
This item is the archived peer-reviewed author-version of:

Ontological reasoning in the design space exploration of advanced cyber–physical systems

Reference:
Vanommeslaeghe Yon, Denil Joachim, De Viaene Jasper, Ceulemans David, Derammelaere Stijn, De Meulenaere Paul.- Ontological reasoning in the design

space exploration of advanced cyber–physical systems

Microprocessors and microsystems - ISSN 1872-9436 - 85(2021), 104151

Full text (Publisher's DOI): https://doi.org/10.1016/J.MICPRO.2021.104151

To cite this reference: https://hdl.handle.net/10067/1799160151162165141

Institutional repository IRUA

Ontological Reasoning in the Design Space

Exploration of Advanced Cyber-Physical Systems

Yon Vanommeslaeghe∗‡, Joachim Denil∗‡, Jasper De Viaene∗†§, David Ceulemans∗‡,

Stijn Derammelaere∗†§, Paul De Meulenaere∗‡

∗CoSys-Lab (FTI), University of Antwerp, Belgium
†Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, Belgium

‡AnSyMo/CoSys, Flanders Make, Belgium
§EEDT-DC, Flanders Make, Belgium

Abstract—Cyber-physical systems are becoming increasingly
complex. In these advanced systems, the different engineering
domains involved in the design process become more and more
intertwined. Therefore, a traditional (sequential) design process
becomes inefficient in finding good design options. Instead, an
integrated approach is needed where parameters in multiple
different engineering domains can be chosen, evaluated, and
optimized to achieve a good overall solution. However, in such
an approach, the combined design space becomes vast. As such,
methods are needed to mitigate this problem.

In this paper, we show a method for systematically capturing
and updating domain knowledge in the context of a co-design
process involving different engineering domains, i.e. control and
embedded. We rely on ontologies to reason about the relationships
between parameters in the different domains. This allows us to
derive a stepwise design space exploration workflow where this
domain knowledge is used to quickly reduce the design space to
a subset of likely good candidates. We illustrate our approach
by applying it to the design space exploration process for an
advanced electric motor control system and its deployment on
embedded hardware.

Index Terms—Embedded Systems, Cyber-Physical Systems,
Co-Design, Design Space Exploration, Ontological Reasoning

I. INTRODUCTION

The design of Cyber-Physical Systems (CPS) is inherently

a co-design process between different engineering domains.

Indeed, even in its simplest form, a CPS consists of a control or

monitoring algorithm, designed by a control engineer, it runs

on an embedded platform, which is designed by an embedded

engineer, and which controls or monitors a physical system,

designed in turn by a mechanical engineer. However, over

the years, the complexity of CPS and the control and mon-

itoring algorithms used therein have increased significantly.

For example, in control, there has been an evolution from

simple PID-controllers to more complex model-predictive con-

trol (MPC). This trend is expected to continue with more

advanced algorithms that contain models of the physics of the

systems to be monitored and controled. However, before these

algorithms can be used in real-world applications, they need

to be deployed on an embedded platform. As these models

are computationally expensive, embedded deployment is chal-

lenging, especially when real-time performance is required.

For example, model predictive path integral control (MPPI) [1]

can be used in autonomous driving for trajectory optimization.

However, this requires parts of the MPPI algorithm to be

run on a graphics processing unit (GPU) to allow real-time

operation [2].

In these situations, the different domains (i.e. control and

embedded) become intertwined, with decisions made in one

domain imposing additional restriction and requirements on

the other. For this reason, a traditional, sequential design

process, i.e. first design of the control algorithm followed by

deployment on an embedded platform, becomes insufficient

to ensure efficient deployment and integration. Indeed, it

becomes necessary to view this as a multi-domain co-design

process, where parameters in both the control and embedded

domain must be considered and evaluated to arrive at a good

combination of software and hardware configuration.

However, in such an integrated design process, the design

space expands dramatically due to the increased number of

degrees of freedom. Therefore, the design space exploration

(DSE) needs to be performed efficiently. By means of an

example, the current paper demonstrates how domain knowl-

edge captured in an ontology can be used to guide the DSE

process. We demonstrate this for the embedded deployment of

an advanced motor control algorithm [3], [4].

The paper is organized as follows. First, Section II discusses

related work. Next, in Section III, we describe our method and

the different steps therein. After this, in Section IV, we present

our use case and its associated design space. In Section V,

we demonstrate our proposed method by applying it to this

use case. The results of which are presented in Section VI

and compared to those achieved with traditional design space

exploration techniques. Lastly, in Section VII, we present our

conclusions and future work.

II. RELATED WORK

A lot of research has already been done regarding hard-

ware/software co-design. Earlier hardware/software co-design

frameworks, such as Metropolis [5] and later Metro II [6],

generally follow the principle of the platform-based design

[7] methodology: the “orthogonalization of concerns”, i.e.

separation of different aspects of the design. These frame-

works generally only consider “embedded” parameters, such

as timing and resource utilization, instead of system-level

performance, for example, the impact of execution time on

control performance. As such, the embedded system is often

designed to support the most demanding algorithm config-

uration, regardless of the configuration that is eventually

used. For complex cyber-physical systems, this is no longer

realistic. As the different domains become more intertwined,

the abstractions taken in these frameworks become inefficient

in providing effective and efficient solutions. More recently,

efforts have been made regarding the co-optimization of CPS

designs in multiple domains and on resource-aware embedded

control system design [8]. This also motivated the development

of Metronomy [9], which allows for the co-simulation of

architectural models from Metro II [6] with functional models

from Ptolemy II [10].

More recently, effort has been made to optimize control

and monitoring algorithms together with their embedded de-

ployment strategy. Aminifar et al. [11] address the controller-

server co-design problem for multiple control tasks running

on a shared platform. Here, virtual servers are used to divide

the computational resources among the different control tasks.

However, the configuration of these servers has a large impact

on the delay and jitter experienced by each controller, and thus

their stability. Their goal is to optimize the server configura-

tions, together with the sample period of the corresponding

controllers. To do this, a stability curve is first computed to

determine the maximum tolerable response-time jitter for a

given nominal delay that the control application experiences.

This information is then used to determine the optimal config-

uration of server parameters and sample period that minimizes

the overall resource utilization while guaranteeing system

stability. This approach is compared to a previously presented

server design approach [12] where the server configurations

are optimized, but the sample period is given as would likely

be the case in a more traditional, sequential design process.

Their results show that the co-design approach achieves, on

average, a 44% lower resource utilization than the traditional

approach. Similarly, Roy et al. [13] consider the design of a

(distributed) FlexRay-based embedded control system. Here,

they co-optimize controller design together with the FlexRay

schedule, resulting in a Pareto front depicting the trade-off

between control performance and bus-utilization.

While Roy et al. [13] and Aminifar et al. [11], [12] consider

offline optimization, Cervin et al. [14] have previously stud-

ied online optimal sampling period assignment for multiple

controllers running on a shared embedded platform. In their

work, a cost associated with each controller’s performance

given a certain sampling period is precomputed and stored

in memory on the embedded platform. A feedback scheduler

is then used to periodically reassign the sampling periods for

the controllers. This is done based on, among other things,

the current plant noise as estimated by the controller. The

feedback scheduler optimizes the sampling periods to obtain

the best overall control performance while ensuring schedu-

lability. Their results show that the optimal sampling period

assignment achieves much better overall control performance

than a traditional design with fixed periods.

As previously mentioned, the design of cyber-physical sys-

tems is a co-design process. Engineers from different disci-

plines work concurrently on different aspects of the systems,

after which the different parts are combined. However, incon-

sistencies during the concurrent phase cause problems during

the integration phase. This led to the concept of contract-based

design (CBD) [15], which focuses on establishing a consistent

design during concurrent design phases. Contracts specify

certain assumptions and guarantees between two parts of the

system based on negotiations between different engineers.

Such contracts have also been used in DSE for CPS. For

example, Finn et al. [16] propose a mixed discrete-continuous

optimization methodology for CPS architecture exploration

where they make use of contracts to ensure consistent archi-

tecture candidates.

From the state of the art, it is clear that there is a benefit to

co-optimization between the control- and embedded domains

and that it is possible to come up with efficient strategies for

design-space exploration and optimization. However, it is ap-

parent that determining these strategies is not straightforward.

It generally requires a good grasp of both the control- and

embedded domain and their interdependencies (domain knowl-

edge). As such, methods that allow engineers from different

domains to reason about these cross-domain relationships are

needed for them to derive an efficient design-space exploration

strategy. It is here that ontologies can be used to explicitly

capture the combined domain knowledge and leverage it to

guide the DSE process.

Previously, Vanherpen et al. [17] worked on combining

contract-based design with ontological reasoning to reason

about the content of such contracts. Similarly, Dávid et al. [18]

use ontologies in the context of (in)consistency management,

where they defined different levels of precision for the rela-

tionships captured in an ontology. However, neither explored

the use of ontologies in determining an efficient DSE process.

In previous work, we proposed the use of ontologies to

capture domain knowledge in a co-design process, including

engineers from different domains, and subsequently leveraging

this ontology to derive an efficient design space exploration

strategy for a system under design [19]. In the current paper,

we extend this method by introducing characterization and

ontology updating steps. These steps allow the systematic up-

dating of the ontology as new information or insights become

available during the design process. We demonstrate this by

performing sensitivity analyses on different parts of the system

under the design. The results of which are subsequently used

to update the ontology. Adding this sensitivity information

allows us to prioritize certain (more sensitive) parameters over

others during the DSE process, further increasing its efficiency.

Similarly, we show how the results of the characterization

steps can be reused in certain situations to provide an initial

best guess for certain parameters, further reducing the design

space. Additionally, we compare our approach to traditional

design space exploration techniques regarding the quality of

the solutions as well as the time required to perform the

exploration.

III. METHOD

We propose the use of ontologies to facilitate the opti-

mization of systems involving multiple engineering domains.

Ontologies enable the representation of shared knowledge in a

domain of discourse using a common language [20], including

the explicit definition of different concepts with their corre-

sponding properties. In the presented method, these ontologies

are used to capture the different properties in different domains

that are important to the design of the system, as well as

their relationships to each other. This allows engineers from

different domains to reason about the design as a whole. Con-

sequently, these ontologies are useful in discovering potential

trade-offs and points of attention, and ultimately to derive an

efficient design space exploration strategy by leveraging this

information. However, these ontologies are not static. They

need to be updated and refined when new information or

insights become available. As such, we discern a number of

different steps to be taken during the design process to define

and update these ontologies:

1) Ontology definition (at the system-level)

This step entails the definition of a first (system-level)

ontology by engineers from the different domains

involved in the system under design. This step takes

place early on in the design process and happens in

conjunction with requirements specification and the

definition of the overall system architecture as these

actions provide information about (i) different concerns

and (ii) connections between different components of

the system. This system-level ontology is defined by the

engineers based mainly on previous experience. It serves

as a first high-level overview of the different concerns in

the different domains and how they relate to each other.

However, it can already be used to identify potential

trade-offs and other points of attention.

2) Ontology updating

During the development process, the engineers gain more

in-depth knowledge about the different parameters and

properties they need to consider, as well as relationships

between these parameters and components. New

information may originate from deductive reasoning

about the design or from observations (inductive

reasoning), e.g. based on simulation results or other

analyses. This information is instrumental in further

refining the system-level ontology. However, as the

design of cyber-physical systems is generally a co-

design process, different components of the overall

system are developed concurrently. As such, we further

discern different substeps at the component level that

serve to update the system-level ontology:

a) Ontology definition (on a component-level)

Similar to the system-level ontology, this first

step entails the definition of a more low-level,

possibly domain-specific, ontology for each specific

component. This ontology is defined based on

things like requirements, but also in/outputs of the

component and associated properties, intermediate

properties considered during the design process, etc.

At this substep, the ontology is again mostly based on

experience, by reasoning about the design. As a result,

information about the nature of the relationships

between different properties is limited. However,

this provides insight into which experiments need

to be performed, and can be performed, to further

characterize these relationships in the next substep.

b) Characterization

This step serves to quantify the relationships captured

in the (component-level) ontology. Relationships

can be characterized exactly, using mathematical

equations, or based on results of experiments. For

example, sensitivity analyses can be performed to

determine how sensitive different properties are

to changes in considered design parameters. The

information gathered in this substep is used in

the following substep to prune and simplify the

component-level ontology in preparation for the last

step (lifting).

c) Pruning

In this substep, results from the characterization

substep are used to prune and simplify the ontology

by pruning unimportant relationships and intermediate

properties where possible, taking into account

relationships to system-level properties. This results in

a more abstract ontology, which ideally includes only

parameters and properties linked to the system-level

ontology. As such, it allows engineers from different

domains to reason about these relationships at a

higher level of abstraction, without having to consider

unnecessary details. This is done in preparation for

the final substep.

d) Lifting

Lastly, the information contained in the pruned

component-level ontology is lifted to the system-level,

where it is linked to system-level properties and com-

bined with the information about other components.

As such, the system-level ontology is refined and

updated based on the new information learned about

each component.

These substeps can also be applied recursively.

For example, when one component can be further

decomposed into smaller subcomponents, which can

themselves be further decomposed, etc. In these cases,

these substeps can be applied to each subcomponent,

after which the information about each subcomponent

can be combined and lifted to the component level,

where it is combined with information about other

components and again lifted, etc.

3) Determining a design space exploration strategy

Engineers can use the ontology and the information

contained therein to determine an efficient design space

exploration strategy. Indeed, reasoning about the relation-

ships between different properties reveals where trade-

offs can be made and where evaluations in one domain

can be used to constrain the design space in another do-

main. Additionally, information about the nature of these

relationships, as captured during the characterization

substep, can be used to prioritize certain parameters, e.g.

by fixing the most sensitive parameters first. Similarly,

information about the time it takes to evaluate different

objectives can be used to prioritize different objectives,

as fast evaluations may be used to quickly constrain the

design space early on in the design space exploration

process.

These steps are demonstrated in Section V, where we show

an example workflow. In this workflow we apply the different

steps to an example use case. The use case itself is introduced

in the following section.

IV. EXAMPLE USE CASE

In this paper, we consider the deployment of an advanced,

energy-efficient load angle control system for a brushless DC

(BLDC) motor, based on the algorithm proposed by De Viaene

et al. [3]. A general overview of this system is given in Sub-

section IV-A, while the design space considered in this paper

is defined in Subsection IV-B. Lastly, in Subsection IV-C, we

describe how the system-level performance of potential design

candidates is evaluated for this system. After this, in Section V,

we apply the different steps of the presented method to analyze

the problem and derive a corresponding DSE-strategy.

A. Background Information

Electric motors generally consist of two main parts: a

stationary part (stator) and a rotating part (rotor). In brushless

DC motors, the rotor contains permanent magnets. By inject-

ing alternating three-phase currents in the stator windings,

a rotating magnetic stator field is created which attracts

the magnetic rotor field created by the permanent magnets

(Figure 1) [21]. The generated electromagnetic motor torque

Tem can be expressed as the cross product of the stator flux

linkage space vector Ψs and the stator current vector is [22].

Tem = Ψs × is (1)

By neglecting saturation [23], [24], the stator flux linkage

space vector Ψs can be written as the sum of the stator flux

linkages, established by the two stator currents in the dq-

reference frame and the permanent magnet rotor flux vector

Ψr (Figure 1). The electromagnetic motor torque Tem can be

rewritten as:

Tem = (Ψr + Ldid + Lqiq)× is (2)

Fig. 1. Three-phase vector diagram with stator current is and stator flux Ψs,
rotor flux Ψr and load angle δ represented in dq-reference frame fixed to the
rotor flux.

where Ld and Lq respectively denote the d-axis and q-axis

inductance in the dq-reference frame. Elaboration of the vector

products leads to an equation describing the electromagnetic

torque as a function of stator current is, the rotor flux Ψr and

the load angle δ, defined as the angle between is and the rotor

flux Ψr (Figure 1):

Tem = |Ψr|.|is|. sin(δ) +
Ld − Lq

2
|is|

2. sin(2δ) (3)

In this equation, the first term represents the torque gener-

ated by the interaction between the permanent magnet rotor

flux Ψr and the stator current is. This term depends on the sine

of the load angle δ. The second term represents the reluctance

effect, which is solely due to the saliency and disappears

for a smooth-air-gap machine where Ld = Lq [23], [24]. By

neglecting the reluctance effect, the electromagnetic torque

with the torque constant kt can be written as:

Tem = Ψr × is (4)

Tem = |Ψr|.|is|. sin(δ) (5)

= kt.|is|. sin(δ) (6)

From (6), it can be concluded that maximum torque gen-

eration is achieved when the load angle δ is equal to 90°.

The load angle can thus be seen as a quality factor of the

torque generation because it contains information about the

torque/current ratio:

sin(δ) ∼
Tem

|is|
(7)

Standard control methods make use of feedback mecha-

nisms such as Hall sensors or absolute/incremental encoders

to measure the rotor position [25]–[27]. This is interesting

as optimal torque generation can be achieved by injecting the

phase currents in such a way that the resulting stator current

Fig. 2. Sensorless load angle control scheme for BLDC motors, the load angle controller adjusts the amplitude |is| of the stator current vector is while the
position β of this vector is imposed by integration of the speed setpoint n∗.

vector is leads the rotor flux Ψr by δ = 90°. By adapting the

current amplitude |is|, the motor speed can be controlled.

The estimation and load angle control method proposed

by De Viaene et al. [3] totally differs from the conven-

tional method. The speed is purely imposed in open-loop

by the rotating current vector while the closed-loop load

angle controller handles torque quality by adapting the current

amplitude based on feedback of the estimated load angle

(δest) (Figure 2). The advantage of this method compared to

conventional control is that no position feedback or control is

necessary. However, the added load angle controller is used to

ensure the speed setpoint is correctly followed.

A simplified overview of this system is shown in Figure 3.

It consists of two main parts: a monitoring part, containing

an estimator which estimates the actual load angle of the

motor (δest) from measured line voltages and currents (u and

i respectively), and a controller, which drives the load angle

of the motor to a setpoint (δsetpoint) by changing the current

setpoint of the motor driver (Isetpoint). The load angle can

be increased by reducing the current (Figure 4), leading to

better energy efficiency. However, this affects the robustness

of the system. For example, an increase in load torque can

cause a sudden increase in the load angle. If the load angle

increases past the optimal value of 90°, the motor torque

decreases (Figure 4 & Equation 6), which results in a loss

of synchronism between the stator and rotor field. For this

reason, the monitoring part contains a watchdog that monitors

the estimated load angle. If the estimated load angle passes

a certain threshold (δmax), the watchdog will overrule the

controller by momentarily increasing the current setpoint to

its maximum (Imax) and will reset the controller. This is done

to avoid the system becoming unstable and causing the motor

to lose synchronism.

There are a number of parameters that can be changed

that impact the system’s overall performance, as well as the

embedded deployment. These include the monitoring period,

controller period, and load-angle setpoint and threshold in

Fig. 3. Schematic overview of the load-angle controller [19].

Fig. 4. The impact on the load angle δ and the motor torque Tem when the
current amplitude |is| is halved and the load torque Tl is constant.

the control domain, but also the task assignment of these

different parts in the embedded domain. These parameters

are further defined in the following subsection. Additionally,

the monitoring part can be split into multiple sections, as

shown in Figure 5. This increases the flexibility regarding the

embedded deployment as we can make use of parallelization

on multiple cores. The load angle estimator can be divided into

four sections: some preprocessing (Pre.), two sliding discrete

Fourier transforms [28] (SDFT), and the actual load angle

calculation (Angle), the last section of the monitoring part is

then simply the watchdog (WD).

Fig. 5. Different code sections of the monitoring part [19].

B. Design Space

From the description given in the previous section, the

decision variables (DV) and objective functions (OF) can

be determined. This subsection gives an overview of these

decision variables and objective functions in both the control

and embedded domain. The ranges of values for these decision

variables, as considered in this paper, are also listed where

appropriate. For the objective functions, an indication of the

time needed to evaluate them is given.

• Control domain

– Decision variables

∗ Monitor period: [5 .. 40] µs

∗ Control period: [5 .. 40] µs

∗ Load angle setpoint: [45 .. 90] degrees

∗ Load angle threshold: [90 .. 120] degrees

– Objective functions

∗ Energy consumption: slow evaluation (minutes)

∗ System stability: slow evaluation (minutes)

• Embedded domain

– Decision variables

∗ Task assignment/partitioning: on [1 .. 2] cores

∗ Clock speed: 200 MHz

– Objective functions

∗ Schedulability: fast evaluation (seconds)

These parameters need to be balanced to achieve good

system-level performance. As such, a multi-domain co-design

approach (in this case, a combined control and embedded

engineering approach) may result in a non-intuitive deploy-

ment option. Here, we use design-space exploration to find

viable (i.e. deployable and stable) and good (i.e. high energy

efficiency) configurations.

C. System-level Performance Evaluation

System-level performance in the context of this use-case is

defined as the average energy consumption of the system. As

such, we want to find algorithm configurations and correspond-

ing deployment options that minimize the power consumption

while maintaining system stability. To evaluate the energy

consumption and stability of a given design candidate we make

use of simulations. Here, a Simulink model of the load angle

control algorithm, together with a plant model of a BLDC

Fig. 6. Example traces obtained during a test run [19].

motor, is used to determine the performance of the system

during a predefined test sequence.

Example traces collected during such a test sequence are

shown in Figure 6. Here, the motor first starts in open loop,

with maximal current. When the motor reaches its operating

speed, the system switches to the load angle control system

(t ≈ 1.5s). The motor current decreases as the controller drives

the load angle to its setpoint, decreasing power consumption.

After three seconds (t = 3s) the load on the motor increases.

This tests the watchdog response as it causes a sudden increase

in load angle. When the watchdog responds, this causes a

momentary increase in current consumption. Once the system

has stabilized again (t ≈ 3.5s), it switches back to the load

angle control. During this test sequence, the power consump-

tion as well as the motor speed are monitored. If the motor

stalls during the test sequence, the configuration is considered

unstable. This allows us to determine (i) the average power

consumption and (ii) the stability of the system.

V. EXAMPLE WORKFLOW

In this section, we show an example workflow, demonstrat-

ing how our approach can be used to analyze and optimize

the design of an advanced control algorithm for a CPS. We do

this by applying the different steps presented in Section III to

the use case presented in the previous section. In doing so, we

gradually build the ontology for this use case. After this we use

this ontology to derive an efficient design space exploration

strategy, allowing us to quickly find good design candidates

for the optimal deployment of this advanced algorithm.

A. Ontology Definition

We start by building an ontology to capture different con-

cepts important to this problem, as well as their relationship

to each other. We do this for both the control and embedded

domain. The full ontology is shown in Figure 7. Here, decision

variables and objective functions, as listed in Section IV-B, are

indicated in blue and green, respectively. The arrows indicate

Fig. 7. Ontology relating to the example case.

which parameter affects which directly. For example, in the

control domain, we know that the monitor period affects the

accuracy of the load angle estimate (estimator accuracy). This

in turn affects the watchdog’s ability to respond quickly to

situations where the load angle becomes too high, which can

affect the stability of the system and ultimately the energy

efficiency. In the embedded domain, we know that the clock

speed of the CPU affects the execution time of the two tasks

(i.e. monitor and controller). This, together with the task

mapping, affects the schedulability of the system. Note that

the clock speed is kept constant in this paper. In future work,

the clock speed could be linked to the energy consumption of

the embedded platform itself, adding an additional trade-off

that can be taken into account. Additionally, some information

about the nature of the relationships between the parameters

has been added. The plus and minus signs indicate how these

parameters affect each other. For example, decreasing the

monitor period (-) generally leads to increased accuracy of

the estimator (+). Similarly, increasing the CPU clock (+)

generally decreases the execution times (-). Lastly, while we

know there is some connection between task assignment and

schedulability, the relationship is ambiguous. This is indicated

using question marks.

The ontology also shows some relationships between param-

eters in the different domains. The chosen monitor and control

periods in the control domain affect the schedulability in the

embedded domain, as they directly determine the task periods

on the embedded platform. Conversely, this means that the

schedulability in the embedded domain constrains the design

space in the control domain.

This ontology is further updated and refined over the course

of the development process. This is shown in the following

subsection. However, by reasoning about the ontology, we can

already draw some conclusions:

1) As previously mentioned, the schedulability in the em-

bedded domain constrains the design space in the control

domain. As the schedulability can be evaluated quickly,

this means we can quickly evaluate and discard infeasible

combinations of monitor and controller periods.

2) In general, “faster is better”. From the ontology, we can

see that, in general, a shorter monitor or controller period

should lead to better energy efficiency. However, shorter

periods do decrease the schedulability of the system.

Additionally, by building the ontology, a third conclusion,

which is not directly derived from the ontology, was brought

forward by the control engineers:

3) It is not useful to have a controller period shorter than the

monitor period because the controller uses the load angle

estimated by the monitor as feedback. However, having a

shorter monitor than controller period could be beneficial

as this would lead to a more accurate estimate and thus,

potentially better control performance. Additionally, a

shorter monitor period means the watchdog can respond

more quickly, potentially increasing system stability.

B. Ontology updating

In this subsection, we consider each component of the

overall architecture (i.e. estimator, watchdog, and controller)

separately. For each component, we first construct a smaller

but more detailed ontology. After this, we use a parameter

sweep (for the estimator) and sensitivity analysis techniques

(for the controller and watchdog) to characterize the different

relationships to determine the most important ones. Lastly, in

Subsection V-C, the information gained is used to update the

system-level ontology.
1) Estimator:

a) Ontology definition: The ontology of the estimator is

shown in Figure 8. Design parameters are shown on the left,

and objectives on the right. Additionally, some intermediate

properties are shown. Design parameters include the monitor

period (PM) (from the system level ontology), as well as some

application-specific parameters such as the number of motor

poles (p) and required (mechanical) rotational speed of the

motor (ωM). In the current paper, we consider these last two

parameters to be fixed. However, in a real-world scenario,

these could be linked to operating range requirements. In-

termediate properties include the electrical rotational speed

(ωE) and the number of samples per signal period (N).

Objectives include estimator accuracy in the control domain,

and memory footprint and execution time in the embedded

domain.

Fig. 8. Ontology of the estimator.

b) Characterization: A number of the relationships

shown can be expressed using exact mathematical relation-

ships. For example, the number of samples (N) can be

calculated from the monitor period (PM) and electrical ro-

tational speed (ωE), as follows: N = 2π/(ωEPM). The

electrical rotational speed (ωE) can in turn be calculated

from the mechanical rotational speed (ωM) and the number

of poles (p). Other relationships are harder to define, such

as the relationship between the number of samples and the

estimator accuracy or memory footprint. However, these may

be determined empirically, as discussed further below. Lastly,

there is no relationship between the execution time and other

properties for this specific estimator implementation. However,

this may be the case in other situations. For example, if a

moving horizon estimator (MHE) were to be used, the number

of samples would impact the execution time.

As previously mentioned, the relationship between estimator

accuracy and the number of samples can be determined

empirically. As we consider other parameters (i.e. number of

poles and mechanical rotation speed) to be fixed, the number

of samples is entirely dependent on the chosen monitor period.

As such, we perform a parameter sweep of the monitor period

and evaluate the resulting estimator accuracy in a test scenario

in simulation. The resulting estimator accuracy is characterized

using the mean (µ) and standard deviation (σ) of the error

between the estimated load angle and the ground truth. Results

are shown in Figure 9, which shows the mean error (µ) in

blue and corresponding confidence band (µ± σ) in red. This

shows that the chosen monitor period significantly impacts the

standard deviation, but not the mean error. In this paper, we

do not explicitly consider the memory footprint; consequently

it is not characterized.

c) Pruning: The ontology of the estimator can be pruned

quite easily. First, as we consider the number of motor poles

and mechanical rotation speed to be fixed, we can prune

these parameters as well as the electrical rotational speed

from the ontology. Second, as we characterized the path from

monitor period to estimator accuracy at once, we replace it

with a single relationship, characterized by the results shown

in Figure 9. The resulting (pruned) ontology is shown in

Figure 10.

2) Controller:

Fig. 9. Load angle estimator accuracy in function of chosen monitor period.

Fig. 10. Simplified ontology of the estimator.

a) Ontology definition: The ontology of the controller is

shown in Figure 11. Design parameters are shown on the left,

intermediate properties in the middle, and objectives on the

right. The controller’s design parameters include the control

period and load angle setpoint, which are explicitly chosen by

the control engineer, but also the estimator accuracy, which

depends on the chosen estimator configuration, as discussed in

the previous subsection. The only intermediate property, in

this case, is the control performance. Objectives include power

consumption (from the system level ontology) and stability

in the control domain and execution time in the embedded

domain.

b) Characterization: In this case, none of the relation-

ships can be readily described as exact mathematical rela-

tionships. While we expect the power consumption to be

mainly proportional to 1/sin(δ) (Equation 7), this will also

be affected by the actual control performance. However, we

Fig. 11. Ontology of the controller.

Control

performance
Power

consumption
Stability

Mean Std.

Control period 0.002 0.001 0.017 0.000

Estimator

accuracy

Mean 0.000 0.001 0.005 0.000
Std. 0.111 0.133 0.043 0.131

Load angle setpoint 0.451 0.431 0.304 0.422
TABLE I

SENSITIVITY ANALYSIS RESULTS OF THE CONTROLLER.

can add sensitivity information to the relationships by per-

forming sensitivity analysis. This is described in the following

paragraph. Lastly, as with the estimator, none of the design

parameters affect the execution time.

We perform sensitivity analysis on the controller to add

sensitivity information to the relationships between design

parameters, and intermediate properties and objectives. Here,

we vary the different parameters and evaluate each parameter’s

contribution to observed variations in intermediate properties

and objectives in simulation. The simulation setup includes

the controller, a plant model, and an approximation of the

estimator. The estimator is approximated by adding noise to

the ground truth load angle obtained from the plant model.

As such, we can freely vary the mean and standard devia-

tion of the noise to evaluate their impact. We characterize

control performance using the mean error and corresponding

standard deviation of the actual load angle compared to

the setpoint. Power consumption is defined as the average

power consumption of the motor during a simulation run,

while stability is defined as pass/fail, which indicates if the

motor stalled during simulation. Results are summarized in

Table I, which shows the first-order sensitivity index of each

parameter for each intermediate property or objective. This

first-order sensitivity index indicates to what extent introduced

variations in each parameter contribute to variations observed

in each property/objective. As such, it indicates how sensitive

a property/objective is to changes in each parameter, relative to

every other parameter, with a higher index indicating a higher

sensitivity. The most significant sensitivity indices are shown

in bold.

The sensitivity analysis results show that both the control

performance and stability are most sensitive to changes in

the load angle setpoint, but also to the standard deviation of

the estimated load angle. Similarly, the power consumption is

most sensitive to changes in the load angle setpoint, but less

to changes in estimator accuracy. Interestingly, variations in

the control period have little to no effect on the considered

properties and objectives, at least not for the considered range

of this parameter. This, coupled with the fact that estimator

accuracy depends entirely on the chosen monitor period, indi-

cates that engineers need to prioritize a lower monitor period

over a lower control period during deployment to achieve the

best system-level performance.

Additionally, as we now know that the stability is mostly

dependent on the load angle setpoint and estimator accuracy

(standard deviation), we reuse the simulation results from the

sensitivity analysis to analyze the stability in function of these

two parameters. This is shown in Figure 12, which shows

valid (stable) and invalid (unstable) configurations in function

of these two parameters. This shows that overall there is a

clear boundary between stable and unstable configurations.

This is valuable information for the engineers as it can be

used to determine the maximum allowed standard deviation

on the load angle estimate, and subsequently, the maximum

allowed monitor period (Figure 9), based on the desired load

angle setpoint. Or, conversely, the maximum setpoint that can

be chosen, based on the chosen monitor period. However,

we do see some unstable configurations surrounded by stable

configurations near the boundary for higher setpoints. As such,

a safety margin will likely need to be taken into account

when making the trade-off between estimator accuracy and

load angle setpoint.

Lastly, as we see that the average power consumption is

mostly dependent on the chosen load angle setpoint, we reuse

the simulation results to investigate this relationship further.

Figure 13 shows the average power consumption for different

Fig. 12. Stable and unstable controller configurations in function of estimator
accuracy and load angle setpoint.

Fig. 13. Average power consumption for different controller configurations.

controller configurations in function of the load angle setpoint.

By fitting a curve to the simulation data, we do see that the

power consumption is mainly proportional to 1/sin(δsetpoint)
as we would expect. Deviations from this curve are likely due

to variations in control performance or other effects we may

have missed.

c) Pruning: The different results from the characteri-

zation process are used to simplify the controller ontology.

First, as we see no properties or objectives are sensitive

to changes in control period, all relationships originating

from this parameter are pruned. Second, all paths between

design parameters and objectives have been characterized

at once during the sensitivity analysis. As such, they are

simplified using single relationships with their corresponding

sensitivity indices. This is shown in Figure 14. Additionally,

the stability analysis results can be used to constrain which

combinations of estimator accuracy and load angle setpoint

are valid. Similarly, the fitted curve shown in Figure 13 can

Fig. 14. Simplified ontology of the controller.

be used to provide an approximate mathematical description

of the relationship between load angle setpoint and power

consumption.

3) Watchdog:

a) Ontology definition: Lastly, the ontology for the

watchdog is shown in Figure 15. Again, design parameters are

shown on the left, intermediate properties in the middle, and

objectives on the right. The watchdog’s design parameters

include the monitor period and load angle threshold, which

are explicitly chosen by the control engineer, but also the

estimator accuracy, which depends on the chosen estimator

configuration, as discussed previously. The only intermediate

property, in this case, is the watchdog response. Objectives

include power consumption (from the system level ontology)

and stability in the control domain and execution time in the

embedded domain.

b) Characterization: None of the relationships can be

readily described exactly. However, we can again add sensi-

tivity information to the relationships by performing sensitivity

analysis. This is described in the following paragraph. Lastly,

as with the estimator and controller, none of the design

parameters affect the execution time.

Similar to the controller, we add sensitivity information to

the relationships between the different parameters, properties,

and objectives by performing a sensitivity analysis on the

watchdog. We do this by varying the different design param-

eters within a certain range and subsequently evaluating their

contribution to observed variations in intermediate properties

and objectives in simulation. The simulation setup consists

of the watchdog, a plant model, and an approximation of

the estimator. In this case, the estimator is approximated as

δest = δGT + µ − nσ, where δest is the (approximated)

estimated load angle, δGT is the ground truth load angle

obtained from the plant model, and µ and σ are the mean

estimator error and standard deviation respectively. As such,

the approximation of the load angle represents a worst-case

scenario for the watchdog. The factor n is chosen by the

designer based on the requirements. In this paper, we consider

n = 1. Watchdog response is defined as the time between the

ground truth load angle passing the threshold and the watchdog

responding based on the estimated load angle. The results

of the sensitivity analysis are summarized in Table II, which

shows the first-order sensitivity index of each parameter for

each intermediate property or objective. The most significant

sensitivity indices are shown in bold.

Fig. 15. Ontology of the watchdog.

Watchdog

response

Power

consumption
Stability

Monitor period 0.000 0.000 0.000

Estimator

accuracy

Mean 0.032 0.003 0.004
Std. 0.666 0.028 0.032

Load angle threshold 0.269 0.816 0.836
TABLE II

SENSITIVITY ANALYSIS RESULTS OF THE WATCHDOG.

The results of the sensitivity analysis show that the watch-

dog response is very sensitive to changes in estimator accuracy

(specifically the standard deviation), but also sensitive to

changes in the load angle threshold. The results also show that

both the power consumption and stability are very sensitive to

changes in the load angle threshold, but much less to changes

in estimator accuracy (standard deviation). From these results,

we conclude that, when considering the watchdog, choosing

a good threshold is most important to guarantee stability,

while estimator accuracy is less important. As such, we further

investigate the stability of the system in function of these

two parameters. This is shown in Figure 16, which shows the

stable and unstable configurations of the watchdog. Similarly

to the controller, we see a clear boundary between the stable

and unstable configurations. As such, this information can be

used to make informed decisions when setting the load angle

threshold.

c) Pruning: The results from the characterization process

are used to simplify the watchdog ontology. First, as we see

no properties or objectives are sensitive to changes in monitor

period, all relationships originating from this parameter are

pruned. Second, all paths between design parameters and ob-

jectives have been characterized at once during the sensitivity

analysis. As such, they are simplified using single relationships

with their corresponding sensitivity indices. This is shown in

Figure 17. Additionally, the stability analysis results can be

used to determine which combinations of estimator accuracy

and load angle threshold are valid.

C. Updated Ontology (Lifting)

The information contained in the component-level ontolo-

gies is lifted to the system-level, where it is used to update

the system-level ontology. The resulting updated ontology is

Fig. 16. Stable and unstable watchdog configurations.

Fig. 17. Simplified ontology of the watchdog.

Fig. 18. Updated system-level ontology.

shown in Figure 18. By reasoning about this updated ontology,

we can refine and extend the conclusions from Subsection V-A

regarding design space exploration as follows:

1) The schedulability in the embedded domain constrains the

design space in the control domain. As the schedulability

can be evaluated quickly, this means we can quickly

evaluate and discard infeasible combinations of monitor

and controller periods. As such, schedulability analysis

should be performed as early as possible in the design

space exploration process.

2) In general, “faster is better”. From the ontology, we

see that, in general, a shorter monitor period should

lead to better energy efficiency and stability. However,

this does decrease schedulability. Additionally, having a

shorter control period is less important for overall system

performance. As such, we should prioritize a shorter

monitor period over a shorter control period.

3) It is not useful to have a controller period shorter than a

monitor period because the controller uses the load angle

estimated by the monitor as feedback. However, having a

shorter monitor than controller period could be beneficial.

As such, the monitor period should be shorter than or

equal to the control period.

Additionally, results from the different characterization pro-

cesses can be used to aid the design space exploration process:

4) The results of the stability analysis of the controller can

be used to constrain which combinations of estimator

accuracy and load angle setpoint are valid. As such, once

a monitor period has been chosen, the maximum allowed

load angle setpoint for the controller can be determined.

5) The results of the stability analysis of the watchdog can

be used to constrain which combinations of estimator

accuracy and load angle threshold are valid. As such, once

a monitor period has been chosen, the maximum allowed

load angle threshold for the watchdog can be determined.

These conclusions are used in the following subsection to

guide the design space exploration process and to constrain

the design space.

D. Design-Space Exploration Workflow

If we consider the design space in the control domain as

presented in Subsection IV-B, assuming a granularity of 1µs

for the periods and 1° for the load angle setpoint, this leads

to 36 possible values for each period, 46 for the load angle

setpoint, and 31 for the load angle threshold, or 36 · 36 · 46 ·
31 = 1, 848, 096 possible design candidates in total. A single

Simulink simulation to evaluate a design candidate’s power

consumption and stability takes between 2.5 and 3 minutes on

a 2.7GHz Xeon server.However, the evaluation can easily be

parallelized. As such, an exhaustive search of this design space

would take on average ((36 · 36 · 46 · 31)/48) · 2.75 minutes =
105,881 minutes, or just over 73.5 days, on a 48-core server.

As this would make a comparison between our results and

an exhaustive search impractical, we consider the load angle

threshold to be fixed at 100°. This reduces the design space

to 36 · 36 · 46 = 59,616 design candidates. Consequently, an

exhaustive search would take on average 3,416 minutes, or

just under 57 hours on a 48-core server.

Using the previous section’s conclusions, we can signifi-

cantly reduce the required computation time in a couple of

steps.

1) Schedulability Analysis: The first conclusion from Sub-

section V-C states that schedulability analysis (embedded do-

main) can be used to constrain the design space in the control

domain. As none of the design parameters impact the actual

execution time, timing analysis is performed to characterize

the execution time of the different algorithm sections on the

considered embedded platform. This information is then used

to determine the schedulability of the different configurations

(periods).

In the example case, we consider both a single- and dual-

core version of the embedded platform. As there are six

algorithm sections, this results in 26 = 64 possible task

mapping/partitioning schemes. These are all evaluated regard-

ing achievable monitor and controller period. We consider

a variation on cyclic executive scheduling [29], where we

take into account possible synchronization between the two

cores to allow for the parallelization of algorithm sections.

The schedulability analysis is performed by automatically

constructing an execution timeline based on a directed graph

that captures the dependencies between algorithm sections,

corresponding execution time measurements, and a candidate

task mapping/partitioning scheme. This is then used to evalu-

ate, among other things, resource utilization and to determine

Fig. 19. Deployable configuration on both single-core (1) and dual-core (2)
platforms.

the feasibility of the candidate scheme.

As this evaluation can be performed quickly, all combina-

tions are evaluated in less than 60 seconds of computation

time. The results of this schedulability analysis are shown in

Figure 19, where the colours indicate a feasible dual- or single-

core configuration. Unfeasible configurations are shown in

black. Note that this only shows the different periods. As such,

each square still represents 46 possible load angle setpoints.

This also shows that by performing the schedulability anal-

ysis first, the design space is quickly reduced from 59,616

to 39,698 candidates (around two thirds of the initial design

space). Subsequently, the time needed to further validate the

remaining combinations regarding energy efficiency is reduced

to just under 38 hours on the same server.

2) Tmonitor ≤ Tcontrol: The third conclusion states that,

from a control standpoint, having a control period shorter than

the monitor period is not useful due to the way the system

works. This adds an additional constraint that is used to further

reduce the design space. By discarding all configurations that

violate this constraint, the design space is further reduced

by about half, resulting in a design space with a size of

19,044 candidates, or under one third of the original. This

is illustrated in Figure 20. Further evaluation of the remaining

configurations would take just over 18 hours. However, this

still leaves a lot of possible configurations. We introduce more

domain knowledge to further limit the design space in the next

step.

3) “Faster is Better”: The original second conclusion,

as presented in Subsection V-A, states that, in general, a

smaller monitor and control period should lead to better energy

efficiency. However, it does not tell us anything about the

optimal ratio between these periods. For these reasons, the

design space is further reduced to two Pareto fronts of options

at the edge of the viable regions. This reduces the design

space to a fraction of the original. The 1,748 remaining

configurations can be seen in Figure 21. Further evaluation

Fig. 20. Deployable configuration on both single-core (1) and dual-core (2)
platforms (constrained).

Fig. 21. Deployable configuration on both single-core (1) and dual-core (2)
platforms (fronts).

of these candidates would take under 2 hours.

By updating the ontology with new information obtained

during the development process, we were able to further refine

this conclusion. The updated second conclusion, as presented

in Subsection V-C, states that not only a shorter period is

better, we should prioritize monitor period over control period.

As such, the design space is further reduced to the subset of

candidates shown in Figure 22. This remaining subset contains

414 candidates or around 0.69% of the original design space.

Further evaluation of the remaining configurations takes about

24 minutes of computation time on a 48-core Xeon server.

4) Maximum load angle setpoint and threshold: For each

remaining design candidate, a parameter sweep of the load

angle setpoint is performed to determine the best config-

uration, i.e. lowest power consumption while maintaining

system stability, in simulation. However, the results from the

characterization processes shown in Subsection V-B can be

Fig. 22. Deployable configuration on both single-core (1) and dual-core (2)
platforms, with monitor period prioritized.

used to further reduce the number of required evaluations

(conclusion 4). Indeed, the results shown in Figure 9 can be

used to determine the expected estimator accuracy based on

the chosen monitor period. For example, a monitor period of

10µs would result in an expected estimator standard deviation

of 0.737°. After this, the stability analysis results shown in

Figure 12 can be used to determine the maximum allowed load

angle setpoint. For an expected estimator standard deviation of

0.737°, this would be 87°. As the ontology shows that a higher

load angle setpoint should lead to lower power consumption,

this maximum setpoint can be used as an initial best guess,

evaluated in simulation, and if needed, lowered until a good,

stable configuration is found. As such, each combination of

monitor and control period would require only a small number

of evaluations to determine the best possible configuration.

Similarly, the stability analysis results shown in Figure 16

can be used to determine the maximum allowed load angle

threshold for the watchdog (conclusion 5).

VI. RESULTS

In the previous section, we showed how domain knowledge

can be used to steer the design-space exploration process. This

allows us to quickly reduce the design space to a subset of

likely good candidates. In doing so, the design space is reduced

from 59,616 possible configurations to just 414. However, for

this method to be useful, it needs to (i) provide good solutions

and (ii) it needs provide benefits over traditional design space

exploration techniques. To evaluate these aspects, we first

compare the results obtained using our approach to the global

optima found using an exhaustive search in Subsection VI-A.

After this, in Subsection VI-B we compare our approach to

traditional design space exploration techniques regarding the

quality of the solutions and the computation time. Lastly, in

Subsection VI-C, we list potential threats to the validity of our

results.

Fig. 23. Average power consumption for all deployable configurations.

A. Quality of the Solutions

The entire subset of deployable configurations was further

evaluated using the method described in Subsection IV-C. The

results of this exhaustive search are shown in Figure 23. This

figure shows the average energy consumption at the optimal

load angle setpoint for each combination of control and

monitor period. Unfeasible (i.e. not deployable) configurations

are shown in black. (Note that the range here differs from that

in Figure 13 as a more complex test sequence is considered

here, where the average load of the motor is higher). In this

figure, we discern four different configurations:

a The best performing dual-core solution determined us-

ing our ontology-based method, with an average power

consumption of 130.88W

b The best performing single-core solution determined us-

ing our ontology-based method, with an average power

consumption of 131.16W

c The best performing dual-core solution determined using

the exhaustive search, with an average power consump-

tion of 130.79W

d The best performing single-core solution determined us-

ing the exhaustive search, with an average power con-

sumption of 131.07W

By comparing these different configurations, we see that

while our method does not find the top-performing (deploy-

able) candidates, it does find candidates with very similar

performance much more quickly. However, we also see that the

best performing candidates are local minima, surrounded by

slightly worse performing ones, indicating that these solutions

might not be entirely stable. This is not the case for the

candidates determined using our method.

These results also show that indeed, a shorter monitor

period leads to better overall performance, while the control

period has little to no effect, as we see a clear gradient from

left to right. This indicates that conclusion 2, as listed in

Subsection V-C, is likely correct. Additionally, this shows

Single-Core Dual-Core

Evaluations Power (W) Evaluations Power (W)

Mean Std. Mean Std. Mean Std. Mean Std.

Exhaustive Search 11960 131.07 39698 130.79

Particle Swarm Optimization 945 214 131.20 0.0982 1019 230 130.83 0.0352

Simulated Annealing 1498 610 131.19 0.0789 2378 833 130.85 0.0347

Genetic Algorithm 2582 184 131.38 0.3585 2610 145 130.95 0.1535

Before SA 552 131.16 1196 130.88
After SA 92 131.16 322 130.88Ontology-Based

Best guess 4 131.16 14 130.88
TABLE III

NUMBER OF EVALUATIONS AND SOLUTION PERFORMANCE FOR DIFFERENT DSE APPROACHES.

that configurations where the control period is shorter than

the monitor period don’t necessarily perform poorly. However,

they do not necessarily perform better either (conclusion 3).

This is in contrast with results in a previous publication [19],

which showed that configurations with a shorter control period

than monitor period generally performed poorly or were

unstable. This is because a newer iteration of the controller

was used in this paper, which is overall more stable.

In Subsection V-D4, we discussed how the results from

the characterization steps can be used to obtain an initial

best guess for the load angle setpoint. This was validated

by comparing the initial best guess for each candidate with

the corresponding optimal load angle setpoint found during

the exhaustive search. The results of this analysis show that,

on average, the best guess was less than 1° higher than the

actual optimal setpoint (optimistic), with differences ranging

from −1° (pessimistic) to 3° (optimistic). As such, if we start

with the initial best guess, only a small number of evaluations

are required to find the optimal load angle setpoint, further

significantly reducing the design space.

B. Computation Time

To further evaluate the practicality of our approach, we

compare it to traditional design space exploration techniques

regarding the required computation time, but also the perfor-

mance of the solutions. Here, we consider particle swarm

optimization (PSO), simulated annealing (SA) and genetic

algorithms (SA) to perform the optimization. The design

variables considered here are the same as in Subsection V-D,

i.e. monitor period, control period and load angle setpoint.

The evaluation function used by each algorithm first eval-

uates the schedulability of a candidate. Only if the candidate

is schedulable, the system-level performance of the candidate

is evaluated. As a metric for the required computation time

for each algorithm, we count the number of (system-level)

performance evaluations during the exploration as these take

the most significant amount of time. As such, unschedulable

candidates are not counted. Additionally, as the considered

DSE algorithms introduce randomness in their search pro-

cesses, we run each algorithm 1000 times and calculate the

average number of performance evaluations and average power

consumption of the solutions. To keep this evaluation practical,

we use the results of the exhaustive search from the previous

subsection to construct a look-up-table of the performance

of each design option. This is then used instead of running

the simulation for each evaluation. The mean number of

model evaluations and achieved power consumption, as well

as the corresponding standard deviations, for each technique

are shown in Table III. In this table, we explicitly consider

three different situations for our approach. First, using only

the conclusions presented in Subsection V-A, i.e. before per-

forming the sensitivity analyses (“Before SA”). Then, using

the updated conclusions as presented in Subsection V-C, i.e.

after performing the sensitivity analyses (“After SA”). Lastly,

using the initial best guess, as discussed in Subsection V-D4

(“Best guess”). We make this distinction as these different

situations require different amounts of effort and computation

time upfront, i.e. before the design space exploration can be

performed. Note that our method does not introduce random-

ness in its search strategy. As such, no standard deviation is

listed. Additionally, the results of the exhaustive search are

listed for reference.

The results show that our ontology-based approach finds,

on average, similarly performing solutions as the traditional

approaches. It does so for both single- and dual-core systems.

When comparing the number of evaluations, we see that, even

without using the sensitivity analysis results, our approach

outperforms the other techniques for the single-core system.

When making use of the sensitivity information, it requires an

order of magnitude fewer evaluations to find a good solution.

This is again reduced by an order of magnitude when making

use of the initial best guess for the load angle setpoint. For

the dual-core system we see similar results. However, our

approach, without the sensitivity information does perform

slightly worse than the particle swarm optimization for this

case, requiring ∼10% more evaluations to find a good solution.

However, after adding the sensitivity information, it again

requires significantly fewer evaluations. This is further reduced

by using the initial best guess. Additionally, by examining

the solutions found using the traditional approaches, we found

that they often provided solutions that were local minima, i.e.

well performing solutions surrounded by worse performing

ones. This indicates that these solutions might not be entirely

stable. This is again not the case for solutions found using our

approach.

C. Threats to Validity

As the work presented here is essentially design research,

it is important to consider possible threats to the validity of

the obtained results [30]. Possible threats are listed below. We

intend to address these in future work.

a) Internal Validity: asks the question how sure we can

be that the presented approach caused the observed outcome.

In this regard, there are two main factors we need to take into

account. Firstly, in Subsection VI-B, we used the number of

performance evaluations as a metric to compare the expected

computation time for the different algorithms. However, the

extent to which these evaluations can be performed in parallel

for the different approaches can affect these results. For

example, for the particle swarm optimization, each particle

can be evaluated in parallel, as such the number of parallel

evaluations depends on the number of particles. Similarly,

for the genetic algorithm, the number of parallel evaluations

depends on the population size. Simulated annealing how-

ever cannot easily be parallelized. For our ontology-based

approach, as presented here, there is theoretically no limit to

the number of evaluations that can be performed in parallel,

as they are completely independent. As such, our approach

should still outperform the other techniques. Secondly, in the

current paper, we rely on simulation results to evaluate the

performance of the design candidates. How well they actually

perform in a real-world setup remains to be seen.

b) External Validity: is concerned with whether we can

generalize the results outside the scope of the study. In this

regard, the scope of the presented use case is still quite limited.

As such, it remains to be seen how well the approach scales

to more complex use cases, and to industrial settings, where

there may be large teams of engineers from multiple domains

working on the same project.

VII. DISCUSSION AND FUTURE WORK

This paper shows how cross-domain knowledge can be used

to solve a multi-domain optimization problem. By building

an ontology of important design parameters and their inter-

dependencies, it is possible to reason about the design space

exploration process. By reasoning about this process, using

this ontology, it becomes clear how evaluation or information

in one domain can be used to constrain parameters in another

domain. As such, the design space can quickly be narrowed

down to a subset of likely candidates using the relationships

between parameters in both domains. This is shown using an

example case where the design space is quickly limited to

∼0.69% of its original size, while still finding solutions that

perform similarly to the best possible candidates. Additionally,

the presented approach requires significantly less computation

time than traditional DSE techniques to find similarly perform-

ing solutions.

The results shown are promising, especially when keeping

in mind the development of new, advanced cyber-physical sys-

tems. However, the design space for the case study presented

in this paper is still quite limited. As such, it remains to be

seen how well this approach scales to more complex cases. In

future work, we intend to extend the work presented here in

three main ways:

a) Modelling of Domain Knowledge: In the current pa-

per, the ontology is built up manually and only exists as

a drawing. As previously mentioned, Vanherpen et al. [17]

worked to combine contract-based design (CBD) [31] with

ontological reasoning. This resulted in, among other things, an

ontology specific to the co-design of cyber-physical systems,

modelled in tools such as Protégé [32]. In our future work, we

will investigate how this existing ontology can be extended

specifically to support the approach presented in this paper.

We will investigate which parts of the domain knowledge can

be captured in a generic way and which parts are application-

specific. Additionally, in Subsection V-A, we introduced the

concept of an ambiguous relationship. How to deal with such

relationships is still an open question.

The third conclusion from Subsection V-A (Tmonitor ≤
Tcontrol) is interesting as it is not directly apparent from

the ontology itself. With this in mind, we will investigate

how this kind of information might be added to the ontology

or otherwise modelled. For example, this might be done by

introducing additional relationships that explicitly capture such

constraints.

b) Automation: The method, as presented in this paper,

requires manual work to build and update the ontology and

to derive the design-space exploration process. For this rea-

son, we will investigate to what extent this process can be

derived automatically from the captured domain knowledge,

for example, by detecting specific patterns in the ontology

and providing hints to the engineer which parameters should

be fixed first or where possible trade-offs can be made. We

also intend to investigate if this can be extended to the

characterization process, for example, by using the ontology

to determine which relationships need to be characterized and

using this information to run a sensitivity analysis or other

experiments.

c) Further Validation: We intend to further validate the

presented approach to mitigate the threats to validity presented

in Subsection VI-C. Firstly, while the load angle control

algorithm itself has been validated in a real-world test setup,

the optimized design candidates presented in this paper have

only been evaluated in simulation. It remains to be seen

how well these candidates perform in real-world situations.

As such, we intend to further evaluate the performance of

these candidates in a physical test setup. Secondly, while the

presented approach shows promising results for the presented

use case, the use case is still quite limited in scope. It remains

to be seen how well the presented approach scales to more

complex cases. As such, we will further develop and validate

our approach using more complex use cases. For example,

cases where there are multiple different algorithms that need

to run on a shared embedded platform and where trade-offs

need to be made regarding the performance of the different

algorithms, which is a common problem in the design of cyber-

physical systems.

ACKNOWLEDGMENTS

This research was supported by Flanders Make, the strategic

research centre for the manufacturing industry in Belgium,

with the Model-based Force Measurements (MoForM) project.

REFERENCES

[1] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in 2016

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 1433–1440.

[2] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal of

Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.

[3] J. De Viaene, F. Verbelen, S. Derammelaere, and K. Stockman, “Energy-
efficient sensorless load angle control of a bldc motor using sinusoidal
currents,” IET Electric Power Applications, vol. 12, no. 9, pp. 1378–
1389, 2018.

[4] S. Derammelaere, B. Vervisch, J. De Viaene, and K. Stockman,
“Sensorless load angle control for two-phase hybrid stepper motors,”
Mechatronics, vol. 43, pp. 6–17, 2017.

[5] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic sys-
tem design environment,” Computer, vol. 36, no. 4, pp. 45–52, 2003.

[6] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-
Vincentelli, A. Simalatsar, and Q. Zhu, “Metro ii: A design environment
for cyber-physical systems,” ACM Transactions on Embedded Comput-

ing Systems (TECS), vol. 12, no. 1s, p. 49, 2013.

[7] A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and
software design methodology for embedded systems,” IEEE Design &

Test of Computers, vol. 18, no. 6, pp. 23–33, 2001.

[8] W. Chang, S. Chakraborty et al., “Resource-aware automotive control
systems design: A cyber-physical systems approach,” Foundations and

Trends® in Electronic Design Automation, vol. 10, no. 4, pp. 249–369,
2016.

[9] L. Guo, Q. Zhu, P. Nuzzo, R. Passerone, A. Sangiovanni-Vincentelli, and
E. A. Lee, “Metronomy: a function-architecture co-simulation frame-
work for timing verification of cyber-physical systems,” in Proceedings

of the 2014 International Conference on Hardware/Software Codesign

and System Synthesis. ACM, 2014, p. 24.

[10] C. Ptolemaeus, System design, modeling, and simulation: using Ptolemy

II. Ptolemy. org Berkeley, 2014, vol. 1.

[11] A. Aminifar, E. Bini, P. Eles, and Z. Peng, “Bandwidth-efficient con-
troller: server co-design with stability guarantees,” in Proceedings of the

conference on Design, Automation & Test in Europe. European Design
and Automation Association, 2014, p. 55.

[12] ——, “Designing bandwidth-efficient stabilizing control servers,” in
2013 IEEE 34th Real-Time Systems Symposium. IEEE, 2013, pp. 298–
307.

[13] D. Roy, L. Zhang, W. Chang, and S. Chakraborty, “Automated synthesis
of cyber-physical systems from joint controller/architecture specifica-
tions,” in 2016 Forum on Specification and Design Languages (FDL).
IEEE, 2016, pp. 1–8.

[14] A. Cervin, M. Velasco, P. Marti, and A. Camacho, “Optimal online sam-
pling period assignment: Theory and experiments,” IEEE transactions

on control systems technology, vol. 19, no. 4, pp. 902–910, 2010.

[15] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,
K. G. Larsen et al., “Contracts for system design,” Foundations and

Trends® in Electronic Design Automation, vol. 12, no. 2-3, pp. 124–
400, 2018.

[16] J. Finn, P. Nuzzo, and A. Sangiovanni-Vincentelli, “A mixed discrete-
continuous optimization scheme for cyber-physical system architec-
ture exploration,” in 2015 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). IEEE, 2015, pp. 216–223.

[17] K. Vanherpen, J. Denil, I. Dávid, P. De Meulenaere, P. J. Mosterman,
M. Torngren, A. Qamar, and H. Vangheluwe, “Ontological reasoning
for consistency in the design of cyber-physical systems,” in 2016 1st

International Workshop on Cyber-Physical Production Systems (CPPS).
IEEE, 2016, pp. 1–8.

[18] I. Dávid, J. Denil, K. Gadeyne, and H. Vangheluwe, “Engineering
process transformation to manage (in) consistency,” in Proceedings of

the 1st International Workshop on Collaborative Modelling in MDE

(COMMitMDE 2016) co-located with ACM/IEEE 19th International

Conference on Model Driven Engineering Languages and Systems

(MoDELS 2016) St. Malo, France, October 4, 2016/Muccini, Henry

[edit.]; et al., 2016, pp. 7–16.
[19] Y. Vanommeslaeghe, J. Denil, J. De Viaene, D. Ceulemans, S. Deram-

melaere, and P. De Meulenaere, “Leveraging domain knowledge for the
efficient design-space exploration of advanced cyber-physical systems,”
in 2019 22nd Euromicro Conference on Digital System Design (DSD).
IEEE, 2019, pp. 351–358.

[20] T. R. Gruber et al., “A translation approach to portable ontology
specifications,” Knowledge acquisition, vol. 5, no. 2, pp. 199–221, 1993.

[21] K.-y. Hwang, S.-b. Rhee, B.-y. Yang, and B.-i. Kwon, “Rotor Pole De-
sign in Spoke-Type Brushless DC Motor by Response Surface Method,”
vol. 43, no. 4, pp. 1833–1836, 2007.

[22] S. Derammelaere, C. Debruyne, F. De Belie, K. Stockman, and L. Van-
develde, “Load angle estimation for two-phase hybrid stepping motors,”
IET Electric Power Applications, vol. 8, no. 7, pp. 257–266, 2014.

[23] K. Premkumar and B. V. Manikandan, “Adaptive Neuro-Fuzzy Inference
System based speed controller for brushless DC motor,” Neurocomput-

ing, vol. 138, pp. 260–270, 2014.
[24] P. Vas, “Sensorless Vector and Direct Torque Control,” Monographs in

Electrical and Electronic Engineering, Oxford University Press, USA,
vol. 1., p. 768, 1998.

[25] M. Bendjedia, Y. Ait-Amirat, B. Walther, and A. Berthon, “Position
control of a sensorless stepper motor,” IEEE Transactions on Power

Electronics, vol. 27, no. 2, pp. 578–587, 2012.
[26] Y. Zhao, W. Huang, and J. Yang, “Fault diagnosis of low-cost Hall-effect

sensors used in controlling permanent magnet synchronous motor,” 19th

International Conference on Electrical Machines and Systems (ICEMS),
no. 1, pp. 2–6.

[27] J. C. Gamazo-Real, E. Vázquez-Sánchez, and J. Gómez-Gil, “Position
and speed control of brushless dc motors using sensorless techniques
and application trends,” Sensors, vol. 10, no. 7, pp. 6901–6947, 2010.

[28] E. Jacobsen and R. Lyons, “The sliding dft,” IEEE Signal Processing

Magazine, vol. 20, no. 2, pp. 74–80, 2003.
[29] T. P. Baker and A. Shaw, “The cyclic executive model and ada,” Real-

Time Systems, vol. 1, no. 1, pp. 7–25, 1989.
[30] R. Feldt and A. Magazinius, “Validity threats in empirical software

engineering research-an initial survey.” in Seke, 2010, pp. 374–379.
[31] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,

P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. G. Larsen, “Contracts for system design,” Ph.D. dissertation,
Inria, 2012.

[32] M. A. Musen, “The protégé project: a look back and a look forward,”
AI Matters, vol. 1, no. 4, pp. 4–12, 2015. [Online]. Available:
https://doi.org/10.1145/2757001.2757003

