from the original dataset. Furthermore,
at each branch of the tree, only a restricted and random subset
of features is considered. Each sample is classified according to
a majority vote among the classifications of the individual trees.
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The relative importance of each feature for the model can be eval-
uated as the total increase in purity brought by that feature.
Hyperparameters: Number of trees, maximal tree depth.

Feedforward neural network (FNN)4°

Principle: The data is classified by using a large network of in-
terconnected artificial neurons, whose outputs are a non-linear
function of the weighted sum of their inputs. The first layer of
this network is the input layer, containing the input spectral data,
and the final layer of this network is the output layer, giving the
probability of belonging to a certain class. The inner layers, the
so-called deep layers, construct complex features as every neuron
combines the outputs of all the neurons in the previous layer in a
non-linear manner.

Hyperparameters: Number of layers, number of neurons in each
layer, optimiser, regularisation strength.

2.4 Model training

Each model was trained to classify the AC of the decorated
molecules. As input, the VCD intensity at every wavenumber is
used and the performance of the ML method is assessed based on
the AC predicted versus the (known) true AC. For each model,
the hyperparameters were optimised. To even out the probabil-
ity that by chance a validation set would be used that is in any
respect an outlier; 10 training and validation sets were used. In
each case, 90% of the molecules were randomly included in the
training set and the remaining 10% in the validation set. Equal
representation of both enantiomers was imposed in each set. This
will be referred to as a 9:1 training-validation split. The perfor-
mance of each model was evaluated using the Classification Accu-
racy (CA) of the validation data. The CA is defined as the fraction
of molecules with correctly determined AC. In the case of evalu-
ation with multiple training-validation splits, the CA is taken as
the mean accuracy on the validation set over the 10 iterations of
the splits.

In case of RF and FNN, if an increase in the number of internal
parameters of the model did not significantly increase its perfor-
mance, the method with the lower number of internal parameters
was retained. After optimisation of the hyperparameters for each
ML model based solely on the B3PW91/6-31++G(d,p) spectra
of sampling interval (SI) 0.5 cm~!, the hyperparameters were
frozen for the remainder of this study. These final hyperparame-
ters are listed in Table S17.

To investigate the number of spectra that need to be included
to have decent classification accuracy, the procedure was repeated
for various training-validation splits. In this study we considered
the 9:1, 2:1, 1:1, 1:2, 1:4, 1:9, and 19:1 splits, which correspond
to using 90%, 66%, 50%, 33%, 20%, 10%, and 5% of the total
amount of data respectively as training set, and the remaining
data as validation set. The models were built, trained, and vali-
dated using Orange3°9, a scikit-learn 4 based GUI. Using a desk-
top computer equipped with an Intel i5-8400 2.8 GHz processor
and 32 GB of memory, all optimised models, except SVM, were
trained in less than 1 minute on a single training set.
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Fig. 3 Visualisation of the spectra after dimensionality reduction with
(left) 2D-PCA and (right) 2D-t-SNE, with yellow and red dots corre-
sponding to the VCD spectra of decorated (+)- and (-)-o-pinene struc-
tures respectively.

3 Results and Discussion

Prior to deploying all of the aforementioned ML methods to con-
duct AC determination on the VCD spectral database, we checked
whether no simple rules can be derived that would already al-
low a high CA. If such would be the case, the law of parsimony
would already refute the use of ML methods. Due to the size of
the database, finding characteristic bands or empirical patterns
cannot be done by visual inspection.

To establish a baseline performance we rely on PCA and t-SNE,
in combination with linear separation, and shallow decision trees,
to possibly identify simple empirical patterns. The CA results of
these methods are then used to gauge the performance of more
advanced ML methods against.

3.1 Baseline performance with shallow decision trees, PCA
and t-SNE

When a decision tree was trained on the entire dataset and using
the entire spectra, a fraction of 0.766 was classified as the cor-
rect enantiomer for both tree depth 1 and 2. If instead of using
the entire spectra, one uses the three most characteristic bands
(provided they were separated by 8 cm™'; 1184, 1424 and 1496
em™1), as identified by the decision tree, classified 0.785 of the
spectra properly, hence only a minor improvement.

For PCA, at least 62 components were needed to explain 95%
of the total variance and >100 for 99%, which is indicative of
the spectral complexity in the database. Furthermore, straight-
forward classification by linear separation using the first 2-3 prin-
cipal components (logistic regression 9:1 split; CA 0.631-0.703)
was not possible (see Figure S17).

Finally, the use of t-SNE similarly showed that lower dimen-
sional representations would not allow performant classification
by linear separation (logistic regression 9:1 split on 2D-t-SNE; CA
0.791). The reason for the limited performance of linear sepa-
ration on lower dimensional representations lies in the relatively
large overlap of the (+)- and (-)-a-pinene populations, as illus-
trated in Figure 3 for both 2D-PCA and 2D-t-SNE, due to the
absence of bands or patterns strongly characteristic for the AC.
Keeping in mind that spectra of enantiomers are centrosymmetric
in Figure 3, only a small part of the 2D-PCA plot remains charac-



teristic for the (4)- and (-)-a-pinene based compounds. For 2D-
t-SNE, the populations overlap to a lesser extent, creating larger
regions dominated by a specific enantiomer. However, regions of
strong overlap still occur which hamper proper discrimination of
the ACs.

Altogether, some spectral patterns seem to be present in the
data which can aid AC determination, but the resulting accuracy
from these methods is far from convincing. One cannot conclude
that there are empirical patterns or characteristic bands that allow
a reliable AC determination. The information on the AC is buried
within the VCD spectra in a complex manner. Therefore, more
complex supervised ML methods are required.

3.2 Identification of best performing ML models
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Fig. 4 Classification accuracy of the spectra for several supervised ML
models. The different train-validation split ratios are coloured as de-
scribed in the legend.

The CA for the various ML methods is summarised in Figure
4 for all different train-validation splits. All methods were able
to learn from the data and yielded better classification than ob-
tained with shallow decision trees, with a CA of 0.766. NB was
with an CA around 0.840 the least adequate for reliable AC de-
termination. At first sight, LogReg showed promising accuracy.
However, due to the very weak regularisation after optimisation
it contained large coefficients for wavenumbers where only very
faint intensities (tails from faraway bands) are present, as shown
in Figure S27. These coefficients would make the accuracy ex-
tremely unstable in the presence of any small deviations such
as spectral noise (as expected in experimental spectra). When
this overfitting was penalised with stronger regularisation, the ac-
curacy dropped significantly (see Figure S27). Although SVM al-
ready showed promising improvement in performance, it remains
the most computationally demanding method by far, requiring at
least an order of magnitude more training time at the 9:1 split
than the other methods. Moreover, its performance was notice-
ably dependent on the theoretical level used to perform the DFT
calculations, making it less reliable in a general setting (see Fig-
ure S67). kNN displayed a fairly high performance when using a
large training set, but performed poorly in extracting the infor-
mation connected to the AC when using a smaller training set.

RF and FNN are overall the best performing models for iden-

tifying the ACs. In particular, FNN showed outstanding accuracy
using larger training sets, with e.g. a CA of 0.995 for the 9:1
split, but still performed adequately when less training data was
provided. RF did not outperform FNN, but still had fairly high
accuracy across the various splits. The major advantage RF holds
over FNN, is that the information extracted from the spectra and
used in the algorithm to identify the AC is readily available, while
this remains highly challenging to impossible for FNN and conse-
quently limits it to remaining a black box model. As both methods
clearly have their advantages, the remainder of this study focuses
on RF and FNN.

3.3 Influence of spectral sampling interval
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Fig. 5 Classification accuracy of the spectra for different sampling inter-
vals for (a) random forest and (b) forward neural network. The different
train-validation split ratios are coloured as described in the legend.

Thus far, all different models were trained on spectral data with
a sampling interval (SI) of 0.5 cm~!, providing them as much in-
formation as possible to train on in order to evaluate their max-
imal learning capabilities. However, considering that VCD spec-
trometers often record spectra at resolutions around 4-8 cm !,
these models should additionally be evaluated at more represen-
tative SIs. Furthermore, models trained on data of larger SIs will
more strongly repress possible overfitting tendencies, due to the
lower dimensionality of the spectra. Therefore, the CA of both RF
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and FNN is evaluated for several SIs by subsampling the dimen-
sions of the original spectral data.

Evaluating the differences between the SIs, shown in Figure 5,

it becomes apparent that the performance of the models does not
decrease significantly as long as the SI does not drop below 16
em~!. Changing the starting point of the spectra with an SI of
24 cm~! influences the CA (see Figure S47) but to a lesser extent
than the SI itself. The absence of a specific wavenumber thus is
not the main origin of the drop in the performance of the models.
Instead, increasing the SI beyond 16 cm™! causes loss of informa-
tion in the VCD spectra, and prevents the models to identify the
most AC representative patterns. Lowering the SI below 8 cm™!
does not improve model performance, which indicates that no
new information is present in these representations. The strong
correlation between adjacent wavenumbers for 0.5 ecm™' SI is re-
flected in only needing 62 PCs to explain 95% and more than 100
PCs to explain 99% of the total variance.
The origin for this exact density of the spectral information can be
found in the Lorentzian broadening of the line spectra. Due to this
broadening, bands are only indistinguishable when their max-
ima are separated by more than 10 cm~! (the FWHM value) and
wavenumbers separated by a smaller distance become strongly
correlated. When the FWHM is increased to 15 ecm~! the perfor-
mance remains more stable for spectra with a larger SI and the
small CA drop for the 16 cm~! SI disappears, as shown in Figure
S5+ and Figure 6. Thus, subsampling can be employed to such
a degree that the spectral SI resembles the widths of the bands
without experiencing any significant loss in accuracy.

3.4 AC pattern extraction with RF

As mentioned earlier, the pattern that RFs employ to identify the
AC can, in stark contrast with FNNs, to a certain extent be ex-
tracted using feature ranking and the scores associated with it. In
Figure 7, the ranking score of all the spectral peaks in the entire
dataset are illustrated for the different SIs. The larger the ranking
score, the more important this specific wavenumber is for the AC
determination.

The main spectral areas of interest remain similar across the
different SIs, with the bands around 1180 cm~! and between
1300 cm~! and 1500 em~! dominating the AC determination.
When comparing the median differential molar absorptivity Ae
for each wavenumber with the corresponding ranking values (Fig-
ure 8), we observe that the RF mainly focuses on the areas in
which the median deviates from the zero line the strongest in-
stead of focusing on areas containing the strongest intensities.
This can be observed for instance in the area around 950 cm™!,
where despite both the central 50% and 95% quantiles containing
strong intensities, the RF still considers it an area of low impor-
tance. However, the area around 1350 cm™! appears, despite its
near-zero median value, to be of significant importance to the
AC determination. This is likely due to the central 95% quantile
for decorated (+)-a-pinene structures containing strong positive
intensities to weak negative intensities, making it easier to iden-
tify the AC using this band. It should be noted that these highly
ranked areas are not the same as marker bands. Namely, the lat-
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Fig. 6 Difference in classification accuracy obtained between the spectra
with bandwidth 15 cm~! and 10 cm™!, for (a) random forest and (b)
feedforward neural network. The different train-validation split ratios are
coloured as described in the legend.

ter would imply that around a certain or several wavenumbers a
specific VCD intensity and sign is directly indicative for the chi-
rality of the compound, whereas in the former case the ranking
indicates how important each wavenumber was during the iden-
tification of very complex patterns by the RF model to assign the
AC.

3.5 Dimensionality reduction with PCA and RF feature rank-
ing
Up until now, only changing the SI was considered for reduction
of the dimensionality of the input data for RF and FNN. However,
both PCA and the RF based rankings discussed in the previous sec-
tion can also be employed for this, using only the n most impor-
tant components and wavenumbers, respectively. Comparing the
performance of the dimensionality reduction methods, depicted
in Figure 9, shows that the unbiased subsampling achieved by
increasing the SI remains the better method. The biased subsam-
pling based on RF ranking focuses on the most important spectral
regions but does not take the high correlation between adjacent
features into account. While increasing the SI still includes less
important wavenumbers, the redundancy of the information is
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of the VCD spectra sharing the core structure of (+)-a-pinene, Middle:
The absolute value of the median. Bottom: Random forest based ranking
score for spectra with a sampling interval of 8 cm~!.

significantly lower. When this redundancy is removed with PCA,
the CA still remains worse than obtained with unbiased subsam-

pling. PCA includes most information in the spectra by focusing
on the areas with the largest variance. However, as discussed in
section 3.4 these areas do not necessarily contain the information
most characteristic for the AC. Furthermore, this characteristic in-
formation will be encoded in a complex manner in the principal
components.
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Fig. 9 Comparison of subsampling techniques with Principal Component
Analysis and only using the highest random forest ranked wavenumbers,
for (a) random forest and (b) feedforward neural network. The different
train-validation split ratios are coloured as described in the legend.

3.6 Robustness and external validation of ML performance

Robustness of the results is an important issue. In the context
of the present paper, robustness reflects the stability of the per-
formance of ML methods with respect to changes in the spec-
tra used as input. It is therefore not the same as robustness
in the sense of peaks in a VCD spectrum being less or more
affected by a change in a (DFT) computational parameter,>1,52
To gauge the robustness, we computed all VCD spectra for the
entire database at other levels of theory, namely all remain-
ing combinations of the B3LYP and B3PW91 functionals, with
the 6-31G(d)/6-31++G(d,p)/ 6-311++G(2d,2p) basis sets, and
trained ML models within each combination of functional and ba-
sis set in the same way as elaborately described above with the
default functional and basis set. To retain a fair comparison of
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the performance, the hyperparameters of the ML models were
not re-optimised (using the hyperparameters in table S17), while
training the models on each combination of functional and basis
set separately. Note that due to this workflow the data excluded
from the training set becomes a test set, providing an even more
reliable estimate of the performance.

The resulting similar performances (see section Gt and HfY)
demonstrate that using a different level of theory to generate
input spectra has no significant influence on the ability of RF or
FNN to establish the AC. Despite the similar performance, the
ML models themselves are not internally the same. The models
extract AC related information in a different manner for the
different levels of theory (illustrated in section I} and J¥). So,
it is not due to a lack of influence of the functional and basis
set that these ML methods perform equally well, but rather due
to the robustness of the ML approach presented in this paper.

4 Conclusions

The value of Machine Learning (ML) methods for assigning
the Absolute Configuration (AC) based on Vibrational Circular
Dichroism (VCD) spectra has been demonstrated using a dataset
of substituted a-pinene structure spectra. Random Forest (RF)
and Feedforward Neural Networks (FNN) have proven to be the
most performant among various ML methods for conducting the
AC determination. At its best, a predictive accuracy up to 0.940
and 0.995 can be reached with RF and a shallow FNN, respec-
tively. In stark contrast to the black box nature of FNN, the RF
model allows the extraction of the spectral areas important for AC
determination. Furthermore, the quality of AC determination re-
mained unchanged, as long as the spectral sampling interval was
comparable to or smaller than the width of the bands. Setting
the sampling interval to a value comparable to the bandwidth,
so-called subsampling, also proved to be the best dimensional-
ity reduction method, outperforming PCA or methods exploiting
supervised ranking. All conclusions made were validated by ex-
ternal validation.

This contribution emphasises the yet untapped potential of ML
methods and deep learning in VCD spectroscopic application ar-
eas, as well as the added value that the creation of large exper-
imental VCD databases in tandem with ML methods can provide
in the future. Most importantly, once more databases are estab-
lished, it becomes possible to speed up the AC determinations of
particular molecular classes by not having to tackle every single
compound in a case-by-case manner.
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A 3D Principal Component Analysis on VCD spectra
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Fig. S1 Comparison of the enantiomers’ PCA transformed spectra, from top to bottom B3LYP/6-31G(d), B3PW91/6-31G(d), B3LYP/6-31++G(d,p),

PC1

PC3

PC1

PC3

pPC2

PC2

PC1

PC1

pPC2

PC1

PC1

B3PW91/6-31++G(d,p), B3LYP/6-311++G(2d,2p), B3PW91/6-311++G(2d,2p).

PC2



B Hyperparameters of the optimised models

LogReg | 1.2 regularisation, C 1000
NB | N.A.
SVM | Linear Kernel, tolerance 0.001, C 0.1
kNN | Neighbours 3, weighted Manhattan distance
RF | Trees 200, max tree depth 20
FNN | Hidden layers 2, neurons 100 and 20 respectively, optimiser Adam, L2
regularisation alpha 0.001, maximal iterations 500

Table S1 Optimised hyperparameter for the supervised machine learning models.

C Logistic regression weights for weak & strong regularisation
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Fig. S2 Influence of regularisation strength and method for logistic regression on the classification accuracy and the coefficients.



D Influence of database imbalance w.r.t substitutional populations

At this stage, it is interesting to see to what extent the predictive power is dependent on the exact substituents. The misclassified
molecules of 10 separate RF training cycles using the same training method as before (9:1 split, 8 cm~! sampling interval) were
identified and the average misclassification for every substituent at every position was determined. This procedure was repeated for
FNN (9:1 split, 8 cm~! step size), but with 100 separate training cycles instead, in order to guarantee the values’ statistical significance
(as the misclassification is about 10 times smaller than that of RF). Through comparison of these misclassifications, depicted in Figure
S3, a noticeable difference in predictability is manifested for the different substituents and positions; the general trend appears similar
for both RF and FNN, which can be attributed to the difficult non-characteristic influences these substitutions have on the VCD spectrum
and structural underrepresentation of certain groups/combinations in the dataset (depicted in Figure 2). However, it remains difficult
to clearly reveal the extent to which one dominates over the other.
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Fig. S3 Relative misclassification of the spectra for a certain substituent at each position 1-6 separately for feedforward neural network(top) and
fandom forest(bottom).



E Influence of starting point on Classification Accuracy for 24 cm™!

(B3PW091/6-31++G(d,p))

sampling interval

A different starting point or SI can lead to exclusion of a wavenumber characteristic for the AC. The drop in accuracy observed from
an SI of 24 cm™ 1 could be caused by missing a specific wavenumber which was present in the spectra with an SI of 8 cm™ 1, instead
of a loss in information. We investigated this by training and evaluating on spectra of SI 24 cm™ | with three different starting point
separately, after which their performances were compared to those obtained for SIs of 16 cm~! and 32 em~!. As can be observed in
Figure S4, the CA does depend on the exact starting point. However, the influence of changing the SIto 16 ecm™! or 32 em~! still
remains larger than the starting point.
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(b) Forward neural network
Fig. S4 Influence of starting point (SP) on the classification accuracy for the 24 cm~! sampling interval for (a) random forest and (b) feedforward
neural network. Starting point A, B and C are 800, 808 and 816 cm™1 respectively. The different train-validation split ratios are coloured as described
in the legend.



F Classification Accuracy for spectra with bandwidth of 15 cm™!
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Fig. S5 Classification accuracy of the spectra with bandwidth 15 cm~!, for (a) random forest and (b) feedforward neural network. The different
train-validation split ratios are coloured as described in the legend.



1

G External validation of all ML models with other functional/basis set for 0.5 cm™' sampling

interval

In order to evaluate the stability the performance of the different ML models originally considered are with regards to the choice of
functional and basis set, the mean CA and corresponding standard deviation over the different levels of theory are illustrated in Figure
S6. We observe that the performance of LogReg, NB and, in particular, SVM is noticeably dependant on the level of theory, even when
the a large majority of the data is provided for training.
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Fig. S6 Mean Classification accuracy of the spectra for the different ML models over all combinations of the B3LYP and B3PW091 functionals, with
the 6-31G(d)6-31++G(d,p)/ 6-311++G(2d,2p) basis sets. The different data split ratios are coloured as described in the legend.



H External validation of performance for RF and FNN with other functional/basis set

To investigate to which degree the choice in functional and basis set will impact the performance of both RF and FNN, each model
(with the same hyperparameters as described in Table S1) is trained on the spectra of the different levels of theory separately. This
procedure is repeated for all the different SIs and data splits. Their mean performance and corresponding standard deviation over the
six different levels of theory are determined and illustrated in Figure S7. As long as the SI remains similar or smaller than the FWHM
and the majority of the data is provided for training, the standard deviation is negligible. As an example, the standard deviations for
an SI of 8 em~! and a data split of 9:1, are 0.003 and 0.0004 for RF and FNN respectively. For an SI value of 24 cm~! and 32 cm~!,
the standard deviation clearly increases, which strengthens our suggestion to keep the SI value similar to the FWHM. The standard
deviation also increases when a smaller number of spectra is present in the training set. This is likely caused by the smaller reliability
of the CA values the individual levels of theory, as less training data with the same model complexity allows for more overfitting.
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Fig. S7 Mean Classification accuracy of the spectra for (a) random forest and (b) feedforward neural network over all combinations of the B3LYP
and B3PWO1 functionals, with the 6-31G(d)6-31++4G(d,p)/ 6-311++G(2d,2p) basis sets.



| Feature ranking for RF trained on various functional/basis set combinations

The question arises whether the similar performances discussed in section H and G are due to the robustness of the ML methods or the
ML models themselves are identical. In this section, the workflow described in section 3.4 is repeated for the aforementioned remaining
combinations of functional and basis set. The resulting ranking scores of the spectral features (depicted in figure S8) do differ for the
different levels of theory, even when accounting for the horizontal shift of the vibrations’ frequencies. Hence, the RF models extract AC
related information in a different manner.
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Fig. S8 Random forest ranking score of the spectral features for the prediction of the chirality of the compounds for the different sampling intervals
and combinations of functional and basis set. From top to bottom the sampling interval equals 0.5, 4, 8, 16, 24, 32 cm~!.



J  Performance and structure of shallow decision trees trained on various functional/basis set

To further exemplify the influence of the level of theory on how ML models extract AC related information from the spectra, shallow
decision trees (depth 2) were trained on all spectra (SI 8 cm~!) for a specific level of theory. As illustrated in figure S9, the criteria
(i.e. wavenumber and corresponding intensity) used for the criterion in each decision node vary, especially so for the second layer of

decision nodes.
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Fig. S9 Shallow decision trees trained on VCD spectra (SI 8 cm™~!) of different levels of theory as denoted in the figure. The nodes are coloured
according to their purity, with a blue-white-red gradient, with the dominant chirality class present in each node denoted as 1 ((+)-a-pinene) or 2

((-)-a-pinene).

intensity criterion used in each decision node.

For each node the absolute and relative population of the dominant class is given, along with the corresponding wavenumber and



