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Resumo

Esta tese apresenta, em sua primeira parte, uma investigação sobre zitterbewegung
(ZBW), um movimento trêmulo de pacotes de onda eletrônicos, em multicamadas de
grafeno, bem como o ZBW de excitons de moiré em heterostruturas formadas por uma
bicamada de MoS2/WSe2 rotacionada. Nas últimas décadas, a dinâmica dos pacotes de
ondas tem sido objeto de muitos estudos teóricos e experimentais em vários tipos de
sistemas, tais como: semicondutores, supercondutores, sólidos cristalinos e átomos frios.
Assim, com a descoberta do grafeno e dos excitons de moiré em hetero-bicamadas, agora
surgem dois novos sistemas para a comunidade científica investigar a evolução temporal
dos pacotes de ondas e possivelmente observar o fenômeno zitterbewegung. Esse movi-
mento trêmulo foi teoricamente previsto pela primeira vez por Schrödinger para pacotes
de ondas que descrevem partículas que obedecem à equação de Dirac. Este é exatamente
o caso dos elétrons de baixa energia no grafeno, bem como dos excitons de moiré em
MoS2/WSe2 rotacionados sob um campo eletromagnético externo aplicado.

No caso do ZBW em multicamadas de grafeno, foi desenvolvido um estudo analítico e
computacional, através do método da função de Green e da técnica do split-operator, re-
spectivamente. Neste sistema, verificou-se que os pacotes de ondas dependem não apenas
da largura do pacote de ondas inicial e da polarização inicial do pseudopin, mas também
do número de camadas. Além disso, os métodos analíticos e numéricos propostos aqui
permitem investigar a dinâmica de pacotes de ondas em sistemas de grafeno com um
número arbitrário de camadas e com potenciais arbitrários.

Para o exciton de moiré, é mostrado que, analogamente a outras partículas de Dirac,
este sistema também exibe ZBW quando está sob um campo elétrico externo aplicado
perpendicularmente. Neste caso, o ZBW apresenta longas escalas de tempo compatíveis
com as técnicas experimentais atuais para dinâmica de excitons. Isso promove o es-
tudo da dinâmica de excitons de moiré em heteroestruturas de van der Waals como uma
plataforma de estado sólido vantajosa para sondar ZBW, amplamente ajustável por tensão
eletrostática e ângulo de rotação entre camadas.

Na segunda parte desta tese, um estudo sobre plasmons em grafeno, combinado em
heteroestruturas de van der Waals, é tratado através da teoria da resposta linear, dentro
da aproximação de fase aleatória (do inglês random phase approximation ou simplesmente
RPA), com suporte da heteroestrutura eletrostática quântica (do inglês quantum electro-
static heterostructure (QEH)), um método computacional baseado em teoria do funcional
da densidade (do inglês, density functional theory, DFT). Uma vez que os plasmons de
Dirac no grafeno são muito sensíveis às propriedades dielétricas do ambiente, é possível
explorar tal propriedade para sondar a estrutura e composição das heteroestruturas de
van der Waals colocadas embaixo de uma única camada de grafeno. Desta forma, pode-se
diferenciar, utilizando os plasmons no grafeno, a diferença entre números de camadas,
isto é, é possível identificar se uma estrutura possui uma ou duas camadas, por exemplo,



9

quando essa é composta apenas por um único material, bem como diferenciar entre difer-
entes dicalcogenetos de metais de transição para heteroestruturas que apresentam mais
do que 2 camadas (heterostruturas formadas por mais de um material). Como consequên-
cia do estudo inicial em plasmons, a hibridização de plasmons de Dirac em grafeno com
fônons de dicalcogenetos de metais de transição também é estudado, quando estes são
combinados nas chamadas heteroestruturas de van der Waals. Verificou-se que é possível
alcançar regimes de acoplamento fortes e ultra-fortes, ajustando a energia de Fermi do
grafeno e alterando o número da camada dicalcogenetos de metais de transição.



Abstract

This thesis presents, in its first part, an investigation on the trembling motion of wave
packets known as zitterbewegung (ZBW), in multilayer graphene, as well as in moiré exci-
tons in twisted MoS2/WSe2 hetero-bilayers. In the last few decades, the dynamics of wave
packets has been subject of many theoretical and experimental studies in various types
of systems such as semiconductors, superconductors, crystalline solids and cold atoms.
The discovery of graphene and moiré excitons in twisted hetero-bilayers, brought two new
platforms for the investigation on time evolution of wave packets and possible observation
of ZBW. This trembling motion was first theoretically predicted by Schrödinger for wave
packets describing particles that obey the Dirac equation. This is exactly the case of low
energy electrons in graphene, as well as of moiré exciton in twisted MoS2/WSe2 under an
external applied electromagnetic field.

ZBW in multilayer graphene was studied both analytically and computationally, re-
spectively, through the Green's function and split-operator methods. In this system, it
is found that ZBW depends not only on the wave packet width and initial pseudospin
polarization, but also on the number of layers. Furthermore, the analytical and numerical
methods proposed here allow to investigate wave packet dynamics in graphene systems
with an arbitrary number of layers and arbitrary potential landscapes.

For moiré excitons in twisted MoS2/WSe2 hetero-bilayers, it is shown that, analogously
to other Dirac-like particles, this system also exhibits ZBW when under a perpendicular
applied field. In this case, the ZBW presents long timescales that are compatible with
current experimental techniques for exciton dynamics. This promotes the study of the
dynamics of moiré excitons in van der Waals heterostructures as an advantageous solid-
state platform to probe zitterbewegung, broadly tunable by gating and inter-layer twist
angle.

In the second part of this thesis, a study into graphene plasmonic in van der Waals
heterostructure (vdWhs) are treated in a linear response framework within the Ran-
dom Phase Approximation and with support of the quantum electrostatic heterostructure
(QEH), a DFT-based method. Since Dirac plasmons in graphene are very sensitive to the
dielectric properties of the environment, it is possible to explore this property to probe
the structure and composition of van der Waals heterostructures (vdWh) placed under-
neath a single graphene layer. In this way, one can achieve a layer sensitivity of a single
layer and differentiate between different TMDs for heterostructures thicker than 2 layers.
As a consequence of this, study, the hybridization of Dirac plasmons in graphene with
phonons of transition metal dichalcogenides (TMDs), when the materials are combined in
so-called van der Waals heterostructures (vdWh) forming surface plasmon-phonon polari-
tons (SPPPs) are also investigated. It was found that it is possible to realize both strong
and ultrastrong coupling regimes by tuning graphene’s Fermi energy and changing TMD
layer number.



Abstract

In deze thesis stellen we als eerste een onderzoek voor naar de trillende beweging
van golfpakketjes, de zogenaamde Zitterbewegung (ZBW), van eleketronen in multilaag
grafeen en moire excitonren in hetero-bilagen van verdraaid MoS2/WSe2. In de laatste
decennia, de dynamica van golfpakketjes is het onderwerp geweest van vele theoretis-
che en experimentele studies in halfgeleiders, supergeleiders, crystallen en koude atomen.
De ontdekking van grafeen en moire excitonen hebben hieraan twee nieuwe platformen
toegevoegd. De ZBW zelf was eerst theoretisch voorspeld door Schrodinger voor deeltjes
die de Dirac bewegingsvergelijkingen volgen. Het zijn immers ook deze vergelijkingen
die grafeen elektronen en excitonen in verdraaide MoS2/WSe2 bilagen onder een extern
elektromagnetisch veld beschrijven.

ZBW in multilaag grafeen is zowel analytisch als computationeel bestudeerd, respec-
tievelijk door de Greense functie- en de split-operatormethode. In dit systeem vonden we
dat ZBW niet enkel afhangt van de pakketbreedte en de initiele pseudospin polarisatie,
maar ook van het aantal lagen. Verder lieten de analytische en numerieke methoden toe
om golfpakketdynamica te bestuderen in systemen met een arbitrair aantal lagen en voor
arbitraire potentiaaloppervlakken.

Voor moiré excitonen in verdraaid MoS2/WSe2 heterobilagen, tonen we analoog aan
andere Diracachtige deeltjes, dat dit systeem ook ZBW vertoont, wanneer het onderwor-
pen wordt aan een extern elektromagnetisch veld. In dit geval komt ZBW naar boven
op lange tijdsschalen die compatibel zijn met hedendaagse technieken voor exciton dy-
namica. Dit laat toe om de dynamica van excitonen in van der Waals heterostructuren
te bestuderen en dit systeem te beschouwen als voordelig vastestof platform om ZBW te
bestuderen door de elektrische potentiaal en inter-laag verdraaiingshoek te variëren.

In het tweede deel van deze thesis wordt een studie van grafeen plasmonen in van der
Waals heterostructuren voorgesteld. De plasmonen worden berekend binnen een raamw-
erk van de zogenaamde ’willekeurige fase benadering’ en ondersteund door het ’kwantum
elektrostatisch heterostuctuur’ model, een methode die gebaseerd is op dichtsheidsfunc-
tionaaltheorie (DFT). Aangezien Dirac plasmonen zeer gevoelig zijn door de dielektrische
eigenschappen van de omgeving, is het mogelijk om de structuur en compositie van van der
Waals heterostructuur lagen onder een grafeen laag te ontdekken door plasmonen te on-
derzoeken. Op deze manier kunnen we een laag-gevoeligheid bereiken van een enkele laag
en tussen verschillende transitiemetaaldichalchegonides (TMD) differentieren vanaf twee
lagen. Verder onderzoeken we ook hoe plasmonen hybridiseren met optische phononen
die ook aanwezig zijn in de TMD’s. Deze hybride deeltjes, de zogenaamde oppervlakte
plasmon-phonon polaritonen (SPPPs), worden ook onderzocht. Hierbij is gevonden dat
op deze manier zowel sterke als ultrasterke koppelingsregimes bereikt kunnen worden door
het Fermi niveau van grafeen te veranderen of door het aantal lagen van de TMD’s aan
te passen.
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1
Introduction

1.1 Motivations for the study of graphene

In December 1959, physicist Richard Feynman1 gave a lecture at the California Insti-
tute of Technology that would come to be considered the starting point of nanotechnol-
ogy2, although he did not use this term during the meeting. In his lecture, entitled There’s
Plenty of Room at the Botton, Feynman suggested that atoms could be manipulated and
organized individually, as needed, giving rise to new materials with properties entirely
different from those existing [1].

The nanotechnology, in a simple and direct way, can be understood as the study of
matter on an atomic and molecular scale, with the ability to create new useful objects
using specific techniques and tools. The development of nanotechnology took a very
important step in 1981, when Gerd Binning and Heinrich Roher, from the IBM laboratory
in Zurich, developed the scanning tunneling microscope - STM), allowing for nanometric
manipulations. This achievement earned G. Binning and H. Rober, together with Ernst
Ruska, the 1986 Nobel Prize in Physics. Over the years, other microscopes have been
developed, such as: scanning probe microscope (SPM), near field microscope (NFM) and
atomic force microscope (AFM).

In 1985, a group of researchers discovered a series of compounds entirely made out
of carbon: the fullerenes [2]. Feynman’s dream was beginning to come true: the carbon
atoms of fullerene have sp2 hybridization, making them more reactive molecules than
common aromatic systems. This allows the addition of functional groups to fullerenes,
giving rise to new structures (fullerenes).

The discovery of fullerenes left the scientific community enthusiastic, so that in 1991
Sumio Iijima discovered and characterized for the first time the nanotubes of carbon [3],

1Richard Philips Feynman (New York, May 11, 1918 — Los Angeles, February 15, 1988) was a
renowned 20th century American physicist, one of pioneers of quantum electrodynamics and the 1965
Nobel Prize in Physics.

2The term nanotechnology was coined for the first time by Norio Taniguchi in 1959, to describe the
technologies that allowed the construction of materials on a scale of 1nm.



38 1. INTRODUCTION

Figure 1.1: Number of publications including the keyword (a) “graphene” and (b)
“graphene + plasmons”. Inset in panel (b) represents the number of publications us-
ing the keyword “2D materials”. Data obtained from the web of science from 2005 to
2020.

one-dimensional (1D) structures with unique characteristics. Until then, structures ex-
clusively made by carbon with zero-dimensional (0D) (Fullerenes) and three-dimensional
(3D) (Graphite and Diamond) were already known.

For a long time, it was believed that two-dimensional (2D) dimensional material was
not feasible due to thermodynamic instability. [4–6].

However, on October 5, 2010, Konstantin Novoselov and Andre Geim3 would win the
Nobel Prize in Physics for the pioneering study of the electronic properties of the graphene
(2D structures, in the form of a honeycomb, or, simply, a monolayer graphite) [8]. Using
an experimental technique known as micromechanical cleavage, Novoselov and Geim,
together with their group, managed to obtain a single layer of graphite. Theoretically, it
all started in 1947 when Canadian physicist Philip Richard Wallace (1915-2006) studied
the band structure of graphite [9]. The importance of this material is due to the fact that

3Andre Geim, was the first scientist to win both the IgNobel [7] award, awarded to the year’s strangest
discoveries, and the Nobel.
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Figure 1.2: Illustration of the dichroism property of the Lycurgus cup. (a) When the
light source is located outside the glass looks green, on the other hand, (b) when the light
source is located inside the cup looks red. (c) Schematic representation of an incident
light in a silica coated 50 nm silver nanospheres material that showing dichroism. When
the background is black (white) the reflect color is blue (brown). This property of the
same material showing different colors depending on the position of the light is called
dichroism. Adapted from Refs. [10, 11].

graphene has unique electronic, mechanical, optical, thermal and chemical properties,
making it extremely promising for industrial applications.

Since the discovery of the graphene in 2004, there has been a significant increase in
the number of publications related to this material, as verified by hatched blue color
bars in Fig. 1.1. Since graphene can support plasmons, which will be discussed later in
this thesis, the interest of the scientific community on graphene plasmons also increased
significantly, as shown by orange bars in Fig. 1.1, making this subject a hot topic until
nowadays. Although zitterbewegung is also a subject of this thesis, as it is a very specific
subject, the number of annual publications is restricted to a few publications, so it was
omitted from Fig. 1.1.

1.2 Plasmons in graphene-based systems

One of the oldest examples of interaction between light and matter is an extraordinary
work with glass made by the Romans in the fifth century AD known as Lycurgus cup4,
Fig. 1.2(a)-(b). Surprisingly, when the light source is located outside, Fig. 1.2(a), the
glass looks green. On the other hand, when the light source is located inside, the cup
looks red. However, it was only in 1990 that it was possible to explain this phenomenon.

4The Lycurgus cup, which is part of the collection of the British Museum, shows King Lycurgus being
dragged to the underworld by Ambrosia. It is one of the oldest synthetic nanocomposites [12].
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Figure 1.3: Illustration of the dichroism property in a stained glass window of the
Antwerp’s cathedral (left). Controlling the size and shape (prism and sphere, for ex-
ample) of gold and silver nanoparticles allows to obtain different colours (right). Adapted
from Ref. [15].

Using AFM [13], scientists observed the presence of nanoparticles: 66.2 % silver, 31.2 %

gold and 2.5 % silver [14]. The light scattered by colloids of silver nanoparticles with
size > 40 nm gives rise to the green color, Fig. 1.3(a). On the other hand, the red color
is originated when the light is absorbed by gold particles, while the purple color, which
can be seen in the body of King Lycurgus, is due to the absorption of large particles,
Figs. 1.3(b). Figure 1.2(c) presents a schematic illustration of an incident light in a silica
coated 50 nm silver nanospheres, a typical material that presents the dichroism property,
i.e a same material can exhibit different colors depending on the position of the light.

The use of nanoparticles in the medieval age can also be seen in the stained glass win-
dows of Gothic churches, where the use of metallic gold and silver particles was normally
used to create different colors, as can be seen in Fig. 1.3.

But, what is the relation between those two examples and plasmons? The answer is
simple: plasmons arise due to the interaction between light and free-electron in conductive
materials. [16–18]. To be more precise, plasmon are collective density oscillations of the
electron liquid in conductive materials, that arise as response of the electron-electron
interaction in the material, to an external electromagnetic field [16–19], as illustrated
in Fig. 1.4(a). On the other hand, when a plasmon wave is restrict to the surface of
the metallic material, these plasmons are called as Surface Plasmon-Polaritons (SPPs).
The SPPs are defined as a propagating electromagnetic surface wave coupled to collective
charge excitations of the conduction electrons, that propagates along the interface between
a dielectric and a conductor [16–18]. Figure 1.4(b) illustrates one of the first experimental
setups to detect SPPs in graphene (the substrate is SiO2) [20]. Using a ultrafast laser
coupled to an AFM tip to stimulate SPPs, Fig. 1.4(b), allowed them to visualize the
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Figure 1.4: (a) Illustration of a localized surface plasmon excited by an electric field,
adapted from Ref. [19]. (b) Diagram of the first experimental setup to detect propa-
gating surface waves in graphene monolayer. (c) Visualization of the propagating and
localized graphene plasmon in real space by scattering-type scanning near-field optical
microscopy (s-SNOM). (d) Results obtained computationally using local density of opti-
cal states (LDOS). λ is the plasmon wavelength. (e)-(f) Experimental setup of graphene
encapsulated by hexagonal boron nitride (hBN) and experimental image obtained from
s-SNOM. Plasmons in such heterostructure are extremely confined to the graphene mono-
layer. Adapted from references [20] and [21], respectively to (b)-(d) and (e)-(f).

propagating and localized plasmon wave in real space by scattering-type scanning near-
field optical microscopy (s-SNOM), Fig. 1.4(c). Their results were confirmed by local
density of optical states (LDOS) simulations, Fig. 1.4(d) (λ is the plasmon wavelength).
Other significant progress was taken in 2014 by A. Woessner et. al [21], when the plasmon
life time was increased 10 times, when compared to the results of Ref. [20]. To do so,
they encapsulated graphene in between hBN layers, as represented in Fig. 1.4(e). Figure
1.4(f) represents the visualization of the SPPs in such structure obtained experimentally
using also s-SNOM, as mentioned before.

In this thesis we used the sensitivity of Dirac plasmons (SPPs in a graphene mono-
layer) to study the structure and composition of van der Waals heterostructures and to
investigate how these plasmons can couple to phonons in these heterostructures.
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〈x(t)〉x(t)
Figure 1.5: Illustration of the Zitterbewegung for an simple one-particle picture. The
position x(t) (dashed gray line) performs a ZBW around the mean (classical) trajectory
〈x(t)〉 (solid black line). Adapted from Ref. [22].

1.3 Wave packet dynamics and zitterbewegung of elec-
trons in graphene and of moiré excitons

The zitterbewegung (ZBW) (trembling motion, from German) was first described in
1930 by Erwin Schrödinger [23]. Schrödinger used the Dirac equation to study rela-
tivistic electrons in a vacuum and realized that the spin operators (~σ) corresponding to
the velocity component did not commute with the Hamiltonian. As a consequence, the
electron velocity is not a constant of motion, and that is a purely quantum phenomenon,
since it violates Newton’s first law of classical mechanics5. Schrödinger calculated the
average velocity and position (see illustration in Fig. 1.5) of the electron in vacuum as
a function of time and concluded that, in addition to their classic motion, these par-
ticles exhibit very rapid oscillations, which he called zitterbewegung . The frequency of
oscillation (h̄ωz ' 2m0c

2 ' 1 MeV) predicted by Schrödinger is determined by the gap
due to interference between the positive and negative energy states that compose the
initial wave packet and the oscillation amplitude is in the order of the Compton length
(λc = h̄/m0c ' 3.86× 10−3 Å) [26].

In the last few decades, the study of the dynamics of wave packets, as well as the
study of the ZBW, has been the subject of numerous theoretical studies e.g. in ultracold
atoms [27, 28], semiconductors [29–34], carbon nanotubes [35], topological insulators [36],
crystalline solids [37, 38] and other systems [39–42]. Although ZBW was theoretically
found using a quantum simulation of the Dirac equation for trapped ions [43], Bose–
Einstein condensates [44–46] and, most recently, an optical simulation [47], up to now,
no direct experimental observations have been carried out. The reason is that the Dirac
equation predicts ZBW with amplitude of the order of the Compton wavelength (10−2 Å)
and a frequency of ωZB ≈ 1021 Hz, which are not accessible with current experimental
techniques.

With the advent of graphene, a new system has now emerged for the scientific commu-
nity to investigate the evolution of the dynamics of wave packet and the presence of the
ZBW phenomenon, since electrons in graphene behave as massless relativistic particles

5Perhaps the reader concludes that because it is a study of electron dynamics, it was expected that
the ZBW was of a quantum nature. However, we must not forget that Quantum Mechanics was a novelty
at that time, since the equation of Schrödinger was published in 1926 and the Waa Dirac in 1928 [24, 25].
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Figure 1.6: Illustration of a top view of a moiré pattern (right) originated by stacking two
rotated monolayers (left) with honeycomb lattice. Adapted from Ref. [54].

that are governed by the Dirac equation. Inspired by this properties, in 2008 and 2010,
respectively, Maksimova et al. [48] and Chaves A. et al [49], investigated the dynamics of
charged particles described by a Gaussian wave packet in graphene monolayer analytically
and computationally, respectively. As studies analogous to the aforementioned ones had
not yet been developed for more than one layer of graphene, it was pertinent to study the
dynamics of wave packet in multilayer graphene, in order to verify how is the evolution
of a Gaussian wave packet when there is more than one graphene layer and, in addition,
verify the existence of the ZBW.

Most recently, advances in the isolation of monolayer semiconductors and their stacking
as van der Waals heterostructures (vdWhs) opened a new field of study of artificial 2D
hybrid materials [50, 51]. Combining two monolayers of semiconducting transition-metal
dichalcogenides (TMDs) in a vdWhs with an inter-layer twist introduces an in-plane
moiré pattern [52], as illustrated in Fig. 1.6. This pattern is associated with an in-plane
modulation of the conduction and valence band edges, thus presenting new possibilities to
engineer the electronic band structure, quasi-particle confinement, and optical properties
of the system. Applying a perpendicular electric field, the moiré exciton band structure
acquires a massless Dirac fermion character, similar to low-energy electrons in graphene.
The combination of the long lifetime and bright luminescence [53] of ILE, along with their
Dirac-like dispersion tunable by the twist angle and applied fields, makes twisted vdWhs
a strong candidate for experimental detection of ZBW of moiré excitons, motivating us
to study, theoretically, such a possibility.

1.4 Structure of the thesis

This thesis is divided in two different subjects. After presenting a general introduction
to both subjects and to the main properties of graphene, the ZBW phenomena, within
the time evolution of a 2D Gaussian wave packet, for low-energy electrons in ABC-stacked
n-layer graphene (ABC-NLG) and also for moiré excitons in twisted MoS2/WSe2 hetero-
bilayers, is investigated in the first part of this thesis. In the second part, the plasmonic
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properties of graphene is used to probe the structure and composition of van der Waals
heterostructures. Also, a detailed study of how Dirac plasmons couple to the phonons of
transition metal dichalcogenides is presented.

Below, a summary of the content in each chapter is provided.

• In Chapter 2, I present the types of orbital hybridization and the allotropes of
carbon. Then, the techniques for obtaining graphene, its main characteristics and
applications are presented. At the end of this Chapter, we introduce the novel
two-dimensional materials that rise after graphene and are inspired by it;

• In Chapter 3, we develop the tight-binding model for graphene monolayer and bi-
layer, generalizing it later to the N -ABC-stacked multilayer graphene case;

• In Chapter 4, the effect of zitterbewegung on the propagation of wave packets
in ABC-stacked multilayer graphene, within an analytical and computational ap-
proach, is investigated. The aim of this is to answer the following question: How is
the zitterbewegung affected by changing the number of graphene layers?

• Chapter 5 shows that, analogously to other Dirac-like particles, moiré excitons ex-
hibit trembling motion, also known as zitterbewegung, whose long timescales are
compatible with current experimental techniques for exciton dynamics. In this
Chapter, the following question is answered: Is it possible to use moiré ex-
citons in van der Waals heterostructures as an advantageous solid-state
platform to directly probe the zitterbewegung phenomena and its Dirac-
like nature?

• As a second subject of this thesis, in Chapter 6, the theoretical tools to study
graphene plasmonics are introduced, from a brief introduction to the linear response
theory and to the random phase approximation.

• In Chapter 7, a study of Dirac plasmons in van der Waals heterostructures is pre-
sented. Since graphene plasmons are very sensitive to the electrical surrounding en-
vironment, two important questions are answered: Can Dirac plasmons, excited
from terahertz to mid-infrared regime, be used to probe the structure
and composition of van der Waals heterostructure?

• In Chapter 8, the coupling strength between plasmons and the different vibrational
phonon modes of the transition metal dichalcogenides (TMDs) are studied. The
extend to which these modes are coupled depends on the TMD composition and
structure, but also on the plasmons’ properties. In this Chapter, the following ques-
tion is answered: How strong is the coupling of terahertz Dirac plasmons
to phonons in transition metal dicalchogenide-based van der Waals het-
erostructures, and how the tuning of the Fermi energy can be used to
increase the coupling strength?
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• In Chapter 9, the conclusions and outlook are presented.



2
Carbon: from graphite to graphene and beyond

In this chapter, the different forms of hybridization that the atom carbon atom can
assume are presented along with its main allotropes, among them graphene, the object of
study of this thesis. Next, the main techniques for obtaining graphene, its characteristics,
and applications of graphene are shown. In the last section of this chapter, the new
two-dimensional materials that raised after graphene are discussed.

2.1 The carbon atom

Carbon, the name given by Lavoisier in 1789, derives from Latin, which means coal.
It is a chemical element whose symbol is C, has an atomic number 6 (6 protons and 6
electrons), mass of 12 u and is solid at room temperature. In the periodic table, it is
located in the second period of the 4A family, being between metals and non-metals,
as presented in Fig. 2.1. Carbon is responsible for the existence of a variety of organic
and inorganic compounds. Due to its atomic structure, carbon can come together in
different ways, giving rise to other substances exclusively made by carbon atoms, i.e.,
carbon allotropes.

1A

2A 3A 4A 5A 6A 7A

8A

1

2

H

Li Be B N O F Ne

He

C

Meta sl Nonmeta sl

Figure 2.1: Illustration of the position of the carbon atom (C) in the table periodic.

The carbon atom, due to its six electrons, has its configuration for the lowest energy
state, also called the ground state, given by 1s22s22p2. Electrons in an atom can be
divided into valence electrons, defined as electrons that are orbiting the nucleus in the
outermost atomic shell of an atom, and those electrons that are closer to the nucleus with
filled orbitals, the so-called core electrons. The valence electrons are responsible for the
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Figure 2.2: Electronic configuration for the ground and excited state of the carbon atom.
Adapted from Ref. [55].

chemical properties of the atom, because it is the loss, gain, or rearrangement of these that
determine the chemical reactions, while the core electrons do not contribute to chemical
reactions [56]. Thus, in the graphene case, the four atoms that occupy the 2s2 and 2p2 are
the valence electrons. Thereby, the wave functions of the last four electrons can recombine
with each other, changing the occupation of the 2s and 2p orbitals originating hybrid
orbitals1 [57]. These hybrid orbitals are defined as σ or π. The σ bond is formed due
to the overlap of two hybrid atomic orbitals and is cylindrically symmetric. That is, the
electrons in the bond are symmetrically distributed around an imaginary line connecting
the centers of atoms joined by the bond. On the other hand, the π link is due to the
overlap of two p orbitals side by side.

1The concept of combining orbitals, called hybridization of orbitals, was proposed by first time by
Linus Pauling (1901-1994) in 1931.
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2.1.1 sp hybridization

In this type of hybridization, one electron from the 2s layer and another one from the
2p layer of the carbon atom are hybridized to form two sp orbitals, equivalent to each
other, Fig. 2.2(a). The remaining orbitals (2p) are not hybridized and are perpendicular
to each other and to the sp orbitals. On the other hand, the two hybridized orbitals are
located on the same line and opposite to each other, to minimize electronic repulsion,
forming an angle of 180º in relation to each other, as illustrated in Tab. 2.1(a)). That
is the reason why the geometry of sp hybridization is called linear, as can be seen in
Tab. 2.1(b).

To illustrate the sp hybridization, the ethyne (HC CH), illustrated in Tab. 2.1(c)-
(d), also known as acetylene, can be considered. The hybrid molecular orbitals of ethyne
are formed as follows: (i) two carbon atoms overlap the sp orbitals to form a σsp−sp bond
between them (this is just one bond of the triple bond, CC); (ii) the remaining two sp
orbitals, one from each carbon atom, overlap with the s orbitals of hydrogen atoms to
form two σ bonds (C H); (iii) the two p orbitals of each carbon atom join laterally to
form two π bonds (these are the other two bonds of the triple bond); these two π bonds,
which determine two nodal planes that pass through the two nuclei, is the reason of the
ethyne to have circular symmetry along the triple bond. Consequently, if a rotation occur,
any new compound will not be formed. The Tab. 2.1(c) shows the final configuration after
these three steps.

2.1.2 sp2 hybridization

In this case, three electrons from the carbon valence layer (layers 2s and 2p), as shown
in Fig. 2.2(b), rearrange, giving rise to three hybrid orbitals called sp2. These hybrid
orbitals, located on the same plane, are equivalent to each other and are separated by
an angle of 120º, which is the reason why its hybridization is called planar trigonal, see
Tab. 2.1(e)-(f). The remaining electron remains in the p orbital, perpendicular to the
plane of the three hybrid orbitals.

Taking the ethane (H2C CH2), whose molecular structure is illustrated in panel
Tab. 2.1(g), as an example, the hybrid molecular orbitals are formed as follows: (i) a
sp2 orbital of each carbon atom overlaps each other forming a σsp2−sp2 molecular orbital
(C C); (ii) the other sp2 orbitals of carbon atoms overlap with the 1s orbitals of
hydrogen atoms forming bonds σs−sp2 (CH); (iii) the remaining two electrons are located
in the p orbitals of each carbon atom, thus the lateral overlap of these two orbitals
results in a π bond. The π orbital resembles an electronic cloud, located in the regions
above and below the plane determined by the double bonds. Table 2.1(g) shows the final
configuration after these three steps.

Unlike ethyne, the C C double bond in ethane has no rotational symmetry with
respect to the axis that joins the two carbon atoms. This is due to the fact that the
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overlap will be maximum between the p orbitals of a π bond when the axes of the p
orbitals are parallel, so, rotating the double bonded carbon atom to 90º will break the π
bond.

2.1.3 sp3 hybridization

Finally, the sp3 hybridization occurs when one electron from the 2s layer and three
from the 2p layer of the carbon atom rearrange, giving rise to four hybrid sp3 orbitals, as
shown in Fig. 2.2(c). These four hybrid orbitals are equivalent to each other and oriented
towards the vertices of a tetrahedron, hence the origin of the name of the hybridization
geometry sp3, see Tab. 2.1(i)-(j). The hybridized orbitals attract s orbitals of the hydrogen
atom until they form σs−sp3 (C H) molecular orbitals.

As a last example, ethane (H3C CH3), can be used to illustrate this type of hy-
bridization, (see Tab. 2.1(l)-(m)). In this case, the formation of atomic orbitals occurs as
follows: (i) first, the formation of the bond σs−sp3 between the carbon atom and the hy-
drogen atom, occurs as previously described; (ii) the frontal overlap of the sp3 orbitals of
the two carbons, forming a link σsp3−sp3 . The final configuration can be seen in Tab. 2.1(l).

Since the σsp3−sp3 bond has cylindrical symmetry along the connection axis (or rota-
tional symmetry, as long as the central axis that joins the two carbon atoms is used as
a reference), the rotation of the single bond does not require a large amount of energy.
Therefore, atoms groups united by a simple bond turn relatively free in relation to each
other.

2.2 Allotropic forms of carbon

Due to the forms of hybridization of the carbon atom, a series of other compounds
formed exclusively by carbon can be obtained (found in nature or synthesized in the
laboratory). Table 2.2 classifies the five allotropes described in this section according to
their dimensionality, also providing information about hybridization, density, bond length
and electronic properties [55, 61].

2.2.1 Graphite and diamond

The two most stable and well-known carbon allotropes are graphite and diamond,
whose crystal structures are illustrated in Figs. 2.3(a)-(b), respectively [62]. Graphite
crystallizes in a regular hexagonal system with dihexagonal dipyramidal symmetry, com-
posed of several layers of atoms with symmetry sp2. It is due to this form of hybridization
that graphite conducts electricity. Another characteristic worth mentioning is the fact
that the parallel planes in a crystal of graphite are connected by a π bond. As the planar
interaction is weak, it is possible to isolate a single layer of graphite, obtaining one of the
most important materials synthesized in recent years: graphene.
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Unlike graphite, the diamond presents hybrid sp3 orbitals. The diamond-shaped crys-
tal structure, illustrated in Fig. 2.3(b), consists of a Bravais lattice of face-centered cubic
system and a base with two identical atoms, one at the origin and another at 1/4 from
the diagonal of the cube [63]. Note also that each atom is in the center of a tetrahedron
formed by four nearest neighbors, typical of the sp3 hybridization. On the Mohs scale2,
the diamond is the hardest natural material presenting a value equal to 10, on a scale
ranging from 0 to 10.

2.2.2 Fullerenes

In 1985, Harold. W. Kroto, Robert F. Curl and Richard E. Smalley, obtained a
series of chemical structures formed exclusively by carbons, which would later be called

Table 2.2: Carbon allotropes in terms of their dimensionality, as well as some character-
istics of them. Since the electrical conductivity in graphite depends on the position, then
“∗” indicates the “a” direction and “∗∗” indicates the “c”direction. Adapted from Refs. [55,
61]. 2D0D 1D 3DHybridization3Density (g/cm )

Allotrope FullereneC60 Nanotube Graphene Graphite;Diamond2sp 2sp 2sp 2 3 sp ;sp
°

1.72 1.20 2.26 ~2,1;3.52
1010 Depends onthe structure ~2.000 4* **;~2.5x10  and 6N/aTenacity Flexible;Elastic Flexible;Elastic Elastic Flexible; Inelastic; N/aElectric conductivity(S/cm)

Figure 2.3: Illustration of the crystal structure of (a) graphite and (b) diamond.

2The Mohs scale quantifies the hardness of minerals through the ability of harder material to scratch
a softer material and goes from 0 to 10.
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Figure 2.4: (a) Schematic representation of the fullerene C60, (b) the geodesic dome and
(c) the idealized construction of B. Fuller.

fullerenes [64]. According to the literature, Kroto and his team were trying to understand
the mechanisms for the formation of long carbon chains observed in interstellar space.
The experiment consisted in the vaporization of rotating graphite disks punctually by
irradiating high-energy lasers, in a helium atmosphere, in high-temperature [65]. The
obtained samples were analyzed using a mass spectrometer, allowing the detection of
carbon clusters with different quantity of atoms. However, the most stable structure of
fullerene is made up of 60 carbon atoms (C60).

Those carbon samples present a geometrical shape similar to that of a geodesic dome
illustrated in Fig. 2.4, therefore, those carbon clusters were labeled fullerenes, honoring one
of the greatest architects of the 20th century, the North American Buckminster Fuller3,
mentor of the geodesic domes [66]. That was the first new allotropic form of carbon
discovered in the 20th century, wich earned H. 1996 Kroto, R, Curl and R. Smalley the
1996 Nobel Prize in Chemistry.

2.2.3 Carbon nanotubes

The frontier of carbon physics would be expanded again in 1991, when Sumio Iijima
discovered the carbon nanotubes (CNTs), illustrated in Fig. 2.5. CNTs are made up of
hexagonal carbon arrays that give rise to small cylinders, Fig. 2.5(a). Typically, they have
a diameter range from a few angstroms to tens of nanometers and can be over several
centimeters in length [67].

Figure 2.5 illustrates the geometry of the CNTs [68]. Structurally, CNTs can be seen
as a graphite sheet rolled into a cylindrical shape, with two distinct types: single-walled
(SWCNTs) and multiple-walled (MWCNTs). When two crystallographically equivalent
sites coincide on a rolled graphite network, we have an SWCNTs. The chiral vector C
defines the relative position of two sites and is defined by two integers (n,m), and by the
unit vectors â1 and â2 (~C = nâ1 + mâ2) of the hexagonal lattice, as show in Fig. 2.5(d).
The values of (n,m) determine the class of CNTs, which can be: armchair, when n = m

3Richard Buckminster Fuller (1895 - 1983) was a visionary, designer, architect, inventor and American
writer.
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Figure 2.5: CNTs geometries: (a) armchair, (b) zig-zag, (c) chiral. The schematic struc-
ture of unrolled CNT is shown in (d).

and ϕ = 30◦, zig-zag, n = m = 0 e ϕ = 30◦, or chiral, n 6= m 6= 0 and 0 < ϕ < 30◦,
respectively represented in Figs. 2.5(a)-(c).

2.2.4 Carbon nanofoam

In 2002, a team of physicists from Greece, Australia and Russia, led by Andrei V.
Rode, discovered carbon nanofoams [69, 70]. Carbon nanofoam is considered the fifth
allotrope of carbon and presents carbons with sp2 and sp3 hybridization. Figure 2.6(a)-(b),
respectively, shows an image using transmission electron microscopy (TEM) and scanning
electron microscopy (SEM) [71]. This new material, a highly porous, amorphous carbon
nanomaterial, is a cluster of randomly interconnected carbons with average diameters
between 6 and 9 nanometers [72, 73]. Among the solids, it has the lowest known density
(only two milligrams per cubic centimeter), low electrical conductivity and is the first
allotropic form of carbon to exhibit ferromagnetism properties, although temporary, at
room temperature [71–73].

2.2.5 Graphene

Graphene, the last allotropic form of carbon discovered, was obtained in 2004. Figure
2.10 illustrates a timeline of events from graphite to the preparation and characterization
of graphene made by Geim, Novosolev and collaborators in 2004 [8, 74]. The technique
used by the team of scientists to obtain graphene is relatively simple and consists of using
a specific type of scotch tape, to separate layers from graphite, until a monolayer graphene
is obtained, as shown in Fig. 2.7.

The use of animal or vegetable glues to connect interfaces dates back to the prehis-
tory [75, 76]. In Ancient Greece, the phenomenon of adhesion that allows the geckos to
settle and move quickly on ceilings and walls caught Aristotle’s attention. Only with the
aid of the SEM was it possible to unravel the physical phenomenon behind the enormous



54 2. CARBON: FROM GRAPHITE TO GRAPHENE AND BEYOND

Figure 2.6: Image of a carbon nano-foam using (a) transmission electron microscopy
(TEM) and (b) scanning electron microscopy (SEM). Adapted from Ref. [71].

ability of the geckos’ feet to adhere: the sole of the gecko’s paw is made up of micrometric
“hairs” that adhere to surfaces by non-directional van der Waals-London interactions, as
illustrated in Fig. 2.8. Considering only one micro “hair”, the force supported is small,
∼ 10−7 N). On the other hand, millions of these hairs produce an adhesion of the order of
10 N/cm2 due to the van der Waals-London forces [77]. Geim, Irina V. Grigorieva (Geim's
wife), Novoselov, S. V. Dubonos, A. A. Zhukov and S. Yu. Shapoval, in 2003, developed
biomimetic microphytes that played the role of the geckos feet [78]. This was, undoubt-
edly, one of the main steps taken by the research team in the search of the graphene
monolayer.

Geim and his team, exfoliated layers of a graphite crystal with the adhesive tape
developed by them, managing to obtain flakes formed from some layers of graphite and
then deposited them on a SiO2 substrate with thickness of 315 nm. For graphite films with
thicknesses of the order of 50 nm, it is necessary to add an optical path to produce different
interference patterns on the SiO2 substrate to define the region where the monolayer can

Figure 2.7: Pictorial illustration of the micromechanical cleavage technique to obtain
graphene. First, (a) a special type of scotch tape is placed on top of a graphite crystal,
(b) in order to obtain some layers of graphene. Then, (c) the graphene layers are pressed
onto a substrate, normally is used a silicon dioxide SiO2 substrate. After removing the
tape (d) some layers remain on the substrate, making it possible to localize a graphene
monolayer through some experimental techniques, such as scanning electron microscopy,
for example. Adapted from Ref. [74].
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Figure 2.8: Illustration of the adhesion of the geckos'keratinized hair: (a) sole of the
gecko’s paw, (b) blades of the tips of the feet with a zoom showing the lamellae and the
micrometric hairs, (c, d) micrometric hairs touching the surface and (e ) illustration of
van der Waals-London’s strength. Adapted from Ref. [79].

be found using atomic force microscopy (AFM), since a graphite flake with this thickness
is semi-transparent. However, it was not possible to observe changes in the interference
pattern for films with thicknesses ∼1.5 nm. Thus, it is possible to classify the films into
two classes: few-layers graphene (FLG), up to a thickness of approximately 10 layers,
and multilayer graphene (MLG), for more than 10 layers [80]. Finally, Geim and his
team, using SEM, were able to identify the monolayer graphene from samples containing
FLG [8]. An adaptation of the images obtained by the group of researchers mentioned
here are illustrated in Fig. 2.9.

Once the researchers were able to obtain graphene using mechanical exfoliation, it
was obtained by scientists from around the world using different experimental techniques
already known to the scientific community. In the next section, we will describe some of
the most common and important methods to obtaining graphene.

2.3 Techniques for obtaining graphene

The most important factor for any new product to be commercially viable, as well
as for it to be produced on a large scale, is its cost of production and its quality. For
graphene, the method adopted to produce it plays a fundamental role in the properties
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Figure 2.9: Graphene films: (a) image of a relatively large graphene multilayer with
thickness 3 nm over SiO2, (b) AFM image of a graphene area of 4µm2 close to its border
(SiO2 is represented by the brown region) and (c) graphene image obtained by AFM.
Adapted from Ref. [8].

of the final product.
In this section, some quantitative aspects of graphene production methods are dis-

cussed, including the procedure used by Geim et. al [8]. Table 2.3 summarizes the
advantages and disadvantages for producing graphene using the four methods described
here.

2.3.1 Mechanical exfoliation

Mechanical exfoliation, also known as micromechanical cleavage, is a method that
has been used for decades by scientists in the field of crystallography [84, 85]. In 1999,
this method was applied to graphite where scientists were able to obtain some layers
of graphene that were proven through SEM and AFM [86]. In Fig. 2.11(a), a diagram
classifies this method according to the quality of the graphene obtained, cost, scalability,
purity and production.

As previously described, the micromechanical cleavage is a simple method, which
consists of using an adhesive tape to reduce the number of layers of the graphite, using
SiO2 as a substrate, Fig. 2.11(e). Although this technique is not feasible for large-scale
application, it is still the method for obtaining graphene with the best level of quality,
being widely used for fundamental studies and for technological prototypes.

2.3.2 Liquid phase exfoliation

Liquid phase exfoliation (LPE) is another technique for obtaining graphene. It consists
of exfoliating the graphite in solutions that can be aqueous or not [87–92]. In the first
step, the graphite is placed in the solution to reduce the force of the van der Waals
interactions between the graphene layers. Then, ultrasonic waves or electric fields are
used to maximize the process of exfoliating a graphite crystal [93].

Unfortunately, this technique ends up leaving an amount of graphite that was not ex-
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Figure 2.11: Most common forms of graphene production. On the left side, panels (a)-
(d), is presented a diagram illustrating the quality of graphene (G), cost (C) (lower values
correspond to higher production costs), scalability (S), purity (P) and production (Y) for
four different methods to produce graphene. On the right side, panels from (e) to (g), is
show a scheme for each type of process of production. Adapted from Refs. [82, 83].

foliated. This excess needs to be removed later [94]. However, due to the high scalability
and low cost, this technique eventually became suitable for large-scale graphene produc-
tion [95]. Figures 2.11(g) and (b) illustrate this process and provide the main information
related to this technique, respectively.

2.3.3 Chemical vapor deposition

In this method, abbreviated by CVD, a silicon substrate with a metal layer is used,
once copper or nickel is usually used due to low carbon solubility [96–98]. A hydrocarbon
gas (methane) is used in a hydrogen atmosphere. As the temperature rises, the methane
molecule breaks down and the atom carbons is adhered to the substrate, forming graphene
layers, as shown in Fig. 2.11(f). Then, the graphene is transferred to a substrate.

The result is a high-quality graphene without impurities. Although large-scale pro-
duction is viable, the cost of this technique is high, as shown in Fig. 2.11(c).

2.3.4 Carbide sublimation

Graphite production from SiC was reported for the first time in 1896 by Acheson for
lubricant applications [99]. It is common to find in the literature the term “epitaxial
growth” for this method [100]. Figure 2.11(d) shows a schematic representation of some



2.4. GRAPHENE’S PROPERTIES 59

aspects of this technique.
The sublimation of carbides consists of using some carbide, normally silicon carbide

(SiC), where this material is heat treated in a vacuum or in an inert atmosphere. The
objective is to make the sublimation of the material bounded to the carbon atoms, giving
origin to graphene [101–103], as shown in Fig. 2.11(h). Growth can be done on both sides
of the carbon and silicon. The advantage of this technique is due to the fact that there
is no need to transfer the graphene to a substrate. However, the negative aspect is due
to the formation of zones with different number of graphene layers, i.e., the number of
layers to be obtained is not yet controlled and mobility becomes less if growth occurs on
the silicon side [104, 105].

2.4 Graphene’s properties

2.4.1 Electronic properties

In 2005, Novoselov and his group demonstrated that the charge carriers of graphene
can behave continuously like electrons and holes in concentrations in the order of 1013 cm−2

with a mobility µ that can exceed the 15.000 cm2/volts even at room temperature
(∼ 300 K) [107]. However, the dependence on graphene’s electronic mobility is limited by
impurities. Thus, in clean samples µ can reach values in the order of 100.000 cm2/volts,Advantages DisadvantagesMec. exfoliation Excellent electronic quality;Flat surface.Technique Small size;Not scalable.Liquid phaseexfoliation Low cost;It can be produced on a largescale. Small overlapping fragments;Low quality electronics.Graphene monolayer;Excellent electronic quality;Large graphene areas;Easy to transfer to othersubstrates;Can be reproduced on a largescale.

No need for high Cu vapor;Rough surface;It needs to be transferred to a substrate;Requires a cleaning step;Large difference in expansion coefficient with the substrate.
Chemicalvapor deposition

Excellent electronic quality;Flat surface;It does not need to be transferred to another substrate; Process takes place at hightemperatures;Areas limited according to the size of the silicon carbide.Carbide sublimation
Table 2.3: Advantages and disadvantages for producing graphene from mechanical exfoli-
ation, chemical exfoliation in liquid phase, chemical deposition in vapor phase and carbide
sublimation. Adapted from Ref [55, 106].
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surpassing some semiconductors, such as the indium antimony (InSb), which has a mo-
bility approximately given by µ ≈ 77.000 cm2/volt at room temperature [77].

In chapter 3, the electronic band structure of graphene is calculated, analytically,
showing that low-energy electrons in graphene behave like massless quasi-relativistic par-
ticles with spin 1/2. This allows one to describe these electrons through a Dirac-like
equation for massless particles. This intrinsic electrons behavior in graphene, perhaps the
most notable one, was observed by Novoselov and his group, as reported in Ref. [8]. In
that case, they found that the charge carriers in graphene present high velocity, in the
order of the Fermi velocity, i.e., 106 m/s, and low scattering, characterizing a ballistic
transport. Thus, the treatment of electrons in graphene could no longer be treated by
the Schrödinger equation, but by the Dirac equation. For this reason, graphene can be
used for many experimental observations of quantum mechanics, such as the quantum
Hall effect (QHE) [8], the Berry phase [108], Klein tunneling [109], and also for a wide
range of industrial applications.

2.4.2 Mechanical properties

In 2008, researchers Changgu Lee, Xiaoding Wei, Jerey W. Kysar and James Hone,
studied the elastic properties of graphene using the instrumented indentation technique4

through an AFM [110]. To do so, the group placed graphene flakes on a silicon substrate
with circular wells, Fig. 2.12(a), with diameters between 1 µm and 1.5 µm, both with depth
of 500 nm, separated by 5 nm from each other. On top of the substrate, they placed a very
thin layer of SiO2 with a thickness 300 nm thick. Using an optical microscopy, the group

Figure 2.12: Images of suspended graphene membranes. (a) electron micrograph images
of a graphene flake on top of a SiO2 substrate with holes. Regions I and II show pores
partially and totally covered by graphene, respectively, and region III shows a fracture
due to indentation. (b) Image of the pore yet to be drilled. The continuous line represents
the height profile of the dashed line, which is about 2.5 nm. (c) Schematic view of the
nanoindentation procedure and the graphene membrane. Adapted from reference [110].

4Also known as nanoindentation. With this technique it is possible to measure the hardness (H) and
the modulus of elasticity (E). To do so, is applied a force perpendicular to the sample using a tip with a
specific shape allowing to measure the hardness and also the elasticity of the sample.



2.5. GRAPHENE APPLICATIONS 61

Figure 2.13: (a) Transmittance of graphene from a monolayer to a bilayer graphene. Note
that a single layer absorbs only 2.3 % of the incident light, while a bilayer absorbs twice this
value. (b) Transmittance of graphene as a function of the wavelengths (in nm) compared
to other compounds, like: ITO, ZnO/Ag/ZnO, TiO2/Ag/TiO2 and single-walled carbon
nanotubes (SWNTs). Adapted from Ref. [111].

located a region with only one graphene monolayer. Then, using Raman microscopy it
was possible confirm that was, in fact, a single graphene layer. Finally, a force was applied
to the graphene membrane until the limit of its rupture. Figure 2.12 shows some images
of the experiment.

As an outstanding result, the experimental value found by the researchers for the
breaking point was 42 N/m, about 10 times higher than steel, a value higher than any
other existing material until that date.

2.4.3 Optical properties

In addition to the properties already mentioned here, graphene has optical properties
that make it a special material, when compared to any other existing. In terms of optical
properties, a single layer graphene absorbs only 2.3 % of the incident light, as shown in
Fig. 2.13, making it a practically transparent material [112]. The light absorption by a
graphene monolayer grows linearly, thus it is possible to obtain the fine structure constant
α experimentally. This is possible due to the fact that πα, which is the same as πe2/h̄c,
is approximately equal to 2.3 %.

2.5 Graphene applications

Due to its remarkable properties, graphene is one of the most promising materials of
the last years. The idealization of its applications is quite vast and applies from genetic
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engineering to the aerospace industry. In this section, we will make a brief qualitative
explanation of the possible applications of graphene in some areas.

2.5.1 Graphene-based transistors

As the progress of integrated circuits is based on reducing the scale of CMOS devices5

and, parallel to this, through the relationship between low voltage, low power and high
performance, graphene emerges as a great candidate for composing microchips in the
post-silicon era. Since miniaturization allows a larger number of transistors to be used
to form a particular electronic component, today it is quite common for personal com-
puter processors to have two billion MOSFET transistors6, with approximately 30 nm.

Figure 2.14: (a) Evolution of the size of MOSFET transistors (empty red circles are
projections) over the years. (b) Schematic representation of a high-speed self-aligned
graphene transistor. (c) and (d) represents a magnification of a self-aligned graphene-
based transistor. Adapted from Refs. [113–115].

5CMOS, complementary metal-oxide-semiconductor, is a type of metal–oxide–semiconductor field-
effect transistor (MOSFET) commonly used in the manufacture of integrated circuits, such as logic
gates, microprocessors and microcontrollers.

6The metal oxide semiconductor field effect transistor (MOSFET), is the most common type of field
effect transistor used in digital and analog circuits.
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Figure 2.15: (a) Schematic illustration of a DNA molecule passing through a nanopore
of a graphene monolayer. (b) Current variation as a function of time for a molecule
that passes through a nanopore (A- adenine, T-thymine, G-guanine and C-cytosine).
(c) Representation of a graphene-based biosensor and (d) graphene-based photosensors.
Adapted from Refs. [120–123].

Figure 2.14(a) illustrates the evolution of the MOSFET size over the years, adapted from
Ref. [113].

As an example of the properties of graphene applied to transistors, Fig. 2.14(b), re-
searchers have shown that it is possible to achieve high frequencies with graphene, reach-
ing 427 GHz [114–119], for example. Figures 2.14(c)-(d) represents a magnification of a
self-aligned graphene-based transistor.

2.5.2 Graphene-based sensors

Nowadays, electronic sensors are quite common in our lives. They can be used to detect
smoke, light, and others. Currently, studies using graphene as a sensor are increasing in
many fields, such as electrochemistry, biology and photonics.

As a result of the high sensitivity to external ambient, such as molecules, electric fields,
magnetic fields, graphene-based sensors are capable of detecting minimal variations of the
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current. For example, researchers have developed a promising technique to make genetic
sequencing of DNA molecules [124–127]. Using a graphene monolayer, the researchers
passed an individual DNAmolecule through a small hole (called nanopore) in the graphene
monolayer, as illustrated in Fig. 2.15(a). As the DNA molecule slid through the nanopore,
a current is induced making possible its detection. With this information, it is possible
to do the genetic mapping, as shown in Fig. 2.15(b). As one can see in Fig. 2.15(b),
the adenine, thymine, guanine and cytosine, represented by A, T, G and C, respectively,
induce different current values, making it possible to distinguish such molecules and,
consequently, probe the genetic sequencing [120].

As another example, graphene can also be used to create biosensors capable of identify-
ing toxic substances[128–132], for example, as illustrated in Fig. 2.15(c). Also, Fig. 2.15(d)
represents a graphene-based photosensor developed to be used in digital cameras, present-
ing a sensitivity considerably higher (thousands of time) than the the conventional CCDs7

and current CMOS, that also allows to capture images in a wider range of the electro-
magnetic spectrum [121].

2.5.3 Graphene-based flexible panels

As a last example of graphene application, is it possible to combine the excellent
optical and electronic graphene properties with its flexibility, to develop new touchscreen
displays/panels, replacing the commonly used Indium Tin Oxide8 (ITO) used in cell
phone screens and TV’s. In Fig. 2.16(a) a thin graphene film, measuring approximately
30 inches, ideal for use in next generation televisions, is illustrates [134].

Graphene can also be applied to create a smart window to display information, as
shown in Fig. 2.16(b). Once the graphene-based panel is turned off, the window is trans-
parent [111, 135], Fig. 2.16(c). Figure 2.16(d) illustrates the flexibility that graphene-
based displays have [136].

Recently, the company 2D Carbon Tech started producing graphene to be used in
smartphones touch screen displays. Figure 2.16(e) depicts (on the left side) a graphene-
based conductive film (measuring about 20× 20 cm2)) produced by 2D Carbon Tech and
(on the right side) a prototype of a smartphone already using the graphene-based touch
screen display [137].

As a last example, as illustrated in Fig 2.16(f), graphene can also be used in photo-
voltaic cell modules, that can be also flexible. Research shows that graphene is one of the
materials with the highest potential for this purpose [139–144].

7CCD, charge-coupled device, is a semiconductor sensor for capturing images used in digital cameras.
8Indium tin oxide is one of the most widely used transparent conducting oxides due to its electrical

conductivity and optical transparency, as well as the ease with which it can be deposited as a thin
film [133]
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Figure 2.16: (a) Graphene-based display. A transparent smart window that can displaying
information, when it is turn on, (b) or not (c), when is off. (d) Illustration of a thin
graphene display emphasizing its flexibility. (e) Another example of a thin graphene-
based conductive display (touch screen display) produced by the company 2D Carbon
Tech (left) and its use as a prototype of smartphone display (right). (f) Illustration of a
flexible photovoltaic cell modules. Adapted from Refs. [111, 134, 136–138]

2.6 Beyond graphene: the rise of novel ultrathin 2D-
nanomaterials

With the advent of graphene and its unique characteristics, starting a new era of 2D
materials and creating a new field in the physics of condensed matter, other 2D ma-
terials have been emerging over time. Although graphene presents many extraordinary
properties, as discussed in Sec. 2.4, with the advent of novel ultrathin 2D layered nano-
materials (2DLMs), new unique properties in the low-dimensional physics can be reached
when these materials are combined. As illustrated in Fig. 2.17, these new 2DLMs, such
as h-BN, transition metal dichalcogenides (TMDs; e.g., MoS2, WS2, TiS2, MoSe2, etc.),
layered metal oxides, black phosphorus, oxides, etc, present also outstanding properties
due their unique structural features.

Figure 2.18 summarize some of these important 2DLMs, classifying them by stability
as: stable monolayer at room temperature (blue shaded), stable in air (shaded green),
unstable in air but may be stable in special conditions (pink). The compounds that can
be exfoliated down to monolayer are represented by gray shadow [146].
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Figure 2.17: Schematic illustration of different kinds of typical ultrathin 2D nanomaterials,
such as graphene, h-BN, TMDs, MOFs, COFs, MXenes, LDHs, oxides, metals, and BP.
Adapted from Ref. [145].

Figure 2.18: Important ultrathin 2D layered nanomaterials and compounds. Blue shaded
represents stable monolayer at room temperature, green represents monolayer stable in
air and pink represents monolayers that are unstable in air but may be stable in special
conditions. The compounds that that can be exfoliated down to monolayer are represented
by gray shadow. Adapted from Ref. [146].

2.6.1 Transition metal dichalcogenides9

Transition metal dichalcogenides (TMDs) are semiconductors of the type MX2, con-
sisting of an atomic layer of transition metal atoms, represent by M (such as molybdenum

9Although a vast variety of new 2DLMs has emerged, on this thesis, beside graphene, the other
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Figure 2.19: (a) Top and lateral view of the atomic structure of 2H-TMDs monolayer and
(b) the splitting diagram and occupation of orbitals by d electrons in group VI TMDs for
2H phase. (c)-(d) The same as in (a) and (b) but now for the distorted octahedral (1T)
phase. Adapted from Refs. [147, 148, 150]

.

(Mo) or tungsten (W), etc.), in between two atomic layers of chalcogen atoms, X (for
example, disulfide (S), diselenide (Se), etc.) [147].

Basically, TMDs present two main phases: trigonal prismatic (2H) and octahedral
(1T) [147, 148]. The first one, i.e., 2H, belongs to the hexagonal crystal group with
a metal atom organized in a trigonal prismatic geometry, as illustrated in Fig. 2.19(a).
Also, this structural phase correspond to an ABA stacking with the chalcogen atom
occupying position A, in different atomic planes and on top of each other perpendicular
to the layer, along the periodic chain. On the other hand, the metal atom are located on
the position B (see Fig. 2.19(a)). 2H-TMDs from Group VI of the periodic table10 are
semiconducting, due to the fact that the lowest energy orbital dz2 is completely filled [147,
148], as illustrated in Fig. 2.19(b). As a second example, the 1T phase, Fig. 2.19(c),
presents two chalcogen atoms in the unit cell, while 2H phase presents only one. In
addition, 2T phase are characterized by an ABC stacking order, Fig. 2.19(c), right panel.
1T-TMDs, made by Group IV, such as 1T-MoS2 and 1T-WS2, are metallic due to the
partial filling of the degenerate orbitals dxy, dxz and dyz as a consequence of the octahedral
coordination [147, 148], Fig. 2.19(d).

main materials used to develop this thesis are the molybdenum disulfide (MoS2), molybdenum diselenide
(MoSe2), tungsten disulfide (WS2) and tungsten diselenide (WSe2). Thus, in this section, is emphasized
the basic features of these four materials.

10In the last page of this thesis is provide a periodic table of elements obtained from Ref. [149].
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2.6.1.1 TMDs electronic band structure

A consequence of the TMDs phases, in combination with their different chemical
composition, is the rise of vast range of different electronic properties. Since the main
studies of this thesis on TMDs were obtained considering materials formed by Group
IV transition metal11 Mo and W combined with S and Se, here, the basic features of
the their band structure are discussed. Figure 2.20(a) presents the MoS2 band structure
for different thickness, from bulk to monolayer, calculated by density functional theory
(DFT) [147, 151]. As can be seen from Fig. 2.20(a), decreasing thickness results in a
change of the indirect bandgap of the semiconductor bulk material into a direct bandgap
semiconductor monolayer [147, 152–154]. Figure 2.20(b) shows an overview of the bandgap
for some important 2D layered materials, from zero bandgap, represented by graphene
(white color) to wide gap materials such as hBN. Furthermore, Fig. 2.20(b) illustrates
the corresponding wavelength of bandgap, also separating in materials with direct and
indirect bandgap, represented as black name or a golden name, respectively. Finally,
other important properties of these materials is their valley-dependence. As illustrated in
Fig. 2.20(c), the conduction band minimum and the valence band maximum are located
at the two nonequivalent high-symmetry points K and K′, similar to graphene. These
two nonequivalent points correspond to the corners of the hexagonal Brillouin zone12,
Fig. 2.20(c).

2.6.2 van der Waals heterostructures

After the quick growth of the 2D layered nanomaterials family over the last decade,
presenting material with a wide range of electrical, chemical, optical and mechanical
properties, a new field of research has been gaining strength based on stacking different
2D crystals on top of each other. As illustrated in Fig. 2.21, the procedure consist, first,
isolating a monolayer and then putting it on top of another monolayer or few-layer crystal,
creating a van der Waals heterostructure (vdWhs), analogous to LEGO blocks [156, 157].
This new vdWhs represents an artificial material with novel hybrid properties [20, 145,
146, 158–165]. The possibility of obtaining these mixed materials from mono- or few
layers is due to the fact that while strong covalent bonds provide in-plane stability of the
2D crystals, inter-plane van der Waals-like forces, relatively weak, are sufficient to keep
the layers together [156, 157]. This is exactly the reason that such materials are called
van der Waals heterostructures, since the atomically thin layers are not mixed through a
chemical reaction but rather attached to each other via a weak inter-plane van der Waals
interaction.

11That is, formed by MX2, where M is molybdenum (Mo) or tungsten (W) and X is disulfide (S) or
diselenide (Se).

12Brillouin zone is a uniquely defined primitive cell in reciprocal space[155].
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Figure 2.20: (a) Band structure for different thickness of 2H-MoS2. (b) Bandgap and
the correspondent wavelength of different 2D materials varying from zero band gap of
graphene (white color) to wide bandgap of hBN. On the left (right) are the 2D materials
with an indirect (direct) bandgap. (d) Representation of the conduction band minimum
and the valence band maximum located at the two nonequivalent high-symmetry points
K and K, similar to graphene. Adapted from Refs. [147, 150]

.

2.6.3 Synthesis and assembly of vdWHs

As in the case of graphene, obtained from micromechanical exfoliation, Subsec. 2.3.1,
this strategy has been also applied to many other 2DLMs found in 3D layered forms,
such as MoS2, naturally obtained from molybdenite [156], and black phosphorus, from
an artificially synthesized bulk crystal [51, 166, 167]. Thus, most of the techniques to
obtain graphene as discussed in Sec. 2.3 can be also applied to obtain 2DLMs, such as:
chemical intercalation, mechanical sonification, similar to the liquid phase exfoliation and
CVD processes [166, 168–170].

In a second step, after obtaining the atomic layers, the challenge is in stacking the
individual layers to create the desired vdWhs. Similar to the synthesis of individual
atomic layers, the creation of a vdWhs follows two strategies: the top-down and bottom-
up approaches. Figure 2.22(a) illustrates the state-of-the-art transfer methods to create
complex vdWhs [166]. To do so, wet and dry transfer process are used to attach the
individual sheet onto a transparent stamp material (for example, poly(dimethyl siloxane)
(PMDS)). Thus, after attaching the stamp to a glass, with the help of a microscope stage
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Figure 2.21: (left) Some example of 2D layered nanomaterials and (right) creation of van
der Waals heterostructure stacking different 2D crystals on top of each other, analogous
to LEGO blocks. Addapted from Ref. [146].

equipped with micro-manipulators, it is possible to align the sheets. To isolate the vdWhs,
it is possible to dissolve the stamp chemically (direct dissolution), mechanically peel off
or even pick up the entire stack for further transfer steps [166]. With the help of a high-
resolution STM image, the cross-section can then be verified. For example, Fig. 2.22(b)
shows a high-resolution cross-sectional STM image of the graphene-hBN vdWh (left)
and a schematic representation (right). Figures 2.22(c)-(d) displays a moiré pattern of
graphene on hBN for two different pattern sizes.

Recently, significant advances have been made to obtain and manufacture such nanos-
tructures [107, 145–147, 157, 158, 171–177].

2.6.4 Some aspects on vdWhs

First of all, the monolayer and bilayer of these vdWhs-based 2DLMs presents com-
pletely different13 properties [147, 148, 150, 152, 178, 179], as also discussed, in terms of
the bandgap, in Subsec. 2.6.1.1. TMDs undergo a direct-to-indirect bandgap transition
from mono- to multilayers [148]. In addition, black phosphorous has a layer dependent,
tunable bandgap [180]. As an example of a vdWhs composed by two different materials,
one of the first studies about stacking layers of different materials was the placement of
graphene on top of hBN [181]. In this case, the use of the hBN decreases the undesired
substrate effects on graphene. In this same line of reasoning, graphene encapsulated by
hBN is also protected by surrounding environmental, such as adsorbed chemicals on the
graphene surface. As a consequence, the carrier mobility can be improved [166]. Since the

13Indeed, is exactly this high electronic sensitivity of vdWhs that is explored in the study on plasmons
developed in this thesis.
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Figure 2.22: (a) Schematic illustration of the state-of-the-art transfer methods to create
complex van der Waals heterostructure (vdWhs). Wet and dry transfer process are used to
attach the individual sheet onto a transparent stamp material (for example, poly(dimethyl
siloxane) (PMDS)). Thus, after attached the stamp to a glass, with the help of a micro-
scope stage equipped with micro-manipulators, is possible align the sheets. To isolate the
vdWhs, is possible dissolve the stamp chemically (direct dissolution), mechanically peel
off or even used to pick up the entire stack for further transfer steps. (b) shows a high-
resolution cross-sectional STM image of the graphene-hBN vdWh (left) and a schematic
representation (right). (c)-(d) Displays a Moiré pattern of graphene on hBN for two
different pattern size. Reproduced from Ref. [51].

electronic and optoelectronic properties of vdWhs depend on the material that composes
it, their properties are a consequence of how these different materials are combine.

2.6.5 vdWhs applications

With unique electronic and optoelectronic properties, new vdWhs-based devices have
been significantly attracting attention of the scientific community [20, 145, 146, 158–165].
As an example of vdWhs-based electronic device, Fig. 2.23(a) illustrates a planar 2D
transistor14 with coplanar contacts [166]. In this case, the gate and the graphene contact
electrodes are on the same side of the 2D-semiconductor (2DSC). On the other hand,

14A transistor is a semiconductor-based component used to amplify or switch electronic signals and
electrical power in a device.
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Figure 2.23: (a) Planar 2D transistor with the gate and graphene contact electrodes
on the same side of the 2D-semiconductor (2DSC). (b) Vertical p- and n-type field ef-
fect transistor transistor (FET), where the position of the source (S) and drain (D) are
located vertically to create a logic inverter with voltage gain. (c) A non-graphene-based
device presenting a dual-gate structure. In this vdWhs, the electrostatic potential and
carrier density of the two layers (p and n) is controlled individually by a top and a bot-
tom gate electrodes reducing the lateral series resistance. (d) (left) Band diagram of a
graphene electron- and hole-injection electrodes and (right) a schematic illustration of a
heterostructure device of a multiple BN-2DSC-BN quantum-wells. (e) Schematic vdWhs
of a light-emitting device based on a multilayer MoS2, with a p-type GaN as the hole
injector and a monolayer graphene as the electron injector. At the bottom of panel (e),
are displayed a (left) photoluminescence and (rigth) electroluminescence mapping image
of a MoS2 region. Adapted from Ref. [51]

Fig. 2.23(b) illustrates a vertical p- and n-type field effect transistor (FET). One of the
main differences is the position of the source (S) and drain (D), now displayed vertically to
create a logic inverter with voltage gain. Since this strategy of multiple vertical transistor
can be extended to form a 3D device, this idea can open a new direction of 3D-devices.

As an example of a non-graphene-based device, Fig. 2.23(c) presents a dual-gate struc-
ture. In this vdWhs, the electrostatic potential and carrier density of the two layers (p
and n) is controlled individually by top and bottom gate electrodes reducing the lateral
series resistance.

Figure 2.23(d) presents (left) a band diagram of a graphene electron- and hole-
injection electrodes and (right) a schematic illustration of a heterostructure device of
multiple BN-2DSC-BN quantum-wells. The main idea of this vdWhs is to create a light-
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emitting device. To do so, the electrons and holes are injected from the bottom monolayer
graphene into the 2DSC layers and recombine to produce a photon emission, similar to
a light-emitting diode (LED)15 [166]. This type of LED, when combined to multiple
repeated units of 2DSC-BN stacks, minimizing the current leakage and ensure efficient
electron-to-photon conversion, is ∼ 10% more efficient when compare to the current or-
ganic LED (OLED) and the state-of-the-art quantum-dot LEDs [166, 182, 183]. Figure
2.23(e), (top) shows a schematic vdWhs for a light-emitting device based on a multilayer
MoS2, with a p-type GaN as the hole injector and a monolayer graphene as the electron
injector. At the bottom of Fig. 2.23(e), are displayed a (left) photoluminescence and
(rigth) electroluminescence mapping image of a MoS2 region.

15LED is a semiconductor light source that emits light when current flows through it.



3
Elementary properties of graphene

In this chapter, the structural and electronic characteristics of graphene monolayer
are introduced. Furthermore, the Hamiltonian for monolayer and bilayer graphene are
obtained from the tight-binding model (TB), which will also set the foundations for our
calculations on few-layer graphene in the following chapters.

3.1 Electronic properties of graphene

3.1.1 Crystalline structure

Structurally, graphene is defined as a monolayer of carbon atoms organized in a
honeycomb-like lattice. The unit cell of graphene, illustrated in Fig. 3.1(a), is not a
Bravais lattice, but two interpenetrated triangular lattices A and B, where the lattice
vectors are defined as [184]:

a1 =
a

2

(
3,
√

3
)

and a2 =
a

2

(
3,−
√

3
)
, (3.1)

where a = 1.42 Å is the distance between carbon atoms in the graphene lattice. As can
be seen from Fig. 3.1(a), each atom of sublattice A are surrounded by three nearest-
neighbors of sublattice B and vice-versa. The vectors that connect a specific site to the
nearest-neighbors are given by [184]:

δ1 =
a

2

(
1,
√

3
)
, δ2 =

a

2

(
1,−
√

3
)

and δ3 = a (−1, 0) . (3.2)

The vectors that define the reciprocal lattice, shown in Fig. 3.1(b), are given by [184]:

b1 =
2π

3a

(
1,
√

3
)

and b2 =
2π

3a

(
1,−
√

3
)
, (3.3)

The contour of the first Brillouin zone of graphene, Fig. 3.1(b), has six important
points and, due to their symmetry, only two of them are inequivalent, denominated as K
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Figure 3.1: (a) Lattice structure of graphene formed by two interpenetrated triangular
sublattice A and B. The unit vectors are defined by a1 and a2. The nearest-neighbors
are located by δi (i = 1, 2,) and the distance between the carbon-carbon atoms is given
by 1.42 Å. (b) First Brillouin zone. The Dirac cones are located at the points K and K ′ .

and K
′ . These points are extremely important for graphene, as we will see later. The

positions of K and K ′ in reciprocal space are given by [184]:

K =

(
2π

3a
,− 2π

3
√

3a

)
e K ′ =

(
2π

3a
,

2π

3
√

3a

)
. (3.4)

3.1.2 Tight-binding model for monolayer graphene

Considering only the hopping between the nearest-neighbors, the tight-binding Hamil-
tonian for graphene, in the second quantization formalism, can be written as [184]:

HTB = −τ
∑
i,j

(â†i b̂j + b̂
†
j âi) , (3.5)

where τ ≈ 2.8 eV is the hopping parameter associated with the transition of electrons
between the nearest-neighbors. âi (â†i ) and b̂i (b̂

†
i ) annihilate (create) an electron at the

i-th site of sublattices A and B, respectively. Such operators satisfy the fermion an-
ticommutation rules [185]:

{
âi, â

†
j

}
= δi,j, {âi, âj} =

{
â†i , â

†
j

}
= 0 e

{
b̂i, b̂

†
j

}
= δi,j,{

b̂i, b̂j

}
=
{
b̂
†
i , b̂
†
j

}
= 0, ∀ij.

A Fourier transform of the creation and annihilation operators is taken

âj =
1√
N

∑
k

eik·ri âk, â†j =
1√
N

∑
k

e−ik·ri â†k, (3.6)

b̂j =
1√
N

∑
k′

eik
′·rj b̂k′ e b̂

†
j =

1√
N

∑
k′

e−ik
′·rj b̂

†
k′ . (3.7)

where k = (kx, ky) and N is the number of unit cells.
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Replacing Eq’s. (3.6) and (3.7) into the Hamiltonian defined in Eq. (3.5), yields:

HTB = −τ
∑
i,j

[(
1√
N

∑
k

e−ik·ri â†k

)(
1√
N

∑
k′

eik
′·rj b̂k′

)

+

(
1√
N

∑
k′

e−ik
′·rj b̂

†
k′

)(
1√
N

∑
k

eik·ri âk

)]
, (3.8)

HTB = − τ

N

∑
i,j

∑
k,k′

[(
e−ik·ri · eik′·rj

)(
â†kb̂k′

)
+
(
e−ik

′·rj · eik·ri
)(

b̂
†
k′ âk

)]
, (3.9)

which is equivalent to

HTB = − τ

N

∑
i,j

∑
k,k′

[(
ei(k

′−k)rj · e−ik(ri−rj)
)(

â†kb̂k′
)

+
(
e−i(k

′−k)rj · eik(ri−rj)
)(

b̂
†
k′ âk

)]
. (3.10)

As previously explained, each atom has three nearest neighbors, thus, considering that
the origin is located at any site i and making j vary over the first three neighbors, located
by Eq. (3.6), we obtain:

HTB = − τ

N

∑
j

∑
k,k′

{[
ei(k

′−k)rj
(
e−ikx(a/2)e−iky(a

√
3/2) + e−ikx(a/2)e−iky(−a

√
3/2)

+e−ikx(−a)
)]
â†kb̂k′ +

[
e−i(k

′−k)rj
(
eik
′
x(a/2)eik

′
y(a
√

3/2)

+eik
′
x(a/2)eik

′
y(−a

√
3/2) + eik

′
x(−a)

)]
b̂
†
k′ âk

}
, (3.11)

HTB = − τ

N

∑
j

∑
k,k′

[
ei(k

′−k)rj
(
e−ikxa/2e−ikya

√
3/2 + e−ikxa/2eikya

√
3/2 + eikxa

)
â†kb̂k′

+e−i(k
′−k)rj

(
eik
′
xa/2eik

′
ya
√

3/2 + eik
′
xa/2e−ik

′
ya
√

3/2 + e−ik
′
xa
)
b̂
†
k′ âk

]
. (3.12)

Now, using the property of the Dirac delta function, defined as [186]

1

N

∑
j

ei(k
′−k)rj = δ (k − k′) , (3.13)

in Eq. (3.12), yields

HTB = −τ
∑
k

[(
e−ikxa/2e−ikya

√
3/2 + e−ikxa/2eikya

√
3/2 + eikxa

)
â†kb̂k

+
(
eikxa/2eikya

√
3/2 + eikxa/2e−ikya

√
3/2 + e−ikxa

)
b̂
†
k′ âk

]
. (3.14)

From the relation cos(θ) =
(
eiθ + e−iθ

)
/2, we can rewrite Eq. (3.14) as

HTB = −τ
∑
k

{[
2cos

(
kya
√

3/2
)
e−ikxa/2 + eikxa

]
â†kb̂k

+
[
2cos

(
kya
√

3/2
)
eikxa/2 + e−ikxa

]
b̂
†
k′ âk

}
, (3.15)
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HTB = −τ
∑
k

[
g (k) â†kb̂k + g∗ (k) b̂

†
k′ âk

]
, (3.16)

with the crystal lattice structure factor defined as

g (k) = 2cos
(
kya
√

3/2
)
e−ikxa/2 + eikxa . (3.17)

The Hamiltonian given by Eq. (3.16) allows us to write Schrödinger equation as

HTB |ψ (k)〉 = ε (k) |ψ (k)〉 . (3.18)

Therefore, from Eq’s. (3.16) and (3.17), and using the fermionic anticommutation rela-
tions, we obtain two equations which can be written in matrix form, such as:(

0 −τg (k)

−τg∗ (k) 0

)(
ψA (k)

ψB (k)

)
= ε (k)

(
ψA (k)

ψB (k)

)
, (3.19)

where the wave function was rewritten as two-components pseudo-spinor given by ψ (k) =

[ψA (k) ψB (k)]T . The subscript A and B represents the probability of finds the electron
on the sublattice A or B, which are chemically equivalent, also presenting the same on-site
energy and equal to the energy of the π orbital. Thus, diagonalizing the Hamiltonian

Hk =

(
0 −τg (k)

−τg∗ (k) 0

)
, (3.20)

the eigenenergies associated to ψ (k) are obtained:

ελk = λτ |g (k)| = ±τ
√

3 + f (k), (3.21)

with f (k) = 4cos (3kxa/2) cos (3kya/2) + 2cos (3kya/2) and λ = ±1 indicate the conduc-
tion +1 and valence −1 bands [187].

Figure 3.2(a) shows the six high symmetry points located at the vertices of the first
Brillouin zone, where the valence band (ε < 0) touches the conduction band (ε > 0) when
E = 0 [184, 188]. At these points, i.eK andK ′, known as Dirac points, the gap is null and
the band structure exhibits a conical (linear, when projected at kx or ky) dispersion for
small values of |E|. Figure 3.2(b) presents the band structure, across the high symmetry
points (Γ-K-M -Γ), while the inset in Fig. 3.2(b) shows the result obtained experimentally
by angle-resolved photoemission spectroscopy (ARPES) [189, 190].

3.1.3 Continuum approximation for monolayer graphene

To demonstrate that the low-energy electron in graphene behaves as a massless Dirac
quasi-particle, we can start expanding the structure factor g(k), Eq. (3.17), around K,
Eq. (3.4). To do so, only the terms up to the first order in K ′ are kept [184, 191], thus:

g(δk) ≈ g(K) +
∂g

∂kx

∣∣∣∣
k=K

(kx −K ′x) +
∂g

∂ky

∣∣∣∣
k=K

(ky −K ′y), (3.22)
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Figure 3.2: (a) Electronic band structure of graphene emphasizing one of the six Dirac
points. (b) Band structure in relation to the high symmetry points (Γ-K-M -Γ) illustrates
in Fig. 3.1. The inset in (b) shows the result obtained experimentally by angle-resolved
photoemission spectroscopy (ARPES). The yellow region correspond to the low energy,
where at the K point graphene presents a linear dispersion. Adapted from Refs. [188–
190].

with δk = K − k. After calculate the derivative of g(k) at k = K, we obtain

g(δk) ≈ 3a

2

(
−
√

3

2
+ i

1

2

)
k′x −

3a

2

(
−
√

3

2
+ i

1

2

)
ik′y, (3.23)

or
g(δk) ≈ 3a

2
(k′x − ik′y)ei5π/6. (3.24)

Analogously, the same procedure for K ′ can be done, resulting in:

g(δk) ≈ 3a

2
(−k′x − ik′y)ei5π/6. (3.25)

It is important to mention that the complex exponentials in Eq’s. (3.24) and (3.24) can
be included in the wave functions without any changes to the physical system, once that
the quadratic norms of these terms are 1. Comparing Eq’s. (3.24) and (3.25), we can see
that they are not equivalent due to the signs + and − in the variable kx. Thus, replacing
Eq’s. (3.24) and (3.25) in the Hamiltonian defined by Eq. 3.20, we obtain the well known
Hamiltonian for a graphene monolayer:

H±mo = h̄vf

(
0 (±k′x − ik′y)

(±k′x + ik′y) 0

)
. (3.26)

In Eq. (3.26) vf = 3aτ/2h̄ is the Fermi velocity and the signs + and − represent low-
energy electrons for the valleys K and K ′, respectively. Note that the Hamiltonian defied
in Eq. (3.26) is similar to the Dirac equation, except due to the Fermi velocity (vf )
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Figure 3.3: (a) Crystalline structure of a AB graphene bilayer stacking (also know as
Bernal stacking) with the interlayer hopping defined by γ1, γ3 and γ4. The in-plane
hopping, i.e between atoms of the same lattice, are represented by γ0. The interlayer
distance is given by d ≈ 3.35 Å, while a = 1.42 Å is the distance between the carbon-
carbon atoms. The lower layer is represented by the solid gray lines with the triangular
sublattice formed by A1 (blue) and B1 (red), while the upper layer is represented by the
dotted red lines with sublattice defined by A2 (black symbols) and B2 (white symbols).
(b) Top view of bernal type stacking. (c)-(d) The same as in (a)-(b), respectively, but
now for an AA graphene bilayer stacking.

instead of the speed of light (c). It is exactly for this reason that electrons in graphene
are considered also as massless Dirac fermions.

The Hamiltonian (3.26) can still be written, in a more compact form, as:

H±mo = h̄vfkF

(
0 e∓iφ

e±iφ 0

)
, (3.27)

with kF =
√

(k′x)
2 −

(
k′y
)2 and φ = arctg

(
k′y/k

′
x

)
. The way Hamiltonian (3.27) was

written will be useful for the Chapters 4 and 5.

3.2 Bilayer graphene

3.2.1 Crystalline structure

A graphene bilayer (BLG) consists of stacking two graphene monolayers that can result
in two types of stacking: AA or AB. This is possible due a van der Waals interlayer inter-
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action, responsible to keep the BLG stable [184]. The value of this interlayer interaction
is around 15 eV ∼ 20 eV, typical values of van der Waals heterostructures [192].

The AB stacking, also called Bernal stacking1, the atoms of the sublattice A, from the
upper layer (denoted by A2), are exactly on top of the atoms of the sublattice B of the
lower layer (denominated as B1), see Fig. 3.3(a). Naturally, the atoms of the sublattice
B of the upper layer (called B2) are located above the center of the hexagon formed by
the bottom layer, as can be seen from the top view in Fig. 3.3(b). In other words, the
top layer is rotated by an angle of 60º relative to the bottom layer. Thus, the Bernal-
type graphene bilayer has two non-equivalent atomic sites [74]. The distance between
the planes is approximately d ≈ 3.35 Å [193]. This type of graphene bilayer is the most
common [184]. Figure 3.3(a) represents an illustrative model of the crystal lattice of the
AB stacking, with a top view of this structure represented in Fig. 3.3(b).

The second possibility of bilayer graphene, which is however unstable, is the AA

stacking [194]. In the AA pattern the atoms of sublattice A of the upper layer (A2) are
directly on top of the atoms A of the lower layer (A1), Fig. 3.3(c). The same is true for
the atoms of the sublattice B in both monolayer, as illustrated in Fig. 3.3(c). In this case,
the interlayer distance is d ≈ 3.55 Å.

Is important to note that for even numbers of graphene layers (bilayer, for example)
the spatial inversion symmetry is satisfied, i.e (x, y, z) → (−x,−y,−z). On the other
hand, for an odd number (three-layer, for example), the spatial inversion is not satisfied
[195].

3.2.2 Tight-binding model for bilayer graphene

The tight-binding model, developed for a monolayer graphene in the previous subsec-
tion (Subsec. 3.1.2), can be easily extended to graphene layers with a finite number, but
with a higher degree of complexity, since other hopping terms will emerge (γ0, γ1, γ3 and
γ4). For the bilayer graphene case, the simplest situation, the Hamiltonian that describes
the π band electrons for the AB-stacked graphene bilayer is defined as [184, 187, 196,
197]:

HTB =
∑
i,j

2∑
n=1

(
EAn â

†
i;nâi;n + EBn b̂

†
j;nb̂j;n

)
− γ0

∑
i,j

2∑
n=1

(
â†
i;nb̂j;n + b̂†j;nâi;n

)
− γ1

∑
i,j

(
â†
i;1b̂j;2 + b̂†j;2âi;1

)
− γ3

∑
i,j

(
â†
i;2b̂j;1 + b̂†j;1âi;2

)
− γ4

∑
i,j

(
â†
i;1âj;2 + â†j;2âi;2 + b̂

†
i;1b̂j;2 + b̂

†
j;2b̂i;2

)
. (3.28)

In Eq. (3.28), âi;n (â†i;n) annihilates (creates) an electron at the i site of the A sublattice
of the n-th layer, while b̂j;n (â†j;n) annihilates (creates) an electron at site j of sublattice

1In honor of Irish scientist John Desmond Bernal for determining in 1942 a molecular structure of
graphite.
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B also at n-th layer. The nomenclature for the graphite hopping parameters are defined
as: (i) EAn and EBn represent the energies at the sites of the sublattices An and Bn,
respectively; (ii) γ0 = τ ≈ 2.8 eV is the hopping energy between atoms of the same shell,
that is, between A1(A2) and B1 (B2) ; (iii) γ1 = t⊥ ≈ 0.4 eV is the hopping between
the atoms A1 and B2, as illustrated in Fig. 3.3(b). For stacking type AA the hopping
between the top and bottom layer atoms is 0.2 eV; (iv) γ3 ≈ 0.3 eV represents the hopping
between the atoms B1 and B2; (v) γ4 ≈ 0.04 eV is the hopping energy between A1 and
B2 (A2 e B1) [198]. All these hopping interactions are illustrated in Fig. 3.3(a) illustrates
the hopping energies described in Eq. 3.28. Interactions between other neighbors are very
weak, thus we neglect them [184, 187].

To obtain a simplified Hamiltonian for bilayer graphene, we approximate Eq. (3.28)
considering only the hopping nearest neighbors (τ) and the interlayer hopping (τ⊥). Fol-
lowing the same reasoning developed for the monolayer graphene, Subsec. 3.1.2, the TB
Hamiltonian, now a 4× 4 matrix, for the bilayer graphene is given by:

HTB =


0 −τg (k) τ⊥ 0

−τg∗ (k) 0 0 0

τ⊥ 0 0 −τg∗ (k)

0 0 −τg (k) 0

 . (3.29)

Note that the Hamiltonian defined in Eq. (3.29) is composed of two single-layer graphene
Hamiltonian, the same defined in Eq. (3.20), on its main diagonal. On the other hand, in
the secondary diagonal a 2 × 2 sub-matrix describe the interlayer coupling intermediate
by τ⊥. Thus, diagonalizing the Hamiltonian (3.29), yields the energy spectrum for the
Bernal bilayer graphene stacking (AB):

ε±±k = ±τ⊥
2
±
[
τ |g (k)|2 +

(τ⊥
2

)2
]1/2

, (3.30)

composed of four eigenvalues and, consequently, four bands, as shown in the next section.

3.2.3 Continuum approximations for AB-bilayer graphene

Following the same procedure developed for monolayer graphene to obtain the Hamil-
tonian (3.26), that is, using the continuum model for low-energy electrons, it is possible
to obtain the Hamiltonian for the AB graphene bilayer, defined as [184, 199]:

Hbi =


0 h̄vF (τpx + ipy) τ⊥ 0

h̄vF (τpx − ipy) 0 0 0

τ⊥ 0 0 h̄vF (τpx − ipy)
0 0 h̄vF (τpx + ipy) 0

 , (3.31)
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where px,y = h̄kx,y and τ = +1 (τ = −1) denotes the corresponding Hamiltonian for K
(K ′). The wave functions corresponding to Hamiltonian (3.31) are given by

ΨK =


ϕA

ϕB

ϕB′

ϕA′

 and ΨK′ =


ϕB

ϕA

ϕA′

ϕB′

 . (3.32)

For a free electron in a AB-stacking graphene bilayer, the dispersion relation consists of
four hyperboles, defined as [200]:

ε±± = ±τ⊥
2
±
√

1

4
τ 2
⊥ + k2. (3.33)

Figure 3.4 illustrates the low-energy electron dispersion, in two-dimensions (only for
Kx), for the (left) AB- and (right) AA-stacked bilayer graphene bilayer, respectively. As
can be seen for the AB stacking, two of the four bands touch each other at Kx = 0. On
the other hand, the two upper bands, that result from the strong coupling between the
two layers, present a gap, with their energies given by E+

+ ≥ τ⊥ and E−− ≤ −τ⊥. For the
graphene bilayer2 with AA stacking, the spectrum is similar to that of two non-degenerate
graphene monolayers [201].

The Hamiltonian (3.31) also be written as a 2× 2 matrix given by [202]:

H±bi =
(h̄vfkF )2

τ⊥

(
0 e−2iφ

e+2iφ 0

)
, (3.34)

with kF =
√
k2
x + k2

y e φ = arctg (ky/kx).

Figure 3.4: Low energy dispersion relation for bilayer graphene with AB and AA stacking,
respectively, in two dimensions (only for Kx). Adapted from the Ref. [201].

2The steps to obtain the energy spectrum for the AA-stack, through the TB method, can be found
in Ref. [194]



4
Effect of Zitterbewegung on the propagation of

wave packets in ABC-stacked multilayer graphene:

an analytical and computational approach

In this chapter the time evolution of a low-energy two-dimensional Gaussian wave
packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values
of the position (x, y) of center-of-mass and the total probability densities of the wave
packet are calculated analytically using the Green's function method. These results are
confirmed using an alternative numerical method based on the split-operator technique
within the Dirac approach for ABC-NLG, which additionally allows to include external
fields and potentials. The main features of the zitterbewegung (trembling motion) of
wave packets in graphene are demonstrated and are found to depend not only on the
wave packet width and initial pseudospin polarization, but also on the number of layers.
Moreover, the analytical and numerical methods proposed here allow to investigate wave
packet dynamics in graphene systems with an arbitrary number of layers and arbitrary
potential landscapes.

The study on effect of zitterbewegung on the propagation of wave packets in ABC-
stacked multilayer graphene: an analytical and computational approach was published in
Journal Physics: Condensed Matter, 33, 095503 (2020).

4.1 Motivation

Zitterbewegung (ZBW) is a fast oscillation or trembling motion of elementary particles
that obey the Dirac equation [25], which was predicted by Erwin Schrödinger in 1930 for
relativistic fermions [23]. Schrödinger observed that the component of relativistic velocity
for electrons in vacuum does not commute with the free-electron Hamiltonian. Conse-
quently, the expectation value of the position of these electrons displays rapid oscillatory
motion, owing to the fact that the velocity is not a constant of motion. It was also demon-
strated that ZBW occurs due to the interference between the positive and negative energy
states in the wave packet, and the characteristic frequency of this motion is determined

https://iopscience.iop.org/article/10.1088/1361-648X/abcd7f/meta
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by the gap between the two states.

In the last decades, Schrödinger's idea stimulated numerous theoretical studies e.g.
in ultracold atoms [27, 28], semiconductors [29–34], carbon nanotubes [35], topological
insulators [36], crystalline solids [37, 38] and other systems [39–42]. Although ZBW was
theoretically found using a quantum simulation of the Dirac equation for trapped ions [43],
Bose–Einstein condensates [44–46] and, most recently, an optical simulation [47], up to
now, no direct experimental observations have been carried out. The reason is that the
Dirac equation predicts ZBW with amplitude of the order of the Compton wavelength
(10−2 Å) and a frequency of ωZB ≈ 1021 Hz, which are not accessible with current exper-
imental techniques.

With the discovery of graphene [8, 107], a single-layer of a honeycomb lattice of carbon
atoms with unique electronic properties [9, 107, 196, 197, 203–206], the ZBW effect has
been revisited recently [4, 44, 48, 207–212], since low-energy electrons in graphene behave
as quasi-relativistic particles [184, 213, 214]. Maksimova et al. [48] investigated the wave
packet evolution in monolayer graphene (MLG) analytically for different pseudo-spin po-
larizations using the Green's function method. Rusin and Zawadzki [208] analyzed the
evolution of a Gaussian wave packet in MLG and bilayer graphene (BLG), as well as
in carbon nanotubes, for one kind of initial pseudo-spin polarization, which is directly
linked to the direction of propagation of the wave packet. They demonstrated that the
transient character of ZBW in BLG is related to the movement in opposite directions of
the sub-wave packets corresponding to the positive and negative energy contributions. A
similar investigation for MLG was performed pure numerically based on the so-called split-
operator technique (SOT), which will be explained more in details later on, by Chaves et
al. [49], and, most recently, in multilayer phosphorene by Cunha et al.[42], that compared
both SOT and Green's function results.

In this chapter, we generalize the previous studies on ZBW in MLG by proposing differ-
ent techniques to study the dynamics of charged particles described by a two-dimensional
(2D) Gaussian wave packet in ABC stacked n−layer graphene (ABC-NLG). We use
an approximated 2 × 2 Hamiltonian valid for low-energy electrons in ABC-NLG and
the Green's function formalism to obtain the time-evolved electron wave function for an
arbitrary pseudospin polarization and then use this result to analytically calculate the ex-
pectation values of center-of-mass coordinates, the trajectory and spreading of the wave
packet in real space, as well as their oscillations due to ZBW. We also develop a numer-
ical method to perform the same calculation based on the SOT, but with much higher
flexibility, allowing to consider ABC-NLG and any potential profile. Results from both
theoretical approaches for MLG, BLG and trilayer graphene (TLG) are compared and
their validity is verified. The dependence of several qualitative features of ZBW on the
number of graphene layers and wave packet initial conditions is discussed in detail. The
analytical and numerical methods proposed here can be straightforwardly adapted to in-
vestigate transport properties of multi-layer graphene in the presence of external fields
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Figure 4.1: (Color online) (a) Schematic representation for NLG with rhombohedral stack-
ing (ABC). The interlayer and intralayer distance are d ≈ 3.35 Å and a0 = 1.42 Å, respec-
tively. The two non-equivalent carbon sublattices in each layer are indicated by red (A)
and blue (B) circular symbols. (b) Representation of ABC-stacked multi-layer graphene
with intralayer hopping between first nearest neighbors γ0 and interlayer hopping energy
between Ai and Bi+1 sites of each layer given by γ⊥. (c) Energy spectrum of multilayer
graphene near one of the Dirac cones for low energies obtained by tight-binding model
(solid curves) and two-band continuum m4odel (symbols). The energy is expressed in
units of the interlayer hopping energy γ⊥ and the wave vector is expressed in units of a−1

0 ,
the inverse of the nearest-neighbour interatomic distance. (d) Percentage error calculated
from the lowest energy band of the two models considered in panel (c) for different number
of graphene layers (n).

and arbitrary potential profiles.
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4.2 The base of ZBW in N-ABC-stacked multilayer
graphene

For ABC-NLG, as illustrated in Fig. 4.1(a), the effective Hamiltonian in the long
wavelength approximation, near the K point on the first Brillouin zone of n graphene
layers, can be written as the following approximated 2n× 2n matrix [215]

Hn = h̄vF



σ · k τ 0 · · · 0

τ † σ · k τ · · · 0

0 τ † σ · k . . . 0
...

... . . . . . . τ

0 0 0 τ † σ · k


2n×2n

+ V1, (4.1)

by considering only nearest-neighbor interlayer transitions, τ represented the 2×2 coupling
matrix given by

τ =
1

h̄vF

[
0 0

γ⊥ 0

]
, (4.2)

with γ⊥ ≈ 0.4 eV being the interlayer hopping parameter [193], as shown in Fig. 4.1(b).
vF = 3a0γ0/2h̄ is the Fermi velocity with γ0 ≈ 2.7 eV being the intralayer coupling,
σ = (σx, σy, σz) are the Pauli matrices and k = (kx, ky) is the wave vector. Note that
the tridiagonal matrix, Eq. (4.1), only considers the coupling between the adjacent layers,
otherwise off-tridiagonal terms would be non-zero, and its main diagonal is composed by
n MLG-type Hamiltonians. Within a low-energy approximation (|ε| � γ⊥), it is possible
to rewrite Eq. (4.1) as an effective two-band Hamiltonian [216–218]

Hn (k) =
(h̄vFk)n

γn−1
⊥

[
0 e−inφ

einφ 0

]
+ V1, (4.3)

where φ = arctan (ky/kx) is the 2D polar angle in momentum space, and the eigenstate
that was given by a 2n−component wave function Ψn = (Ψ1

A,Ψ
1
B,Ψ

2
A,Ψ

2
B · · ·Ψn

AΨn
B) is

now approximated by the two-component one Ψn → Ψeff = [Ψ1
A Ψn

B]
T . [219, 220] An

arbitrary external electric potential, e.g. a perpendicular electric field, can be incorporated
in the model by adding a potential energy Vi to the on-site energies in the main diagonal,
with i = 1, 2, · · ·n and n being the number of layers, as represented by the second term V1

in Eqs. (4.1) and (4.3), where 1 denotes the identity matrix with dimension 2n× 2n and
2× 2, respectively. The only assumption to this approach of adding an external potential
in the two-band model is that the field affects equally the on-site energies of all atoms
in the same layer i, and only the potential difference between the first and last layers is
taken into account. For the sake of simplicity but without loss of generality, we assumed
in the present study that the multilayer graphene system is free of interactions with any
external sources. Low-energy bands are related to orbitals on the non-dimer sites A1 and
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Bn (see Fig. 4.1(a)-4.1(b)), where n ≥ 2, [197] although, counterintuitively, the hopping
that appears in Eq. (4.3) is the strong interlayer coupling γ⊥ of the orbitals on the dimer
Bi and Ai+1 sites. The validity of this approximation is based on the increase in energy
near the dimer atomic sites. For low Fermi energy, it therefore makes sense to take into
account only the orbital wave functions near the other two atoms, i.e. the non-dimer
sites. [197, 221] For instance, for BLG case, the low-energy bands can be approximated
as ε ≈ ±(1/2)γ⊥[

√
1 + 4v2

Fp
2/γ2
⊥−1], which are composed by a linear dispersion p ≈ vFp

at large momentum and a quadratic dispersion ε ≈ p2/2m at small momentum values,
where the mass is given by m = γ⊥/2vF . As discussed in Ref. [197], for low energy
and momentum p � γ⊥/2vF , the dimer sites can be neglected allowing us to write a
2× 2 Hamiltonian only in terms of the orbitals of the non-dimer sites, and thus, the two
effective bands approach to the two lowest bands coming from the 4× 4 Hamiltonian at
low energies, as can be seen in Fig. 4.1(c). The eigenenergies εnp,s and the corresponding
eigenstates Ψn

p,s of the Hamiltonian (4.3) can be expressed as

εnp,s = s
pn

ξ
, (4.4)

and

Ψn
p,s =

1√
2

[
1

seinφ

]
, (4.5)

where s = 1 (s = −1) is the electron conduction (hole valence) band index, p = h̄k,
γn−1
⊥ /vnF → ξ and eiφ = (px + ipy) /p. This continuum approximation is valid in the

low-energy and long-wavelength limits, and a small quantitative deviation of this approx-
imation becomes more significant for large k values as shown in Fig. 4.1(c) by comparing
the energy spectrum obtained by the two-band continuum (black solid curves) and multi-
band (red dashed curves) models for mono (n = 1), bi (n = 2), tri (n = 3) and tetra
(n = 4) layer graphene. Notice that for n = 1, both multi-band [Eq. (4.1)] and two-band
[Eq. (4.3)] models give the same results, as already expected since each matrix element
in the main diagonal in Eq. (4.1) represents a MLG Hamiltonian (see first left panel in
Fig. 4.1(c)). In Fig. 4.1(d) we show the percentage error that arises from the discrepancy
between the two lowest bands obtained within the effective two-band model [Eq. (4.3)]
and the multi-band model [Eq. (4.1)]. Based on Figs. 4.1(c) and 4.1(d), one observes that
the percentage error for |ka0|. 0.5 is approximately the same regardless the number of
graphene layers, being less than 8%, and, moreover, for a fixed momentum in the range in
which |ka0|& 0.5, the percentage error between the two-band and the multi-band models
increases the greater the number of graphene layers. This good agreement for the lowest
two bands and near the Dirac cone, that is, for |ka0| approximately less than 0.5, as shown
in Figs. 4.1(c) and 4.1(d), has been widely reported and used in multilayer graphene works
in the literature (for example, see Refs. [193, 215, 218–222]). Furthermore, similar works
aiming the zitterbewegung investigation in multiband Hamiltonian with arbitrary matrix
elements depending only on the momentum of the quasiparticle have been reported, [223,
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224] showing the applicability and versatility of this kind of multiband-type model.

4.2.1 Gaussian wave packet dynamics for ABC-NLG

Using the Green's function method, we obtained, inspired in the monolayer graphene
case presented by Maksimova et al. [48] and Demikhvskii et al. [225], a generalized ex-
pression to study ZBW in ABC-NLG.

According to Eqs. (4.4) and (4.5), the time-dependent eigenfunctions of Hamiltonian
(4.3) are given by

Φp,s (r, t) =
1

2
√

2πh̄
exp

(
i
p · r
h̄
− i

En
p,st

h̄

)(
1

seinφ

)
. (4.6)

In order to calculate the time evolution of an arbitrary state, we use the Green's
function method defined by the non-diagonal 2× 2 matrix

G =

(
G11 G12

G21 G22

)
, (4.7)

where the matrix elements can be written as

Gµv (r, r′, t) =
∑
s=±1

∫
Φp,s,µ (r, t) Φ†p,s,v (r′, 0) dp, (4.8)

and µ, ν = 1, 2 are matrix indices, associated with the upper and lower components
of Ψ (r, t) that are related to the probability of finding the electron at the sublattices A
(upper) and B (lower). The time-evolved electron wave function for t > 0 can be obtained
as

Ψµ (r, t) =

∫
Gµv (r, r′, t)ψv (r, 0) dr′. (4.9)

Combining Eqs. (4.6) and (4.8), we have that

G11 (r, r′, t) = G22 (r, r′, t) =
1

(2πh̄)2

∫
exp

[
i
p (r − r′)

h̄

]
cos
(
pnt

ξh̄

)
dp, (4.10a)

G12(−) (r, r′, t) = G21(+) (r, r′, t) =
−i

(2πh̄)2

∫
e∓inφexp

[
i
p (r − r′)

h̄

]
sin
(
pnt

ξh̄

)
dp.

(4.10b)
Note that G12 (r, r′, t) differs from G21 (r, r′, t) only by a negative sign in the term e∓inφ =

(px ∓ ipy/p)n, as emphasized by the subscripts in Eq. (4.10b). For more details, see
App. C.1.

At t = 0, we assume the wave function to be a circularly symmetrical 2D Gaussian
wave packet with width d and non-vanishing average momentum along y-direction, i.e.
p0y = h̄ky0 , such that

ψ (r, 0) =
f (r)√

|C1|2 + |C2|2

(
C1

C2

)
, (4.11a)
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with
f (r) =

1

d
√
π
exp

[
− r2

2d2
+
ip0yy

h̄

]
. (4.11b)

Gaussian-like wave packets are commonly used in the ZBW analysis, since such oscillatory
effect is not a stationary state but a dynamical phenomenon as well as it exhibits a mini-
mal position-momentum uncertainty. They are essentially a combination of plane-waves,
where the wave packet width represents a distribution of momenta and, consequently, of
energy, and it is associated with e.g. the temperature of the system. Thus, by setting
the initial state as Gaussian wave packet, this assumption covers most cases of practical
interest, because any wave packet can be approximated by a superposition of a finite
number of Gaussian states. Such a wave packet could be created by an ultra short laser
pulse. This results in a wave packet with both positive and negative energies, since such
a pulse has a very wide frequency spectrum [226, 227].

Coefficients C1 and C2 determine the initial pseudospin polarization of the injected
wave packet and are related to the two pseudospin components in Eq. (4.5). Each com-
ponent of the electron spinor wave function is then found as(

Ψ1 (r, t)

Ψ2 (r, t)

)
=

1√
|C1|2+|C2|2

(
C1Φ1 (r, t)+C2Φ3 (r, t)

C1Φ2 (r, t)+C2Φ4 (r, t)

)
, (4.12)

where

Φ1 (r, t) =

∫
G11 (r, r′, t) f (r′) dr′ =

de−
(ky0d)

2

2

2h̄2
√
π3

∫
exp

(
i
p · r
h̄
− p2d2

2h̄2 +
py′k

y
0d

2

h̄

)
cos
(
pnt

ξh̄

)
dp, (4.13a)

Φ3−(2+) (r, t) =

∫
G12(21) (r, r′, t)f (r′) dr′=

−ide−
(ky0d)

2

2

2h̄2
√
π3

∫
e∓inφexp

(
i
p · r
h̄
− p

2d2

2h̄2 +
py′k

y
0d

2

h̄

)
sin
(
pnt

ξh̄

)
dp, (4.13b)

and Φ1 (r, t) = Φ4 (r, t) according to Eq. (4.10a). The subscript − (+) for Φ3 (Φ2) in
Eq. (4.13b) refers to the sign of the argument in e−inφ (e+inφ). To see how Eqs. (4.13a)
and (4.13b) were obtained, see App. C.2.

Using cylindrical coordinates in Eqs. (4.13a) and (4.13b) and integrating over the
angular variable, we obtain (see App. C.3 for more details)

Φ1 (r, t) =
e−a

2/2

d
√
π

∫ ∞
0

e−
q2

2 cos (qnt′) J0

(
q
√
r2 − a2 − 2iay

)
qdq, (4.14a)

Φ3+(2−)(r, t) =
−ie−a2/2

d
√
π

[
ix′ ± y ∓ ia√
r2 − a2 − 2iay

]n∫ ∞
0

e−
q2

2 sin (qnt′) Jn

(
q
√
r2 − a2 − 2iay

)
qdq,

(4.14b)
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where J0 (z) and Jn (z) are Bessel functions of the zeroth and n-th order. For the sake of
simplicity, we introduced in Eqs. (4.14a) and (4.14b) the dimensionless parameter a = ky0d

and considered the time in units of d/vF .
Once Ψ1 (r, t) and Ψ2 (r, t) are known, the time-dependent expectation value of the

position operator can be calculated as

〈r (t)〉 =
2∑
j=1

∫
Ψ∗j (p, t)

[
ih̄

d

dp

]
Ψj (p, t) dp, (4.15)

with Ψ in momentum representation, that can be easily inferred from Eqs. (4.13a) and
(4.13b). From Eq. (4.15) we investigate the ZBW phenomenon by an analytical calculation
of the time-dependent expectation value of the position 〈r (t)〉 = (〈x (t)〉 , 〈y (t)〉) of the
center of the wave packet for different initial electron amplitudes of sublattices A and B,
by taking different values for C1 and C2 in Eq. (4.12), as will be discussed in Sec.4.3. (See
App. C.4 for more details)

In general, for the wave packet propagation results discussed further in Sec. 4.3, the
momenta choices have percentage errors less then 10%, when the two-band model and
the multi-band model are compared. These results for the expectation values of the
Gaussian wave packet center-of-mass were obtained for the dimensionless parameters a =

ky0d assuming values a = 1, a = 2, a = 3, and a = 4 for a fixed value of wave packet width
d = 100 Å, which corresponds to initial y-momentum: ky0 = 0.01 Å−1, ky0 = 0.02 Å−1,
ky0 = 0.03 Å−1, and ky0 = 0.04 Å−1, respectively. By analyzing Fig. 4.1(d), one confirms
that these used values of ky0 's times a0 = 1.42 Å lead to very low percentage errors, due to
mismatch of the two models, showing approximately the same error value regardless the
number of layers, as demonstrated in Fig. 4.1(d) for the whole range |ka0|. 0.5. Moreover,
as already reported in Refs. [48, 49] the wave-packet dynamics near the Dirac cones in
graphene does not depend separately on the momentum k0

y or on the width d, but rather
on the dimensionless quantity a. Therefore, even for large values of a, one can always
choose large wave packet widths d's to keep the momentum ky0 a small value within the
validity range of the two-band model, obeying the conditions such that: ky0 is not too far
from the Dirac cone and d is not too small, so that the packet is well localized in energy
space.

4.2.2 SOT for ABC-NLG within Dirac model

The analytical method developed here so far, despite being exact, is not flexible enough
to allow the study of wave packet propagation in ABC-NLG in the presence of e.g.
external potentials and applied electric or magnetic fields. We, thus, propose here a semi-
analytical method, namely, the SOT, [49, 206, 228–235] which consists in splitting the
time-evolution operator exp

[
− i
h̄
H∆t

]
into different terms involving the potential V , in

real space, and the kinetic energy Hk, in reciprocal space (see App. C.5 for more details):

e[−
i
h̄
H∆t] = e[−

i
2h̄
V∆t]e[−

i
h̄
Hk∆t]e[−

i
2h̄
V∆t] +O(∆t3). (4.16)
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The error of order ∆t3 comes from the non-commutativity between potential and kinetic
energy operators, and can be made small by assuming small time steps. Although, as
we shall see below, we used the exact time-evolution operator with no approximation, we
chose to refer to the method described here as SOT, first due to the similarities with the
methods developed in Refs. [49, 206, 228] for spin-dependent Hamiltonians, as well as
due to the fact that we are splitting the time-evolution operator.

As an example, let's consider the Dirac Hamiltonian for MLG [203] in the absence of
external potentials (V = 0), i.e.

HMLG = vFσ · p. (4.17)

The time evolution operator for this case can be written as

exp
[
− i
h̄
HMLG∆t

]
=exp

[
−ivF

h̄
(p · σ)∆t

]
=exp[−iS · σ] , (4.18)

where S = ∆tvFp/h̄ and its magnitude is S = ∆tvF
√
k2
x + k2

y. Using the properties of
the Pauli matrices, it is possible to rewrite Eq. (4.18) as a sum of two matrices, such as

exp [−iS · σ] = cos (S) 1− isin (S)

S
(S · σ) = M, (4.19)

where 1 denotes the 2×2 unit matrix. This is an exact representation of the time evolution
operator, including all the terms of the expansion of the exponential.

The generalized Hamiltonian Hn for ABC-NLG, Eq. (4.3), can be re-written in terms
of Pauli matrices for any number of layers n, therefore, Eq. (4.19) always hold, as long
as the vector S one adapts accordingly, which can be done with straightforward algebra.
For instance, for BLG one can re-write S as

S = h̄v2
F∆tγ−1

⊥
(
k2
x − k2

y, 2kxky, 0
)
, (4.20)

whereas for TLG, one obtains

S = h̄2v3
F∆tγ−2

⊥
(
k3
x − 3k2

ykx, 3k
2
xky − k3

y, 0
)
. (4.21)

The propagated wave function Ψ = [Ψ1 Ψ2]T at a time step t+ ∆t is given by

Ψ (r, t+ ∆t) = e−iHn∆t/h̄Ψ (r, t) = F−1{MF{Ψ (r, t)}}, (4.22)

where F (F−1) is the (inverse) Fourier transform operator. Note that M depends on the
wave vectors kx and ky, therefore, the matrix multiplication with a general initial wave
packet is conveniently computed numerically in reciprocal space by performing a Fourier
transform of the wave function, reason why this method is thus seen as a semi-analytical
procedure. Because the solution of Eq. (4.22) is exact, it should provide the same results
as the Green's function method described in Sec. 4.2.1 for free wave packets in NLG. We
verified, as will be discussed latter in Sec. 4.3, that we obtain numerical perfect agreement
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between results obtained by the SOT and the Green's function formalism. A clear ad-
vantage of the SOT is that it provides a way to study the wave packet dynamics in NLG
within the continuum model in the presence of arbitrary external potential profiles[49,
206, 228–235], simply by performing matrix multiplications with the potential exponen-
tial terms, as shown in Eq. (4.16). Moreover, it is worth mentioning for the general picture
in the presence of external potentials (V 6= 0), the accuracy of the results obtained by
the SOT given by Eq. (4.16) is controlled by the choice of the time step ∆t, being the
error dropped by assuming a small time step. In contrast, for V = 0 and spin-dependent
Hamiltonians no approximation was applied and, consequently, the exact representation
of the time evolution operator allows us to assume any value for the time step. The
assumed time step for all obtained results here in both approaches is ∆t = 0.1 fs.

4.2.3 SOT for ABC-NLG within the tight-binding model

Despite having the advantage of being semi-analytical, numerically exact, and suitable
for large graphene samples, the methods developed here so far are not able to capture
the microscopic features of NLG, such as rough edges and lattice defects. For that, one
needs to invoke theories that deal with the 2D material on the microscopic level, such
as the density functional theory and the tight-binding model. Nevertheless, for the later,
the SOT has been already developed for MLG[49, 228] and BLG[230] cases. Details
of this procedure and the method proposed in Ref. [230] can be easily adapted for any
number of layers, but such fully numerical microscopic approach is beyond the scope of
the present chapter. Although not shown in this study, the time evolution of wave packets
and trajectories obtained here for all cases of wave packet pseudospinor are verified to
agree well with those one based on the tight-binding SOT for low-energy wave packets
in MLG[49, 206, 228, 229, 231–234] and BLG[230, 235], thus additionally validating our
results.

4.3 Zitterbewegung of Gaussian wave packet for differ-
ent pseudospin polarizations

4.3.1 Predictions from the Heisenberg equation

Different kinds of initial pseudospin polarization of the wave packet will be considered
in this chapter. It is thus important to be able to predict beforehand the qualitative
behavior of the propagating wave packet in each case. In order to do so, we introduce a
method based on calculations of expectation values of wave packets by using the Heisen-
berg equation.

We use the subtlety of Heisenberg representation to predict which initial settings of
pseudospin (C1 C2)T result in non-zero averages of the electron coordinates 〈x (t)〉 and
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〈y (t)〉. The velocity vector is defined as

〈v (t)〉 =
dr

dt
=

1

ih̄
[r, H] = vFσ, (4.23)

where v = (vx, vy) and r = (x, y) are the velocity and the position vectors, respectively.
Without loss of generality, as an example, let's consider the MLG Hamiltonian [Eq. (4.17)]

and shall analyse a wave packet propagating in the x-direction in order to verify whether
〈x (t)〉 is a constant of motion. Therefore, from Eqs. (4.17) and (4.23), one obtains

d 〈x (t)〉
dt

=
1

ih̄
〈[x,HMLG]〉 = vF 〈σx〉 . (4.24)

On the other hand,
d 〈σx〉
dt

=
1

ih̄
〈[σx, HMLG]〉 =

2vFpy
h̄
〈σz〉 . (4.25)

Thus, from Eqs. (4.24) and (4.25), we conclude that, if the initial pseudospin is oriented
along the z direction, i.e., 〈σz〉 6= 0, and py 6= 0, 〈x (t)〉 is not a constant of motion
and it is expected that 〈x (t)〉 will exhibit ZBW. This choice is represented by the initial
pseudospinor (C1 C2)T = (1 0)T . The same idea is straightforwardly generalized to any
number of layers. Table 4.1 shows the results for MLG, BLG and TLG for other ini-
tial pseudospin configurations, which are the three cases developed in detail in the next
sections.

Table 4.1: Expectation value of the position (x, y) of the injected wave packet obtained
from the Heisenberg picture for different C1 and C2 values that determine the initial
polarization of the pseudospin. The (6=) = symbols indicate expectation values that are
(non-)zero.

〈x (t)〉 〈y (t)〉
(C1 C2)T (1 0)T (1 1)T (1 i)T (1 0)T (1 1)T (1 i)T

Monolayer 6= 6= = = = 6=
Bilayer 6= = 6= = 6= =

Trilayer 6= = 6= = 6= =

4.3.2 ZBW in MLG

Note that Eqs. (4.13a) and (4.13b) were generally obtained for NLG. Thus, one just
needs to use n = 1 in these equations and replace them into Eq. (4.12) in order to obtain
the wave function for MLG. Once the wave function is obtained, the expectation value
of the position of its center of mass is calculated using Eq. (4.15). Let us first revisit the
problem of ZBW in MLG as a particular case of the method developed here.

4.3.2.1 C1 = 1 and C2 = 0

We first consider the simple case when the lower component of the initial wave function
(4.11a) is equal to zero, i.e. taking C1 = 1 and C2 = 0 in Eq. (4.12). It corresponds to
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Figure 4.2: (Color online) Evolution (in units of d/vF ) of electronic probability den-
sity ρ (r, t) = |Ψ1 (r, t)|2 + |Ψ2 (r, t)|2 for MLG with (a)-(c) (C1 C2)T = (1 0)T , (d)-
(f) (C1 C2)T = (1 1)T , (g)-(i) (C1 C2)T = (1 i)T , for a = ky0d = 1.2 (d = 2 nm and
ky0 = 0.6 nm−1) and t/τ0 = 1, 3 and 5. The white arrows indicate the direction of
propagation of the wave packet.

the case in which the electron probability is initially located only at sites of the sublattice
A and pseudospin is polarized perpendicularly to the xy-plane, i.e., 〈σz〉 = 1 and 〈σx〉 =

〈σy〉 = 0.
According to Eq. (4.12), the wave function for t > 0 has the form:(

Ψ1 (r, t)

Ψ2 (r, t)

)
=

(
Φ1 (r, t)

Φ2 (r, t)

)
, (4.26)

where Φ1,2 (r, t) are defined by Eqs. (4.13a) and (4.13b), respectively, with n = 1. To
illustrate the evolution of the electron probability density we show ρ (r, t) = |Ψ1 (r, t)|2 +

|Ψ2 (r, t)|2 in Fig. 4.2(a)-(c) for p0y = h̄ky0 6= 0. Inset in Fig. 4.2(a) shows the projection of
the 2D Gaussian wave packet centered in the xy-plane at t = 0. As time elapses, the wave
packet splits into two parts moving along the y−axis with opposite speeds, Figs. 4.2(a)-
4.2(c). The probability density is symmetric (asymmetric) with respect to y (x), i.e.,
ρ (x, y, t) = ρ (x,−y, t) (ρ (x, y, t) 6= ρ (−x, y, t)). Thus, the center of the wave packet
oscillates (ZBW) only along the x-direction. For long enough time, the width of the wave
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Figure 4.3: (Color online) (a) Expectation value 〈x (t)〉 of the Gaussian wave packet
center-of-mass as a function of time (τ0 = d/vF ) for MLG with pseudospin polarization
(a) (C1 C2)T = (1 0)T , (b) (C1 C2)T = (1 1)T and (c) (C1 C2)T = (1 i)T , for different
values of a = ky0d. The results are obtained for a fixed value of wave packet width
d = 100 Å and different initial y-momentum: ky0 = 1 · 10−2 Å−1 (blue); ky0 = 2 · 10−2 Å−1

(orange); ky0 = 3·10−2 Å−1 (green) and ky0 = 4·10−2 Å−1 (red). The solid curves (symbols)
correspond to the results obtained by the Green's function (SOT) method.

packet increases due to the effect of dispersion 1 as for the case of a free particle. This
is unexpected, since the Dirac spectrum of low-energy electrons in graphene suggests a
dispersionless wave function, thus the observed dispersion is a direct effect of the ZBW,
as pointed out also in previous studies. [26, 38, 48]

The expectation value of the position operator were obtained by inserting Eq. (4.26)

1In fact, this is true for all other cases of pseudo-spin and number of graphene layers.
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into Eq. (4.15), which leads

〈x (t)〉=d

[
1− e−a2

2a
− e−a2

∫ ∞
0

e−q
2

cos (2qt′)I1(2aq) dq

]
(4.27)

and 〈y (t)〉 = 0, where I1 (z) is the modified Bessel function of the first order. These
results are in accordance with Table 4.1, only obtained from the Heisenberg picture, and
depends on the parameter a = ky0d. In App. C.4, as an example, is demonstrated how to
obtain Eq. (4.27). The other expected values, for bilayer and trilayer, presented as follows,
follow the same line of reasoning demonstrated in App. C.4 and can also be applied to
the 〈y(t)〉.

The average position of the x-coordinate as a function of time, given by Eq. (4.27),
is shown in Fig. 4.3(a) assuming various values of the parameter a = ky0d. For compar-
ison, results obtained by the SOT based on the Dirac model are shown with symbols,
presenting a good agreement with the analytical ones. From Fig. 4.3(a), the oscillations
disappear after t/τ0 ≈ 2.5 and 〈x (t)〉 converges to a specific value given by the first term
of Eq. (4.27). For example, for a = 4, the first term in Eq. (4.27) is equal to 0.125 (in units
of d), corresponding to the converged value of the red curve in Fig. 4.3. This demonstrates
that the ZBW is not permanent, but a transient feature, as discussed also in Refs. [30,
236], and it is due to the time-dependence of the second term in Eq. (4.27). It can be
noticed also in Fig. 4.3(a), that more oscillations occur, but with smaller amplitudes, as a
increases. Consequently, the velocity vx = d 〈x (t)〉 /dt oscillates with shorter period and
smaller amplitude as a increases. Notice that 〈r (t)〉, obtained here as a particular case
of Eq. (4.12), coincide with corresponding formulas reported in Ref. [48].

4.3.2.2 C1 = 1 and C2 = 1

For (C1 C2)T = (1 1)T , the initial pseudospin lies along the x−axis with the wave
function equally distributed on sublattices A and B. From Eq. (4.12), one has(

Ψ1 (r, t)

Ψ2 (r, t)

)
=

1√
2

(
Φ1 (r, t) + Φ3 (r, t)

Φ1 (r, t) + Φ2 (r, t)

)
, (4.28)

with Φ1,2,3 (r, t) given by Eqs. (4.14a) and (4.14b), respectively. It is important to point
up that an initial wave packet in which the electron probability density occupies equally
all sublattices is more realistic experimentally, as an expected configuration when one
creates wave packets by illuminating samples with short laser pulses and also because for
an infinite system the initial wave function should describe electronic bulk states spread
over all sites around the center point of the Gaussian distribution.[42, 226, 227] The time-
evolved electron probability densities for (1 1)T case are depicted in Fig. 4.2(c)-(e). For
t > 0, the shape of the full electron density ρ (r, t) changes, see Figs. 4.2(d)-(f), splitting
into two parts that move along the y−axis in opposite direction. As in the previous case,
ρ (r, t) is not mirror symmetric with respect to x = 0 axis and the wave packet travels
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asymmetrically to the positive x-direction. Consequently, the motion of the center of the
Gaussian wave packet oscillates (ZBW) only along this direction. This is illustrated by
two maxima of the electron density spread along the x-direction.

By substituting Eq. (4.28) into Eq. (4.15), we obtain the time-dependent expectation
value of the wave packet position

〈x (t)〉 = d

(
1− e−a2

2a2

)
t+

de−a
2

2a

∫ ∞
0

e−q
2

sin (2qt′)

[
d

dq
I1 (2aq)

]
dq, (4.29)

〈y (t)〉 = 0.
Figure 4.3(b) presents 〈x (t)〉, given by Eq. (4.29), for different values of the parameter

a and demonstrates that: (i) the higher the value of a, the smaller the amplitude of the
ZBW, the period of oscillations and the velocity vx of the center of the wave packet;
and (ii) ZBW is transient. Results from SOT within the Dirac model are shown with
symbols, and an excellent agreement with the analytical results (solid curves) validates
our method. For small values of the wave packet initial momentum ky0 , i.e. small values
of a = ky0d, and after ZBW vanishes, one observes that 〈x (t)〉 increases linearly with
time, as a consequence of the linear time-dependence on the first term of Eq. (4.29) that
dominates after a while. However, as a (or equivalently ky0) increases, the second integral
term in Eq. (4.29) becomes the dominant one.

4.3.2.3 C1 = 1 and C2 = i

In this last case, the initial pseudospin polarization (C1 C2)T = (1 i)T is oriented along
the same direction (y) as the plane wave momentum p0y in Eq. (4.11b). From Eq. (4.12),
the wave function is given by(

Ψ1 (r, t)

Ψ2 (r, t)

)
=

1√
2

(
Φ1 (r, t) + iΦ3 (r, t)

iΦ1 (r, t) + Φ2 (r, t)

)
. (4.30)

Figures 4.2(g)-(i) present snapshots of the propagated Gaussian wave packet for dif-
ferent time values. Unlike the two previous cases, discussed in Secs. 4.3.2.1 and 4.3.2.2,
the wave packet now moves along the y−axis, i.e. the wave packet travels along the same
direction as the pseudospin and average momentum p0y orientation, and does not split
into two parts for t > 0. The electron probability density obeys the following symmetry
(asymmetry) for t > 0: ρ (x, y, t) = ρ (−x, y, t) (ρ (x, y, t) 6= ρ (x,−y, t)).

Inserting Eq. (4.30) into Eq. (4.15), it is easy to show that the expectation values of
the x and y coordinates are, respectively: 〈x (t)〉 = 0 and

〈y (t)〉 = d

(
1− 1

2a2
+
e−a

2

2a2

)
t+

de−a
2

2a

∫ ∞
0

e−q
2

sin (2qt)
I1 (2aq)

q
dq. (4.31)

Figure 4.3(c) compares the analytical results (solid curves) obtained by performing a
numerical integration of Eq. (4.31), with those computed via SOT within the Dirac model
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(symbols). As can be seen from Fig. 4.3(c), the ZBW is almost absent and 〈y (t)〉 /d
exhibits a linear time-dependence, which becomes more significant as the wave packet
width a increases, without significant oscillations. That is, 〈y (t)〉 /d ≈ t for large a.
According to Eq. (4.31), as a increases, the second term (that causes oscillations), as
well as the other two terms of the first expression which possess a parameter in their
denominators, become small. Therefore, only the linear term t will dominate.

Our investigations reveal that the choice of the initial pseudospin polarization given
by (1 i)T is the best way, among the cases studied here, to avoid ZBW in MLG systems,
as reported in Refs. [ [49, 206, 228, 229, 231–234]]. Which is due to the fact that for
this choice of pseudospin, the motion in the y−direction is perfectly vertical during the
whole propagation (see Eq. (4.31)), being the least affected by ZBW phenomena, specially
moving straight without to much dispersion as larger is the initial Gaussian wave vector.

4.3.3 ZBW in BLG

Owing to the distinct electronic and transport properties for graphene samples with
different number of stacked layers, we also analyze the influence of the number of layers
on the wave packet propagation with different pseudospin polarization, as well as we will
verify which are the main ZBW features observed in NLG. We consider in the current
section the BLG case and TLG will be investigated in next Sec. 4.3.4.

The wave function is obtained by taking n = 2 in Eqs. (4.13a) and (4.13b) and
combining them with Eq. (4.12). Once the wave function evolves in time, its (x, y) position
expectation values are calculated using Eq. (4.15).

4.3.3.1 C1 = 1 and C2 = 0

For (C1 C2)T = (1 0)T , the wave packet moves in positive x-axis direction and splits
in two parts moving along y axis with opposite velocities, Fig. 4.4(a). As can be seen
from the Fig. 4.4(a), the total probability density ρ (x, y, t) obeys the following symmetry
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Figure 4.4: (Color online) The same as in Fig. 4.2, but now for BLG and just t/τ0 = 1.
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Figure 4.5: (Color online) The same as in Fig. 4.3, but now for BLG case with τ0 =

γ⊥d
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F .

(asymmetry): ρ (x, y, t) = ρ (x,−y, t) (ρ (x, y, t) 6= ρ (−x, y, t)). Therefore, the coordinate
x exhibits ZBW. These results are analogous to those in the MLG case (see Sec. 4.3.2), but
with a slightly different deformation shape of the propagated wave function, as illustrated
in Fig. 4.4.

Equation (4.15) allows us to write the quantities 〈x〉 and 〈y〉 for BLG as

〈x (t)〉= d

[
1−e−a2

a
−2e−a

2

∫ ∞
0

e−q
2

cos
(
2q2t′

)
I1(2aq) dq

]
, (4.32)

〈y (t)〉 = 0, being very similar to the MLG case with the same initial pseudo spin. The
analytical (SOT) results for 〈x (t)〉 are illustrated by solid curves (symbols) in Fig. 4.5(a).
As shown in Fig. 4.5(a), ZBW has a transient character that is attenuated by an expo-
nential term e−q

2 in Eq. (4.32) and, after the oscillations disappear, 〈x (t)〉 /d converges
to the value of the first term that is time-independent. Unlike the MLG case, Fig. 4.3(a),
the ZBW frequency for BLG is less affected by increasing a.



100 4. EFFECT OF ZITTERBEWEGUNG ON THE PROPAGATION OF . . .

4.3.3.2 C1 = 1 and C2 = 1

The total probability density for (C1 C2)T = (1 1)T , Fig. 4.4(b), obeys the symmetry
(asymmetry) relation ρ (x, y, t) = ρ (−x, y, t) (ρ (x, y, t) 6= ρ (x,−y, t)). Consequently, the
y coordinate is the one that is expected to manifest the ZBW effect. What stands out for
this case, is that the wave packet moves along the negative y−direction, unlike the MLG
case for (1 1)T , and does not split into two parts. Its spatial distribution shape and the
preferred one-directional propagation (y), Fig. 4.4(b), seems to be similar to MLG case
with pseudospin (1 i)T , except by the reverse y orientation.

Expectation values of the position (x, y) were obtained in a similar manner as described
before and are given by 〈x (t)〉 = 0 and

〈y (t)〉=−ae−a2

∫ ∞
0

e−q
2[
qsin

(
2q2t′

)
0F1

[
3, a2q2

]]
dq

− 4e−a
2

t′
∫ ∞

0

e−q
2
[
q2I1 (2aq) +

q

a
I2 (2aq)

]
dq, (4.33)

where 0F1 [a, z] in Eq. (4.33) is the confluent hypergeometric function. Solid curves (sym-
bols) in Fig. 4.5(b) represent analytical (SOT) results for 〈y (t)〉. As for the MLG case
with pseudospin (1 i)T (see Fig. 4.3(b)), the average position y in the present BLG case
exhibits a linear time-dependence with a high group velocity as larger is the a parameter
without significant oscillations. It means that ZBW is absent, such that the wave packet
in BLG with pseudospin (1 1)T shows to be the appropriated choice in order to inves-
tigate transport properties by wave packet dynamics in BLG-based systems within the
low-energy approximation described by the two-band model Eq. (4.3).

4.3.3.3 C1 = 1 and C2 = i

Assuming (C1 C2)T = (1 i)T , for t > 0, the wave packet splits into two parts that
moves along the y-axis in opposite directions, Fig. 4.4(c). These two propagating sub-
packets with the same probability densities and widths lead to a null average position
〈y〉 and null expectation value of velocity 〈vy〉. As shown in Fig. 4.4(c), the probability
density ρ (r, t) is symmetric (asymmetric) with respect to y (x) axis. Due to the lack of
mirror symmetry with respect to x = 0 axis, the wave packet exhibits ZBW along the
coordinate x, as we had already predicted in Table 4.1. It is interesting to note that,
if the initial direction of pseudospin coincides with the average momentum ky0 , for BLG,
there is no motion of the wave packet in the y-direction, as would be the case for MLG,
Sec. 4.3.2.3, but only in the x-direction.

By analytically calculating the average value of x and y for this polarization, it leads
to

〈x (t)〉 = de−a
2

∫ ∞
0

e−q
2 {[−2sin (2qnt′)

·
(
−2I1 (2aq) +

2I2 (2aq)

aq

)
+

8qtI2 (2aq)

a

]}
dq , (4.34)
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and 〈y (t)〉 = 0. The analytical Green's function based results, obtained by Eq. (4.34), are
compared to those calculated via SOT within the Dirac model for different parameters a,
as shown in Fig. 4.5(c). As can be seen in Fig. 4.5(c), there are very similar behaviors
with those from MLG case with (C1 C2)T = (1 1)T , Fig. 4.3(c), that is: (i) a transient
character of the ZBW, (ii) the x average position is the one that oscillates, (iii) the ZBW
amplitude and frequency are directly related to the wave packet width or initial wave
vector, such that as higher the parameter a, smaller is the oscillation period, vanishing
the oscillations faster in time and converging the group velocity vx to a constant non-zero
value.

4.3.4 ZBW in TLG

As the last example of our investigations on ZBW in NLG, we studied the dynamics of
wave packet in ABC-stacked TLG, as illustrated in Fig. 4.1. Expectation values of x and
y coordinates as a function of time are obtained with the same analytical and numerical
methods used so far, therefore, details of these calculations for TLG will be omitted.

Assuming (C1 C2)T = (1 0)T , one obtains

〈x (t)〉=3d

(
1−e−a2

2a

)
−3de−a

2

∫ ∞
0

e−q
2

cos
(
2q3t′

)
I1 (2aq) dq, (4.35)

and 〈y (t)〉 = 0. The probability density and a comparison between the analytical results,
Eq. (4.35), and those from SOT within the Dirac model, are represented in Fig. 4.6(a)
and Fig. 4.7(a), respectively, for different parameters a as a function of time. As a
increases, Fig. 4.7(a), the ZBW becomes more evident, although still exhibiting a transient
character, as in the previous MLG and BLG cases. On the other hand, for the pseudospin
configuration (C1 C2)T = (1 1)T the results for expectation value of the position of the
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Figure 4.6: (Color online) The same as in Fig. 4.2, but now for TLG at t/τ0 = 0.5.
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Figure 4.7: (Color online) The same as in Fig. 4.3, but now for TLG with τ0 = γ2
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and including the result for a = 10 with ky0 = 0.1 Å−1. The insets in panels (a) and (b)
show magnification of the gray shaded areas for better visualization at small t/τ0 values.

wave packet are given by

〈x (t)〉 = −3de−a
2

2a2

∫ ∞
0

e−q
2

q2

{
6aq4I3(2aq)t

+
[(

2a2q2 + 6
)
I2(2aq)− 3aqI1(2aq)

]
sin
(
2q3t

)}
dq (4.36)

and 〈y (t)〉 = 0. Figure 4.7(b) shows 〈x (t)〉, Eq. (4.36), and the SOT results calculated
within the Dirac model. As we can be seen in Fig. 4.7(b) and its inset with an enlargement
for small time steps, after the transient oscillatory behaviour, |〈x〉| increases linearly with
time converging to a non-null constant group velocity vx in a similar way as observed for
MLG case with pseudospin (1 1)T (see Fig. 4.3(b)) and for BLG case with pseudospin
(1 i)T (see Fig. 4.5(c)). The probability density is illustrated in Fig. 4.6(b) and shows
that the direction of propagation of the wave packet is in accordance with Eq. (4.36).

Finally, for the pseudospinor (1 i)T the expectation values of the position operator are
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〈x〉 = 0 and

〈y〉 =
−3e−a

2

2a2

∫ ∞
0

e−q
2

q

(
4q2t

(
a2q2 + 3

)
I2(2aq)

−6aq3tI1(2aq) + 3aI3(2aq) sin
(
2q3t

))
dq. (4.37)

Figure 4.7(c) provides a comparison between the analytical results, obtained numer-
ically from Eq. (4.37), with those obtained by the SOT within the Dirac model. This
results shows to be analogous to the MLG case for (C1 C2)T = (1 i)T and BLG case for
(C1 C2)T = (1 1)T , where (i) ZBW is absent; and (ii) as a increases, 〈y〉 /d also increases
linearly with time without visible oscillations and with a non-null constant group velocity
along y−direction. The total probability density, that is in agreement with the results
presented in Tab. 4.1, is shown in Fig. 4.6(c).

4.3.5 Influence of the number of graphene layers on wave packet
dynamics

As observed in Secs. 4.3.2, 4.3.3 and 4.3.4, for different pseudospin polarization
(C1 C2)T = (1 1)T and (C1 C2)T = (1 i)T , the wave packet exhibits different propaga-
tion directions for MLG, BLG and TLG (for more details, see Appendix C.4). Figure
4.8 illustrates these three situations. In fact, such change in propagation direction is ex-
pected as n increases, since the low-energy Hamiltonian for ABC-NLG has Pauli matrices
σx and σy multiplying both kx and ky for n ≥ 2, unlike the MLG case. For example, for
BLG, HBLG = h̄2v2

Fγ
−1
⊥
[(
k2
x − k2

y

)
σx + 2kxkyσy

]
. Consequently, the velocity components

in x− and y−directions, calculated according to the steps in Sec. 4.3.1, are expected
to be proportional to 2h̄v2

Fγ
−1
⊥ ky〈σy〉 and −h̄v2

Fγ
−1
⊥ ky〈σx〉, respectively, where we already

took into account that the wave packet momentum in Eq. (4.11a) has only a component
in the y-direction, i.e. kx ≡ 0. As for TLG, the same procedure leads to velocity com-
ponents in x− and y−directions proportional to −3h̄2v3

Fγ
−2
⊥ k2

y〈σx〉 and −h̄2v3
Fγ
−2
⊥ k2

y〈σy〉,
respectively. Thus, for a given initial pseudospin orientation, these expressions help to
qualitatively predict the observed changes in propagation direction and the increasing
propagation velocity as the number of layers increases, whereas the detailed behavior of
the wave packet dynamics and its ZBW requires the more sophisticated approaches de-
scribed in the previous Sections. Moreover, by comparing the transient duration time
(td) in Figs. 4.3, 4.5 and 4.7, carefully taking into account the corresponding value of
τ0 = γn−1

⊥ dn/h̄n−1vnF for each case which becomes a larger value for large n, and the wave
packet evolution in Figs. 4.2, 4.4 and 4.6 for MLG, BLG and TLG, respectively, one real-
izes that as the number of layers increases, the propagating wave function spreads slower
for a certain fixed time range, that in turn leads to greater time scales for the transient
behavior, i.e. tdN=3 > tdN=2 > tdN=1. Note that the group velocity increases when the
number of layers also increases, but the wave packet takes longer to spread out spatially
to large n.
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Figure 4.8: (Color online) Representation of the different directions of propagation of the
Gaussian wave packet according to the choice of initial pseudospinor for (a) MLG, b)
bilayer and c) trilayer graphene, obtained from Eq. (4.12). The solid, dashed and dash-
dotted white curves represent the initial pseudospinor defined as (C1 C2)T = (1 0)T ,
(C1 C2) = (1 1)T and (C1 C2) = (1 i)T , respectively. The long-dashed circle in (b)
indicates that when one includes one more layer the direction of propagation of the wave
packet motion rotates by 90° for the pseudospinor (1 1)T and (1 i)T .

Concerning the wave packet propagation in multi-layer graphene case and the validity
of the two-band model adopted here [Eq. (4.3)], it is also important to mention that,
for a fixed momentum and |ka0|& 0.5, by increasing the number of graphene layers also
increases the percentage error between the 2×2 and the full model, as shown in Fig. 4.1(d).
On the other hand, for a fixed momentum and |ka0|. 0.5, the error remains unchanged.

4.3.6 Dirac valley selection for wave packet dynamics

The choice of the propagation direction in real space also depends on which Dirac
valley the initial wave packet is taken, since the kDx and kDy directions in the Dirac model
are rotated with respect to the kTBx and kTBy tight-binding directions via the standard 2D
rotation matrix: (

kDx
kDy

)
=

(
cos θ − sin θ

sin θ cos θ

)(
kTBx
kTBy

)
, (4.38)

with θ = π/2, 7π/6, and 11π/6 [θ = π/6, 5π/6, and 3π/2] for K (K ′) Dirac valleys of
the first Brillouin zone. In addition, since in our analysis the time-reversal symmetry is
preserved, then H(k) = H(−k)∗ and the low-energy bands are doubly degenerate. As
a consequence, all results obtained along this chapter for K Dirac valley can be easily
mapped into the K ′ valley by just rotating the reciprocal space vectors according to
Eq. (4.38).

4.4 Conclusions of the chapter

A comprehensive study of the quantum dynamics of charged particles represented by
a 2D Gaussian wave packet in multilayer graphene has been presented. Using the Green's
function method, we obtained generalized analytical expressions for the time dependence
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of the wave functions in ABC-stacked NLG that allowed us to calculate the average values
of position operators for an arbitrary number of graphene layers n.

A semi-analytical method, which allows one to calculate wave packet scattering by
arbitrary potential profiles is proposed. The method is based on the well-known SOT,
adapted here for the 2×2 Dirac approximation for the multi-layer graphene Hamiltonian.
Analytical results for the expectation values of the position of the center of the wave
packet show perfect agreement with those from the SOT within the Dirac approximation,
for all cases of initial pseudospin orientation investigated here. This consolidates the
methods proposed here, which are suitable for large graphene samples with any number
of ABC-stacked layers (in contrast to tight-binding models, where the computational cost
rapidly increases with the number of atoms), as very useful tools for continuum model
investigations of transport properties in multilayer graphene.

As examples, the proposed methods here are applied to the study of the dynamics
of wave packets in ABC-stacked MLG, BLG and TLG, with different pseudospin polar-
ization. Our results demonstrate how ZBW depends on the number of graphene layers.
Wave packets with the same pseudospin orientation in MLG, BLG and TLG are shown to
propagate in different directions and with different velocities. ZBW is shown to be min-
imized as the pseudospin orientation is taken the same as the wave packet momentum.
For the parameters considered in this chapter, when both the pseudospin and momentum
are oriented along the y-direction (i.e. assuming 〈σy〉 6= 0, (C1 C2)T = (1 i)T , p0y 6= 0 and
kx ≡ 0), the wave packet position is approximately a linear function of time, propagating
along the +y-, +x- and −y-directions for MLG, BLG, and TLG, respectively. The ZBW
phenomena in multilayer graphene displays a transient behavior, i.e. the oscillations of
the physical observables decay with time and a natural damping is observed. Our results
show that the transient behavior time td is of the order of dozens of femtoseconds and
the larger the number of layers the longer the transient time, i.e. tdN > tdN−1. Therefore,
multilayer graphene system could be an experimental platform to experimentally probe
ZBW oscillations, since its transient duration time becomes longer the larger the n value.
At the experimental point-of-view, the amplitude of the oscillations should depend very
strongly on the duration of the applied pulse, whereas the duration time of the total
damping is due to the light emission time scale. The latter condition is owing to the fact
that the electron oscillations give rise to a time-dependent dipole moment which will be
a source of electric field and it will emit or absorb radiation in the far infrared range [43,
226, 227].



5
Zitterbewegung of moiré excitons in twisted

MoS2/WSe2 hetero-bilayers

The moiré pattern observed in stacked non-commensurate crystal lattices, such as
hetero-bilayers of transition metal dichalcogenides, produces a periodic modulation of
their bandgap. Excitons subjected to this potential landscape exhibit a band structure
that gives rise to a quasi-particle dubbed moiré exciton. In the case of MoS2/WSe2 hetero-
bilayers, the moiré trapping potential has honeycomb symmetry and, consequently, the
moiré exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass
can be further tuned down to zero with a perpendicularly applied field.

In this chapter, it is shown that, analogously to other Dirac-like particles, moiré exciton
exhibits a trembling motion, also known as zitterbewegung , whose long timescales are
compatible with current experimental techniques for exciton dynamics. This promotes
the study of the dynamics of moiré excitons in van der Waals heterostructures as an
advantageous solid-state platform to probe zitterbewegung, broadly tunable by gating and
inter-layer twist angle.

The study on zitterbewegung of moiré excitons in twisted MoS2/WSe2 hetero-bilayers,
developed in this chapter, has been accepted on the Physical Review Letters and an arXiv
version can be accessed through this link.

5.1 Motivation

As discussed in Chap. 4, zitterbewegung (ZBW) is a fast trembling motion of elemen-
tary particles that obey the Dirac equation [25], predicted by Erwin Schrödinger in 1930

for relativistic fermions [23].
Since the Dirac equation predicts ZBW with amplitude of the order of the Compton

wavelength (10−2 Å) and a frequency of ωZB ≈ 1021 Hz, which are not accessible with
current experimental techniques [226], a direct experimental observation of this effect is
challenging. Since the characteristic frequency of ZBW is determined by the energy gap
between the (pseudo-)spin states [30], designing a system where the gap in the Dirac cone

https://journals.aps.org/prl/accepted/ea07cYf6O1518a78f1ac7684907511e93e68803ff
https://arxiv.org/pdf/2107.00102.pdf
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Figure 5.1: (a) Moiré pattern with period b in an MoS2/WSe2 hetero-bilayer, twisted by
3◦. Black diamond represents the supercell. Insets magnify three characteristic locations
(A, B and C), where atomic registries resemble lattice-matched bilayers of different R-
type stacking. (b) Lateral view of the inter-layer distance of the regions A, B and C (for
more details, see Ref. [53]). (c) Corresponding band structures, calculated with the tight-
binding model, for the first moiré Brillouin zone with (dashed lines) and without (solid
lines) an applied electric field ε = ε0 ≈ 0.44 V/nm) for the K (red) and K ′ (blue) valleys
of the crystal. (d) Representation of a honeycomb lattice structure and unit cell (gray
region) where sub-lattice sites A and B correspond to the respective stacking registries
labelled in (a), and with lattice constant a. First, second and third nearest-neighbors
hopping parameters are represented by t0 (green arrows), t1 (blue arrows) and t2 (gray
arrows), respectively. a1 and a2 are the basis vectors. (e) Colormap of the ILE potential
landscape in R-type MoS2/WSe2, as illustrated in (a), where the excitonic potential is
tuned by an applied perpendicular electric field ε. The inset in each panel shows the
potential profile along the high symmetry points (A-B-C-A) of the moiré supercell. For
ε = ε0, the excitonic potential exhibits the same value at regions A and B, whereas for
ε = 2ε0 (ε = 0), A (B) becomes higher in energy than B (A).
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can be controlled at will is fundamental for optimization of the oscillation frequency and
eventual experimental detection of this phenomenon.

Most recently, advances in the isolation of monolayer semiconductors and their stacking
as van der Waals heterostructures (vdWhs) opened a new field of study of artificial 2D
hybrid materials [50, 51]. Combining two monolayers of semiconducting transition-metal
dichalcogenides (TMDs) in a vdWhs with an inter-layer twist introduces an in-plane
moiré pattern [52], as illustrated in Fig. 5.1(a). This pattern is associated with an in-plane
modulation of the conduction and valence band edges, thus presenting new possibilities to
engineer the electronic band structure, quasi-particle confinement, and optical properties
of the system. Especially, inter-layer excitons (ILE) are profoundly affected by the moiré
pattern, which creates regions in space where the ILE energy is significantly lower. For
MoS2/WSe2 vdWhs with small twist angle (R-type stacking), lowest energy regions are
those with stacking registry Rh

h and RX
h , represented by A and B in Fig. 5.1(a). These

regions form a honeycomb superlattice for excitonic confinement, thus leading to a moiré
exciton band structure that resembles the one of gapped monolayer graphene. Different
inter-layer distances for Rh

h and RX
h , as illustrated in Fig. 5.1(b), lead to different ILE

dipole moments in each region. Consequently, a perpendicularly applied electric field ε

can be used to tune the energies of A and B ILE sub-lattices, thus making them equal
at ε = ε0 ≈ 0.44 V/nm.[53] In this case, the moiré exciton band structure acquires a
massless Dirac fermion character, as illustrated in Fig. 5.1(c). The combination of the
long lifetime and bright luminescence [53] of ILE, along with their Dirac-like dispersion
tunable by the twist angle and applied fields, makes twisted vdWhs a strong candidate
for experimental detection of ZBW of moiré excitons.

In this chapter, we analyze the dynamics of moiré exciton wave packets as an opto-
electronics-based platform to probe ZBW, as an alternative to the previous proposals,
mostly based on low-energy electrons in graphene or on ultra-cold atoms (see chapter
4 for more details). To do so, we apply the time-evolution operator [228, 230] on a
wave packet distribution representing a moiré exciton in twisted MoS2/WSe2 vdWhs. We
discuss the effects of the wave packet parameters, such as its pseudospinor and width,
as well as of an applied electric field and different twist angles, on the ZBW amplitude
and time evolution of the exciton probability density distribution. The optimization
of parameters proposed here may guide future experiments towards the experimental
observation of ZBW of such neutral quasi-particles in this vdWhs, which represents an
important advance in the understanding not only of this phenomenon, but also of the
tunable Dirac-like character of the moiré exciton.
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5.2 Tight-binding approach for excitons in a potential
landscape

ILEs in a twisted hetero-bilayer experience a periodic potential of the form [53]

V (r) = Eg (r0 (r)) + eεd (r0 (r))− Eb , (5.1)

where d is the inter-layer distance and Eg the ILE bandgap, both modulated along the
plane due to the moiré pattern (see Fig. 5.1), and ε is a perpendicularly applied electric
field. Here, r0 is the in-plane displacement vector from a metal site in the hole layer to a
nearest-neighbor metal site in the electron layer, depending on the location r in the moiré
pattern. The binding energy Eb, on the other hand, is not expected to be significantly
dependent on the local potentials [53] and is, therefore, assumed to be constant.

Excitons in such a potential landscape would be trapped at their local minima and ex-
hibit a non-zero (complex) hopping to the neighboring minima. In a twisted MoS2/WSe2

bilayer, this landscape of energy minima has a honeycomb symmetry, with A (Rh
h) and

B (RX
h ) sub-lattices at slightly different energies, +δ and −δ, respectively. A low-energy

quasi-particle - in this case, an exciton - in such a landscape would behave as a non-zero
mass Dirac-Weyl fermion, whose Hamiltonian, within third-nearest neighbors approach,
reads [53, 237]

Hmex=

(
δ − tAF (k) t0Z0(k) + t2Z2(k)

t0Z
∗
0(k) + t2Z

∗
2(k) −δ − tBF (k)

)
, (5.2)

where tA(B) is the hopping between nearest-neighbors minima of the A and B sub-lattices
(see appendix D) that compose the honeycomb moiré potential, t0 and t2 are hopping
parameters between first and third nearest-neighbors, see Fig. 5.1(d), and structure factors
are given by

F (k) = 2 cos [k · (a1 − a2)− θs] +

2 [cos(k · a1 + θs) + cos(k · a2 − θs)] ,
Z0(k) = 1 + e−i(k·a1+θs) + e−i(k·a2−θs),

Z2(k) = e−ik·(a1+a2) + 2 cos [k · (a1 − a2) + θs],

where θs = 4πs/3 originates from the complex part of the hopping parameters of the
moiré exciton [53] with spin sign s = ±1.

Diagonalization of Hmex leads to the moiré exciton band structure

E± = −t+F (k)±
√
|t0Z0(k) + t2Z2(k)|2+(t−F (k)− δ)2 , (5.3)

where t± = (tA ± tB)/2. An example of such a band structure is shown in Fig. 5.1(c).
In the absence of external field, since the energies of sub-lattices A and B are different
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(see left panel in Fig. 5.1(e)), δ 6= 0 and the moiré exciton band structure exhibits a
gap, as illustrated by solid lines in Fig. 5.1(c). However, as the applied field ε increases,
the sub-lattices become similar in energy and δ approaches zero as the field reaches a
critical value ε0, which is 0.44 V/nm for the vdWhs considered here (see middle panel in
Fig. 5.1(e)). In this case, the dashed lines in Fig. 5.1(c) exhibit a gapless Dirac-like band
structure for the moiré exciton in the vicinity of the Γ-point of the moiré Brillouin zone,
which corresponds to either the K or K ′ points of the crystal Brillouin zone. Different
colors in Fig. 5.1(c) stand for the excitonic band structures of the two possible exciton
spins, up or down for s = + (red) or s = − (blue), respectively. Due to the spin-valley
locking, the spin-valley index s also corresponds to a moiré exciton at the K (K’) valley
for s = + (−) in the considered case of R-type stacking registry. As we will consider only
large moiré exciton wave packets centered at Γ, where the bands for the two different
spins are similar, spins are not expected to play a significant role in this study.

5.3 Wave-packet dynamics

Writing the Hamiltonian as H = α ·σ, where σ are the Pauli matrices, allows one to
easily apply the time-evolution operator in an exact form as a simple matrix multiplica-
tion [42, 228, 230]. Therefore, it is convenient to re-write Eq. (5.2) as

Hmex = α(k) · σ − t+F (k)1 , (5.4)

where 1 is the identity matrix and α = (αx(k),−αy(k), αz(k)) with its components given
by

αx(k) = [1 + cos(θs + k · a1) + cos(θs − k · a2)]t0

+ {cos [(a1 + a2) · k] + 2cos [θs + (a1 − a2) · k]} t2, (5.5a)

αy(k) = [sin(θs + k · a1)− sin(θs − k · a2)]t0 + sin [(a1 + a2) · k] t2 , (5.5b)

and
αz(k) = δ − t−F (k) . (5.5c)

Since Hmex does not explicitly depend on time and [α · σ,−t+F (k)1] = 0, the time-
evolution operator for the Hamiltonian defined in Eq. (5.4) is given by

e−
i
h̄
Hmex∆t = e−iβ·σe−

i
h̄

(−t+F (k)1)∆t , (5.6)

where β = α∆t/h̄.
From the well known properties of the Pauli matrices, the first exponential on the

right hand-side of Eq. (5.6) yields

e−iβ·σ = cos (β) 1− isin (β)

β

(
βz βx − iβy

βx + iβy βz

)
=M , (5.7)
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where β = |β|, and the second exponential of Eq. (5.6) is equivalent to

e
i
h̄

(t+F (k)1∆t) = 1e
i
h̄

(t+F (k)∆t) = N . (5.8)

Applying the time-evolution operator defined in Eq. (5.6) on the wave function Ψ (r, t),
one obtains the propagated wave function after a time step ∆t as

Ψ (r, t+ ∆t) = e−
i
h̄
Hmex∆tΨ (r, t) =MNΨ (r, t) . (5.9)

Note that M and N depend on the wave vector k, therefore, the matrix multiplication
with a general initial wave packet is conveniently computed numerically in reciprocal space
by performing a Fourier transform on the wave function, which gives this method a flavor
of a semi-analytical procedure. At t = 0, we assume the wave function as a circularly-
symmetric 2D Gaussian wave packet with width dmultiplied by the pseudospinor [C1 C2]T ,
such as

Ψ(r, t)=N

(
C1

C2

)
exp

[
−(x− x0)2 − (y − y0)2

d2

]
, (5.10)

where N is the normalization factor and (x0, y0) are the coordinates of the center of
the Gaussian wave packet in real space. As the exciton is normally excited by a low-
momentum photon, we assume a moiré exciton exactly at the Γ-point of the moiré Bril-
louin zone, i.e. with zero energy and zero momentum.

5.4 Wave packet dynamics and zitterbewegung

Figure 5.2 illustrates the average position 〈x(t)〉 and 〈y(t)〉 of the wave packet as a
function of time for d = 200 Å (blue), 300 Å (orange) and d = 500 Å (green). Different
pseudo-spin polarizations [C1 C2]T = [0 1]T and [1 1]T are considered, with and without
an applied electric field ε, as indicated on top of each panel. Results for [1 i]T are given
in the Appendix D, along with the material parameters for the vdWhs studied here. The
pseudo-spinor represents the occupation of the A and B sub-lattice sites, therefore, it is
expected to be controlled in an actual experiment by the polarization of the excitation
light, since the Rh

h and RX
h regions, which correspond to the A and B sub-lattices here,

exhibit different selection rules for circular light polarization [53]. For instance, a circular
light polarization that excites ILE only in Rh

h (RX
h ) regions would effectively produces a

moiré exciton wave packet with pseudo-spinor [C1 C2]T = [1 0]T ([0 1]T). As for the wave
packet width, it could be controlled e.g. by the focus of the short-pulse excitation light,
although actual precise manipulation and engineering of excitonic wave packets may be
a challenging task [238]. Laser spots as narrow as ≈ 500 Å i.e. of the same order of
magnitude as the wave packets considered here, have been used for the study of exciton
dynamics in 2D semiconductors in recent experiments [239–242].

In the absence of an external applied electric field (ε = 0), both expectation values
〈x(t)〉 and 〈y(t)〉 exhibit ZBW, but with very low amplitude and high frequency, which
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Figure 5.2: (Color online) ZBW of the expectation values of the position of a moiré
exciton in a MoS2/WSe2 vdWhs, considering an initial Gaussian wave packet distribution
with d = 200 Å (blue), d = 300 Å (orange) and d = 500 Å (green), and pseudo-spinors
[C1 C2]T = [1 0]T and [C1 C2]T = [1 1]T , under applied fields (a,b) ε = 0 and (c,d) ε = ε0.
The propagated probability densities for the time instants marked with white and gray
circular dots in each panel are shown in Fig. 5.3.

hinders the actual observation of this effect. On the other hand, for ε = ε0, where the
gap is closed and moiré exciton effectively behaves as a massless Dirac quasi-particle, the
wave packet moves only in one direction, exhibiting damped oscillations. For conciseness,
Figs. 5.2 (c,d) show only the moving component of r, see appendix D for the other
component. In this case, the amplitude of the oscillation is much higher, of the order
of tens of Å with a timescale of the order of few pico-seconds, which would make this
effect clearly observable in actual experiments. Wave packets with smaller width exhibit
weak oscillations, which vanish as the width increases. Nevertheless, for a [1 0]T spinor
wave packet, a ≈ 60 Å peak, followed by a ≈ 50 Å permanent shift of the center of the
wave packet, is observed for all values of wave-packet width considered here. For larger
widths, the motion resembles the one of zero-energy electron wave packets in monolayer
graphene [48, 243], since the wave packet becomes narrower around the Γ-point of the
moiré Brillouin zone, where dispersion is approximately the same as in graphene. The
dependence of the maximum displacement of the expectation value 〈x(t)〉 as a function
of ε, as well as the time for this maximum displacement to occur, is discussed in the
SM, where it is demonstrated that both the maximum wave packet displacement and its
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Figure 5.3: (Color online) Snapshots of the propagated probability density |Ψ(r, t)|2 for
an initial Gaussian wave packet with width d = 500 Å and pseudo-spinors [1 0]T and
[1 1]T . Top (bottom) row shows results for applied electric field ε = 0 (ε = ε0). The
white (orange) bar corresponds to 500 Å (875 Å) and the small white dot inside each
panel represents the center-of-mass of the wave packet. The profiles of |Ψ(r, t)|2 along the
dashed white lines in each panel are shown as insets. The labels (i) to (viii) correspond
to different time steps as marked with circular dots in Fig. 5.2.

timescale are highest at ε = ε0.

As for a [1 1]T spinor wave packet, the center of mass is predicted to move almost
linearly with time, travelling tens of Å in just a few picoseconds, before the exciton
recombines.

The unique features predicted here for the moiré exciton wave packet dynamics can
also be observed in the probability density distribution, as shown in Fig. 5.3. An initial
Gaussian wave packet for the center-of-mass coordinate of a free exciton is expected
to simply disperse across space as time elapses. Similar dispersion is observed e.g. in
Refs. [239] and [241] for monolayer TMD. Notice, however, that the Gaussian packet in
those experiments represented a density distribution of multiple excitons, rather than an
actual single exciton wave function, so that phonon effects[244], which give rise to a halo
in the exciton distribution, play an important role. In our case, in order to avoid such
phonon hot-spots [244] and exciton-exciton interaction effects, one would have to employ
low intensity exciting irradiation at low temperatures, so that the exciton distribution
effectively matches the non-interacting excitons picture proposed here. In this case, the
moiré exciton wave packet evolves as a double ring structure in the presence of an electric
field with the critical value ε0, whereas the usual dispersion is observed in the absence of
field. The observation of this strikingly different wave packet dispersion in time in the
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presence of the applied field would thus represent a smoking gun evidence of the ZBW of
moiré excitons and their Dirac-like nature.

5.5 Conclusion of the chapter

In summary, we argue that dynamics of a moiré exciton wave packet is an advanta-
geous solid-state opto-electronic platform to probe ZBW, evasive in experiments to date.
In MoS2/WSe2 vdWhs with small twist angles, the moiré pattern created by the inter-
layer lattice mismatch produces a periodic in-plane potential for the ILE center-of-mass
and, consequently, a moiré exciton band structure. A moiré exciton wave packet in this
system exhibits very fast and weak oscillations, hard to detect experimentally. However,
in the presence of a perpendicular electric field, the gap of the moiré exciton band struc-
ture can be closed, which attributes the characteristics of a massless Dirac fermion to this
quasi-particle, so ZBW becomes naturally more evident. In such a case, we reveal a shift
of tens of Å in the center of the moiré exciton wave packet, along with damped oscillations
with pico-second long periods. The exciton probability density profile is demonstrated to
be strikingly different in the presence of gap-closing electric field, compared to the case
without any field. The density profile and motion is also shown to be strongly dependent
on the pseudo-spinor of the moiré exciton wave packet, which is controllable by the po-
larization of the incident exciting light. With relevant timescales being within reach of
available experimental techniques, we expect to instigate the first experimental detection
of ZBW in an exciton wave packet, which opens the gate to follow-up studies exploiting
thereby proven massless Dirac fermion character of the moiré excitons in MoS2/WSe2

vdWhs induced by gating.



6
Graphene plasmonic

In this chapter, that supports the understanding of Chapters 7 and 8, the fundamen-
tals tools to study graphene plasmonic are presented. First, it is introduced the basic
ideas of the linear response theory (LRT), where the density-density graphene response
is calculated. In a second moment, throughout the random phase approximation (RPA),
the properties of graphene plasmons, also known as Dirac plasmons, are reviewed. Fi-
nally, the theory of surface plasmon-phonon polaritons in van der Waals heterostructures
is briefly introduced.

This chapter is mainly based on the books Quantum theory of the electron liquid, G.
Giuliani and G. Vignale (2008) and An introduction to graphene plasmonics, P. A. D.
Gonçalves and N. M. R. Peres (2016), references [16] and [17], respectively.

6.1 A brief introduction to the linear response theory

As the name suggest, within the LRT, the effects of an external perturbation are
calculated to linear order. For example, all the experimental probes, such as electromag-
netic fields in a typical SNOM experiment, as discussed at the introduction of this thesis,
can be considered as small perturbations to the system and, consequently, these external
excitation can be expressed in terms of a linear response function.

To present a general problem, the system considered here is described by a time-
independent Hamiltonian Ĥ0 and a time-dependent external field F (t) coupled linearly
to an observable B̂ of the system. Thus, the full Hamiltonian is defined as

ĤF (t) = Ĥ0 + F (t)B̂. (6.1)

It is assumed that the external applied field vanishes at a time t0, such that for t ≤ t0

the system is in the ground-state. As a consequence, the n-th eigenstate |ψn〉 of Ĥ0 is
populated with probability

Pn =
e−βEn

Z
. (6.2)

In Eq. (6.2), β = (kBT )−1, where T is the temperature and kB is the Boltzmann’s constant,
while Z =

∑
n e
−βEn is the canonical partition.
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Now, to determine the effects of the external perturbation F (t), a key assumption is
that the time-dependent external field only affects the system weakly, which is needed to
establish the initial thermal equilibrium. At t = t0, the external field is turned on, and
the time-evolution of the system, in the Schrödinger picture, is completely defined by the
Schrödinger equation

ih̄
∂

∂t
|ψn(t)〉 = ĤF (t) |ψn(t)〉 , (6.3)

with the initial condition at t0 given by |ψn(t0)〉 = |ψn〉. The solution of this linear
equation can be written as

|ψn(t)〉 = Û(t, t0) |ψn(t0)〉 , (6.4)

where Û(t, t0) is the unitary time-evolution operator, which relates the state at time t
to the state at time t0. In the absence of the perturbation, the unitary time-evolution
operator becomes

Û0(t, t0) = Û(t, t0)
∣∣∣
F=0

= e−
i
h̄
Ĥ(t−t0) . (6.5)

From Eq. (6.4), it is clear that to find the full evolution of the wavefunction |ψn(t)〉, it
is necessary to determine the operator Û(t, t0) that describes the time evolution of the
ground state |ψn(t0)〉. On the other hand, since the goal is to find a linear approximation
that represents the external perturbation, we need to do this just up to first order. Thus,
to perform a pertubartive expansion of Û0(t, t0) in powers of F (t) it is convenient to write

Û(t, t0) = Û0(t, t0)ÛF (t, t0) , (6.6)

where Û0(t, t0) is given by Eq. (6.5), while ÛF (t, t0) is due to the external field F (t). Thus,
from Eqs. (6.3), (6.4) and (6.6), we obtain

ih̄
∂

∂t
ÛF (t, t0) = F (t)B̂(t− t0)ÛF (t, t0) , (6.7)

with initial condition ÛF (t0, t0) = 1̂, where 1̂ is a unitary operator. In Eq. (6.7),

B̂(t) ≡ Û †0(t, t0)B̂Û0(t, t0) , (6.8)

is the time evolution of the operator B̂ in the Heisenberg picture, and coincides with the
latter only at t = 0. Now, expanding ÛF (t, t0) to first order in F (t) as

ÛF (t, t0) ≈ 1 + F (t)ÛF,1(t, t0) +O[F 2] , (6.9)

and combining with Eq. (6.7), yields

ÛF,1(t, t0) ≈ − i
h̄

∫ t

t0

B̂(t′ − t0)F (t′)dt′ +O[F 2]. (6.10)

Therefore, the total time-evolution operator to first order in F , obtained from Eqs. (6.10)
and (6.6), is defined by

Û(t, t0) ≈ Û0(t, t0)

[
1̂− i

h̄

∫ t

t0

B̂(t′ − t0)F (t′)dt′
]
, (6.11)
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It is important to mention that Eq. (6.11) is one of the most important results of the
linear response theory.

Now, let us consider a second observable Â with a average equilibrium value for t ≤ t0

defined as 〈
Â
〉

0
=
∑
n

Pn

〈
ψn(t0)

∣∣∣Â∣∣∣ψn(t0)
〉
. (6.12)

The goal here is to use the expression defined in Eq. (6.11) to calculate the expectation
value of the second observable Â at times later than t0 and under the influence of a
perturbation. This quantity is formally defined as [16]〈

Â
〉
F

(t) =
∑
n

Pn

〈
ψn(t)

∣∣∣Â∣∣∣ψn(t)
〉
. (6.13)

Thus, starting from〈
ψn(t)

∣∣∣Â∣∣∣ψn(t)
〉

=
〈
ψn(t0)

∣∣∣Û †0(t, t0)ÂÛ0(t, t0)
∣∣∣ψn(t0)

〉
+
i

h̄

∫ t

t0

dt′F †(t′)
〈
ψn(t0)

∣∣∣B̂†(t′ − t0)Â0(t− t0)
∣∣∣ψn(t0)

〉
− i

h̄

∫ t

t0

dt′F (t′)
〈
ψn(t0)

∣∣∣Â(t− t0)B̂(t′ − t0)
∣∣∣ψn(t0)

〉
,

(6.14)

we obtain: 〈
Â
〉
F

(t)−
〈
Â
〉

0
= − i

h̄

∫ t

t0

dt′
〈[
Â(t), B̂(t′)

]〉
0
F (t′) . (6.15)

In Eq. (6.15), both operators ˆA(t) and B̂(t′) are calculated via Eq. (6.8), [Â, B̂] is the
commutator of two operators Â and B̂, and 〈· · ·〉0 denotes the ensemble average of the
thermal equilibrium defined as defined by Eq. (6.12). On the other hand, the left hand
side of Eq. (6.15) represents exactly what we were looking for: a measure of the deviation
from the unperturbed result due to the external perturbation. Therefore, defining for
convenience

〈
Â
〉

1
(t) ≡

〈
Â
〉
F

(t)−
〈
Â
〉

0
, Eq. (6.15) becomes〈

Â
〉

1
(t) =

∫ ∞
0

χAB(τ)F (t− τ)dτ , (6.16)

where τ ≡ t− t′ > 0, and χAB(τ) is the retarded linear response function given by

χAB(τ) ≡ − i
h̄

Θ(τ)
〈[
Â(τ), B̂

]〉
0
. (6.17)

In Eq. (6.17), Θ(τ) vanishes for τ < 0 and equals 1 for τ > 0. Also, it was assumed
that the perturbing field approaches to zero as t → −∞ in order to replace the upper
boundary of the integral in Eq. (6.16). In other words, for t → −∞ the system can be
assumed to have been in the unperturbed equilibrium.

In summary, χAB(τ), Eq. (6.17), describes the response an observable Â at time t to
an external force (impulse) that coupled to the observable B̂ at an earlier time (t − τ).
χAB(τ) is called retarded, or causal, response function because it describes the after-effect
of a perturbation.
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6.1.1 Response function of a non-interacting electron liquid

As a previous step to calculate the graphene response function, the understanding
of the response of the non-interacting electron liquid is essential, since provide useful
expressions for the response associated with the single-particle operators. In fact, as
discussed in the next chapter, the response of an interacting system can be obtained as
the response of the unperturbed system to an effective self-consistent field. This is one of
the most useful tools of many-body physics.

Let us start by defining two operators such that1

Â =
∑
αβ

Aαβâ
†
αâβ, (6.18)

B̂ =
∑
αβ

Bγβâ
†
αâβ , (6.19)

where â†α are the creation operators of one-electron states that diagonalize the independent
electron Hamiltonian

Ĥ0 =
∑
α

εαâ
†
αâα , (6.20)

and εα are their energies.
Now, the problem is to calculate the time-dependence of the expectation value of Â

due to a perturbation that couples linearly to B̂, i.e, for a the time-dependent Hamiltonian
of the form

Ĥ0F (t) = Ĥ0 + F (t) B̂. (6.21)

Here, the time-dependence of the expectation value of Â due to a perturbation that couples
linearly to B̂ corresponds, in fact, to the response function, represented by χ(0)

AB(τ), where
the superscript (0) represents the fact that interactions are turned off and, therefore, it is
the non-interaction response function. It is also important to note that, due to the form of
Ĥ0, the time-dependence of the operators âα and â†α, under the unperturbed Hamiltonian,
is equivalent to a multiplication by a phase factor, such that

âα (t) ≡ e
i
h̄
Ĥ0tâαe

− i
h̄
Ĥ0t = e−

i
h̄
εαtâα,

â†α (t) ≡ e
i
h̄
Ĥ0tâ†αe

− i
h̄
Ĥ0t = e

i
h̄
εαtâ†α. (6.22)

Using these results, and replacing Eqs. (6.18) and (6.19) into Eq. (6.17), one finds

χ
(0)
AB(τ) = − i

h̄
Θ (τ)

∑
αβγδ

AαβBγδe
−i(εα−εβ)t/h̄ 〈[â†αâβ, â†γ âδ]〉0

. (6.23)

Applying the Fermionic commutation relations2 to the commutator
[
â†αâβ, â

†
γ âδ
]
in Eq. (6.23),

yields: [
â†αâβ, â

†
γ âδ
]

0
= â†αâβâ

†
γ âδ − â†γ âδâ†αâβ, (6.24)

1Âαβ and B̂αβ are the matrix elements of the single particle operators Â and B̂, e.g 〈i, α|A |i, β〉.
2Where

[
â†i , â

†
j

]
= 0, [âi, âj ] = 0 and

[
âi, â

†
j

]
= δij
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[
â†αâβ, â

†
γ âδ
]

0
= δβγ â

†
αâδ − δαδâ†γ âβ . (6.25)

Thus, replacing Eq. (6.25) in Eq. (6.23) and using the number operator n̂α = âαâ
†
α, the

non-interacting response becomes

χ
(0)
AB(τ) = − i

h̄
Θ (τ)

∑
αβ

AαβBβαe
−i(εα−εβ)t/h̄ (nα − nβ) . (6.26)

Finally, taking the Fourier transform of this expression with respect to time, as

χ
(0)
AB(ω) = lim

η→0+

∫ ∞
−∞

dτχ
(0)
AB(τ)ei(ω+iη)τ , (6.27)

and since the external perturbation is normally periodic in time with angular frequency
ω, such as Fe−iωt, for example, we have that

χ
(0)
AB(ω) = lim

η→0+

∑
αβ

(nα − nβ)

h̄ω + εα − εβ + ih̄η
AαβBβα . (6.28)

6.1.2 Graphene Density-density response function

Following the same line of reasoning developed in the previous subsection, the graphene
density-density response is now calculated. To do so, the field operator ĉ†λk (ĉλk) is
introduced as the creation (annihilation) operators in state α, and the non-interacting
Hamiltonian (6.20) is rewritten as [245]

Ĥ0 =
∑
λk

ελkĉ
†
λkĉλk , (6.29)

where ελk is the graphene energy dispersion defined in Eq. (3.21). The Hamiltonian that
describes the electron-electron interaction is given by [245]

Ĥe−e =
1

2

∑
q

vqn̂qn̂−q , (6.30)

where the density operator is defined as [245]

n̂q =
∑
k,λ,λ′

= Dλλ′(k − q/2,k + q/2, λ)ĉ†k−q/2ĉk−q/2,λ′ . (6.31)

In Eq. (6.31), vq is the 2D Fourier transform of the Coulomb interaction and Dλλ′ , known
as density vertex [245], comes from the evaluation of the density operator in the single-
particle states, defined by [246–248]

Dλλ′(k,k′) = 〈Ψλ,k|Ψλ′k′〉 =
1 + λλ′ei(φk′−φk)

2
. (6.32)

Note that Eq. (6.32) is exactly the projection of the non-interacting eigenstates 〈Ψλ,k|Ψλ′k′〉
and, at the low energy limit around the Dirac points, φk reduces to the angle between the
vector k and the x-axis [245, 246].
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Now, the density-density response function of graphene can be calculated as [245, 246]

χ(0)
nn(q, ω) =

1

L2
χ(0)
nqn−q(ω) =

1

L2

∑
λk,λ′k′

nλk − nλ′k′
h̄ω + ελk − ελ′k+q + ih̄η

∣∣(nq)λk,λ′k′∣∣2 , (6.33)

χ(0)
nn(q, ω) =

1

L2

∑
λλ′k

|Dλλ′(k,k + q)|2 nλk − nλ′k′
h̄ω + ελk − ελ′k+q + ih̄η

. (6.34)

Since electrons and holes are need to be included, the occupation probability nλk is given
by the Fermi Dirac distribution function [246]

nλk ≡ fD(ελk, ν, T ) =
1

1 + exp
(
ελk−µ
kBT

) , (6.35)

with µ being the chemical potential. In addition, due to the chirality3, yields [246]

|Dλλ′(k,k + q)|2 =
1 + λλ′cos(φk − φk+q)

2
. (6.36)

Finally, to write a general expression to the Density-density response function of
graphene, the spin and valley degeneracy factor, up to this point ignored, need to be
included. To do so, the variables gs = 2 and gv = 2, that represent the spin and valley
degeneracy factors, respectively, are introduced in Eq. (6.34) resulting in [17, 246, 250,
251]:

χ(0)
nn(q, ω) =

gsgv
L2

∑
λλ′k

|Dλλ′(k,k + q)|2 nλk − nλ′k′
h̄ω + ελk − ελ′k+q + ih̄η

. (6.37)

For graphene gs, gv = 4 [250, 251]. Note that, if the energy ελk is given by the linear
approximation described by Eq. (3.21), Eq. (6.37), correspond to the Density-density
response function of graphene in the continuum limit.

6.1.2.1 Density response function of doped graphene at zero Kelvin

For completeness, the density-density response function of a doped4 graphene at zero
Kevin (T = 0) is presented here. A complete description, step-by-step, of how this
expression can be obtained is carefully presented in Refs. [17, 246, 250, 251].

The key point to take T = 0 is to consider that in this case, Fermi distributions,
Eq. (6.35), reduce to step functions nλk = Θ(EF − λh̄vFk). Here EF is the Fermi energy
level and Θ(· · ·) is the Heaviside step function. Thus, taking

∑
k →

∫
d2k, Eq. (6.37)

yields5 [246, 251]:

χ(0)
nn(q, ω) = χ+(q, ω) + χ−(q, ω)− χ−Λ(q, ω) , (6.38)

3The direction along which an electron propagates and the amplitude of its wave function are not
independent. Therefore, the electrons are said to possess the property of chirality [249].

4See Ref. [251] for more details.
5For simplicity, the subscript nn and the superscript (0) were omitted on the right side of Eq. (6.38).
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where

χ±ξ (q, ω) =
gsgv
(2π)2

∫
k≤ξ

d2k
∑
α=±1

α|Dλλ′(k,k + q)|2

h̄ω + α(εk ∓ εk+q + ih̄η
. (6.39)

The superscript sign +(−) in Eq. (6.38) correspond to the intra(inter)-band transitions,
discussed detailed as a following, ξ is a general upper limit and the energy is defined as
εk ≡ ε+k.

By introducing the dimensionless quantities k̄ = k/kF , q̄ = q/kF and ω̄ = h̄ω/EF ,
where the Fermi wave vector is now given by kF = EF/h̄vf , Eq. (6.39) becomes [17, 250,
251]

χ±ξ (q, ω) =
D(EF )

2π

∫
k≤ξ

d2k̄
∑
α=±1

α
∣∣Dλλ′(k̄, k̄ + q)

∣∣2
h̄ω + α

(
k̄ ∓

∣∣k̄ + q̄
∣∣)+ iη̄

. (6.40)

where D(EF ) is the graphene DOS at Fermi energy.
After some lengthy algebra6 to calculate Eq. (6.40) for all terms of Eq. (6.38), the full

solution of χ(0)
nn(q, ω) = Re[χ

(0)
nn(q, ω)] + Im[χ

(0)
nn(q, ω)] is obtained as [246, 250, 251]:

Re[χ(0)
nn(q, ω)] = −D(EF ) + f(q, ω)


π , in region 1A

−G>(2−ω̄
q̄

) +G>(2+ω̄
q̄

) , in region 1B
−G<( ω̄−2

q̄
) , in region 2A ,

G>(2+ω̄
q̄

) , in region 2B

(6.41)

and

Im[χ(0)
nn(q, ω)] = −D(EF ) + f(q, ω)


G>(2−ω̄

q̄
)−G>(2+ω̄

q̄
) , in region 1A

π , in region 1B
−G>(2+ω̄

q̄
) , in region 2A ,

−G<(2+ω̄
q̄

) , in region 2B

(6.42)

where
f(q, ω) =

D(EF )

8

q̄2√
|ω̄2 − q̄2|

, (6.43)

G>(x) = x
√
x2 − 1− arcosh(x) , (6.44)

G>(x) = x
√

1− x2 − arcos(x) , (6.45)

for x > 1 and |x| < 1 in Eqs.(6.44) and (6.45), respectively.
The domains of Eqs. (6.41) and (6.42) are depicted in Fig. 6.1, while their respec-

tive color map plots are presented in Fig. 6.2. Regions 1A, 2A and 2B are the Landau
damping, sometimes also denominated as electron-hole continuum. Long-lived plasmons
only reside in region 1B, due to the fact that outside this region the Im[χ

(0)
nn(q, ω)] 6= 0,

see Fig. 6.2(a), which yields absorption. To be more precise, when the electrons in the
graphene are moving slower than the electromagnetic wave (as explained in the next sec-
tion, this specific wave is defined as a graphene plasmon), they remove energy from the

6See Refs. [246, 250, 251] for a step-by-step solution.
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Figure 6.1: Regions in the (q, ω) plane of the non-interacting Density-density response
function of graphene χ

(0)
nn(q, ω) defined by Eqs. (6.41) and (6.42). Regions 1A, 2A

and 2B are the Landau damping, pictorially illustrated by the inset, while in 1B the
Im[χ

(0)
nn(q, ω)] = 0, see Fig 6.2, allowing long-lived graphene plasmon. The figure is

adapted from Ref. [17]

Figure 6.2: (Left) Imaginary and (right) real parts of the non-interacting density-density
response function of graphene χ

(0)
nn(q, ω) in the (q, ω) plane. The scale in panel left

(right) are in units of Im[χ
(0)
nn(q, ω)/D(EF )] (Re[χ

(0)
nn(q, ω)/D(EF )]). The inter- and intra-

band regions are defined in both panels delimitated by a white dashed lines. Note that
the Im[χ

(0)
nn ], left panel, is always negative, since is a retarded function. Adapted from

Ref. [246]

wave. Mathematically, the condition for this is vp = h̄ω/q ≤ vF , where vp is the phase
velocity. Since the regions 1A and 2A are on the right of the line h̄ω = h̄qvF , these regions
are where the Landau damping can take place. On the other hand, in region 2B, this
electromagnetic wave in graphene can lose energy by creating electron-hole pairs, due to
its large momenta when compared to those from the free radiation, and, then, participate
in indirect interband electron-hole transitions [17].
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6.2 Graphene plasmonic

In general, plasmons are collective electron excitation [16, 18]. Although the focus of
the next two chapters are plasmons in graphene, plasmons were first studied in metallic
surfaces, where the collective oscillations of the free electron liquid oscillate in resonance
with an external electromagnetic field. From a classical point of view, for a 2D system, the
plasmons response can be qualitatively described by a time-dependent density profile [16,
246]:

n(r, t) = n0 + n1(r, t) , (6.46)

where n0 is uniform and time-independent, representing the unperturbed electron con-
centration, while n1(r, t) is the density disturbance. Similar to other physical restoring
forces, after excited by an electromagnetic wave, the forces that acting on the electron
liquid will try to restore the equilibrium, due to an attempt to screen the external per-
turbation. Thus, the subsequent restoring of the electric field, induced by the density
distribution before vanished completely, corresponds to a quantum of plasma oscillation.

Considering that the electron oscillations are sufficiently slow for the system to re-
main in thermodynamic equilibrium for any time t, i.e for n1(r, t) � n, we can use the
long-wavelength limit q � kF to obtain the plasmon dispersion on the grounds of hydro-
dynamics. Within this theory, the electron liquid is described by the density disturbance
n1(r, t) and the associated induced current j1(r, t). If the relation between n1(r, t) and
n0 is satisfied as n1(r, t)/n0 � 1, these relations can be linearised and are related to each
other through the continuity equation [246]

∂

∂t
[n1 (r, t)] +∇ · j1(r, t) = 0 , (6.47)

and the Euler equation of motion

∂

∂t
[j1 (r, t)] = − D

πe2
∇
(∫

dr′
e2

ε |r − r′|
n1 (r′, t)

)
, (6.48)

Here, ε is the dielectric response of the environment, D is the Drude weight, which deter-
mines the relation between the induced current density and the restoring force, and −e is
the electron charge.

After some algebra, namelly taking the divergence, using the continuity equation, and
Fourier transforming both sides of Eq. (6.48) with respect to r and t, we obtain [16](

ω2 − D
πe2

q2vq

)
n1 (q, ω) = 0, (6.49)

where vq = πe2/(εq) is the 2D Fourier transform of the Coulomb interaction. Therefore,
as a consequence of Eq. (6.49), we can conclude that is possible to excite a density wave
with frequency (or dispersion) given by:

ωpl (q) =

√
2D
ε
q . (6.50)
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As expected, since graphene is a 2D material, the graphene plasmon (also known as Dirac
plasmon) frequency presents a ωpl ∝

√
q scaling, similar to other 2D electron systems [16].

Also, from Eq. (6.50), we notice that the plasmons vanish when q → 0, and this regime
is called long-wavelength.

6.2.1 The random phase approximation

As final step to present the basic tools to study plasmons in graphene, all we need
now is to include the electron-electron interactions. To do so, we will use the random
phase approximation (RPA), originally introduced by Gell-Mann and Brückner [252] and
by Bohm and Pines [253], both in 1957.

For an interacting electron liquid under n external potential perturbation Vext(r, ω),
the screened potential, due to the electron redistribution, is then given by [16, 246]

Vsc (r, ω) = Vext (r, ω) + Vind (r, ω) , (6.51)

where the electrostatic field Vind (r, ω), defined as

Vind (r, ω) =

∫
dr′

e2

ε |r − r′|
n1 (r′, ω) , (6.52)

is created by the induced density n1(r, t). This potential is exactly the same that appeared
on the right side of Eq. (6.48). According to the RPA, the electron liquid responds to the
screened potential as if it was a non-interacting liquid, that is [246]

n1 (r, ω) =

∫
χ(0)
nn(r, r′, ω)Vsc (r, ω) , (6.53)

But, on the other hand, the density perturbation, that created the induced potential
initially, responds to the external potential as

n1 (r, ω) =

∫
χRPAnn (r, r′, ω)Vext (r, ω) . (6.54)

Taking a Fourier transform of Eqs. (6.53) and (6.54), we can relate the response functions,
for a homogeneous electron liquid case, as

χ(0)
nn(q, ω)

[
1 + vqχ

RPA
nn (q, ω)

]
= χRPAnn (q, ω). (6.55)

That immediately results in the RPA Density-density response function

χRPAnn (q, ω) =
χ

(0)
nn

εRPA(q, ω)
=

χ
(0)
nn(q, ω)

1− vqχ(0)
nn(q, ω)

, (6.56)

where
εRPA(q, ω) = 1− vqχ(0)

nn(q, ω) (6.57)

is the dynamical RPA dielectric function. Note that both Eqs. (6.56) and (6.57) can be ob-
tained through the non-interacting response function χ(0)

nn(q, ω). From Eq. (6.57), we can
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see that the Dirac plasmons can be obtained by solving this equation, which corresponds
to the zeroes of the total system’s dielectric function εRPA(q, ω) [16–18, 250, 251, 254,
255]. Reference [246] demonstrate how the 2D Fourier transform of the Coulomb interac-
tion vq, present in Eq. (6.57), can be calculated for a monolayer graphene encapsulated
by two different dielectric medium.

6.2.1.1 Non-retarded regime

It is possible to calculate the plasmons dispersion analytically through the non-retarded
regime (or long-wavelength limit) defined for h̄vfq < h̄ω � EF [16–18, 246, 250, 251, 254,
255]. This region of interest, i.e for q → 0, is located in the region 1B of Fig. 6.1.
Thus, using the 1B expressions for the response function χ(0)

nn(q, ω), defined in Eq. (6.38),
and expanding up to first order (see Ref. [246] for more details), we obtain the plasmon
dispersion in the non-retarded regime as [17, 246, 250, 251]:

h̄ωpl ≈
√
h̄gsgvαeevFEF

2
q =

√
2e2EF
εenv

q , (6.58)

with a typical ω(0)
pl ∝

√
q scaling. This same dependence is present in Eq. (6.50). In terms

of the Fermi energy, Eq. (6.50) is also proportional to
√
EF . Since EF = h̄vF

√
4πnc/NF ,

then the graphene plasmon frequency, in the non-retarded regime, depends on the elec-
tronic density as h̄ωpl ∝ n

1/4
c . It is important to mention that while plasmon dispersion

ωpl ∝
√
q is intrinsically inherent to all 2D systems, the dependence of the frequency as

ω
(0)
pl ∝ n

1/4
c is exclusive of graphene as a consequence of the quantum relativistic nature

of graphene monolayer [17, 246, 251]. In Eq. (6.58), αee = e2/(εenvh̄vF ) is the graphene
fine-structure constant, while εenv is the effective dynamical background dielectric func-
tion.



7
Probing the structure and composition of vdWhs

using the nonlocality of Dirac plasmons in the

terahertz regime

Dirac plasmons in graphene are very sensitive to the dielectric properties of the en-
vironment making it possible to be used to probe the structure and composition of van
der Waals heterostructures (vdWh) put underneath a single graphene layer. In order to
do so, we investigated vdWh composed of hexagonal boron nitride and different types of
transition metal dichalcogenides (TMDs).

Thus, in this chapter, by performing realistic simulations that account for the contri-
bution of each layer of the vdWh separately and including the importance of the substrate
phonons, it is shown that one can achieve single-layer resolution by investigating the non-
local nature of the Dirac plasmon-polaritons. The composition of the vdWh stack can be
inferred from the plasmon-phonon coupling once it is composed by more than two TMD
layers. Furthermore, it is shown that the bulk character of TMD stacks for plasmonic
screening properties in the terahertz regime is reached only beyond 100 layers.

The study Probing the structure and composition of vdWhs using the nonlocality of
Dirac plasmons in the terahertz regime, developed in this chapter, was published in 2D
Materials, 8 015014 (2020).

7.1 Motivation

Graphene [8] and other two-dimensional (2D) materials, such as the transition metal
dichalcogenides [107, 147] (TMDs), have been intensively investigated due to their unique
opto-electronic properties [20, 145, 146, 158–165], as discussed in sections 2.4 and 2.6.
The optical response of each material is different due to, e.g., the presence or absence of
band gaps [152, 154], the specific type of the electronic structure, and is also influenced
by the intrinsic mobility of the electrons themselves [203]. The latter is especially impor-
tant for graphene because it is responsible for the manifestation of so-called plasmons,
collective excitations of the 2D electron liquid [16, 18]. It has been shown that graphene

https://iopscience.iop.org/article/10.1088/2053-1583/abbecc/meta
https://iopscience.iop.org/article/10.1088/2053-1583/abbecc/meta
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Figure 7.1: (Color online) (a) Schematic illustration of the Dirac plasmon wave in van
der Waals heterostructures (vdWh) composed by a monolayer graphene (G) on N-MX2

(M=W,Mo and X=S,Se) and a substrate (SiO2). The graphene surface plasmon-phonon
polariton wavelength is λ. Note that the monolayer graphene covers the entire sample. (b)
Illustration of the phonon-polariton vibration in a vdWh composed of G/3-MX2/SiO2. Its
hybridization with Dirac plasmon originates from the hybridized surface plasmons (SP3).
(c) and (d) illustrate the method presented in here. λ changes when (c) the number of
layers in the same material changes, or (d) due to change of materials. λ is larger (smaller)
when the screening is stronger (weaker). The situation shown in panel (d) occurs for a
specific Fermi level and frequency if the phonon frequencies in both materials are different.

plasmons, also called Dirac plasmons, referring to the single-particle energy spectrum of
graphene [256], can be supported at mid infra-red [83, 159, 257] to terahertz (THz) fre-
quencies [159, 163, 258, 259] and show strong electromagnetic field confinement [17, 256].
TMDs, on the other hand, due to their large band gap [152, 153], behave as dielectrics at
low frequencies, thus not supporting plasmons if not extrinsically doped [260].

These 2D materials can be combined in so-called van der Waals heterostructures
(vdWh) [146]. Such structures can be made by stacking different layers on top of each
other [145–147, 158, 162, 165, 175] or even next to each other forming so-called lateral
heterostructures [147, 172–177]. A large corpus of literature has been devoted to the
investigation of fabrication techniques to create these nanostructures [107, 145–147, 157,
158, 171–177]. It has been shown that different opto-electronic properties of the com-
ponents making up the heterostructure are merged and that by carefully selecting the
different constituents, one could achieve materials that are tailor-made to bolster specific
behaviour [157, 171]. Conversely, this means that one could also investigate the opto-
electronic response of certain vdWhs to assess their composition and atomic structure.
In this study, are investigate Dirac plasmon states for specific types of vdWh stacks con-
sisting of layers of hexagonal boron nitride (hBN) and different MX2 types of TMDs,
composed by a metal (M = Mo or W) layer surrounded by two layers of a chalcogen (X =
S2 or Se2), topped by a single graphene layer, as illustrated in Fig. 7.1(a). Specifically, is
investigate the way in which Dirac plasmons in the graphene layer are affected by the con-
stituents of the remainder of the heterostructure and propose a method to infer its local
layer number and composition based on local plasmonic properties. Notice that by inves-
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tigating the effect on Dirac plasmons, the spectral region of investigation is narrow down
to the THz to the far-infrared regime. Consequently, other kinds of collective effects, such
as excitons, trions or biexcitons, for which traditionally TMDs are well-studied and that
have excitation energies of more than 1 eV [261], will not be affecting the spectral range
discussed in this study. Also, is considered doping only in the graphene layer. This means
that there are no free electrons in the hBN and TMD layers and, therefore, the plasmonic
response can only come from graphene’s Dirac plasmons. Consequently, properties such
as carrier mobility of the TMD layers are not affecting the obtained results.

Dirac plasmons in graphene arise as collective excitations of the electronic liquid in the
2D material because of electron-electron Coulomb interaction acting as a restoring force for
deformations in the otherwise homogeneous electron density [16–18, 159, 160, 256]. While
the electrons themselves are confined to the 2D material, the electromagnetic field lines
associated with the Coulomb force, propagate through the surroundings, and as such are
very sensitive to its composition, i.e dielectric properties. Indeed, as shown in Fig. 7.1(b),
the electromagnetic field is screened due to a polarization of the dielectric environment
which effectively slows down plasmon propagation. This combined excitation, i.e. a
Dirac plasmon with the surrounding polarization cloud, is often called a surface plasmon-
polariton (SP2) [262]. However, if the plasmon frequency and wavevector match those
of intrinsic phonons in the dielectric environment, both modes can hybridize, yielding a
combined surface plasmon-phonon-polariton mode (SP3) [256, 263–265].

The Dirac plasmon modes, coupled to the underlying heterostructure, can be measured
by making use of the well-known scatter-type scanning near-field optical microscope (s-
SNOM) [259, 266, 267] as shown schematically in Fig. 7.1(a). This allows to measure
the plasmonic wavelength, with a typical resolution of the order of 20 nm [20, 21, 265–
270], using interference fringes formed with the plasmon modes scattering of the edge
of the heterostructure or at lateral defects in the system. Upon investigation of the
dependency of the plasmon wavelength on the tunable graphene carrier concentration,
this technique allows to use plasmonic excitations as near-field probes of the material’s
properties underneath the graphene sheet. In Figs. 7.1(c) and (d), is illustrated how this
can be used to measure locally the layer structure and composition of the heterostructure.

In this chapter, is applied the above-mentioned method to study the dependency of
SP2 and SP3 modes on the number and type of layers underneath the graphene sheet. We
consider on the one hand hexagonal boron nitride (hBN) and on the other hand four types
of TMDs (WS2, WSe2, MoS2 and MoSe2). By using realistic simulations that combine the
random phase approximation (RPA) and density functional theory (DFT) calculations,
in combination with the quantum electrostatic heterostructure model (QEH) [271], it is
able possible to investigate the way in which plasmon properties depend on the number
of heterostructure layers and the chemical composition of these heterostructures. Fur-
thermore, the use of QEH also allows to properly account for substrate induced effects
such as surface phonons that can interfere with the plasmons as well [272]. We provide
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a realistic evaluation of the way in which different numbers of layers of the heterostruc-
ture screens the electromagnetic field of the plasmon modes and, as such, decreases its
wavelength. Also, the QEH allows to assess SP3 modes, which are characteristic of the
chemical composition of the TMDs. In this way, one can achieve a layer sensitivity of a
single layer and differentiate between different TMDs for heterostructures thicker than 2
layers.

7.2 Theory of the dielectric response of heterostruc-
tures

Dirac plasmons are resonances of the free electron liquid in graphene (for more details,
see section 6.2). These modes can be obtained by solving the plasmon equation which
corresponds to the zeroes of the total system’s dielectric function ε(q, ω) [16, 18, 250, 251,
254, 255]

ε(q, ω) = 1− v (q, ω) χ̃nn(q, ω) = 0 . (7.1)

In Eq. (7.1), χ̃nn(q, ω) is the proper density-density response function [16] and v (q, ω)

is the Fourier transform of the Coulomb interaction between the Dirac electrons. In
general, both factors depend on the properties of the system as a whole. However, in
this is study, we approximate the former by the non-interacting density-density response
function χ0(q, ω) is considered, which corresponds to the RPA1. This only depends on
the properties of graphene. The latter, however, describes electromagnetic field lines
that mainly propagate through the surrounding of the graphene sheet, and are, therefore,
strongly affected by them. In general, the 2D Fourier transform of the Coulomb interaction
is given by

v (q, ω) =
2πe2

qε̄ (ω)
. (7.2)

Equation (7.2) makes the role of the heterostructure very clear. Indeed, it is the screening
of the Coulomb interaction introduced by the dynamical background dielectric function
ε̄(ω) that encodes the presence of the environment. In order to exemplify how the back-
ground dielectrics are affecting the Dirac plasmons, one can calculate the dispersion in
the long-wavelength limit and obtain [17, 250, 251]

λ(ω; ε̄, EF) =
2π

q(ω; ε̄, EF)
=
παeeNfvF

h̄ω2

EF

ε̄(ω)
. (7.3)

In Eq. (7.3), αee = 2.2, Nf = 4 and vF = 106 m/s are parameters related to the
graphene sheet corresponding to the graphene fine structure constant, the number of
fermion flavours and the Fermi velocity, respectively [203]. EF is the Fermi level of
graphene. Eq. (7.3) exemplifies how an increase in the average dielectric constant of the
environment decreases the overall plasmon wavelength. As such, since hBN and TMDs

1The subscript nn, as in Eq. (6.57), was omitted.
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all have a larger dielectric screening constant than vacuum, adding more layers to the
system should, in general, decrease the wavelength of the collective excitation yielding a
screened SP2. However, the environmental dielectric function ε̄(ω) can have a non-trivial
dynamical dependency on ω. This strongly affects the plasmonic wavelength when ω is
close to the frequency of collective lattice vibrations of the environment, such as phonons,
which gives rise to the hybrid collective modes SP3.

In this study, we consider set-ups as schematically depicted in Figs. 7.1(a) and (b), i.e.
a system consisting of a substrate, N layers of dielectric such as hBN or MX2, and topped
with a layer of graphene. We shall denote them as G/N-dielectric/sub. Considering the
substrate, we choose to always compare SiO2. One may also consider other substrates,
such as SiC [273], HfO2 and Al2O3 [274]. Our choice for SiO2 as a substrate is motivated
as follows: (i) it is widely used in graphene-based plasmon experiments [20, 21, 145, 158,
160, 162, 163, 259, 263, 265, 268–270, 275]; (ii) considering a different substrate, will
affect the observed results only in a quantitative way. We do, however, take into account
substrate specific effects such as substrate phonons, which will naturally be different for
other substrates, but the qualitative result and accuracy of the method will not be affected
by this. Both the substrate, as well as the N-layer dielectric, can induce non-trivialities
in the environmental dielectric function. In the following, we lay down how to account
for both of them.

7.2.1 Coupling to substrate phonons

An important non-trivial inclusion of substrate effects are surface phonons (see Ref. [17]
for more details). In order to account for them, the most straightforward manner is by
considering a frequency-dependent dielectric function of the form [17, 263]

εsub (ω) = ε∞‖ +
M∑
n=1

fnω
2
TO,n

ω2
TO,n − ω2 − iωγTO,n

. (7.4)

In Eq. (7.4), ε∞‖ is the in-plane high-frequency dielectric constant,M represent the number
of surface transverse optical (TO) phonon modes, and ωTO,n and γTO,n are respectively the
frequency and damping of the n-th TO surface phonon mode, weighted by fn. To find the
exact plasmon-phonon dispersion, and subsequent the wavelength defined in Eq. (7.3),
it suffices to solve the plasmon equation shown in Eq. (7.1), where in the absence of
a dielectric in-between the substrate and the graphene, ε̄(ω) = (ε0 + εsub(ω))/2. Note
that plasmon, phonon and their hybrid modes also correspond to the maxima of the loss
function L(q, ω), which is defined as

L(q, ω) = −Im

[
1

ε(q, ω)

]
. (7.5)

In the following section, we will include the role of the intermediate dielectric through
the use of the QEH model. As it accounts for each layer separately, the output of this
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model is a loss function. Finally, notice that the γTO,n coefficients are determined by
extrinsic factors, such as impurities [276] and defects [277] in-between the substrate and
the heterostructure. They will result in a spectral broadening of the surface phonons.
Since their magnitude depends on the specific set-up [263], in this study we will not
include them[272].

7.2.2 Quantum electrostatic heterostructure model

The quantum electrostatic heterostructure (QEH) [271] model is used to calculate the
non-local dynamical response of the considered vdWh. The model is especially suited for
the current investigation because it calculates the dielectric properties of stacks of layers
through a bottom-up approach in which the impact of each layer is treated separately.

More recently, the QEH model received an implementation for doped graphene layers
in the low energy regime [272, 278]. This regime requires a much more dense grid of
k-points to correctly describe its properties, which is achieved by the use of an analytical
solution for the density response function. The combination of analytical solutions for
the response function and DFT2 calculated induced densities enables more accurate and
fast calculations with graphene layers.

The QEH uses the density-density response function of the i-th layer χi
(
z, z′,q‖, ω

)
individually, that was previously obtained through ab-initio calculations. Notice that in
this case the vertical spatial dimension z is retained. Subsequently, the total response
function of the heterostructure is built by coupling each single layer together by the long-
range Coulomb interaction by solving a Dyson-like equation. Omitting the q‖ and ω

variables for simplicity, the Dyson equation of the total density-density response function
of the complete vdWh reads [271]

χiα,jβ = χiαδiα,jβ + χiα
∑
k 6=i,γ

Viα,kγχkγ,jβ , (7.6)

where the Coulomb matrices are defined as

Viα,kγ
(
q‖
)

=

∫
ρiα
(
z,q‖

)
Φkγ

(
z,q‖

)
dz , (7.7)

and Φkγ

(
z,q‖

)
is the potential created by the density profile, ρkγ

(
z,q‖

)
. In Eq. (7.6),

α = 0, 1 represents the monopole and dipole components, respectively.
Through this formalism, one obtains the inverse dielectric function of the vdWh as

ε−1
iα,jβ

(
q‖, ω

)
= δiα,jβ +

∑
kγ

Viα,jβ
(
q‖
)
χkγ,jβ

(
q‖, ω

)
. (7.8)

Notice that in contrast to the dielectric function presented in Eq. (7.1), here we obtain a
tensorial form. Consequently, the loss function can be found through

L
(
q‖, ω

)
= −Im

[
Tr
(
ε−1
(
q‖, ω

))]
. (7.9)

2More precisely, the QEH uses the DFT-PBE (Perdew–Burke-Ernzerhof) method [272].
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Collective modes can now be found as the maxima of this loss function.
Finally, notice that the QEH model also allows to account for intrinsic phonons in

the constituent layers. It manages to do so by adding the phonon contribution to the
dielectric response function of the individual layers through the calculation of the lattice
polarizability, αlat

ij (ω), in the optical limit [272]. This calculation can be considered pa-
rameter free, because it is mainly derived from the Born effective charges of the isolated
layers [279, 280]. The Born effective charges are defined as tensors that give the propor-
tionality between the variation of the polarization density due to an atomic displacement
and are obtained by the discretized derivative of the 2D polarization density, that follows
the Berry phase formalism, in the finite difference method [272, 279, 280]. Thus, consider-
ing the contributions of electrons and phonons, the total monopole and dipole component
of i-th layer are defined as

χtotal
i0

(
q‖, ω

)
= χel

i0

(
q‖, ω

)
− q2

‖α
lat
‖ (ω) (7.10a)

χtotal
i1

(
q‖, ω

)
= χel

i1

(
q‖, ω

)
− αlat

zz (ω) , (7.10b)

where αlat
‖ denotes the 2 × 2 in-plane submatrix of αlat. The total response functions

are then used in Eq. (7.6), from which the consecutive loss function is obtained. (More
details of the QEH model and the way it includes phonons is described in Ref. [272]).

The major advantage of the use of the QEH model is the availability of a vast database
containing the dielectric building blocks of 2D materials3, allowing us to reuse previously
obtained DFT results. This enables the careful analysis of different vdWh systems on a
layer-by-layer basis, without the need to treat the dielectric environment as slabs of bulk
material.

Table 7.1: Phonon parameters of the substrate. Three optical transverse (TO) phonons
were considered for SiO2. The values of TO frequencies (ωTO,n) and their respective
oscillator strength contribution (fn) were extracted from Ref. [263]].

n = 1 n = 2 n = 3

ωTO,n

(meV)
55.58 98.22 139.95

fn 0.7514 0.1503 0.60111

3The dielectric building blocks and QEH software can be downloaded at
https://cmr.fysik.dtu.dk/vdwh/vdwh.html
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7.3 Substrate effects and calibration

Before we discuss the impact of the number of layers and composition of the vdWhs
on the plasmon properties, we first investigate the role of the substrate on which the
total system of vdW coupled layers rest. We assume this substrate to be SiO2, which is
frequently used for this purpose [263, 268, 275, 281]. Furthermore, we use the well-studied
hBN-graphene heterostructure as a means to calibrate the QEH code against two sets of
experimental results [21, 265].

7.3.1 The importance of substrate surface phonons

In order to elucidate the effect of the SiO2 substrate and to calibrate the QEH imple-
mentation of substrate effects, we consider the environmental dielectric function εsub (ω)

as discussed in Sec. 7.2.1 both in the RPA treatment and with the QEH model. Ta-
ble 7.1 contains the values of the frequency ωTO,n and oscillator strength fn of the three
TO surface phonons present in SiO2 [263]. The high-frequency limit of the SiO2 in-plane
dielectric constant is ε∞‖ = 2.4.

In Fig. 7.2(a) we show that RPA and QEH are in excellent agreement by comparing
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Figure 7.2: (Color online) (a) Comparison between the QEH (loss function) and RPA
(symbols) for the SP3 dispersion in graphene with EF = 0.4 eV on SiO2 as a substrate.
Hybridization with the substrate phonons (h̄ωSOi=1,2,3, horizontal gray dashed lines) is
clearly visible. (b) Results at EF = 0.1 eV for G/10-MoS2 on SiO2 with phonons (loss
function) and without phonons (dash-dotted orange lines), as calculated the QEH. The
unhybridized phonon modes, horizontal blue branches in the loss function, have been
omitted for G/10-MoS2 on SiO2 without phonons (dash-dotted orange lines). For refer-
ence, in (a) and (b), the SP2 dispersion without phonons is presented as dashed lines (red
and orange, respectively).
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the loss function of QEH with the exact zeroes of the RPA dielectric function. Here,
we assumed a graphene EF = 0.37 eV on SiO2 with three phonons as indicated by the
horizontal lines. There are three regions where the SP2 hybridizes into SP3 modes due to
the coupling with the surface phonons of the SiO2 substrate. For reference, we represent
in Fig. 7.2(a) the SP2 dispersion for G/SiO2 (dashed red curve) with a static dielectric
constant ε0 = 3.9 [282].

The inclusion of substrate phonons is important in studying plasmon properties of
vdWhs. This is shown in Fig. 7.2(b), where we used the QEH model for a vdWh with
ten layers of MoS2 with and without substrate phonons. This reflects directly on the SP3

dispersion, where in addition to coupling with two of the MoS2 phonons, the plasmons
will also couple with the SiO2 surface phonons. Notice that the influence on the SP3 mode
is not only manifested at the first phonon frequency h̄ωSO1, but results in an up to 27%

decrease in plasmon wavelength at h̄ω = 50 meV, i.e. increase in plasmon wave vector q
even at much lower frequencies.

7.3.2 Calibration of the QEH model for G/N-hBN vdWhs

Using the QEH, we shown in Fig. 7.3(a) the dispersion of SP2 modes for different
values of the Fermi energy EF . In the non-retarded regime, these parabolic curves are
described by the simple equation [17, 250, 251] ω ∼

√
EFq/ε. In Fig. 7.3(b), we show

the QEH loss function in the absence of a doped graphene sheet for a system containing
100 hBN layers, i.e. a slab of about 33.3 nm thick [283]. We see the presence of so-
called hyperbolic phonon polaritons (HP2) that appear in two given energy bands due
to the anisotropy of the hBN dielectric tensor [145, 270]. The two hyperbolic regions,
denominated as Reststrahlen (RS) bands, are defined as energy regions where one of the
coefficients of the dielectric tensor becomes negative. Due to the fact that these modes
are trapped inside the hBN slab, discretization of energy appears.

Upon the addition of a doped graphene sheet, the SP2 modes can hybridize with the
HP2 modes of the hBN material, giving rise to new mixed SP3 and hyperbolic plasmon-
polariton (HP3) modes as presented in Fig. 7.3(c) for G/10-hBN and G/50-hBN with
EF = 400 meV. We point out that due to the hyperbolicity of the HP2 modes, the
wavelength dependence on the number of hBN layers is opposite for the upper branch of
the SP3 modes with respect to the lower branch. This comes as a surprise, since one would
expect that screening for a thicker hBN slab should be more important than for a thinner
one. However, this observation underlines the difference of HP2 modes with respect to
normal phonon polariton modes as presented in the MX2 examples in the next section.
Also, notice that upon comparison of the hBN results with the MoS2 results presented in
Fig. 7.2(b), one can see that in the absence of hyperbolicity, no confined modes appear.

A comparison of the results obtained from the QEH and those obtained experimentally
for the SP3 and HP3(II) modes (the experimental data were extracted from Refs. [21] and
[265], respectively) is illustrated in Figs. 7.3(d)-(e) and shows very good agreement. Fig-
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Figure 7.3: (Color online) (a) Plasmon dispersion of the SP2 in free-standing MLG with
Fermi energies of EF = 100 meV, 200 meV and 400 meV. (b) Calculated dispersion of the
HP2 in 100 h-BN layers. The hyperbolic regions type I and II correspond to the regions
between the two upper and lower grey dashed lines, respectively. (c) Plasmon-phonon
dispersion for MLG with EF = 400 meV on 10, represented by the loss function, and 50
h-BN layers with SiO2 (without phonons) as substrate (G/N-hBN/SiO2), represented by
the orange dashed lines. (d) and (e) are a comparison between the QEH model and exper-
imental results (symbols) [21, 265] for 21-hBN/G/138-hBN and G/75-hBN, respectively.
In panel (e), the RS band II, obtained from the QEH, is delimited by the dashed gray lines
(for comparison, the horizontal gray dashed dotted-dotted lines obtained from Ref [[284]]
using solely first principles calculations is used as reference in (e)). The experimental data
used in (d) and (e) were extracted from Refs. [21] and [265]. A false color map represents
the loss function in arbitrary units.

ure 7.3(d) shows the SP3 dispersion for graphene encapsulated by hBN (21-hBN/G/138-
hBN) and Fig. 7.3(e) presents the results for G/75-hBN. Notice that upon comparison to
the literature, it becomes clear that the exact spectral position of the RS bands is not yet
uniquely determined. In the Appendix, we compare the QEH model to different defini-
tions and show our obtained results for the frequencies that define the two RS in hBN,
as well as the phonon frequencies for a free-standing monolayer of all TMDs considered
in this chapter.

7.4 Probing layer structure and composition

Now, we are in a position to show how one can use SP2 and SP3 modes to probe
the layer structure and the composition of the vdWhs. To do so, we assess the plasmon-
phonon dispersion of four types of TMDs, namely MoS2, MoSe2, WS2 and WSe2. These
materials are often used in the construction of vdWhs [146, 157, 158, 162, 165, 171, 270,
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Figure 7.4: (Color online) Graphene surface plasmon-polariton wavelength as a function
of the number of layers of MoSe2 (red), WSe2 (green), MoS2 (orange) and WS2 (blue) for
h̄ω = 25 meV (≈6 THz) at EF = 100 meV, (a) without a substrate and (b) with SiO2

as a substrate. The insets in (a) and (b) show a magnification of the the results for 1 to
5 layers of MX2 without and with a substrate, respectively. (c) Comparison between the
SP3 wavelength for G/N-MoS2/SiO2 and G/N-WS2/SiO2 at frequencies 25 and 30 meV,
respectively. The crossing between the plasmon wavelengths at frequency 30 meV (25
meV) is represented by a grey circle labeled B (A). Inset (d) shows a comparison between
the plasmon dispersions for G/44-MoS2/SiO2 and G/44-WS2/SiO2. Inset (e) is the same
as (d) but now considering 82 layers of WS2 and MoS2.

285]. Moreover, their chemical similarity makes them interesting candidates to show the
sensitivity of the proposed approach. Finally, because of their shared crystallographic
structure, namely they all have a MX2 form, the number of phonon modes in the 2D
materials is all the same, but their respective phonon frequencies differ. For reference,
the phonon frequencies of freestanding monolayer for each TMDs used in this study, i.e
for MoS2, WS2, MoSe2 and WSe2, obtained from the QEH, are provided in Table E.2.

7.4.1 Probing the number of layers

In Fig. 7.4 we show how the addition of individual MX2 layers affects the Dirac plasmon
wavelength λ for each structure. We fixed the graphene doping at EF = 100 meV and
excitation frequency h̄ω = 25 meV. The latter is chosen to be below all phonon frequencies
in both the substrate and the different MX2 layers. In this way, we mainly excite SP2

modes and the effect should be mainly attributed to an increase in dielectric screening
due to the permittivity of the MX2 layers.

Panel (a) in Fig. 7.4 shows how the plasmon wavelength decreases with the number
of MX2 layers added when no substrate is considered. Also, we show the ’bulk’ limit,
which is achieved only at about 150 layers. Results for N > 150 are verified to be
the same (within numerical accuracy) up to 350 MX2 layers, thus confirming this bulk
limit. This is a surprisingly large number of layers. It was previously established that
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Figure 7.5: (Color online) Difference in the wavelength (∆λN,N+1) at h̄ω = 65 meV (≈15.7
THz) between numbers of layersN andN+1, fromN = 1 to 5, for (a) G/N-WS2/SiO2, (b)
G/N-MoS2/SiO2, (c) G/N-MoSe2/SiO2 and (d) G/N-WSe2/SiO2. Inset is the wavelength
as a function of Fermi level EF at the same frequency. Yellow regions corresponds to
∆λN,N+1 ≥ 20 nm.

multilayered structures, such as graphite [193], achieve their bulk electronic properties
at about 10 layers. However, here we show that this does not work for the plasmonic
properties, where at least hundreds of layers are needed for bulk behaviour to occur. This
observation underlines the necessity for a realistic modeling of plasmon properties, as
performed with the QEH model. In Fig. 7.4(b), we show how a SiO2 substrate affects
the layer dependency. As expected, the substrate results in an overall screening and the
wavelength is reduced. Also here, bulk TMD behaviour is reached for about 150 layers.

Notice that, interestingly, the order of the wavelength values of WS2 and MoS2 is
switched when increasing the number of layers. Indeed, while for a few layers, the wave-
length in the WS2 system is the largest, in the bulk case, it is the MoS2 system that
has the largest wavelength. To describe this peculiar effect, in Fig. 7.4(c), we show both
results for two different frequencies. As one can see, for a frequency closer to the first
phonon frequency of MoS2 (see Tab. E.2), for example h̄ω = 30 meV, the crossing occurs
for a smaller number of layers than for h̄ω = 25 meV. This is a direct consequence of the
presence of phonons in MoS2. The lowest of them has a frequency given by 34 meV. In
WS2, the phonons at 36 meV are not significantly hybridized into SP3 modes, causing this
crossing between the plasmon wavelength of these two TMDs. A comparison between the
plasmon dispersions for 44 and 82 layers of WS2 and MoS2 is depicted in Figs. 7.4(d) and
7.4(e), respectively, where one can see the crossings at 30 meV (d) and 25 meV (e).

Finally, in Fig. 7.5 we show the sensitivity of the proposed method with respect to the
number of MX2 layers. As a function of the induced Fermi level in the graphene layer,
we show the difference in plasmon wavelength between structures that differ only by one
layer. Assuming a lower threshold of 20 nm for the wavelength resolution, we see that
for Fermi levels of more than 140 meV, we can achieve single-layer resolution for every
considered TMD-based vdWh.



138 7. PROBING THE STRUCTURE AND COMPOSITION OF VDWHS . . .

7.4.2 Probing vdWh composition

In order to assess the difference between several MX2 structures, in Fig. 8.4 we show
the full loss function for the four considered vdWHs, accounting for substrate and TMD
phonons. The number of layers remains constant NMX2 = 1 (loss function) and 50 (orange
lines), and we consider free-standing structures and those on a SiO2 substrate.

The loss function presented in the (q, ω)-plane shows more insight in the behaviour
of the different SP3 modes than only through calculating the experimentally relevant
wavelength. Indeed, in the different panels of Fig. 8.4 one can not only distinguish the
way in which an increase in the number of vdWhs layers increases the wavevector q (hence
decreasing the wavelength λ), but also verify that each TMD structure bears its own
spectrum of phonons. These phonons are the ones that hybridize with the Dirac plasmons
and form the SP3 modes and, by investigating the specific type of hybridization, one can
infer the chemical properties of the vdWh under consideration. In general, the MX2

type TMDs considered in this chapter have, in their monolayer form, three acoustic and
six optical phonon modes [285–290]. However, because of the long-wavelength character
of the discussed modes, we only excite optical ones at the frequencies considered here.
Furthermore, due to symmetry considerations, two pairs of modes are degenerate in the
q → 0 limit. More details about the phonon structure of these materials are laid down in
appendix E.2.

First, we scrutinize the top row of Fig. 8.4, in which there is no substrate. Although
such TMDs have four distinct optical phonon frequencies, as presented in Tab. E.2 of the
Appendix appendix E.2, not all modes are strongly coupled to plasmons. Typically, the
highest energy mode, i.e. the A′′2 mode, is strongly active in the loss function. However, it
is clear that the Dirac plasmon mode also interferes with the other three phonon modes.
Furthermore, this interference becomes much more pronounced as the thickness of the
TMD stack is increased. This is shown in the insets of panels (a) and (b), where small
hybridization with the E ′′ modes is shown.

In Fig. 8.4(b) we show the results for a WS2 heterostructure. While the A′′2 mode is
more pronounced, the plasmon-phonon hybridization of the other three modes is signifi-
cantly smaller. Notice that the spectral width of the top mode is also broader than in the
case of the MoS2 stack. In Figs. 8.4(c) and 8.4(d), the chemical composition of the TMD
stacks is changed with a replacement of the sulfur atoms by selenium. Again, a typical
phonon spectrum is present, yielding specific types of SP3 modes.

The bottom row of Fig. 8.4 shows the loss function when a SiO2 substrate is added.
A gray dashed horizontal line indicates the presence of the substrate surface phonons
as discussed in the previous section. These substrate phonons also hybridize with the
Dirac plasmons and render the high-frequency response of the different vdWhs almost
identical. For lower frequencies, the additional SiO2 environment significantly reduces
the plasmon wavelength. But furthermore, the most significant effect of the presence of
the substrate is the broadening of the A′′2 phonon spectrum. A more in-depth analysis of
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Figure 7.6: (Color online) Overview of the frequency and wave vector dependence of the
plasmon SP3, at EF = 100 meV, for vdWhs with 1 and 50 TMD layers. The background
shading is the loss function for N = 1 TMD layers. The orange curves correspond to
N = 50. The different TMDs under consideration are indicated on the top of each
column. The top row are for vdWhs without a substrate, while for the bottom row
they are positioned on top of a SiO2 substrate. The inset in (a), (b), (e) and (f) show
magnifications around the anti-crossing. The red and orange dotted curves denote the
SP2 modes, for reference.
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Figure 7.7: (Color online) (a) Graphene surface plasmon-polariton wavelength as
a function of the Fermi energy EF for G/2-MoS2/SiO2 (orange dashed line) and
G/2-MoSe2/SiO2 (red dash-dotted line) and their respective differences ∆λ (gray dot-
ted lines), at h̄ω = 34 meV (≈8.2 THz). The yellow region represents ∆λ ≥ 20 nm (see
right scale). The inset shows the plasmon-phonon dispersion at EF = 45 meV near the
hybridization region. The grey dashed line in the inset is at h̄ω = 34 meV and the or-
ange solid line (dotted red lines) is the result for G/2-MoS2/SiO2 (G/2-MoSe2/SiO2). (b)
Group velocity (Vg) and phase velocity (Vp) for the same vdWh as in (a).

the relation between the substrate phonons in SiO2 and the TMD phonons is referred to
future research.

Finally, we are now in a position to propose a method to discriminate between different
vdWhs based on the Dirac plasmon wavelength. To do so, in Fig. 7.7, we have calculated
the wavelength of two types of heterostructures that differ only in one type of atom, MoS2

and MoSe2, at a given plasmon energy h̄ω = 34 meV (≈8.2 THz). In Fig. 7.7(a), the
left axis gives the total value of the wavelength for given vdWhs, while the right axis
refers to the difference ∆λ between both modes’ wavelengths. The result indicates that
once the Fermi level EF is large enough, in the present case larger than 35 meV, ∆λ is
large enough to be distinguished by current techniques [20, 21, 265–270]. Notice that
the difference between both heterostructures wavelengths depends also sensitively on the
number of TMD layers in the vdWh. In the presented result, we assumed at least two
TMD layers. For an increasing number of layers, the effect will be even stronger, rendering
N = 2 as the lower threshold for distinguishing between chemical components, which is
a remarkably sensitive result. Fig. 7.7(b) shows the group (Vg) and phase velocity (Vp)
of the corresponding modes. Notice that, in this case, the group velocity of the MoSe2

heterostructure Dirac plasmon is almost constant as a function of the Fermi level. This
is in stark contrast with the doping dependency of the MoS2-based system.
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7.5 Conclusions of the chapter

We have demonstrated the possibility of using graphene plasmons to probe the non-
local dynamical response of vdWHs composed by monolayer graphene on top of TMD
multi-layers. In order to do so, we have calculated the loss function of graphene on top
of different TMDs and demonstrated how its plasmon dispersion changes by the presence
of the different materials and different numbers of layers underneath it. We have shown
that the QEH model for this system provides excellent results when compared not only
to available experimental data, but also to results obtained within the random phase
approximation, rendering the QEH a good alternative for the theoretical understanding
of experimental results involving plasmons in graphene-based vdWHs, as well as for the
theoretical predictions shown here. Plasmons in graphene can be experimentally observed
using, for example, scattering-type scanning near-field optical microscope (s-SNOM) in
photocurrent mode, which has spatial resolution of at least 20 nm. Within this resolution,
our results for the four TMD used here, namely MoS2, MoSe2, WS2 and WSe2, show that
it is possible to use surface plasmon-polaritons in the graphene monolayer to probe the
number of layers in the TMD stack underneath it, by analyzing the difference in the
plasmon wavelength as the number of layers change. Moreover, since different TMDs
exhibit distinct phonon frequencies, the hybrid surface plasmon-phonon-polariton states
can be used to identify which species of TMD is underneath the graphene layer. The
latter, however, require strong coupling between plasmons and phonons to allow one to
distinguish between the characteristic wavelengths of different TMDs. Nevertheless, our
results show that for a number of layers as low as N = 2, the plasmon-phonon coupling
is still strong enough to produce distinguishable wavelengths for different materials, thus
suggesting the method proposed here as a remarkably sensitive tool.



8
Tunable coupling of terahertz Dirac plasmons and

phonons in transition metal dicalchogenide-based

van der Waals heterostructures

Dirac plasmons in graphene hybridize with phonons of transition metal dichalcogenides
(TMDs) when the materials are combined in so-called van der Waals heterostructures
(vdWh), thus forming surface plasmon-phonon polaritons (SPPPs). The extend to which
these modes are coupled depends on the TMD composition and structure, but also on the
plasmons’ properties.

In this chapter, the QEH is used again to study how the strength of plasmon-phonon
coupling depends on the number and composition of TMD layers, on the graphene Fermi
energy and the specific phonon mode. From this, we present a semiclassical theory that is
capable of capturing all relevant characteristics of the SPPPs. We find that it is possible to
realize both strong and ultra-strong coupling regimes by tuning graphene’s Fermi energy
and changing TMD layer number.

The study on tunable coupling of terahertz Dirac plasmons and phonons in transition
metal dicalchogenide-based van der Waals heterostructures, developed in this chapter, was
already submitted and an arXiv version can be accessed through this link.

8.1 Introduction

In the past few years, after the advent of graphene [8], a two-dimensional (2D) mono-
layer of carbon atoms arranged in a honeycomb lattice, the interest of the scientific com-
munity in isolating and studying new 2D materials has been significantly increasing due
to the unique features of these materials [146, 164, 291], as discussed in sections 2.4 and
2.6. For example, 2D transition metal dichalcogenides (TMDs) [107, 147], such as MoS2,
MoSe2, WS2 and WSe2, have attracted considerable attention due to their remarkable
opto-electronic properties [20, 145, 146, 158–165] that arises, for example, due to their
electronic band gaps [152, 154], the specific type of the electronic structure, and the in-
trinsic mobility of the electrons [203]. These 2D materials can be combined in so-called

https://arxiv.org/abs/2108.06595
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van der Waals heterostructures (vdWh) [146, 156, 157] by stacking different layers on top
of each other [145–147, 158, 162, 165, 175], or even next to each other forming so-called
lateral heterostructures [147, 172–177], resulting in the creation of many different multi-
layered artificial materials, each with specific behaviour [157, 171]. Recently, significant
advances have been made to obtain and manufacture such heterostructures [107, 145–147,
157, 158, 171–177].

Graphene plasmons, collective excitations of the 2D electron liquid in graphene [16,
18], also known as Dirac plasmons [256], are heavily studied due to their low loss [281,
292], a dispersion relation that is tunable by the Fermi energy [20, 163, 268, 275] and
their possible applications in photonics [117, 256, 293]. Besides, graphene can support
plasmons at mid infrared (IR) [83, 159, 257] to terahertz (THz) frequencies [159, 163, 258,
259] and show strong electromagnetic field confinement [17, 256]. On the other hand, in
TMDs (such as MoS2 or WS2, for example), active modes reside in the mid-IR range [285]
and, due to their large electronic band gap [152, 153], these materials behave as dielectrics
at low frequencies, thus not supporting plasmons if not extrinsically doped [260].

As illustrated in Fig. 8.1(a), when a monolayer graphene (MLG) is combined with
layers of TMDs, forming graphene-based vdWhs, a hybrid excitation arises that is known
as surface plasmon-phonon polaritons (SPPPs). These quasiparticles are formed when
phonons in the TMDs are coupled to the electron oscillations in graphene [17]. One
can excite and measure them using scatter-type scanning near-field optical microscopy
(s-SNOM) [259, 266, 267]. This allows one to measure the SPPPs wavelength, with a
resolution of up to 20 nm [20, 21, 265–270], using interference fringes formed by the
scattering of SPPPs modes at the edge of the heterostructure or at lateral defects in the
system. Although monolayer TMDs have four phonon modes in the IR spectrum, only
two of them, the in-plane E′′ and out-of-plane A′′2, illustrated in Fig. 8.1(b), are IR-active
and can couple to Dirac plasmons [294, 295].

In analogy to two coupled harmonic oscillators [296], Fig. 8.1(c), when graphene plas-
mons and TMDs phonons are coupled, the eigenfrequencies of the system are modified,
presenting a characteristic anti-crossing [294, 297], as shown in Fig. 8.1(d). By investigat-
ing the specific way in which the anti-crossing is manifested, one can infer the way in which
hybridization occurs, quantified by the coupling strength, Ω, between Dirac plasmons and
environmental phonons.

Whether hybridization is significant or not depends on the strength of the plasmon-
phonon coupling when compared to other relevant energy scales, for example, the phonon
energy and linewidth [297]. The latter is schematically presented in Fig. 8.1(d) as an or-
ange shade along the hybrid modes. In this context, the splitting becomes only significant
when the coupling Ω exceeds the linewidths of the two coupled systems, which also enables
the experimental observation of these two modes. Thus, if Ω is very small compared to
other important energy scales, for example, the phonon energy, the coupling is negligible
and is not strong enough to change the original (uncoupled) frequencies. This defines
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Figure 8.1: (Color online) (a) Schematic illustration of the Dirac plasmon wave and
the phonon-polariton vibration in van der Waals heterostructures (vdWh) composed by
a monolayer graphene (G) on 3-MX2 (M=W,Mo and X=S,Se). The graphene surface
plasmon-phonon polariton wavelength is λ. Note that the monolayer graphene covers the
entire sample. The hybridization of the phonon-polariton vibration in a vdWh with the
Dirac plasmon originates from the hybridized surface plasmons (SP3). (b) Representation
of the in-plane (E′′) and out-of-plane (A′′2) phonon vibration. (c) Plasmon and phonon
coupling pictorially depicted as two coupled classical mechanical oscillators. The strength
of the coupling is determined by κ and gives rise to a splitting in the two eigenfrequen-
cies ωph and ωpl. (d) Qualitative representation of the eigenfrequencies ωph (horizontal
green dashed line) and ωpl (solid red line) of the uncoupled (κ = 0) plasmon-phonon sys-
tem. The modes of the coupled system is represented by the upper (ω+) and lower (ω−)
eigenfrequencies (orange dotted lines), its difference is called minimal energy splitting (see
inset). Ω quantifies the strength of the plasmon-phonon coupling.

different coupling regimes: the first one, where Ω is small, is classified as "weak coupling"
(WC) [297, 298]. On the other hand, if Ω is large when compared to the phonon energy, the
coupling modifies the original energy spectrum, creating hybrid plasmon-phonon modes.
In this case, the coupling regime is classified as "strong" (SC) or "ultrastrong" coupling1

(USC) [297, 298]. The latter enables more efficient plasmon-phonon interactions, resulting
in electro-optical devices with high efficiency when compared to those based on SC [300].
For the purposes of this article, we define the WC, SC and USC regimes in a pragmatic
way: after obtaining Ω, we normalize the coupling strength in relation to the phonon

1Although in this study we only address WC, SC and USC regimes, the deep-strong coupling (DSC),
experimentally achieved in 2017 [299], is stronger then those threes.
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frequency that originates the hybridization as η = Ω/ωph; then, we classify the system as
WC, SC and USC when η < 0.01, 0.01 ≤ η < 0.1 and η ≥ 0.1, respectively [300].

In this chapter an investigation on the coupling between Dirac plasmon and IR-active
TMDs phonons is presented. Through realistic simulations at the level of density func-
tional theory (DFT), many-body perturbation theory and the random phase approxi-
mation (RPA) [301, 302], in combination with the quantum electrostatic heterostructure
model (QEH) [271], we are able to investigate the way in which the plasmon-phonon cou-
pling depends on the number of heterostructure layers, define the coupling regime and,
more significantly, identify how the Fermi energy contributes to maximize the coupling
strength. Furthermore, the use of QEH also allows us to analyse how the properties of the
environment are affected even when a single monolayer is added to the vdWhs. We show
that a semiclassical theory within the RPA is capable of capturing all relevant character-
istics of the SPPPs coupling taking into account the TMDs thickness up to several layers.
Therefore, we provide a realistic evaluation of the way in which the phonon modes of the
TMDs layers couple to the electromagnetic field of the plasmon modes and describe the
dependence of the coupling strength up to the bulk limit. Finally, we show how controlling
the graphene Fermi energy can maximize the coupling, towards SC and USC regimes in
TMDs-based vdWhs. Although the study presented here considers only hexagonal MoS2

and WS2, it can easily be extended to all other TMDs.

8.2 Plasmon-phonon-polaritons and hybrid modes

Dirac plasmons, density oscillations of Dirac fermions in graphene, can be obtained
from the total system’s dielectric function ε(q, ω) within the random phase approximation
(RPA) [16, 254]. To do so, we find the solution of the plasmon equation which corresponds
to the zeroes of ε(q, ω) taking [16, 18, 250, 251, 254, 255]

ε(q, ω) = 1− v(q, ω)χ̃nn(q, ω) = 0 , (8.1)

where v (q, ω) is the Fourier transform of the Coulomb interaction between the Dirac
electrons and χ̃nn(q, ω) is the proper density-density response function [16]. In general,
both functions depend on the properties of the system as a whole. Nevertheless, within
the RPA, we can approximate χ̃nn(q, ω) by the non-interacting density-density response
function2 of a 2D massless Dirac fermion χ0(q, ω), which depends only on the properties
of graphene [250, 251, 255]. On the other hand, v (q, ω) describes the electromagnetic
field lines that mainly propagate through the surrounding of the graphene sheet, and
are, therefore, strongly affected by them. In general, the 2D Fourier transform of the
electron-electron Coulomb interaction is defined as

v(q, ω) =
2πe2

qεenv(q, d)
. (8.2)

2For simplicity, the subscript nn was omitted.
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As one can see from Eq. (8.2), it is the screening of the Coulomb interaction introduced by
the effective dynamical background dielectric function εenv(q) that encodes the presence
of the environment. To include the contribution of the TMDs thickness d (see Fig. 8.1(a))
to the screening, we define the background dielectric function as [303]

εenv(q, d) =

(
2

εa + εb

√
εx(d)εz(d) + εb ξ(d)√
εx(d)εz(d) + ε̃ ξ(d)

)−1

. (8.3)

In Eq. (8.3), we have ξ(d) = tanh(qd
√
εx(d)/εz(d) and ε̃ = (εx(d)εz(d) + εaεb)/ (εa + εb).

εa,b = 1 is the dielectric constant of the vacuum above and below the 2D materials slab.
εx(d) and εz(d) are, respectively, the static in-plane and out-of-plane dielectric constants
of the TMDs, where we have modified the notation to explicitly indicate its dependence on
the TMDs thickness [304, 305]. In order to facilitate the understanding of how plasmons
couple with phonons, giving rise to hybrid modes, we assume that the plasmon dispersion
attains its long-wavelength form, [17, 250, 251]

h̄ωpl =

√
αeeNF h̄vF

2

EF q

εenv(q, d)
. (8.4)

In Eq. (8.4), αee = 2.2, NF = 4 and vF = 106 m/s are parameters related to the graphene
sheet corresponding to the graphene fine structure constant, the number of Fermion
flavours and the Fermi velocity, respectively [203]. EF is the Fermi level of graphene.

8.2.1 Coupling Dirac plasmon to phonons polaritons

To introduce the concept of plasmon-phonon coupling, the simple classical analogy
with two coupled harmonic oscillators, pictorially represented in Fig. 8.1(c) with “plas-
mon" and “phonon" representing the masses a and b, respectively, is commonly used [294,
297]. When κ 6= 0 the two oscillators interact with each other, forming a unique sys-
tem, with hybridized eigenfrequencies [296]. Due to this hybridization, an anticrossing of
dispersion curves is formed, resulting in a coupling strength[296]:

2Ω =
κ

√
maωambωb

. (8.5)

In the context of SPPPs, the coupling is similar to this classical point of view: when
Dirac plasmons couple to the TMDs IR-active phonons, a hybridization occurs at ωpl =

ωph, giving rise to an anticrossing in the SPPPs dispersion for frequencies close to the
phonon frequency, as presented in Fig. 8.1(d). For frequencies further away from the
phonon frequency, the original energy remains practically unchanged from the uncoupled
case. In other words, the uncoupled phonon (ωph) and graphene plasmon (ωpl) frequencies,
represented in Fig. 8.1(d) as a horizontal green dashed and a solid red (∝ √q) lines,
respectively, presents hybrid modes (ω+ and ω−) close to the phonon frequency when
coupled.
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To quantify the SPPPs coupling (Ω), we start from its Hamiltonian, defined as [306]

H = Hpl +Hph +Hpl−ph . (8.6)

Here, Hpl is the Hamiltonian for the plasmons in the absence of the coupling to the
phonons Hph, while Hpl−ph describes the coupling between them. In second quantization
notation, this yields [306]

H = h̄[ωplâ
†
qâq + ωphb̂

†
qb̂q + Ωq(â†q + â−q)(b̂†−q + b̂q)] , (8.7)

where â†q and âq are creation and annihilation operators, respectively, for a Dirac plasmon
(SP2) with frequency h̄ωpl given by Eq. (8.4), and wave vector q. b̂†q and b̂q are those
for the collective vibration modes with energy h̄ωph (taken as a constant, as presented
in Tab. E.2). In Eq. (8.7), Ωq plays the role of the coupling energy associated with the
interaction between phonons and the Dirac plasmon. Consequently, the eigenfrequencies
are obtained taking det[H] = 0, resulting in [306]

ω2
±=

1

2

[
ω2

ph + ω2
pl ±

√
(ω2

ph − ω2
pl)

2 + 16Ω2ωphωpl

]
. (8.8)

For simplicity, the subscript q in the variable Ω was omitted. Equation (8.8) is similar
to those obtained from a classical system formed by two coupled oscillators [296], where
the coupling Ω arises due to the hybridization between two (quasi)-particles, as shown in
Fig. 8.1(d).

The goal of the current study is to identify the coupling strength Ω from realistic
calculations of the anticrossing between plasmon and phonon branches. From Eq. (8.8),
one finds that Ω can be calculated in two ways: on the one hand, one can find the minimum
of the energy difference between the two branches, i.e. Ωmin = minq(ω+(q)− ω−(q)) (see
Fig. 8.1(d)). On the other hand, it can also be calculated at the crossing point of the
phonon frequency with the unperturbed plasmon. Here, the coupling strength corresponds
to the energy difference between the two branches evaluated at the wave vector qpl(ωph),
i.e. Ωcp = ω+(qpl)−ω−(qpl). Note that in the case of a system consisting of a single plasmon
and phonon, both methods are equivalent, because in that case Eq. (8.7) corresponds to
the full system. However, once multiple phonons start to interfere with the plasmon, the
model is only approximately correct and both methods will not yield the same result. In
order to quantify the plasmon-phonon interaction also in the presence of multiple phonons,
we always evaluate Ω using both methods. If the difference between both methods is
large with respect to the nominal value of the coupling, i.e. if ∆Ω = |Ωcp − Ωmin|∼ Ωi,
a hierarchy is necessary. For example, in the case where there are two relevant phonon
modes, as discussed in the succeeding examples of this work, we find that it is necessary
to calculate Ωmin for the smallest value, while Ωcp is needed for the strongest coupling.
This is because, in that case, the plasmon-phonon coupling becomes of the order of the
frequency difference between the two involved phonon modes.
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Table 8.1: Phonon frequencies for the free-standing monolayer of MoS2 and WS2 con-
sidered in the QEH calculations. Their vibrational phonon modes are represented by E′′

(R), E′ (IR and R), A′1 (R) and A′′2 (IR), where IR (R) means that the mode is active for
infrared (Raman) excitations [285–290].

Phonon frequencies (meV)
1 (E ′′) 2 (E ′) 3 (A′1) 4 (A′′2)

MoS2 34.19 46.35 47.59 56.80
WS2 35.56 42.85 50.12 52.98

8.2.2 Quantum electrostatic heterostructure

To obtain realistic results for the plasmon-phonon coupling, we used again the quantum-
electrostatic heterostructure (QEH) model, a DFT-based method [271]. This model has
been demonstrated to be a very useful tool for the study of plasmons in different het-
erostructures [179, 272, 278, 307, 308]. In the QEH model, the dielectric constant of the
monolayer that composes the vdWhs is calculated individually within the DFT. Then,
using Coulomb interaction, the contributions of each freestanding atomic layer are cou-
pled, and the total responses of the vdWhs is obtained [271]. The SPPPs coupling Ω is
obtained from the loss function, which is defined as

L(q, ω) = −Im

[
1

ε(q, ω)

]
. (8.9)

8.3 Strength of plasmon-phonon coupling in van der
Waals heterostructures

TMDs are slightly polar materials i.e its crystalline structure contains atoms with
different electronegativities, consequently, certain IR-active phonon modes at the Γ-point
give rise to a macroscopic electric field [262, 287]. Both MoS2 and WS2, the TMDs
considered in this here, present four phonon modes labelled, in ascending order of energy
(see Tab. E.2), as: E ′′ (R), E ′ (IR and R), A′1 (R) and A′′2 (IR), where IR (R) means that
the phonon mode is active for infrared (Raman) excitations [285].

In Fig. 8.2(a), we present the plasmon dispersion of SP2 modes, i.e Dirac plasmons
with the surrounding polarization cloud [17, 262], but disregarding the TMDs phonon
vibrations, at the Fermi energy given by EF = 100 meV, for a G/N-MoS2 vdWhs, with
N = 1, 10 and 20 TMD layers. The loss functions obtained by the QEH calculation,
shown as a color map for N = 10, are in accordance with Eq. (8.4), whose results are
represented by white dashed curves in Fig. 8.2(a). As the number of layers increases, q
increases for a fixed frequency in the plasmon dispersion, since the total dielectric func-
tion of the environment εenv(q, d) also increases, since the screening is proportional to the
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Figure 8.2: (Color online) (a) Plasmon dispersion of the SP2 for G/N-MoS2 with N=1
(solid), 10 (white dashed) and 20 (dashed-dotted) at EF = 100 meV obtained from the
QEH without plasmon-phonon coupling (Ω = 0). The loss function is shown as a color
map for N = 10. (b) SPPPs dispersion for G/10-MoS2 with EF = 100 meV. The two
regions with IR-active phonons modes, namely E′′ and A′′2, that hybridize with the Dirac
plasmons giving rise to anti-crossings in the eigenfrequencies when ωpl = ωph, are high-
lighted by two rectangles. Horizontal green dashed lines represents the phonon frequencies
(see Tab. E.2). (c) and (d) are magnifications of the results in (b) around the anticross-
ings, close to the E ′′ and A′′2 phonon modes, with frequencies h̄ωE′ and h̄ωA′′2 , respectively.
In panel (c) and (d) Ω1(2) represents the coupling strength between Dirac plasmon and
IR-active in-plane (out-of-plane) vibrational phonon mode. Symbols are the eigenfre-
quencies obtained from the semi-classical model, Eq. (8.8). Dashed-doted gray lines are
the maxima in the loss function, while the dashed white line is the SP2 dispersion for
reference.

number of layers. This is verified by the solid and dashed-dotted lines in Fig. 8.2(a), which
represent the maxima of the loss function for N = 1 and 20, respectively. When phonon
contributions are taken into account, as shown in Fig. 8.2(b), anticrossings in the SP2

dispersion arise close to the regions where ωpl = ωph. Although MoS2 has four phonon
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modes, only two of them are IR-active, as mentioned earlier, giving rise to significant
hybrid modes. These hybrid SPPPs modes are presented in Figs. 8.2(c)-(d) as a magnifi-
cation of the two square boxes highlighted in Fig. 8.2(b). The coupling strength between
the Dirac plasmons and the in-plane E′ (out-of-plane A′′2) phonon mode is defined as Ω1

(Ω2). In panels (c) and (d), the symbols refer to the hybrid eigenfrequencies obtained
from Eq. (8.8).

8.3.1 The influence of the number of TMDs layers

Using the QEH, we show in Fig. 8.3(a)-(d) the evolution of the SPPPs coupling
strength (Ω1(2)) as a function of the number of layers for a vdWhs composed by MLG on
top of N -MoS2 (blue symbols and lines) and N -WS2 (orange symbols and lines). As the
number of layers increase, the SPPPs coupling (Ω1(2)) also increases, since more oscilla-
tors are involved, i.e more phonons are available to couple with the Dirac plasmons [309,
310]. For a few TMD layers (N < 10), there are two important and peculiar aspects to
be considered in here: (i) the

√
N behavior of Ω1, that is the coupling between plasmon

and in-plane phonon modes, Fig. 8.3(b), and (ii) the linear dependence of the out-of-
plane phonon coupling Ω2, Fig. 8.3(d). To explain this behaviour, we analyse the effective
dielectric function [309, 311]

εeffi ≈ εenv

(
1−

ω2
pl

ω2
− Miδ

2
i

ω2 − ω2
ph,i + δ2

i

)
. (8.10)

Equation (8.10) describes an effective coupling between a plasmon and the i-th phonon
mode. Notice that in the current case, the E ′ phonon and the A′′2 phonons exhibit different
geometric properties. The former is an in-plane mode of which degeneracy Mi increases
linearly with the number of layers N . Conversely, the latter is an out-of-plane mode
with degeneracy scaling with N2. In Eq. (8.10), δi is the coupling between a single TMD
layer and the Dirac plasmon. Notice that this approximation only holds as long as the
penetration depth of the plasmon mode is larger than the TMD thickness. In this case,
the zeroes of Eq. (8.10) yield the relation between the hybrid modes as [309]

ωi ≈ ωph,i ±
1

2

√
Miδi . (8.11)

Therefore, Eq. (8.11) reveals that, within this model, the SPPPs coupling Ω1(2) is indeed
expected to depend on the number of layers N as Ω1(2) =

√
M1(2)δ1(2), where M1(2) =

N1(2).

8.3.2 SPPPs interaction: weak, strong and ultra-strong coupling
regime

We now define the normalized parameter η = Ω1(2)/ωE′′(A′′2 ) as a way to quantify
the coupling strength [300]. Figure 8.3(e) shows the normalized SPPPs coupling η as
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Figure 8.3: (Color online) SPPPs coupling strength (Ω1(2)) as a function of the number of
TMDs layers for graphene at EF = 100 meV on top of N-MoS2 (blue lines and symbols)
and N-WS2 (orange lines and symbols). (a) Coupling energy between Dirac plasmon
and the IR-active in-plane E ′ phonon mode and (b) a magnification of the results in
(a) from 1 to 10 layers (yellow region), emphasizing that Ω1 ∝

√
N . (c) The same as

in (a), but now for the coupling strength Ω2, i.e considering the IR-active out-of-plane
A′′2 phonon mode. (d) Magnification in panel (c) from 1 to 10 layers (yellow region),
emphasizing that Ω2 ∝ N . (e) SPPPs coupling strength normalized in relation to their
respective phonon frequencies defined as η = Ω1(2)/ωE′′(A′′2 ). Three different regions, blue,
green and pink, represent the WC (η < 0.01), SC (0.01 ≤ η < 0.1) and USC (η ≥ 0.1),
respectively [300]. The hatched area represents the bulk limit of the SPPPs coupling,
reached for approximately 100 TMDs layers.

a function of the number of N -MoS2 and N -WS2 layers. Three different regions, blue,
green and pink, represent the WC (η < 0.01), SC (0.01 ≤ η < 0.1) and USC (η ≥ 0.1)
regimes, respectively [300]. A remarkable result is obtained for the coupling between Dirac
plasmons and the IR-active out-of-plane WS2 phonon mode, where we observe that they
reach the USC regime, as illustrated in Fig. 8.3(e) by orange triangles. Furthermore, for
N > 100 all results remain unchanged, showing that the bulk behavior was reached for
100 TMD layers or more (see hatched area in Fig. 8.3(e)).
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Figure 8.4: (Color online) Overview of SPPPs dispersion in the (q,ω)-plane through the
loss function for a MLG, at EF = 100 meV, on top of (a) 1 and (b) 50 MoS2, and on top
of (c) 1 and (d) 50 WS2. Ω1 (Ω2) corresponds to the coupling strength between Dirac
plasmons and the IR-active in-plane E′ (out-of-plane A′′2) phonon mode. The horizontal
green curves correspond to the uncoupled phonon modes calculated for a monolayer of
each correspondent TMD (see Tab. E.2 for the corespondent phonon frequencies h̄ωE′ and
h̄ωA′′2 ). The uncoupled SP2 plasmons are represented by white dashed lines, for reference.
The results in each bottom panel are the loss spectra for a fixed q at the point were the
SPPPs coupling strengths Ω1(2) were calculated. In the bottom panel (d), a magnification
of the loss spectra is shown as inset.
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To illustrate the WC, SC and USC regime in a TMDs-based vdWhs, we shown in
Fig. 8.4 an overview of SPPPs dispersion in the (q,ω)-plane through the color maps of
the loss function, defined by Eq. (8.9), and the loss spectra for a fixed q at the point were
the SPPPs coupling Ω1(2) were calculated. As expected, for a MLG on top of 1-MoS2 or
1-WS2, Figs. 8.4(a) and 8.4(c), respectively, the SPPPs coupling are in the WC regime.
In this case, the modes that compose the anticrossing, arising due their hybridization, are
practically indistinguishable, as compared to the line width of the non-coupled modes.
The loss spectra below each panel emphasizes how weak this couplings is, since the peaks,
represented by blue (purple) arrows for Ω1 (Ω2), are very close to each other, presenting
a normalized coupling η less than 0.01. In Fig. 8.4(b), both Ω1 and Ω2 are in the SC,
presenting a well defined anticrossing and a loss spectra with well separated peaks, where
η is given by 0.047 and 0.063, respectively. Finally, although Ω1 in Fig. 8.4(d) presents a
SC, with η = 0.18, Ω2 is in the USC coupling regime with η = 0.12 in this case.

8.3.3 Tuning the SPPPs coupling strength through the Fermi en-
ergy

Figure 8.5 shows how the Fermi energy can be used to tune the SPPPs coupling,
as to maximize the plasmon-phonon interaction. In Fig. 8.5(a), we present the SPPPs
dispersion for a vdWhs made by G/25-MoS2 for three different values of the Fermi energy
(in units of the phonon frequency h̄ωE′ , see Tab. E.2): EA

F = 1h̄ωE′ , EB
F = 2.3h̄ωE′ and

EC
F = 3.8h̄ωE′ , represented by the black dotted, red dashed and brown dash-dotted lines,

respectively. The horizontal green line is the phonon frequency and the other solid lines
are the SP2 dispersion for reference. Fig. 8.5(a) shows that there is a Fermi energy value
that maximizes the SPPPs coupling strength. To explain this, we show in Figs. 8.5(b)-
(e) the SPPPs coupling parameters Ω1 and Ω2 as a function of the Fermi energy. In all
situations, Ω1 and Ω2 increase until they reach a maximum value, and then they decrease
with EF , exhibiting ∝ 1/

√
EF dependence.

To explain this behaviour, we identify two different coupling mechanisms that depend
on the Fermi energy EF. If the EF is large, due to Pauli blocking, single-particle inter-
band processes are suppressed. In that case, the Dirac liquid effectively behaves as a
liquid of Fermions with a mass equal to the cyclotron mass mc = 2EF/v

2
F [203]. Eq. (8.5)

shows that in this case the plasmon-phonon coupling Ω is expected to decrease as 1/
√
EF .

However, when the Fermi energy is small, Pauli blocking is lifted and inter-band single-
particle processes are allowed [17, 159]. This strongly inhibits plasmon lifetime and,
therefore, suppresses plasmon-phonon coupling.

Note that, for the vdWhs considered in Figs. 8.5(b)-(e), both SPPPs coupling Ω1

and Ω2 are in the SC regime. However, controlling the Fermi energy and increasing the
number of layers it is possible to go from the SC to even the USC regime. The latter can
be reached for Ω2 in a MLG on top of 50 (or more) WS2 layers, for example.
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Figure 8.5: (Color online) Tuning the plasmon-phonon coupling strength Ω1(2) by chang-
ing the Fermi energy (in units of the corresponding phonon frequency). (a) Plasmonic
dispersion of G/25-MoS2 for different values of the Fermi energy (in units of h̄ωE′) given
by EA

F = 1h̄ωE′ , EB
F = 2.3h̄ωE′ and EC

F = 3.8h̄ωE′ . The uncoupled phonon state corre-
sponds to the horizontal solid green line and the SP2 plasmons are represented by the
square root (∝ √q) solid lines, for reference. The SPPPs couplings (b)-(c) Ω1 and (d)-(e)
Ω2 are shown as a function of the Fermi energy for G/25-MoS2. The yellow region in (b)-
(e) represents the interband regime, where the plasmon dispersion is damped. After that,
Ω1(2) ∝ 1/

√
EF , i.e the Fermi energy is large enough to keep the plasmon-phonon disper-

sion in the long-wavelength limit, keeping the plasmonic dispersion below the interband
region.

8.4 Conclusions of the chapter

We have demonstrated how graphene (Dirac) plasmons couple to IR-active in-plane
E ′ and out-of-plane A′′2 phonon modes in transition metal dichalcogenide-based van der
Waals heterostructures, from few layers until the bulk limit. In order to do so, we have
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presented a semi-classical theory, obtained from the random phase approximation, to
calculate the surface plasmon-phonon polaritons dispersion in the q-ω plane. Comparing
this semi-classical theory to the results obtained through a DFT-based method, known as
the quantum-electrostatic heterostructure, we have shown that the semi-classical approach
provides an excellent match for many TMDs layers, capturing all relevant characteristics
of the surface plasmon-phonon polaritons.

Furthermore, using the quantum-electrostatic heterostructure model, we have calcu-
lated the loss function of vdWHs composed by monolayer graphene on top of TMDs
multi-layers. Our results prove that, although we have weak and strong coupling regimes
in this TMDs-based vdWhs, it is also possible to achieve the ultra strong coupling regime
for the coupling between Dirac plasmons and A′′2 for 40 or more WS2 layers. In addition,
we explain the nature of the graphene plasmons coupling to IR-active E ′ and A′′2 phonon
modes, from a few TMDs layers to the bulk behavior. Not less important, we have demon-
strated the possibility of tuning the SPPPs coupling strength through the graphene Fermi
energy, explaining its 1/

√
EF dependence. It is important to highlight that plasmons in

graphene can be experimentally observed using, for example, scattering-type scanning
near-field optical microscope (s-SNOM) in photocurrent mode. Therefore, using current
experimental techniques, our results suggest the possibility of creating/exciting SPPPs
and to study the coupling regimes discussed here for vdWhs composed by graphene and
MoS2 or WS2.
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Concluding remarks and perspectives

In this thesis, the trembling motion known as zitterbewegung, that arises in Dirac-like
quasi-particles, were theoretically investigated in multilayer graphene and as well as for
Moiré exciton. Through the analysis, the questions that were posed in the first chapter
can be answered as follows:

How is the zitterbewegung affected by changing the number of
graphene layers?

In chapter 4 it is demonstrated, analytically (Green’s functions) and computationally
(split-operator technique), that the dynamics of wave packets in ABC-stacked multilayer
graphene, with different pseudospin polarization, presented different behaviors as the
number of layers increases. Moreover, the time td of the transient behavior of the ZBW is
of the order of dozens of femtoseconds and the larger the number of layers the longer the
transient time, i.e. tdN > tdN−1. Also, as the number of layers increases, for the pseudospin
polarization given by (1 1)T and (1 i)T , the wave packet propagated in different directions
and were rotated by 90° from those initially seen for the monolayer case, as N increases.
For all the cases analysed, i.e. from monolayer graphene to three layer graphene, the ZBW
phenomena was transient, i.e. the oscillations of the physical observables decay with time
and a natural damping is observed. Also, using the Heisenberg equation of motion we
were capable of predicting all directions of propagation considered previously.

Is it possible to use moiré excitons in van der Waals heterostructures
as an advantageous solid-state platform to directly probe the zitterbe-
wegung phenomena and its Dirac-like nature?

In chapter 5 it is shown that, in the presence of a perpendicular electric field in
MoS2/WSe2 vdWhs with small twist angles, the gap of the moiré exciton band structure
can be closed, which attributes the characteristics of a massless Dirac fermion to moiré
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exciton quasi-particles. Applying the split-operator technique to this system, it was pos-
sible to see that zitterbewegung phenomena became evident presenting a shift of tens of
Å in the center of the moiré exciton wave packet, along with damped oscillations with
pico-second long periods. Furthermore, it was demonstrated that the exciton probability
density profile is strikingly different in the presence of gap-closing electric field, compared
to the case without any applied field. In this system, as in the case of ABC-stacked
multilayer graphene, the density profile and direction of the motion were also shown to
be strongly dependent on the pseudo-spinor of the moiré exciton wave packet. In such
platform, the pseudo-spinor can be controlled by the polarization of the incident exciting
light. Once in this system the timescales is considerably large, being within reach of
available experimental techniques, we expect to instigate the first experimental detection
of ZBW in an exciton wave packet, which opens the gate to follow-up studies exploiting
thereby proven massless Dirac fermion character of the moiré excitons in MoS2/WSe2

vdWhs induced by gating.

In the second part of this thesis, the plasmonic properties of graphene in van der Waals
heterostructure vdWh, composed by graphene and different types of transition metal
dichalcogenide, were theoretically explored from terahertz to mid-infrared regime. Within
the random phase approximation and through the quantum electrostatic heterostructure
(QEH), a computational model, the the nonlocality of Dirac plasmons modes were calcu-
lated for different vdWh. Through the analysis, the questions that were posed in the first
chapter can be answered as follows:

Can Dirac plasmons, excited from terahertz to mid-infrared regime,
be used to probe the structure and composition of van der Waals
heterostructure?

In chapter 7 it is shown that, due to the high sensitivity of Dirac plasmons in graphene
to the dielectric properties of the surrounding environment, it is possible to use graphene
plasmons to probe the non-local dynamical response of vdWHs composed by mono-
layer graphene on top of transition metal dichalcogenide multi-layers. Once plasmons
in graphene can be experimentally observed using, for example, scattering-type scanning
near-field optical microscope (s-SNOM) in photocurrent mode, with spatial resolution of
at least 20 nm, the results presented in chapter 6 for a vdWhs composed by MoS2, MoSe2,
WS2 and WSe2 can be measured experimentally by analyzing the difference in the plas-
mon wavelength as the number of layers change the plasmon dispersion in the (q, ω)-plane.
Nevertheless, our results show that for a number of layers as low as N = 2, the plasmon-
phonon coupling is still strong enough to produce distinguishable wavelengths for different
materials, thus suggesting the method proposed in chapter 6 as a remarkably sensitive
tool.
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How strong is the coupling of terahertz Dirac plasmons to phonons in
transition metal dicalchogenide-based van der Waals heterostructures,
and how the tuning of the Fermi energy can be used to increase the
coupling strength?

In chapter 8 it is shown that graphene (Dirac) plasmons couple to IR-active in-plane
E ′ and out-of-plane A′′2 phonon modes in TMDs-based vdWhs and, although we have weak
and strong coupling regimes in this TMDs-based vdWhs, it is also possible to achieve the
ultra strong coupling regime for the coupling between Dirac plasmons and A′′2 for 40 or
more WS2 layers. In addition, was explained the nature of the graphene plasmons coupling
to IR-active E ′ and A′′2 phonon modes, from a few TMDs layers to the bulk behavior. Not
less important, it was demonstrated the possibility of tuning the SPPPs coupling strength
through the graphene Fermi energy, explaining its 1/

√
EF dependence and allowing to

use this property to maximize the coupling strength. In the same way that the results
presented in chapter 7 can be measured by s-SNOM, it is also possible to use the same
technique to create/excite SPPPs and to study the coupling regimes discussed here for
vdWhs composed by graphene and MoS2 or WS2. The results presented in chapter 8 can
also be extended to other TMDs.

As explained in the first part of this thesis, the study of the dynamics of charge
particles, represented by a Gaussian wave packet, in 2D systems is still a important field
of research on the condensed matter physics. As demonstrated in Chapters 4 and 5, the
use of the split-operator technique, although simple, is still a very power full tool to study
electronic transport in 2D materials, once this method can be easily adapted to other
different 2D systems, as was the case of graphene in Chapter 4, and of moiré excitons in
twisted hetero-bilayers presented in Chapter 5, for example. In fact, the SOT, used in
the first part of this thesis to study the ZBW phenomena, can also be used to investigate
other relevant phenomena such as valley filtering in bilayer graphene [230], valley filter in
graphene nanoribbons using snake states [232] and in strained graphene [49], for example.

Therefore, as a perspective of the study presented in Chapter 4, we believe that both
theoretical methods proposed in that chapter will be useful for future simulations of wave
packet propagation and scattering in multilayer graphene, and that the discussions about
the results found in this chapter will contribute to a better understanding of ZBW in
these systems. In the context of the study of propagation of Gaussian wave packets, an
investigation on the scattering of a Gaussian wave packet in a interface between mono
and bilayer graphene and how the graphene edges affect this phenomena are important
open questions and should be investigated in the near future.

Regarding on the study developed in Chapter 5, since the direct experimental detection
of ZBW has been not yet done in 2D systems, as explained Chap. 5, we expect to instigate
the first experimental detection of ZBW in an exciton wave packet. With this, new
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studies exploiting thereby proven massless Dirac fermion character of the moiré excitons
in MoS2/WSe2vdWhs induced by gating will arise, contributing to a better understanding
of the Dirac-like nature of moiré excitons in this system. Furthermore, as previously said,
the tools presented in both chapters 4 and 5 can be extend to new other 2D systems,
allowing us to describe important physics phenomena in theses systems.

In the context of plasmonics research in graphene in vdWhs-based systems, as ex-
plained in the second part of this thesis, this field still progresses at a tremendous pace
and is still a hot topic on the condensed matter physics. In this context, many ques-
tions related to the use of graphene and other materials related to 2D, such as TMDs,
as platforms for plasmonic applications or for important new physical properties in these
systems, have not yet been answered. Therefore, from the study presented in the second
part of this thesis, there is a lot o potential to extend the presented plasmonic study, as
mentioned as a following.

The first important point we need to mention is that all the results presented in
the chapters 7 and 8 can be measured experimentally using current techniques, such as
scattering-type scanning near-field optical microscope (s-SNOM) in photocurrent mode,
for example, which presents spatial resolution of at least 20 nm.

As an extension of the work that is done in the second part of this thesis, it is interesting
to investigating, for example, plasmons in vdWhs composed by a bilayer graphene with
TMDs in-between. In this case, unlike plasmons in monolayer graphene which only has
an optical mode, the plasmon dispersion will present also an acoustic mode. Thus, to
understand and answer some questions, such as how is the coupling between the acoustic
plasmons mode that arises in bilayer graphene, and TMDs’ phonons and how it depends
on the number o TMDs layers in between both monolayers graphene?, we started an study
considering this kind of vdWhs-based system.
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C
Support information for the ZBW in ABC-NLG

C.1 Wavefunction written using Green's functions

Here is presented the details of how to calculate the Green's functions coefficients,
Eq. (4.8) in the main text, Subsec. 4.2.1, defined as

Gµv (r, r′, t) =
∑
s=±1

∫
Φp,s,µ (r, t) Φ†p,s,v (r′, 0) dp . (C.1)

In Eq. (C.1), µ, ν = 1, 2 are matrix indices, associated with the upper and lower compo-
nents of Ψ (r, t) that are related to the probability of finding the electron at the sublattices
A (upper) and B (lower). Once these coefficients are known, we can write the wave func-
tion Ψµ (r, t), Eq. (4.9) of the main text, in terms of Green's functions.

To do so, we need to calculate G11 (r, r′, t), G12 (r, r′, t), G21 (r, r′, t) and G22 (r, r′, t)

using Eq. (C.1).
Replacing Eq. (4.6) of the main text, defined as

Φp,s (r, t) =
1

2
√

2πh̄
exp

(
i
p · r
h̄
− i

En
p,st

h̄

)(
1

seinφ

)
, (C.2)

into Eq. (C.1), yields:

G11 (r, r′, t) =
1

2
√

2πh̄
· 1

2
√

2πh̄

∑
s=±1

∫ [
exp

(
i
p · r
h̄
− i

En
p,st

h̄

)]
·
[
exp

(
−ip · r

′

h̄

)]
dp ,

(C.3)

G11 (r, r′, t) =
1

(2πh̄)2 ·
1

2

∫ [
exp

(
i
p (r − r′)

h̄

)][∑
s=±1

exp
(
−i
En
p,st

h̄

)]
dp . (C.4)

But En
p,s = spn/γ, thus Eq. (C.4) becomes

G11 (r, r′, t) =
1

(2πh̄)2 ·
1

2

∫ [
exp

(
i
p (r − r′)

h̄

)][∑
s=±1

exp
(
−isp

nt

ξh̄

)]
dp . (C.5)
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On the other hand, the summation in Eq. (C.5) can be written as:∑
s=±1

exp
(
−isp

nt

ξh̄

)
= exp

(
−ip

nt

ξh̄

)
+ exp

(
i
pnt

ξh̄

)
, (C.6)

or, using eiθ = cosθ + isenθ, as,

∑
s=±1

exp
(
−isp

nt

ξh̄

)
= cos

(
pnt

ξh̄

)
− isen

(
pnt

ξh̄

)
+ cos

(
pnt

ξh̄

)
+ isen

(
pnt

ξh̄

)
(C.7)

∑
s=±1

exp
(
−isp

nt

ξh̄

)
= 2cos

(
pnt

ξh̄

)
. (C.8)

Thus, replacing Eq. (C.8) into Eq. (C.5), we have:

G11 (r, r′, t) =
1

(2πh̄)2 ·
1

2

∫ [
exp

(
i
p (r − r′)

h̄

)][
2cos

(
pnt

ξh̄

)]
dp, (C.9)

G11 (r, r′, t) =
1

(2πh̄)2

∫
exp

[
i
p (r − r′)

h̄

]
cos
(
pnt

ξh̄

)
dp. (C.10)

Analogously, we can get G22 (r, r′, t), such that:

G22 (r, r′, t) = G11 (r, r′, t) . (C.11)

On the other hand, to G12 (r, r′, t), we have:

G12 (r, r′, t) =
1

2
√

2πh̄
· 1

2
√

2πh̄

∑
s=±1

∫ [
exp

(
i
p · r
h̄
− i

En
p,st

h̄

)]
·
[
exp

(
−ip · r

′

h̄

)]
·
(
se−inφ

)
dp (C.12)

G12 (r, r′, t) =
1

(2πh̄)2 ·
1

2

∫ [
exp

(
i
p (r − r′)

h̄

)]
·

[∑
s=±1

s · exp
(
−i
En
p,st

h̄

)]
· e−inφdp . (C.13)

Using En
p,s = spn/γ, one can obtain

G12 (r, r′, t) = − 1

(2πh̄)2 ·
1

2

∫ [
exp

(
i
p (r − r′)

h̄

)]
·

[∑
s=±1

s · exp
(
−isp

nt

ξh̄

)]
· e−inφdp, (C.14)

Using eiθ = cosθ + isenθ, the summation in Eq. (C.14) can be rewritten as:∑
s=±1

s · exp
(
−isp

nt

ξh̄

)
= exp

(
−ip

nt

ξh̄

)
− exp

(
i
pnt

ξh̄

)
, (C.15)
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∑
s=±1

exp
(
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nt
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)
= cos
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ξh̄

)
− isen
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pnt

ξh̄

)
− cos

(
pnt

ξh̄

)
− isen

(
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ξh̄

)
, (C.16)

∑
s=±1

exp
(
−isp

nt

ξh̄

)
= −2isen

(
pnt

ξh̄

)
. (C.17)

From Eqs. (C.17) and Eq. (C.14), we have that:

G12 (r, r′, t) =
1

(2πh̄)2 ·
1

2

∫ [
exp

(
i
p (r − r′)

h̄

)][
−2isen

(
pnt

ξh̄

)](
px − ipy

p

)n
dp.

(C.18)

G12 (r, r′, t) =
−i

(2πh̄)2

∫
exp

[
i
p (r − r′)

h̄

]
sen
(
pnt

ξh̄

)
·
(
px − ipy

p

)n
dp. (C.19)

The same procedure described here can be done for G21 (r, r′, t), such that we obtain

G21 (r, r′, t) =
−i

(2πh̄)2

∫
exp

[
i
p (r − r′)

h̄

]
sen
(
pnt

ξh̄

)
·
(
px + ipy

p

)n
dp. (C.20)

Note that G12 (r, r′, t) differs from G21 (r, r′, t) only by a negative sign in the term
(px ∓ ipy/p)n.

C.2 Details to obtain the auxiliary functions Φi(r, t)

Here is provide the details to obtain Φ1,2,3,4 (r, t) defined as

Φ1 (r, t) =

∫
G11 (r, r′, t) f (r′, 0) dr′, (C.21)

Φ2 (r, t) =

∫
G12 (r, r′, t) f (r′, 0) dr′ (C.22)

Φ3 (r, t) =

∫
G21 (r, r′, t) f (r′, 0) dr′ (C.23)

and
Φ4 (r, t) =

∫
G22 (r, r′, t) f (r′, 0) dr′. (C.24)

used to obtain the spinor wave functions

Ψ1 (r, t) =
1√

|C1|2 + |C2|2
[C1Φ1 (r, t) + C2Φ3 (r, t)] (C.25)

and
Ψ2 (r, t) =

1√
|C1|2 + |C2|2

[C2Φ2 (r, t) + C1Φ4 (r, t)] . (C.26)

Since G11 (r, r′, t) = G22 (r, r′, t), thus Φ1 (r, t) = Φ4 (r, t). Therefore, is necessary calcu-
late just Φ1 (r, t), Φ2 (r, t) e Φ3 (r, t). In Eq. (C.21), f(r′, 0) is given by Eq. (4.11b) in
the main text and it is defined as:

f (r) =
1

d
√
π
exp

[
− r2

2d2
+
ip0yy

h̄

]
. (C.27)
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By substituting Eqs. (C.27) and (C.10) into Eq. (C.21), we have that:

Φ1 (r, t) =
1

(2πh̄)2 ·
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d
√
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Φ1 (r, t) =
1

(2πh̄)2 ·
1

d
√
π

∫ ∫
exp

[
i
p · r
h̄

]
cos
(
pnt

ξh̄

)
· exp

[
−ip · r

′

h̄
− r′2

2d2
+ ik0y

′
]
dpdr′. (C.29)

The integral in r′, defied as Ir′ , is defined as:

Ir′ =

∫
exp

[
−ip · r
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dr′, (C.30)

Ir′ =
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From the table of integrals present in Ref. [312], we have that∫ +∞

−∞
exp

[
−p2a2 ± qa

]
da = exp

(
q2

4p2

) √
π

p
, (C.33)

for [Re (p2) > 0]. Thus, we obtain:

Ix′ =

∫
exp

[
− x

′2

2d2
− ipx

′x′

h̄

]
dx′ . (C.34)

Taking p2 = 1/2d2 and q = ipx′/h̄, yields

Ix′ = exp
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, (C.35)
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Analogously, for Iy′ we have that:

Iy′ =

∫
exp

[
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Taking p2 = 1/2d2 and q = i (−py′ + k0h̄) /h̄, yields

Iy′ = exp
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2
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Iy′ = exp

[
− (−py′ + k0h̄)2 d2
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]
d
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2π. (C.39)

Inserting Eqs. (C.36) and (C.39) in Eq. (C.32), we obtain:
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Substituting Eq. (C.45) into Eq. (C.29), yeilds:
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and exp (−k2
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2/2) is a constant, finally we obtain:
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Following the same steps for Φ2 (r, t), we obtain
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Since we already obtained the integral in r′, Eq. (C.45), thus:
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−i

(2πh̄)2 ·
1

d
√
π

∫ (
px − ipy

p

)n
exp

(
i
p · r
h̄

)
sen
(
pnt

ξh̄

)
· exp

(
−p

2d2

2h̄2 +
py′k0d

2

h̄
− k2

0d
2

2

)
2πd2dp, (C.51)

Φ2 (r, t) =
−ide−
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For Φ3 (r, t), we have that

Φ3 (r, t) =
−ide−
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(C.53)

C.3 Wave functions in terms of the Bessel function

Here, is presented the details of how to use cylindrical coordinates (see Fig. C.1), to
rewrite Eqs. (C.48) and (C.53) (note that Φ3 (r, t) differs from Φ3 (r, t) by a + in the
term ((px+ ipy)/p)

n) in terms of the Bessel’s functions. To do so, we defined the following
transformations:

a = k0d, (C.54)

q2 =
p2d2

h̄2 → qdq =
pd2

h̄2 dp (C.55)

Figure C.1: Cylindrical coordinates. The radius of the circle is given by p and the angle
it forms with the axis-x is given by θ.
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and
p = (pcosθ, psenθ) . (C.56)

For the sake of simplicity, but without loss of generality, the following dimensionless
variables were considered:

t → t′ =
h̄n−1t

ξdn
, (C.57)

x → x′ =
x

d
, (C.58)

y → y′ =
y

d
, (C.59)

and
r → r′ =

r

d
. (C.60)

In Eq. (C.57) n is the number of layers.
Thus, replacing Eqs. (C.54) and (C.56) into py′k0d

2/h̄, yeilds:

py′k0d
2

h̄
=

(psenθ) (a) d

h̄
. (C.61)

Once q = pd/h̄, Eq. (C.55), we have:

py′k0d
2

h̄
= qasenθ. (C.62)

Now, inserting q = pd/h̄, obtained from Eq. (C.55), into qnt′, results in:

qnt′ =

(
pd

h̄

)n
t′ . (C.63)

From Eqs. (C.57) and (C.63), we obtain

qnt′ =

(
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)n
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, (C.64)

qnt′ =
pnt

ξh̄
. (C.65)

Thus, we have that
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(
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2
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)
, (C.66)

and
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(
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)
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(
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h̄
− q2

2
+ qasenθ

)
. (C.67)

On the other hand, we can rewrite pxx+ pyy as:

pxx+ pyy = pcosθx′d+ psenθy′d (C.68)

pxx+ pyy = pd (x′cosθ + y′senθ) , (C.69)
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pxx+ pyy = qh̄ (x′cosθ + y′senθ) . (C.70)

Substitution Eq. (C.70) int Eq. (C.67) yields:

exp
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)
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2
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)
. (C.71)

Equation (C.71) is exactly the exponential that appear in the integral of Φ1 (r, t). There-
fore, replacing Eqs. (C.63), (C.66) and (C.71) into Eq. (C.48), and using the fact thatdp =(
h̄2/d2

)
qdqdθ, we obtain
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where ∫ +∞

−∞
dp →

∫ ∞
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∫ +π
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Finally, we have that:
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)
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·
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exp [iq (x′cosθ + y′senθ) + qasenθ] dθqdq. (C.74)

By the same line of reasoning, Eq. (C.53) can be written as:

φ2 (r, t) =
−i
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√
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(
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)∫ ∫ (
i
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)n
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[
iq (x′cosθ + y′senθ)− q2

2
+ qasenθ

]
sen (qnt′) qdqdθ, (C.75)

φ2 (r, t) =
−i
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√
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(
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2

)∫ ∞
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(
−q
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)
sen (qnt′)∫ +π

−π
einθ · exp [iq (x′cosθ + y′senθ) + qasenθ] dθqdq. (C.76)

Let us first solve the integral in dθ defined as:∫ +π

−π
exp [iq [x′cosθ + (y′ − ia) senθ]] dθ. (C.77)

Considering z = (x′, (y′ − ia)), we have that

z = x′ + i [(y′ − ia)] (C.78)

z = x′ + iy′ + a, (C.79)
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where z is the absolut value of z and is defined as

|z| =
√
r2 − a2 − 2iay′. (C.80)

It is necessary another transformation, defined by

x′cosθ + (y′ − ia) senθ = |z| senα, (C.81)

with
x′ = |z| cosβ e (y′ − ia) = |z| senβ, (C.82)

such that
cosβcosθ + senβsenθ = cos [(π/2)− α] . (C.83)

From the fact that cos (β − θ) = cosβcosθ+senβsenθ and senα = cos (π/2− α), we obtain

cos (β − θ) = cos
(π

2
− α

)
, (C.84)

which implies that
β − θ =

π

2
− α, (C.85)

α =
π

2
+ θ − β, (C.86)

and
dα = dθ. (C.87)

Multiplying Eq. (C.81) by qi, the integrand of Eq. (C.77) is obtained and since dθ = dα,
we obtain

∫ +π

−π
exp [iq [x′cosθ + (y′ − ia) senθ]] dθ =

∫ 3π
2
−β

−π
2
−β

exp [iq |z| senα] dα. (C.88)

From Ref.[312], we have that

Jn (z) =
1

2π

∫ +π

−π
e−niθ+izsenθdθ (C.89)

Jn (z) =
1

π

∫ π

0

cos (nθ − zsenθ) dθ, with n = 0, 1, 2, .... (C.90)

Here, Jn (z) is the Bessel function with index n. From Eqs. (C.88) and (C.90) we can
conclude that∫ 3π

2
−β

−π
2
−β

exp (i |z| senα) dα = 2πJ0 (|z|) = 2πJ0

(
q
√
r2 − a2 − 2iay′

)
. (C.91)

Once Eq. (C.91) is equivalent to Eq. (C.77), we can replace it into Eq. (C.74) and
rewrite φ1 (r, t) as:
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φ1 (r, t) =
1

2d
√
π3

exp
(
−a

2

2

)∫ ∞
0

exp
(
−q

2

2

)
cos (qnt′)

· 2πJ0

(
q
√
r2 − a2 − 2iay′

)
qdq, (C.92)

φ1 (r, t) =
e−a

2/2

d
√
π

∫ ∞
0

exp
(
−q

2

2

)
cos (qnt′) J0

(
q
√
r2 − a2 − 2iay′

)
qdq. (C.93)

Now, we need to solve the integral for θ in Eq. (C.76) given by∫ +π

−π
einθexp {iq [x′cosθ + (y′ − ia) senθ]} dθ =

∫ 3π
2
−β

−π
2
−β

einθexp (i |z| senα) dα. (C.94)

Rewriting einθ, in order to let it in terms ofα, we have that:

einθ = ein(α−π/2+β) = einα · e−inπ/2 · einβ (C.95)

On the other hand,

e−inπ/2 = cos
(nπ

2

)
− isen

(nπ
2

)
= (−i)n (C.96)

and
einβ =

(
eiβ
)n

= (cosβ + isenβ)n . (C.97)

Using x′ e y′ from Eq. (C.82), one can gets

einβ =

[
x′

|z|
+ i

(y′ − ia)

|z|

]
, (C.98)

einβ =

[
x′ + a+ iy′√
r2 − a2 − 2iay′

]n
. (C.99)

From Eqs. (C.95), (C.96) and (C.99), the integral defined by Eq. (C.94) becomes:∫ +π

−π
einθ · exp (i |z| senα) dα = (−i)n

[
x′ + a+ iy′√
r2 − a2 − 2iay′

]n
·
∫ +π

−π
exp (inα + i |z| senα) dα. (C.100)

Using Eq. (C.90) again, yields∫ +π

−π
exp (inα + i |z| senα) dα = 2πJ−n (|z|) . (C.101)

Substituting Eq. (C.101) into Eq. (C.100) and the relation of the Bessel function defined
as J−n (x) = (−1)n Jn (x), we conclude that∫ 3π

2
−β

−π
2
−β

einθ · exp (i |z| senα) dα = 2π (i)n
[

x′ + a+ iy′√
r2 − a2 − 2iay′

]n
· Jn

(
q
√
r2 − a2 + 2iay′

)
. (C.102)
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Thus, replacing Eq. (C.102) into Eq. (C.76) we finally obtain:

φ2 (r, t) =
−i
d
√
π3

[
ix′ − y′ + ia√
r2 − a2 + 2iay′

]n
exp

(
−a

2

2

)
·
∫ ∞

0

exp
(
−q

2

2

)
sen (qnt′) 2πJn

(
q
√
r2 − a2 − 2iay′

)
qdq, (C.103)

φ2 (r, t) =
−ie−a2/2

d
√
π

[
ix′ − y′ + ia√
r2 − a2 − 2iay′

]n
·
∫ ∞

0

exp
(
−q

2

2

)
sen (qnt′) Jn

(
q
√
r2 − a2 − 2iay′

)
qdq. (C.104)

C.4 Expected value 〈x〉 for monolayer graphene with
C1 = 1 e C2 = 0

As an example of how to calculate the expected value 〈r (t)〉 in the context of the
Chap. 4, we demonstrate here, step-by-step, how to 〈x〉 for monolayer graphene with
pseudospin polarization defined by C1 = 1 e C2 = 0

From Eqs. (C.25) e (C.26), we have that:

ψ1 (r, t) =
C1√

|C1|2 + |C2|2

∫
G11 (r, r′, t) f (r′) dr′

+
C2√

|C1|2 + |C2|2

∫
G12 (r, r′, t) f (r′) dr′, (C.105)

ψ2 (r, t) =
C1√

|C1|2 + |C2|2

∫
G21 (r, r′, t) f (r′) dr′

+
C2√

|C1|2 + |C2|2

∫
G22 (r, r′, t) f (r′) dr′ . (C.106)

For C1=1 and C2 = 0, Eqs. (C.105) and (C.106) reduces to:

ψ1 (r, t) =

∫
G11 (r, r′, t) f (r′) dr (C.107)

and

ψ2 (r, t) =

∫
G21 (r, r′, t) f (r′) dr. (C.108)
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Using Eqs. (C.48) e (C.53), yields:

ψ1 (r, t) =
d

2h̄2
√
π3

exp
(
−k

2
0d

2

2

)
·
∫

exp
(
i
p · r
h̄
− p2d2

2h̄2 +
py′k0d

2

h̄

)
cos
(
pnt

ξh̄

)
dp (C.109)

and

ψ2 (r, t) =
−id

2h̄2
√
π3

exp
(
−k

2
0d

2

2

)∫ (
px + ipy

p

)n
· exp

(
i
p · r
h̄
− p2d2

2h̄2 +
py′k0d

2

h̄

)
sen
(
pnt

ξh̄

)
dp. (C.110)

Since the objective is to obtain the expected value of r (t), i.e 〈r (t)〉 using the mo-
mentum representation, it is necessary to calculate the 〈r (t)〉 through

〈r (t)〉 =
2∑
j=1

∫
ψj
†
(p, t) [ih̄∇p]ψj (p, t) dp, (C.111)

where
ψj (p, t) =

1

2πh̄

∫
exp

[
−ip · r

h̄

]
ψj (r, t) dr (C.112)

is the Fourier transform of ψj (r, t). Thus,

ψ1 (p, t) =
d

2h̄2
√
π3

(
1

2πh̄

)
exp

(
−k

2
0d

2

2

)
·
∫

exp
[
−ip · r

h̄

]
dr

·
∫

exp
(
i
p′ · r
h̄
− p′2d2

2h̄2 +
py′k0d

2

h̄

)
cos
(
p′nt

ξh̄

)
dp′ (C.113)

ψ1 (p, t) =
d

4h̄3π
√
π3

exp
(
−k

2
0d

2

2

)
·
{∫

exp
[
−i(p− p

′) · r
h̄

]
dr

}
·
∫

exp
(
−p
′2d2

2h̄2 +
py′k0d

2

h̄

)
cos
(
p′nt

ξh̄

)
dp′ . (C.114)

From the fact that the term between brackets ([· · ·]) in Eq. (C.114) is exactly a Dirac
delta, defined as (2πh̄)2 δ (p− p′), thus we have:

ψ1 (p, t) =
d

h̄
√
π
exp

(
−k

2
0d

2

2

)
exp

(
−p

2d2

2h̄2 +
pyk0d

2

h̄

)
cos
(
pnt

ξh̄

)
. (C.115)

From Eq. (C.110), we conclude that:

ψ2 (p, t) =
1

2πh̄

[
−id

2h̄2
√
π3
· exp

(
−k

2
0d

2

2

)]∫
exp

[
−ip · r

h̄

]
dr

·
∫ (

p′x + ip′y
p′

)n
· exp

(
i
p′ · r
h̄
− p′2d2

2h̄2 +
p′y′k0d

2

h̄

)
sen
(
p′nt

ξh̄

)
dp, (C.116)
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ψ2 (p, t) =
−id

4h̄3π
√
π3
· exp

(
−k

2
0d

2

2

){∫
exp

[
−i(p− p

′) · r
h̄

]
dr

}
·
∫ (

p′x + ip′y
p′

)n
· exp

(
−p
′2d2

2h̄2 +
p′y′k0d

2

h̄

)
sen
(
p′nt

ξh̄

)
dp . (C.117)

Again, the term between brackets ([· · ·]) a Dirac delta, then:

ψ2 (p, t) =
−id
h̄
√
π
· exp

(
−k

2
0d

2

2

)(
px + ipy

p

)n
· exp

(
−p

2d2

2h̄2 +
pyk0d

2

h̄

)
sen
(
pnt

ξh̄

)
.

(C.118)

In Cartesian coordinates, the moment operator is given by

∇p = x̂
∂

∂px
+ ŷ

∂

∂py
. (C.119)

For ∂ψ1/px and considering pn =
(
p2
x + p2

y

)n/2, we have that:

∂ψ1

∂px
=

d

h̄
√
π
exp

(
−k

2
0d

2

2

)
∂

∂px

[
exp

(
−p

2d2

2h̄2 +
pyk0d

2

h̄

)
cos
(
pnt

ξh̄

)]
, (C.120)

∂ψ1

∂px
=

d

h̄
√
π
exp

(
−k

2
0d

2

2

)
exp

(
−p

2d2

2h̄2 +
pyk0d

2

h̄

)
·
[
−2pxd

2

2h̄2 cos
(
pnt

ξh̄

)
− sen

(
pnt

ξh̄

)
t

ξh̄

n

2

(
p2
x + p2

y

)n
2
−1 · (2px)

]
, (C.121)

that can be rewritten as

∂ψ1

∂px
=

d

h̄
√
π
exp

(
−k

2
0d

2

2

)
exp

(
−p

2d2

2h̄2 +
pyk0d

2

h̄

)
·
[
−pxd

2

h̄2 cos
(
pnt

ξh̄

)
− sen

(
pnt

ξh̄

)
nt

ξh̄
pxp

n−2

]
. (C.122)

Using the dimensionless variables defined by Eqs. (C.55), (C.56), (C.62) and (C.63), we
can rewrite to Eq.(C.122) as

∂ψ1

∂px
=

d2

h̄2√π
exp

(
−a

2

2

)
exp

(
−q

2
+ aqsenθ

)
·
[
−qcosθcos (qnt′)− nqn−1t′cosθsen (qnt′)

]
. (C.123)

Analogously, ∂ψ1/∂py can be expressed as

∂ψ1

∂py
=

d

h̄
√
π
exp

(
−k

2
0d

2

2

)
∂

∂py

[
exp

(
−p

2d2

2h̄2 +
pyk0d

2

h̄

)
cos
(
pnt

ξh̄

)]
, (C.124)

∂ψ1

∂py
=

d

h̄
√
π
exp

(
−k

2
0d

2

2

)
exp

(
−p

2d2

2h̄2 +
pyk0d

2

h̄

)
·
[(
−2pyd

2

2h̄2 +
k0d

2

h̄

)
cos
(
pnt

ξh̄

)
− sen

(
pnt

ξh̄

)
t

ξh̄

n

2

(
p2
x + p2

y

)n
2
−1 · (2py)

]
, (C.125)
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∂ψ1

∂py
=

d

h̄
√
π
exp

(
−k

2
0d

2

2

)
exp

(
−p

2d2

2h̄2 +
pyk0d

2

h̄

)
·
[(
−pyd

2

h̄2 +
k0d

2

h̄

)
cos
(
pnt

ξh̄

)
− sen

(
pnt

ξh̄

)
nt

ξh̄
pyp

n−2

]
. (C.126)

Introducing the dimensionless variables, yields:

∂ψ1

∂py
=

d

h̄
√
π
exp

(
−a

2

2

)
exp

(
−q

2

2
+ aqsenθ

)
·
[(
−dqsenθ

h̄
+
ad

h̄

)
cos (qnt′)− nqn−1t′senθsen (qnt′)

]
, (C.127)

∂ψ1

∂py
=

d2

h̄2√π
exp

(
−a

2

2

)
exp

(
−q

2

2
+ aqsenθ

)
·
[
(−qsenθ + a) cos (qnt′)− nqn−1t′senθsen (qnt′)

]
. (C.128)

Once

ψ
†
1∇pψ1 =

[
ψ
†
1

(
∂ψ1

∂px

)
x̂+ ψ

†
1

(
∂ψ1

∂py

)
ŷ

]
, (C.129)

then

ψ
†
1∇pψ1 =

{[
d

h̄
√
π
exp

(
−a

2

2

)
exp

(
−q

2

2
+ aqsenθ

)
cos (qnt′)

]}
·
{

d2

h̄2√π
exp

(
−a

2

2

)
exp

(
−q

2

2
+ aqsenθ

)
·
[
−qcosθcos (qnt′)− nqn−1t′cosθsen (qnt′)

]}
x̂

+

{[
d

h̄
√
π
exp

(
−a

2

2

)
exp

(
−q

2

2
+ aqsenθ

)
cos (qnt′)

]}
·
{

d2

h̄2√π
exp

(
−a

2

2

)
exp

(
−q

2

2
+ aqsenθ

)
·
[
(−qsenθ + a) cos (qnt′)− nqn−1t′senθsen (qnt′)

]}
ŷ (C.130)

ψ
†
1∇pψ1 =

d3

h̄3π
exp

(
−a2

)
exp

(
−q2 + 2aqsenθ

)
·
{[
−qcosθcos2 (qnt′)− nqn−1t′cosθsen (qnt′) cos (qnt′)

]
x̂

+
[
(−qsenθ + a) cos2 (qnt′)− nqn−1t′senθsen (qnt′) cos (qnt′)

]
ŷ
}
. (C.131)

On the other hand, sen (a) cos (a) = sen(2a)/2, thus

ψ
†
1∇pψ1 =

d3

h̄3π
exp

(
−a2

)
exp

(
−q2 + 2aqsenθ

)
·
{[
−qcosθcos2 (qnt′)− n

2
qn−1t′cosθsen (2qnt′)

]
x̂

+
[
(−qsenθ + a) cos2 (qnt′)− n

2
qn−1t′senθsen (2qnt′)

]
ŷ
}
. (C.132)
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Now, repeating the same procedure for ψ2, we obtain

∂ψ2

∂px
=
−id
h̄
√
π
· exp

(
−a

2

2

)
∂

∂px

{(
px + ipy

p

)n
exp

(
−p

2d2

2h̄2 +
pyad

h̄

)
sen
(
pnt

ξh̄

)}
, (C.133)

∂ψ2

∂px
=
−id
h̄
√
π
· exp

(
−a

2

2

)
· exp

(
−p

2d2

2h̄2 +
pyad

h̄

){
n

[
px + ipy

p

]n−1

· ∂

∂px

[
px
(
p2
x + p2

y

)−1/2
+ ipy

(
p2
x + p2

y

)−1/2
]
sen
(
pnt

ξh̄

)
−pxd

2

h̄2

(
px + ipy

p

)n
sen
(
pnt

ξh̄

)
+

(
px + ipy

p

)n
cos
(
pnt

ξh̄

)
nt

ξh̄
pxp

n−2

}
, (C.134)

∂ψ2

∂px
=
−id
h̄
√
π
· exp

(
−a

2

2

)
· exp

(
−p

2d2

2h̄2 +
pyad

h̄

)
·

{
n

[
px + ipy

p

]n−1 [
1

p
− px (px + ipy)

p3

]
sen
(
pnt

ξh̄

)
−pxd

2

h̄2

(
px + ipy

p

)n
sen
(
pnt

ξh̄

)
+

(
px + ipy

p

)n
cos
(
pnt

ξh̄

)
nt

ξh̄
pxp

n−2

}
. (C.135)

Since eiθ = (px + ipy) /p , we have that

∂ψ2

∂px
=
−id
h̄
√
π
· exp

(
−a

2

2

)
· exp

(
−p

2d2

2h̄2 +
pyad

h̄

)
·
{
nei(n−1)θ

[
1

p
− (pcosθ)

p2
eiθ
]
sen
(
pnt

ξh̄

)
−pcosθd

2

h̄2 einθsen
(
pnt

ξh̄

)
+ einθcos

(
pnt

ξh̄

)
nt

ξh̄
pcosθpn−2

}
. (C.136)

Introducing the dimensionless variables, yields:

∂ψ2

∂px
=
−id2

h̄2√π
· exp

(
−a

2

2

)
· exp

(
−q

2

2
+ aqsenθ

)
·
{
nei(n−1)θ

[
1

q
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q
eiθ
]

·sen (qnt′)− qcosθeinθsen (qnt′) + nqn−1t′cosθeinθcos (qnt′)
}
, (C.137)

∂ψ2

∂px
=
−id2

h̄2√π
· exp

(
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2

)
· exp
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−q

2

2
+ aqsenθ
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·
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[
n

(
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q
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q

)
− qcosθ

]
+ nt′qn−1cosθeinθcos (qnt′)

}
. (C.138)
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Repeating the same procedure for ∂ψ2/∂py, we obtain

∂ψ2

∂py
=
−id
h̄
√
π
· exp

(
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∂
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)
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)}
(C.139)

∂ψ2

∂py
=
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√
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+
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, (C.140)

∂ψ2

∂py
=
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√
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· exp
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+
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. (C.141)

Since eiθ = (px + ipy) /p, and making the variable changes, yields

∂ψ2

∂py
=
−id2
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· exp
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, (C.142)

∂ψ2

∂py
=
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. (C.143)

Once

ψ
†
2∇pψ2 =

[
ψ
†
2

(
∂ψ2

∂px

)
x̂+ ψ

†
2

(
∂ψ2

∂py

)
ŷ

]
, (C.144)



180 C. SUPPORT INFORMATION FOR THE ZBW IN ABC-NLG

thus

ψ
†
2∇pψ2 =
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π
· exp

(
−a

2

2

)
e−inθ · exp

(
−q

2

2
+ aqsenθ

)
sen (qnt′)

}
{
−id2

h̄2√π
· exp

(
−a

2

2

)
· exp

(
−q

2

2
+ aqsenθ

)
einθsen (qnt′)

[
n

(
e−iθ

q
− cosθ

q

)
− qcosθ

]
+nt′qn−1cosθeinθcos (qnt′)

}
x̂

+

{
id

h̄
√
π
· exp

(
−a

2

2

)
e−inθ · exp

(
−q

2

2
+ aqsenθ

)
sen (qnt′)

}
·
{
−id2

h̄2√π
· exp

(
−a

2

2

)
exp

(
−q

2

2
+ qasenθ

)
einθsen (qnt′)

·
[
n

(
e−iθ

q
− senθ

q

)
− qsenθ + a

]
+ nt′qn−1senθeinθcos (qnt′)

}
ŷ, (C.145)

ψ
†
2∇pψ2 =

d3

h̄3π
· exp

(
−a2

)
exp

(
−q2 + 2aqsenθ

)
·
{[

sen2 (qnt′)

[
n

(
e−iθ

q
− cosθ

q

)
− qcosθ

]
+
n

2
t′qn−1cosθsen (2qnt′)

]
x̂

·
[
sen2 (qnt′)

[
n

(
e−iθ

q
− senθ

q

)
− qsenθ + a

]
+
n

2
t′qn−1senθsen (2qnt′)

]
ŷ

}
. (C.146)

Adding Eqs. (C.132) and (C.146), results in

2∑
j=1

ψ
†
j∇pψj =

d3

h̄3π
· exp

(
−a2

)
exp

(
−q2 + 2aqsenθ

)
·
{[
−qcosθcos2 (qnt′)− n

2
qn−1t′cosθsen (2qnt′)

]
x̂

+

[
sen2 (qnt′)

[
n

(
e−iθ

q
− cosθ

q

)
− qcosθ

]
+
n

2
t′qn−1cosθsen (2qnt′)

]
x̂

+
[
(−qsenθ + a) cos2 (qnt′)− n

2
qn−1t′senθsen (2qnt′)

]
ŷ

+

[
sen2 (qnt′)

[
n

(
e−iθ

q
− senθ

q

)
− qsenθ + a

]
+
n

2
t′qn−1senθsen (2qnt′)

]
ŷ

}
, (C.147)

2∑
j=1

ψ
†
j∇pψj =

d3

h̄3π
· exp

(
−a2

)
exp

(
−q2 + 2aqsenθ

)
·
{[
−qcosθ

[
cos2 (qnt′) + sen2 (qnt′)

]
+ n

(
e−iθ

q
− cosθ

q

)
sen2 (qnt′)

]
x̂

+

[
(−qsenθ + a)

[
cos2 (qnt′) + sen2 (qnt′)

]
+ n

(
e−iθ

q
− senθ

q

)
sen2 (qnt′)

]
ŷ

}
, (C.148)



C.4. EXPECTED VALUE 〈X〉 FOR MONOLAYER GRAPHENE WI . . . 181

2∑
j=1

ψ
†
j∇pψj =

d3

h̄3π
· exp

(
−a2

)
exp

(
−q2 + 2aqsenθ

)
·
{[
−qcosθ + n

(
e−iθ

q
− cosθ

q

)
sen2 (qnt′)

]
x̂

+

[
(−qsenθ + a) + n

(
e−iθ

q
− senθ

q

)
sen2 (qnt′)

]
ŷ

}
. (C.149)

Replacing Eq.(C.149) into Eq.(C.111) and using Eq.(C.73)1, one can gets:

〈x (t)〉 =

(
ih̄
h̄2

d2

)(
d3e−a

2

h̄3π

)∫ ∞
0

∫ π

−π

{
exp

(
−q2 + 2aqsenθ

)
[
−q2cosθ + n

(
e−iθ − cosθ

)
sen2 (qnt′)

]}
dqdθ . (C.150)

Using eiθ − cosθ = −isenθ, then

〈x (t)〉 =

(
ide−a

2

π

)∫ ∞
0

e−q
2

dq

{∫ π

−π
exp (2aqsenθ)

[
−insenθsen2 (qnt′)− q2cosθ

]
dθ

}
.

(C.151)

Now it is necessary to solve the integral in the variable θ, such that:

− insen2 (qnt′)

∫ π

−π
exp (2aqsenθ) senθdθ − q2

∫ π

−π
exp (2aqsenθ) cosθdθ . (C.152)

But senθ =
(
eiθ − e−iθ

)
/2i and cosθ =

(
eiθ + e−iθ

)
/2, then

− n

2
sen2 (qnt′)

∫ π

−π
exp (2aqsenθ + iθ) dθ +

n

2
sen2 (qnt′)

∫ π

−π
exp (2aqsenθ − iθ) dθ

− q2

2

∫ π

−π
exp (2aqsenθ + iθ) dθ − q2

2

∫ π

−π
exp (2aqsenθ − iθ) dθ. (C.153)

− n

2
sen2 (qnt′) [2πiI1 (2aq)] +

n

2
sen2 (qnt′) [−2πiI1 (2aq)]

− q2

2
[2πiI1 (2aq)]− q2

2
[−2πiI1 (2aq)] . (C.154)

−nπisen2 (qnt′) I1 (2aq)−nπisen2 (qnt′) I1 (2aq)−πiq2I1 (2aq) +πiq2I1 (2aq) , (C.155)

− 2nπisen2 (qnt′) I1 (2aq) . (C.156)

Substituting Eq.(C.156) into Eq.(C.151), yields:

〈x (t)〉 =

(
ide−a

2

π

)∫ ∞
0

e−q
2 [−2nπisen2 (qnt′) I1 (2aq)

]
dq, (C.157)

1Equation (C.73) correspond to:
∫∞
−∞ dp→

∫∞
0
pdp

∫ π
−π dθ =

(
h̄2/d2

) ∫∞
0
qdq

∫ π
−π dθ
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〈x (t)〉 =
(

2nde−a
2
)∫ ∞

0

e−q
2

sen2 (qnt′) I1 (2aq) dq. (C.158)

On the other hand, sen2 (qnt′) = [1− cos (2qnt′)] /2, thus:

〈x (t)〉 =
(

2nde−a
2
)∫ ∞

0

e−q
2

(
1− cos (2qnt′)

2

)
I1 (2aq) dq, (C.159)

〈x (t)〉 =
(
nde−a

2
)∫ ∞

0

e−q
2

I1 (2aq) dq −
(
nde−a

2
)∫ ∞

0

e−q
2

cos (2qnt′) I1 (2aq) dq.

(C.160)
From the table of integrals available in Ref. [312], we have that:∫ ∞

0

e−αx
2

Iν (βx) dx =

√
π

2
√
α
exp

(
β2

8α

)
Iν/2

(
β2

8α

)
, (C.161)

then ∫ ∞
0

e−q
2

I1 (2aq) dq =

√
π

2
exp

(
a2

2

)
I1/2

(
a2

2

)
. (C.162)

Replacing Eq.(C.162) into Eq.(C.160), yields

〈x (t)〉 =
nd
√
π

2
e−a

2/2I1/2

(
a2

2

)
−
(
nde−a

2
)∫ ∞

0

e−q
2

cos (2qnt′) I1 (2aq) dq. (C.163)

It is still also possible to simplify Eq.(C.163), since the first order modified Bessel
function can be written as [313]:

Iν (x) =
1

(
√
π) Γ (n+ 1/2)

(x
2

)ν ∫ 1

−1

e−xt
(
1− t2

)ν−1/2
dt. (C.164)

Taking ν = 1/2 in Eq.(C.164), yields:

I1/2 (x) =
1

(
√
π) Γ (1)

(x
2

)1/2
∫ 1

−1

e−xtdt, (C.165)

I1/2 (x) =
1√
π

(x
2

)1/2
[
−e
−xt

x

]1

−1

, (C.166)

I1/2 (x) =
1√
π

(x
2

)1/2
(
ex − e−x

x

)
. (C.167)

Now, taking x = a2/2 we obtain:

I1/2

(
a2

2

)
=

1√
π

(
a2

4

)1/2(
2

a2

)(
ea

2/2 − e−a2/2
)
, (C.168)

I1/2

(
a2

2

)
=

(
ea

2/2 − e−a2/2

a
√
π

)
, (C.169)

Organizing the first term of Eq.(C.164), yields:

nd
√
π

2
e−a

2/2I1/2

(
a2

2

)
=

(
nd
√
π

2
e−a

2/2

)(
ea

2/2 − e−a2/2

a
√
π

)
, (C.170)
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nd
√
π

2
e−a

2/2I1/2

(
a2

2

)
=

1− e−a2

2a
nd. (C.171)

Finally, replacing Eq.(C.171) into Eq. (C.163), we obtain

〈x (t)〉 = nd
1− e−a2

2a
− nde−a2

∫ ∞
0

e−q
2

cos (2qnt′) I1 (2aq) dq. (C.172)

Therefore, for n = 1 we obtain

〈x (t)〉=d

[
1− e−a2

2a
− e−a2

∫ ∞
0

e−q
2

cos (2qt′)I1(2aq) dq

]
(C.173)

that is the same Eq. (4.27) of the main text.
The procedure described here can be applied for the other pseudospin polarization and

it can be extended to the component y of the center mass of the Gaussian wave packet in
order to calculate 〈y (t)〉. In order not to be repetitive, this procedure has been omitted
here.

C.5 Split-operator: a computational method

In this appendix, the numerical method split-operator is discussed in more detail.
Using the Schrödinger representation, we can describe the dynamics of a particle

using the time evolution operator Û(t, t0). Assuming that the initial state is represented
by ψ(r, t0), we can get the state for a later time (t > 0) from

ψ(r, t) = Û(t, t0)ψ(r, t0). (C.174)

When the Hamiltonian does not explicitly depend on time t, the time evolution operator
can be written as [185]:

Û(t, t0) = exp

[
− i
h̄
H(t− t0)

]
. (C.175)

In the TB model, we can consider atomic sites to be a lattice of potential wells, such
that each site that can confine an electron, which has a non-zero probability of tunneling
from one well to another first neighbor.

First, let us consider the case where we have a periodic row of atoms. This system can
be represented by a one-dimensional lattice of quantum wells, as represented in Fig. C.2.
Considering that the barriers between the wells have infinite height, such that the electron
would have zero probability of tunneling, and defining the Hamiltonian of this system as
H∞, we have that: H∞ |ψi〉 = E0 |ψi〉. That is, an electron trapped in the i-th well is a
eigenstate of the system, with ground state energy of the well E0, for any value of i. On
the other hand, if the barrier between the wells is finite (Fig.C.2), there will be a non-zero
probability of the tunneling, such that it is not possible to guarantee that |ψi〉 is a system
eigenstate.
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Figure C.2: Illustration of periodic potential wells with width a representing a row of
atoms. When the potential is infinite (red), the probability of the tunneling is zero. As a
consequence, the wavefunction is completely confined inside the well. On the other hand,
if the potential well is finite (blue color) the electron will have a non-zero probability of
tunneling from one well to another.

However, we can estimate that by applying H over |ψi〉, where H is the Hamiltonian
of the system with finite well, we have that:

H |ψi〉 = ...+ τi−1 |ψi−1〉+ E0 |ψi〉+ τi+1 |ψi+1〉+ ... (C.176)

where τi represents the energy hopping of an electron between the wells i−1 and i+1. Note
that the states |ψi〉, with i = 1, 2, 3, ..., where |ψi〉 represents an electron confined in each
well, are orthogonal, because in the case where we had infinite wells, an electron could not
occupy two sites simultaneously. Therefore, these states form an orthonormal basis and
is possible to write any state of the system, with finite potential, as |Ψ〉 =

∑
i ai |ψi〉. The

eigenenergy and the coefficients ai of its eigenstates can be determined by writing H on
this basis and diagonalizing it. But diagonalize the Hamiltonian defined in Eq. (C.176),
which has infinite terms, is not the best way to do this. To contour this problem, we can
consider the hopping only between the nearest-neighbors, such that Eq. (C.176) reduces
to

H |ψi〉 ≈ τi−1 |ψi−1〉+ E0 |ψi〉+ τi+1 |ψi+1〉 . (C.177)

Therefore, considering the base given by |Ψ〉 =
∑

i ai |ψi〉, the Hamiltonian H can be
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}} }}

Figure C.3: Mapping the hexagonal lattice to a rectangular lattice. Topological equiva-
lence: each site has three other nearest neighbors, the lattice area is equal to 3

√
3a2/2

and the unit vectors that generate the sublattices are equivalent in both representations.
In the structure on the right we also have the representation of the columns (rows) by the
letter i (j).

written as a sparse tridiagonal matrix2 defined as:

H ≈ HTB =



. . . . . . 0 0 0 0

. . . E0 ti−1 0 0 0

0 ti−1 E0 ti 0 0

0 0 ti E0 ti+1
. . .

0 0 0 ti+1 E0
. . .

0 0 0 0
. . . . . .


(C.178)

Since our problem is bi-dimensional, we thus need to rewrite the Hamiltonian HTB,
Eq. (C.177). To do so, is necessary take into account two different index i e j, instead
only one i, as in the 1D case, in order to define the atomic position. As can be seen
in Fig. C.3, that illustrates the mapping of the honeycomb (representing the graphene
lattice) lattice into a rectangular lattice, i represents the row and j the line. Thus, to
consider the atomic positions in two-dimensions, Eq. (C.177) becomes:

H |ψi,,j〉 ≈ +E0 |ψi,j〉+ τ(i−1),j

∣∣ψ(i−1),j

〉
+ τ(i+1),j

∣∣ψ(i+1),j

〉
+ τi,(j−1)

∣∣ψi,(j−1)

〉
+ τi,(j+1)j

∣∣ψi,(j+1)j

〉
. (C.179)

This new matrix, unlike the one-dimensional matrix given by Eq. (C.177), has five
non-zero diagonals and can be classified as a sparse pentadiagonal matrix, which we can

2Sparse matrices are matrices in which most positions are equal to zero. In this type of structure,
only the significant values are stored, in order to obtain a better performance in the execution of the
numerical calculation.



186 C. SUPPORT INFORMATION FOR THE ZBW IN ABC-NLG

Figure C.4: Illustration of the structure of the pentadiagonal matrix corresponding to the
tight-binding model for a two-dimensional lattice. The main diagonal (solid blue line) and
the blue dotted sub-diagonal have all non-zero terms, while the red dotted sub-diagonal
have interspersed non-null and null terms. All other elements outside these five diagonals
are null. Each block represents a square matrix of order I, the number of rows of the
lattice. The number of columns of the lattice sites defines the number of blocks (J).
Therefore, the total number of elements in the HTB array in two dimensions will be:
I × I × J × J .

separate into blocks, as illustrated in Fig. C.4. Note that each term of the secondary
diagonals of the matrix in Fig. C.4 represents the hopping between an atom and its upper
and lower neighbors (with different i′s), represented by the blue dotted lines, and between
an atom and the right and left nearest neighbors (with different j′s), represented by the
red dotted lines. As the atomic interaction at the right and left to the nearest neighbors
occur alternately (see Fig. C.3), the red subdiagonals presents null and non-null values
also alternately3.

Thus, in two dimensions Eq. (C.179) becomes

H|ψi,j〉 = Hi|ψi,j〉+Hj|ψi,j〉, (C.180)

where Hi and Hj are given by

Hi|ψi,j〉 =

(
E0 + Vi,j

2

)
|ψi,j〉+ τi,j−1|ψi,j−1〉+ τi,j+1|ψi,j+1〉 (C.181)

and
Hj|ψi,j〉 =

(
E0 + Vi,j

2

)
|ψi,j〉+ τi−1,j|ψi−1,j〉+ τi+1,j|ψi+1,j〉. (C.182)

From Ref.[55], the time evolution operator can be defined as:

exp

[
− i
h̄
H∆t

]
= exp

[
− i

2h̄
Hj∆t

]
exp

[
− i
h̄
Hi∆t

]
exp

[
− i

2h̄
Hj∆t

]
+O(∆t3), (C.183)

3To facilitate the use of computational methods for Graphene, Wakabayashi, etc. al [314], he suggested
mapping the hexagonal lattice through a rectangular lattice, as shown in Fig. C.3.
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where the error comes from the non-commutativity between the operators Hi and Hj

[315].
Thus, the wave function for an infinitesimally later time will be given by

|ψi,j〉t+∆t
∼= exp

[
− i

2h̄
Hj∆t

]
exp

[
− i
h̄
Hi∆t

]
exp

[
− i

2h̄
Hj∆t

]
|ψi,j〉t. (C.184)

Equation (C.184) can be divided in three parts:

ηi,j = exp

[
− i

2h̄
Hj∆t

]
|ψi,j〉t, (C.185)

|ψi,j〉t+∆t = exp

[
− i

2h̄
Hj∆t

]
ξi,j (C.186)

and
ηi,j = exp

[
− i

2h̄
Hj∆t

]
|ψi,j〉t. (C.187)

Using the Cayley4 relation for exponential, is possible to rewrite Eqs. (C.185), (C.186)
and (C.187) as (

1 +
i

4h̄
Hj∆t

)
ηi, j =

(
1− i

4h̄
Hj∆t

)
|ψi,j〉t, (C.188)(

1 +
i

4h̄
Hi∆t

)
ξi, j =

(
1− i

4h̄
Hi∆t

)
ηi, j, (C.189)

and (
1 +

i

4h̄
Hj∆t

)
|ψi,j〉t+∆t =

(
1− i

4h̄
Hj∆t

)
ξi, j. (C.190)

Thus, the 2D problem, which should initially be represented by a pentadiagonal matrix,
can now be reduced to three equations that only contain tridiagonal matrices.

Orientation of the coordinate systems of momentum in the Dirac model (red arrows)
and tight-binding (black arrows) in the vicinity of the non-equivalent Dirac points K and
K ′ . For the point labeled as 4, with coordinates given by K =

(
0,−4π/3

√
3a0

)
, the

Dirac Hamiltonian is obtained by rotating the axes by an angle of 90º, which means that
the coordinates will be transformed as follows:

As a last point to be mentioned here, as the objective was to compare the numerical
method (split-operator) with the analytical one (Dirac) it is also important to note that,
for example, for the point K =

(
0,−4π/3

√
3a0

)
, the Hamiltonian of Dirac is obtained by

rotating the axes by an angle of 270º, Fig. ??. This means that the coordinates will be
transformed by: x −→ −y and y −→ x. As this is just a redefinition, we just need to
assume that the coordinates x and y will be the same for the numerical and analytical
model, such that we can obtain concise results in these two models.

4exp
[
εÂ
]

=
[
1− εÂ

2

]−1 [
1 + εÂ

2

]
+O(ε4)
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Figure C.5: Orientation of the coordinate systems of momentum in the Dirac model (red
arrows) and tight-binding (black arrows) in the vicinity of the non-equivalent Dirac points
K and K ′ . For the point labeled as 4, with coordinates given by K =

(
0,−4π/3

√
3a0

)
,

the Dirac Hamiltonian is obtained by rotating the axes by an angle of 90º, which means
that the coordinates will be transformed as follows: x −→ −y e y −→ x.

C.6 Direction of the wave packet as a function of layers
number

Analytically, a general expression for 〈x (t)〉 and 〈y (t)〉, in cylindrical coordinate, as a
function of N-ABC layers, can be obtained from Eq. (4.15). Since for (C1 C2)T = (1 0)T

the wave packet always moves in the positive direction of the x-axis, as shown in Fig. 4.8,
we analysed here only the other two initial pseudospinor configuration, i.e (1 1)T and
(1 i)T . Thus, for these cases, 〈x (t)〉 is defined, respectively, as

〈x (t)〉=α(2qnt cos(φ) cos(nφ)+sin(2qnt) sin(nφ) sin(φ)) (C.191a)

〈x (t)〉=α(2qnt cos(φ) sin(nφ)−sin(2qnt) cos(nφ)sin (φ)) , (C.191b)

where α =
(
nde−a

2
/2π
) ∫

e−q
2
dq
∫
e2aq sin(φ)dφ. Solving the integral in φ of Eq. (C.191a)

(Eq. (C.191b)), we concluded that for n even (odd), 〈x (t)〉 is null. On the other hand,
the opposite occurs for 〈y (t)〉 (this can be verified in a similar way). This alternation of
the nullity of 〈x (t)〉 and 〈y (t)〉, for up to 3 layers, for different initial pseudospinor, is
illustrated in Fig. 4.8. Once the analytical expressions of 〈x (t)〉 and 〈y (t)〉 were obtained,
we used the default method of Mathematica® Software (Gauss - Kronrod quadrature
method) to perform numerically the integrals present in such expressions.



D
Support information for ZBW of moiré excitons in

twisted MoS2/WSe2 hetero-bilayers

In this support information section, we present (i) the parameters of the moiré exciton
used in the main text; (ii) the expression for the hopping energy dependence on the
moiré trapping potential and other system parameters; and (iii) the expectation values
of the position 〈r(t)〉 of a moiré exciton in a MoS2/WSe2 van der Waals heterostructure
(vdWhs) for an initial Gaussian wave packet with different pseudo-spinors, in addition to
those discussed in the main text.

D.1 Material parameters of R-type MoS2/WSe2: inter-
layer exciton bandgap and moiré exciton band struc-
ture

An important consequence of the moiré pattern in a twisted MoS2/WSe2 hetero-bilayer
is the fact that the inter-layer excitons bandgap, Eg(r0), is a function of the in-plane

Figure D.1: Dependence of interlayer translation vector r0(r) on the interplane position
vector r in a MoS2/WSe2 hetero-bilayer (adapted from Ref. [53]).



190 D. SUPPORT INFORMATION FOR ZBW OF MOIRÉ EXCITONS IN . . .

displacement vector from a metal site in the hole layer to a nearest-neighbor metal site
in the electron layer. In turn, r0(r) depends on the location r in the moiré pattern. A
complete description of the approximation to obtain the equation for Eg(r0) can be found
in Ref. [316] and also in the Supplementary Material of Ref. [53]. Therefore, we will limit
ourselves here to just reproducing such equation, for the sake of completeness, which is
defined as:

Eg(r0) = Eg,0 + ∆Eg,1|f0(r0)|2 + ∆Eg,2|f+(r0)|2 , (D.1)

with the mapping from the moiré supercell to the monolayer unit cell defined by the
function

r0(r) = r0(0) +R−R′ = r0(0) + n(a1 − a′1) +m(a2 − a′2) , (D.2)

where r ≡ na1 +ma2 and r′ ≡ na′1 +ma′2 = (1 + δ)Ĉ−δθr. The primitive lattice vectors
of WSe2 (MoS2) are given by a′1,2 (a1,2 = 1

1+δ
Ĉδθa

′
1,2), see Fig. D.1. n and m are integers

and Ĉ−δθ represents the rotation of r by an angle −δθ. In Eq. (D.1), as discussed in
Ref. [316], f 0(r0) and f±(r0) are defined, respectively, as:

f0(r0) =
e−iK·r0 + e−iĈ3K·r0 + e−iĈ

2
3K·r0

3
, (D.3)

and

f±(r0) =
e−iK·r0 + e−i(Ĉ3K·r0± 2π

3
) + e−i(Ĉ

2
3K·r0± 4π

3
)

3
. (D.4)

The coupling between two bands in different layers at the K-point, considering only the
leading Fourier components, are defined by f±(r0), as discussed in Refs. [53, 316].

On the other hand, the interlayer separation can also be defined as [53]

d(r0) = d0 + ∆d1|f0(r0)|2 + ∆d2|f+(r0)|2 , (D.5)

obtained from an experimental data fitting in Ref. [53] (for more details, see Ref. [53],
Sec. II).

Table D.1: The parameters to obtain the colormap and moiré exciton band structure of
R-type MoS2/WSe2 hetero-bilayer obtained from Refs. [53, 316].

Variable Value
b 10 nm
δ 3 meV

∆Eg,1 -116 meV
∆Eg,2 -94 meV
d0 6.387 Å

∆d1 0.544 Å
∆d2 0.042 Å
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All parameters used to obtain the moiré exciton band structure and the colormap of
the inter-layer exciton in Figs. 1(c) and 1(e) in the main text, respectively, are summarized
in Tab. D.1.

Figure D.2: (a)-(d) Zitterbewegung of a moiré exciton in a MoS2/WSe2 hetero-bilayer for
an initial Gaussian wave packet distribution with d = 200 Å (blue), 300 Å (orange) and
500 Å (green) and pseudo-spinors [C1 C2]T = [1 0]T and [C1 C2]T = [1 1]T , under applied
fields (a,b) ε = 0 and (c,d) ε = ε0.
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D.2 Hopping strength of the exciton bands in a super-
lattice potential

The hopping magnitude tν (ν = A,B) between nearest-neighbors minima of the A
and B sub-lattices, used in Eq. (2) in the main text, can be approximated as [53, 237]

tν ≈ 0.78ER(Vν(ε)/ER)1.85exp
[
−3.404

√
Vν(ε)/ER

]
, (D.6)

where ER =
h̄2

2M0

(
4π
3b

)2 is the recoil energy with M0 = 0.8m [317] being the exciton mass

written in units of the free-electron mass m, and Vν(ε) is the confining barrier height of
A and B minima, as defined in Fig. 1 in the main text.

D.2.1 Wave packet dynamics and zitterbewegung: complemen-
tary results

In this section, we present complementary results of the average positions 〈x(t)〉 and
〈y(t)〉 of the Gaussian wave packet, not shown in Fig. 2 of the main manuscript, for the
pseudo-spinors [1 1]T and [1 0]T , respectively, as well as results for the [1 i]T pseudo-spinor.

Figure D.2 presents results of the ZBW on the expectation values of the position of
a moiré exciton in a MoS2/WSe2 vdWhs, considering an initial Gaussian wave packet

Figure D.3: The same as in Fig. D.2, but now for a pseudo-spinor defined as [C1 C2]T =

[1 i]T.
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distribution with width given by d = 200 Å (blue), d = 300 Å (orange) and d = 500 Å
(green), and pseudo-spinors [C1 C2]T = [1 0]T and [C1 C2]T = [1 1]T , under applied
fields (a,b) ε = 0 and (c,d) ε = ε0. For both pseudo-spin configurations, when ε = ε0,
Figs. D.2(c,d) show that the ZBW is suppressed for 〈y(t)〉 and 〈x(t)〉 with [1 0]T and
[1 1]T , respectively. On the other hand, as shown in Fig. 2(c,d) in the main manuscript,
〈x(t)〉 and 〈y(t)〉 oscillate. Consequently, applying a perpendicular electric field (ε) to
the hetero-bilayer structure and considering the pseudo-spinor given by [1 0]T or [1 1]T ,
means to restrict the wave packet propagation to only one direction in the xy−plane. If
the electric field is zero, both coordinates of the center mass will exhibit ZBW, as one
verifies in Fig. D.2(a,b) here and Fig. 2(a,b) in the main manuscript.

As another example, we analyze a very commonly investigated initial pseudo-spinor
polarization, [C1 C2]T = [1 i]T. The ZBW for both coordinates of the center-of-mass of
the Gaussian wave packet with (ε 6= 0) and without (ε = 0) an applied electric field ε are
presented in Fig. D.3 for different values of the packet width d. Similarly to the [1 0]T and
[1 1]T pseudo-spinor configurations, when ε 6= 0, Fig. D.3(c,d), only one of the components
features ZBW, i.e 〈x(t)〉 6= 0 and 〈y(t)〉 = 0. On the other hand, for ε = 0, Fig. D.3(a,b),
both coordinates oscillate, exhibiting ZBW with the same frequency for different width d
and a small difference in their amplitudes as time increases.

Finally, in order to reinforce the importance of the proper choice of the external
electric field for the observation of the phenomena discussed in the main manuscript, the
dependence of the absolute value of the maximum displacement (MD) for the expectation

Figure D.4: Dependence of the absolute value of the maximum displacement (MD) for the
expectation value 〈x(t)〉 (left vertical axis), as well as the time to the MD, (right vertical
axis), for an initial wave packet with d = 500Å and pseudo-spinor [C1 C2]T = [1 0]T. For
ε = ε0, where ε0 ≈ 0.44V/nm, both results are maximized. The inset shows 〈x(t)〉 as a
function of time at the critical field, see Fig. 2(c) in the main manuscript. The arrow
indicates the time and magnitude of the MD.
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value 〈x(t)〉 of the wave packet as a function of the applied field is illustrated in Fig. D.4.
Results are shown for a wave packet with d = 500Å width and pseudo-spinor [C1 C2]T =

[1 0]T. When the applied electric field is ε = ε0, where ε0 ≈ 0.44V/nm, both the MD and
the time the wave packet takes to reach the MD (see right axis) are maximized. The inset
in Fig. D.4 shows the time dependence of 〈x(t)〉 at the critical field ε0, where the arrow
identifies the time and magnitude of the MD.



E
Phononic structure of considered vdWh stacks

Here is provided some important data for hBN and the four TMDs, i.e MoS2, WS2,
MoSe2 and WSe2, used in chapter 7.

E.1 hBN reststrahlen bands

It is important to mention that the upper and lower RS bands, shown in Fig. 7.3(b),
obtained from the QEH, presents a small shift with respect to those obtained purely from
first principles [284] and used as a reference in the two considered experiments [21, 265].
These values are provided in Tab. E.1. There are, however, no qualitative differences, as
shown in Fig. 7.3(e).

The difference for the hyperbolic region II is highlighted by the horizontal gray dashed
dotted-dotted lines (first principles [284]) and the dashed gray lines (QEH) in Fig. 7.3(e).
However, the observed SP3 and HP3 modes, obtained from the QEH and the experimental
methods, are in good agreement with each other, as compared in Figs. 7.3(d)-(e).

Table E.1 gives the phonon energies that define the two RS bands in hBN obtained
from the QEH and those from first principles[284]. As can be seen, these two methods
differ in the order of 12% (1 ∼ 2%) in the RS(I) (RS(II)).

Table E.1: Frequencies that define the two Reststrahlen (RS) bands in hBN obtained
from first principles calculations [284] and from the QEH model.

RS (I) RS (II)
h̄ωTO (meV) h̄ωLO (meV) h̄ωTO (meV) h̄ωLO (meV)

First Prin. [284] 96.70 102.90 169.85 199.61
QEH 84.52 90.43 167.27 194.42

Diferrence (%) 12.59 12.53 1.17 2.60
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E.2 Phonon frequencies of the TMDs

All phonons frequencies for the transition metal dichalcogenide MX2 (MoS2, WS2,
MoSe2 and WSe2) included in the QEH calculations for q → 0, are provided in Tab. E.2.
The optical modes of vibration are represented by E ′′, E ′, A′1 and A′′2 (for more details
see Refs. [285–290]).

Table E.2: Phonon frequencies for free-standing monolayer of MoS2, WS2, MoSe2 and
WSe2 included in the QEH calculations. The relevant vibration modes are represent by
E ′′, E ′, A′1 and A′′2. [285–290]

Phonon frequencies (meV)
1 (E ′′) 2 (E ′) 3 (A′1) 4 (A′′2)

MoS2 34.19 46.35 47.59 56.80
WS2 35.56 42.85 50.12 52.98
MoSe2 20.18 28.10 34.37 42.53
WSe2 20.71 29.67 30.19 37.21
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