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Abstract. There is an industry wide push for faster and more fea-
ture rich systems, also in the development of Cyber-Physical Systems
(CPS). Therefore, the need for applying agile development practices in
the model-based design of CPS is becoming more widespread. This is no
easy feat, as CPS are inherently complex, and their model-based devel-
opment is less suited for agile development. Model-based development
does suit the concept of digital twin, that is, design models represent-
ing a system instance in operation. In this paper we present an approach
where the digital twins of system instances serve as a common-knowledge
base for the entire agile development cycle of the system when perform-
ing system updates. Doing so enables interesting possibilities, such as
the identification and detection of system variants, which is beneficial
for the verification and validation of the system update. It also brings
along challenges, as the executable physics based digital twin is generally
computationally expensive. In this paper we introduce this approach by
means of a small example of a swiveling pick and place robotic arm. We
also elaborate on related work, and open future challenges.
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1 Introduction

In multiple industries, there is a drive to develop faster and more feature-rich
systems. That is also the case for Cyber-Physical Systems (CPS) that integrate
computation, communication and physical processes in a single system. Exam-
ples of these systems can be found in trains, vehicles, industrial machines, etc.
The software of CPS is usually very complex and tries to control the system
in uncertain environments. However, at design time it is hard to predict all the
possible circumstances where the system needs to operate in. Furthermore, user
requirements of the system may change during the operation of the system.
This results in the demand for more agile approaches to CPS development and
operations [5, 3] that bridge these phases of the system lifecycle.

⋆ Joost Mertens is funded by the Research Foundation - Flanders (FWO) under strate-
gic basic research grant 1SD3421N.
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DevOps (Development and Operations) is a set of practices that looks to
link design and operations of a system with each other in a continuum. Through
continuous integration, delivery and deployment, the common idea is to achieve
faster lead times for system updates [12]. Within the context of CPS, which are
mostly designed in a Model-Based manner, the application of DevOps is feasible
but challenging [8].

Given the model-based engineering approach of CPS, performing the most
accurate design iteration necessitates a synchronization of the existing design
models with real-life. In contrast with software engineering, physical systems
age and undergo revisions independently from changes to the design models. To
achieve the synchronization, operational data must be incorporated back into the
design models. Because CPS are usually engineered using a set of models (ar-
chitecture, behavior, etc.), the idea of continuously synchronizing a model with
the real-world is not far-fetched, but feasible. In fact,this idea closely resembles
a digital twin, which is often known as an executable physics-based model that
represents a physical system. It can be used in several scenarios, from monitoring
in which case it is more accurately called a digital shadow [13], to product life
cycle management [10] and prediction, where it becomes clear that a link can
be made to the initial question of how to incorporate operational data back to
design models.

In [16], the uses of a digital twin throughout a DevOps cycle are made explicit.
The digital twin serves as the enabler for carrying operational data back over to
the development part of the DevOps cycle, but is also employed in other phases,
e.g. in the test phase for testing against the most correct representation of the
current system, or in the build phase, to virtually commission the system. We
share this vision, and like to consider a digital twin as the common knowledge
base that can be used throughout the entire DevOps cycle.

One additional point of interest is that of system variants. At design time,
designers can account for a multitude of variants in a deployed system, yet at run
time system variants develop naturally, for example hardware revisions of parts
or degradation of electrochemical components such as batteries. In principle,
such variations are detectable events for a digital twin. To clarify, at design time,
the interpretation of variants is the same as in software product lines: a system
configuration with specific features. However, at run time, we additionally deem
a system that is no longer accurately represented by it’s design time model a
variant, in which case the model requires updating.

In [15], we shared a vision and the challenges related to using a digital twin as
a means to bridge the design and operational phases of a system lifecycle. In this
paper, we start by introducing a small example of a robotic arm making a pick
and place swivel movement. Next, we elaborate on our approach of combining
a digital twin with agile methods to update systems. We apply a subset of the
approach on a system update of the small example as a demonstration. We
then elaborate on some challenges, and discuss our proposed approach to tackle
them. Afterwards we discuss related work, and lastly a conclusion summarizes
the paper.
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2 Example System

In this example, an electric motor performing a repetitive movement is studied,
more specifically a swiveling robot arm performing a pick and place move. The
arm is deployed in various locations around the world, were temperatures and
humidity levels differ. In the example, we update the controller to perform a
similar, but more rapid movement. Figure 1 illustratively shows this system.

Note that the physical system does not actually exist. Instead, we work on a
simulated environment, with a different parameter set for a warm, cold and “lab”
environment. This yields 3 models, one development model, and two “real-life”
models. Those “real-life” models are conveniently reused as digital twins in this
case. In a real setup this would not be the case, and the “real-life” models would
be the physical system, instead of a model.

Fig. 1: Iconized example of the example system.

The system is modeled in Simulink®, shown in figure 2. The pick and place
controller consists of a chain of PI(D) controllers that control the position of
the arm and, the angular velocity and current of the motor. The controller
generates the control signal to drive the inverter connected to the motor. The
rotational movement is modeled using the SimScape library as a brushless DC
motor that is driven by an inverter. The effect of the environment being cold or
warm is incorporated as a viscous friction component in the rotational part of
the BLDC model. In a cold environment, this friction component is higher than
the in a warm environment, for example due to tighter tolerances or viscosity of
lubricants. In the model this is characterized by the Coulomb friction. The only
requirements for the system are for the pick and place movement to happen at
a speed of 2 Hz, and with a steady state error of less than 0.75◦. This is briefly
summarized in table 1.

Fig. 2: Simulink®model of the system.

Description Value

Pick & Place Move -90◦ to 90◦

Frequency 2 Hz

Error <0.75◦

Table 1: Model information.
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During the development the friction component remains a question for the
modeller, but we can assume that lab conditions suffice to tune the controller,
that is, regular room temperature. After tuning and “deploying” the controller on
the real system, that is, testing it on the models where the correct environmental
conditions are applied, we find that the friction component matters little, and
the swivel motion happens as expected. The movement of the swivel arm can
be seen in figure 3. Model calibration reveals that to be entirely correct, the
Coulomb friction must be 0.5 Nm in the cold climate and 0.2 Nm in the the
warm climate.

Fig. 3: Traces for the initial controller in both environments.

As can be seen in figure 3, the swivel arm reaches the setpoint reasonably
quickly, and, inspecting the difference at steady yields worst case absolute errors
of 0.46◦ and 0.53◦ for the cold and warm environments respectively. In other
words, the controller tuned under lab conditions suffices for both the actual
in-the-field conditions.

3 Approach

Our approach combines digital twins with agile methods to update systems, with
a specific interest in the verification and validation of the updates. The founda-
tion of the approach is multi-paradigm modeling [19]. Multi-paradigm modeling
advocates the explicit modeling of all parts of a system, at the most appropriate
level of abstraction, and in the most appropriate formalism. In other words, in
our approach we thus look to model the various parts of the system: real-world
representative system models (digital twins), deployment models, architectural
models of the whole, networking models for communication. This allows to per-
form different processes on a deployed system, as the architectural overview in
figure 4 depicts. Next we explain the process of release management and variant
detection in more detail.
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Fig. 4: Architectural overview of the approach.

3.1 Variant Detection

Our approach for the detection of new, undocumented variants relies on the
digital twin. Figure 5 shows the process of discovering new variants of the system
configuration and environments. The first activity is the detection of deviations
between the real system and the digital twin within a certain tolerance. The
means to detect a deviation are dependent on the digital twin technology. For
example, when using a Kalman filter-based digital twin, the observation over the
Kalman filter gain is a possible means to detect deviations between the model
and the real world. The deviation can be purely parameter-based. In such a case,
the structure of the model is still valid. This results in a new calibration of the
model using the data from the real-world. If the re-calibration is successful, a
new variant is detected in the real world.

If the calibration fails, the model structure is not sufficient to describe the
state of the real system. This can happen when a component of the real-system
has changed (e.g. a different DC motor is used because of a repair). In this case,
another model is needed to describe the state of the system. When a library
of models is available (with different alternative models), the variant detection
searches within the library for possible configurations. We rely on the validity
frame [4, 1, 17, 18] to describe the validity range of the model. The Validity Frame
covers the general concept of validity of a simulation model. In [4], four uses of
the Validity Frame concept are analysed: (i) defining the validity of a model,
(ii) model/component discovery, (iii) calibration of a model, (iv) defining the
experimental process. In the context of this paper, (ii) and (iii) are of interest.
When no valid model can be found, the developers need to review the data and
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find possible system configurations that explain the deviation from the data.
This can happen when a non-standard component was used for the repair of the
system or because of wear and tear of the system.

Fig. 5: Workflow for detection system variants using digital twins.

Similarly, another deviation happens when the input of the real system is
outside the valid input bounds of the model. The same procedure with the
validity frame is used to detect and resolve such a deviation. When no model
is available, the environment in which the system now operates is not taken
into account during design of the system. It is therefore necessary to resolve the
deviation manually.

In each of the cases, a new variant is added to the library of variants that is
used by the release management and virtual commissioning component.

3.2 Release Management and Virtual Commissioning

Figure 6 shows the simplified workflow for the virtual commissioning of the
system update on the different variants. From the variant detection mechanism,
the virtual commissioning component knows which different variants exist of
the system. For each of the different variants, an automatic verification and
validation experiment is set up. If the experiment passes for the variant, the
software update can be deployed onto the systems that are represented by that
specific variant. Note that for most systems, in the interest of safety, a human
intervention is still required to sign off on the release. This can be provided by
showing the proof of the V&V activity to the human to make a decision on
deployment of the update.

Because of the nature of the system-under-test, the experimentation envi-
ronment is build from a co-simulation setup using FMI co-simulation [2]. This
is necessary as a typical CPS system is created with different models in differ-
ent languages. However, some of the requirements can only be checked at the
system level, for which the different sub-systems must be integrated to evaluate
the system-level behavior, thus requiring co-simulation.
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Fig. 6: Simplified virtual commissioning workflow without error reporting paths.

We also expect that system requirements are available that can be automati-
cally checked. Simulation typically outputs traces of the signals in the simulated
system. The requirements specified over these traces should be evaluated. For
temporal properties, we rely on monitors generated from temporal logics such as
Signal Temporal Logic [6]. Other properties, such as energy performance, typi-
cally require an extra step to be computed from the traces (e.g. the integration
of the signal in time).

4 Application of the approach

As a proof-of-concept for the approach, we show a new release for the control
mechanism on the arm. The user of the system wants more performance and
demands for a more rapid movement of 10 Hz instead of 2 Hz. This is shown in
the system information in table 2. We study the system update in two cases, one
with and one without a DevOps loop with a Digital Twin as knowledge base.

Description Value

Pick & Place Move -90◦ to 90◦

Frequency 2 Hz

Error <0.75◦

Table 2: Updated system information.

Updating without DevOps In this first update, we assume no DevOps with
a digital twin as common knowledge base is used. The concept is illustrated
in figure 7a, which shows that the system in operation is monitored, but no
feedback is given for future developments. The new controller is therefore still
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(a) Development and deployment with-
out feedback. (b) DevOps assuming digital twin as

common knowledge base.

Fig. 7: Update schemes for the system update.

created for, and tested in lab conditions, even though it may be deployed in
different conditions.

Inspecting the results in figure 8, at first glance both systems seem to pass
the requirements, but on closer inspection, in the cold environment the arm fails
on the maximum allowable absolute error. It hits a worst case number of -1.57◦,
which is far past the 0.75◦ allowed value. The arm in the warm environment
performs alright, with an error of only 0.61◦.

Fig. 8: Traces for the updated controller in both environments.

Updating with DevOps and digital twin In this second case, we assume
a digital twin (or digital shadow), of the arm exists. Since the digital twin is
continuously calibrated with the real system, the specific environment in which
the robotic arm is located is identified. As per the flow in figure 5, a deviation
detection notifies us of a difference between the model and the real world. In
this case, given that structurally the model is valid, a re-calibration of the model
suffices. After re-calibration, a proper new value for the friction in the cold
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environment is found and the software update verified and validated. Figure 7b
shows this system where monitored data at runtime is used at design time. Since
the DevOps loop is now closed, instead of relying on the design models only, the
characterized environment is processed and utilized during the testing of the
new controller. Upon deployment, each robot arm is tested in its own specific
environment, yielding more accurate results.

Fig. 9: Traces for cold environment, with corrected controller.

For the warm environment nothing changes, except that, if needed the con-
troller can be adjusted even better to the actual condition. For the cold environ-
ment, testing against the calibrated digital twin would show the failed results
from figure 8, and the designer is able to adjust the controller to that envi-
ronment. Indeed, with some tweaking of the differential gain parameter of the
position controller, the maximum absolute error in the cold environment can
also be brought to 0.62◦, passing the test. Those results are plotted in figure 9.

5 Discussion

Although the example is small, it demonstrates well how having feedback from
existing systems can aid in the verification process of new feature or update for
already deployed systems. We rely on DevOps in figure 7b since it the most
complete set of practices for continuous feedback. One might argue that the
approach does not specifically need the use of digital twins to detect the dif-
ferent environments, and that the problem could have been prevented by more
thoroughly defining tests in section 2, but that is a moot argument, since one
cannot account for all possible variations. Alternatively, instead of varying the
environmental conditions, we could also have studied a case in which physical
components such as the motor are replaced by equivalent but not 100% identical
parts. From the approach, the example shows two possibilities that stem from
using a digital twin as knowledge aggregator for data:
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– Detecting undocumented variants in deployed systems or their environments.
Once detected, those variants can be used to aid in the updating of existing
or the development of new systems.

– Detecting run-time problems. A physics-based, executable digital twin, al-
lows to detect run-time problems that cannot be identified on the deployed
system itself, e.g. by being too computationally heavy.

Besides these possibilities, the approach brings along some new challenges:

C1 When using a digital twin as knowledge base, where should its executable
parts be ran and where should its data be stored? Various options are pos-
sible, such as machine-local, on a centralized server in the cloud, or using
some decentralized scheme of edge computing per operational site.

C2 Is it feasible to detect and uncover every potential variant in a computational
sense, and test for every discovered variant? That’s to say, is this scalable to
larger number of systems, such as in a fleet of vehicles. Can heuristics be used
to make this approach more scalable, e.g. by aggregating data from multiple
systems into a single representative digital form. Distribution towards the
edge and local system might help.

Some parts of the approach do remain unexplored by the example, more
specifically the embedded platform simulator and along with it a more realis-
tic process of release management/virtual commissioning. Our main solution for
handling both challenges is by modeling these explicitly. Performance models
are under construction to explicitly reason over the deployment issues. Sensitiv-
ity analysis on the different input and parameters will be used to automatically
reason over lumping together individual variants. Furthermore, as certain sub-
system tests are shared between variant classes, an analysis of the test set might
increase the scalability of the approach. Finally, the challenges are not indepen-
dent, as evaluation can be distributed based on the type of feature. Features
that are much more customized benefit from distribution towards the edge and
system, while features that are very common might benefit from centralization.
This remains future work.

6 Related Work

Papers such as [3, 20, 5] make note of the ever faster recurring development cycle
for CPS. In the CPS domain, where model-based engineering is widely applied
due to its abstraction of complexity, there is thus a need for practices such as
DevOps. In [3], the challenge of transferring data back from the running system
to the models is specifically noted. In [14], it is clearly identified that model-
based design practices and digital twin practices integrate well with eachother,
and in [16], a description of how the digital twin can be used throughout the
DevOps stages is elaborated on. That is also why we like to call the digital twin
the common-knowledge base in the DevOps loop, and such a knowledge base
can consist of executable models but also non-executable models. Specifically
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in the verification and validation stage, it is noted in [16] how the digital twin
can be used to ensure the system is represented as best as possible, though
no note is made on the identification variants, which is where we believe we
can further contribute. On the topic of testing, we must note that this remains
one of the larger challenges for the adoption of DevOps in the development for
CPS, as noted in [21]. Indeed, the development of CPS relies on thorough test-
ing, often followed by safety and/or security certification. In this respect, the
potential contributions of the presented approach will be limited to identifying
problems earlier on, since we remain in a modeled world, and certification hap-
pens on a codebase. Models can however help with producing certifiable code
more easily. It’s also on the model aspect that we differentiate from other variant
management approaches such as [11], which operate on a code level, and uses
emulation. This is interesting from the certification point of view, but less inter-
esting from the early testing point of view. In [7] however, it is stated that for
continuous integration chains, fast transaction level simulation is proven to work
for the simulation of virtual hardware, and is more scalable than testing with
hardware. Another aspect is that of the run-time validity monitoring. Where
the runtime monitoring of Validity Frames is currently limited to input/output
value/datatype and relation monitoring, for correct variant detection, it might
be needed to incorporate other monitors as well. In this regard in [9], the concept
of multilevel monitors is presented for detecting attacks or faults. A distinction is
made between Data Monitors, Functional monitors and Network monitors. The
data monitoring and functional monitoring are similar to the I/O monitoring in
Validity Frames, but the overlapping monitors and network monitoring presents
interesting insights that can be used to extend the monitoring capabilities of
Validity Frames.

7 Conclusion

In this paper we elaborated on our vision of utilizing the digital twin of a system
in the agile deployment of new system updates. The approach builds on the idea
of using the digital twin as a common knowledge base throughout the DevOps
cycle. We demonstrated a subset of the approach on a small example study,
from which we elaborated some open challenges that remain to be researched.
Lastly, we also elaborated on how related work matches our vision, and how our
approach can contribute to or differs from that existing work.
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