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The integrated on-demand bus routing problem

Lissa Melis, Michell Queiroz, Kenneth Sörensen

August 2021

Abstract

In this work we analyse the performance of integrating a large-scale on-demand bus system with a fixed line public
transport network in an urban context. Given are a high-speed metro network, a set of real-time requests, a set of bus
station locations and a fleet of fixed capacity minibuses. Requests have a set of possible departure/arrival1 bus stations
within walking distance of the actual departure/arrival location and have to be served within a certain time window.
The aim is to simultaneously (1) decide on the trip type for each passenger (only bus, metro or mixed), (2) route
the on-demand buses, (3) assign each passenger to a departure and arrival bus station (bus station assignment), and
(4) in the case of a metro-leg in the trip, decide the assigned transfer station(s) and used metro lines (transfer station
assignment). We call this problem the integrated on-demand bus routing problem. After presenting a mathematical
model, we propose a quick and scalable insertion-based heuristic to solve the problem.

The results found by the heuristic are further used to compare the performance of an integrated system, to a
system that only uses on-demand buses. It is concluded that the integrated system always performs better regarding
the service rate or number of served requests. Depending on the speed and layout of the metro network, also the
average user ride time per passenger improves by the integration.

1 Introduction
Considerable high travel times and accessibility issues, are some of the reasons for discontent with the current opera-
tion of traditional public transportation. Consequently, people are increasingly drawn to use private cars, which provide
more convenience and flexibility. The rise in number of vehicles in the streets inevitably leads to many negative ef-
fects, such as traffic congestion and increased emissions. Integrated transit systems, which include traditional, fixed
route public transportation (FPT) and demand responsive transit (DRT), hold the potential to address these problems
(Mourad et al., 2019). Consisting of a set of predefined fixed routes and schedules, FPT trips usually are performed
by (trolley)buses, trams, trains and subways. In contrast, DRT adapts its routes and schedules according to bookings,
i.e., requests are sent by users and are typically served by cars or minibuses.

DRT services, especially services with zero or low ride-sharing levels, e.g., Uber (Uber, 2019), have higher op-
erating costs, take excessive road space, and increase emissions. Envisioning to diminish these negative impacts, the
on-demand bus service emerged. Bus routes, instead of being pre-specified, would operate under the passengers’ de-
mands. An on-demand bus service aggregates similar travel requests in space and time by allowing ride-sharing on
a larger scale. And, as more people decide to use the system instead of their private cars, traffic congestion is likely
to be reduced. If provided in large scale, such system can also lead to enhance the level of service provided while
decreasing costs to the passenger (Archetti et al., 2018a).

The optimization problem related to an on-demand bus service is firstly introduced by (Melis and Sörensen, 2020,
2021), and called the on-demand bus routing problem (ODBRP). Given are a fleet of fixed capacity buses, a network
with a set of bus stations2 and travel times between them, along with a collection of transportation requests. In order
for these requests to be fulfilled, each passenger must be assigned to a departure and arrival bus station within walking
distance, while the routes of the buses must respect each request’s time window, delineated by an earliest departure
and latest arrival time. By assigning stations to requests (called bus station assignment), instead of directly guiding

1We will use the terms origin and departure, as well as the terms destination and arrival interchangeably.
2The term ”bus station” is referred to as the physical location where a bus stops and the term ”bus stop” as the buses’ activity of stopping. A bus

station is not necessarily a permanent physical shelter, but can also be simple pile or a (virtually) assigned place on the streets.
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passengers to the nearest station, passenger demand can be pooled even more and the flexibility to do the routing of the
on-demand buses rises. The objective is to minimize the total user ride time (URT). Beyond introducing the problem,
the authors also present a large neighborhood search heuristic with embedded local search to solve diverse problem
instances. In addition, the ODBRP is compared with the use of FPT and it is found that URT’s can be decreased
considerably by using the on-demand buses. In later work, the authors investigate the cost of allowing real-time
requests by introducing the dynamic ODBRP (Melis and Sörensen, 2021).

The ODBRP is intended to be conceived in an urban, high-demand, environment. Urban mobility is the context
where most of transportation challenges are rising due to broad and dispersed demand and unpredictable movement
patterns. Cities are experiencing a phenomenon of growth in overall population, even though the population density
is decreasing (Meijers and Burger, 2010). This in turn motivates the design of new systems to serve this diffused
population and enhance urban mobility, such as the one presented in this paper. Accordingly, in this paper we study
the operational and performance aspects of the implementation of a system that consists of integrating an on-demand
bus (ODB) service with a fixed route public transport system (FPT). The FPT network is presumed to be a high-
frequency network, e.g. an underground metro network. The ODB service is operated by a set of fixed capacity
minibuses. We refer to the studied problem as the Integrated On-Demand Bus Routing Problem (I-ODBRP).

Users send a transportation request informing their departure and arrival locations. A time window consisting of
an earliest departure time and a latest arrival time is also specified. The system responds to the user with an itinerary
as a proposal that fits the time window constraints. Both in the ODBRP and the I-ODBRP, requests can be static or
dynamic. In the former, all requests are known beforehand, while in the latter, requests are continuously presented
during the course of the day, and vehicle routes are adjusted in real-time. In this paper, requests are dynamic and
presumed to be sent just-in-time, as this resembles reality the most. We solve the problem deterministically, and leave
the incorporation of future demand in the scheduling process for future research.

In the I-ODBRP on-demand buses (ODB) are combined with a fixed, high-frequency metro network (FPT). Con-
sequently we assume five possible trip types which are explained below.

(a) ODB: The trip is composed of a single leg carried out by an on-demand bus. Passengers walk towards the
assigned departure station where they board the on-demand bus and travel to the assigned arrival station. From
here they walk to their destination location.

(b) ODB + FPT: The trip is composed of two legs. The first is carried out by an on-demand bus, the second by
metro. Passengers walk towards the assigned departure station where they board the on-demand bus. They get
of the bus at the assigned transfer station3 and board a vehicle that follows the designated fixed route. They
travel to the assigned arrival bus station. From here they walk to their destination location.

(c) FPT + ODB: The trip is composed of two legs. The first is carried out by metro, the second and final by an
on-demand bus. Passengers walk towards the assigned departure metro station, where they board a vehicle that
follows the designated fixed route. Passengers travel to the assigned transfer station and board the on-demand
bus to travel to the assigned arrival metro station. From here they walk to their destination location.

(d) ODB + FPT + ODB: The trip is composed of three legs. The first is carried out by an on-demand bus, the
second by metro, and the third by another on-demand bus. Passengers walk towards the assigned departure
station where they board the on-demand bus. Once at the assigned transfer station, passengers board a vehicle
that follows the designated fixed route. Once at the second transfer station, passengers board another on-demand
bus and travel to the assigned arrival station. From here they walk to their destination location. Throughout the
paper we will refer to the two ODB-legs as leg 1 and leg 3, leg 2 is the FPT-leg.

(e) FPT: The trip is composed of a single leg carried out by fixed route public transport. Passengers walk towards
the assigned departure metro station, where they board a vehicle that follows the designated fixed route and
travels to the assigned arrival metro station. From here they walk to their destination location.

Note that when the itinerary has a FPT-leg, it is possible for passengers to have to switch lines within the metro
network to reach their assigned transfer or destination station. These transfers within the metro network are presumed
to be highly efficient and unlimited in number.

3The term ”transfer station” refers to stations where passengers switch vehicle type: from ODB to metro, or vice versa.
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The algorithm has four decisions to make: (i) Decide on the trip type for each passenger, (ii) Routing of the
on-demand buses , (iii) Assigning each passenger to a departure and arrival bus station within walking distance of
their actual departure and arrival location (bus station assignment), (iv) In the case of a FPT leg in the trip, decide the
assigned transfer station(s) and used metro lines (transfer station assignment).

The objective of the I-ODBRP is the same as for the ODBRP, we minimize the total user ride time. However,
instead of only considering the time passengers spend on the buses, the total user ride time now consists of the time
between the first pick up at an assigned pick up station and the last drop-off at an assigned drop-off station. The first
pick up and last drop-off can be by bus or by metro depending on the trip type. Nevertheless, other objective functions
are possible to measure performance, such as profit-related (e.g. minimize the total distance traveled by the buses)
and completeness-related ones (e.g. maximize the number of served passengers). We opt to minimize the total URT
aiming to improve the level of service. This is a rational option to attract more users to the system, which can have a
meaningful effect on its profitability.

Decisions (ii) and (iii) are introduced in Melis and Sörensen (2020, 2021) as part of the ODBRP, while (i) and
(iv) are specific for the I-ODBRP. Decision (i) refers to the different possible trip types explained before. Decision
(iv) is an extension of the bus station assignment procedure of decision (iii). Bus station assignment is still supported
by the fact that in cities, because of safety reasons, a bus cannot stop anywhere. Buses have higher capacities than
vehicles utilized for most ride-sourcing systems. Therefore, buses should stop only at signaled bus stations. Melis and
Sörensen (2020, 2021) proof that bus station assignment decreases the total URT considerably and makes it possible
to serve more requests with a given fleet size. Therefore, in the I-ODBRP, bus station assignment is expanded to the
fixed transport legs as well and called transfer station assignment. This involves that the operator will also assign
the transfer stations for the fixed leg journey, if there is any. This adds even more flexibility to the scheduling of the
requests, but also makes the problem characteristics more complex compared to the non-integrated ODBRP.

Figure 1 illustrates the increase in solution possibilities when going from the ODBRP to the I-ODBRP. Figure 1a
shows two passenger requests (A and B) scheduled according to the ODBRP, by only using one on-demand bus.
Figure 1b shows the same passenger requests, however, the on-demand bus can be integrated with the fixed metro line
shown in the figure. Passenger A is consequently assigned a multi-leg trip consisting of a FPT (indicated by the red
arrow) and ODB leg. The itinerary of passenger B remains the same in the example, however because the work load
of the on-demand buses decreases, the time schedule could be adapted. By considering multi-leg trips, instead of only
considering direct rides by on-demand bus, the total user ride time can be further decreased.

The remainder of this paper is organized as follows. Section 2 presents a literature review on the topic of combining
demand responsive transit and fixed routes. The I-ODBRP is formally introduced in Section 3, followed by a mixed
integer programming (MIP) formulation. To the best of our knowledge, this is the first time this problem is tackled in
the literature. In Section 4, we propose a heuristic approach based on greedy insertion and efficient on-demand vehicle
and fixed leg assignment to obtain solutions of real size problem instances. Section 5 analyses different aspects of
the proposed algorithm. Section 6 investigates the performance of an integrated on-demand bus system by comparing
such system to a system that uses only on-demand buses. Lastly, we present some conclusions and future research in
Section 7.

2 Literature review and research gap
From a modeling perspective the I-ODBRP proposed in this paper is an extension of the ODBRP, which is a com-
bination of the dial-a-ride problem (DARP), the School Bus Routing Problem (SBRP) and the Pick-up and Delivery
Problem with Time Windows (PDPTW). The DARP is most closely related to the ODBRP, but differs in terms of the
extra constraint on the maximum ride time, the two pairs of time windows (both on the pick-up and the delivery),
and mostly the objective. In addition, it is a door-to-door service that does not use bus stations or passenger pool-
ing through bus station assignment and it generally used in rural, low-demand areas. The static DARP that combines
DAR-vehicles with fixed public transport is called the Bimodal or Integrated DARP and is solved by Liaw et al. (1996),
Aldaihani and Dessouky (2003), Häll et al. (2009), Posada et al. (2017), Posada and Häll (2020) and Molenbruch et al.
(2020). Liaw et al. (1996) show an increase of 10% of requests that can be served along with a decrease of 10% in
the number of vehicles required compared to when no fixed route buses are considered for instances up to 85 requests.
Aldaihani and Dessouky (2003) have shown that such integration reduces the vehicles’ traveled distances, meanwhile
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ODB station
ODB stop

X Origin of passenger X
X Destination of passenger X

Assigned bus stations
Walk-able stations
ODB route
Fixed line
FPT-leg of passenger A

T=10:00

T=10:10

T=10:30

A ED=10:00

B ED=10:05

A+B LA=10:45

(a) Non-integrated ODBRP - Example solution

T=10:15

T=10:05

T=10:25

A ED=10:00

B ED=10:05

A+B LA=10:45

(b) Integrated ODBRP - Example solution

Figure 1: ODBRP versus I-ODBRP: more routing opportunities

customers riding with combined trips experience an increase of travel time of about 5%. Both authors use a simple
heuristic algorithm. Häll et al. (2009) and Posada et al. (2017) present a mathematical model for the problem. While
the first considers the frequency of the FPT to be high, the second takes into account a timetable of the fixed lines.
Posada and Häll (2020) propose a meta-heuristic based on Adaptive Large Neighborhood Search (ALNS), and a case
study with real-world data of a rural area that shows a reduction of 16% of distance driven by the DAR-vehicles. The
solution approach of Molenbruch et al. (2020) consists of an exact method incorporated into a LNS to synchronize
the routing of the DAR with FPT. Experiments display operational savings for the DAR providers when integration
with FPT is considered. Another ALNS-based heuristic for the DARP with Transfers is proposed in Masson et al.
(2014). In this problem passengers can transfer from one DAR-vehicle to another. According to the computational
experiments carried by the authors on real life instances, the introduction of transfers lead to savings around 8%.

In contrast to the DARP, adopting a door-to-door service, the SBRP uses stations, and in this problem bus station
assignment was initially introduced (Schittekat et al., 2013). However, it adopts a many-to-one instead of many-to-
many setting. Bögl et al. (2015) study the SBRP with Transfers. It differs from the traditional SBRP in the sense
that students might change buses during transportation from their home to school. With the objective of minimizing
total operating costs, the authors present a mathematical model and develop a heuristic algorithm. Results show that
allowing transfers significantly reduces total operating costs while user ride times are equivalent to solutions without
transfers.

The PDPTW, is also similar to the ODBRP, but handles freight requests. Transporting goods instead of people
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brings less complexities regarding the quality of service, e.g., the time spend on the vehicle. Ghilas et al. (2016)
propose an ALNS heuristic for the PDPTW and Scheduled Lines (PDPTW-SL). For the PDPTW-SL, the goal is to
serve freight requests by scheduling a set of vehicles with the possibility of combining part of the journey with a fixed
scheduled public transportation line. The authors compare solutions with the regular PDPTW, and conclude that the
PDPTW-SL leads to significant cost savings and fewer CO2-emissions.

The problem of an integrated public4 transport system, i.e., a combination of ride-sourcing and fixed routes was
firstly introduced by Wilson et al. (1976) and Potter (1976). More recently an investigation of integrated transit service
in a low demand area is performed in Hickman and Blume (2001). The authors use limited geographical circles
around the origin and arrival of a request to determine whether or not a fixed transport leg is a possibility. The authors
take into account the passenger’s level of service constraints, such as maximum travel time and number of transfers
and handle requests in a dynamic way. The integrated transit system saves around 15% of operating costs. Edwards
et al. (2011) also integrate traditional transit with demand-responsive vehicles by introducing the Network-Inspired
Transportation System (NITS). The authors route passengers analogically to routing packets in a telecommunications
network. The performance of the NITS is evaluated with simulation studies in Edwards et al. (2012), which concludes
that the system produce better results in low density urban areas.

Mahéo et al. (2019) presents the BusPlus, a project that consists of combining high-frequency bus routes between
key hubs with shuttles that transports passengers from their origin to the closest hub and also take them from the
last bus stop to their destination. The authors focus on designing this multi-modal network in off-peak hours, by
starting from a MIP formulation, then present a Benders decomposition approach. According to the results, such
model may have an impact in decreasing the transit time by a factor of two. Extensions of the study presented in
Mahéo et al. (2019) are performed by Auad and Van Hentenryck (2021); Basciftci and Van Hentenryck (2021); Auad
et al. (2021), however solution methods remain based on the MIP, without using heuristics. The authors intoduce a
new classification: On-Demand Multi-modal Transit System (ODMTS). The routes of the shuttles involve three types:
direct non-ride-sharing type, drop-off or pick-up type. In the last a shuttle picks up several passengers before dropping
them off at a common transport hub, while in the second, a shuttle drops off several passengers after picking them up
at a common transport hub. Contributions of these papers consist of the inclusion of latent demand, i.e., new riders
adopting the system, ride-sharing in the shuttle rides, and the examination of the system’s resiliency during a pandemic
scenario. Auad and Van Hentenryck (2021) demonstrates that ride-sharing for ODMTS has the potential of reducing
costs by about 26% with less than 5% of increase in travel times. They also run the model for a 12-hour period, which
included both peak and off-peak hours. Meanwhile, results presented by Basciftci and Van Hentenryck (2021) show
high adoption rates and shorter trip duration compared to the existing transit system. Moreover, Auad et al. (2021)
show the flexibility of ODMTS, as it responds well in terms of cost, convenience, and accessibility for the ample range
of scenarios during a pandemic.

Steiner and Irnich (2020) combine fixed bus lines with demand-responsive transport for first/last leg journeys. The
authors decide on the passenger routes, the existence of line segments for the fixed route network, on which areas of
the city the demand-responsive system should cover, and how the two modes interact via transfer points. The authors
test their model on instances generated with real-world data in a medium-sized city. They solve the problem using
a branch-and-price algorithm and an advanced enumeration based approach. Narayan et al. (2020) develop a multi-
modal route choice and assignment model to study the combination of fixed route public transport and on-demand
services. The authors show that demand-responsive system covers less than 30% of the trip length, and is mostly used
to serve as access to the FPT. The combined use of transport modes has a significant impact on reducing the waiting
time of passengers in comparison when the modes are used separately. Also Zhu et al. (2020) propose a network
model in which demand-responsive transport works as both feeder and competitive service to public transit, but they
focus more on the fare ratios between modes.

Both Shen et al. (2018) and Salazar et al. (2018) perform a simulation study of a system that integrates Automated
Vehicles (AV) and public transportation. The first replace low demand bus routes with shared AV. The second focuses
on a pricing and tolling scheme that allows to achieve a social optimum under the assumption of a perfect market.
Both authors report improved service quality, less emissions and costs, but they also mention the need for a real-time

4In this section we focus on public transport services that operate with professional drivers or fully autonomous. Ride-sharing literature using
private vehicles, where typically a driver is matched with one or two riders who have a similar journeys, is not included in this review. Examples of
this type of ride-sharing integrated with public transport can be found in Stiglic et al. (2018) and Kumar and Khani (2021).
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operational algorithm to optimize efficiency.
To the best of our knowledge, this is the first time the ODBRP is integrated with fixed route public transport,

making it the first time the I-OBDRP is studied in the literature. The main feature that differentiates the I-ODBRP
is bus station assignment, which we will adopt both on the on-demand and fixed transport legs (then called transfer
station assignment), making it possible to solve the problem in a high-demand urban environment. Finally, contrasting
several previous integrated services that measured their performance based on operational costs, the I-ODBRP assesses
the efficiency of the system regarding level of service, i.e., travel times. Especially when using autonomous electrical
vehicles, the operating costs decrease immensely. The main goal is to alter the travel behaviour of people that use their
private cars to public transport, which is more sustainable.

3 Problem formulation and mathematical model
Although a heuristic approach is used to perform the computational study and obtain solutions to realistic instances,
we introduce a mixed integer programming (MIP) formulation to formally define the problem. The MIP formulation
for the I-ODBRP is an extension of the model introduced in Melis and Sörensen (2020) for the ODBRP. In this section
the problem is assumed to be static, meaning that all requests are known in advance. Further, the problem is solved
and investigated in dynamic setting. All used notation is summarized in Table 1.

Let P be the set of transportation requests announced by passengers to the system. A transportation request p ∈ P
is characterized by an origin (op), a destination (dp), as well as a time window, consisting of an earliest departure time
(eu

p) and a latest arrival time (lo
p). The set of origins and destinations of the users are denoted as O =

⋃
p∈P op and

D =
⋃

p∈P dp, respectively. To be feasible, a trip for request p ∈ P must start after eu
p and be completed before lo

p. The
maximum walking time (up) represents the passenger’s willingness to walk, but is not included in the before-mentioned
time window.

The problem is formulated over a network G = (V,A) with a set V of nodes and a set A of arcs. V consists of
four sets: bus stations S; stations used by fixed route public transport F ; origins O; and destinations D. Accordingly,
V = S∪F∪O∪D. The network G is then partitioned in three subnetworks. First, consider a network Gs = (S,As) with
a set of bus stations S⊂V and set of arcs As ⊂ A connecting them. Associated with each arc (i, j) ∈ As is an estimated
travel time τb

i j by bus. Furthermore, consider the fixed route public transport network G f = (F,A f ) with a set F ⊂V of
stations, along with a set of arcs A f ⊂ A connecting them. Each arc (i, j) ∈ A f holds the opportunity to travel within
the fixed route network between stations i and j with estimated travel time τ

f
i j. Finally, Gw = (V,Aw) contemplates a

network safe for the movement of passengers with a set V of nodes linked by arcs Aw ⊂ A indicating walkable paths.
An estimated travel time by walk τw

i j is associated with each arc (i, j) ∈ Aw. Table 1 summarizes the used notation.
The system integrates two services: an on-demand bus service (ODB) and fixed route public transport service

(FPT) or metro network. The different types of itineraries are described in Section 1. The ODB is composed by a fleet
B of homogeneous buses with fixed capacity C. The FPT has unlimited capacity and is operated in a high-frequency
manner, so we assume waiting times to be negligible. Transfers between ODB and FPT are assumed to occur at the
same metro station, i.e., walking time is zero5. However, in the model presented in this section, they are indexed as
different stations for generalization. If in future research walking between transfer stations would be included, the
same model can be applied. Transfers within the metro network are unlimited. We remark that the unlimited number
of transfers within the fixed route network is modeled according to the way variable zpi j is designed. Simply put, the
variable indicates the possibility to travel between stations i and j, independently if they are served by same line within
the fixed route network.

Let the route of bus b ∈ B consist of a set Nb = {n1,n2, ...,n|Nb|} where each position ni is filled with a bus station
s ∈ S representing its i-th stop. Bus routes are accordingly defined as a consecutive sequence of bus stops. Each bus
b∈ B has a maximum capacity C that should not be exceeded. This is modeled by the variable qnb, which indicates the
net number of passengers that are picked up or dropped off at the n−th stop of bus b. An example bus route is shown
in Fig. 2.

Let continuous variables ta
nb and td

nb represent, respectively, the arrival and departure time of bus b at its n−th stop.

5If the metro station is large, a walking time of zero is not realistic. However, an average walking time within the metro station can be included
in the travel time matrix if this station is the starting or ending-point of the metro-trip of a passenger.

6



Table 1: Summary of used notation.

Notation Definition

Parameters

B The fleet of buses
C The capacity of a bus
P The set of requests
S The set of bus stations
F The set of metro stations
O The set of all origin nodes
D The set of all destination nodes
V S∪F ∪O∪D
op The origin node of passenger p
dp The destination node of passenger p
A The set of all arcs connecting nodes in V
As The set of arcs connecting nodes in S
A f The set of arcs connecting nodes in F
Aw The set of arcs that represent walkable paths between nodes in V
eu

p The earliest departure time for passenger p
lo
p The latest arrival time for passenger p

τb
i j The travel time from node i to j by bus

τ
f

i j The travel time from node i to j by fixed route
τw

i j The walking time from node i to j
up The maximum walking time for passenger p
Nb Positions in the representation of a bus route with |Nb| the number of positions available in bus b

Discrete decision variables

xsnb 1 if the n-th stop of bus b is bus station s, 0 otherwise
yu

pnb 1 if passenger p is picked up at the n-th stop of bus b, 0 otherwise
yo

pnb 1 if passenger p is dropped off at the n-th stop of bus b, 0 otherwise
vpbi j 1 if passenger p travels with bus b from station i to j, 0 otherwise
zpi j 1 if passenger p uses fixed route from station i to station j, 0 otherwise
wpi j 1 if passenger p walks/transfers from node/station i to j, 0 otherwise
qnb Net number of passengers picked up (or dropped off) at the n-th stop of bus b

Continuous decision variables

ta
nb The arrival time of bus b at its n-th stop

td
nb The departure time of bus b at its n-th stop
f ipi The time at which passenger p is picked up or dropped off at station i by a fixed vehicle
dep The time at which passenger p leaves the assigned departure station
arp The time at which passenger p arrives at the assigned arrival station
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Moreover, f ipi express the time at which passenger p is picked up or dropped off at station i by a vehicle following a
fixed route. Finally, to ensure time window consistency for each request, variables dep and arp are introduced, which
represent the times at which passenger p leaves from the assigned departure station and arrives at the assigned arrival
station, respectively.

Finally, consider the discrete decision variables shown in Table 1 which represent bus route and passenger trip
solutions.

Bus Stop n1
Station s1

Pick-up of passenger 1
and 2

qnb = 2

1

Bus stop n2
Station s2

Pick-up of passenger 3
Drop-off of passenger 1

qnb = 0

2

Bus stop n3
Station s3

Drop-off of passenger 3
qnb = -1

3

Bus stop n4
Station s4

Drop-off of passenger 2
qnb = -1

4 5

Figure 2: Example bus route in the ODBRP

The I-ODBRP can be summarized as an iterative interaction between passenger requests and the transit agency
responsible for the system, where optimization procedures are executed to appropriately accommodate those requests.
In a real-world scenario, it would remain the choice for the users to decide whether to accept the trip proposal.
However, this is not modeled in the present study.

The I-ODBRP with the objective of minimizing the total user ride time can be formulated as follows:

URT = min ∑
p∈P

arp−dep (1)

∑
s∈S

xsnb ≤ 1, ∀ b ∈ B,n ∈ Nb (2)

∑
s∈S

xsnb− ∑
s′∈S

xs′(n+1)b ≥ 0, ∀ b ∈ B,n ∈ Nb (3)

∑
n∈Nb

(n · yu
pnb−n · yo

pnb)≤ 0, ∀ p ∈ P,b ∈ B (4)

∑
n∈Nb

(yu
pnb− yo

pnb) = 0, ∀ p ∈ P,b ∈ B (5)

∑
n∈Nb

yu
pnb ≤ 1, ∀ p ∈ P,b ∈ B (6)

∑
n∈Nb

yo
pnb ≤ 1, ∀ p ∈ P,b ∈ B (7)

M ∑
s∈S

xsnb− ∑
p∈P

(yu
pnb + yo

pnb)≥ 0, ∀ b ∈ B,n ∈ Nb (8)

∑
s∈S

xsnb− ∑
p∈P

(yu
pnb + yo

pnb)≤ 0, ∀ b ∈ B,n ∈ Nb (9)

∑
(i, j)∈As

vpbi j− ∑
n∈Nb

yu
pnb = 0, ∀ p ∈ P,b ∈ B (10)

∑
(i, j)∈As

vpbi j− ∑
n∈Nb

yo
pnb = 0, ∀ p ∈ P,b ∈ B (11)

∑
(i, j)∈As

vpbi j + yu
pnb− xinb ≤ 1, ∀ p ∈ P, i ∈ S,b ∈ B,n ∈ Nb (12)

∑
(i, j)∈As

vpbi j + yo
pnb− x jnb ≤ 1, ∀ p ∈ P, j ∈ S,b ∈ B,n ∈ Nb (13)
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xsnb + yu
pnb− ∑

l∈F∪op

wpls ≤ 1, ∀ p ∈ P,s ∈ S,b ∈ B,n ∈ Nb (14)

xsnb + yo
pnb− ∑

l∈F∪dp

wpsl ≤ 1, ∀ p ∈ P,s ∈ S,b ∈ B,n ∈ Nb (15)

∑
n∈Nb

∑
b∈B

yu
pnb−∑

s∈S
∑

l∈F∪op

wpls = 0, ∀ p ∈ P (16)

∑
n∈Nb

∑
b∈B

yo
pnb−∑

s∈S
∑

l∈F∪dp

wpsl = 0, ∀ p ∈ P (17)

∑
b∈B

∑
(i, j)∈As

vpbi j− ∑
(l,i)∈Aw|l∈F∪op

wpli = 0, ∀ p ∈ P, i ∈ S (18)

∑
b∈B

∑
(i, j)∈As

vpbi j− ∑
( j,l)∈Aw|l∈F∪dp

wp jl = 0, ∀ p ∈ P, j ∈ S (19)

∑
(i, j)∈A f

zpi j− ∑
(h,i)∈Aw|h∈S∪op

wphi = 0, ∀ p ∈ P, i ∈ F (20)

∑
(i, j)∈A f

zpi j− ∑
( j,h)∈Aw|h∈S∪dp

wp jh = 0, ∀ p ∈ P, j ∈ F (21)

∑
j∈S∪F

wpop j = 1, ∀ p ∈ P (22)

∑
j∈S∪F

wp jdp = 1, ∀ p ∈ P (23)

∑
j∈S∪F

wpop j · τw
op j ≤ up, ∀ p ∈ P (24)

∑
j∈S∪F

wp jdp · τ
w
jdp
≤ up, ∀ p ∈ P (25)

τ
w
i j −M(1−wi j)≤ 0, ∀ p ∈ P, i ∈ S, j ∈ F (26)

τ
w
i j −M(1−wi j)≤ 0, ∀ p ∈ P, i ∈ F, j ∈ S (27)

∑
(i, j)∈Aw

wpi j ≤ 4, ∀ p ∈ P (28)

wpi j +wp jk ≤ 1, ∀ p ∈ P,(i, j),( j,k) ∈ Aw (29)

ta
(n+1)b− td

nb− τ
b
ss′ +(xsnb + xs′(n+1)b−2)(−M)≥ 0, ∀(s,s′) ∈ As,b ∈ B,n ∈ Nb (30)

f ip j ≥ f ipi + τ
f

i j−M(1− zpi j), ∀ p ∈ P,(i, j) ∈ A f (31)

f ip f ≥ ta
nb−M(1−wps f ), ∀ p ∈ P,s ∈ S, f ∈ F,b ∈ B,n ∈ Nb (32)

td
nb ≥ f ip f −M(1−wp f s), ∀ p ∈ P,s ∈ S, f ∈ F,b ∈ B,n ∈ Nb (33)

td
nb ≥ dep−M(1−wpops), ∀ p ∈ P,s ∈ S,b ∈ B,n ∈ Nb (34)

arp ≥ ta
nb−M(1−wpsdp), ∀ p ∈ P,s ∈ S,b ∈ B,n ∈ Nb (35)

f ip f ≥ dep−M(1−wpop f ), ∀ p ∈ P, f ∈ F (36)

arp ≥ f ip f −M(1−wp f dp), ∀ p ∈ P, f ∈ F (37)

dep− eu
p ≥ 0, ∀ p ∈ P (38)

arp− lo
p ≤ 0, ∀ p ∈ P (39)

arp−dep > 0, ∀ p ∈ P (40)
xsnb + xs(n+1)b ≤ 1, ∀s ∈ S,b ∈ B,n ∈ Nb (41)

∑
p∈P

(yu
pnb− yo

pnb)−qnb = 0, ∀ b ∈ B,n ∈ Nb (42)
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∑
n≥n′∈Nb

qn′b ≤C, ∀ b ∈ B,n ∈ Nb (43)

∑
b∈B

∑
n∈Nb

yu
pnb + ∑

(i, j)∈A f

zpi j ≥ 1, ∀p ∈ P (44)

xsnb ∈ {0,1}, ∀ s ∈ S,b ∈ B,n ∈ Nb (45)
yu

pnb,y
o
pnb ∈ {0,1}, ∀ p ∈ P,b ∈ B,n ∈ Nb (46)

vpbi j ∈ {0,1}, ∀ p ∈ P,b ∈ B,(i, j) ∈ As (47)
zpi j ∈ {0,1}, ∀ (i, j) ∈ A f (48)
wpi j ∈ {0,1}, ∀ p ∈ P,(i, j) ∈ Aw (49)

qnb, ta
nb, t

d
nb ∈ Z+, ∀ b ∈ B,n ∈ Nb (50)

f ipi ∈ Z+, ∀ p ∈ P, i ∈ F (51)
dep,arp ∈ Z+, ∀ p ∈ P (52)

The objective function (1) minimizes the total user ride time. Constraints (2) ensures that a bus can only stop at
one station at the same time. Constraints (3) make sure that the positions used in the bus route are used consecutively
and start at the first position. Constraints (4) ensure that a passenger is always dropped off after he/she is picked up.
Constraints (5) establish that both pick-up and drop-off events have to be carried out by the same bus. Constraints (6)
and (7) limit the number of times a bus can serve a passenger to one. Constraints (8) impose that no passenger can get
on or off a bus at position n, when a bus does not make a stop at position n, meanwhile constraints (9) ensure at least
one passenger gets on or off a bus when a stop is made. Constraints (10)-(11) make sure if a passenger travels with
a bus between two stations, he/she is picked up and dropped off exactly by that bus. Constraints (12)-(13) force that
when a passenger travels between i and j with bus b, he/she is picked up (dropped off) at the same position that b stops
at station i ( j). Constraints (14)-(21) guarantees connectivity in the route of the passenger by ensuring that when they
are dropped off they must transfer from such drop-off station to another node, and when they are picked up they must
transfer from a node towards the pick-up station. Constraints (22) and (23) establish that each passenger transfers once
from their origin to a station and from a station to their destination. Constraints (24)-(25) determine that walking from
origin to departure station and from arrival station to the destination can not exceed more than a pre-defined threshold.
Constraints (26)-(27) ensure that transfers occur at the same station, i.e., walking times are zero. Constraints (29)
prohibits the passenger to walk consecutively until reach its destination. Constraints (28) limit the number of transfers
between modes. Constraints (30) incorporate the time aspect of the ODBRP, in which if s is the n-th stop of the bus
and s′ is the (n+ 1)-th, then the time of arrival at station s′ should be greater or equal to the departure time at s plus
the travel time between stations s and s′. Constraints (31) ensure that if a passenger is picked up at FPT station i
that the drop-off time at station j is greater than or equal to the sum of pick-up time at i plus the travel time by FPT
between i and j. Constraints (32)-(37) guarantee travel time consistency between transfers. Constraints (38) ensure
that the route of the passenger will start after their earliest departure time, meanwhile constraints (39) establish that the
passenger reaches the arrival station before their latest arrival time. Constraints (41) forbid that the same bus station
is visited twice in a row. Constraints (42) and (43) are capacity constraints for the buses. Constraints (44) state that
every request is served. Constraints (45)-(52) ensure the non-negativity and integrality requirements of the variables.

Note that we deliberately removed walking times between transfer stations from the model, however, this could be
easily contemplated by removing constraints (26) and (27), as well as modifying constraints (32) and (33), after which
they become:

f ip f ≥ ta
nb + τ

w
s f −M(1−wps f ), ∀ p ∈ P,s ∈ S, f ∈ F,b ∈ B,n ∈ Nb (53)

td
nb ≥ f ip f + τ

w
f s−M(1−wp f s), ∀ p ∈ P,s ∈ S, f ∈ F,b ∈ B,n ∈ Nb (54)

Furthermore, we introduce the following variables, constants, and constraints to incorporate penalties for transfer-
ring within the fixed route network. Consider variable lp be a positive integer reporting the number of line transfers of
passenger p within the fixed route network. Let ηi j be a constant expressing the number of line transfers between sta-
tions i and j, which is precomputed by running a shortest path algorithm on a graph where edges represent a fixed line
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running between two stations (nodes). Each transfer within the fixed route network is then penalized with a constant
time denoted by θ . The new objective function and constraints are:

min ∑
p∈P

arp−dep + lp ·θ (55)

M(1− zpi j)+ lp ≥ ηi j, ∀p ∈ P,(i, j) ∈ A f (56)
lp ∈ Z+ ∀ p ∈ P (57)

The objective function (55) now minimizes total user ride time and penalties. Constraints (56) ensure that if
a passenger p utilizes the fixed route network, variable lp correctly informs how many transfers were performed
between i and j. Otherwise, lp is automatically set to 0 if the passenger does not ride with FPT, as the objective is
a minimization function. Nonnegativity and integrality are ensured by constraints (57). The rest of the model would
remain the same.

4 Efficient insertion-based heuristic for the I-ODBRP
As the (I-)ODBRP is NP-hard6, exact methods will not suffice to solve large-scale instances. In Section 3 we for-
mulated the mathematical model for the problem assuming all requests are known in advance. However in real-life,
requests will be coming in last-minute or just-in-time. Especially in this dynamic context, a fast system response is
necessary. The dynamic, non-integrated ODBRP is already introduced in Melis and Sörensen (2021). In their work,
requests are handled in real-time by using a LNS framework with embedded local search. However, in the I-ODBRP
even more solution possibilities are present (choice of trip-type, fixed line, transfer stations, on-demand buses, etc.).
To ensure fast response times, we focus in this section on a greedy insertion-based heuristic with efficient on-demand
vehicle and fixed line assignment procedures. By using insertion heuristics in a dynamic setting, the initially assigned
stations, on-demand bus and fixed line of a request cannot change after insertion, but the time predictions on departure
and arrival can still be delayed by adding new requests to the solution. Because heuristics for integrated on-demand
public transport are rather scarce (see Section 2), we looked into recent literature on non-integrated many-to-many
dynamic on-demand public transport, and found that both greedy insertion and greedy insertion combined with effi-
cient vehicle assignment are commonly used methods to schedule requests (see Table 2). Efficient vehicle assignment
procedures do not check every vehicle for request insertion, but rather select a smaller set of vehicles to try for inser-
tion based on a criterion, e.g., distance between vehicle and the origin location of a request. This method is efficient,
because vehicles that are most likely not able to serve a request within the given time constraints, are not tried for
insertion. Consequently the computation time is lower, compared to trying all vehicles.

Greedy insertion

Ronald et al. (2013), Ronald et al. (2015), Atasoy et al. (2015), Ikeda et al. (2015),
Archetti et al. (2018b), Bischoff et al. (2017), Narayan et al. (2017), Navidi et al.
(2018), Viergutz and Schmidt (2019)

Greedy insertion with efficient vehicle assigment

Tsubouchi et al. (2009) , Bertelle et al. (2009), Hyland and Mahmassani (2020), Jäger
et al. (2018), Ma et al. (2013), Van Engelen et al. (2018), Winter et al. (2018)

Table 2: Literature on many-to-many dynamic/online on-demand public transport using insertion based heuristics
(with efficient vehicle assignment)

In the I-ODBRP, when a new request needs to be scheduled, the request is first tried to be assigned a trip containing
at least one FPT-leg. The rationale behind this is that by directing passengers to use the metro network, there is less
pressure on the ODB service so that more passengers can be served. When both the origin and arrival location of

6This is because the I-ODBRP is an extension of the ODBRP, which is a combination of both the DARP, PDPTW and SBRP, which are all
NP-hard.
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the request are not in the proximity of a metro station, the trip type considered first would be ODB + FPT + ODB.
On one hand, the algorithm could check all bus stations for departure and arrival, all buses for insertion of the first
and last leg, all transfer stations for transferring from ODB to FPT and vice versa and all ways to go from the first
transfer station to the next by using the metro network. However checking all these insertion possibilities would be
too computationally expensive. In contrast, the algorithm could only check the closest bus stations for departure and
arrival, the closest buses and transfer stations. In the latter an ODB brings the passenger from the closest origin station
within walking distance to the nearest metro station, from which the passenger takes the metro to the metro station
closest to the destination. Here another ODB brings the passenger from the metro station to the closest arrival station
within walking distance of the actual arrival location of the passenger. This option will result in low computation
times, however, one limits the flexibility of the routing of the on-demand buses. The total URT will increase or the
service rate7 will decline. To merge the benefits of these two extreme possibilities, we introduce two procedures
for algorithm speed-up and two procedures for maintaining flexibility, depicted in Table 3, and further explained in
the following subsections. Because bus station assignment is already thoroughly explained and investigated in Melis
and Sörensen (2020, 2021), we will not elaborate on this measure in this section. After explaining the speed-up and
flexibility procedures Section 4.1 to Section 4.3, the overall algorithm is presented in Algorithm 1 in Section 4.4.

FPT-level ODB-level

Speed-up Efficient metro segment assignment Efficient on-demand bus assignment

Flexibility Transfer station assignment Bus station assignment

Table 3: Algorithm speed-up and flexibility measures

4.1 Speed-up - Metro segment assignment
The speed-up measure on the FPT-level is called efficient metro segment assignment. To explain our procedure we
first introduce the concept of a metro segment by using the star-shaped network of Fig. 3a. A metro segment is every
piece of the metro network starting and ending in a key station. The metro segments set L contains all possible metro
segments of the network. Sometimes multiple paths are possible to go from one key station to another. Considering all
possible paths would be unnecessary, as some paths will be sufficiently longer compared to the shortest possible path.
This is shown in Fig. 4a. The path shown in the figure, connecting the black colored key stations, will not be included
in the metro segments set of the network, because it is considerably longer than the shortest path. The cut-off value
used to determine which metro segments are too long is set at λ times the shortest metro segment for the star shaped
network. λ can of course be adapted to fit the network8. Two paths connecting the same two key stations, which are
almost equal in distance, are both kept in the metro segments set. An example is illustrated in Fig. 4b. As both paths
include different metro stations, both should be considered, because depending on the demand for transportation, one
or the other might be the better choice to minimize the total URT. Further, for metro segments connecting two key
stations which are both begin- or end-points, only the actual shortest path is added to the metro segments set. This can
be done because the other possible paths, which will include different metro stations, will be included in the metro
segments connecting the key stations in between. Lastly, a metro segment should have a minimum length. In this
paper the minimum length is set at 4 metro stations. When generating all metro segments using the above mentioned
criteria, in both directions, there are 289 possible metro segments for the star-shaped network. This indicates a strong
need for metro segment assignment to schedule each request.

As every request is first tried to be assigned a trip containing at least one FPT-leg, we need to generate for each
request p a set of possible metro segments, Lp ⊂ L. Each metro segment l ∈ Lp will consequently be considered to be
used for the FPT leg (line 2 in Algorithm 1). A metro segment is added to Lp when it meets three criteria. These three
criteria are based on direction, distance (or time) and accessibility. The criteria will justify the use of metro segments
instead of entire lines, next to the fact that by using metro segments unnecessary pieces of the metro network will
never be considered for insertion.

7The service rate is the number of served requests divided by the total number of requests.
8All additional notation introduced in Section 4 is summarized in Appendix A Table A1.
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(a) Star-shaped network: 7 direct lines (a circular line
around city centre, an horizontal and vertical line and 4
lines coming from the outer city to the corners of the city
centre)

(b) Cross shaped network: 2 direct lines (one horizontal
and one vertical line) (c) Single line network: 1 direct line (vertically)

Figure 3: Star-shaped, cross-shaped and single line network (Key stations are indicated as squares)

(a) Example of a metro segment that is eliminated from the
metro segments set

(b) Example of keeping two metro segments connecting the
same two key stations

Figure 4: Generating the metro segments set of the star-shaped network
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Direction The corner between the direction of the request and the direction of the metro segment is calculated by
using Cosines rule. This is also done by Tsubouchi et al. (2009) to assign requests to on-demand vehicles. When xp1
and yp1 (xp2 and yp2) are the x and y coordinates of the origin (arrival) of the request and xl1 and yl1 (xl2 and yl2) are
the x and y coordinates of the first (last) metro station of the metro segment, the formula to compute the corner (in
degrees) between request and metro segments is shown in Eq. (58). All metro segments where Cornerrl > εd , with εd
the the cut off corner (in degrees), are eliminated from Lp.

Cornerpl = arccos

(
(xp2− xp1)× (xl2− xl1)+(yp2− yp1)× (yl2− yl1)√

(xp2− xp1)2 +(yp2− yp1)2×
√

(xl2− xl1)2 +(yl2− yl1)2

)
× 180

π
(58)

Distance/time Even though the direction of the metro segment is the same as the direction of the request, the metro
segment can be situated in an entirely different area of the city. Therefore, more metro segments will be eliminated
from consideration based on a distance/time metric9. All metro segments where (τb

opso
pl
+ τb

apsa
pl
) > (τ f

so
pls

a
pl
× εt ), are

eliminated from Lp, with so
pl the closest metro station on metro segment l to the origin location of passenger p, sa

pl
the closest metro station on metro segment l to the arrival location of passenger p, and εt the threshold value which
is dependent on the instance. The direct driving time by bus from the origin location to so

pl is calculated and added
to the direct driving time by bus from the arrival location of the request to sa

pl . If this sum is larger than the time a
passenger would spend on the metro segment from so

pl to sa
pl times a threshold value, the metro segment is eliminated

from consideration. This way, the allowed travel time by bus from the metro segment is dependent on the amount of
time the passenger would spend on the metro line. If the passenger requests a long trip, a larger distance from the
metro segment is allowed compared to when the passengers demands a short trip.

Accessibility The last criterion is based on whether or not the metro segment is accessible for the passenger by
walking. If a passenger can walk to/from one (or some) metro station(s) for his origin and/or arrival, only the metro
segments containing at least one of these stations remain in Lp.

By applying these three criteria, only a few metro segments remain per request out of the entire set of 289 metro
segments for the star-shaped network. Lp is pre-processed for each origin-destination pair to reduce computation
time. One could argue that not all x and y coordinates located in a city can be pre-processed. This can be solved
by partitioning the city in blocks or areas and pre-process for these. However, for research purposes, we pre-process
based on the actual x and y coordinates of requests.

4.2 Flexibility - Transfer station assignment
As mentioned above, when adding a request to the solution, it is first checked if it is possible to assign the passenger
a trip containing a FPT-leg. Therefore, each l ∈ Lp is checked to be used in the FPT-leg. However, not all stations
on the segment need to be considered. In the ODBRP, we already introduced bus station assignment to increase the
ODB routing flexibility. In this case, not necessarily the closest bus stations for departure and arrival are chosen,
bus stations within walking distance are assigned. As mentioned in Section 1, this flexibility can be extended to the
transfer stations as well. Not necessarily the transfer stations which are closest to the origin and arrival location of the
passenger, are the best for the overall URT. The final choice of transfer stations will depend on the other requests in
the solution. The more passengers can be pooled, the less the total URT will increase.

Figure 5a shows an example of the I-ODBRP with two already scheduled passenger requests (both with a ODB
itinerary), one fixed line and one on-demand bus. The time aspect of the problem is not illustrated in the figure for
simplicity, but of course all requests need to be scheduled within their time windows. Passenger A gets on the bus at
the first stop and gets off at the third10. Passenger B gets on at the second bus stop and gets off together with passenger
A. Now passenger C needs to be scheduled. Passenger C can walk to two neighbouring bus stations from his origin

9Distance is always expressed in time units
10Note that the bus does not initially stop at the metro station it passes, as there is no demand present at this station.
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ODB station
ODB stop

tc Assigned transfer station of passenger C
X Origin of passenger X
X Destination of passenger X

Assigned bus stations
Walk-able stations
for departure passenger C
ODB route
Fixed line
FPT-leg of passenger C

A

B

A+B

... C

C

(a) Passenger C needs to be inserted in the solution

tc

A

B

A+B

... C

C

(b) Inserting passenger C into the solution when only considering the closest transfer station

tc

A

B

A+B

... C

C

(c) Inserting passenger C into the solution with flexible transfer station assignment

Figure 5: Example I-ODBRP with two already scheduled requests (A and B), when the request of passenger C is
issued
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location. Because of bus station assignment, the algorithm has to assign one of these two as the origin station for
passenger C. His destination is in another area of the city, consequently his URT will be shorter if he travels part of
his journey in the high-speed metro, instead of a direct ODB. The closest transfer station to the origin of passenger
C is the last depicted station on the fixed line. If passenger C would be directed to this metro station, the resulting
solution is the one shown in Fig. 5b. The on-demand bus makes a detour to pick up passenger C and drops him off
at the assigned transfer station tc. Both the URT’s of passengers A and B will increase. However, if we allow some
flexibility concerning the transfer station assignment, passengers can be pooled, which results in a lower total URT
as detours and extra stops can be avoided. This is illustrated in Fig. 5c. The on-demand bus passes a metro station
already, so adding an extra stop here is easy. This station would consequently be assigned as the transfer station of
passenger C. The URT’s of passengers A and B do not increase by inserting passenger C and even though the trip of
passenger C starts to go in the opposite direction of his destination, his URT will not differ extremely from his URT
as depicted in Fig. 5b, making this the better option.

To determine which metro stations are considered as transfer stations on a certain metro segment (necessary for the
loops on lines 4 and 10 of Algorithm 1), first the index of the closest station on the segment to the origin location of
the request is determined and called Iol p. The same is done for the arrival (Ial p). In Fig. 6 this is the metro station with
index 2 for the origin and 6 for the arrival. However, as is illustrated in Fig. 5, we should consider multiple stations,
preferably in the neighbourhood of the closest metro station. Therefore another parameter is introduced: the index
range or Ir. This parameter indicates how many metro stations we will differ from the closest one on the segment.
The more dense the network is, with lots of metro stations in a relatively small area, the larger this index range needs
to be. Fig. 6 shows the metro stations considered on the metro segment for both origin (indexes [1,3]) and arrival
(indexes [5,7]) in dotted lines, when an index range of 1 would be adopted. The indexes for origin and arrival cannot
overlap and the indexes have to exist in the metro segment. Iendl denotes the index of the last station in the metro
segment. i ∈ [Indexol p min, Indexol p max] is the origin index under consideration, when determining the minimum and
maximum index for the arrival. The minimum and maximum index for origin and arrival for a specific metro segment
l are calculated as follows:

Indexol p min = max
(
0, Iol p− Ir

)
(59)

Indexol p max = min
(
Iol p + Ir, Iendl

)
(60)

Indexal p min = max
(
i+1, Ial p− Ir

)
(61)

Indexal p max = min
(
max

(
Indexal p min, Ial p + Ir

)
, Iendl

)
(62)

Index 1 2 = Iol p

A

3 4 5 6 = Ial p

A

7

Figure 6: Example transfer stations of a metro segment under consideration when index range amounts 1

4.3 Speed-up - On-demand bus assignment
In Melis and Sörensen (2020, 2021), the authors first fill every empty available bus with a request before adding
multiple requests in one bus. When there are no empty buses left, we consider insertion of a request in all available
buses of the fleet size. In contrast to the ODBRP, where the algorithm checks all buses of B once when trying to
insert a request, the I-ODBRP tries to insert one request ((2× Ir + 1)+ (2× Ir + 1)2) times when the trip is of the
ODB+FPT+ODB type11 This equals, worst case, 12 times when the index range is 1, 30 times when the index range
is 2, and this for all metro segments in Lp. Because of the importance of the computation time, not all buses from B

11This amount is deductable from the nested for-loops in Algorithm 1 on lines 4 and 10, given that the transfer stations under consideration as
shown in Fig. 6 do not overlap.
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are checked every time the algorithm tries to insert a request. An efficient on-demand bus assignment procedure is
implemented that reduces the number of buses checked for the first leg to Bplleg1 ∈ B (generated in line 3 in Algorithm
1 and for the second leg Bplleg3 ∈ B, generated in line 11 in Algorithm 1). We test three different on-demand bus
assignment methods, explained in this section, and compare them regarding their influence on the objective function
value and the induced decrease in computation time in Section 5.3.

4.3.1 ODB assignment based on the earliest departure time and origin location

The first method is based on the distance between the location of the bus at the earliest departure time of a request and
the origin location of the request. This method is similar to procedures adopted by Ma et al. (2013) and Bertelle et al.
(2009). Buses located at a total distance smaller than a threshold value εa, are included in Bplleg1/leg3. If none of the
buses are within a this radius, all buses will be tested for insertion.

An example on ODB assignment for a first leg or ODB-only trip can be found in Appendix B. A similar reasoning
applies for checking a second leg ODB insertion. However it should be noted that the earliest departure time of a
second ODB leg depends on the chosen first ODB leg (both chosen on-demand bus and metro station under consider-
ation) and on the metro station under consideration for leg 3. The earliest departure time for leg 3 will change, as the
passenger will spend a shorter/longer amount of time on the metro line. And depending on the on-demand bus chosen
for leg 1, the passenger might be dropped off earlier or later at a metro station of the metro network. Note that the
second leg is always chosen given the best first leg found. Alternatively, one could consider all combinations of leg 1
and 2 legs together as the first has major influence on the second, concerning the time aspect. It is possible that, for
example. the second best first leg combined with its best second leg results in a better overall URT compared to the
best first leg combined with its best second leg. However checking all combinations would be too computationally
expensive.

4.3.2 ODB assignment based on the earliest departure time and origin location, and (latest arrival time and)
the arrival location

Ma et al. (2013) test, next to an assignment procedure based on the earliest departure time and origin location, also
an assignment procedure based on the above and the distance between the bus’s location at the latest arrival time and
arrival location of a request. However, in the problem studied there are two time windows, one for the departure and
one for the arrival and they minimize the distance traveled. In the (I-)ODBRP there is only one, wide time window,
and the user ride time is minimized. When selecting buses based on both the origin location and earliest departure
time, and the destination and latest arrival time, the transportation of requests is pushed to take as long as the width of
the entire time window, which counteracts our objective. Therefore, we initiated an ODB assignment procedure based
on the average of the distance between the origin location of the request and the approximate location of the bus at
the earliest departure time of a request, and the distance between the destination location of the request and the station
that is closest to this destination that is already scheduled further in the bus route but before the latest arrival time of
a request. If the average is smaller than a certain threshold value εa, the bus is tested for insertion. The first distance,
based on the origin and earliest departure time, is checked by using the data structure from Appendix B Fig. B1. If
the data structure returns a −1 for the earliest departure time of a request, the bus is included in the potential bus
assignments set, as the bus is not busy during the time window of the request.

4.3.3 ODB assignment based on driving direction between earliest departure and latest arrival time

Tsubouchi et al. (2009) adopt a vehicle choosing procedure based on the direction that the vehicle is driving in during
the time window of a certain request, and the direction the request needs to go in. We tested the same method in
our algorithm. The difference in directions between the request and a bus is expressed as the corner between them,
calculated by the formula in Eq. (58). If this corner is smaller than a certain threshold value εa, the bus is tested for
insertion.

Instead of using the coordinates of the first and last station of a metro segment, xl1 and yl1 are the x- and y
coordinates of the station where the checked bus is at the earliest departure time of the request and xl2 and yl2 are the
x- and y coordinates of the station where the bus is located at the latest arrival time of the request. The stations are
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once again found by using the data structure explained in Appendix B Fig. B1b. If the data structure indicates a −1
for both the earliest departure time and the latest arrival time of a request, the bus is added to the list of potential bus
assignments, as this bus is not servicing other requests at this time. If the data structure indicates a −1 only for the
latest arrival time, the coordinates of the last scheduled station of this bus are taken for xl2 and yl2.

The earliest departure and latest arrival time of a request depend on the chosen trip type. When wanting the
generate a potential buses set for a direct trip, the time window is taken as is. However, when generating a set of buses
for a first leg trip, the latest arrival time needs to be adapted. In this case the latest arrival time equals the earliest
departure time plus 1.5 times the distance between the origin location and the transfer station which is currently tested
in the algorithm. On the other hand, for a second leg trip, it is the earliest departure time that is adapted and equaled
to earliest departure time plus the time needed to travel to the transfer station via a FPT or ODB+FPT trip.

4.4 Algorithm outline
Algorithm 1 shows the overall algorithm to insert a request p in the solution, given the fact that there are no empty
buses available anymore. When there are still empty buses lines 3, 5 and 11-12 are superfluous as a request can then
be assigned to an empty bus in the way a request would be assigned to a private taxi. The same logic is applied in
Melis and Sörensen (2020, 2021): first all empty buses are filled with one request before adding multiple requests to
one bus. Generating Lp and ranges of the loops on lines 4 and 10 are described in Section 4.1 and Section 4.2. For
every metro segment l and metro station index i, the best first leg for passenger p is found. If a feasible first leg is
obtained, the best second leg is found. The second leg needs to be served by a different bus then the one serving the
first leg, otherwise the point of taking the metro network instead of using a direct ODB-service is lost. In the end, the
best combination of both legs is saved and executed. When no feasible leg 1 and 2 combination is found with Lp, it is
checked whether or not a feasible direct ODB-service is possible. If so, this trip type is assigned to the request.

One additional computational speed-up measure is taken by saving the best first leg insertions for given metro
stations. This is explained in Appendix C.

4.4.1 Finding the best insertion

Finding the best leg 1 and 3 insertion is summarized in lines 5 and 12. An important note concerning these lines is
the following: if the metro station under consideration (with index i/ j on metro segment l) is within walking distance
of the origin/arrival of the passenger, the ODB-leg becomes empty and is actually just a short walk to/from the metro
network12. If the metro station under consideration is not within walking distance, the same constructive heuristic of
Melis and Sörensen (2021) is used to insert a passenger in one of the on-demand buses. Basically the request is added
in a greedy way, so that the total URT, of all inflicted passengers, increases the least. Because in this work, we solve
the I-ODBRP instead of the ODBRP, there are some technical adjustments that need to be made regarding the insertion
criterion and the feasibility check. These adjustments are explained in this section. Note that the request still needs to
be served within the given time window, and capacity constraints of the vehicle cannot be exceeded.

Insertion criterion Similar to the default constructive heuristic in Melis and Sörensen (2020, 2021), requests in the
I-ODBRP are always inserted where the total URT increases the least. This includes (1) the URT of the, to be inserted,
passenger (URTp) and (2) the increase in URT of the already scheduled passengers (∆URT ). The insertion criterion is
calculated on lines 8 (leg 1 insertion) and 13 (leg 3 insertion) of Algorithm 1.

For the ODBRP the first part is straightforward and shown in Eq. (63), with o and a the origin and arrival stop of the
passenger. In contrast, for the I-ODBRP the URTp is calculated depending on the trip type. This is illustrated in Fig. 7.
The current time is located before the trip schedules as passengers need to be inserted somewhere in the future time.
The URTp is calculated as shown in Eq. (64), where A2 is the final drop-off stop and O1 the first pick-up stop. This
can be both by bus or metro depending on the trip type. For singular trips of type ODB or FTP this is straightforward
(Fig. 7d and Fig. 7e). For dual trips of type FPT+ODB or ODB+FPT (Fig. 7c and Fig. 7b), when calculating the
URTp-part of the insertion criterion, we always assume that both legs are consecutive. When actually inserting the

12This would result in a journey ODB+FPT or FPT+ODB or FPT. In the latter both the considered origin metro station and the considered arrival
metro station are within walking distance
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Algorithm 1: Insert request p (Min. URT)

1 Best insertion criterion found = ∞ ;
2 for Every l ∈ Lp do
3 Generate set of possible on-demand buses for leg 1 Bl pleg1;
4 for Every i ∈ [Indexo minIndexo max] do
5 Find best ODB leg 1 from one of the origin stations of p to metro station on l with index i when

considering buses from set Bl pleg1 ;
6 if Feasible leg 1 found then
7 Let boli ∈ Bl pleg1 be the bus where insertion of the first leg fits best (given l and i) ;
8 Insertion criterion leg 1 = URTpleg1+ ∆URTleg1 ;
9 Best leg 2-3 insertion criterion = ∞ ;

10 for Every j ∈ [Indexa min, Indexa max] do
11 Generate set of possible on-demand buses for leg 3 Bl pleg3 (boli /∈ Bl pleg3) ;
12 Find best ODB leg 3 from metro station on l with index j to one of the walk-able arrival

stations of p when considering buses from set Bplleg3 ;
13 Insertion criterion leg 2-3 = URTpleg3+ ∆URTleg3 ;
14 if Feasible leg 2-3 found and insertion criterion < Best leg 2-3 insertion criterion then
15 Save leg 2-3 ;
16 Best leg 2-3 insertion criterion = Insertion criterion leg 2-3 ;

17 Insertion criterion = Insertion criterion leg 1 + Best insertion criterion leg 2-3 ;
18 if Insertion criterion < Best insertion criterion found then
19 Save this insertion (leg 1 and saved leg 2-3 on line 15) ;
20 Best insertion criterion found = Insertion criterion ;

21 Find direct ODB ride ;
22 if Feasible insertion found then
23 Perform best insertion ;

19



passenger into the solution, both legs will be scheduled consecutively, however because of dynamic requests coming in
last minute, this might change later on. For trips of type ODB+FPT+ODB (Fig. 7a), we assume and initially schedule
the first two legs consecutively, but in between the second and the third leg, waiting time can occur. This waiting time
is included in the URTp.

URTp = ta
ab− td

ob ODBRP (63)

URTp = ta
A2b− td

O1b I−ODBRP (64)
∆URT = δop′ ×qbn +δap′ ×qbn′ ODBRP (65)
∆URT = δop′ ×qbn +δap′ ×qbn′ +∆FPT+ODB +∆ODB+FPT+ODB +∆timeshi f t I−ODBRP (66)

In the ODBRP, inserting an extra passenger p′ in bus b can only have consequences for passengers scheduled on
bus b. The increase in URT of the already scheduled passengers is shown in Eq. (65), with δop′ the detour made by b to
pick up the extra passenger p′ at stop n, and δap′ the detour made by b to drop off the extra passenger p′ at stop n′. In
contrast, inserting a passenger in b in the I-ODBRP, might have consequences for passengers scheduled to be picked
up by this bus at a later moment in time (at a bus stop n′′ > n′). These passengers are not part of the load count qb at
stop n or n′. This is due to the fact that some passengers have multiple legs which are connected. Besides the ∆URT
calculated for the ODBRP based on detour times load, there are three extra situations that cause the ∆URT to increase
in the I-ODBRP, shown in Eq. (66). The first two, ∆FPT+ODB and ∆ODB+FPT+ODB, are depicted in Fig. 8. ∆timeshi f t is
explained in Fig. 9 in the next paragraph.

In Fig. 8a a pick-up is delayed of a passenger p′′ who is currently traveling on the metro network and is scheduled
in bus b1 afterwards. The square indicates the current time. The delay is caused by passenger p′ because his pickup
and/or drop-off, occur before the pickup of passenger p′′. If both the origin and arrival of p′ are located before O2 of
passenger p′′, the delay amounts ∆p′ = δop′ +δap′ . Passenger p′′ will experience an increase in URT, as he will have
to wait at the end of his FPT-leg until the on-demand bus arrives. The FPT-leg cannot be delayed anymore because p′′

is already on the move. If p′′ would still be at his origin location, he can just take a later metro to the location of O2
as we assume the metro network to be of high-frequency. Similarly, if passenger p′′ has a three-leg trip type, delaying
his third leg, or second ODB-leg by inserting the origin and/or arrival of p′ in the same bus b2 before the pick-up of
p′′ in his final leg, will cause the URT to increase. This is illustrated in Fig. 8b. In contrast to the previous situation,
this increase in URT should be taken into account regardless whether or not passenger p′′ has already left his origin
location. Even if p′′ takes a later metro, there will still be an extra time gap after arriving at the location of A1 with the
first scheduled on-demand bus.

Feasibility check and time shift Besides the adjustments that need to be made regarding the insertion criterion, there
are also some adaptations necessary for checking feasibility. In the ODBRP, when inserting a passenger in bus b1,
this can only have consequences for passengers scheduled in b1. However, in the I-ODBRP, this might also influence
passengers that are not scheduled in b1, in particular when passengers have the ODB-FPT-ODB trip type. The same
feasibility check of Melis and Sörensen (2020, 2021) using the buffer data structure is kept for all passengers in b1. In
addition, an extra feasibility check is introduced for passengers with the three-leg trip type. This is illustrated in Fig. 9.
When inserting passenger p′ in bus b1, the detours necessary to pick up and drop off this passenger can generate a
delay for the existing passengers in the route. For passenger p′′, this delay amounts ∆p′ . However passenger p′′ has
an ODB+FPT+ODB trip type and the leg scheduled in b1 is his first leg. The delay will consequently cause delays
for the other two trips as well. In the case of p′′, the passenger will take a later metro to the location of O2 and arrive
late for his pickup by on-demand bus b2 scheduled to depart from this place (see the overlap in time between the two
O2-points). As a solution, the algorithm will try to introduce a linear time shift for the entire schedule of bus b2 starting
from the pickup of passenger p′′. This way, the solution is once again feasible. However, before doing the linear time
shift, feasibility is checked for all passengers conflicted. Note that a chain reaction is possible. If there are passengers
in b2 who are in there first ODB-leg and have a three-leg trip type, more linear time shifts in other buses might need
to happen. If one of the time shifts will result in unfeasibility, the insertion of passenger p′ in b1 will be declared
unfeasible and will not be performed. The linear time shift and possibly resulting chain reaction of time shifts, can
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ODB station
Current Time
Fixed line
ODB route

Time

O2O1 A1 O2 A2

(a) Passenger with ODB-FPT-ODB as a trip type is inserted

O2 = A2O1 A1

(b) Passenger with ODB-FPT as a trip type is inserted

O2O1 = A1 A2

(c) Passenger with FPT-ODB as a trip type is inserted

O2 = A2O1 = A1

(d) Passenger with FPT as a trip type is inserted

A1 = A2O1

(e) Passenger with ODB as a trip type is inserted

Figure 7: Increase in URTP depending on trip type
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ODB station
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Fixed line
ODB route

∆p′

Time

O2O1 = A1

b1

A2

O2O1 = A1 O2 A2

(a) ∆FPT+ODB - Indicated is the FPT+ODB trip of passenger p′′. The last ODB-leg of this passenger is delayed by inserting pickup
and/or drop-off of p′ last minute in the same bus b1 before the pickup of p′′

∆p′

Time

O2O1 A1 O2

b2b1

A2

O2O1 A1 O2 A2

(b) ∆ODB+FPT+ODB - Indicated is the ODB-FPT-ODB trip of passenger p′′. The last ODB-leg of this passenger is delayed by
inserting pickup and/or drop-off of p′ in the same bus b2 as the last ODB-leg of p′′, before the pickup of p′′

Figure 8: Increase in ∆URT
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cause the ∆URT to increase even more for the situations explained in Fig. 8. Instead of a delay caused by a passenger
that is inserted in the same bus, the delay would now be caused by the linear time shift.

A toy example to illustrate a single linear time shift (without chain reaction) can be found in Fig. 10. Information
on requests and a distance matrix can be found in Appendix B Table B1. The initial schedule consists of two buses
and two requests. The first bus picks up passenger 6 at his first stop and drops him off at his second stop. From
here passenger 6 will take a fixed line to station 10. Note that the fixed line distance between station 1 and station 10
amounts only 7, instead of the 35 minutes by on-demand bus depicted in Table B1. From station 10, passenger 6 will
be picked up by a second bus, together with passenger 7. The latter also came from a fixed line leg without a preceding
on-demand bus. He has a FPT+ODB trip type, meaning that his origin location is within walking distance of the fixed
line. Passenger 6, on the other hand, has a ODB+FPT+ODB trip type. The initial schedule is illustrated in Fig. 10a.
In Fig. 10b a possible insertion for passenger 8 is checked for feasibility. The current time is now 9, right before the
departure of the first bus. For the rules regarding the insertion of real-time passengers, we refer to Melis and Sörensen
(2021). The pickup tested is located right after the first bus stop in the sequence of bus 1 and the drop-off would be
together with passenger 6 at the previous second bus stop at station 1. The insertion that is tested here is a direct ODB
trip type. The insertion criterion amounts URTp8 +∆URT . The first amounts 57− 42 = 15, which is the difference
between the arrival time of passenger 8 at his assigned arrival bus station minus the departure time of passenger 8 at
his assigned origin bus station. ∆URT for the first bus amounts the detour times load caused by the origin and arrival
respectively. For the origin this is 36×1 = 36, for the arrival there is no detour13. However because passengers 6 and
7 have multiple leg trip types, there might be a ∆URT in other buses as well, in this case only the second bus in the
figure is linked to the first, so we only have to check for possible delays in this bus. In Fig. 10b an overlap in time
occurs like the one illustrated in Fig. 9. Passenger 6 will not make it in time to be picked up by the second bus after
his fixed line leg. Therefore a time shift, with the size of ∆URT = 36 from the first bus, is tested for feasibility. Both
passengers 6 and 7 would still arrive on time, however the insertion criterion would further increase by 36, caused by
the increase in URT of passenger 7, as the latter would already be on the metro when the insertion occurs. He will
consequently arrive at station 10 at the previously scheduled time of 29, and will have to wait until time 65 to board
the second bus. The total insertion criterion amounts (57− 42)+ 36× 1+ 36 = 87. If this is the lowest (feasible)
insertion criterion found, the insertion will be performed, as is shown in Fig. 10c.

The inter-dependencies between legs in the I-ODBRP are a second reason for the choice of an efficient insertion
based heuristic. Changing the itinerary of one passenger, which would be necessary when using Local Search opera-
tors, would have too many consequences on the solution as a whole. Repairing and recalculating the solution would
cause the computation time to increase substantially which is disadvantageous for a dynamic environment.

4.5 Instance generation
In the remainder of this paper requests are randomly generated in a 100 × 100 Euclidean plane. There are 121 bus
stations equally distributed over the plane in a grid-shape (see the dots in Fig. 3) . The driving time by bus between two
adjacent stations is 10 minutes, but on-demand buses can drive in all directions. The driving time by metro between
two adjacent stations is 5, unless stated otherwise. In addition a within-metro transfer time of 1 minute is adopted,
which is equal to the dwell time of the on-demand buses. This time is necessary for passengers to be able to get off one
vehicle and on to the next one. All buses have an identical capacity of 8 people, which represents the size of a typical
minibus, the metro has unlimited capacity. 10 instances of 2000 randomly generated requests are used, of which the
earliest departure times are all between time 10 and 70 of the time horizon. λ , the multiplier used to determine which
metro segments longer then the shortest paths, are included in L, is set at 1.01. The other parameters regarding the
metro segment (εd and εt ), transfer station (Ir) and ODB (εa) assignment will be determined in the next section. A
summary of the chosen parameter values can be found in Appendix A Table A2.

13The passenger to be inserted, is not counted in the load.
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Figure 9: Indicated is the ODB+FPT+ODB trip of passenger p′′. A linear time shift of the second ODB-leg (bus b2)
of passenger p′′ is caused by a delay in first ODB-leg (bus b1) resulting from insertion of passenger p′

5 Algorithm analysis

5.1 Speed-up - Metro segment assignment
In this section, instances are solved without using transfer station assignment or on-demand bus assignment proce-
dures14. This means that when a metro segment from Lp, is tried for insertion, all pairs of metro stations on the metro
segment will be checked for both the first and second ODB-leg of the route. In addition, when trying to insert (part of)
a request in an on-demand bus, the entire fleet B is checked for insertion. There are two parameters deciding on the
metro segment assignment: the cut of corner (direction) or εd and the threshold value (distance/time) or εt . The third
criterion of the metro segment assignment procedure (accessibility) is already included. The cut off corner, threshold
value and accessibility criterion are explained in Section 4.1.

Figure 11 shows the results for both the average URT per passenger15 and the computation time for all three
proposed networks. It is clear that for the star-shaped network, which is a very dense network, depicted in Fig. 11a,
the direction parameter is of major importance when looking at the URT per passenger, while for the less dense cross-
shaped and single line network (shown in Fig. 11c and Fig. 11e) the distance/time parameter is of makes the biggest
differences.

For the star-shaped network, for each of the tested fleet sizes, the URT per passenger is at his absolute lowest when
εd = 180. This means metro segments going in all directions are tested to function as the fixed leg. However, URT’s
per passenger do not show extreme differences for cut off corners between 15 and 180. For all tested fleet sizes, the
URT’s per passenger for εd = 30, are closest to the best found URT per passenger, independent of εt . Moreover, when
εd = 30, no significant differences in URT per passenger can be found when changing εt . In contrast, the computation
time, shown in Fig. 11b, does show significant differences when altering εt . Therefore, εt = 1 and εd = 30 are the
selected values for the star-shaped network16.

14Bus station assignment is already included in the algorithm, because the procedure’s good performance is already thoroughly confirmed in
Melis and Sörensen (2020, 2021). Further, in Section 5.4 the influence of bus station assignment for the I-ODBRP will be investigated.

15The average URT per passenger is the total URT per passenger divided by the number of served passengers. Throughout this paper also called
the URT per passenger.

16An εt lower than 1, was also tested but not included in the graphs because the URT’s per passenger showed substantial increases.
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(a) Initial schedule (current time is 0): Passenger 6 has a ODB+FPT+ODB schedule and passenger 7 has a FPT+ODB schedule
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(b) Passenger 8 is checked for insertion in first bus. The current time is 9.
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(c) Insertion of passenger 8 is performed, with a linear time shift in the second bus as a consequence

Figure 10: Toy example - Insertion criterion, feasibility check and linear time shift for the I-ODBRP (dotted lines
represent fixed line connections taken by the passenger indicated)
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For the cross-shaped and single line network, it is clear that εd = 30 and εt = 1 are the most optimal parameters re-
garding the URT per passenger. Regarding the computation time, εt = 0.5 yields slightly better results, but considering
the increase in URT per passenger, εt = 1 seems the better choice.

5.2 Flexibility - Transfer station assignment
In this section we will investigate the influence of transfer station assignment, which adds flexibility to the routing part
of the algorithm for passengers who can be served with a multi-leg trip. This consequently has a positive impact on
the URT per passenger. The parameter defining the induced flexibility is called the index range and is explained in
Section 4.2.

Results are shown in Fig. 12. The more dense the network, the more beneficial it is to add flexibility through
transfer station assignment. For a fleet size of 400, there is a 1.3% decrease in URT per passenger for the star-shaped
network, a 1% decrease for the cross-shaped network and a 0.3% decrease for the single line network, when going
from zero flexibility to an index range of 1. Index ranges larger than 1 do not significantly contribute to the solution
quality, while the computation time rises. Note that an index range of 0, is not equal to the problem where only the
single closest transfer stations for departure and arrival are tested. When the index range is 0, the closest transfer
stations for departure and arrival are tested for every metro segment l ∈ Lp, which still results in a somewhat flexible
approach. For a clean comparison of the I-ODBRP with flexible metro segments and transfer station assignment and
the I-ODBRP which only considers the single closest stations, we refer to Fig. 13 depicting the results for the star-
shaped network. Case 1 depicts the results for checking all metro segments and transfer stations for insertion, while
case 3 indicates the results obtained with our metro segment and transfer station assignment procedures. When going
from case 1 to 3, the computation time decreases with 94% while the URT per passenger also slightly decreases with
0.5%. Case 5 illustrates the results when only the closest metro segment and closest transfer stations on this segment
are checked for a multi-leg insertion. When going from case 3 to 5, the computation time decreases 54% more, but the
URT per passenger increases with 35% and the service rate drops from 100 to 98%.

5.3 Speed-up - On-demand bus assignment
In Section 4.3 three efficient assignment procedures to quickly assign a request to a possible set of buses are introduced.
In this section, we will analyse these procedures, and compare them to a regular insertion based heuristic that tries every
available bus for insertion of the request. The latter is called the baseline. The baseline results are obtained by including
the metro segment and transfer station assignment procedures with the decided-upon parameters of Section 5.1 and
Section 5.2. Results of the URT per passenger, computation time and service rate are shown in Fig. 14 for all three
proposed metro networks, solved with a fleet size of 400. The ’origin’ and ’origin and arrival’-based procedure
are explained in Section 4.3.1 and Section 4.3.2, respectively, the ’direction’-based procedure in Section 4.3.3. The
threshold values, εa, which decide whether a bus is included in the possible bus insertion set of a request is depicted
on the x-axis and expressed in minutes for the first two procedures (lower x-axis), and in degrees for the last (upper
x-axis).

It is clear that on-demand bus assignment especially has a positive impact on the more extended, star-shaped
network, with URT’s per passenger which are close or even better than the baseline for both the ’origin’- and ’origin
and arrival’-based procedure. For the cross-shaped and single line network, when lowering εa, the URT per passenger
increases first and afterwards drops again. This can be explained by the fact that when εa is too small, and no buses
are found that qualify the criteria for possible insertion, all buses are tested and results become equal to a high εa.

In general, for all networks, the ODB assignment procedure based on both the earliest departure time and origin
location, and (latest arrival time and) the arrival location (origin + arrival in the figure), has the best performance when
looking at the URT per passenger and the total computation time. However, one should also take into account the
influence on the service rate. This is the percentage of passengers that can be served while meeting all constraints
on time windows, capacity of the buses, etc. There is always a trade-off between computation time on one hand
and the service quality (URT per passenger and service rate) on the other. Deciding upon the used method for ODB
assignment and the accompanying εa is therefore no exact science. In Fig. 14, one can see that the higher εa, the
more the computation rise rises, even higher than the baseline. The reason for this difference is that in the baseline,
without ODB assignment, no calculations need to be made to determine which buses will be tested for insertion, while
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(c) URT per passenger - cross-shaped network
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(e) URT per passenger - single-line network
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Figure 11: Parameter setting metro segment assignment for star-shaped, cross-shaped and single line network
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Figure 12: The influence of transfer station assignment for different fleet sizes
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Figure 13: Comparison checking all metro segments and transfer stations for insertion with checking only the closest
ones for the star-shaped network

using an ODB assignment procedure always needs extra calculations. However, when the number of buses tried for
insertion is lower, the additional computation time for the assignment procedures is counteracted with the decrease in
computation time by smartly assigning passengers to buses.

We chose εa = 10 (in minutes) for the cross-shaped and single line network, because in this case, the average
URT per passenger rises slightly, and the service rate decreases slightly, while there are mayor benefits regarding
the computation time. One could choose a threshold value of 15 or 20 minutes to decrease the computation time
even more. However, in this case the service quality is at its lowest point. For the star-shaped network, we chose
εa = 15. The average URT per passenger is even slightly lower compared to the baseline. The percentage differences
obtained by introducing the ODB assignment procedure with the ”origin + arrival” method in Table 4. The ODB
assignment procedures can also be applied to the ODBRP. For completeness, this analysis is included in Appendix D.
For a quick comparison, we included the results for the ”origin + arrival” procedure with a threshold value of 10
minutes in Table 4 as well. The average URT per passenger for the ODBRP is less influenced by the ”origin + arrival”
ODB assignment method, compared to the I-ODBRP-variants, while the service rate is more influenced. Differences
between the I-ODBRP and the ODBRP will be further investigated in Section 6.1.

Table 4: Percentage differences between baseline and ODB assignment ”origin + arrival”

Network εa Average URT per passenger CT Service rate

Star-shaped 15 -1.4% -33.7% -0.03%
Cross-shaped 10 +1.7% -28.8% -5%

Single line 10 +7.3% -17.9% -8.7%

Non-integrated ODBRP 10 +0.6% -21.9% -10.5%
Instance: fleet size 400, number of requests 2000

5.4 Flexibility - Bus station assignment
In this paper, all conducted experiments include bus station assignment. To once again proof the performance increases
induced by this feature, in this final section of the algorithm analysis, we excluded bus station assignment from the
algorithm. This means that passengers choose their own bus stations for departure and arrival, typically the closest
ones to their origin and arrival location. The metro segment, transfer station and ODB assignment procedures are kept
in place. Table 5 shows the percentage differences for the average URT per passenger and the service rate with and
without bus station assignment. Regarding the average URT per passenger, bus station assignment is of even bigger
importance when the ODBRP is integrated with a fixed line network. In contrast, the service rate suffers less from the
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Figure 14: On-demand bus assignment analysis for the star-shaped, cross-shaped and single line network
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exclusion of bus station assignment when the ODBRP is integrated with a dense fixed network, like the star-shaped
one. In general, similar to the non-integrated ODBRP, bus station assignment results in a significant better solution
quality for the I-ODBRP.

Table 5: Percentage differences with and without bus station assignment

Network Average URT per passenger Service rate

Star-shaped +39.9% -4.8%
Cross-shaped +29.7% -10.9%

Single line +28.7% -11.0%

Non-integrated ODBRP +28.3% -11.5%
Instance: fleet size 400, number of requests 2000

6 Results analysis

6.1 Is it beneficial to integrate on-demand buses with a fixed metro network?
In this section we will investigate whether or not better performance is reached when integrating on-demand buses
with a fixed metro network. We learned from Section 5.3 that using on-demand bus assignment procedures as a
computational speedup is beneficial for the computation time, but might have a negative impact on the solution quality,
expressed in the average URT per passenger and the service rate. For a clean comparison we therefore check the entire
fleet of on-demand buses for insertion for both the I-ODBRP as the ODBRP, as different ODB assignment procedures
and threshold value have different impacts on both problem variants. Once again, the URT per passenger and the
service rate are included as a measure of performance in the comparison. Instances are solved with different fleet sizes
and metro-line speeds. Results can be found in Fig. 15. The metro speed is depicted as a percentage of the on-demand
bus speed. A percentage of 100 corresponds to an equal speed of the metro network and the on-demand buses, a
percentage of 50 means that the metro drives 2 times as fast as the on-demand buses.

Average URT per passenger Of course the more dense the network, the more the metro speed influences the URT
per passenger, and this for all fleet sizes of on-demand buses. On the other hand, the graphs clearly show that that the
available fleet size is of minor importance regarding the URT per passenger when the metro network is more dense.
For the star-shaped network the I-ODBRP has equal or better performance when the metro speed is 50% or 70% of
the on-demand bus speed. When the metro speed is equal to the ODB speed, integrating ODB with FPT worsens
the URT per passenger. For the less dense cross-shaped and single line network, the fleet size of on-demand buses
becomes more important. When the fleet size is relatively small, integration performs better, but when the fleet size is
sufficiently large only using on-demand buses works best. The metro speed at which this trade-off happens is higher
for the less dense single line network than for the cross-shaped network. This means that in a single line network,
when there is enough fleet size, it is better to use only on-demand buses. Only when the metro speed is 20% of the
on-demand bus speed, integration is better for all available fleet sizes. In conclusion, regarding the URT per passenger
it is better to integrate with a metro network during peak hours, when demand is high compared to the available fleet
size, but during off-peak hours passengers can better be transported using only on-demand buses. When the network
is really dense like the star-shaped network, this switch in operating mode is not necessary, integration is always
recommended.

Service rate When looking at the service rate, the ODBRP is severely influenced by the fleet size, while the star-
shaped network used in the I-ODBRP, has overall high service rates, independent of the fleet size or metro speed.
For the cross-shaped and single line network, service rates are also overall higher compared to the ODBRP, but the
difference is smaller the less dense the network. In conclusion, integrating on-demand buses with a metro network
yields better service rates compared to only using on-demand buses.
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Figure 15: Comparison results I-ODBRP with ODBRP for different fleet sizes and, metro-line speeds and networks
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7 Conclusion and future research
In this paper the integrated on-demand bus routing problem or I-ODBRP is introduced to integrate a large-scale on-
demand bus system with a high-frequency metro network. In the I-ODBRP passengers can have multi-leg trip types
consisting of both metro and bus trips. To solve the I-ODBRP we used the constructive heuristic for the ODBRP
of Melis and Sörensen (2021) to insert passengers in on-demand buses, however we adopted the insertion criterion
and feasibility checks to fit the I-ODBRP. To decide upon the trip of each passenger, two extreme insertion strategies
exist: one could check all buses, metro stations and lines for insertion, or one could only check the closest ones. Our
algorithm finds middle ground between these two extremes and introduces two procedures for computational speed-
up and two for flexibility. On the ODB-level, bus stop assignment, already introduced and proven to yield better
performance in Melis and Sörensen (2021), is also included in this algorithm to keep the flexibility of the routing of
the on-demand buses high. We found that also in the I-ODBRP bus station assignment remains important, especially
regarding the average URT per passenger. In addition, because the I-ODBRP has more routing opportunities compared
to the ODBRP, an on-demand bus assignment procedure is introduced to improve the computation time. With regard
to the choosing of metro lines and transfer stations, we included a metro segment and transfer station assignment
procedure for speed-up and flexibility, respectively. We used our algorithm to investigate whether or not it is beneficial
to integrate on-demand buses with a high-frequency metro network, using three different types of metro networks.
Regarding the URT per passenger it is mostly better to integrate with a metro network during peak hours, when
demand is high compared to the available fleet size, but during off-peak hours passengers can better be transported
using only on-demand buses. Only when the network is really dense, integration is always recommended. In addition,
for all network types the service rate improves and a lower fleet size is needed, which results in lower operating costs.

In this work we assumed that all metro lines have a high-frequency service, so that transfer times within the metro
network are negligible. In reality many fixed line public transport systems have fixed timetables. Future research is
needed to include these timetables in the algorithm. In addition, instances based on real cities can be used and real-
time traffic information could be included in the algorithm. Moreover there is opportunity for a more sophisticated
heuristic that includes local search operators to improve the solution.
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Appendix

A Additional notation - heuristic

Notation Definition

Metro segment assignment - Section 4.1

λ Multiplier used to include multiple metro segments from/to the same key stations when they
have nearly same travel distances by metro

L Overall set of metro segments for the given network
Lp Possible metro segments set of passenger p
εd Cut off corner (in degrees) for direction criterion of metro segment assignment procedure
so

pl The closest metro station on metro segment l to the origin location of passenger p
sa

pl The closest metro station on metro segment l to the arrival location of passenger p
εt Threshold value (in time) for distance/time criterion of metro segment assignment procedure

Transfer station assignment - Section 4.2

Indexol p min/max Minimum/Maximum index for origin of passenger p on metro segment l
Indexal p min/max Minimum/Maximum index for arrival of passenger p on metro segment l
Iol p Index of the closest metro station on metro segment l to the origin location of passenger p
Ial p Index of the closest metro station on metro segment l to the arrival location of passenger p
Iendl Index of the last metro station on metro segment l
Ir Index range

ODB assignment - Section 4.3

Bl pleg1 Number of buses checked for insertion for the first leg of passenger p on metro segment l
Bl pleg3 Number of buses checked for insertion for the second leg of passenger p on metro segment l
εa Threshold value (in degrees or time, depending on chosen criterion) for ODB assignment

procedure

Algorithm outline - Section 4.4

∆URT The increase in URT of the already scheduled passengers in the solution
δup The detour made to pick up passenger p
δop The detour made to drop off passenger p
∆p The total detour made to pick up and drop off passenger p
URTp The URT of the, to be inserted, passenger p
A2 The final drop off stop of a passenger trip (metro or bus stop, depending on trip type)
O1 The first pick up stop of a passenger trip (metro or bus stop, depending on trip type)

Table A1: Additional notation - heuristic

Parameter Value

λ 1.01 (multiplier)
εd 30 (degrees)
εt 1 (multiplier)
Ir 1 (station)
εa 10 (minutes) (15 (minutes) for star-shaped network)

Table A2: Summary of chosen parameter values
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B Toy example - ODB assignment
First the ODB assignment procedure loops over all buses and it checks their location at the earliest departure time
of the passenger. The approximate locations of these buses for different time intervals are saved in a separate data
structure. This way, the location of the buses at a certain time can be checked in linear time (O(1)). An example bus
route and corresponding data structure to check the location of the bus can be found in Fig. B1. The distance matrix
and total request list of the toy example in this figure can be found in Table B1. To simplify, all passengers in the toy
example have direct ODB trips, but this does not have to be the case. When the bus is not driving to or standing near
a bus station, the data structure indicates −1, which means that during these time intervals the bus has no requests
assigned to it. If a fifth request is tried to be inserted with an earliest departure time larger than 155 (the data structure
will indicate−1), the distance is expressed as the distance from the last served station in the route to the origin location
of the passenger. If the earliest departure time is smaller than 155 (the data structure will indicate the bus stop s), the
distance is expressed as the distance from the station scheduled as the s’th bus stop in the route to the origin location
of the passenger. For passenger 5 with an earliest departure time of 90, the distance amounts 45 (the distance from
station 10 to station 8 or 9). If , for example, a threshold of 15 minutes would be adopted, this results in the fact that
this bus will not be considered for the insertion of passenger 5, unless the resulting set of possible buses for insertion
remains empty. In this case all buses will be tested for insertion.

Table B1: Toy example - Requests and distance matrix

p eu
p lo

p Departure stations Arrival stations

1 0 50 4 5 or 6
2 10 90 4 10 or 11
3 70 160 10 or 11 5
4 120 170 7 5 or 6
5 90 180 8 or 9 3

6 10 75 4 11
7 5 110 N/S 3
8 20 80 5 1 or 2 or 3

Distance
Matrix

1 2 3 4 5 6 7 8 9 10 11

1 0 5 5 20 15 13 20 25 20 35 35
2 0 5 20 15 14 15 15 20 35 35
3 0 20 15 10 12 14 14 25 30
4 0 30 35 40 40 40 60 60
5 0 5 30 28 32 40 41
6 0 30 28 32 40 38
7 0 5 5 40 45
8 0 5 45 50
9 0 45 50
10 0 5
11 0

P = Passenger, eu
p = Earliest departure time of P, lo

p = Latest arrival time of P
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Bus station
Arrival time

Time
P on
P off
qnb

Bus stop

4
10
11
1,2

2

1

5
41
42

1
-1

2

10
82
83
3
2
0

3

7
123
124
4

1

4

5
154
155

3,4
-2

5

(a) Example bus route

Time 0 ... 10 11 12 ... 40 41 42 43 ... 81 82 83 84 ...

Bus stop (s) 0 ... 0 0 0 ... 0 2 2 2 ... 2 3 3 3 ...

Time 122 123 124 125 ... 153 154 155 156 157 ... ...

Bus stop (s) 3 4 4 4 ... 4 5 5 -1 -1 ... -1

(b) Data structure indicating approximate bus location at a certain time

Figure B1: Toy example - Approximate bus location at a certain time
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C Computational speed-up: Saving first leg insertions
In Algorithm 1, line 5 represents the possible insertion of a first leg ODB-ride. In contrast to the second leg, the earliest
departure time does not change depending on the choice of past legs. Therefore computational speed-up is possible
by saving promising insertions. Figure C1 shows the origin and arrival location of passenger A and a metro network
consisting of three direct lines in both directions. The algorithm will look for a ODB+FPT+ODB trip. The on-demand
bus stations that are not part of the metro network are not shown in the figure. There are two possible metro segments
in Lp: (1) 2-5-6, (2) 1-2-4-3. The metro segments are described by their consecutive key stations (the squares in the
figure). The algorithm will loop over these two metro segments and try to use a part of them as a FPT-leg for the trip of
passenger A. Every sub-figure in Fig. C1 shows the considered metro stations as an arrival station of the first ODB-leg
for a certain metro segment, colored in gray. The index range, Ir, is set to 1, so the stations include the closest station
to the origin location of A, plus and minus one station on the metro segment. The algorithm will find the best ODB-leg
from one of the possible (non-shown) origin stations of A to each of these metro stations colored in gray. However it is
clearly visible that there is overlap in the considered stations for each metro segment. First the best first leg ODB-ride
is found for each of the colored metro stations in Fig. C1a and all the insertion information for this best first ODB-leg
is saved in a separate data structure. The algorithm continues after finding the best ODB-leg to each metro station by
finding second ODB-legs just like in Algorithm 1. When considering the colored metro stations of the second metro
segment (Fig. C1b), the best first leg ODB-ride to key station 2, does not need to be re-calculated. It is already saved.
The best ODB-rides to the other two stations still need to be found, and are once again saved in case they are needed
for other metro segments.

Saving second ODB-legs is not possible as the earliest departure time for the second ODB-leg in a three-leg trip
will always depend on the first ODB and FPT trip that is chosen.

2

1

4 53

6

A

A

(a) Considered metro stations colored in black for arrival of
leg 1 for metro segment (1) 2-5-6

2

1

4 53

6

A

A

(b) Considered metro stations colored in black for arrival
of leg 1 for metro segment (2) 1-2-4-3

Let (1) 2-5-6 and (2) 1-2-4-3 be two metro segments of LA. In this case, there is overlap in considered metro stations when checking all metro
segments LA. (Ir = 1)

Figure C1: Saving first leg insertions
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D On-demand bus assignment for the ODBRP
Fig. D1 shows the results for the three proposed ODB assignment procedures performed om the ODBRP.
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(c) Service rate - origin fill the gap
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(d) URT per passenger - origin + arrival
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(f) Service rate - origin + arrival
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(g) URT per passenger - direction
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(h) Total computation time - direction
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(i) Service rate - direction fill the gap
Instance: number of requests 2000

Figure D1: Effect of the fleet size and different on-demand bus assignment procedures for the ODBRP
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