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Abstract 

Synaptic dysfunction is a hallmark of various neurodegenerative and neurodevelopmental disorders. 

To interrogate synapse function in a systematic manner, we have established an automated high-

throughput imaging pipeline based on fluorescence microscopy acquisition and image analysis of 

electrically stimulated synaptic transmission in neuronal cultures. Identification and measurement of 

synaptic signal fluctuations is achieved by means of an image analysis algorithm based on singular 

value decomposition. By exploiting the synchronicity of the evoked responses, the algorithm allows 

disentangling distinct temporally correlated patterns of firing synapse populations or cell types that are 

present in the same recording. We demonstrate the performance of the analysis with a pilot compound 

screen and show that the multiparametric readout allows classifying treatments by their spatiotemporal 

fingerprint. The image analysis and visualization software has been made publicly available on Github 
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(https://www.github.com/S3Toolbox). The streamlined automation of multi-well image acquisition, 

electrical stimulation, analysis, and meta-data warehousing facilitates large-scale synapse-oriented 

screens and, in doing so, it will accelerate the drug discovery process.  

 

Keywords: electric stimulation, synapse, segmentation, singular value decomposition, compound 

screening, neurodegeneration 
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Introduction 

Neurodegeneration is defined by the loss of neuronal connections in vulnerable brain regions 

resulting in memory faltering and cognitive decline. The impaired connectivity precedes the 

actual loss of neurons and resides in dysfunction and deterioration of synapses. Disturbances in 

synapse integrity are clearly detectable at early stages of Alzheimer’s disease, including in 

patients with mild cognitive impairment (Lu et al. 2013; Tampellini 2015). They are also found 

in several neurodevelopmental disorders such as epilepsy and autism (Chu et al. 2010; Zoghbi 

and Bear 2012). Importantly, unlike neuronal loss, defects in synaptic function may be 

reversible. Owing to their plasticity, the function of synapses can be enhanced, their formation 

can be promoted, or their pruning inhibited. This makes the synapse an interesting therapeutic 

target. But when aiming at their modulation, methods are required to interrogate synapses with 

high sensitivity. In recent years several methods have been established to quantify synapse 

density in fixed samples (Nieland et al. 2014; Verschuuren et al. 2019; Verstraelen et al. 2020). 

However, these methods have limited sensitivity and do not report on the actual function of 

synapses. Technological advances in genetically encoded sensors and imaging methodologies 

have made it possible to record and manipulate the activity of neural circuits with high 

spatiotemporal precision (Lin and Schnitzer 2016). Now that it is possible to image dynamic 

signals across hundreds of neurons and synapses simultaneously, the challenge is to adequately 

and systematically extract quantitative information from the acquired image data sets. Whereas 

high-throughput screening platforms have been conceived for the analysis of pan-cellular 

signals such as calcium fluxes (Wardill et al. 2013), applications at the level of the synapses are 

much more challenging owing to their small size, high density and fast, fluctuating dynamics. 

High-throughput assays for synaptic function mainly cope with these caveats by averaging out 
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responses over an entire well (Hempel et al. 2011; Virdee et al. 2017). This, however, does not 

allow charting the functional heterogeneity between or within individual synapses (e.g., calcium 

signaling and glutamate release). Another concern with reproducible interrogation of synapse 

functionality is that spontaneous activity is variable and unpredictable, urging for more 

controlled induction using optical or electrical stimuli. Yet, scalable integration of computer-

controlled stimulation with single synapse readout remains non-trivial. To address this, we have 

created a fully integrated hardware and software pipeline to acquire synapse activity from 

different fluorescent reporters in a systematic and reproducible manner in 96-well plate format. 

Exploiting the temporal synchronicity of electrically induced signals, we implemented an active 

synapse detection algorithm that offers a means to remove non-informative features (such as 

noise) and unmix different subpopulations (by their kinetics). Using this approach, we 

characterize the impact of four pharmacological reference compounds and reveal different types 

of synapse modulation. Large-scale compound screening with this pipeline should allow for 

building a library of synapse modulating compounds, which can be queried for functional 

impact and their mechanistic underpinnings. 
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Methods 

Cell culture  

Experimental procedures were approved by the Institutional Ethical Committee on Animal 

Experimentation, in accordance with European Directive 2010/63/EU and local legislation 

(Flemish Decree on the protection of laboratory animals dd. 17 February 2017) and the facilities 

are AAALAC accredited (Association for the Assessment and Accreditation of Laboratory Animal 

Care). Hippocampi or cortices were dissected from WT E18 Wistar rat embryos in HEPES (7 

mM)-buffered Hanks’ Balanced Salt Solution (HBSS), followed by trypsin digestion (0.05%; 

15 min; 37°C) and mechanical dissociation by trituration through 2 glass pipette tips with 

decreasing diameter. After centrifugation (5 min at 200g), the cell pellet was resuspended in 

Minimal Essential Medium (MEM) supplemented with 10% heat-inactivated horse serum and 

30 mM glucose. Cells were plated in Poly-D-Lysin-coated 96-well plates (Greiner, μClear), at 

30,000 cells/well, and kept in a humidified CO2 incubator (37°C; 5% CO2). After 2 h, the 

medium was replaced with B27 (2%) supplemented phenol red-free Neurobasal medium, 

containing Sodium Pyruvate (1 mM), GlutaMAX (2 mM), and Pen-Strep (0.2%). Cell culture 

supplies were purchased from ThermoFisher. Validation of synaptic connectivity was done in 

these cultures using immunofluorescence for pre- and postsynaptic markers, calcium imaging 

and patch clamp recordings (Suppl. Fig. S1).  

 

Transduction 

Primary neuronal cultures were transduced with adeno-associated viral (AAV6) vector 

containing either the synapse-targeted Ca2+ reporter SyGCaMP6f (Dreosti et al. 2009), PSD95-

GCaMP6f (Mao et al. 2008) to assay postsynaptic Ca2+ changes or iGluSnFR (Marvin et al. 
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2013), a single-wavelength glutamate sensor, which directly and specifically reports on 

excitatory neurotransmitter release. Primary neurons were transduced 2 hours after plating, on 

the first day in vitro (DIV0) at a multiplicity of infection of 50 given the original viral titer of 

10E10 viral genome copies per ml. Media was changed once at DIV2 (i.e., 48 hours post-

transduction) to avoid cell death before recording on DIV21-24. The AAV6 vectors were 

manufactured by SIRION Biotech and were commercially obtained.   

 

Microscopy setup, image acquisition and electrical stimulation 

The setup is based on the concept described by Wardill et al. (2017). In brief, the system consists 

of a fully automated widefield fluorescence microscope (Olympus IX83) equipped with a 40X 

(NA = 0.60) dry objective; a LED light source (Omicron LED HUB, GFP-470nm, 1-50 mW), 

an Andor Ixon Ultra 897 EM-CCD Camera, and an in house made multi-well electronic 

stimulation device, with individually addressable units. The electric field stimulation is done 

by passing a computer controlled electric current, through a pair of platinum electrodes, which 

touch the well surface (Fig. 1). The stimulus hardware was manufactured by Peira BVBA 

(Suppl. Data 1). It consists of a custom-made 96-well plate lid, that is based on a printed circuit 

board (PCB) onto which the pairs of 5 mm-spaced bent platinum electrodes have been mounted. 

The current between the individual electrode pairs is controlled on a single-well basis, by means 

of a solid-state relay controller box. The relays are computer controlled by a NIDAQ-board (NI 

USB-6363) to generate the pulses. The timing of the stimulation is done by the same NI-board. 

The stimulation amperage is controlled by the current source (WPI A385). The synchronization 

between the computer-controlled stimulus and the microscope recording is done by a 

microscope trigger (Andor Precision control unit series 100). 
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Images of fluorescent protein-coupled functional reporters were acquired with FF01-474/27-25 

nm excitation, FF495-Di03-25x36 nm Dichroic, and FF01-525/45-25 nm (Semrock) emission 

filters at a temporal sampling rate between 30-50 fps and pixel size of 0.40 µm. During 

recording, the stimulation tool, an in-house created software control program (NI LabVIEW, 

Suppl. Data 2), ran different stimulation sequences with variable number of stimuli and 

frequencies on the cell to induce action potential driven synaptic transmission. In our setup, one 

stimulus (= 1EP) corresponded to a 1ms pulse of 5 mA current and a 10 EP pulse was generated 

with the same frequency (20Hz). 

 

Compound treatment 

At the time of recording, medium was gently replaced with a recording buffer of which the 

composition varied depending on the compound. For most regular recordings, this buffer was 

normal extracellular solution (NES, 136 NaCl, 2.5 KCl, 10 HEPES, 1.3 MgCl2, 10 glucose, 2 

CaCl2, pH 7.4), for PSD-GCaMP6f experiments, we made use of modified NES buffer containing 

the NMDA receptor agonist glycine, to ascertain sufficient NMDA activation (119 NaCl, 2.5 KCl, 

25 HEPES, 2 MgCl2, 30 glucose, 2 CaCl2, pH 7.4, additionally, 50 μM Glycine) and for 

SyGCaMP6f experiments in which excitatory synaptic transmission was blocked to reduce 

spontaneous activity, NES was supplemented with 10 μM NBQX disodium salt and 50 μM DL-

AP5 (NES++).  

The following reference compounds (Tocris) were used: the glial glutamate transporter EAAT1 

and EAAT2 inhibitor threo-beta-benzyloxyaspartate (TBOA; 100nM), the potent, non-substrate 

EAAT2 inhibitor WAY213613 (WAY; 10µM), the selective and reversible Na+ channel 

conductance inhibitor tetrodotoxine (TTX; 1µM), and protein kinase C activator phorbol 2-
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myristate 13-acetate (PMA; 1µM). 0.1% dimethyl sulfoxide (DMSO) or medium with blockers 

only were used as control.  

 

Image and data analysis 

A dedicated software processing pipeline, called Stimulated Synapse Segmentation Tool (S³T) 

(https://www.github.com/S3Toolbox), was written in Matlab (Mathworks inc.) for batch image 

processing, analysis, and visualization (Fig. 2; Suppl. Data 3). The software follows these steps 

for each unprocessed image data set: first, the raw image data (time-lapse stack) is loaded along 

with metadata regarding the experimentation procedure (e.g., compound type and concentration 

per well), the image acquisition settings (e.g., well number, position in the well, acquisition 

speed) and the electrical stimulation pattern (e.g., number and timing of stimuli). After 

background removal by setting the 5% darkest pixels to zero and bleach correction using a 

double exponential fit, internal quality control parameters are generated (e.g., the mean 

temporal response curve and the average intensity image). Next, individual synapses are 

detected. Given that signal fluctuations are evoked by electrical stimuli, synaptic signals can be 

identified as regions that display correlated temporal changes. Pixels with large intensity 

fluctuations over time are expected to be active synapses. Hence the simplest method that is 

implemented to enhance the signals is based on calculating the standard deviation of the 

intensity over time per pixel. This method is however susceptible to variations in baseline 

fluorescence and also offers no resolution of the actual underlying patterns. Therefore, we have 

implemented a second method to enhance synaptic signals that is based on singular value 

decomposition (SVD) (Fig. 4). The SVD decomposes the raw recordings into a product of 

components according to the formula: M = USV’, with matrix M the standard factor-k flattening 
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of the video-data (Lathauwer et al. 2000), U the matrix with left eigenvectors, here referred to 

as eigenframes, V the matrix with right eigenvectors, referred to as eigenresponses and S the 

diagonal matrix with singular values ranked by size (Eckart and Young 1936; Lathauwer et al. 

2000). The rank of the eigenvectors determines their relative contribution to the variance of the 

image stack with the first eigenvectors encoding the most dominant spatiotemporal information. 

The first 16 SVD components are stored to enable fast, compressed, noise-reduced 

reconstruction of the recordings (Eckart and Young 1936). After the decomposition, one 

(typically the second, cfr. down) eigenframe is selected for synapse detection. The software 

also offers a method to introduce a user-defined library, thus extending the SVD algorithm to a 

tailored version in which the user supplies a dictionary of predefined responses (DICT, as 

matrix V). This is useful when the expected response is known, and the decomposition has to 

be consistent across multiple experiments. After synapse enhancement, there is a possibility to 

apply further spatial filtering or to immediately proceed to the actual segmentation, which is 

achieved by means of an automatic (Otsu 1979) thresholding algorithm. After hole-filling and 

single-pixel removal, each synapse is uniquely identified and saved as region of interest (ROI). 

Once detected, synapse activity is measured. Before extraction of intensity fluctuations, the 

images are background corrected by subtracting the average signal intensity of the 5% darkest 

pixels in the movie. Then, the raw traces are extracted per synapse and each trace is normalized 

to the initial intensity (𝛥𝑓/𝑓!) to compensate for signal marker heterogeneity. Based on the 

stimulation timing parameters, the response to each electrical stimulation is extracted and 

analyzed. Such response typically takes the form of a fast impulse, followed by a variable decay. 

From the temporal traces, a set of descriptors is extracted for each synapse (Suppl. Data 4). 

These descriptors are averaged across the entire image to yield 20 summary statistics per field 
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of view in a well. In addition, spatiotemporal statistics of the unprocessed images are calculated 

as well. Next to these quantitative metrics, the raw and the 𝛥𝑓/𝑓! traces are saved for each 

synapse as well as 4 summary traces, i.e., a pixel average 𝛥𝑓/𝑓!, synapse average 𝛥𝑓/𝑓!, 

synapse size-weighted average (∑ (synapseSize x 𝛥𝑓/𝑓!) / (∑ synapseSize)), and a raw pixel 

average. A data viewer is embedded in the software to navigate through the different levels of 

the results, from the individual synapse over the well and plate level up to the experiment and 

compound level.  

Because of the large volume of microscope data and the fast speed with which the data is 

(continuously) generated (15Gb/plate in < 1 hour), multiple design considerations were made 

to cope with this challenge. 1) The algorithms make use of the multi-core optimized SVD in 

Matlab to accelerate the image segmentation. 2) Multiple wells are processed in parallel to 

speed up the processing. This results into a processing time of ~1 hour for 1 plate (60 well-

recordings of 16 s = 500 frames of 512x512 pixels at 16 bit = 15 Gb data), using 1 x 48 core 

machine. The processing speed was further increased by automatically distributing the work on 

multiple computers in a compute cluster. From a user point of view, the user interface is 

developed to process multiple batches of recordings, with minimal user interaction. 

Visualization, curation, and filtering of the extracted synapse data is all done in the same 

software, allowing to link together the datasets at the different stages of processing: e.g., in the 

previously shown plots, each data point can be linked back to the original synapse recording.  
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Results 

High-throughput imaging allows assessment of synapse activity at multiple scales 

We have conceived a pipeline for measuring synaptic activity in neuronal cultures in multi-well 

plate format. When considering fast temporal behavior like synaptic activity, a tradeoff must 

be made between acquisition speed, resolution and contrast (SNR). Therefore, we first 

determined the applicability of the pipeline to different genetic reporters in primary 

hippocampal neurons from rat, namely iGluSnFR (to report glutamate release from individual 

synaptic terminals), cytosolic GCaMPf (neuronal calcium levels), SyGCaMP6f (presynaptic 

calcium levels) and PSD95-GCaMP6f (post-synaptic calcium levels). First, we tested whether 

electrical pulses evoked a response in iGluSnFR upon single or multiple stimulation. We found 

that the electric stimuli caused a measurable increase in the fluorescence intensity (Fig. 3a). 

The average intensity of the response across the field of view scaled with the stimulus as 

exemplified by the larger amplitude for 10 EP vs. 1EP (n = 60 wells) (Fig. 3b,c). The response 

followed the stimulation pattern even when applying narrow time intervals between consecutive 

stimuli, although fast stimulation seemed to be associated with short-term depression, plausibly 

because of decreasing availability of synaptic vesicles (Fig. 3d). When extending the approach 

to other markers, it became evident that their expression level (average intensity) and location 

pattern differed substantially (Fig. 3e). The dynamic response to 1EP and 10EP stimulation 

showed similar kinetics as for iGluSnFR albeit with different base level and amplitude (Fig. 

3f). 

While the time-lapse acquisitions had sufficient dynamic range to reliably capture the signal 

fluctuations, the SNR of individual time frames was too low to enable accurate delineation of 

structural features such as synapses. Taking advantage of the repetitive nature of the image 
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content, we found that the contrast could be significantly improved by using different projection 

methods (Fig. 3g). Using super-resolution radial fluctuations (SRRF) (Gustafsson et al., 2016) 

we could reconstruct images with a resolution below the diffraction limit of the microscope, 

offering superior detection of sub-cellular details including dendritic spines in PSD95-

GCaMP6f transduced cells (Fig. 3g,h; Suppl. Movie 1). Since SRRF resolution scales with the 

temporal activity in the image set at hand, electrical stimulation patterns can be optimized to 

maximize the temporal dynamics and so boost the resolving power of SRRF per frame. Thus, 

the acquired images provide functional as well as morphological readout. 

When aiming for high-resolution, high-speed acquisitions, the field of view (FOV) will always 

be limited due to optical and computational constraints. The electrical stimulation paradigm 

offers an elegant means to bypass this limitation, as it allows sequential stimulation and 

recording of different fields in a single well at fixed intervals, which can subsequently be 

stitched and synchronized so as to represent a pseudo-real-time recording of a large cell 

population or full well (Fig. 3h; Suppl. Movie 2). Thus, the platform offers the possibility to 

acquire information about synaptic activity at scales ranging from ~ 100 nm to > 1 cm, from 

single synapse morphology to intra-neuron network dynamics.  

 

SVD is a robust approach for synapse analysis 

After having explored the acquisition parameters and scalability of the platform, we next tested 

the performance of the synapse detection algorithm. To this end, we first analyzed the 

eigenspace, as created by SVD. We found that the majority of the variance (70-95%) was 

explained by the first two eigenvectors (Fig. 4a). When scrutinizing the individual eigenvectors, 

we found that the first eigenresponse was dominated by the base fluorescence with a slowly 
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decaying bleach component, whereas the second eigenresponse most prominently encoded the 

stimulus response (Fig. 4b). More precisely, the second eigenframe encoded the difference 

between the responding and non-responding structures in electrically stimulated cultures for 

different markers (Fig. 4b). Higher-order eigenvectors usually displayed much more variability 

between individual wells and progressively contained more noise components. Hence, we 

selected this eigenframe for the detection of synapses. To evaluate the segmentation 

performance on this image, we compared it with that of a standard method on simulated data. 

Assuming that synapses will be the regions that respond with largest speed and dynamic range 

to the electrical stimuli, the simplest approach to facilitate their detection is to project the stacks 

according to the standard deviation (STD) through time. This approach reduces noise and 

selectively enhances time-variant objects. However, since the standard deviation does not 

discriminate correlated from uncorrelated activity, this approach may also lead to the detection 

of spurious signals. This became clear when running the algorithm on simulated recordings of 

neurons undergoing 2 consecutive 1EP stimulations or a 10EP stimulation (Fig. 4c). The 

simulation included soma, responding and non-responding synapses, photobleaching, and a 

background intensity gradient and was run for 6 different SNR levels. While both STD and 

SVD perform well (i.e., detect all simulated active synapses) under low noise levels, the STD 

approach rapidly succumbs under conditions of higher noise levels, whereby it starts to include 

non-responding synapses and soma regions (Fig. 4c). Repeating the simulation 60 times with 

different photobleaching and noise levels revealed a significantly lower amount of segmentation 

errors for SVD over STD as defined by the lower number of misclassified pixels (Fig. 4d). 

When specifying the expected responses using a dictionary (DICT), the SVD approach could 

be improved to also identify signals at the highest noise levels. However, the dictionary 
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approach can only be used when the synapse response pattern is known in advance. Yet, SVD 

offers a flexible means to extracting synaptic signals. 

 

SVD allows spatiotemporal unmixing of synapses and cell types 

Decomposing an iGluSnFR recording into its constituent eigenframes offers a means to reveal 

the complete spatiotemporal dynamics in a single field of view. Indeed, when combining color-

coded versions of individual eigenframes, correlated and uncorrelated intensity fluctuations 

became visible as well as the difference in dynamics of synaptic vs. somatic responses (Fig. 5; 

Fig. 6a). When applying this same principle to recording of SyGCaMP6f and cytosolic 

GCaMP6f transduced cultures, synchronously firing neurons could easily be discriminated from 

non-responsive neurons (Fig. 6a,b). The color-coding principle could easily be extended to the 

full time-lapse acquisition, by including the eigenresponses. When applied to a PSD95-

GCaMP6f movie, we could for example distinguish the background fluorescence (bleaching) 

(E1), the synapse activity (E2) and uncorrelated cellular activity (E3-16) at once (Fig. 6c). 

Because of this superior capability of SVD at detecting temporally correlated signals in an 

unsupervised manner, we hypothesized that it could also be used for separating cell-type 

specific kinetics, as often observed in co-cultures when using pan-cellular calcium sensors. 

Hence, we tested it on a recording of neuronal cultures, loaded with the non-cell-selective 

calcium dye Fluo-4AM. We found that neuronal and astrocyte calcium fluctuations could be 

easily distinguished based on their relative contribution to the SVD components. The glutamate 

pulse that solely induces neuronal response led to a prominent signal in the 2nd eigenvector (E2) 

whereas the astrocyte signals were more prominent in higher eigenvectors (E3-16) (Fig. 6d, 

Suppl. Movie 3).  
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Dictionary for consistent feature extraction 

Using SVD, we were able to accurately detect and measure synapse activity in evoked cultures. 

Applied to recordings of iGluSNFR-transduced and PSD95-GCaMP6-transduced neurons, we 

also revealed the probabilistic nature of synaptic transmission, emphasizing its added value 

(Suppl. Fig. S2). By default, eigenframe 2 was used for synapse segmentation. However, 

unexpected cellular behavior such as spontaneous cell activity, large changes in cellular 

responsiveness or cell death can contribute significantly to the temporal kinetics and may 

therefore change the typical ordering of the eigenvectors. Also, in the absence of evoked 

synapse activity, the 2nd eigenvector does not encode a synapse response, but rather represents 

spontaneous activity or noise. That is why we have built in a manual curation possibility to 

switch the source eigenframe. Yet, when aiming for high-throughput screening (HTS) of 

multiple plates per day, manual interventions should be minimized. Hence, we adapted the SVD 

approach to cater for different possible scenarios, by specifying a predefined eigenresponse set 

in a dictionary (DICT). The dictionary can be manually created, or it can be an SVD of a quality-

assed real or simulated reference recording. Its use allows systematic comparison of recordings 

with variable background or severe pharmacological effects and is computationally 10-100x 

faster than SVD calculation. 

 

Integrated synapse activity analysis enables classification of compound effects 

To evaluate the performance of our analysis, we ran a small-scale compound assay, in which 

we subjected primary cortical neurons, transduced with iGluSnFR to a stimulation scheme of 1 

EP and 10 EP, separated by 8 seconds. The following compounds were used: WAY-213,613 

(WAY), Tetrodotoxine (TTX), threo-beta-Benzyloxyaspartate (TBOA), Phorbol 2-myristate 
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13-acetate (PMA). Blockers only (vehicle) and DMSO served as controls. Each compound 

treatment was replicated 9 times, randomly distributed over the different wells of the plate. 

When analyzing the temporal response of synaptic regions, we found marked differences 

between treatments (Fig. 7a). In brief, TTX virtually abolished the response to the electrical 

stimulus, whereas PMA had the opposite effect and significantly increased the amplitude (+ 

200%). WAY, in turn, prolonged the decay time as compared to the controls (+70%). TBOA 

decreased the amplitude (-75%) and prolonged the decay time (+35%) (Fig. 7b). When 

comparing the well-averaged synapse response to the average signal fluctuations calculated 

across the entire FOV, we found that the dynamic range was (+40%) higher, proving higher 

sensitivity for this approach (Fig. 7b). Only considering amplitude and decay time was not 

sufficient to irrefutably discriminate compound treatments (Fig. 7c). Hence, we explored the 

feature space in more detail. To do so, we compared the distribution of each parameter for a 

given condition with that of the control group, using a separation score, defined by the inverse 

of the overlap between two conditions:  

separation score (A,B) = 1 − 𝑠𝑖𝑚𝑆𝑐𝑜𝑟𝑒(𝐴, 𝐵), 𝑠𝑖𝑚𝑆𝑐𝑜𝑟𝑒(𝐴, 𝐵) =
"	$%&$((⋂*)

$%&$(()	,$%&$(*)
  

This revealed how the different parameters are affected by a treatment. For instance, WAY had 

a large influence on the Area Under the Curve (AUC) and base fluorescence and no influence 

on the synapse size (Fig. 7d) compared to the cells only treated with blockers.  

Given these unique effects, we reasoned that an integrative approach would allow separating 

treatments better, which could be of use for predicting mode of action. We used linear 

discriminant analysis (LDA) on all extracted parameters to define best separating hyperplane 

between two conditions. The coefficients defining this plane represent the relative contribution 

of the parameters that differentiate two treatments. In the case of PMA, we found that amplitude 
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was the major contributor to the LDA hyperplane, as also revealed by a scatterplot (Fig. 7e). 

The separation score based on the histogram of a projection onto the dominant LDA plane 

provided a quantitative view on the difference between two compound treatments. When 

compiling the separations scores for all compound combinations, the resulting compound 

similarity matrix (Fig.7f), showed that different treatments can be differentiated (low similarity 

scores) and that typical controls (blockers and DMSO) have a high similarity score. This 

suggested that the similarity matrix can be used to identify compounds with (dis)similar mode 

of action. More specific similarity measures could be obtained by limiting the matrix calculation 

to a subset of the features. For example, when selecting only amplitude-related features 

(ampss_1, synapseAmplitude1), we found that WAY-treated neurons behave quite similar as 

the control-treated. Similarly, when investigating the decay time matrix (downHalfTime1, 

tau_1), PMA resembled DMSO and blockers indicative of its limited impact on this aspect of 

the kinetics. In other words, integrated synapse activity analysis offers a flexible means to 

identify compound mode of action. 
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Discussion 

We have created a fully integrated pipeline to interrogate synapse activity. Synapse activity can 

entail calcium, pH or glutamate oscillations, and, owing to the high information content, 

efficient SRRF-based super-resolution reconstruction facilitates morphological analyses of the 

same images. Furthermore, by stitching sequentially recorded time stacks of electrically 

stimulated recordings, the effective FOV can be significantly increased, allowing for 

uncovering spatial subdomains of correlated activity. While the latter should obviously first be 

validated using whole well recordings, it does show the robustness of the system and 

reproducibility of the evoked responses. Thus, the platform offers the possibility to acquire 

information about synaptic activity at scales ranging from ~ 100 nm to > 1 cm, from single 

synapse morphology to population dynamics. 

At the heart of the image analysis, is a decomposition of temporally correlated information by 

means of SVD. We found that SVD outperforms more classical approaches for synapse 

detection such as STD. But we also show that at a larger scale it offers a means to untangle 

complex relationships and subpopulations in the image, such as differentially firing neurons 

and astrocytes. This offers functionality similar to recent label-free cell segmentation and in-

silico labeling methods (Christiansen et al. 2018; Johnson et al. 2017; Pnevmatikakis et al. 

2016), but with a directly traceable mathematical basis. We tailored it here for stimulated high-

throughput synapse recordings but with even larger FOV recordings, SVD can also be used to 

investigate network dynamics in neuronal cultures. Using iGluSnFR as reporter, we found 

consistent changes in fluorescent signal that scaled with the magnitude of the delivered 

electrical stimulus. The corresponding changes in amplitude were surprisingly similar (up to 5-

fold increase) to those that were originally documented for this reporter by the Looger group 
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(Marvin et al. 2013), suggesting high sensitivity and dynamic range. We have tested the 

platform with different excitatory reporters that measure pre-synaptic calcium, glutamate 

release, and post-synaptic calcium. However, in many neurodevelopmental disorders, an 

imbalance of excitatory and inhibitory synapses leads to circuit dysfunction, thus calling for 

functional markers of distinct synaptic subpopulations. Our platform should be perfectly set for 

measuring any of these reporters as long as they display measurable fluctuations in fluorescence 

intensity. As yet, there are few such reporters available, but the field is rapidly gaining traction. 

To highlight a few, iGABASnFR was developed to report on gamma aminobutyric acid 

(GABA) binding (Marvin et al. 2019), cholinergic synapses can be monitored using iAChSnFR 

(Borden et al. 2020) and dopaminergic synapses using GRABDA (Sun et al. 2018). Such markers 

could readily be implemented in our platform. Similarly, with minor changes, it may be used 

for assessing changes in spontaneous (and evoked) activity in human patient-derived neurons. 

While conceived for the analysis of population-level changes in synapse activity, the single 

synapse resolution allows revealing the stochasticity and probabilistic nature of synaptic 

transmission as exemplified by examples of occasional synaptic failures (Suppl. Fig. S2). We 

have not specifically elaborated on this topic here, but it is conceivable that this type of 

spatiotemporally resolved information can be exploited for quantal analysis, as presented by 

others  (Farsi et al. 2021; James et al. 2019), but now in high-throughput format.  

The in-depth analysis of extracted synapse activity parameters as we have now developed it, 

allows discriminating compounds by their modus operandi. To illustrate this, we created a small 

similarity matrix from which a recommender system for retrieving similar compounds can be 

built (Simm et al. 2018). From this pilot experiment, we were able to find correlations between 

the working mechanism of TBOA and WAY that are known to block clearance of 
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neurotransmitter by blocking glutamate transporters and differentiate it from the working 

mechanism of PMA which is a Protein Kinase C activator known to enhance neurotransmitter 

release. Per compound all extracted features were evaluated and ranked as a function of the 

quality by which they characterize the mode of action of a particular compound. Based on these 

features, other machine learning algorithms such as support vector machine networks or deep 

neural networks  (Cortes and Vapnik 1995; Kotsiantis et al. 2006) can be used to classify and 

predict modes of action. 

 

Conclusion 

We have developed a fully integrated pipeline to analyze synapse activity with high throughput 

and content. The associated open-source software allows image processing, and metadata 

warehousing as well as downstream data analysis and visualization. Owing to its modular build, 

the software allows hierarchical data structuring and analysis. We believe this new platform, 

will represent a useful tool for profiling genetic and pharmacological perturbations aimed at 

improving synaptic performance in large scale screens. 
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Data Availability 

The S3T software has been made publicly available on GitHub 

(https://www.github.com/S3Toolbox). The datasets generated during and/or analysed during the 

current study are available from the corresponding author on reasonable request. 
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Figures  

 

Figure 1. A high-throughput pipeline for measuring electrically evoked synaptic activity. a) 

General summary of the major elements of the pipeline; b) 3D model views of the stimulation 

device (top, side, and exploded view); c) 96-well plate with stimulation device as top lid (top) 

and bottom view of part of the stimulation device showing the individual platinum electrodes 

(bottom); d) Schematic summary of the hardware and software integration. 
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Figure 2. S³T software pipeline. a) The stack of raw images serves as input (1) and is projected 

(e.g., using SVD) (2), resulting in a high SNR image. In this image, spatial features can be 

further enhanced by spatial filters (e.g., Laplacian) (3) after which an automatic threshold is set, 

resulting in a binary image (4), onto which morphological filtering is done (5). This results in 

a mask, which is applied onto the original image to extract responses of individual regions of 

interest (ROIs) (6); b) For the analysis of the synapse responses, the absolute intensity of the 

pixels is calibrated based on the intensity of the darkest pixels (1). For each ROI, one or more 

time-window of interest (TOI) is extracted based on the stimulation timings (2). In each 

window, different events are detected (3). Similar stimulation responses are averaged over time 

and over different ROIs (4). The subsequent analysis of each event consists of the extraction of 

different features (Suppl. Data 4) of which several are illustrated.     
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Figure 3. High-throughput imaging allows assessment of electrically evoked synapse activity 

at multiple scales. a) Montage of selected frames from electrically stimulated primary 

hippocampal neurons expressing iGluSnFR (top) and their difference with the average frame 
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(bottom); b) corresponding intensity profile of the image; c) Response amplitude (mean ± stdev) 

to 1EP and 10 EP stimulation for different wells (field average); d) Responses to electric 

stimulation patterns with different pulse intervals; e) Temporally averaged intensity projection 

(time-stack average) of recordings with different markers, inverted for clarity; f) Mean 

fluorescence and amplitude of different fluorescent markers; g) Comparison of image quality 

in a single raw image versus that of a standard deviation (STD)-projected or SRRF 

reconstructed version of a time-lapse acquisition of iGluSnFR-transduced neurons; h) Multi-

scale acquisitions of iGluSNFR-transduced neurons, as obtained from stitching sequential 

acquisitions up to a whole well and down to a single spine by SRRF reconstruction.  
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Figure 4. SVD is a robust approach for synapse analysis. a) Visual representation of converting 

the image stack into a matrix for singular value decomposition from which left eigenvectors 
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represent eigenframes, and the right eigenvectors represent the eigenresponses; b) The first 6 

eigenresponses (E1-E6) for a representative dataset of responding syGCaMP6f (n = 42 wells, 

two stimuli) and iGluSnFR (n = 32 wells, three stimuli) expressing cells. E2 contains the most 

prominent and consistent response, whereas higher-order eigenresponses progressively become 

more variable and contain more noise. Individual traces are depicted in gray and the average 

response in red; c) Illustration of mask creation on artificially created sample data with STD, 

SVD, and DICT for increasing amounts of noise. d) A bar plot indicating the total number of 

errors made for each method over a benchmark of 60 different movies with different amounts 

of simulated noise and photobleaching 
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Figure 5. SVD allows spatiotemporal unmixing of synapse activity. a) Selected frames and 

field-average intensity response curve from a 1EP + 10EP stimulation recording on iGluSnFR-

expressing neurons; b) Color-coded representation of the positive and negative part of the first 

three eigen-components (eigenframe and eigenresponse) of SVD reveal the dynamics in the 

field of view. Line profiles represent the resp. contribution of the eigenframes to the temporal 

signal. 
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Figure 6. SVD allows spatiotemporal unmixing of cell types. a) Spatiotemporal deconvolution 

using the first 3 eigenframes on a SyGCaMP6f recording, reveals differential dynamics of 

somatic (arrowhead) and synaptic regions; b) Applied to a GCaMP6f recording, SVD 
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deconvolution discriminates responding from non-responding cells (arrowheads); c) More 

inclusive SVD deconvolution reveals differential dynamics of synapses and astrocyte body 

(arrowhead) in a PSD95-GCaMP6f recording. Inset shows the original grayscale image; d) The 

same extended SVD deconvolution allows differentiating neuronal (arrowheads) from astrocyte 

dynamics in Fluo-4AM labeled cultures, stimulated with glutamate. Inset represents the original 

grayscale image. 
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Figure 7. Integrated synapse analysis for compound screening and classification on iGluSnFR-

expressing neurons. a) average traces of synapse responses in cortical neuronal cultures treated 

with one six compounds (or control) and sequentially stimulated with 1EP and 10EP; b) 

Compound data visualization of parameters amplitude, down half time and max frame at the 

level of the well and at the level of the individual synapse; c) Scatterplot of two discriminating 

synapse response parameters (amplitude and decay time); d) Separation scores between 

treatment with DMSO or PMA as determined for different parameters and illustration of the 

corresponding histogram for synapse response AUC; e) LDA of all parameters for the 

comparison PMA vs DMSO reveals that amplitude is a dominant contributor as also revealed 

by the histogram of the corresponding projection onto LD2; f) Similarity score for each 

combination of compounds when separated by LDA using all features, or when using only 

amplitude or decay (small insets). 

 

 

 

 

 

 

 

 


