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Abstract

Pre-trained distributional representations of words and phrases have be-
come omnipresent in natural language processing (NLP), where they have
led to significant improvements in machine learning performance for a
wide range of applications. Recent research has investigated to what ex-
tent these representations are effective for tackling the challenges of the
biomedical text domain. However, it remains difficult to properly disentan-
gle the interplay of model architectures, training objectives, data sources,
and downstream biomedical NLP tasks for which the representations are
used as input features. As a result, it is still unclear to which extent these
representations can be applied to encode specific biomedical semantics for
future applications which would require complex domain knowledge.

In this thesis, we specifically explore what we consider to be robust and
scalable applications of pre-trained representations for biomedical NLP.
These applications go against the current dominant paradigm in NLP
research, which has achieved many successes by fine-tuning large and
complex neural network architectures using vast amounts of data. In
contrast, we explicitly try to minimize the complexity of models that use
the pre-trained representations, as well as the amount of supervised data
necessary for developing the models, while keeping the models transferable
across various domains and applicable in unsupervised ways, e.g. using
distance metrics such as cosine similarity.
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While this paradigm can impose a performance ceiling on our proposed
models compared to other state-of-the-art approaches, it also offers various
benefits. Firstly, it helps to highlights the contribution of various aspects
of a method. For instance, it can emphasize the effectiveness of training
objectives which work for models with low complexity. Secondly, it mini-
mizes the computational cost of our proposed systems, and as such aims
at contributing to more equitable and democratic NLP research. Lastly,
the limitations of this paradigm also challenge us to explore novel ap-
proaches that are more efficient. For example, we can compensate for
less model complexity and training data by finding more effective training
objectives.

In a first study, we demonstrate how we can use word and character n-gram
embeddings to perform spelling correction of English and Dutch clinical
free-text by ranking correction candidates according to their semantic fit
in the textual context. The pre-trained embeddings are used by a cosine
similarity-based ranking model which approximates semantic contexts
through weighted averages of context words. We develop this model using
only automatically generated spelling errors, and explicitly control for
its transferability across domains such as critical care notes and reports
on colon cancer. The resulting method can successfully perform context-
specific clinical spelling correction, while achieving performance which is
as robust as a frequency-based noisy channel ranking model.

The remaining chapters of this thesis are devoted to deep multi-task learn-
ing of biomedical name representations. We define biomedical names
as those textual surface forms that represent biomedical concepts, being
either official names in biomedical vocabularies or unofficial names men-
tioned in text. Recent research has investigated how to represent such
biomedical names in a robust way for downstream NLP applications. Ro-
bustness requires that name representations should encode domain-specific
knowledge, e.g. by reflecting semantic similarity between names through
their closeness in the embedding space, while retaining the universal



applicability and transferability of self-supervised pre-trained representa-
tions. Obvious downstream applications of robust representations include
tasks such as synonym retrieval or entity linking, which links mentions of
biomedical names in free-text to concept identifiers in ontologies. However,
encoding specialized biomedical semantics in robust representations has
the potential to also impact a wide range of other biomedical applica-
tions, such as knowledge graph completion and the discovery of relations
between diseases or interactions between drugs.

Our first chapter on robust representations of biomedical names models
fine-grained distinctions between biomedical concepts and introduces a
novel encoder architecture for biomedical names: the Deep Averaging
Network (DAN), which is a feedforward neural network (FNN) processing
an unordered composition of the word embeddings in a name. While this
architecture does not allow for encoding word order, it has substantially
less computational overhead than more complex neural architectures such
as Long Short-Term Memory Networks (LSTMs) and Transformers, and as
such scales to more intensive training objectives. We exploit this tradeoff to
effectively impose conceptual grounding constraints as training objectives,
which enforce the similarity between the representations of names and the
pre-trained prototypical representations of their biomedical concept iden-
tifiers. The resulting DAN encoder outperforms its state-of-the-art LSTM
counterpart for retrieval of both literal synonyms as well as semantically
related names.

The following chapter exploits the computational efficiency of our DAN
encoder to train a model on higher-level biomedical conceptual distinctions,
which scale to thousands of pairwise similarities within concepts. These
higher-level distinctions point towards more comprehensive domain knowl-
edge, such as grouping the names nettle sting and tick-borne fever together
under the description puncture wound of skin. After training our model on
such high-level distinctions, the resulting representations can generalise
both bottom-up as well as top-down among various semantic hierarchies.
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Moreover, we show how they can be used out-of-the-box for improved
unsupervised detection of hypernyms using only cosine similarity.

In the last chapter of this thesis, we show that our DAN encoder can success-
fully model high-level conceptual distinctions using only few-shot learning
on a small amount of concepts, therefore minimizing the computational
cost of training. Most importantly, our approach allows for continual learn-
ing, where we accumulate information from various conceptual hierarchies
to consistently improve encoder performance. This allows for efficiently
estimating what conceptual distinctions are actually relevant to improve
representations for downstream NLP applications. As of such, it provides
a last clear example of the potential of robust and scalable application of
pre-trained representations for biomedical NLP.



Samenvatting

Vooraf getrainde distributionele voorstellingen van woorden en zinsde-
len zijn alomtegenwoordig in natuurlijke taalverwerking (NLP), waar ze
hebben geleid tot aanzienlijke verbeteringen in de prestaties van machine
learning voor een breed scala aan toepassingen. Recent onderzoek heeft
onderzocht in hoeverre deze representaties effectief zijn om de uitdagin-
gen van het biomedische tekstdomein aan te pakken. Het blijft echter
moeilijk om het samenspel van modelarchitecturen, trainingsdoelstellin-
gen, databronnen, en biomedische NLP-taken waarvoor de representaties
worden gebruikt als invoer, goed te ontwarren. Als gevolg hiervan is het
nog steeds onduidelijk in welke mate deze representaties kunnen worden
toegepast om specifieke biomedische semantiek te coderen voor toekom-
stige toepassingen die complexe domeinkennis vereisen.

In dit proefschrift onderzoeken we specifiek wat we beschouwen als robu-
uste en schaalbare toepassingen van vooraf getrainde representaties voor
biomedische NLP. Deze toepassingen druisen in tegen het huidige domi-
nante paradigma in NLP-onderzoek, dat veel successen heeft behaald door
het verfijnen van grote en complexe neurale netwerkarchitecturen met
behulp van enorme hoeveelheden data. Daarentegen proberen we expliciet
de complexiteit te minimaliseren van modellen die de vooraf getrainde
representaties gebruiken, evenals de hoeveelheid geannoteerde data die
nodig zijn voor het ontwikkelen van de modellen, terwijl we de modellen

Xi



inwisselbaar over verschillende domeinen en direct toepasbaar houden, bv.
met behulp van afstandsmaten zoals cosinusgelijkenis.

Hoewel dit paradigma een prestatielimiet kan opleggen aan onze voorgestelde
modellen in vergelijking met andere geavanceerde benaderingen, biedt
het ook verschillende voordelen. Ten eerste helpt het om de bijdrage
van verschillende aspecten van een methode te benadrukken. Het kan
bijvoorbeeld de effectiviteit benadrukken van trainingsdoelen die werken
voor modellen met een lage complexiteit. Ten tweede minimaliseert het de
computationele kosten van onze voorgestelde systemen en beoogt het als
zodanig bij te dragen aan rechtvaardiger en democratischer NLP-onderzoek.
Ten slotte dagen de beperkingen van dit paradigma ons ook uit om nieuwe,
efficiéntere benaderingen te onderzoeken. We kunnen bijvoorbeeld minder
modelcomplexiteit en geannoteerde data compenseren door effectievere
trainingsdoelen te vinden.

In een eerste studie laten we zien hoe we n-gram-representaties van
woorden en karakters kunnen gebruiken om spellingcorrectie uit te vo-
eren van Engelse en Nederlandse klinische vrije tekst door correctiekan-
didaten te rangschikken op basis van hun semantische geschiktheid in
de tekstuele context. De vooraf getrainde representaties worden ge-
bruikt door een rangschikkingsmodel gebaseerd op cosinusgelijkenis dat
semantische contexten benadert door middel van gewogen gemiddelden
van contextwoorden. We ontwikkelen dit model met alleen automatisch
gegenereerde spelfouten en controleren expliciet op de overdraagbaarheid
ervan tussen domeinen, zoals notities voor kritieke zorg en rapporten over
darmkanker. De resulterende methode kan met succes contextspecifieke
klinische spellingcorrectie uitvoeren, terwijl prestaties worden behaald die
even robuust zijn als een frequentiegebaseerd noisy channel-model.

De overige hoofdstukken van dit proefschrift zijn gewijd aan deep learning

van biomedische naamrepresentaties met behulp van meerdere trainingsob-
jectieven tegelijkertijd. We definiéren biomedische namen als die tekstuele
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oppervlaktevormen die biomedische concepten vertegenwoordigen, zijnde
officiéle namen in biomedische vocabulaires of niet-officiéle namen die
in de tekst worden genoemd. Recent onderzoek heeft onderzocht hoe
dergelijke biomedische namen op een robuuste manier kunnen worden
weergegeven voor downstream NLP-toepassingen. Robuustheid vereist
dat naamweergaven domeinspecifieke kennis coderen, bijv. door seman-
tische gelijkenis tussen namen te weerspiegelen door hun nabijheid in
de vectorruimte, met behoud van de universele toepasbaarheid en over-
draagbaarheid van vooraf getrainde representaties. Voor de hand liggende
downstream toepassingen van robuuste representaties omvatten taken zoals
het herkennen van synoniemen of het koppelen van entiteiten, waarbij
vermeldingen van biomedische namen in vrije tekst worden gekoppeld aan
concept-ID’s in ontologieén. Het coderen van gespecialiseerde biomedische
semantiek in robuuste representaties heeft echter het potentieel om ook
een breed scala aan andere biomedische toepassingen te beinvloeden, zoals
het voltooien van kennisgrafieken en de ontdekking van relaties tussen
ziekten of interacties tussen geneesmiddelen.

Ons eerste hoofdstuk over robuuste representaties van biomedische namen
modelleert een fijnmazig onderscheid tussen biomedische concepten en in-
troduceert een nieuwe encodeerarchitectuur voor biomedische namen: het
Deep Averaging Network (DAN), een feedforward neuraal netwerk (FNN)
dat een ongeordende samenstelling van de woordrepresentaties in een
naam transformeert. Hoewel deze architectuur het coderen van woordvol-
gorde niet toestaat, heeft het aanzienlijk minder computationele overhead
dan complexere neurale architecturen zoals Long Short-Term Memory
Networks (LSTM’s) en Transformers, en schaalt het als zodanig naar inten-
sievere trainingsobjectieven. We gebruiken deze afweging om op effectieve
wijze conceptuele basisbeperkingen op te leggen als trainingsdoelstellin-
gen, die de gelijkenis versterken tussen de representaties van namen en de
vooraf getrainde prototypische representaties van hun biomedische con-
ceptidentificatoren. De resulterende DAN-encoder presteert beter dan zijn
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geavanceerde LSTM-tegenhanger voor het herkennen van zowel letterlijke
synoniemen als semantisch gerelateerde namen.

In het volgende hoofdstuk wordt de computationele efficiéntie van onze
DAN-encoder geéxploiteerd om een model te trainen voor biomedische
conceptuele onderscheidingen op hoger niveau, die kunnen opschalen naar
duizenden paarsgewijze overeenkomsten binnen concepten. Deze onder-
scheidingen op een hoger niveau duiden op meer uitgebreide domeinken-
nis, zoals het groeperen van de namen brandnetelsteek en door teken overge-
dragen koorts samen onder de beschrijving prikwond van de huid. Na ons
model te hebben getraind in dergelijke onderscheidingen op hoog niveau,
kunnen de resulterende representaties zowel bottom-up als top-down gen-
eraliseren over verschillende semantische hiérarchieén. Bovendien laten
we zien hoe ze direct kunnen worden gebruikt voor verbeterde detectie
van hyperoniemen door alleen cosinusgelijkenis te gebruiken.

In het laatste hoofdstuk van dit proefschrift laten we zien dat onze DAN-
encoder met succes conceptuele onderscheidingen op hoog niveau kan
modelleren door slechts een klein aantal concepten te leren, waardoor
de computationele kosten van training worden geminimaliseerd. Het
belangrijkste is dat onze aanpak voortdurend leren mogelijk maakt, waarbij
we informatie verzamelen uit verschillende conceptuele hi€érarchieén om de
prestaties van de encoder consequent te verbeteren. Dit maakt het mogelijk
om efficiént in te schatten welke conceptuele verschillen eigenlijk relevant
zijn om representaties voor downstream NLP-toepassingen te verbeteren.
Als zodanig biedt het een laatste duidelijk voorbeeld van het potentieel van
robuuste en schaalbare toepassingen van vooraf getrainde representaties
voor biomedische NLP.
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Introduction 1

This thesis investigates robust and scalable applications of pre-trained dis-
tributional text representations for biomedical natural language processing.
Biomedical NLP is concerned with the automatic processing of biomedical
and clinical text, and has grown into a large and diverse field which tackles
the specific challenges of these two text genres. The language of clinical
text is particularly challenging, since it communicates highly technical and
precise information through often very noisy and unstructured language.
Successfully processing this language for advanced text mining applications
such as knowledge discovery requires consecutive processes of standard-
ization and semantic representation. In this thesis, we address both topics
using models which use pre-trained distributional text representations as
input.

1.1 Pre-trained text representations

1.1.1 Distributional representations

Pre-trained representations have become omnipresent in NLP research since
the popularity of the Word2Vec algorithm (Mikolov, Sutskever, et al., 2013)
for learning general-purpose word embeddings from large unannotated
text corpora. Compared to the sparsity of lexical representations such as
TF-IDF, the distributed representations of word or sentence embeddings
can allow for better interpolation between textual expressions with similar
meanings but different surface forms.



2

Learning algorithms for pre-trained distributed representations are typically
based on distributional semantics, which stipulates that the meaning of
different words is defined by contrasts in the words’ context of use (Firth,
1957). In order to exploit this phenomenon, artificial neural networks
are trained to generate representations which optimise the associations
between words and their contexts of use in large textual corpora. Such
models can be described as self-supervised, since their learning algorithms
are supervised with data that can be collected in an unsupervised way from
unannotated data.

The most impactful self-supervised models since Word2Vec have all applied
some variation on the masked language modelling objective, which trains
an encoder to predict a masked word in a text given the other context words
surrounding the masked word. Any major improvements in representation
performance ever since have mainly resulted from elaborating the architec-
ture of the neural network. Whereas Word2Vec only uses a feedforward
neural network, more recent models use more complex architectures such
as a Bidirectional Long Short-Term Memory network (ELMo) (Peters et al.,
2018) or a Transformer encoder (BERT) (Devlin et al., 2019). This increase
in modelling capacity has allowed the evolution from context-independent
to context-sensitive representations.

The masked language modelling objective has remained virtually unchal-
lenged over the years, since it has consistently outperformed suggested
alternatives. These alternatives range from training on a large natural
language inference task (Conneau et al., 2017), to sharing a single text
encoder across weakly related tasks in a multi-task learning setting (Sub-
ramanian et al., 2018). Moreover, adding tasks to the masked language
modelling objective is not guaranteed to lead to performance improve-
ments either. For instance, while the BERT model (Devlin et al., 2019)
originally included an objective for predicting the next sentence, follow-up
work proved this objective to be redundant if the model is trained more
intensively (Y. Liu et al., 2019), or even detrimental (Mickus et al., 2020).

Chapter 1 Introduction



Generally, advances in computational power and neural network architec-
ture have allowed the masked language modelling objective to remain the
default paradigm for distributional text representations.

1.1.2 Applying distributional representations to
biomedical NLP

Prior research has investigated the application of distributional text rep-
resentations to the biomedical domain. This research addresses 2 main
questions. Firstly, it investigates which distributional representation meth-
ods (e.g. context-insensitive vs. context-sensitive) are most effective when
used as pre-trained input for biomedical NLP models. Secondly, it observes
whether pre-training on biomedical text corpora provides relative improve-
ments compared to general-domain representations. Both questions are
addressed using intrinsic and extrinsic evaluations. Intrinsic evaluations
are typically performed using benchmarks of semantic similarity between
two words or phrases. This similarity can be interpreted in various ways
depending on the benchmark, e.g. referring only to strict synonymy or
also to shared hyponymy in general (Gladkova & Drozd, 2016). Extrinsic
evaluations measure how useful pre-trained representations are for specific
downstream NLP tasks such as named entity recognition (NER) and text
classification. While several studies observe improvements from using
context-sensitive representations or domain-specific pre-training, there is
not yet a consistent trend to be extracted from these results across all
biomedical NLP tasks (Tawfik & Spruit, 2020a; Wang et al., 2018).

In this thesis, we mainly use 300-dimensional fastText (Bojanowski et al.,
2017) word embeddings as input for our models. This embedding model
combines word and character n-gram representations into a single vector,
which allows the model to construct out-of-vocabulary representations for
words that were absent from the fastText training data. We have trained

1.1 Pre-trained text representations
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these embeddings either on 425M words from the MIMIC-III (Johnson
et al., 2016) corpus, which contains medical records from critical care units,
or on 76M sentences of preprocessed MEDLINE articles released by Hakala
et al. (2016). We include two other self-supervised embeddings in this
thesis: the publicly released context-sensitive 728-dimensional BioBERT
(Lee et al., 2019) model, which has adapted the BERT encoder to the
biomedical domain, and a 600-dimensional Sent2Vec (Pagliardini et al.,
2018) model, which is an extension of the fastText model to word n-gram
composition, and which was trained on the same MEDLINE data.

While a recent line of work has looked into adding specific domain knowl-
edge to pre-trained word embedings, e.g. by injecting ontological informa-
tion in the training data (Zhang et al., 2019) or post-processing already
trained word embeddings to fit semantic constraints (Chiu et al., 2019), we
do not use such embeddings as input to our models. We explicitly want to
observe how much information we can extract from generic self-supervised
representations, and whether they contain more meaning than meets the
eye.

1.2 Robust and scalable applications

In this thesis, we specifically explore what we consider to be robust and
scalable applications of pre-trained representations for biomedical NLP.
These applications go against the current dominant paradigm in NLP
research, which has achieved many successes by fine-tuning large and
complex neural network architectures using vast amounts of data. In
contrast, we explicitly try to minimize the complexity of models that use
the pre-trained representations, as well as the amount of supervised data
necessary for developing the models, while keeping the models transferable
across various domains and applicable in unsupervised ways, e.g. using
distance metrics such as cosine similarity.
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Our approach is inspired by a recent strand of research which has explored
low-cost improvements for representation baselines. While earlier work
has focused on supervised methods for post-processing pre-trained word
embeddings, such as retrofitting (Faruqui et al., 2015) and counterfitting
(Mrksi¢ et al., 2016), more recent work has investigated unsupervised
counterparts which can be similarly effective. Such progress has been
made possible by reconsidering various implicit assumptions about the
relevance of specific representational information. For instance, while
positional information of words in a text can evidently be important, the
extent to which it contributes to model performance for various NLP tasks
can be unclear or even counterintuitive. Work on Deep Averaging Net-
works (Iyyer et al., 2015) has shown that unordered composition of word
embeddings (e.g. averaging) can rival syntactically-aware methods for text
classification tasks if the composition is transformed by a sufficiently deep
feedforward neural network. Moreover, in use cases where word order is
more directly relevant for a specific task, using randomly initialised order-
sensitive encoders can sometimes be sufficient (Wieting & Kiela, 2019).
Similar questions of relevance have been raised about other aspects of tex-
tual information, including higher-level features: while the original BERT
model lacks specific information about entities across token boundaries,
injecting entity knowledge has not yet led to performance gains for NLP
benchmarks ranging from text understanding to question answering and
machine translation (Broscheit, 2019).

These observations point to the compression tradeoff in text representation:
trying to compress textual expressions in a single distributed vector requires
to partially suppress various low-frequency patterns in favour of robust
inductive biases which are useful along many use contexts. For example,
contrary to earlier assumptions, information about different senses of a
word is generally represented well in a single-vector embedding of that
word, as long as the senses are sufficiently frequent in the corpus for train-
ing word embeddings (Yaghoobzadeh et al., 2019). Since the distributed
features of distributional representations can be useful without aligning

1.2 Robust and scalable applications

5



6

with clearly delineated linguistic phenomena, the potential contribution
of those representations to various downstream models can be unclear.
While a wide range of probing tasks has been developed to investigate
this potential more systematically (Adi et al., 2017; Conneau et al., 2018),
effective exploitation of pre-trained representations remains a fundamen-
tally empirical question. In this thesis, we raise the question whether more
meaning than meets the eye can be extracted from those representations to
work towards more comprehensive encoding of biomedical semantics.

In summary, these are the four criteria we aim to fulfil in the main chap-
ters of this thesis, either explicitly or implicitly, to provide robust and
scalable applications of pre-trained distributional text representations for
biomedical NLP:

1. Minimise the complexity of models that use the pre-trained repre-
sentations.

2. Minimise the amount of supervised data necessary for develop-
ment while keeping models sufficiently generalisable.

3. Develop models for biomedical domains while keeping them trans-
ferable across domains.

4. Apply developed models to various tasks using only unsupervised
distance metrics such as cosine similarity instead of training them
end-to-end for separate tasks.

1.3 Normalization of clinical text

Compared to biomedical text, clinical text can offer additional difficulties
for natural language processing. While the former is intended to distribute
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research results among a larger community, the latter is typically written by
health care professionals to communicate among each other and to exam-
ined patients. Such clinical notes are often unstructured and heterogeneous
in purpose. Moreover, their language can be particularly noisy, containing
difficulties such as atypical grammar, non-standardized abbreviations and
acronyms, as well as misspellings (Leaman et al., 2015). Meanwhile, they
also contain highly technical language specific to medical context, which
needs to be detected by downstream NLP applications with high precision.
As a result, automatic processing of clinical notes can require an effective
normalization component, which transforms the raw source text into a
more standardized form that can serve as more suitable input for an NLP
pipeline.

The research in Chapter 2 of this thesis describes our proposed model
for context-sensitive spelling correction of English and Dutch clinical free-
text. While strong baselines for spelling correction often leverage corpus
frequencies as inductive prior, they typically do not include the textual
context of the misspelling. However, the technical specificity of clinical text
could provide textual contexts which are clearly indicative of correction
candidates. As of such, these contexts could be even used to detect where
a specific misspelling maps to different corrections in different contexts,
e.g. iron deficiency due to enemia — anemia vs. fluid injected with enemia

— enema.

In our application, we use word and character n-gram embeddings from the
fastText (Bojanowski et al., 2017) embedding model to rank spelling correc-
tion candidates according to their semantic fit in the textual context. The
character n-gram embeddings allow for constructing representations for
correction candidate words which are out-of-vocabulary. The pre-trained
embeddings are used by a cosine similarity-based ranking model which ap-
proximates semantic contexts through weighted averages of context words.
We develop this model using only automatically generated spelling errors,
and explicitly control for its transferability across domains such as critical

1.3 Normalization of clinical text
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care notes and reports on colon cancer. The resulting method can success-
fully perform context-specific clinical spelling correction, while achieving
performance which is as robust as a frequency-based noisy channel ranking
model.

1.4 Biomedical name representations

The remaining chapters of this PhD are devoted to multi-task learning of
biomedical name representations. We define biomedical names as those tex-
tual surface forms that represent biomedical concepts, being either official
names in biomedical vocabularies or unofficial names mentioned in text.
Recent research has investigated how to represent such biomedical names
in a robust way for downstream NLP applications. Robustness requires that
name representations should encode domain-specific knowledge, e.g. by
reflecting semantic similarity between names through their closeness in the
embedding space, while retaining the universal applicability and transfer-
ability of self-supervised pre-trained representations. Obvious downstream
applications of robust representations include tasks such as synonym re-
trieval or entity linking, which links mentions of biomedical names in
free-text to concept identifiers in ontologies. However, encoding special-
ized biomedical semantics in robust representations has the potential to
also impact a wide range of other biomedical applications, such as knowl-
edge graph completion and the discovery of relations between diseases or
interactions between drugs.

In all of our chapters on biomedical name representations, we use the same
neural name encoder for our proposed models. Instead of using an LSTM
or Transformer architecture, we use a Deep Averaging Network (DAN)
(Iyyer et al., 2015), which is a feedforward neural network processing an
unordered composition of the word embeddings in a name. This encoder is
a core characteristic of our robust and scalable applications, and serves two
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main purposes. Firstly, the encoder architecture requires much less compu-
tational cost to train, and as a result can also allow for more cost-intensive
training objectives that could be more effective. Secondly, we can prove
the robustness and scalability of a proposed approach by using a neural
architecture that has no access to word order like LSTMs have or cannot
apply attention over specific word combinations like Transformers can.
This emphasises the role of factors outside of encoder complexity, and thus
shows to what extent domain-specific information can be better extracted
from generic self-supervised representations by e.g. only improving the
training objectives.

1.4.1 Conceptual grounding

Chapter 3 focuses on the effectiveness of using conceptual grounding con-
straints during multi-task training of biomedical name representations.
Such grounding constraints tie the output of a biomedical name encoder
to specific pre-trained targets which constitute a globally coherent and
meaningful embedding space. In the case of conceptual grounding, these
targets are prototypical representations of the biomedical concept identi-
fiers of names. Earlier research has indicated that such grounding can be
effective using pre-trained knowledge graph embeddings which are infused
with textual features (Kartsaklis et al., 2018). However, later research
has indicated that simple approximations of concept representations can
be similarly effective. For instance, the Biomedical Name Encoder model
(Phan et al., 2019) constructs concept prototypes by averaging the pre-
trained name embeddings from the set of names belonging to that concept.
We use such targets in our own experiments.

Our application enriches a siamese neural network encoder for biomedi-
cal names with 2 novel constraints which effectively enforce conceptual
grounding. The first constraint, which we call the linear constraint, applies
canonical correlation analysis (CCA) to pre-trained embeddings of names

1.4 Biomedical name representations
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and their concepts to project them into a space which improves their linear
mapping. These transformed embeddings are then used as input represen-
tations for the neural encoder. The second constraint applies additional
conceptual grounding using a training objective which forces biomedical
names from the same concept to form averaged concept prototypes that
approximate the pre-trained embedding of their concept identifier. The
low computational cost of the DAN encoder allows us to jointly optimize
entire parts of the embedding space with this second constraint instead of
only stochastically iterating over single names during training.

Our experimental results show that training a DAN using conceptual
grounding constraints can infuse name representations with more domain-
specific semantics without losing robustness, even when trained on sub-
stantially less data than previous research. These representations can help
with retrieving literal synonyms as well as semantically related terms for
various biomedical ontologies, and also perform well on benchmarks of
relatedness between biomedical names.

1.4.2 Higher-level semantics

While Chapter 3 trains and tests biomedical name encoders on distinctions
between fine-grained concepts (i.e., concepts with no child nodes in an
ontological directed graph), the remaining chapters of this thesis focus
on higher-level conceptual distinctions. While such distinctions have not
been investigated yet in the context of biomedical name representations,
we believe that they could play a crucial role in truly capturing relevant
biomedical semantics for downstream NLP applications. Earlier research
shares the underlying assumption that complex neural encoder architec-
tures can learn biomedical semantics by generalising in a bottom-up fashion
from large amounts of fine-grained semantic distinctions, if provided with
sufficient quantities of training data.
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In Chapter 4, we show that this assumption only partially holds, and pro-
pose a novel multi-task DAN model which can generalise both bottom-up
as well as top-down among various semantic hierarchies. Moreover, the
resulting representations can be used out-of-the-box for unsupervised de-
tection of hypernyms and also perform well on benchmarks of relatedness
between biomedical names. Our proposed framework can even be effective
using only around 30 coarse-grained higher-level classes. This opens up
possibilities for applying our framework to data beyond carefully curated
ontologies, for instance in self-supervised or semi-supervised settings.

1.4.3 Few-shot learning

In Chapter 5, we explore the limits of robust representation learning of
biomedical names by training a feedforward neural network to transform
pre-trained name embeddings using only small sets of names randomly
sampled from high-level biomedical concepts. This approach is effective
for various types of input representations, both domain-specific or self-
supervised, and generalises well to benchmarks of relatedness between
biomedical names. Most importantly, our approach allows for continual
learning, where we accumulate information from various conceptual hierar-
chies to consistently improve encoder performance. Finding and exploiting
relevant distinctions can be an empirical question, and a heuristic search
among various conceptual hierarchies is computationally expensive when
using more complex neural encoders. Our proposed model allows for
efficiently estimating what conceptual distinctions are actually relevant
to improve representations for downstream NLP applications. As of such,
it provides a last clear example of the potential of robust and scalable
application of pre-trained representations for biomedical NLP.

1.5 Publications and contributions
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1.5.2 Contributions

These are some of the most notable contributions of the research presented
in this thesis:

1.5.2.1 Semantic composition of textual contexts in clinical
text

In Chapter 2, we have proposed a spelling correction model which suc-
cessfully applies simple approximations of textual contexts using weighted
compositions of word embeddings. Comparable approximations have been
incorporated into e.g. concept extraction models without much success
(Tulkens et al., 2019). Our application serves as empirical evidence that
there are use cases in which these approximations provide added value.

1.5.2.2 Deep Averaging Networks

While Deep Averaging Networks have already been proven effective in e.g.
text classification tasks, the research in Chapters 3-5 has demonstrated
for the first time that their potential application includes the successful
encoding of highly specialized biomedical semantics.

1.5.2.3 Conceptual grounding

While prior research had already proven the potential contribution of con-
ceptual grounding for training encoders, we have demonstrated in Chapter
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3 that applying this grounding more effectively can lead to substantial
improvements in the encoding of biomedical semantics.

1.5.2.4 Higher-level biomedical semantics

Whereas prior research on biomedical name representations has consis-
tently focused on distinctions between fine-grained biomedical concepts,
we have provided a framework in Chapter 4 to train and evaluate encoders
for higher-level categorizations of biomedical names as well. Moreover,
our proposed model can generalize biomedical semantics both bottom-up
as well as top-down along semantic hierarchies.

1.5.2.5 Encoding hypernymy through cosine similarity

The biomedical name encoder which we have proposed in Chapter 4 can
perform unsupervised detection of hypernyms using only cosine similarity.
This contrasts with earlier approaches for encoding hypernymy which ex-
plicitly require more than cosine similarity to properly work. For example,
Vuli¢ and Mrksi¢ (2018) use vector norms to encode hierarchical hyper-
nymic relations, while other research into hypernymy even requires other
geometric spaces than Euclidean space, such as hyperbolic space (Dhingra
et al., 2018). Our results can indicate that cosine similarity in Euclidean
space still shows potential for encoding these hierarchical relations given
the right training objectives.
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1.5.2.6 Few-shot biomedical name representations

Prior research on biomedical name encoders trains complex neural encoder
architectures to learn biomedical semantics by generalising in a bottom-
up fashion from large amounts of fine-grained semantic distinctions. In
Chapter 5, we have demonstrated that few-shot top-down approximations
of biomedical semantics are easily achievable and could even prove to be
more efficient.

1.5.2.7 Continual learning of biomedical name
representations

While prior research on biomedical name encoders is mostly concerned
with modeling all fine-grained distinctions within a single large ontology,
we have demonstrated in Chapter 5 that our few-shot top-down approxima-
tions of biomedical semantics can be accumulated over multiple different
hierarchies. This can highlight the added value of specific ontological
categorizations for downstream biomedical NLP applications.

1.5 Publications and contributions
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Clinical Free-Text with

Word and Character

N-Gram Embeddings

In this chapter, we present an unsupervised context-sensitive spelling correction
method for clinical free-text that uses word and character n-gram embeddings.
Our method generates misspelling replacement candidates and ranks them
according to their semantic fit, by calculating a weighted cosine similarity
between the vectorized representation of a candidate and the misspelling
context. To tune the parameters of this model, we generate self-induced
spelling error corpora. We perform our experiments for two languages. For
English, we greatly outperform off-the-shelf spelling correction tools on a
manually annotated MIMIC-III test set, and counter the frequency bias of a
noisy channel model, showing that neural embeddings can be successfully
exploited to improve upon the state-of-the-art. For Dutch, we also outperform
an off-the-shelf spelling correction tool on manually annotated clinical records
from the Antwerp University Hospital, but can offer no empirical evidence that
our method counters the frequency bias of a noisy channel model in this case
as well. However, both our context-sensitive model and our implementation
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of the noisy channel model obtain high scores on the test set, establishing a
state-of-the-art for Dutch clinical spelling correction with the noisy channel
model.

2.1 Introduction

The problem of automated spelling correction has a long history, dating
back to the late 1950s.! Traditionally, spelling errors are divided into two
categories: non-word misspellings, the most prevalent type of misspellings,
where the error leads to a nonexistent word, and real-word misspellings,
where the error leads to an existing word, either caused by a typo (e.g. I
hele — hope so), or as a result of grammatical (e.g. their - there) or lexical
(e.g. aisle - isle) confusion. The spelling correction task can be divided
into three subtasks: detection of misspellings, generation of replacement
candidates, and ranking of these candidate replacements to correct the
misspelling. The nature of the detection subtask is dependent on the type
of error: non-word misspellings are typically defined as tokens absent from
a reference lexicon, while for real-word misspellings, the detection task is
postponed by considering all tokens as replaceable, using the confidence of
the candidate ranking module to determine which tokens should be treated
as misspellings. The generation of replacement candidates is typically
performed by including all items from a lexicon which fall within a pre-
defined edit distance of the misspelling (e.g. all items within a Levenshtein
distance of 3). The ranking component is the most complex of the three
subtasks, and is the main topic of this paper.

The genre of clinical free-text poses an interesting challenge to the spelling
correction task, since it is notoriously noisy. English corpora contain
observed spelling error rates which range from 0.1% (H. Liu et al., 2012)
and 0.4% (Lai et al., 2015) to 4% and 7% (Tolentino et al., 2007), and even

1A good overview is given by Mitton (2010) and Jurafsky and Martin (2016).
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10% (Ruch et al., 2003). Moreover, clinical text also has variable lexical
characteristics, caused by a broad range of domain- and subdomain-specific
terminology and language conventions. These properties of clinical text can
render traditional spell checkers ineffective (Patrick et al., 2010). Recently;,
Lai et al. (2015) have achieved nearly 80% correction accuracy on a test
set of clinical notes with their noisy channel model. However, their ranking
model does not use any contextual information, while the context of a
misspelling can provide important clues for the spelling correction process,
for instance to counter the frequency bias of a context-insensitive system
based on corpus frequency. As an example, consider the misspelling geint
— going present in the MIMIC-III (Johnson et al., 2016) clinical corpus.
While in many domains, going will be a relatively frequent word type
and will consequently be picked by a corpus frequency-based system, it is
actually outnumbered in MIMIC-III by the more prevalent word types joint
and point, which are other replacement candidates for the same misspelling.
In other words, corpus frequency is not a reliable metric in such cases. Flor
(2012) also pointed out that ignoring contextual clues harms performance
where a specific misspelling maps to different corrections in different
contexts, e.g. iron deficiency due to eremia — anemia vs. fluid injected with

enemia — enema. A noisy channel model like the one by Lai et al. (2015)
will choose the same item for both corrections.

Our proposed unsupervised context-sensitive method exploits contextual
clues by using neural embeddings to rank misspelling replacement can-
didates according to their semantic fit in the misspelling context. Neural
embeddings have proven useful for a variety of related tasks, such as unsu-
pervised normalization (Sridhar, 2015) and reducing the candidate search
space for spelling correction (Pande, 2017). We hypothesize that, by using
neural embeddings, our method can counter the frequency bias of a noisy
channel model. We test our system on manually annotated misspellings
from the MIMIC-III corpus. We also conduct experiments on Dutch data,
since there is still a need for a Dutch spelling correction method for clinical
free-text (Cornet et al., 2012). By replicating our English research setup

2.1 Introduction

19



20

for Dutch, we simultaneously examine the language adaptability of our
context-sensitive model, and establish a state-of-the-art for Dutch clinical
spelling correction. We test our Dutch model on manually annotated mis-
spellings from clinical records collected at the Antwerp University Hospital
(UZA). In our experiments for both English and Dutch, we focus on already
detected non-word misspellings for developing and testing our spelling
correction method, following Lai et al (2015). Note that our method could
also be applied to real-word errors. However, since our strategy for col-
lecting an empirical test set of misspellings, which we describe in section
2.3.4, can not be used for real-word errors, we do not address them in this
article.

2.2 Approach

Since we focus on already detected non-word misspellings, our system only
deals with two subtasks of the spelling correction task, namely, generating
candidate replacements and ranking them.

2.2.1 Candidate Generation

We generate replacement candidates in 2 phases, using the reference
lexicons described in section 2.3.1. First, we extract all items within a
Damerau-Levenshtein edit distance of 2 from a reference lexicon. Secondly,
to allow for candidates beyond that edit distance, we also apply the Double
Metaphone matching popularized by the open source spell checker Aspell?.
This algorithm converts lexical forms to an approximate phonetic conso-
nant skeleton, and matches all Double Metaphone representations within
a Damerau-Levenshtein edit distance of 1. The Double Metaphone repre-
sentation is an intentionally approximate phonetic representation, which

2http://aspell.net/metaphone/
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is created with an elaborate set of rules, and whose principles of design
include mapping voiced/unvoiced consonant pairs to the same encoding,
encoding any initial vowel with A, and disregarding all non-initial vowel
sounds. For example, the Double Metaphone representation of antibiotic is
ANTPITK.

2.2.2 Candidate Ranking

Our approach computes the cosine similarity between the vector repre-
sentation of a candidate and the composed vector representations of the
misspelling context, weights this score with other parameters, and uses it
as the ranking criterium. This setup is similar to the contextual similarity
score by Kilicoglu et al. (2015), which proved unsuccessful in their experi-
ments. However, their experiments were preliminary. They used a limited
context window of 2 tokens, could not account for candidates which are
not observed in the training data, and did not investigate whether a bigger
training corpus would lead to vector representations which scale better to
the complexity of the task.

We undertake a more thorough examination of the applicability of neural
embeddings to the spelling correction task. To tune the parameters of
our context-sensitive spelling correction model in an unsupervised way,
we automatically generate development corpora with artificial, randomly
created spelling errors for three different scenarios following the proce-
dures described in section 2.3.3. These three types of generated spelling
error corpora, which we refer to as setups, are increasingly difficult for
the spelling correction task. We apply the same setups to both English
and Dutch. Setup 1 is generated from the same corpus which is used to
train the neural embeddings, and exclusively contains corrections which
are present in the vocabulary of these neural embeddings. Setup 2 is
generated from a corpus in a different clinical subdomain, and also exclu-
sively contains in-vector-vocabulary corrections. Setup 3 presents the most
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candidate reciprocal weighting ’

Vectorize misspelling Divide by edit
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Fig. 2.1.: The final architecture of our model. Within a specified window size (9
for English, 10 for Dutch), it vectorizes every context word on each side
if it is present in the vector vocabulary, applies reciprocal weighting,
and sums the representations. It then calculates the cosine similarity
with each candidate vector, and divides this score by the Damerau-
Levenshtein edit distance between the candidate and misspelling. If
the candidate is OOV, the score is divided by an OOV penalty.

difficult scenario, where we use the same corpus as for Setup 2, but only
include corrections which are not present in the embedding vocabulary
(OOV). In other words, here our model has to deal with both domain
change and data sparsity.

Correcting OOV tokens in Setup 3 is made possible by using a combination
of word and character n-gram embeddings. We train these embeddings
with the fastText model (Bojanowski et al., 2017), an extension of the
popular Word2Vec model (Mikolov, Chen, et al., 2013), which creates
vector representations for character n-grams and sums these with word
unigram vectors to create the final word vectors. FastText allows for
creating vector representations for misspelling replacement candidates
absent from the trained embedding space, by only summing the vectors of
the character n-grams.

We report our development experiments with the different setups in section
2.4.1. The final architecture of our model for both English and Dutch is
described in Figure 2.1. We evaluate this model on our test data in section
2.4.2.
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Language Corpus type Domain Data used | Instances
DEVELOPMENT: SETUP 1 critical care MIMIC-III 5,000
DEVELOPMENT: SETUP 2 | breast/colon cancer THYME 5,000

ENGLISH
DEVELOPMENT: SETUP 3 | breast/colon cancer THYME 1,500

TEST critical care MIMIC-III 873
DEVELOPMENT: SETUP 1 critical care UZA 5,000
DEVELOPMENT: SETUP 2 | breast/colon cancer UZA 5,000

DUTCH

DEVELOPMENT: SETUP 3 | breast/colon cancer UZA 350
TEST miscellaneous UZA 490

Tab. 2.1.: A comprehensive overview of our corpora described in section 2.3.3
and 2.3.4.

2.3 Materials

We tokenize all English data with the Pattern tokenizer (Smedt & Daele-
mans, 2012), and all Dutch data with Ucto®. All text is lowercased?, and
we remove all tokens that include anything different from alphabetic char-
acters or hyphens. Table 2.1 gives a comprehensive overview of the English
and Dutch development and test corpora we describe in section 2.3.3 and
2.3.4.

2.3.1 Lexicons

To construct reference lexicons, we fuse general dictionaries with special-
ized resources. For our English lexicon, we use a union of the general
dictionary from Jazzy®, a Java open source spell checker (47,160 items),
and the UMLS® SPECIALIST lexicon® (304,840 items), which contains a
broad range of specialized clinical terms. This amounts to 319,579 unique

3https://languagemachines.github.io/ucto/

“While this has consequences for the nature of the task, it is a salient aspect of training
good embeddings. Lowercasing reduces sparsity, therefore leading to more reliable
representations, especially in the case of low frequency words.

Shttp://jazzy.sourceforge.net

Shttps://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/index.html
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Misspelling Candidates

Setup 1 | unchanged — unchainged | unchanged, unchained, uncharged, unhinged
Setup 2 chronic — chornic chronic, choreic, cornice, chloric
Setup 3 accrued — accued accrued, accused, accuse, accede

Tab. 2.2.: Examples of automatically generated spelling errors and some replace-
ment candidates for the English development setups.

lexical items. For our Dutch lexicon, we use as general dictionary the pub-
licly available word list from Stichting OpenTaal’ (320,913 tokens), which
has the official quality label of the Dutch Language Union. As specialized
resource, we extract terminology from two clinical resources, namely, the
Belgian Bilingual Biclassified Thesaurus (23,794 items) constructed by
the universities of Ghent and Brussels, and the UMLS® Metathesaurus®
(77,646 items). This amounts to 371,559 unique lexical items.

2.3.2 Neural embeddings

We train a fastText skipgram model using the default parameters, except
for the dimensionality, which we raise to 300, since we want to make sure
that the embeddings are able to capture subtle semantic relationships in a
training corpus of our size. For our English experiments, we train on 425M
words from the MIMIC-III corpus, which contains medical records from
critical care units. For our Dutch experiments, we train on 720M words
from clinical records collected at the Antwerp University Hospital (UZA).
These records span a decade in time, and cover various genres (notes,
letters, protocols, reports) as well as a wide range of clinical subdomains,
including gastroenterology, pulmonology, and critical care.

7https://www.opentaal.org
8https://www.nlm.nih.gov/research/umls/knowledge sources/metathesaurus/
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Misspelling Candidates

Setup 1 | mediane — medciane | mediane, mediale, medianen, Mediene
Setup 2 beperkt — beprekt beperkt, betrekt, verrekt, gerekt, bevlekt
Setup 3 | megacyste — megacyte megacyste, megabyte, megabytes

Tab. 2.3.: Examples of automatically generated spelling errors and some replace-
ment candidates for the Dutch development setups.

2.3.3 Development corpora

In order to tune our model parameters in an unsupervised way, we automat-
ically create self-induced error corpora. We generate these development
corpora by randomly sampling lines from a reference corpus, randomly
sampling a single word per line if the word is present in our reference
lexicon, transforming these words with either 1 (80%) or 2 (20%) random
Damerau-Levenshtein operations to a non-word, and then extracting these
misspelling instances with a context window of up to 10 tokens on each
side. Table 2.1 gives an overview of all the development corpora and
the data used to generate them. Table 2.2 and 2.3 give examples from
all development corpora for both languages. For Setup 1, we perform
our corpus creation procedure for critical care records, a domain which is
present in the data used to train our neural embeddings. We exclusively
sample words present in our vector vocabulary, resulting in 5,000 tokens
for both English and Dutch. For Setup 2, we perform our procedure for
records which exclusively cover the domain of brain and colon cancer,
which is not represented in our neural embedding corpora. For English,
we use the THYME (Styler IV et al., 2014) corpus. For Dutch, we use data
which originally belonged to our neural embeddings training data, but
which was located and held out before our experiments. We once again
exclusively sample in-vector-vocabulary words, resulting in 5,000 tokens
for both English and Dutch. For Setup 3, we again perform our procedure
for the cancer corpora, but this time we exclusively sample OOV words,
resulting in 1,500 tokens for English and 350 for Dutch. While this last
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setup can seem exaggerated or overly artificial, we want to explicitly isolate
these cases from the other setups, since the distribution of OOVs is entirely
dependent on the vocabulary overlap between the data being corrected
and the data used to train the neural embeddings. In other words, it is
relative with respect to the specific use case of our model in practice. On
the one hand, we use this setup to estimate how well our trained model can
generalize to other subdomains and corpora with only partially overlapping
vocabulary; on the other hand, we use this setup to regulate the role of
OOV correction candidates, as we discuss in section 2.4.1.

2.3.4 Test corpora

No benchmark test sets are publicly available for clinical spelling correction.
A straightforward annotation task is costly and can lead to small corpora,
such as the one by Lai et al. (2015), which contains just 78 misspelling
instances. Therefore, we adopt a more cost-effective annotation approach.
In a corpus, we spot misspellings by looking at items with a frequency of 5
or lower which are absent from our lexicon.” We then extract and annotate
instances of these misspellings along with their context. For English, we
use the MIMIC-III data, resulting in 873 contextually different tokens of
357 unique error types.'° For Dutch, we use a recent set of clinical records
from the Antwerp University Hospital, which covers the same genres and
domains as the neural embeddings training data. This results in 490
contextually different tokens of 359 unique error types. Tables 2.4 and 2.5
give examples from both test corpora.

“While this excludes frequent error types, and is therefore far from an optimal strategy,
it is hard to estimate the possible deceiving effect of this strategy without knowing the
frequency distribution of spelling errors in the MIMIC-III corpus.

10A script to extract this data can be found at https://github.com/clips/clinspell.
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Misspelling Candidates

Edit distance 1 | sclerosing — sclerosin | sclerosing, sclerosis, sclerotin, sclerostin
Edit distance 2 | symptoms — sympots symptoms, symptom, spots, symbols
Edit distance 3 | phlebitis — phebilitis phlebitis, cheilitis, pyelitis, phallitis

Tab. 2.4.: Examples of empirically observed misspellings and some replacement
candidates from our English test set, per Damerau-Levenshtein edit

distance.
Misspelling Candidates
Edit distance 1 letsels — letels letsels, lepels, netels, zetels, zetsels
Edit distance 2 weinig — wijnig weinig, pijnig, wijzig, tijdig, wijn
Edit distance 3 | verminderde — verminderderde verminderde, verminderende

Tab. 2.5.: Examples of empirically observed misspellings and some replacement
candidates from our Dutch test set, per Damerau-Levenshtein edit
distance.

2.4 Results

We first develop our model for each language by tuning the parameters
with the development corpora. We then test this tuned model on the test
data. We discuss the results and their implications in the next section.
To evaluate the performance of our model, we use first-best accuracy as
criterion, i.e., the percentage of misspellings which are properly corrected
by the first-ranked replacement suggestion of our model. We use two
variations of first-best accuracy, the terminology of which we borrow from
Reynaert (2008): true first-best accuracy, which is the accuracy given the
system’s dictionary; and upper-bound first-best accuracy, which removes
the effect of dictionary shortcomings, by adding all correct word forms for
the errors to be corrected to the system’s spelling dictionary. The latter
criterion allows for measuring the upper bound on correction attainable by
our system.

2.4 Resulis
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2.4.1 Development

To develop our model, we investigate a variety of parameters:

Vector composition functions

* addition
* multiplication
* max embedding by Wu et al. (2015)

Edit distance penalty

* Damerau-Levenshtein

* Double Metaphone

* Damerau-Levenshtein + Double Metaphone
Spell score by Lai et al. (2015)

Context parameters

e Window size (1 to 10)

* Reciprocal weighting

* Removing stop words using the English stop word list from
scikit-learn (Pedregosa et al., 2011) or the Dutch stop word list
from Pattern (Smedt & Daelemans, 2012)

* Including a vectorized representation of the misspelling

We perform a grid search for Setup 1 and Setup 2 to discover which
parameter combination leads to the highest accuracy averaged over both
corpora. In this setting, we only allow for candidates which are present in
the vector vocabulary. We then introduce OOV candidates for Setup 1, 2
and 3, and experiment with penalizing them, since their representations are
less reliable. As these representations are only composed out of character
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n-gram vectors, with no word unigram vector, they are susceptible to
noise caused by the particular nature of the n-grams; namely, sometimes
the semantic similarity of OOV vectors to other vectors can be inflated
in cases of strong orthographic overlap. OOV replacement candidates
are more often redundant than necessary, as in most practical use cases
of the correction model (where there is considerable vocabulary overlap
between the embedding domain and the correction domain), the majority
of correct misspelling replacements will be present in the trained vector
space. Therefore, we try to penalize OOV representations to the extent
that they do not cause noise in cases where they are redundant, but still
rank first in cases where they are the correct replacement. We tune this
OOV penalty by maximizing the accuracy for Setup 3 while minimizing
the performance drop for Setup 1 and 2, using a weighted average of their
correction accuracies.

The final architecture of our model for both English and Dutch is described
in full in Figure 2.1, showing all used parameters. As the description shows,
the models for both languages only differ in optimal window size (9 for
English, 10 for Dutch). To compare our method against a reference noisy
channel model in the most direct way, we implement the ranking compo-
nent of Lai et al. (2015) in our pipeline (Noisy Channel). This component
requires corpus frequencies, which we extract from the same data that
we use to train the embeddings. Our context-sensitive model (Context)
outperforms the noisy channel for each corpus in our development phase,
for both English and Dutch, as shown in Table 2.6 and 2.7. Moreover, as
the results for Setup 3 show, our method generalizes considerably better
to OOV misspellings, as we explicitly intended in the development of our
model.

2.4 Resulis
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Setup 1 | Setup 2 | Setup 3
Context 90.24 88.20 57.00
Noisy Channel | 85.02 85.86 39.73

Tab. 2.6.: True first-best correction accuracies for our 3 English development
setups.

Setup 1 | Setup 2 | Setup 3
Context 87.94 89.10 82.00
Noisy Channel | 86.90 85.80 66.57

Tab. 2.7.: True first-best correction accuracies for our 3 Dutch development
setups.

2.4.2 Test

Table 2.8 shows the English correction accuracies for Context and Noisy
Channel as off-the-shelf tools, compared to two existing tools. The first tool
is HunSpell, a popular open source spell checker used by Google Chrome
and Firefox. The second tool is the original implementation of the model
by Lai et al. (2015), which they shared with us. Table 2.9 shows the Dutch
correction accuracies for Context and Noisy Channel as off-the-shelf tools,
as compared to HunSpell.

The performance of our models on the test sets is held back by the incom-
plete coverage of our reference lexicons. For English, missing corrections
are mostly highly specialized medical terms, or inflections of more common
terminology. For Dutch, this includes relatively infrequent compounds as
well. Compounds in Dutch, as opposed to English, are mostly orthographi-
cally concatenated into one lexical item. Since Dutch language users tend
to be very productive with compounding, this leads to a whole range of
standard language that is hard to cover exhaustively in a lexicon. We use
the upper-bound first-best correction accuracy to examine the performance
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Evaluation HunSpell | Lai et al. | Context | Noisy Channel
TRUE FIRST-BEST ACCURACY 52.69 61.97 88.21 87.85
UPPER-BOUND FIRST-BEST ACCURACY 93.02 92.66
Tab. 2.8.: The correction accuracies for our English test experiments, evaluated

for two different scenarios. True first-best accuracy: gives the first-best
accuracies of all off-the-shelf tools. Upper-bound first-best accuracy:
gives the first-best accuracies of our implemented models for the
scenario where correct replacements missing from the lexicon are
included in the lexicon before the experiment.

Evaluation HunSpell | Context | Noisy Channel
TRUE FIRST-BEST ACCURACY 64.29 76.53 79.71
UPPER-BOUND FIRST-BEST ACCURACY 87.75 92.45

Tab. 2.9.:

The correction accuracies for our Dutch test experiments, evaluated for
two different scenarios. True first-best accuracy: gives the accuracies
of all off-the-shelf tools. Upper-bound first-best accuracy: gives the
accuracies of our implemented models for the scenario where correct
replacements missing from the lexicon are included in the lexicon
before the experiment.

of our ranking models with disregard to such circumstances. Tables 2.8

and 2.9 show that the performance according to this metric is comparable

to the true first-best correction accuracy for the development corpora.

2.5 Discussion

In terms of correction accuracy, our context-sensitive model and our own

implementation of Lai et al.’s ranking model outperform off-the-shelf tools

for both English and Dutch, establishing a state-of-the-art for spelling

correction of clinical free-text. The salient difference in performance

between Lai et al.’s system and our specific implementation of their noisy

channel model highlights the influence of (lack of) training resources and

2.5 Discussion
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development decisions on the general applicability of spelling correction
models. Moreover, it shows the strength of the noisy channel model in
scenarios where the scale of the resources is sufficient (in this case, 425M
words for English and 720M words for Dutch) to reliably estimate prior
probabilities from corpus frequencies.

However, sufficient empirical resources to estimate a fine-grained likeli-
hood (namely, a large corpus of empirically observed errors from which
a reliable error model can be extracted) are still absent for the clinical
domain. Therefore, the likelihood of Lai et al.’s ranking model is esti-
mated with a rudimentary spell score, which is a weighted combination
of Damerau-Levenshtein and Double Metaphone edit distance. While this
error model leads to a noisy channel model which is robust in performance,
as shown by our test results, it also leads to a pragmatic performance
ceiling where more heavily distorted replacement candidates are down-
played to safeguard robustness of performance, regardless of their possible
empirical association with the misspelling. As a result, our noisy channel
model is still prone to cases of frequency bias, including the example of
frequency bias which we have provided in the introduction of this paper:
our noisy channel model does not succeed in correcting the MIMIC-III
misspelling goint to the correct form going due to the higher corpus fre-
quency of, and therefore higher prior probability assigned to, the word type
point. While the difference in frequency is salient, it is not insurmountable
for a likelihood reflecting a proper error model, which in this case would
typically reflect that goint is more probable to be a typo of going than of
point. However, the rudimentary spell score does not reflect that notion.
This example illustrates that, regardless of the theoretical validity of the
noisy channel, we are still very much bound to the practical reality of its
implementation, including the state of resources.

Our method tries to improve on the clinical spelling correction process

considering the availability of actual incomplete resources. As it stands,
a noisy channel model like the one by Lai et al. (2015) still occasionally
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Fig. 2.2.: The English correction accuracies for Context and Noisy Channel for
Setup 1, Setup 2, and the test set, grouped per relative frequency of
the correct replacement compared to other replacement candidates.
rel freq = 1: highest corpus frequency of all candidates. rel freq = 2:
second highest corpus frequency of all candidates. rel freq > 2: corpus
frequency lower than second highest of all candidates.
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Fig. 2.3.: The Dutch correction accuracies for Context and Noisy Channel for
Setup 1, Setup 2, and the test set, grouped per relative frequency of
the correct replacement compared to other replacement candidates.
rel freq = 1: highest corpus frequency of all candidates. rel freq = 2:
second highest corpus frequency of all candidates. rel freq > 2: corpus
frequency lower than second highest of all candidates.
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Fig. 2.4.: 2-dimensional t-SNE projection of the vectorized context of the English
test misspelling goint and 4 replacement candidates in the trained
MIMIC-III vector space. Dot size denotes corpus frequency, numbers
denote cosine similarity. The English misspelling context is new central
line lower extremity bypass with sob now [goint] to [be] intubated. While
the noisy channel chooses the more frequent point, our model correctly
chooses the most semantically fitting going.
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suffers from frequency bias; it is not able to correct a specific misspelling
type to different corrections in different contexts, and is not sufficiently
equipped to deal with word types that are not observed in training data.
Our unsupervised context-sensitive model targets these weaknesses. Fig-
ures 2.2 and 2.3 show the correction accuracies for three scenarios: one
where the most frequent candidate is the correct one (rel freq = 1), one
where the second most frequent candidate is the correct one (rel freq = 2),
and one where the correct candidate has a lower relative frequency (rel
freq > 2). Figure 2.2 confirms the hypothesis that our context-sensitive
model counters the frequency bias of a noisy channel model for our English
experiments. The results for our development corpora show that in cases
where rel freq = 1, the noisy channel scores similar or slightly better, as
expected. This trend is reflected in the test results. In cases where rel freq
= 2, our model scores slightly better. This trend is not reflected in the
test results. In fact, it is reversed. Lastly, in cases where rel freq > 2, our
model scores much better. This trend is reflected in the test results, if to a
smaller extent. However, the relatively small sample size (a difference of
6 correct instances on a total of 243) should be kept in mind. Figure 2.4
visualizes an example of frequency bias, where the goint misspelling which
we discussed earlier is correctly handled by our model as opposed to the
noisy channel model.

Figure 2.3 shows that the performance our context-sensitive model exhibits
the same characteristics for the Dutch development corpora as for the
English development corpora. However, this time none of the trends are
reflected in the test results, which leads to our model being outperformed
by the noisy channel model. This discrepancy raises the question to what
extent the artificial nature of the development corpora leads to reliable
models for empirical data. If the distributions of the several data types
differ greatly, this undermines our unsupervised approach, which implicitly
assumes that the distributions will not differ that greatly. To investigate this,
we performed a grid search for both the English and Dutch test corpus, to
examine which parameter combination leads to the best-performing model.

Chapter 2 Unsupervised Context-Sensitive Spelling Correction of English and



For the English test data, this parameter combination is similar to our
actual model derived from our development experiments. In other words,
the underlying assumption of our unsupervised approach is confirmed.

For the Dutch test data, however, the optimal parameter combination
differs dramatically from our developed model. It includes two parameters
which are absent from our developed model described in Figure 2.1: the
context representation also includes a vectorized representation of the
misspelling itself, and the edit distance weighting adds Double Metaphone
edit distance to the Damerau-Levenshtein edit distance. Moreover, the
optimal context window size is 2, which is considerably smaller than for
the originally developed model. With this parameter combination, the
output of the model for the Dutch test data is exactly similar to the output
of the noisy channel model. These analyses suggest that the distribution of
the Dutch test data differs greatly from that of the development data. This
discrepancy can be caused by the sparsity of the Dutch test data, which
covers the same amount of error types as the English test data, but much
fewer contextually different instances. The only conclusion we can draw
is that the nature of our test set is possibly skewed in a way that does not
allow for a thorough comparative evaluation of our models. As it stands,
however, we have no empirical evidence that our Dutch context-sensitive
model actually counters the frequency bias of our noisy channel. While
we want to avoid too much speculation as to the reason why, these results
invite inquiry into how important context actually is for Dutch clinical
spelling correction.

When we look at the output of our context-sensitive model for both English
and Dutch, we can categorize the errors it makes in 3 different types. The
first type of errors concerns, predictably, misspellings for which the con-
textual clues are too unspecific. This lack of useful contextual information
is sometimes caused by occurrences of other misspellings in the context
window, and poses a fundamental challenge to our method. The second
type of errors concerns cases where the contextual clues are actually mis-
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guiding. This happens for instance in cases where a word type has multiple
senses which are not strongly related. Our Dutch test set contains the
misspelling pesler — polsen, where from the context it appears that polsen
has the more infrequent sense of ‘polling someone about something’ in-
stead of the prevalent sense ‘wrists’. Since this word type shares one vector
representation for both senses, the contextual information does not turn
out to be strong enough for correcting the misspelling to the correct word
type. Lastly, while our development experiments have tried to minimize the
noise spread by OOV candidates, it is still noticeable in some instances.

2.6 Conclusion and future research

In this paper, we have proposed an unsupervised context-sensitive model
for clinical spelling correction which uses word and character n-gram em-
beddings. This simple ranking model, which can be tuned to a specific
language and domain by generating self-induced error corpora, tries to
counter the frequency bias of a noisy channel model by exploiting contex-
tual clues.

As an implemented spelling correction tool for English clinical free-text,
our method outperforms both a broadly used and a domain-specific off-
the-shelf tool for empirically observed misspellings in MIMIC-III. Moreover,
a detailed analysis of its performance shows that it does in fact counter
the frequency bias of a noisy channel model. However, the relatively small
sample size for this analysis should be kept in mind.

As an implemented spelling correction tool for Dutch clinical free-text, our
method outperforms a broadly used off-the-shelf tool for empirically ob-
served misspellings in collected data from the Antwerp University Hospital.
However, our Dutch test set offers no empirical evidence that it counters
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the frequency bias of a noisy channel model. It is unclear whether this is
caused by the sparsity of the test set.

Future research can investigate whether our method transfers well to other
genres and domains. Secondly, it can address the three problem areas
we have identified at the end of our discussion in section 2.5, namely,
unspecific contextual clues, multiple word senses of a single word type,
and noise spread by OOV candidates. Lastly, it is worthwhile to investigate
how successfully our model can be applied to real-word errors.

2.6 Conclusion and future research
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Conceptual Grounding
Constraints for Truly
Robust Biomedical Name
Representations

Effective representation of biomedical names for downstream NLP tasks re-
quires the encoding of both lexical as well as domain-specific semantic infor-
mation. Ideally, the synonymy and semantic relatedness of names should be
consistently reflected by their closeness in an embedding space. To achieve
such robustness, prior research has considered multi-task objectives when
training neural encoders. In this chapter, we take a next step towards truly
robust representations, which capture more domain-specific semantics while
remaining universally applicable across different biomedical corpora and
domains. To this end, we use conceptual grounding constraints which more
effectively align encoded names to pretrained embeddings of their concept
identifiers. These constraints are effective even when using a Deep Averaging
Network, a simple feedforward encoding architecture that allows for scaling to
large corpora while remaining sufficiently expressive. We empirically validate
our approach using multiple tasks and benchmarks, which assess both literal
synonymy as well as more general semantic relatedness.

3.1 Introduction

Biomedical and clinical free-text contain mentions of biomedical terms
which can provide valuable information for text mining applications. Such
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ICD-10 SNOMED-CT
C0564504
schizoid fantasy
schizoid fantasy - mental defense mechanism
C0338969
F60.1 introverted personality disorder
introverted personality
C0036339
schizoid personality disorder
unspecified schizoid personality disorder

Tab. 3.1.: Example of SNOMED-to-ICD-10 mappings. The synonym sets for the
SNOMED-CT concepts C0564504, C0338969, and C0036339, are fused
into one large set of semantically related names for the ICD-10 code
F60.1.

textual mentions, as well as their corresponding reference names in biomed-
ical ontologies, can often be expressed in various synonymous surface forms
(e.g. pleuritic pain vs. pain breathing), which is challenging for downstream
applications. Effective dense representation of these biomedical names
has been mainly investigated through the normalization task of disorder
linking, which consists of matching disease mentions to reference terms of
concept identifiers in ontologies (e.g. matching the mention myocardial
depression to the reference term Myocardial Dysfunction) (Leaman et al.,
2015). While past research has gradually shifted its focus from lexical
representations (D’Souza & Ng, 2015; Leaman et al., 2013) to dense dis-
tributed representations (Li et al., 2017; Limsopatham & Collier, 2016;
Phan et al., 2019; Sung et al., 2020), encoders are still typically optimized
towards normalization tasks, which are focused on resolving word-level
analogies between synonymous biomedical names.

Recent research has focused more explicitly on encoding domain-specific
biomedical semantics by training biomedical name representations that
are robust, i.e., reflecting the synonymy and semantic relatedness of names

Chapter 3 Conceptual Grounding Constraints for Truly Robust Biomedical



by their closeness in the embedding space, preferably in a consistent way
that generalizes across different biomedical subdomains and corpora. To
date, the most effective approaches have applied some form of conceptual
grounding: minimizing the distance between on the one hand represen-
tations of names, and on the other hand pretrained embeddings of their
concept identifiers. These concept embeddings are supposed to reflect
domain-specific semantics, and are constructed using a variety of different
techniques, including distributional similarity of graph relations and distri-
butional similarity of textual occurrences in large-scale free-text, as well as
combinations thereof (Kartsaklis et al., 2018; Phan et al., 2019).

While knowledge graph embeddings of biomedical concepts can encode
a variety of semantic relations, Kartsaklis et al. (2018) show that such
graph embeddings need to incorporate textual features to make them
effective targets for conceptual grounding. Such features help to translate
textual representations of names to the topology of the concept embedding
space, which otherwise reflects only ontological information. In other
words, concept embeddings are mostly useful targets for grounding to the
extent that name representations can be efficiently mapped to them by the
encoder architecture. This raises the question whether we can increase the
effectiveness of conceptual grounding by better aligning the topology of
the created name embedding space and the pretrained concept embedding
space. In this paper, we investigate how to maximally exploit low-cost
concept embeddings, which can be constructed using only pretrained
word embeddings and sets of biomedical synonyms or semantically related
names.

To this end, we enrich a siamese neural network encoder for biomedical
names with 2 novel constraints which are meant to effectively map encoded
names to pretrained concept embeddings. The first constraint, which we
call the linear constraint, applies canonical correlation analysis (CCA) to
pretrained embeddings of names and their concepts to project them into a
space which improves their linear mapping. These transformed embeddings
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are then used as input representations for the neural encoder. The second
constraint adds a training objective which we call prototypical grounding:
minimizing the distance between a pretrained concept embedding and the
average of all the encoded names belonging to that concept. This average
is an approximation of the prototypical representation of a concept in the
name embedding space.

While the linear constraint involves a simple preprocessing step, the proto-
typical grounding constraint can be computationally expensive for large-
scale corpora. Therefore, we use a simple Deep Averaging Network (DAN)
(Iyyer et al., 2015) as encoder to prove the effectiveness and scalability of
our approach, even for a neural architecture that has no access to word
order like LSTMs have or cannot apply attention over specific word com-
binations like Transformers can. We train and evaluate our encoder on
different categorizations of biomedical names. For instance, Table 3.1
shows how concepts from the SNOMED-CT ontology capture literal syn-
onymy, while these concepts can also be grouped into the ICD-10 coding
system which reflects more general semantic relatedness. Our experimental
results show that our approach is effective for both types of categorizations,
as well as for various ontologies and benchmarks.

3.2 Related work

3.2.1 Biomedical name encoders

A variety of neural architectures have been proposed for encoding biomedi-
cal names. (Kartsaklis et al., 2018) use a multi-sense LSTM with attention
over different word senses. This attention is conditioned on the context of
the biomedical name. Phan et al. (2019) include a character-level Bidirec-
tional LSTM in a word-level Bidirectional LSTM which extracts a fixed-size
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representation using max pooling over all dimensions, followed by a linear
transformation. (Sung et al., 2020) finetunes pretrained context-sensitive
BioBERT (Lee et al., 2019) representations and uses them in tandem
with lexical TF-IDF representations. While past research has explicitly
investigated the role of various training objectives, even jointly in multi-
task training regimes, the specific impact of encoder architectures has not
received much attention or comparison.

3.2.2 Averaging networks

Research on sentence embeddings and paraphrasing has consistently found
that simple encoding procedures such as averaging of word embeddings
can rival or even outperform complex neural architectures on tasks for
which those are finetuned (Shen et al., 2018; Wieting et al., 2016; Wieting
& Kiela, 2019). Moreover, research on Deep Averaging Networks (Iyyer
et al., 2015) has found that feedforward neural networks that use averaged
word embeddings as input can be tuned to textual classification tasks such
as sentiment analysis if the network is sufficiently large and/or deep. This
way, small differences in the input can be magnified by the network where
relevant.

3.2.3 Prototypical networks

While successful approaches to few-shot learning such as Matching Net-
works (Vinyals et al., 2016) optimize representation models on the level
of single instances, follow-up work has shown the benefits of simultane-
ously learning class representations using those same models. For instance,
prototypical networks (Snell et al., 2017) train a neural encoder with
objectives that involve class prototypes, which are created by averaging
the encodings of all instances that belong to a single class. In this paper,
we include a training objective for our encoder which forces synonymous
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or semantically related biomedical names to form class prototypes that
approximate the pretrained embedding of their concept identifier.

3.3 Encoding model

3.3.1 Encoder architecture

Our encoder is a Deep Averaging Network (DAN) (Iyyer et al., 2015) which
extracts a fixed-size representation for an input name n:

Vil 2w, (3.1)

where N, is the bag of tokens from a name, u; is a pretrained word em-
bedding of a token, u, is a name embedding created by averaging all
the pretrained word embeddings of all tokens, and enc is a feedforward
neural network with Rectified Linear Unit (ReLU) as non-linear activation
function. As pretrained word embeddings we use 300-dimensional fastText
(Bojanowski et al., 2017) representations which we train on 76M sen-
tences of preprocessed MEDLINE articles released by Hakala et al. (2016).
This fastText model also allows for constructing word embeddings for
out-of-vocabulary tokens by composing character n-gram embeddings.

3.3.2 Training objectives

Our training objectives optimize the mapping between an encoded name
f(n) and the pretrained embedding of its concept u,. While in principle
any type of pretrained concept embeddings could be used, our experiments
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use concept embeddings which are simply the average of all pretrained
name embeddings belonging to the concept:

1
|Chl

> up (3.2)

T'LECn

Up

These concept embeddings can be constructed entirely from synonym
sets only, and have been proven effective in experiments by Phan et al.
(2019).

3.3.2.1 Linear constraint: CCA

We apply canonical correlation analysis (CCA) to find the best linear com-
bination between pretrained name embeddings and the pretrained em-
beddings of their concept identifiers that maximizes their correlation. We
can then project both the name embeddings and the concept embeddings
to this new space for training objectives that use them as input. In order
to not lose any information for further training, the projected embedding
space has the same dimensionality as the original embedding space.

3.3.2.2 Siamese triplet loss

To enforce embedding similarity between names that are synonyms or
semantically related, we use a siamese triplet loss (Chechik et al., 2010).
This loss forces the encoding of a biomedical name to be closer to the
encoding of a true synonym than that of a negative sample name, within a
specified (possibly tuned) margin:
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pos = d(f(CCA(n)), f(CCA(1p05)))
neg = d(f(CCA(n)), f(CCA(nneg))) (3.3)

Ly, = maz(pos — neg + margin, 0)

where C'C'A denotes that the pretrained name embedding used as input for
the DAN has first been transformed by the CCA constraint. We take cosine
distance as distance function d. To select negative names during training
we apply distance-weighted negative sampling (C.-Y. Wu et al., 2017) over
all training names.

3.3.2.3 Prototypical grounding constraint

To enforce prototypical grounding, we average the name encodings of all
synonyms or semantically related terms belonging to a concept identifier,
in order to approximate a prototypical representation of the concept in the
name embedding space. We then minimize the cosine distance between
this prototypical concept representation and the pretrained embedding of
the concept:

1
— o X fccam)
nl neC, (34)

Lproto = d(f(p>’ COA(UP))

f(p)

To avoid overfitting, we enforce this objective using a random dropout
of synonyms from C,,, in order to stochastically approximate prototypical
similarity to the concept embedding.
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This constraint implies that the dimensionality of the encoder output should
be the same as the dimensionality of the pretrained concept embeddings.
However, if the dimensionality of the concept embeddings is smaller than
the desired output dimensionality, this could be solved using e.g. random
projections, which work well for increasing the dimensionality of neural
encoder inputs (Wieting & Kiela, 2019).

3.3.2.4 Multi-task setup

Our multi-task setup simply sums the siamese triplet losses and prototypical
grounding:

L= Lsyn + Lproto (3.5)

where both losses use either the original pretrained name and concept
embeddings, or their CCA projections. While the proportion of both losses
could be tuned using coefficients, our experiments prove this to be redun-
dant, since both losses systematically converge to zero or near-zero values
in all experiments.

3.4 Data

3.4.1 Disorder names
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3.4.1.1 SNOMED-CT

Following Kartsaklis et al. (2018) and Phan et al. (2019), we use SNOMED-
CT! disorder names as biomedical synonym sets. However, since this data
is of a diverse nature and quality, we try to select the most natural and
coherent data by matching it with a large target domain of processed
MEDLINE articles released by Hakala et al. (2016) containing 76M sen-
tences with 120M unique noun phrases scraped from 4K articles. We match
disorder names with our target domain in 4 consecutive steps. Firstly, we
only retain disorder names of which all tokens appear in the vocabulary
of our target domain. Secondly, many disorder names have duplicates
with a small set of redundant metatags such as (disorder) and (finding)
added to the name, which very rarely appear as natural language in our
target domain. Since they do not reflect relevant synonymy, we leave
out such duplicates.?. Thirdly, we only retain disorder names of up to 6
tokens, since this is the maximum length of the 20K disorder names which
directly match noun phrases from our target domain. This is also similar
to the length distribution in disorder normalization benchmarks as the
NCBI Disease corpus (Dogan et al., 2014) and the ShARe/CLEF eHealth
2013 corpus (Pradhan et al., 2015). Lastly, we leave out all disorder names
which belong to more than one concept identifier.

3.4.1.2 ICD-10

The SNOMED-to-ICD-10 mapping, which has been officially provided
by the U.S. National Library of Medicine®, groups multiple SNOMED-CT
concepts together under more coarse-grained ICD-10 codes, using concept

Thttps://www.snomed.org

2We list all redundant metatags in the Supplementary Materials

3https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.
html
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Disorder Heterogeneous
ICD-10 | SNOMED-CT | MedMentions

train concepts 5,136 20,140 18,417
train mentions 31,610 29,517 38,445

train synonym pairs | 120,768 26,214 118,300
validation mentions | 4,802 1,355 42,924
test mentions 7,142 2,752 43,544
zero-shot concepts 1,000 1,485 1,098
zero-shot mentions 6,490 4,199 4,705

Tab. 3.2.: An overview of all the data used in our experiments.

unique identifiers (CUIs) from the UMLS* ontology which encompass those
SNOMED-CT concepts. We fuse the synonym sets of SNOMED-CT concepts
belonging to the same ICD-10 concept into a single set of semantically
related terms. Table 3.1 gives some examples of the SNOMED-to-ICD-
10 mappings. These examples show how ICD-10 concepts introduce a
broader range of synonymy. While many of the SNOMED-CT synonyms
can be resolved using word-level analogies (e.g. myocardial depression
vs. myocardial dysfunction), the ICD-10 related terms that bridge different
SNOMED-CT concepts require more domain-specific semantics to be linked
(e.g. for matching myocardial dysfunction with muscular degeneration of
heart).

3.4.2 Heterogeneous names: MedMentions

The recently released MedMentions corpus (Mohan & Li, 2019) enables
training and testing of biomedical name encoders on a larger scale and
over a wider variety of semantic types than previous benchmarks. It maps
a vast amount of biomedical names mentioned in PubMed abstracts to
their corresponding concept unique identifier (CUI) in the UMLS ontology.
The annotated subcorpus MedMentions ST21pv annotates names belonging

“https://uts.nlm.nih.gov/
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to UMLS concepts covering 21 different semantic types. We fuse these
textual mentions of names into synonym sets. Since they are all verified to
occur in existing biomedical free-text, we don’t perform any preselection at
all. This also means that there are words which are out-of-vocabulary for
our fastText model: 10% of the MedMentions names contain such words,
which constitute 15% of the total MedMentions vocabulary. As a result, the
MedMentions data can show how reliable our approach is in cases where
the vocabulary of the word embeddings does not perfectly overlap with
the target domain.

3.5 Experiments and results

3.5.1 Ranking tasks and data distributions

3.5.1.1 Ranking tasks

We evaluate the usefulness of biomedical name representations for syn-
onym retrieval and concept mapping by applying 3 different performance
metrics to a single ranking task. Given a mention m of a biomedical name
which belongs to the concept identifier ¢, we have to rank a set of biomed-
ical names S which includes C,,, C S, a set of names which belong to
the same concept identifier ¢ as the mention m. To rank the biomedical
names according to their similarity to the mention, we first encode both
the mention m as well as every name n € S, and then rank every name
n using the cosine similarity between the encoded mention f(m) and the
encoded name f(n).

The aim of this task is to rank every correct synonym or semantically
related name syn € Cj,, as high as possible. We measure the synonym
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retrieval and concept mapping performance for this task using different
metrics. For synonym retrieval, we report Mean average precision (mAP)
over all synonyms. For concept mapping, we report Accuracy (Acc), the
proportion of instances where the highest ranked name n is a correct
synonym syn € Cj,,, and Mean reciprocal rank (MRR) of the highest
ranked correct synonym.

3.5.1.2 Data distributions

Table 3.2 gives an overview of the data distributions after splitting. For
MedMentions, we take our train, validation, test, and zero-shot data from
the data splits provided by MedMentions ST21pv. For SNOMED-CT and
ICD-10, we devise our own sampling method. Firstly, we randomly divide
the synonym sets in training concepts and zero-shot test concepts. Secondly,
to hold out test mentions from the training data, we randomly sample a
single name from each concept which has at least two names (as to avoid
empty training concepts), and repeat this procedure to get more test data.
We then carry out the same procedure to sample validation data which we
use to calculate the stopping criterion during training.

We calculate synonym retrieval and concept mapping performance for the
test and validation mentions by ranking for a test mention m all names S
present in the training data, including the synonyms Cj,,, which are present
in the training data for the concept identifier ¢ of the test mention. The
performance of the encoders for the training data is calculated by treating
a single training name at a time as test item.

The zero-shot test concepts are used to observe how well our encoders
can extrapolate to previously unobserved concepts, for which the encoder
has not specifically learned conceptual grounding. We frame the zero-shot
setup as a way of testing transfer learning within the same domain, by not

3.5 Experiments and results
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including any training names at all. This setup can show that our encodings
are robust enough to be used out-of-the-box in entirely novel settings. For
this setup, we treat a single zero-shot name at a time as test item, and rank
all correct synonyms C,,, present in the zero-shot data among all names S
from the zero-shot data.

3.5.2 Reference model and baselines

3.5.2.1 Reference model: BNE

We compare our DAN model against the Biomedical Name Encoder (BNE)
by Phan et al. (2019), which we train using the exact same data. To
have a direct comparison with their model, we leave out the character
embeddings from their encoder architecture and only use our fastText word
embeddings as input embeddings. This results in a bidirectional LSTM
(BiLSTM) (Graves & Schmidhuber, 2005) with max pooling and a linear
transformation:

hy, = max(BiLST M (utq], .., uit,)]))

fn)=W(h,)+b -0

We also include the publicly released BNE model with skipgram word
embeddings, BNE + SG,, ®> which was trained on approximately 16K
synonym sets of disease concepts in the UMLS, containing 156K disease
names. We don’t include this model for the disorder data, since it was
trained on at least part of that data, and we want to avoid that data leakage
affects the fairness of the model comparisons.

Shttps://github.com/minhcp/BNE
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3.5.2.2 Baselines

As baseline encoder we use the 300-dimensional fastText name embed-
dings which are used as input for the DAN (defined in Equation 3.1 in
Section 3.3.1). This encoder is an example of a Simple Word-Embedding
Model (SWEM) with average pooling, which has been proven to be a
strong baseline for various NLP tasks (Shen et al., 2018). We also include
two other pretrained baselines among our comparison of encoders: 600-
dimensional Sent2Vec (Pagliardini et al., 2018) embeddings with word
unigram and bigram representations, trained on the same MEDLINE data
as our fastText embeddings; and averaged 728-dimensional context-specific
token activations extracted from the publicly released BioBERT model (Lee
et al., 2019).

3.5.3 Training details

We fit the CCA for the linear constraint using all training names and their
corresponding concept prototypes constructed from the same training
names. The encoder architectures of our own DAN model and the BNE
reference model are implemented in PyTorch (Paszke et al., 2019). Both
the input and output dimensionality are 300 (which is the dimensionality
of the input fastText embeddings described in Section 3.3.1). All encoder
architectures for which we report results performed best with a single
hidden layer.

We tuned the hidden size of the DAN to 38,400 dimensions using a grid
search over 300 x 27, with n starting at 1 and being increased until perfor-
mance declined again. We tuned the BiLSTM for the BNE model to 4,800
dimensions using the same grid search, to make sure the architecture was
compared fairly to our model. At that point, the DAN has +23M trainable
parameters, whereas the BiLSTM already has =200M trainable parameters.

3.5 Experiments and results
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Train Test Zero-shot

mAP | Acc | MRR || mAP | Acc | MRR || mAP | Acc | MRR
Sent2Vec 0.27 1 042 | 0.51 || 0.30 | 0.47 | 0.56 || 0.43 | 0.67 | 0.74
BioBERT 0.35 | 0.51 | 0.60 || 0.39 | 0.60 | 0.68 || 0.52 | 0.78 | 0.83
fastText 0.38 | 0.56 | 0.65 || 0.43 | 0.66 | 0.74 || 0.56 | 0.83 | 0.87
CCA fastText | 0.42 | 0.59 | 0.68 || 0.47 | 0.70 | 0.76 || 0.61 | 0.85 | 0.89
CCA+DAN | 0.99 | 0.99 | 0.99 || 0.79 | 0.77 | 0.80 || 0.67 | 0.87 | 0.90
DAN 0.98 | 0.97 | 0.98 || 0.76 | 0.75 | 0.79 || 0.65 | 0.86 | 0.89
BNE 0.77 1 0.81 | 0.86 || 0.63 | 0.75 | 0.80 || 0.65 | 0.87 | 0.90

Tab. 3.3.: Synonym retrieval and concept mapping scores for the ICD-10 en-
coders. The highest score is denoted in bold, the second highest is
underlined.

This allows us to empirically confirm that our proposed DAN model is more
computationally efficient than the BNE BiLSTM.

Adam optimization (Kingma & Ba, 2015) is performed on a batch size of
64, using a learning rate of 0.001 and a dropout rate of 0.5. Input strings
are first tokenized using the Pattern tokenizer (Smedt & Daelemans, 2012)
and then lowercased. We use a triplet margin of 0.1 for the siamese triplet
loss Ly, defined in Equation 3.3. For the prototypical constraint L,
defined in Equation 3.4, we use a synonym dropout rate of 0.5. As stopping
criterion we use the mAP of synonym retrieval for held-out validation
names: we stop training once this score for the current epoch is worse than
for the previous epoch.

3.5.4 Results and discussion

We compare the 3 baselines and the BNE reference model against 3 variants
of our model. The CCA fastText model only applies the learned CCA
mapping to the pretrained fastText embeddings. The CCA+DAN model
applies the linear CCA constraint before training, while the DAN model
leaves out the linear constraint.
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Train Test Zero-shot
mAP | Acc | MRR || mAP | Acc | MRR || mAP | Acc | MRR
Sent2Vec 0.41 | 0.35] 0.45 | 0.38 | 0.44 | 0.54 || 0.55 | 0.57 | 0.67
BioBERT 0.49 | 041 | 0.53 || 0.49 | 0.58 | 0.68 || 0.62 | 0.65 | 0.74
fastText 0.59 | 0.55 | 0.64 || 0.56 | 0.68 | 0.76 || 0.71 | 0.75 | 0.82
CCA fastText | 0.62 | 0.57 | 0.67 || 0.59 | 0.70 | 0.78 || 0.73 | 0.76 | 0.83
CCA+DAN | 0.99 | 0.99 | 0.99 | 0.84 | 0.81 | 0.85 || 0.81 | 0.85 | 0.89
DAN 0.94 1 091 | 0.94 | 0.78 | 0.78 | 0.83 || 0.79 | 0.84 | 0.88
BNE 0.68 | 0.63 | 0.72 || 0.63 | 0.73 | 0.80 || 0.75 | 0.80 | 0.85

Tab. 3.4.: Synonym retrieval and concept mapping scores for the SNOMED-CT
encoders. The highest score is denoted in bold, the second highest is

underlined.

Train Test Zero-shot
mAP | Acc | MRR || mAP | Acc | MRR || mAP | Acc | MRR
Sent2Vec 0.30 | 0.37 | 0.47 || 0.46 | 0.65 | 0.71 || 0.34 | 0.46 | 0.54
BioBERT 0.28 | 0.40 | 0.47 || 0.41 | 0.64 | 0.68 || 0.25 | 0.43 | 0.49
fastText 0.41 | 0.51 | 0.61 || 0.51 | 0.70 | 0.76 || 0.43 | 0.61 | 0.68
CCA fastText 0.44 | 0.53 | 0.63 || 0.53 | 0.72 | 0.77 || 0.45 | 0.62 | 0.70
CCA+DAN 0.88 | 0.89 | 0.93 || 0.70 | 0.73 | 0.77 || 0.45 | 0.60 | 0.67
DAN 0.83 | 0.85 | 0.90 || 0.67 | 0.71 | 0.76 || 0.43 | 0.59 | 0.67
BNE 0.71 | 0.74 | 0.81 || 0.64 | 0.72 | 0.77 || 0.45 | 0.62 | 0.70
BNE (Phan et al., 2019) | 0.40 | 0.52 | 0.60 || 0.50 | 0.68 | 0.74 || 0.40 | 0.58 | 0.66

Tab. 3.5.: Synonym retrieval and concept mapping scores for the MedMentions
encoders. The highest score is denoted in bold, the second highest is

underlined.
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ICD-10 code
Test mention
Target synonyms

Top 10 ranking

R07.1
pain provoked by breathing
anterior pleuritic pain / breathing painful / chest pain on breathing / pleural pain / pleuritic pain

CCA+DAN BNE fastText
chest pain on breathing chest pain on breathing chest pain on breathing
anterior pleuritic pain breathing painful breathing painful
pleuritic pain back pain worse on sneezing disorder characterized by back pain
breathing painful disorder characterized by back pain disorder characterised by back pain
pleural pain disorder characterised by back pain back pain worse on sneezing
chest pain anterior pleuritic pain distress from pain in labor
chronic chest pain pain in heart persistent pain following procedure
pain in heart pleuritic pain chronic mouth breathing
upper chest pain precordial pain chronic chest pain
parasternal pain chronic chest pain dermatitis caused by sweating and friction

Tab. 3.6.: A comparison of the synonym retrieval by various encoders for the
ICD-10 test mention pain provoked by breathing. While fastText is
already good at matching a few semantically related terms at the top,
it retrieves no further names in its top ranks. The BNE ranking picks up
on more specific biomedical semantics, but still has a limited coverage.

In contrast, the conceptually grounded CCA+DAN ranks all 5 target
names at the top.

MedMentions CUI
Test mention
Target synonyms

Top 10 ranking

C0870951
cariogenesis
caries / cavities / dental caries / mod cavities / tooth decay

CCA+DAN BNE

fastText
dental caries caries caries
caries biofilm formation caries prevention
mod cavities formation of these biofilms preventive treatment for dental caries
tooth decay dental caries dental caries
preventive treatment for dental caries formation of biofilms biofilm formation
streptococcus mutans caries prevention formation of biofilms
pellicle formation biofilm streptococcus mutans
cavities biofilm forming anti-staphylococcal biofilm agents
bottle tooth decay biofilm community formation of these biofilms
biofilm formation pellicle formation dental plaque

Tab. 3.7.: A comparison of the synonym retrieval by various encoders for the
MedMentions test mention cariogenesis. While the BNE model does
not improve over the fastText baseline, the conceptually grounded

CCA+DAN already has complete coverage of all 5 target synonyms at
rank 8.
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3.5.4.1 ICD-10 & SNOMED-CT

Table 3.3 and 3.4 show the concept mapping and synonym retrieval per-
formance of the different encoders for the ICD-10 and SNOMED-CT data.
We see that the fastText baseline consistently outperforms the other base-
lines. Applying the CCA transformation to the fastText baseline improves
performance for every metric, including zero-shot cases. In other words,
applying this linear constraint for conceptual grounding already leads to
better extrapolation. The DAN model, which combines the siamese triplet
loss with only the prototypical grounding loss, is able to fit the training
data to near perfection without overfitting, since it generalizes well across
both test and zero-shot data. Applying the CCA constraint before training
increases the performance even more. These observations support the
hypothesis of this paper that increasing the effectiveness of conceptual
grounding can improve trained encoders.

The results also clearly confirm the robustness of our approach: synonym
retrieval is dramatically improved for the test data, without any perfor-
mance loss for concept mapping. In other words, the representations
have encoded more domain-specific semantics while retaining the rele-
vant lexical information. Table 3.6 gives an example of the impact of our
conceptual grounding constraints for ICD-10 test data: the model is able
to encode domain-specific semantics beyond word-level analogies for the
semantically related names of the test mention pain provoked by breathing.
Not only does the CCA+DAN model rank all semantically related names
at the top: all the following top-ranked names, such as chest pain, also
have clear semantic links to the mention. In contrast, the BNE model
ranks less related names such as back pain worse on sneezing and disorder
characterized by back pain higher than correct synonyms such as pleuritic
pain.

3.5 Experiments and results
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3.5.4.2 MedMentions

Table 3.5 shows the performance of the different encoders for the MedMen-
tions data. Table 3.7 gives an example of how, similar to the disorder data,
our CCA+DAN encoder is able to encode specific semantics that the BNE
model is lacking: the conceptual grounding constraints have allowed our
encoder to represent the semantic similarity between cariogenesis, tooth
decay and cavities, while the BNE model does not improve over the fastText
baseline.

Despite showing similar trends to the disorder data, the relative improve-
ments of our CCA+DAN encoder over the reference BNE model are less
dramatic. Interestingly, the publicly released BNE + SG,, model trained by
Phan et al. (2019) performs worse out-of-the-box than our pretrained fast-
Text embeddings. This highlights the difficulty of achieving true robustness
of biomedical name encoding.

3.5.5 Semantic relatedness benchmarks

We also evaluate our name encoders on two biomedical benchmarks of
semantic similarity, which allow to compare cosine similarity between name
embeddings with human judgments of relatedness. MayoSRS (Pakhomov et
al., 2011) contains multi-word name pairs of related but different concepts,
and can indicate how much generalized domain knowledge has been
captured by our conceptual grounding constraints. UMNSRS (Pakhomov et
al., 2016) contains only single-word pairs, which also stem from different
concepts. This benchmark makes a distinction between similarity and
relatedness.

The correlations in Table 3.8 confirm the robustness of our conceptually
grounded biomedical name representations. While the correlations for
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MayoSRS | UMNSRS | UMNSRS

(rel) (reD) (sim)
fastText 0.443 0.473 0.479
CCA+DAN, ICD-10 0.666 0.556 0.561

CCA+DAN, SNOMED-CT 0.648 0.537 0.540
CCA+DAN, MedMentions 0.600 0.526 0.543

Phan et al. (2019) 0.626 0.580 0.606

BNE, ICD-10 0.492 0.472 0.503
BNE, SNOMED-CT 0.415 0.510 0.527
BNE, MedMentions 0.506 0.467 0.500

Tab. 3.8.: Spearman’s rank correlation coefficient between cosine similarly scores
of name embeddings and human judgments, reported on semantic
similarity (sim) and relatedness (rel) benchmarks. The highest score is
denoted in bold, the second highest is underlined.

the BNE models barely improve over those of the fastText embeddings,
our CCA+DAN encoder improves substantially over all 3 benchmarks,
regardless of the data source it was trained on. Remarkably, while the
publicly released BNE model of Phan et al. (2019) was trained on 156K
disease names, the CCA+DAN encoder already outperforms it on MayoSRS
when trained on the ICD-10 and SNOMED-CT subsets, which contain only
30K disease names. This proves that Deep Averaging Networks can be
effective even for large-scale encoding of biomedical names. Moreover, this
finding suggests that future work on biomedical name encoders should not
take complex neural architectures for granted. On the contrary, enforcing
more relevant constraints such as our conceptual grounding constraints
can boost even lightweight encoder architectures.

3.6 Conclusion and future work

In this paper, we have shown how two conceptual grounding constraints
for biomedical name encoders can infuse name representations with more

3.6 Conclusion and future work
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domain-specific semantics without losing robustness. These representations
can help with retrieving literal synonyms as well as semantically related
terms, and can be sufficiently expressed by a Deep Averaging Network,
which is a feedforward neural network that only takes averaged word
embeddings as input.

We believe future work can include a comparison of neural encoding ar-
chitectures with a wider range of complexity. Decreasing the complexity
of neural architectures can allow for including more comprehensive train-
ing objectives which target more effective encoding of domain-specific
semantics.
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Integrating Higher-Level
Semantics into Robust
Biomedical Name
Representations

Neural encoders of biomedical names are typically considered robust if rep-
resentations can be effectively exploited for various downstream NLP tasks.
To achieve this, encoders need to model domain-specific biomedical semantics
while rivaling the universal applicability of pretrained self-supervised repre-
sentations. Previous work on robust representations has focused on learning
low-level distinctions between names of fine-grained biomedical concepts.
These fine-grained concepts can also be clustered together to reflect higher-
level, more general semantic distinctions, such as grouping the names nettle
sting and tick-borne fever together under the description puncture wound of
skin. It has not yet been empirically confirmed that training biomedical name
encoders on fine-grained distinctions automatically leads to bottom-up encod-
ing of such higher-level semantics. In this paper, we show that this bottom-up
effect exists, but that it is still relatively limited. As a solution, we propose
a scalable multi-task training regime for biomedical name encoders which
can also learn robust representations using only higher-level semantic classes.
These representations can generalise both bottom-up as well as top-down
among various semantic hierarchies. Moreover, we show how they can be
used out-of-the-box for improved unsupervised detection of hypernyms, while
retaining robust performance on various semantic relatedness benchmarks.
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C0564444

Level 1 wound of skin

Level 2 C0561369

E—— puncture wound of skin

Level 3 C0561546 C0576723

E— bite wound sting of skin
C1302713 C0275134 C0576722 C0576724

Level 4

animal bite wound poisoning due to lizard venom animal sting  plant sting

poisoning caused by poisoning by

Example name tick-borne fever X
—_— gila monster venom bombus

nettle sting

Tab. 4.1.: Examples of how names from the SNOMED-CT ontology can be
grouped into larger classes using parent concepts in the ontologi-
cal graph. This allows us to investigate higher-level semantic relations,
such as grouping poisoning by bombus and nettle sting under the con-
cept of sting of skin, or e.g. grouping them together with tick-borne
fever under puncture wound of skin.

4.1 Introduction

Recent work on representation learning for biomedical names has mainly
involved the training of neural encoder architectures such as LSTMs (Kart-
saklis et al., 2018) or Transformers (Kalyan & Sangeetha, 2020; Sung et al.,
2020) to finetune name representations for biomedical normalization tasks.
Such representations are often tailored towards normalization tasks (e.g.
linking names to corresponding concept identifiers), without providing
explicit guarantees about their transferability to other use contexts and
applications. As a solution for this issue, the Biomedical Name Encoder
(BNE) model (Phan et al., 2019) has been proposed as a comprehensive
framework for robust and transferable representations.

According to this framework, the robustness of biomedical name represen-
tations is characterized along three dimensions. Firstly, semantic similarity
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between names should be reflected by their closeness in the embedding
space. Secondly, the variety of textual contexts in which a name appears
should be somehow represented in the encoding. Lastly, a name embedding
should be sufficiently close to a pretrained prototypical representation of
its conceptual meaning, e.g. a representation of its corresponding concept
identifier from a biomedical ontology.

Such a multi-task model can be effectively trained using synonym sets
extracted from ontologies such as the UMLS or SNOMED-CT. However,
these synonym sets typically reflect only fine-grained distinctions between
the lowest-level concepts from ontologies. If robust name representations
should truly reflect semantic similarity in general, then the assumption
is being made that training on such fine-grained synonym sets learns
biomedical semantics in a bottom-up way, expecting names of lower-level
concepts to spontaneously form relevant higher-level clusters.

However, such assumptions have not yet been empirically validated, for in-
stance by showing that an encoder not only learns the differences between
names such as nettle sting and tick-borne fever, but also simultaneously
learns that they can be grouped together under the more general descrip-
tion puncture wound of skin. Moreover, research on representation learning
and hierarchical classification for e.g. computer vision has indicated that
neural models can leverage substantially different discriminative infor-
mation for higher, more general levels of categorization than for more
fine-grained lower levels (Hase et al., 2019). Such hierarchical differences
can be exploited to generalize from higher to lower levels (Guo et al.,
2017; Taherkhani et al., 2019), but they can also be difficult to integrate
consistently into a single neural model (C. Wu et al., 2019).

In this paper, we investigate to what extent robust biomedical name rep-
resentations can encode higher-level semantics while retaining relevant
lower-level fine-grained information as well. To address this research ques-
tion, we group synonym sets under increasingly coarse-grained semantic

4.1 Introduction
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categories, using parent-child relations in the ontological graph. Table 4.1
gives an example of how names from the SNOMED-CT ontology can be
grouped into larger classes. Such a hierarchy can be used to train and test
a variety of semantic relations between names. For instance, a model might
be able to encode that the names poisoning by bombus and nettle sting can
be both described as sting of skin, but fail to represent their similarity to
poisoning caused by gila monster venom as a puncture wound of skin. We
believe that an evaluation of this nature is a crucial step towards achieving
truly robust biomedical name representations, since it clearly requires more
semantic inference from the encoder than merely resolving synonyms.

Apart from introducing this evaluation to the field of biomedical NLP,
we also show that we can effectively adapt the BNE framework (Phan
et al., 2019) to be trained using such large higher-level semantic classes.
Most importantly, we replace the BiLSTM (Graves & Schmidhuber, 2005)
encoder architecture of the BNE model with a lightweight Deep Averaging
Network (DAN) (Iyyer et al., 2015). This allows us to easily scale to large
amounts of training data, caused by the explosive amount of possible
pairwise combinations between semantically similar names as classes grow
larger.

Training on higher-level classes involves additional challenges such as
handling imbalanced data distributions as well as implicit hierarchical and
semantic differences among names grouped under the same class. Our aim
is not to tailor the proposed approach to such artefacts. Rather, the main
contribution of this paper is to show that our simple modification of the
BNE model is generally applicable to a range of coarse-grained biomedical
categorizations, without any finetuning apart from the size of the DAN
encoder. As of such, it can be used as a low-cost but effective benchmark
for future models that are more specialized.

Our experimental results for hierarchical SNOMED-CT data show that our
DAN model improves semantic similarity ranking both in a bottom-up as
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well as top-down manner along various hierarchies. Interestingly, this
observation holds even when we train on a few dozens of very broad
categories. We also apply extrinsic evaluations to investigate the transfer-
ability of our DAN model. Firstly, we validate the robustness of higher-level
representations on semantic relatedness benchmarks. Secondly, we per-
form unsupervised detection of SNOMED-CT hypernym disorder names
which were not observed during training. For this task, our DAN model
scores substantially better than the publicly released pretrained BNE model,
which was trained on a large amount of fine-grained disorder concepts
from SNOMED-CT using an elaborate BiLSTM architecture. These results
provide tangible evidence that training name representations on large
coarse-grained categories can help to encode exploitable higher-level se-
mantics.

4.2 Related work

While context-dependent self-supervised representations usually outper-
form other text representations on a variety of BioNLP problems, such as
semantic similarity and question answering, there is no single embedding
model for biomedical and clinical texts that is consistently superior and
thus can serve as a generally suitable bio-encoder (Tawfik & Spruit, 2020b).
To this date, the BNE model by Phan et al. (2019) is the most prominent at-
tempt at developing a supervised resource for encoding biomedical names.
It uses a multi-task training regime in which it combines objectives from
different aspects of deep representation learning, such as a contrastive
loss (Le-Khac et al., 2020), conceptual grounding (see e.g. (Kartsaklis
et al., 2018)), and explicit regularization of the learned representations
(e.g. used by Vuli¢ and Mrksi¢ (2018)). Our modifications to the original
BNE model are informed by such literature.

4.2 Related work
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Our application of a Deep Averaging Network (DAN) (Iyyer et al., 2015)
is inspired by a recent subfield of NLP research which has emphasized
the effectiveness of random encoders (Wieting & Kiela, 2019) and simple
pooling mechanisms of word embeddings. The fastText encoder which
we use as a baseline and as input for the DAN is an example of a Simple
Word-Embedding-based Model (SWEM) with average pooling (Shen et al.,
2018).

4.3 Encoding model

4.3.1 Encoder architecture

Our encoder is a Deep Averaging Network (DAN) (Iyyer et al., 2015) which
extracts a fixed-size representation for an input name n:

teEN, (4.1)

where N; is the bag of tokens from a name, u; is a pretrained word em-
bedding of a token, u, is a name embedding created by averaging all
the pretrained word embeddings of all tokens, and enc is a feedforward
neural network with Rectified Linear Unit (ReLU) as non-linear activation
function. As pretrained word embeddings we use 300-dimensional fastText
(Bojanowski et al., 2017) representations which we train on 76M sen-
tences of preprocessed MEDLINE articles released by Hakala et al. (2016).
This fastText model also allows for constructing word embeddings for
out-of-vocabulary tokens by composing character n-gram embeddings.
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4.3.2 Training objectives

Our proposed approach is a simple modification of the multi-task training
regime of the BNE model. We use cosine distance as distance function d
for all three training objectives.

4.3.2.1 Semantic similarity

The semantic similarity objective is a generalization from the synonym
similarity objective of the BNE model to any level of relevant semantic
similarity. To enforce embedding similarity between names that are seman-
tically related, we use a siamese triplet loss (Chechik et al., 2010). This loss
forces the encoding of a biomedical name f(n) to be closer to the encoding
of a semantically similar name f(n,,;) than that of an encoded negative
sample name f(n,.,), within a specified (possibly tuned) margin:

pos = d(f(n)v f(npos))
neg = d(f(n>> f(nneg)) (4.2)

Lsem, = max(pos — neg + margin, 0)

To select negative names during training we apply distance-weighted nega-
tive sampling (C.-Y. Wu et al., 2017) over all training names, since this has
been proven more effective than hard or random negative sampling.

4.3 Encoding model
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4.3.2.2 Contextual meaningfulness

The contextual meaningfulness objective forces the encoding of a biomedical
name to be similar to its local contexts. The summary of these local contexts
is approximated by taking the pretrained embedding representation w,, of
the name:

Leons = d(f(n), uy) 4.3)

This constraint implies that the dimensionality of the encoder output should
be the same as that of the input. However, if the input dimensionality is
smaller than the desired output dimensionality, this could be solved using
e.g. random projections, which work well for increasing the dimensionality
of neural encoder inputs (Wieting & Kiela, 2019).

4.3.2.3 Conceptual grounding

The conceptual grounding objective is a modification of the conceptual
meaningfulness objective of the BNE model. The conceptual meaningful-
ness objective forces the encoding of a biomedical name to be similar to a
prototypical representation of its concept. This concept representation is
approximated by averaging the pretrained embedding representations of
all the names belonging to the concept:

1
"Gl

u

> u, 4.4)

neCy
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While converging to this pretrained target is feasible for small synonym sets,
such convergence is unnecessary and overfitting for larger classes of names
with graded differences in semantic similarity among the class members.
To retain the robustness of the encodings, we only want to pull the names
in the direction of their pretrained concepts, rather than minimizing their
distance entirely. To this end, we simply take the average of the pretrained
name representation and the pretrained concept representation:

Up + Uy,

2 (4.5)
Lground = d(f(n)a Uground)

Vground =

4.3.2.4 Multi-task setup

Our multi-task setup sums the losses of the 3 training objectives:

L =alsm+ BLcont + /nground (46)

where «, 3, and « are possible weights for the individual losses. Since the 3
losses all directly reflect cosine distances, they are similarly scaled and don’t
require weighting to work properly. In our experiments, « = =~ =1
showed the most robust performance along all settings.

4.4 Data and task setup

4.4 Data and task setup
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4.4.1 Extracting hierarchical data

Following previous research (Camacho-Collados et al., 2018; Kotitsas et al.,
2019), we use IS-A relations between concepts from the SNOMED-CT!
ontology as biomedical hypo-hypernymy relations. For direct comparison
with the publicly released BNE embeddings, which were trained on all
disorder concepts of SNOMED-CT, we use the 2018AB release of the
UMLS? to extract only those SNOMED-CT concepts which are included
in the semantic group of disorders®, and extract their reference terms as
disorder names. While the resulting directed graph should be acyclic, there
are many inconsistencies, which we resolve by removing all cyclic edges,
similar to the naive approach used by Mougin and Bodenreider (2005).

For our experiments, we select 3 different (yet slightly overlapping) sub-
graphs of IS-A relations by sampling 3 high-level concepts which have
around 10K child concepts in our cleaned graph. We extract consistent
taxonomies from these subgraphs by removing relations which form short-
cuts between otherwise non-consecutive levels of the taxonomy, and by
leaving out dead-end concepts which don’t have a path to the required
level of specification down the taxonomy. Child concepts can have mutually
inclusive relations to multiple higher-level concepts on the same level of
categorization.

4.4.2 Data setup

For each subgraph, we select 4 consecutive levels of parent concepts (level
1 is highest, level 4 is lowest). The concepts on these 4 levels are used
as class labels for the names from all concepts below level 4. In other
words, names belonging to the parent concepts themselves are not used

Thttps://www.snomed.org
2https://uts.nlm.nih.gov/home.html
3https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
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C1290864 | min max mean stdev
Level 1 1 10203 1015 2053
Level 2 1 10203 291 1101
Level 3 1 3840 118 411
Level 4 1 2607 48 195

Tab. 4.2.: Descriptive statistics about the number of names per class for the differ-
ent levels sampled from the subgraph with parent concept C1290864
(disorder of abdomen). These statistics show that lower levels have less
extreme imbalances between classes.

during training: the parent concepts are only used as reference to cluster
the names from the lower levels. Table 4.1 visualizes an example of this
process.

This method of aggregating names can lead to very imbalanced classes.
Table 4.2 shows how large this imbalance can get as we go up the hierarchy.
While the training regime of our proposed model should be robust against
such data artefacts, we want to take a representative test sample across
all classes to empirically validate our approach. Therefore, for multiple
iterations, we sample one held-out test name for each class on level 4.
This test name is then also used for levels 1-3. Afterwards, we carry out
the same procedure to sample validation data for calculating the stopping
criterion during training. Table 4.3 shows the distributions of concepts and
names used during training, validation, and testing.

4.4.3 Task setup

We perform 2 tasks on the held-out SNOMED-CT test data to validate our
approach. Evidently, we always evaluate on individual levels of categoriza-
tion. As intrinsic evaluation, we evaluate trained encoders on semantic
similarity ranking. We also include the task of unsupervised hypernym
detection as extrinsic evaluation. As we don’t use the names of higher-level

4.4 Data and task setup
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C1290864 C0560169 C0263661
disorder of abdomen  osteoarthropathy = dermatological finding

Level 1 27 30 35
Level 2 98 86 80
Level 3 248 236 231
Level 4 610 536 602

Lower-level names | 24737 / 1557 / 763 20574 / 1335/ 649 25659 / 1567 / 814

Tab. 4.3.: An overview of the distribution of higher-level classes for the 3 sub-
graphs used in our experiments. The lower-level names are divided
into train / test / validation.

concepts during training, we can exploit them as previously unobserved
hypernymic data to show how much higher-level semantics are being
modeled by encoders. If the encoder has learned to represent biomedical
semantics more effectively, then the name embedding space can reflect
that by being more suited for unsupervised detection of hypernyms.

Table 4.1 gives examples of hypernym names on all 4 levels. Successful
hypernym detection for this data implies e.g. that we rank the previously
unobserved hypernym bite wound over another previously unobserved
hypernym sting of skin for the name tick-borne fever. This task clearly
requires more semantic inference than merely resolving synonyms. In this
case, the encoder has to represent that ticks are insects that bite instead of
sting.

4.4.3.1 Semantic similarity ranking

We evaluate encoders on the ability to reflect semantic similarity between
names by their cosine similarity. Given a mention m of a biomedical name
which belongs to the higher-level class ¢, we have to rank the set of all
training names S which includes C,, C S, a set of training names which
belong to the same class c as the test mention. To rank the biomedical
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names according to their similarity to the mention, we first encode both the
mention m as well as every name n € S, and then rank every name n using
the cosine similarity between the encoded mention f(m) and the encoded
name f(n). We then calculate the Mean Average Precision (mAP) over
all test mentions for retrieving training names from the same higher-level
class.

4.4.3.2 Unsupervised hypernym detection

Given a test mention m of a biomedical name which belongs to the higher-
level class c, we have to rank the set of all hypernym names H belonging
to a specific level of categorization. This set includes C}, C H, the set of
hypernym names which belong to the same class ¢ as the test mention. To
rank the biomedical names according to their similarity to the mention,
we first encode both the mention m as well as every hypernym name
h € H, and then rank every hypernym name h using the cosine similarity
between the encoded mention f(m) and the encoded hypernym f(h). We
then calculate the Mean Reciprocal Rank (MRR) over all test mentions for
retrieving hypernym names from the same higher-level class.

4.5 Experiments and results

4.5.1 Reference model and baselines

We compare our DAN model against the the publicly released pretrained
BNE model with skipgram word embeddings, BNE + SG,,,* which was
trained on approximately 16K synonym sets of disease concepts in the
UMLS, containing 156K disease names. We also include 2 baselines: our

“*https://github.com/minhcp/BNE
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300-dimensional fastText name embeddings (defined in Equation 4.1 in
Section 4.3.1), and averaged 728-dimensional context-specific token ac-
tivations extracted from the publicly released BioBERT model (Lee et al.,
2019).

4.5.2 Training and implementation details

The DAN model is implemented in PyTorch (Paszke et al., 2019). Both the
input and output dimensionality are 300 (which is the dimensionality of
the input fastText embeddings described in Section 4.3.1). All encoders
for which we report results are finetuned to one hidden layer, which has
76,800 dimensions. Adam optimization (Kingma & Ba, 2015) is performed
on a batch size of 64, using a learning rate of 0.001 and a dropout rate of
0.5. Input strings are first tokenized using the Pattern tokenizer (Smedt &
Daelemans, 2012) and then lowercased. We use a triplet margin of 0.1 for
the siamese triplet loss L., defined in Equation 4.2.

To train the model, we iterate over all names in the training data and apply
the 3 training objectives for each name in a batch. To avoid overfitting on
the largest classes, we always sample one siamese triplet per name, using
random sampling for the positive name and distance-weighted sampling
for the negative name. As stopping criterion we use the mAP of semantic
similarity ranking (as defined in Section 4.4.3) for held-out validation
names: we stop training once this score hasn’t improved anymore over 10
epochs. This relaxed stopping criterion allows the model to optimize the
subsampled siamese triplet loss in a balanced stochastic way over many
epochs without quitting too early.

4.5.3 Results and discussion
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4.5.3.1 Semantic similarity ranking

Table 4.4 shows the test performance for semantic similarity ranking. First
and foremost, the robustness of the Level 1 DAN models is consistently great
for all 3 subgraphs. For instance, in the case of the subgraph C1290864
(disorder of abdomen), the DAN is trained on only 27 large classes but
outperforms the fastText baseline for the 610 classes on Level 4. Secondly,
all DAN models generalize both bottom-up and top-down along the hierar-
chical levels to the extent that they consistently outperform the fastText
baseline by a substantial margin.

Thirdly, the slight superiority of BioBERT over fastText for this task is
most pronounced for the lowest levels. As we go up in the hierarchy, the
difference grows smaller, which leads us to believe that the improvements
are not so much of a semantic nature. Interestingly, the pretrained BNE
model is competitive with our DAN models for the lower levels, which
are still more coarse-grained than the fine-grained distinctions on which
the BNE was trained. However, such a bottom-up effect is lacking for
the highest levels of categorization. These observations reinforce the
notion that both the size (the BNE was trained on 156K disorder names,
our models on 20-25K) and the granularity of the data matter for deep
representation learning.

4.5.3.2 Unsupervised hypernym detection

Table 4.5 shows the test performance for unsupervised hypernym detection.
These results clearly show trends which are similar to the semantic similar-
ity ranking. Most remarkably, the bottom-up and bottom-down effects are
almost as consistent here: the highest-level DAN still outperforms the base-
lines for the lowest levels and vice versa. One major difference with the
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C1290864 C0560169 C0263661

1 2 3 4 1 2 3 4 1 2 3 4
DAN level 1 | 0.57 | 0.50 | 0.39 | 0.43 || 0.70 | 0.44 | 0.36 | 0.37 || 0.64 | 0.55 | 0.36 | 0.36
DAN level 2 | 0.49 | 0.58 | 0.46 | 0.48 || 0.55 | 0.58 | 0.44 | 0.44 || 0.58 | 0.59 | 0.40 | 0.39
DAN level 3 | 0.43 | 0.51 | 0.56 | 0.54 || 0.51 | 0.51 | 0.52 | 0.54 || 0.52 | 0.52 | 0.51 | 0.48
DAN level 4 | 0.38 | 0.43 | 0.47 | 0.60 || 0.45 | 0.45 | 0.48 | 0.58 || 0.45 | 0.44 | 0.41 | 0.54
fastText 0.26 | 0.27 | 0.25 | 0.33 || 0.36 | 0.29 | 0.28 | 0.32 || 0.33 | 0.30 | 0.24 | 0.30
BioBERT | 0.27 | 0.29 | 0.29 | 0.39 || 0.38 | 0.32 | 0.31 | 0.37 || 0.36 | 0.33 | 0.27 | 0.35
BNE 035|041 | 042 | 0.57| 043|041 | 045 |0.59| 044 | 044 | 0.39 | 0.51

Tab. 4.4.: Test performance of semantic similarity ranking per level, as measured
by mAP. The highest score per level of each subgraph is denoted in
bold; the second highest score is underlined.

C1290864 C0560169 C0263661

1 2 3 4 1 2 3 4 1 2 3 4
DAN level 1 | 0.60 | 0.58 | 0.59 | 0.68 || 0.48 | 0.54 | 0.52 | 0.63 || 0.52 | 0.57 | 0.55 | 0.62
DAN level 2 | 0.52 | 0.59 | 0.62 | 0.70 || 0.45 | 0.58 | 0.56 | 0.67 || 0.50 | 0.60 | 0.57 | 0.63
DAN level 3 | 0.55 | 0.57 | 0.66 | 0.73 || 0.41 | 0.54 | 0.58 | 0.70 || 0.48 | 0.57 | 0.62 | 0.67
DAN level 4 | 0.53 | 0.52 | 0.63 | 0.74 || 0.39 | 0.53 | 0.58 | 0.74 || 0.46 | 0.54 | 0.59 | 0.71
fastText 0.46 | 0.44 | 0.53 | 0.65 || 0.34 | 0.47 | 0.49 | 0.63 || 0.38 | 0.45 | 0.50 | 0.59
BioBERT | 0.41 | 0.41 | 0.50 | 0.62 || 0.28 | 0.41 | 0.46 | 0.58 || 0.39 | 0.47 | 0.48 | 0.59
BNE 0.43 | 0.50 | 0.60 | 0.71 || 0.42 | 0.48 | 0.57 | 0.70 || 0.49 | 0.49 | 0.54 | 0.68

Tab. 4.5.: Test performance for unsupervised hypernym detection per level, as
measured by MRR. The highest score per level of each subgraph is
denoted in bold; the second highest score is underlined.

results for semantic similarity ranking is the relatively worse performance
from BioBERT here compared to fastText. This is in line with the findings
by Yu et al. (2020), who report that BERT does not yield considerable
improvement for hypernymy detection in their experiments. It also puts
into perspective to what extent we can expect higher-level semantics to be
encoded solely through self-supervised methods.

Table 4.6 gives an example of hypernym rankings for the test mention
poisoning caused by mexican beaded lizard bite. By clustering similar names
together with other bite wounds during training, the DAN model has
learned to recognize the test mention as a bite wound. The BNE has failed
to do so.
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Subgraph C0560169
Level 3
Test mention poisoning caused by mexican beaded lizard bite
Matching hypernyms bite wound / bite wound (disorder)
DAN Level 1 BNE
bite wound (disorder) infestation caused by fly larvae (disorder)
bite wound fly larva infestation
Top 5 ranking open traumatic dislocation of hip, unspecified infestation caused by fly larvae
open traumatic dislocation of hip, unspecified (disorder) infestation by fly larvae (disorder)
open dislocation of phalanx of foot (disorder) infestation by fly larvae

Tab. 4.6.: A comparison between our DAN encoder and the BNE reference model
for unsupervised hypernym ranking of the Level 3 test mention poison-
ing caused by mexican beaded lizard bite. The DAN model generalizes
from the training data to associate the test mention correctly with
bite wounds. In the training process, it seems to have clustered bite
wounds together with open dislocations. The BNE model apparently
associates lizards with infestations by fly larvae, but fails to recognize
that there is a bite wound mentioned in the test mention.

The effectiveness of our unsupervised method using only cosine similarity
contrasts with earlier approaches which explicitly require more than cosine
similarity to properly work. For example, Vuli¢ and Mrksi¢ (2018) use vec-
tor norms to encode hierarchical hypernymic relations, while other research
into hypernymy even requires other geometric spaces than Euclidean space,
such as hyperbolic space (Dhingra et al., 2018). Our results can indicate
that cosine similarity in Euclidean space still shows potential for encoding
these hierarchical relations given the right training objectives.

4.5.4 Semantic relatedness benchmarks

We also evaluate our name encoders on two biomedical benchmarks of
semantic similarity, which allow to compare cosine similarity between name
embeddings with human judgments of relatedness. MayoSRS (Pakhomov
et al., 2011) contains multi-word name pairs of related but different fine-
grained concepts. UMNSRS (Pakhomov et al., 2016) contains only single-
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word pairs, which also stem from different fine-grained concepts. This
benchmark makes a distinction between similarity and relatedness.

The correlations in Table 4.7 show that the majority of our trained encoders
remain robust out-of-the box, with a large portion of them outperforming
the fastText baseline which they use as input. The highest-level model
trained on the C0560169 subgraph (dermatological finding) is even com-
petitive with the pretrained BNE, having been trained on only 30 classes.
All in all, these results confirm that our proposed model is relatively robust
against variable granularity of clustering, and is not overly tailored to the
data artefacts of one specific subgraph.

4.5.5 Discussion

While our empirical results are certainly encouraging, the true robustness of
our proposed framework remains an open question. Whereas our proposed
DAN model remains robust over entire hierarchies for semantic similarity
ranking and unsupervised hypernym detection, its relative performance for
the semantic relatedness benchmarks is not entirely predictable from those
tasks. One the one hand, this likely has to do with the modest sizes of the
benchmarks, for which small to very small margins in performance are not
very reliable or indicative.

On the other hand, we also have to consider that our finetuned DAN only
contains a single, yet very wide, hidden layer. This implies that the encoder
network relies more on what can considered to be an elaborate weighted
average than a deep multi-layer transformation of the input. While this
is not very surprising in the context of transferable representations (and
emphasizes the effectiveness of exploiting word embeddings according
to their full potential in simple ways, as suggested by Wieting and Kiela
(2019)), it still raises the question whether there are straightforward regu-

Chapter 4 Integrating Higher-Level Semantics into Robust Biomedical Name



MayoSRS | UMNSRS | UMNSRS

(reD) (rel) (sim)

fastText 0.44 0.47 0.48
Level 1 C0560169 0.42 0.55 0.54
Level 2 C0560169 0.47 0.51 0.50
Level 3 C0560169 0.50 0.51 0.50
Level 4 C0560169 0.50 0.51 0.50
Level 1 C1290864 0.52 0.42 0.46
Level 2 C1290864 0.55 0.46 0.40
Level 3 C1290864 0.53 0.46 0.50
Level 4 C1290864 0.56 0.45 0.50
Level 1 C0263661 0.46 0.49 0.51
Level 1 C0263661 0.51 0.47 0.50
Level 3 C0263661 0.55 0.50 0.53
Level 4 C0263661 0.52 0.50 0.50
Phan et al. (2019) 0.63 0.58 0.61

Tab. 4.7.: Spearman’s rank correlation coefficient between cosine similarity
scores of name embeddings and human judgments, reported on se-
mantic similarity (sim) and relatedness (rel) benchmarks. The highest
score is denoted in bold; the second highest is underlined.

larization alternatives to the contextual meaningfulness objective which
can allow for deep transformations with the DAN.

4.6 Conclusion and future work

In this paper, we have introduced the challenge of integrating higher-
level semantics into robust biomedical name representations. We provide
a framework to both train and evaluate encoders for this task. More-
over, we have proposed a modification of the Biomedical Name Encoder
model which is directly applicable to a variety of coarse-grained categoriza-
tions. This modification replaces more complex neural architectures with a
lightweight Deep Averaging Network encoder, which is easily scalable to
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the large amounts of required training data, while remaining sufficiently
robust. The only important hyperparameter to tune for this encoder is the
size of the Feedforward Neural Network.

Experiments indicate that our proposed framework can even be effective
using only around 30 coarse-grained classes. This opens up possibilities for
applying our framework to data beyond carefully curated ontologies, for
instance in self-supervised or semi-supervised settings. Future work will
try to understand and define the limits of applying our framework to such
settings.
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Scalable Few-Shot
Learning of Robust
Biomedical Name
Representations

Recent research on robust representations of biomedical names has focused on
modeling large amounts of fine-grained conceptual distinctions using complex
neural encoders. In this paper, we explore the opposite paradigm: train-
ing a simple encoder architecture using only small sets of names sampled
from high-level biomedical concepts. Our encoder post-processes pretrained
representations of biomedical names, and is effective for various types of
input representations, both domain-specific or unsupervised. We validate
our proposed few-shot learning approach on multiple biomedical relatedness
benchmarks, and show that it allows for continual learning, where we ac-
cumulate information from various conceptual hierarchies to consistently
improve encoder performance. Given these findings, we propose our approach
as a low-cost alternative for exploring the impact of conceptual distinctions
on robust biomedical name representations.

5.1 Introduction

Recent research in biomedical NLP has focused on learning robust rep-
resentations of biomedical names. To achieve robustness, an encoder
should represent the semantic similarity and relatedness between different
names (e.g. by their closeness in the embedding space), while its em-
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beddings should also remain as transferable and generally applicable as
self-supervised pretrained representations.

Prior research into robust representations has shown three distinct tenden-
cies. Firstly, research typically focuses on encoders with complex neural
architectures and a large amount of parameters. As compensation for this
complexity, such models can be heavily regularized during training, e.g.
by tying the output of a nested LSTM to a pooled embedding of its input
representations (Phan et al., 2019), or by integrating a finetuned BERT
model with sparse lexical representations (Sung et al., 2020).

Secondly, encoders are typically trained on fine-grained concepts from
biomedical ontologies such as the UMLS, i.e., concepts with no child nodes
in the ontological directed graph. Small synonym sets of such fine-grained
concepts are readily available as training data, and often serve as evaluation
data for normalization tasks to which trained encoders can be applied.

Lastly, as a result of using fine-grained concepts, vast amounts of biomedical
names are needed to model the large collection of fine-grained distinctions
present in ontologies. For instance, Phan et al. (2019) train their encoder
on 156K disorder names. These three tendencies share an underlying
assumption: complex neural encoder architectures can learn biomedical
semantics by generalizing in a bottom-up fashion from large amounts of
fine-grained semantic distinctions, if provided with sufficient quantities of
training data.

However, it is not self-evident that such an approach is the most effective
way to achieve general-purpose biomedical name representations. For
instance, it does not directly address what conceptual distinctions are actu-
ally relevant to improve representations for downstream NLP applications.
Finding and exploiting relevant distinctions can be an empirical question,
and as such require low-cost exploration of various conceptual hierarchies.
Such a heuristic search is expensive in the current paradigm.
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Chapter V: Mental and behavioural disorders

F34 F63
Persistent mood disorders Habit and impulse disorders

F34.0 F63.0
Cyclothymia Pathological gambling
F34.1 F63.1
Dysthymia Pyromania

Tab. 5.1.: Example of how reference names are grouped together within the
ICD-10 hierarchy of disorders.

In this paper, we explore a scalable few-shot learning approach for robust
biomedical name representations which is orthogonal to this paradigm. We
investigate to what extent we can fit a simple encoder architecture using
only a small selection of data, with a limited amount of concepts containing
only a few samples each (i.e., few-shot learning). To this end, we don’t use
fine-grained concepts for training, but more general higher-level concepts
which span a large range of fine-grained concepts. Table 5.1 gives an
example of such a larger grouping of biomedical names.

This paper offers two main contributions. Firstly, our proposed approach
offers an alternative for training biomedical name encoders with much
lower computational cost, both for training and inference at test time. It is
applicable to large-scale hierarchies containing at least ten thousands of
names and is equally effective for different types of pretrained representa-
tions when tested on various biomedical relatedness benchmarks. Secondly,
we show that this approach allows for low-cost continual learning from
multiple concept hierarchies, and as such can help with the accumulation
of relevant domain-specific information for downstream biomedical NLP
tasks.

5.1 Introduction
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5.2 Approach

Our approach is similar to supervised post-processing techniques of word
embeddings such as retrofitting and counterfitting (Faruqui et al., 2015;
Mrksi¢ et al., 2016), but instead post-processes pretrained representations
of biomedical names.

5.2.1 Encoder architecture

Our encoder architecture is a feedforward neural network with Rectified
Linear Unit (ReLU) as non-linear activation function. This neural network
transforms a pretrained representation of a biomedical name, after which
this transformation is averaged with the pretrained representation:

fn) = ——— (5.1)

where f(n) is the output representation for a biomedical name, wu, is
its pretrained input representation, and enc is the feedforward neural
network which transforms the input representation. The averaging step
ensures that the encoder architecture learns to update the pretrained input
representation rather than create an entirely new representation. This
makes our model more robust against overfitting in few-shot learning
settings.

5.2.2 Training objectives

Our training objectives are based on the state-of-the-art BNE model by
Phan et al. (2019) and the DAN model by Fivez et al. (2021b), which
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generalizes the BNE model to any hierarchical level of biomedical concepts.

Our framework requires a set of concepts C, where each concept ¢ € C
contains a set of concept names C,. The set of biomedical names N
contains the union of all those sets of concept names. We propose a simple
multi-task training regime which applies two training objectives to each
biomedical name n € N. We use cosine distance as distance function d for
both objectives.

5.2.2.1 Semantic similarity

We enforce embedding similarity between names that are from the same
concept by using a siamese triplet loss (Chechik et al., 2010). This loss
forces the encoding of a biomedical name f(n) to be closer to the encoding
of a semantically similar name f(n,,;) than that of an encoded negative
sample name f(n,.,), within a specified (possibly tuned) margin:

pos = d(f(n)v f(npos)>
neg = d(f(n), f(nneg)) (5.2)

Lsem = max(pos — neg + margin, 0)

To select negative names during training we apply distance-weighted nega-
tive sampling (C.-Y. Wu et al., 2017) over all training names, since this has
been proven more effective than hard or random negative sampling.

5.2.2.2 Conceptually grounded regularization

To prevent the model from overfitting on the semantic similarity objective,
we regularize it by grounding the output representations to a stable and

5.2 Approach
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meaningful target. Simple approximations of prototypical concept repre-
sentations can already be very effective as targets (Fivez et al., 2021a).
Following the model by Fivez et al. (2021b), we use a grounding target
which is applicable to any level of categorization, from fine-grained concept
distinctions to higher-level groupings of names. This target is a compro-
mise between the contextual meaningfulness and conceptual meaningfulness
objectives of the BNE model. Rather than constraining a name encoding ei-
ther to its pretrained name representation or to a pretrained representation
of its concept, we minimize the distance to the average of both pretrained
representations:

1
Ue = T Up
a2,
Ue + Uy, 5.3
Uground = T ( )

Lground = d(f(”)u uground)

where the concept representation u,. is approximated by averaging each pre-
trained embedding representation u,, from the set of names C,, belonging
to the concept.

This constraint implies that the dimensionality of the encoder output should
be the same as that of the input. However, if the input dimensionality is
smaller than the desired output dimensionality, this could be solved using

e.g. random projections, which work well for increasing the dimensionality
of neural encoder inputs (Wieting & Kiela, 2019).

5.2.2.3 Multi-task loss

Our multi-task loss sums the losses of the 2 training objectives:
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min max mean stdev

ICD-10 247 40,519 3,414 8,693
SNOMED-CT | 397 19,114 3,532 4,094
(+ ambiguous | 1,108 23,915 4,990 5,134)

Tab. 5.2.: Descriptive statistics about the number of names per concept for our
training data.

L= aLsem + ﬁLground (54)

where o and [ are possible weights for the individual losses. Since both
losses directly reflect cosine distances, they are similarly scaled and don’t
require weighting to work properly. In our experiments, « = 5 = 1 showed
the most robust performance along all settings.

5.2.3 Training data

We extract sets of high-level concepts and their constituent names from

2 large-scale hierarchies of disorder concepts, ICD-10 and SNOMED-CT.

Table 5.2 gives an overview of our data distributions.

5.2.3.1 ICD-10

We use the 2018 version of the ICD-10 coding system.! We select the 21
chapters as concept labels, and assign the reference name of each code in
a chapter to its concept label. Table 5.1 gives an example of how such a
grouping includes diverse semantic relations.

Thttps://www.cde.gov/nchs/icd
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5.2.3.2 SNOMED-CT

We use the 2018AB release of the UMLS ontology? to extract a directed
ontological graph of SNOMED-CT concepts. We then select the first-degree
child nodes of concept C0012634, which is the parent concept for all
disorders. We then remove those children which are direct parents to other
selected children, since they are redundant for our purpose.

This leaves us with 87 concepts, to which we assign the reference terms of
all their child concepts in the ontological graph as biomedical names. To
make this setup directly comparable to our ICD-10 setup, we select the 21
largest concepts. Finally, we leave out ambiguous names which belong to
multiple concepts. Table 5.2 shows the impact on the data distribution.

5.3 Experiments and discussion

5.3.1 Pretrained representations

We experiment with 3 pretrained name representations. As a first baseline,
we use 300-dimensional fastText (Bojanowski et al., 2017) word embed-
dings which we train on 76M sentences of preprocessed MEDLINE articles
released by Hakala et al. (2016). We use average pooling (Shen et al.,
2018) to extract a 300-dimensional name representation. As a second base-
line, we average the 728-dimensional context-specific token activations of
a name extracted from the publicly released BioBERT model (Lee et al.,
2019).

As state-of-the-art reference, we extract 200-dimensional name represen-
tations using the publicly released pretrained BNE model with skipgram

2https://uts.nlm.nih.gov/home.html
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word embeddings, BNE + SG,,,> which was trained on approximately 16K
synonym sets of disease concepts in the UMLS, containing 156K disease
names.

5.3.2 Training details

We randomly sample a small fixed amount of names from each concept in
our training data as actual few-shot training names. We then randomly
sample the same amount of names as validation data to calculate the multi-
task loss as stopping criterion. This criterion is also used to finetune the
size of the encoder network. Using only 1 hidden layer proved best in all
settings, which leaves only the dimensionality of this layer to be tuned.

Our encoder network is implemented in PyTorch (Paszke et al., 2019).
Adam optimization (Kingma & Ba, 2015) is performed on a batch size of
16, using a learning rate of 0.001 and a dropout rate of 0.5. Input strings
are first tokenized using the Pattern tokenizer (Smedt & Daelemans, 2012)
and then lowercased. We use a triplet margin of 0.1 for the siamese triplet
loss L., defined in Equation 5.2.

5.3.3 Results

We evaluate our trained encoders on 3 biomedical benchmarks of semantic
relatedness and similarity, which allow to compare similarity scores be-
tween name embeddings with human judgments of relatedness. MayoSRS
(Pakhomov et al., 2011) contains multi-word name pairs of related but
different fine-grained concepts. UMNSRS (Pakhomov et al., 2016) contains
only single-word pairs, and makes a distinction between relatedness and
similarity, which is a more narrow form of relatedness. Finally, EHR-RelB
(Schulz et al., 2020) is much larger than the other benchmarks, and con-

3https://github.com/minhcp/BNE
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Fig. 5.1.: Few-shot performance for fastText encoders on MayoSRS, averaged
over 5 random samples.

tains multi-word concept pairs which are chosen based on co-occurrence
in electronic health records. This ensures that the evaluated concept pairs
are actually relevant in function of downstream applications such as infor-
mation retrieval.

We average all test results over 5 different random training samples. We
use cosine similarity as similarity score for all baseline representations and
trained encoders. Figure 5.1 shows the impact of the amount of few-shot
training names on performance when using fastText representations. Our
model already substantially improves over the baseline with only 5 names
per concept (105 in total), and maintains consistent improvement up to 15
few-shot names. This confirms that our approach is well-suited to anticipate
expected improvements from training on large-scale hierarchies.

Table 5.3 shows the results on all benchmarks for 15-shot learning. All

encoders were tuned to 9,600 hidden dimensions. We include two state-of-
the-art biomedical name encoders in our comparison. Firstly, BioSyn (Sung
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EHR-RelB MayoSRS UMNSRS
(rel) (reD (reD (sim)
BioSyn 0.45 0.50 0.40 0.42
Fivez et al. (2021a) 0.67 0.56 0.56
fastText 0.39 0.44 0.47 0.48
BioBERT 0.34 0.23 0.18 0.26
BNE 0.47 0.63 0.54 0.58
SNOMED
fastText 0.43 0.51 0.46 0.51
BioBERT 0.40 0.31 0.32 0.38
BNE 0.53 0.63 0.55 0.60
ICD-10
fastText 0.43 0.55 0.52 0.56
BioBERT 0.35 0.34 0.32 0.38
BNE 0.51 0.65 0.56 0.60
S—>1I
fastText 0.44 0.55 0.46 0.52
BioBERT 0.39 0.33 0.35 0.42
BNE 0.54 0.67 0.52 0.58
I—S
fastText 0.45 0.54 0.46 0.51
BioBERT 0.39 0.33 0.37 0.42
BNE 0.54 0.67 0.53 0.58

Tab. 5.3.: Spearman’s rank correlation coefficient between human judgments and
similarity scores of name embeddings, reported on semantic similarity
(sim) and relatedness (rel) benchmarks. The highest score is denoted
in bold; the second highest is underlined.
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et al., 2020) sums the weighted inner products of fine-tuned BioBERT
representations and sparse TF-IDF representations into one similarity score
between two names. The pre-trained model* for which we report results
was trained on the NCBI disease benchmark (Dogan et al., 2014) for
biomedical entity normalization. Secondly, we include the results of the
conceptually grounded Deep Averaging Network by Fivez et al. (2021a),
which was trained on SNOMED-CT synonym sets mapped into larger ICD-
10 categories.

The results show various trends. Firstly, almost all trained encoders improve
over their input baselines for all benchmarks, regardless of the type of
input representation. Secondly, the performance increase is consistent
for both ICD-10 and SNOMED-CT, even as their conceptual hierarchies
are substantially different. Lastly, we also look at continual learning from
SNOMED-CT to ICD-10 (S — I) or vice versa (I — S), where we use the
output of the first model as input representations to train the second model.
This approach leads to systematic improvements for all representation
types, including the state-of-the-art BNE representations. In other words,
we provide tangible empirical evidence that few-shot robust representations
can allow for continual specialization in biomedical semantics.

To better understand how our few-shot learning approach can have a visi-
ble impact on various relatedness benchmarks, Table 5.4 gives an example
of nearest neighbor names from the training set of SNOMED-CT names
for the validation mention urinary hesitancy. While the pretrained BNE
model makes various topical associations, our 15-shot model using the
BNE representations as input has learned to cluster around the semantics
of urinary tract disorders. As this already generalizes to validation men-
tions, we can expect the model to transfer this information to downstream
applications wherever urinary tract disorders are relevant. This applies to

“https://github.com/dmis-lab/BioSyn
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Parent concept C0042075

Parent concept name disorder of the urinary system
Validation mention urinary hesitancy
15-shot BNE BNE
nebulous urine nebulous urine
calculus of lower urinary tract ( disorder ) calculus of lower urinary tract ( disorder )
urinary obstruction due to nodular prostate ( disorder ) urinary obstruction due to nodular prostate ( disorder )
double kidney and/or pelvis double kidney and/or pelvis
Top 10 ranking covered exstrophy of bladder ( disorder ) genital oedema
nephropathy caused by aminoglycoside ( disorder ) perineal laceration during delivery , nos
renal vein thrombosis abdominal hernia
benign tumour of urethra covered exstrophy of bladder ( disorder )
injury of male urethra heart :[ weak ] or [ failure nos ] ( disorder )
postprocedural bulbous urethral stricture hourglass contraction of uterus

Tab. 5.4.: A comparison between the rankings of 315 SNOMED-CT training
names for the validation mention urinary hesitancy. Non-matching
names are underlined. While the pretrained BNE model makes various
topical associations, our 15-shot model using the BNE representations
as input has learned to cluster around the semantics of urinary tract
disorders.

all 21 high-level topics which were simultaneously encoded for both the
ICD-10 and SNOMED-CT ontologies.

5.4 Conclusion and future work

We have proposed a novel approach for scalable few-shot learning of robust
biomedical name representations, which trains a simple encoder architec-
ture using only small subsamples of names from higher-level concepts
of large-scale hierarchies. Our model works for various pretrained input
embeddings, including already specialized name representations, and can
accumulate information over various hierarchies to systematically improve
performance on biomedical relatedness benchmarks. Future work will in-
vestigate whether such improvements trickle down properly to downstream
biomedical NLP tasks.
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Conclusions and Future
Work

This PhD thesis has investigated robust and scalable applications of pre-
trained text representations for biomedical natural language processing.
We have primarily focused on representations which are pre-trained using
the masked language modelling objective. While such representations
encode a variety of potentially relevant information for downstream NLP
applications, successfully exploiting that information remains a fundamen-
tally empirical question. Each of the chapters of this thesis has examined a
particular biomedical NLP application and has offered a novel and empiri-
cally effective approach to leverage pre-trained representations.

In Chapter 2, we have shown that simple composition of word and character
n-gram embeddings can represent textual contexts of clinical spelling errors
sufficiently well to help estimate the semantic fit of spelling correction
candidates. This contextual estimation is integrated with edit distance
measures in a cosine similarity-based ranking model which is developed
using only automatically generated supervised data. Simple compositions
of context words have also been proven effective in other biomedical NLP
applications, such as word sense disambiguation (Tulkens et al., 2016)
and concept extraction from clinical text (Tulkens et al., 2019). Their
application to spelling correction is most convenient for instances where
various correction candidates are orthographically similar but semantically
different. The approximations of simple embedding compositions can be
used to detect where a specific misspelling maps to different corrections
in different contexts, e.g. iron deficiency due to enemia — anemia vs. fluid

injected with eremia — enema.
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The remaining chapters of this PhD thesis have looked into various meth-
ods of training neural encoders for robust representation of biomedical
names. Robustness requires that name representations should encode
domain-specific knowledge, e.g. by reflecting semantic similarity between
names through their closeness in the embedding space, while retaining
the universal applicability and transferability of self-supervised pre-trained
representations. Prior research on robust representations shares the un-
derlying assumption that complex neural encoder architectures can learn
biomedical semantics by generalising in a bottom-up fashion from large
amounts of fine-grained semantic distinctions, if provided with sufficient
quantities of training data. We have investigated empirically effective
approaches which put into question this paradigm and offer robust and
scalable alternatives.

In Chapter 3, we have introduced the use of a Deep Averaging Network
(DAN) as biomedical name encoder, which is a feedforward neural net-
work processing an unordered composition of the word embeddings in a
name. Using such a minimalist encoder architecture, as opposed to using
more elaborate architectures such as LSTMs or Transformers, allows for
considering a range of training objectives which would otherwise be too
computationally costly. In this chapter, we have exploited this tradeoff to
enforce conceptual grounding constraints during training of biomedical
name representations. Such grounding constraints tie the output of an
encoder to specific pre-trained targets which constitute a globally coherent
and meaningful embedding space. Inspired by previous work on prototypi-
cal networks (Snell et al., 2017), we explicitly control the joint behaviour
of different names from the same biomedical concept to better match the
target embedding space. This expansive training objective is effective even
when we use simple approximations of prototypical concept representa-
tions. To confirm that such approximations are sufficiently robust, we
have shown that linear transformations of pre-trained embeddings using
Canonical Correlation Analysis (CCA) can already extrapolate to zero-shot
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learning scenarios such as synonym retrieval for previously unobserved
concepts.

While Chapter 3 has focused on fine-grained concepts (i.e., concepts with
no child nodes in an ontological directed graph), its results raise the
question whether a DAN encoder can also be effective for higher-level
conceptual distinctions. Chapter 4 not only confirms this, but shows that
the DAN can generalise both bottom-up as well as top-down among various
semantic hierarchies. In other words, the DAN can extract both high-level
and low-level biomedical semantics from an unordered composition of
word embeddings as well as simultaneously represent them in the same
low-dimensional distributed vector. Moreover, the encoder is applicable out-
of-the-box for improved unsupervised detection of hypernyms. This implies
that explicitly modelling high-level distinctions is a useful complement to
fine-grained approaches for encoding biomedical semantics, even when
we scale down the complexity of the encoder architecture. All of these
findings put into question whether more elaborate architectures such as
LSTMs or Transformers should really be considered the default choice for
biomedical name encoders in cases where robust semantic composition is
more important than some details concerning e.g. word order.

Chapter 5 has made a compelling argument for this position. It provides a
proof-of-concept that a feedforward neural network can be used for few-
shot learning of biomedical name representations on top of various pre-
trained representations, ranging from self-supervised to already domain-
specialised. Most importantly, this approach allows for continual learning,
where information from various conceptual hierarchies is accumulated
to consistently improve encoder performance. While the approach offers
various obvious benefits such as a substantial decrease in computational
cost and greatly reduced demand for annotated data, it also raises the
issue of what are considered informative distinctions in conceptualisations
of biomedical semantics. Various low-level distinctions in biomedical
ontologies have a practical rather than a semantic origin, e.g. for practices

99



100

such as assigning billing codes to clinical notes. In contrast, the most
high-level distinctions in ontologies such as ICD-10 and SNOMED-CT
have a much higher informational value, since they reflect large-scale
conceptualisations of biomedical relevance. In this sense, the default
paradigm of training encoders on fine-grained distinctions only is somewhat
counterintuitive.

6.1 Future work

6.1.1 Spelling correction for clinical free-text

Flor et al. (2019) have used our manually constructed test set of En-
glish clinical spelling errors described in Chapter 2, and obtained results
which are competitive with our proposed approach using a general-domain
minimally-supervised model which incorporates word embeddings and
contextual features. S. Wu et al. (2019) have characterized our applica-
tion of word and character n-gram embeddings for spelling correction as
part of a larger trend towards deep learning baselines for the medical
NLP community. Hladek et al. (2020) provide a comprehensive review
of spelling correction models, which confirms the increasing prevalence
of deep learning methods and contrasts our approach with other recent
models.

The main challenge for future work in spelling correction remains the
robust application of deep learning methods across languages different
from English. While we have demonstrated in Chapter 2 that techniques
which work well for English clinical text can be less suitable for Dutch,
later work by Beeksma et al. (2018) has also confirmed difficulties for
high-quality Dutch Wikipedia text, especially for error detection.
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6.1.2 Deep Averaging Networks

We believe future work could investigate Deep Averaging Networks as
general-purpose text encoders outside of our specific application to biomed-
ical name representations. As we have demonstrated in Chapters 3-4, the
decreased computational cost for training a DAN encoder can allow for
exploration towards more intensive training objectives which would be
considered computationally infeasible for LSTMs or Transformers.

6.1.3 Effective grounding

We have demonstrated in Chapter 3 that increasing the effectiveness of pre-
existing techniques for conceptual grounding can still lead to substantial
performance improvements. Future work could investigate this for other
domains than the biomedical domain, or for other grounding targets than
biomedical concepts.

6.1.4 Hierarchical encoding of hypernymy

While prior work has pointed out difficulties for encoding multiple related
levels of hierarchy into one neural network and reflecting hypernymic
relations through cosine similarity, our biomedical name encoder in Chapter
4 is able to do both. Future work could use our findings as a precedent to
reinvestigate the limitations of Eucledian space for encoding hierarchical
relations.

6.1.5 Few-shot representation learning

Whereas the field of deep representation learning is predisposed to complex
encoder architectures and large amounts of training data, our results in

6.1 Future work
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Chapter 5 confirm that there are use cases where few-shot approaches with
simple encoders can provide more efficient approximations. Future work
could investigate this more systematically, outside of biomedical NLP as
well.

6.1.6 Impact of semantic representation on
downstream biomedical NLP tasks

Our work on biomedical name representations in Chapters 3-5 has suc-

ceeded in improving the encoding of biomedical semantics from concept

names. A crucial direction for future work consists of estimating for which
downstream tasks such improvements can make a tangible impact.
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Supplementary Materials S

S.1 Conceptual Grounding
Constraints for Truly Robust
Biomedical Name
Representations

S.1.1 Redundant metatags

In section 3.4.1.1, we mention that many names from our SNOMED-CT
data are duplicates of other names, with the only difference being that they
also contain the following redundant metatags (in order of frequency):

e (disorder)

* (finding)

¢ (nos)

* (morphologic abnormality)
e (situation)

¢ (event)

* (observable entity)

* (qualifier value)

* (context-dependent category)
* (procedure)

e (function)

e (attribute)

* (clinical)
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