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Abstract
Multi-band superfluidity and BEC-BCS crossover in novel ultrathin materials

This thesis presents an inquiry into multi-component electron-hole superfluidity in cou-
pled ultrathin layer systems. Multi-component superfluidity is a novel quantum phe-
nomenon that arises in semiconductors when multiple bands provide multiple pairing
channels. The thesis focuses on two systems that define two very different classes of
multi-band systems. We find that they can generate multi-component superfluids with
fundamentally different properties. One system consists of two parallel bilayer graphene
sheets and the other system is a heterostructure of two Transition Metal Dichalcogenide
monolayers MoSe2 and WSe2.

In the Double Bilayer Graphene system, superfluidity is multi-component because
both conduction and valence band participate in the pairing. This is due to the small
tunable band gap between the conduction and valence bands in bilayer graphene. This
system is a novel multi-band system because, in contrast with conventional multi-band
superconductors, here the multi-bands are not nested and there is a unique Fermi surface.

In the double TMD monolayer system, superfluidity is multi-component because of
the splitting of the bands caused by strong spin-orbit coupling. This superfluid has the
same concentric subbands as in the multi-band superconductors, implying the potential
existence of all the associated novel quantum phenomena that can arise from interference
between the multi-condensates.

The investigation of the pairing processes is carried out using a mean field multi-
component approach. The Coulomb pairing interaction between electrons and holes is a
long-range interaction and screening effects must be fully accounted for in our approach.
We show that it is readily possible to tune these systems between the strongly interacting
regime and the weakly interacting regime by tuning the carrier density.

Because of the different pairing symmetries, the two-component condensates in these
two systems are strikingly different. In Double Bilayer Graphene, the two condensates
are strongly coupled. However, the closeness of the valence band to the conduction band
contributes in a strong way to the screening and this results in a weakening of the super-
fluidity. On the other hand, in double TMD monolayers, the spin-orbit coupling makes
the two condensates decoupled, and the large band gap makes the screening from the
valence band negligible.

We show that in both systems the multi-component nature of the superfluidity can be
switched on and off. In Double Bilayer Graphene, by tuning the band gap, it is possible
to continuously tune the proximity in energy of the conduction and valence bands and
thus the importance of the valence band in the pairing and screening. In double TMD
monolayers, by tuning the density and by choosing the doping in the monolayers, it is
possible to activate or suppress the second component of the superfluidity.

This thesis provides new insights into the field of the multi-component superfluidity:
we predict observable superfluidity in two systems confirmed with recent experimental
observations and we demonstrate the possibility to tune the multi-component charac-
ter in both the class of materials. As a further result, we determine optimal electronic
conditions and optimal ranges of carrier densities for these systems for maximising the
transition temperature of the superfluidity.
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Samenvatting
Multicomponent superfluïditeit en BEC-BCS crossover in nieuwe ultradunne

materialen.

Deze thesis presenteert een studie naar multicomponent elektron-holte superfluïditeit
in gekoppelde ultradunne gelaagde systemen. Multicomponent superfluïditeit is een
nieuw kwantumfenomeen dat zich voordoet in halfgeleiders wanneer meerdere banden
meerdere koppelingskanalen bieden. De thesis richt zich op twee systemen die twee zeer
verschillende klassen van multiband systemen definiëren. We vinden dat ze multicom-
ponent superfluïda genereren met fundamenteel verschillende eigenschappen. Het ene
systeem bestaat uit twee parallelle bilagen van grafeen en het andere is een heterostruc-
tuur van twee transitiemetaal dichalcogenide monolagen MoSe2 en WSe2.

In het dubbel bilaag grafeen systeem is superfluïditeit multicomponent omdat zowel
de conductie- als de valentieband deelnemen aan de koppeling. Dit komt door de kleine
afstembare bandkloof tussen de conductie- en valentiebanden in bilaag grafeen. Dit sys-
teem is een nieuw multiband systeem omdat, in tegenstelling tot conventionele multi-
band supergeleiders, de multibanden hier niet genest zijn en er een uniek Fermi-oppervlak
is.

In het dubbele TMD monolaag systeem is superfluïditeit multicomponent vanwege
de splitsing van de banden veroorzaakt door een sterke spin-baan koppeling. Dit super-
fluïdum heeft dezelfde concentrische subbanden als de multiband supergeleiders, wat
de potentiële aanwezigheid impliceert van alle bijbehorende nieuwe kwantumverschi-
jnselen die kunnen ontstaan door inmenging tussen de multicondensaten.

Het onderzoek van de koppelingsprocessen wordt uitgevoerd met behulp van een
multicomponent gemiddelde-veld aanpak. De Coulomb koppelingsinteractie tussen elek-
tronen en holtes is een lange afstandsinteractie en screeningeffecten moeten in onze aan-
pak volledig in rekening worden gebracht. We laten zien dat deze systemen eenvoudig
kunnen worden afgestemd tussen het sterk interagerende regime en het zwak inter-
agerende regime door de ladingsdichtheid aan te passen.

Als gevolg van de verschillende koppelingsymmetrieën zijn de tweecomponent con-
densaten in deze twee systemen opvallend verschillend. In dubbel bilaag grafeen zijn
de twee condensaten sterk gekoppeld. De nabijheid van de valentieband tot de conduc-
tieband draagt echter sterk bij aan de screening en dit leidt tot een verzwakking van
de superfluïditeit. Aan de andere kant maakt de spin-baan koppeling in dubbele TMD
monolagen de twee condensaten ontkoppeld en de grote bandkloof zorgt ervoor dat de
afscherming van de valentieband te verwaarlozen is.

We tonen aan dat in beide systemen het multicomponent karakter van de super-
fluïditeit in- en uitgeschakeld kan worden. In dubbel bilaag grafeen is het door het
afstemmen van de bandkloof mogelijk om het energieverschil tussen de conductie- en
valentiebanden continu af te stemmen en daarmee ook het belang van de valentieband
bij het koppelen en screenen. Bij dubbele TMD monolagen is het mogelijk om, door de
dichtheid af te stemmen en door de dotering in de monolagen te kiezen, de tweede com-
ponent van de superfluïditeit te activeren of te onderdrukken.

Deze thesis biedt nieuwe inzichten op het gebied van multicomponent superfluïditeit:
we voorspellen waarneembare superfluïditeit in twee systemen, wat bevestigd is in re-
cente experimentele waarnemingen, en we demonstreren de mogelijkheid om het multi-
component karakter af te stemmen in beide materiaalklassen. Als een verder resultaat
bepalen we voor deze systemen optimale elektronische omstandigheden en optimale
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bereiken van ladingsdichtheden voor het maximaliseren van de overgangstemperatuur
van de superfluïditeit.
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Sommario
Superfluidità a bande multiple e BEC-BCS crossover in nuovi materiali ultrafini

Questa tesi presenta un’indagine sulla superfluidità multi-componente di elettroni-lacune
in strati accoppiati di materiali ultrasottile. La superfluidità multi-componente è un
nuovo fenomeno quantistico che si manifesta nei semiconduttori dove sono presenti più
bande electroniche che forniscono canali di accoppiamento multipli. La tesi si concen-
tra su due sistemi che definiscono due classi molto diverse di sistemi a multi-bande. In
questi sistemi si possono generare superfluidi multi-componente con proprietà fonda-
mentalmente diverse. Un sistema è costituito da una coppia di doppio foglio di grafene
(DBG) e l’altro sistema è un’eterostruttura di due strati di metalli di transizione dicalco-
genuri (TMD) MoSe2 e WSe2.

Nel sistema DBG, la superfluidità è multi-componente perché sia la banda di con-
duzione che quella di valenza partecipano all’accoppiamento. Ciò è dovuto al piccolo
gap energetico tra le bande di conduzione e di valenza nel doppio foglio di grafene.
Questo sistema è un nuovo sistema multi-banda perché, contrariamente ai convenzionali
superconduttori a multi-banda, qui le diverse bande non sono nidificate e c’è una sola
superficie di Fermi.

Nel sistema a doppio TMD, la superfluidità è multi-componente a causa della di-
visione delle bande causata dal forte accoppiamento spin-orbita. Questo superfluido
ha le stesse sottobande concentriche dei superconduttori a multi-banda, implicando la
potenziale esistenza di tutti i nuovi fenomeni quantistici associati che possono derivare
dall’interferenza tra i diversi condensati.

L’indagine dei processi di accoppiamento viene fatta utilizzando un approccio teorico
multi-componente a campo medio. L’attrazione di Coulomb tra elettroni e lacune è
un’interazione a lungo raggio e gli effetti di screening devono essere presi in consid-
erazione nel nostro approccio. Mostriamo che è possibile fa evolvere questi sistemi tra
un regime fortemente interagente e un regime debolmente interagente modificando la
densità dei portatori di carica.

A causa delle diverse simmetrie di accoppiamento, i condensati bi-componenti in
questi due sistemi sono sorprendentemente diversi. Nel sistema DBG, i due condensati
sono fortemente accoppiati. Tuttavia, la vicinanza della banda di valenza alla banda di
conduzione contribuisce in modo forte allo screening e ciò si traduce in un indebolimento
della superfluidità. D’altra parte, nei doppi strati di TMD, l’accoppiamento spin-orbita
rende i due condensati disaccoppiati e l’ampio gap energetico tra le bande di conduzione
e quelle di valenca rende trascurabile lo screening dalla banda di valenza.

Mostriamo che in entrambi i sistemi la natura multi-componente della superfluidità
può essere attivata e disattivata. Nel sistema DBG, regolando il gap energetico tra le
bande è possibile regolare continuamente la prossimità in energia delle bande e quindi
l’importanza della banda di valenza nell’accoppiamento e nello screening. Nei doppi
strati di TMD, regolando la densità e scegliendo il doping negli strati, è possibile attivare
o sopprimere il secondo componente della superfluidità.

Questa tesi fornisce nuove intuizioni nel campo della superfluidità multi-componente:
prevediamo una superfluidità osservabile in due sistemi confermata con recenti osser-
vazioni sperimentali e dimostriamo la possibilità di cambiare il carattere multicompo-
nente in entrambe le classi di materiali. Come ulteriore risultato, determiniamo con-
dizioni elettroniche ottimali e intervalli ottimali di densità per questi sistemi per mas-
simizzare la temperatura di transizione della superfluidità.
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Chapter 1

Introduction and Motivation

Quantum matter is everywhere, from the interiors of neutron stars to the electrons in
everyday metals. Among the many types of quantum physics phenomena, particularly
spectacular are the phenomena of superconductivity and superfluidity where at low tem-
perature, quantum mechanics manifests itself at the macroscopic scale. Ever since super-
conductivity was discovered in 1911 [1] and superfluidity was discovered in 1937 [2, 3],
physicists have made enormous efforts to explain the behaviour observed in different
systems.

Superfluidity is a state of matter with very strange properties. A superfluid is a fluid
that flow with zero viscosity and thus without any loss of kinetic energy. At the heart of
superfluidity lies the spontaneous quantum coherence. Coherence refers to the existence
of spatial correlation of the quantum wave-function over the entire system, so compo-
nents of the system are no longer individual but act together. The spontaneous coherence
is a feature common to other quantum phenomena such as Bose-Einstein condensation
(BEC) and superconductivity.

In Bose-Einstein condensation an ensemble of bosons is cooled below a critical tem-
perature and condense to occupy a single quantum state. However not all Bose-Einstein
condensates behave as superfluids, and not all superfluids are Bose-Einstein condensates.

Superconductivity is usually associated with regular metals, in which free charge car-
riers exist at the Fermi level and can feel an attraction. Superconductivity originates from
the spontaneous coherence of pairs of these charged particles. As a result, when it is
cooled below a characteristic critical temperature, electrons flow in the metal with zero
electrical resistance and expulsion of magnetic flux fields can occur.

There is a countless number of experimental systems where a macroscopic quantum
order is established, including helium liquids (3He and 4He), superconductors, Bose-
Einstein condensates of ultracold alkali gases and, more recently, exciton condensates.
Such systems are hard to describe theoretically because strong quantum correlations be-
tween particles from which they are composed produce phenomena that cannot be pre-
dicted by studying the behaviour of individual particles alone. Even the simplest models
of strongly correlated systems are difficult to solve theoretically. Each of these systems
has opened questions on our fundamental understanding of many-body physics and has
led to novel research tools as well as applications.

1.1 Motivation of the Thesis

After the discovery of superconductivity and superfluidity, in a quest to build devices
that carry electricity with low dissipation at high temperatures, researchers have ex-
plored the possibility of engineering electrical condensates out of strongly bound pairs
of electrons and holes, called excitons. In 1961, a theory was proposed by Blatt, Böer and
Brandt, according to which an electron and a hole optically excited within a solid, oppo-
sitely charged, bind together to form a bosonic exciton [4]. The binding energy between
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Chapter 1. Introduction and Motivation

the exciton electron and hole can be strong, greatly exceeding their thermal energy at
room temperature.

Experimentally exciton condensation or superfluidity has proved challenging because
excitons are not the ground state of the system and their recombination is so fast to make
realization and measurement of such a phase extremely hard to achieve. There have
been many attempts to address this problem, among them a promising one is the cou-
pled layer system, where electrons and holes are physically separated by a tunnel barrier
[5]. Exciton condensates have been realized in spatially separated semiconductor quan-
tum wells. However, such devices either involved very high magnetic fields [6] or very
low temperatures [7].

The quest for an optimal condition and the optimal system to realise electron-hole
superfluidity was shaken up in 2004 by the discovery of graphene [8], that made real
the confinement and control of carriers in atomically thin layers [9]. In the last 10 years,
an increasing number of experiments demonstrated the possibility to grow or exfoliate
single layers of material: the so-called two-dimensional (2D) materials. There has been an
explosion of experimental and theoretical results showing that, because of their electronic
properties, 2D materials can host a rich variety of strongly correlated phases, such as
unconventional superconductivity, Mott-insulator and Wigner crystallization in presence
of magnetic field. Because of this, a number of 2D coupled layer systems have been
proposed to host electron-hole superfluidity also at temperatures as high as 100 K. In
this thesis, we investigate two particular semiconductor configurations for double layer
systems:

• Double bilayer graphene, two bilayer graphene sheets separated by a boron nitride
insulating layer;

• Double Transition Metal Dichalcogenides monolayers, two Transition Metal Dichalco-
genides monolayers separated by a boron nitride insulating layer.

The choice of these two particular systems is supported by theoretical works [10, 11]
that show the possibility to have high-temperature superfluidity in these systems. An
additional interest in these semiconductors is that the pairing symmetries are more com-
plicated with respect to conventional metallic systems because they have electronic fea-
tures driven by their multi-band characters. The presence of multiple pairing channels
can lead to multi-component superfluidity and make the system resemble a multi-band
superconductor, where the increased number of degrees of freedom allows for emergent
quantum effects that are otherwise unattainable in single-component superconductors
[12].

In this thesis, we explore the physics behind the multi-component superfluidity that is
related to this unconventional pairing channels, with the aim to answer some important
open questions: What possible ways are there to pair electrons and holes in a multi-band
system? What differences does that make for the paired states and their properties? Do
physical parameters exist that play a key role in explaining and controlling the observed
types of pairing?

This thesis is the final result of a systematic and detailed investigation of superflu-
idity and BCS-BEC crossover phenomena in the two different systems. We will show
that the two systems present significantly different multi-band pairing symmetries that
lead to striking different quantitative and qualitative results. These results are in good
agreement with important experimental observations on exciton condensation and su-
perfluidity that have been reported in double layer systems extremely similar to the ones
investigated here [13, 14].
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1.2. Organization of the Thesis

1.2 Organization of the Thesis

The thesis is organized as follows.
In the second chapter, we recall some basics of BCS theory that successfully explains

conventional superconductivity, and we cover the basics of superfluidity in semiconduc-
tor double layer systems generated by electron-hole pairing. We establish the central
theoretical issues and experimental challenges associated with the study of electron-hole
superfluidity, and we show advantages and limits of real systems we propose for the
investigation of this phenomenon. This chapter is fundamental to understanding the
background and the motivations of this work.

The third chapter deals with an analytical theoretical approach to describe double
layer electron-hole superfluidity. We adapt mean field theory for superconductivity to
the multi-component case and we derive superfluid equations valid for a multi-band
electron-hole system. We discuss the Random Phase Approximation used to describe the
screening, we describe the strong competition between superfluidity and the screening
characteristic of double layer systems with Coulomb interactions. We also extend the
screening approach to the case of a multi-band double layer system.

In the fourth chapter, the multi-band approach is applied to the double bilayer graphene
system. We show that because of the small band gap between the conduction and valence
band in bilayer graphene, the valence band also contributes to the pairing and the super-
fluidity has two components. The effects on the superfluidity of the proximity in energy
of the bands in bilayer graphene are investigated by tuning the small band gap. We give
numerical results obtained using the mean field equations at zero temperature and we
discuss the results both in the BCS and BEC limits. We show that by tuning the band gap
it is possible to modify the properties of the superfluidity in double bilayer graphene.

In the fifth chapter, the multi-band approach of Chapter 4 is extended to also include
the contributions of the valence band to the screening in double bilayer graphene. In
addition, we include the distortion of the low-energy band structure of bilayer graphene
from parabolic to Mexican hat-like, which accompanies the opening of the band gap. We
show that the competition between superfluidity and the screening is affected by these
two effects in a significant way.

In the sixth chapter, the multi-band approach is applied to the double Transition
Metal Dichalcogenide monolayer system. We include the effect of the splitting of the
bands caused by the strong spin-orbit coupling. We show that because the spin split-
ting is larger in the valence band with respect to the conduction band, there is a large
misalignment between the electron and hole bands in the two monolayers from the spin-
orbit coupling. We give numerical results obtained using the mean field equations at zero
temperature. The superfluidity can be multi-component, and the multi-condensates are
strikingly different due to the band misalignment. We show that these properties display
a remarkable sensitivity to the choice of doping of the two monolayers.

In the seventh chapter, we propose a new system based on a stack of Transition Metal
Dichalcogenide alternating electron and hole monolayers to investigate electron-hole su-
perfluidity in a three-dimensional (3D) superlattice. We show that, by considering a 3D
superlattice, we overcome the restriction of the low critical temperatures associated with
the Berezinskii-Kosterlitz-Thouless transition temperature associated with 2D systems.

The eighth chapter summarizes all our new results. We compare the expectations
given in each chapter to the actual findings. This thesis ends with an overview of possible
extensions in future works.
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Chapter 1. Introduction and Motivation

1.3 Collaborations and Publications

The research presented in this thesis is the result of the joint PhD project born from the
collaboration between the University of Camerino (Italy) and the University of Antwerp
(Belgium). The thesis is inspired by many discussions, research notes and joint publi-
cations. The research was supervised by Prof. David Neilson and Prof. Andrea Perali,
from the University of Camerino, and by Prof. Francois Peeters, from the University of
Antwerp. This work was partially supported by the Flemish Science Foundation (FWO-
Vl), and the Methusalem Funding of the Flemish Government. The research presented in
this thesis was performed in collaboration also with other students of both Universities.
The work has been published or submitted to scientific journals:

• Chapter 3: The theoretical approach was refined also thanks to discussions with
Alfredo Vargas Paredes (University of Camerino and University of Antwerp).

• Chapter 4: A manuscript was published in Physical Review Letters [15] and a Fea-
ture Article was published in the Belgian Physics Society Magazine [16].

• Chapter 5: A manuscript was published in Physical Review B [17].

• Chapter 6: A manuscript has been submitted in Physical Review Letters [18] in
collaboration with Matthias Van der Donck (University of Antwerp), and a Special
issue Article was published to Condensed Matter Journal [19].

This thesis contains also results of three manuscripts published or submitted in collab-
oration with Mohammad Zarenia (University of Missouri (USA)) [20], Matthias Van der
Donck (University of Antwerp) [21] and Samira Saberi-Pouya (University of Antwerp)
[22].

The future outcomes presented in Chapter 7 are included in a Project submitted to the
Research Foundation - Flanders (FWO) [23].
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Chapter 2

Electron-hole Superfluidity

In a system of Bosons, a Bose-Einstein Condensate (BEC) can appear when below a cer-
tain critical temperature a macroscopic fraction of bosons occupies the lowest quantum
state. The BEC concept has been used to elucidate the anomalies of superfluid helium
[2, 3]. During the 1960s several authors proposed that compact excitons in crystals can
show properties characteristic of bosonic systems and a tendency to Bose condense at
low temperatures [4]. This is interesting because the small effective mass of the excitons
can make the condensation temperature high. In 1985, Ref. [24] proposed Bose-Einstein
condensation of compact electron pairs as the strongly interacting limit of a continuum
that on the weakly interacting side terminates with BCS superconductivity.

In this chapter, we will introduce the electron-hole superfluidity. We will outline the
key features of electron-hole superfluidity discussing similarities with BCS superconduc-
tivity. Comparing these two phenomena we will identify advantages and challenges that
electron-hole superfluidity offers with respect to superconductivity.

2.1 Superconductivity and BCS-BEC Crossover

In 1957, Bardeen, Cooper and Schrieffer (BCS) successfully explained superconductivity
microscopically in terms of electron-electron pairing [25]. Even though electrons mu-
tually repel each other due to the Coulomb interactions, there can exist a net electron-
electron attraction arising from the dynamic exchange of phonons associated with the
crystal lattice. When an electron propagates through the crystal, other electrons are re-
pelled and positive ions are attracted, so during the propagation, the electron-electron
interaction is mediated also by the phonons in the crystal lattice. An electron in a state
with momentum k can excite a phonon of crystal momentum q, leaving the electron in a
state with crystal momentum k′ = k− q. Later a second electron can absorb the phonon
and pick up the momentum q. Such a displacement of the crystal lattice will produce a
modulation of the electron charge density and of the effective potential for the electrons
in the solid. There will be a weak attractive interaction for phonon frequencies ω that are
below the Debye frequency ωD. The restriction in frequency can be translated in terms of
energy. The electron energies involved are all within the range±h̄ωD of the Fermi energy
EF. Therefore, electrons which mutually attract are near the Fermi surface [26].

The weak attractive interaction leads to the formation of a bound state made of two
particles, a Cooper pair. The particles in the pairs has opposite momentum and opposite
spin. The ground state of the weakly interacting Fermi liquid becomes unstable with
respect to the formation of bound states and this lowers the energy. This instability leads
to the appearance of an energy gap ∆ in the single-particle excitation spectrum. This
energy gap is large at low temperatures and vanishes at the transition temperature when
superconductivity ceases to exist. The energy gap was first directly observed in 1960 [27],
as a verification of the BCS theory.
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Chapter 2. Electron-hole Superfluidity

2.1.1 BCS-BEC Crossover

The BCS theory gives an expression that shows how the gap grows with the strength
of the attractive interaction and the single particle density of states at the Fermi level.
An attractive fermionic system in a condensed state may exhibit different behaviours
that depend on the strength of the attractive interaction. As the strength increases, the
fermionic system varies continuously from a weakly interacting regime described by the
BCS theory, to a strongly interacting regime that has BEC properties [28]. These two
regimes are the two ends of a continuum of quantum mechanical behaviour, BCS-BEC
crossover phenomenon.

In the BCS framework, Cooper pairs condense at low temperature into a coherent
quantum state. As a result, the electron fluid can flow through the system without dis-
sipation. The condensate of Cooper pairs is a superconductor. The Cooper pair average
radius rpair is large compared with the average electron spacing. A huge number of pairs
is contained in a superconductor spheric volume of radius rpair, so the Cooper pairs are
greatly overlapping.

If the attraction strength in the pairs greatly increases so that the pairs radius rpair,
becomes smaller than the separation between particles, we reach a condition where the
pairs are compact and there is no overlap. Two compact tightly bound fermions can
be treated as a composite boson, therefore the pairs satisfy Bose-Einstein statistics. We
expect that these composite bosons can undergo Bose-Einstein Condensation at low tem-
peratures, condensing into a single quantum state. Being in a single quantum state leads
the system to have superfluid properties. This regime is called the BEC limit.

In an attractive fermionic system, it is possible to observe a smooth evolution between
the two limits, from overlapping Cooper pairs in a Fermi gas to a non-overlapping com-
posite bosonic gas (Fig. 2.1) tuned by the attractive potential. In evolving continuously
from one limit to the other the system passes through a regime called the Crossover, an
intermediate regime between overlapping Cooper pairs and non-overlapping composite
bosons.

FIGURE 2.1: Three regimes of BEC-BCS crossover phenomenon in an attractive
fermionic system. The BCS regime of overlapping Cooper pairs, the Crossover
regime, and the BEC regime of localized composite bosons. a is the s-wave scat-

tering length.

The BCS-BEC crossover phenomena have been extensively studied in experiments
with cold atoms trapped by an external magnetic field [29]. The atoms especially used
have been 6Li and 40K. These atoms have an odd number of electrons and even number
of nucleons, so with an odd total number of fermions, they behave like fermions.
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In a system of cold atoms, the interaction strength is described by a single parame-
ter, the s-wave scattering length a. For a weak attractive interaction between atoms, the
values of a are small and negative. If we increase the interaction, a becomes large and
negative just before a bound state appears [30]. When the bound state appears we have
a resonance. The molecular state responsible for the resonance has a magnetic moment
that is different from the magnetic moment of the colliding atoms, this is the Feshbach res-
onance. a diverges to−∞, at the Feshbach resonance the bound state appears, after which
a diverges positively +∞. As the attractive interaction is further increased the atoms be-
come more deeply bound into molecules [31] (Fig. 2.1). This tuning of a can be used to
drive the system continuously from the BCS regime, where a < 0, through the Crossover
regime to the BEC regime, where a > 0 [32]. Experimentally the tuning of the scattering
length requires the ability to manipulate the Feshbach resonances and this can be done
by using a variety of magnetic trap configurations.

2.2 Indirect Exciton Superfluidity in 2D Materials

Trapped cold atoms represent an good testing ground to study BCS-BEC crossover phe-
nomenon, but in recent years it has been studied also in semiconductor systems using
excitons. Excitons, bound state of an electron and a hole optically excited within the crys-
tal, have been used for the interpretation of certain optical properties in semiconductors.
Excitons are bound states which can be regarded as hydrogen-like states of electron-hole
pairs bound by the Coulomb interaction. The binding energy and the exciton radius are
determined by the effective Rydberg energy, Ry and the effective Bohr radius, aB,

Ry =
e2

4πεε0

1
2aB

, (2.1)

aB =
h̄24πεε0

mre2 , (2.2)

with ε the dielectric constant of the insulating barrier and mr the reduced effective mass
of the electron and hole.

Several authors proposed [4] and demonstrated [33] that excitons can be regarded as
independent particles which obey Bose-Einstein statistics. At very low temperatures ex-
citons show spontaneous phase coherence and they can undergo Bose-Einstein conden-
sation [34, 35]. Here the attraction between the carriers is directly driven by the Coulomb
force.

Because of the very fast electron-hole recombination rate, excitons have a finite life-
time. Experimentally, in order to create a cold exciton gas, the exciton lifetime should
be large compared to the exciton cooling time [36, 37]. Furthermore, the realization of a
cold and dense exciton gas requires for excitonic state to be the ground state [33]. These
requirements can be fulfilled using a bound state of a electron and a hole that are kept
spatially separated. We will use the term indirect exciton.

Semiconductor Double Quantum-Wells (DQW) were initially proposed to realize in-
direct excitons [38] with electrons confined in one well and holes in the other. The elec-
trons and the holes are separated by a high insulating barrier to avoid tunnelling and
recombination. The spatial separation allows one to reduce the overlap of the electron
and hole wave functions. The lifetimes of the indirect excitons in the resulting structures
can be orders of magnitude longer than those of conventional excitons [5, 39]. Later, the
quest for an optimal system received a boost with the discovery of graphene [8]. This
opened the way for development and fabrication of a large number of two-dimensional
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(2D) materials as platforms for exciton devices. These devices are very stable under am-
bient conditions and their crystal quality is very high [40].

In a double layer system (Fig. 2.2), the electrons and holes can move along the layers
and contribute to the conduction. At sufficiently low temperatures, electron-hole pairs
may condense into a superfluid.

FIGURE 2.2: A double layer system with electrons in the upper layer and holes in
the lower layer, dB is the barrier thickness.

A key parameter in these double layer systems is the layer separation dB:

• Electron-hole interaction is the Coulomb attraction so the distance between electron
and hole should be small to make the interaction strong.

• Electron-hole recombination is driven by tunnelling processes between the layers.
These will be negligible if the separation dB is sufficiently large.

Typically the condition for superfluidity is satisfied when dB is smaller than the effective
Bohr radius aB.

In 2D systems, the parameter that characterizes the strength of the correlations in
the layer is rs = 〈V〉/〈K〉. When the average potential energy between the carriers V
is larger than their average kinetic energy K, rs > 1, correlation effects can be expected
strong. An important advantage in these systems is that in atomically-thin 2D materials
it is straightforward to tune rs to large values:

• The kinetic energy can be modified by changing the electronic dispersion and the
specific effective masses by means of external effects including gating, applying
strain or an external magnetic field.

• The potential energy can be modified by tuning the density and thus the inter-
particle distance r0, by means of gating or optical pumping, or by changing the
dielectric environment of the 2D layer, that modifies the screening of the interaction.

This means that in a double layer system because we are able to tune rs, we can in prin-
ciple tune the BCS-BEC crossover [41]. When the average strength of the Coulomb in-
teractions between carriers are much larger than their kinetic energies, the system is in
the strongly interacting regime (BEC). A decrease in the average interaction brings the
system across the Crossover regime to the weakly interacting regime (BCS).

We can write more explicitly rs:

rs =
〈V〉
EF

=
e2

4πεε0〈r0〉
1

EF
=

e2√πn
4πεε0

1
EF(n)

. (2.3)

where r0 is the inter-particle distance and n is the density of the carriers. This means that,
in contrast with ultracold atomic gases, in a double layer system we can experimentally
tune the BCS-BEC crossover by tuning the carrier density n (Fig. 2.3).
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2.2. Indirect Exciton Superfluidity in 2D Materials

FIGURE 2.3: The BEC and BCS regimes of the BCS-BEC crossover phenomenon in a
double layer system. r0 is the average inter-particle separation. The different colors

indicate electrons or holes.

At very low density, rs � 1, the system is in the strongly interacting regime (BEC).
This corresponds to large average inter-particle separation r0, r0 � dB. The size of the
pair rpair < r0, so the pairs are compact.

At high density the inter-particle distance decreases and can be r0 < dB. The size of
the pair is rpair < r0, so the pairs are overlapping. The system is in the weakly interacting
regime (BCS).

Unlike in BCS superconductivity, in electron-hole superfluidity the interaction is a
Coulomb interaction which is long-ranged, so the screening of the interaction needs to
be taken into account. This represents a major new challenge. We will show in the next
chapters that electron-hole superfluidity in double layer systems is a low-density phe-
nomenon, because the screening of the pairing interaction at high densities (r0/aB 6 2.3)
is sufficiently strong and suppresses the superfluidity [10, 42].

2.2.1 Experimental Techniques

Different approaches have been suggested to detect electron-hole superfluidity, some sig-
natures are based on transport measurements of Coulomb drag, some on tunnelling con-
ductance between layers and others are based on optical observations of exciton lumi-
nescence.

Coulomb drag

Coulomb drag measures the friction between electrons and holes flowing in opposite
layers arising from transfer of momentum between layers. The key technical requirement
for this technique is to make independent electrical contact to the electron and hole parts
of the condensate [43]. An electric current is driven in one layer, the drive layer, and this
drags carriers in the other layer, the drag layer. The drag transresistivity ρD is defined
as the ratio of the induced potential in the drag layer to the current density in the drive
layer [44]. This measures how much the charges in one layer drag the charges in the other
layer along with them. ρD is a sensitive signature of how electron and hole exchange
momentum with each other.

In electron-hole layers when no condensate is present, the transresistivity is gener-
ally smaller than the isolated layer resistivity [45, 46]. At the temperature at which the
condensate forms, the transresistivity is predicted to jump to a value comparable to the
isolated layer resistivity. It then continues to increase with decreasing temperature, and
it diverges in the limit of zero temperature [47].

As a function of temperature a deviation of ρD from the standard Fermi-liquid T2

temperature dependence, which is based on the amount of phase space available for
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thermal excitations, is expected as evidence of correlations [48] or the existence of exotic
many-body phases.

Interlayer tunnelling

As discussed in Section 2.2, by adjusting the thickness of the barrier it is possible for the
electrons and holes to interact strongly and yet have an extremely small probability of
quantum mechanically tunnelling through the barrier. In an interlayer tunnelling con-
ductance measurement, a voltage bias is applied between the two layers [6, 49].

Recently an enhancement of interlayer tunnelling conductance has been reported in
a system of two graphene bilayers separated by a tugsten diselenide barrier [13]. This
experimental observation is interpreted as evidence for the presence of coherent electron-
hole pairs. The electrons in one layer are always positioned opposite holes in the other
layer. To date there is no comprehensive theory of the mechanism, but the belief is that
this effectively electrically shorts the two layers, allowing the electrons and holes to re-
combine without dissipation. In this way, enhanced tunnelling is an indirect signature of
excitonic condensation.

Optical trap measurements

There are a number of techniques proposed to optically identify macroscopic spatial co-
herence using traps. Along with electrostatic traps [50], excitons have been studied in a
variety of traps including strain-induced traps [51], traps created by laser-induced inter-
diffusion [52], magnetic traps [53], and laser-induced traps [54].

Optical identification techniques include:

• the appearance in photoluminescence measurements of bright localized spots with
enhanced luminescence at fixed points on the sample [55];

• the abrupt appearance of a sharp inter-well exciton line in the photoluminescence
spectra [56];

• an abrupt increase in the amplitude of interference fringes using shift-interferometry
measurements, indicating a strong enhancement of the exciton coherence length [7];

However, optical measurement before 2007 were inconclusive because they discarded
the key role of dark excitons in Bose-Einstein condensate [57]. Dark excitons are non-
reactive optically because their electron and hole have the same spin. The role played by
dark states in Bose-Einstein condensation is straightforward to understand theoretically
since they have lower energy than the bright excitons for which the electron and hole
have opposite spin. This is because dark excitons are not affected by repulsive interband
Coulomb processes like photon emission. The Bose-Einstein condensate of excitons has
an internal spin structure governed by exchanges between excitons. At large density,
fermion exchanges between dark and bright excitons modifies the structure of the exci-
tonic ground-state so that a fraction of bright excitons that can enter the condensate. On
the other hand, in the very low-density regime, the condensate is made up only of dark
excitons. Experimental studies are of necessity made above the density threshold for the
emergence of a bright component in the exciton condensate. At high density the exciton
condensate is no longer fully dark and radiates a weak photoluminescence. This emis-
sion can then be used as signature of the macroscopic spatial coherence of the condensate
[58].

In the next section we give an overview of systems that have been proposed for ob-
serving electron-hole superfluidity in which these experimental techniques have been
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applied. Interlayer tunnelling and optical measurements have successfully identified
signatures of exciton condensation. However, drag measurements have not yet detected
electron-hole superfluidity.

2.3 GaAs Double Quantum-Wells

One of the first systems proposed to study electron-hole superfluidity was a semicon-
ductor heterostructure of Gallium Arsenide (GaAs) Double Quantum-Well (DQW) [38].
This consists of two GaAs quantum wells, where the electrons in one well and holes in
the other well are confined with a static electric field [43, 59]. GaAs is a direct band
gap material with a maximum valence band and a minimum conduction band separated
by an energy band gap Eg ∼ 1.5 eV. The dispersion of the single-particle bands at low
energy is quadratic with effective masses m(e) = 0.067me for the conduction band and
m(h) = 0.3me for the valence band. The quantum wells are separated by a thin insulat-
ing barrier of AlxGa1−xAs which blocks recombination of the electrons and holes. The
strength of the electron-hole pairing is controlled by the average effective separation be-
tween the electrons and the holes that in this system is determined by the thickness of
the insulating barrier, dB, and by the widths of the quantum wells, dW (Fig. 2.4).

FIGURE 2.4: Conduction and valence bands for a GaAs DQW with quantum well
widths dW = 15 nm and Al0.9Ga0.1As barrier thickness dB = 10 nm [22]. The dashed
green line is the Fermi level EF. The vertical back dotted lines mark the centres of
the wells. φe(z) and φh(z) are the resulting electron and hole single-particle wave-
functions confined in the wells. Note that the separation of the peaks in the φe(z)

and φh(z) is larger than the distance between the centres of the two wells.

It is challenging to identify the optimal configurations for the wells and the insulat-
ing barriers [22]. In transport measurements [60, 61], the wells cannot be too narrow
or else interface roughness scattering makes mobilities impractically low. The interface
roughness scattering arises from Al atoms in the insulating barrier diffusing into the well
regions (dW ∼ 15 nm dB ∼ 10 nm).

In two independent experiments on samples with quantum well of width 15 nm and
an Al0.9Ga0.1As barrier of thickness 10 nm, a sharp turn up in the electron-hole drag
resistivity was observed for temperatures Tc ∼ 1 K [60, 61]. Such an increase can be a
signature of a superfluid transition [47]. However, the deviations from the T2 dependence
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of the drag resistivity expected for a Fermi liquid were not monotonic and the resistivity
sometimes changed sign.

Because the average effective separation is so large in this sample configuration, d &
aB ∼ 12 nm, the interaction is weak and the screening too strong, the superfluidity is
predicted to occur only for densities . 1010 cm−2 [22]. Thus, superfluidity would not
be expected at the relatively high-density range that was experimentally accessible (n >
4× 1010 cm−2). The predicted transition temperatures for this system are relatively low,
T < 1 K.

The problem of large separations can be overcome in optical measurements, where
electron-hole pairs are optically excited in a quantum well and then spatially separated
across the barrier by means of a perpendicular electric field [56, 58, 62]. This allows
the existing optical experiments to use samples with quantum wells and barriers which
are narrower than in samples for transport measurements (dW ∼ 8 − 12nm dB ∼ 1 −
4nm). Thinner barriers make the coupling of the electron-hole pairs stronger for optical
measurements than for the system for the drag measurement. Evidences of coherent
condensation were observed at temperatures of a few Kelvin for carrier densities equal
to few 1010 cm−2 which are experimentally accessible.

To date, there are no definitive observations of superfluidity in GaAs DQWs. Never-
theless, GaAs DQWs remains a fascinating system to study because of the large difference
in electron and hole effective masses in GaAs. This has significant consequences for the
superfluidity which is weaker with respect to the equal mass case, but on the other hand,
the GaAs DQW is likely to have a rich phase diagram of exotic superfluid phases [63].
The large mass difference makes double quantum wells in GaAs a solid state system
uniquely suitable for generating and enhancing exotic superfluid phases that span the
BCS-BEC crossover. The phases include the Fulde–Ferrell–Larkin–Ovchinnikov phase
(FFLO) [64] and the Sarma phase [65] with two Fermi surfaces (breached pair phase). In
ultracold atomic gases, Dy-K Fermi mixtures [66] have been used to explore the physics
of mass-imbalanced strongly interacting Fermi-Fermi mixtures [67]. Such phases can also
be expected but only at currently inaccessible temperatures, Tc ∼ 50 nK [68].

2.4 Double Monolayer Graphene

Following the discovery of graphene [8], a single atomic layer of carbon atoms, and the
discovery that a few layers of hexagonal Boron Nitride (hBN) act as an extremely effec-
tive insulating layer [69, 70], Double Monolayer Graphene (DMG) was proposed as a
promising candidate for high-temperature electron-hole superfluidity [9, 71]. The DMG
system consists of two graphene monolayers, one with electrons (n-doped) and the other
with holes (p-doped), insulated from each other by as little as three atomic layers of hBN
(Fig. 2.5).

In the heterostructure the layers are vertically coupled by van der Waals interactions
[72], and it is stable and clean [73]. In comparison with the GaAs DQW, this system has
certain potential advantages:

• it allows precise confinement of the carriers within a single atomically thin layer,
thus overcoming the problem of the large well widths in DQW,

• the insulating barrier consists of an hBN trilayer that corresponds to a thin barrier
with dB ∼ 1 nm.

As a result, the minimum distance between electrons and holes is reduced by one order
of magnitude with respect to the GaAs DQW and the average electron-hole Coulomb
interaction is very strong.
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FIGURE 2.5: Schematic set-up of a DMG system (From Ref. [9]). On the right:
chemical potential positions in two graphene layers, adjusted by gate voltages Vg

and −Vg.

Pristine monolayer graphene has remarkable and unique features due to the elec-
tronic structure. The carbon atoms are arranged in a honeycomb lattice due to their sp2

hybridization. The honeycomb structure consists of the triangular Bravais lattice with a
basis of two inequivalent neighbouring atoms, labelled A and B. The six corners of the
first Brillouin Zone (hexagon) consist of three pairs of inequivalent points K and K′. The
interesting physics occurs at low-energy, around these points, and therefore these points
play an essential role in the electronic properties of graphene [74].

The energy spectrum is linear for small values of wave-vector k around the K (or K′)
points, given by the Dirac-Weyl equation,

ε = ±h̄vF|k| , (2.4)

with fixed Fermi velocity, vF ∼ 106 m/s. The conduction and valence bands are identi-
cal and touch at the K and K′ points, called Dirac points. In the absence of an external
potential, the Fermi energy is located exactly at the Dirac points which makes graphene
a zero-gap semiconductor. At the Dirac points, there is a double degenerate zero-energy
solution associated with the K and K′ valley, the so-called valley degeneracy.

Graphene has a large carrier mobility of about 2× 104 cm2/(Vs) at room temperature
and is even higher at low temperature [75]. This makes graphene a excellent candidate
for nanoelectronic applications.

Unfortunately, the linear dispersion of the energy bands of monolayer graphene is an
enormous obstacle for accessing the strongly interacting regime where superfluidity is
expected to occur [76]. Equation (2.3) for monolayer graphene gives:

rs =
e2

κ〈r0〉
1

h̄vFkF
=

e2√πn
κ

1
h̄vF
√

πn
=

e2

κh̄vF
. (2.5)

The parameter rs in graphene is thus a fixed constant due to the linear dispersion and is
rs < 1. This means that the strongly interacting regime is not experimentally accessible
even at very low densities. For this reason, the interaction between electron and holes
remains weak and screening is found to always kill the superfluidity [76]. This result
was confirmed in an electron-hole drag experiment on DMG [77].
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2.5 Double Bilayer Graphene

Double Bilayer Graphene (DBG), using bilayer graphene in place of monolayer graphene,
was proposed to access the strongly interacting regime and realize an electron-hole con-
densate in graphene [10, 78]. Unlike monolayer graphene, the single-particle energy dis-
persion of the bands at low energies in bilayer graphene is approximately parabolic, as in
conventional semiconductors, with effective masses m(e) = m(h) ∼ 0.04me. The early the-
oretical studies [10] did not fully take into account the multi-band nature of the graphene.
Multi-component effects should be important because of the small band gaps in bilayer
graphene [79]. We will investigate the DBG system including multi-component effects in
Chapters 4 and 5.

Two research groups have independently fabricated and characterized such double
graphene bilayer devices [80, 81]. Both groups measured the Coulomb drag resistivity
ρD as a function of the carrier density in the bilayers. The electron and hole densities
were controlled with voltages applied between the bilayers and metallic gates above and
below the bilayers [82]. There were surprising results that differ dramatically from obser-
vations in DMG [77]. Reference [81] focused on DBG system with low carrier densities
and at low temperatures, Tc = 1.5 K. Unexpectedly they found that when the carrier den-
sity in both bilayers is equal, the drag resistance is huge, close to the resistance of bilayer
graphene itself. Usually, the drag resistivity is a small fraction of the layer resistivity. A
second surprising observation is that the drag was sometimes observed negative. Neg-
ative drag is usually associated with charge carriers of the same sign in both layers, so
contributions from excitons to this drag is unlikely. The origin of this behaviour has been
shown to be linked to multi-band effects in bilayer graphene that have a dramatic effect
on the drag even for a Fermi liquid [83].

The presence of an exciton condensate in DBG was recently confirmed by using tun-
nelling current measurements [13]. Enhanced interlayer tunnelling as a signature of con-
densation was reported in a DBG system with transition temperatures of Tc ∼ 1.5 K. The
range of carrier densities was n < 8× 1011 cm−2.

2.6 Double Monolayer Phosphorene

Development of other 2D exfoliated materials like phosphorene followed graphene. Phos-
phorene, a monolayer of black phosphorus [84], is a semiconductor with direct energy
band gap, Eg > 1.5 eV [85], and exhibits high carrier mobility of about 4× 103 cm2/(Vs)
at low temperature [86]. Similarly to graphene, phosphorene has a honeycomb lattice
structure. However, in contrast with graphene, phosphorene is non-planar. It is pos-
sible to distinguish two directions in the phosphorene lattice, armchair or zigzag. The
characteristic puckering results in a high in-plane anisotropy of the phosphorene energy
band structure. The anisotropic effective masses along the armchair(x) and zigzag(y) di-
rections are m(e)

x = m(h)
x ∼ 0.15me and m(e)

y ∼ 0.7me and m(h)
y ∼ me [87]. Because of

these anisotropic effective masses, excitons in phosphorene are characterized by a strong
spatial anisotropy and are predicted to exist at elevated temperatures with large binding
energies [88].

Several theoretical and experimental studies investigated different anisotropic prop-
erties of phosphorene [89], including superconductivity [90], collective excitation modes
[91] in a doped monolayer and Coulomb drag in coupled phosphorene sheets [92].

A highly anisotropic superfluid state has been predicted in Double Monolayer Phos-
phorene (DMP) arising from the anisotropic low energy bands in phosphorene [93, 94].
The system consists of two parallel monolayer phosphorene separated by a thin hBN

16



2.7. Double Monolayer Transition Metal Dichalcogenide

insulating barrier, 2 < d < 10 nm. The anisotropy of the energy band structure in phos-
phorene causes the critical velocity of the superfluidity to depend on the direction of
motion of dipolar excitons [93].

A key advantage of phosphorene with respect to graphene is the large values of the
effective masses. The Rydberg energy, Ry, (Eq. (2.1)) is proportional to the effective
masses, so in a system with large effective masses the binding energy will be stronger. In
the zigzag direction, due to the large effective masses, the superfluid gap is about twice
as large as along the armchair direction [94]. The maximum transition temperatures are
estimated to be as high as 90 K in a range of carrier densities as high as 4× 1012 cm−2.

Bright interlayer excitons in a double layer phosphorene encapsulated and separated
by germanium sulphide (GeS) or hBN have been observed with exciton binding energies
EB ∼ 0.9 eV [95]. However, to date there is no evidence of Bose-Einstein condensation or
superfluidity in DMP.

2.7 Double Monolayer Transition Metal Dichalcogenide

Over the past five years, the class of materials that have attracted the attention because
large effective masses and exciton binding energies is 2D semiconductors of the group-VI
Transition Metal Dichalcogenides (TMDs)

These TMD monolayers, with the formula MX2 (M is a transition metal (Molybde-
num, Tungsten, Titanium) and X is a chalcogen (Sulphur or Selenium)), have a hexago-
nal structure, with each monolayer comprising three stacked layers (X-M-X). The effec-
tive masses of the low-energy states are one order of magnitude larger than in bilayer
graphene. The band gaps are Eg > 1.5 eV and the excitons with the lowest energy, corre-
sponding to the direct band gap, have binding energies as high as EB ∼ 1 eV [96–98].

High-quality TMD heterobilayers, with two different TMD monolayers are directly
and vertically coupled by the van der Waals interaction [72], provide an interesting plat-
form because they host strong interlayer excitons [99, 100]. The heterobilayer exciton
properties are also due to the type-II alignment of the electron and hole bands [101]. Fasci-
nating control over the excitonic optical properties has been shown to be experimentally
possible [102, 103], including control of the exciton lifetime by an out-of-plane electric
field that modifies the overlap of the electron and hole wave-functions [104].

Because large effective masses and exciton binding energies in 2D semiconductors
favour electron-hole condensation with high transition temperatures, high-temperature
superfluidity in double monolayer TMDs has been predicted [11] and studied [105]. The
system consists of two TMD monolayers, one n-doped and one p-doped, separated by an
insulating barrier of hBN.

Recently Bose-Einstein condensation of indirect excitons has been reported in
MoSe2/hBN/WSe2 using tunnelling current and electroluminescence measurements [14].
The enhanced electroluminescence is observed at temperatures up to Tc ∼ 100 K, consis-
tent with the prediction of a high transition temperature.

We investigate this system in detail in Chapter 6. The earlier theoretical studies did
not take into account the multi-band nature of the TMD monolayers, and they neglected
the effects in the superfluidity due to the presence of strong spin-orbit coupling [106].
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Chapter 3

Multi-component Electron-Hole
Superfluidity in Multi-band System

In this chapter we introduce the theoretical approach used to describe electron-hole superfluidity
in coupled layer systems. We use an extended multi-band approach to derive the fundamental
equations for multi-component electron-hole superfluidity and we introduce the quantities used to
characterize the BCS-BEC crossover phenomena. We extend the Random Phase Approximation
to include the effect of the Coulomb screening in case of a multi-band system. The theoretical
approach that we present here is used to obtain the results published in Refs. [15–19, 22]

Multi-component superconductivity is a novel quantum phenomenon in multi-band
superconducting materials, in which different superconducting gaps open in different
Fermi surfaces. Very soon after the formulation of the BCS theory, the prediction of
multi-band superconductivity and the first extension of BCS theory to two-band two-
gap superconductors were offered by Suhl, Matthias and Walker [107]. The discovery
of the two-band superconductor MgB2 in 2001 [108] has been a prominent issue because
it marked the formal appearance of the new class of multi-band superconductors. The
most recently discovered iron-based superconductors also belong to this class of mate-
rials [109]. In all these systems different electronic orbitals or different carriers partici-
pate in the formation of the superconducting condensate [110]. The increased number of
degrees of freedom of the multi-component superconducting wave-function allows for
emergent quantum effects that are otherwise unattainable in single-component super-
conductors.

In this chapter, we want to explicitly calculate the mean field equations for a system
characterized by multiple electronic bands. The pairing of the particles in these systems
has origin in the different bands and raises the possibility to have multi-component su-
perfluidity, with multiple condensates.

3.1 Multi-band Electron-Hole Superfluidity

We want to describe the phenomena of electron-hole superfluidity using a microscopic
approach. We use an approach similar to the one introduced by Bardeen, Cooper and
Schrieffer in 1957 [25] and extended to finite temperature by Gorkov [111]. The system
consists of an electron-doped layer separated from a hole-doped layer and is described
by the total Grand-Canonical Hamiltonian for electron gas in second-quantization:

Ĥ = ∑
λ

∫
Ψ+

λ (x)T̂λ(x)Ψλ(x)dx +
1
2 ∑

λλ′

∫
V̂λλ′(x, y)Ψ+

λ (x)Ψ
+
λ′(y)Ψλ′(y)Ψλ(x)dxdy ,

(3.1)
where Ψ and Ψ+ are the annihilation and creation field operators at x for electrons layer
with index λ = e and y for holes layer λ = h. For the p-doped layer we use the standard
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Chapter 3. Multi-component Electron-Hole Superfluidity in Multi-band System

FIGURE 3.1: Schematic representation of a bilayer system with top electron layer
and bottom hole layer. Interlayer interaction, V̂eh, and intralayer interactions,V̂ee

and V̂hh are indicated.

hole-particle transformation. We mapped the valence band to a conduction band, so that
the bands are filled with positively charged holes up to the Fermi level. The spin indices
are implicit because the Coulomb interaction does not select the spin.

In Eq. (3.1), T̂λ is the kinetic energy operator. V̂λλ′ is the Coulomb potential operator
that depends on the relative distance between carriers. It describes the repulsion between
carriers in the same layer (λ = λ′ intralayer interaction) or the attraction between carriers
in opposite layers (λ 6= λ′ interlayer interaction),

Ĥ =∑
λ

∫
Ψ+

λ (x)T̂λ(x)Ψλ(x)dx +
1
2 ∑

λ

∫
V̂intra(x, y)Ψ+

λ (x)Ψ
+
λ (y)Ψλ(y)Ψλ(x)dxdy

+
1
2 ∑

λ 6=λ′

∫
V̂inter(x, y)Ψ+

λ (x)Ψ
+
λ′(y)Ψλ′(y)Ψλ(x)dxdy .

In this work, we focus on low densities to work in the strongly interacting regime. At
low density the average inter-particle distance in each layer, r0, is larger with respect to
the distance between the layers, so the interlayer potential, V̂eh, is stronger with respect
to the intralayer interactions V̂ee and V̂hh that can be neglected. The effect of V̂ee and V̂hh
can be very important in presence of electron-hole density imbalance and can be readily
included in a mean field treatment [38].

The reduced Hamiltonian is:

Ĥ =∑
λ

∫
Ψ+

λ (x)T̂λ(x)Ψλ(x)dx +
1
2 ∑

λ 6=λ′

∫
V̂eh(|x− y|)Ψ+

λ (x)Ψ
+
λ′(y)Ψλ′(y)Ψλ(x)dxdy ,

(3.2)

where

V̂eh(|x− y|)Ψ+
e (x)Ψ

+
h (y)Ψh(y)Ψe(x) = V̂eh(|x− y|)Ψ+

h (x)Ψ
+
e (y)Ψe(y)Ψh(x) , (3.3)

thus

Ĥ = ∑
λ

∫
Ψ+

λ (x)T̂λ(x)Ψλ(x)dx +
∫

V̂eh(|x− y|)Ψ+
λ (x)Ψ

+
λ′(y)Ψλ′(y)Ψλ(x)dxdy . (3.4)

The carriers are confined to move in a 2D layer. We write the kinetic term separable
with respect to the in-plane x̄ and out-of-plane x⊥ spatial components:

T̂λ(x) = T̂λ(x̄) + T̂λ(x⊥)− µλ , (3.5)

where µλ is the chemical potential for the carriers. The interlayer interaction depends
on the interlayer distance d and on the in-plane difference between electron and hole
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3.1. Multi-band Electron-Hole Superfluidity

position, |x̄− ȳ|: V̂eh(|x− y|) = V̂eh

(√
d2 + (x̄− ȳ)2

)
.

Also the field operator is separable in the variables with respect to the in-plane and
out-of-plane components,

Ψλ(x̄, x⊥) = ∑
n

ψλ,n(x̄)φλ,n(x⊥) , (3.6)

and here we introduce the multiple bands with n sub-band index. The ψλ,n(x̄) is:

ψλ,n(x̄) =
1√
S

∑
k,n

eikx̄aλ,n,k , (3.7)

where a†
λ,n,k and aλ,n,k are fermionic creation and annihilation operators for a carrier λ in

quantum state n, k and S is the layer surface area.
We rewrite the Hamiltonian in Eq. (3.4) in terms of sub-bands operators. For the

kinetic part of the Hamiltonian, T̂λ(x̄)ψλ,n(x̄) = ελ,nψλ,n(x̄) and T̂(x⊥)φλ,n(x⊥) = 0, be-
cause the carriers are confined in the layers.

K̂ = ∑
λ

∑
n,m

∫
ψ+

λ,n(x̄)φ
∗
λ,n(x⊥) T̂λ(x)ψλ,m(x̄)φλ,m(x⊥) dx̄ dx⊥

= ∑
λ

∑
n,m

∫
ψ+

λ,n(x̄)φ
∗
λ,n(x⊥)

(
T̂λ(x̄) + T̂λ(x⊥)− µλ

)
ψλ,m(x̄)φλ,m(x⊥) dx̄ dx⊥

= ∑
λ

∑
n,m

∫
ψ+

λ,n(x̄)φ
∗
λ,n(x⊥)

(
φλ,m(x⊥)T̂λ(x̄)ψλ,m(x̄)− µλψλ,m(x̄)φλ,m(x⊥)

)
dx̄ dx⊥

= ∑
λ

∑
n,m

∫
ψ+

λ,n(x̄)φ
∗
λ,n(x⊥)φλ,m(x⊥)

(
T̂λ(x̄)ψλ,m(x̄)− µλψλ,m(x̄)

)
dx̄ dx⊥

= ∑
λ

∑
n,m

∫
ψ+

λ,n(x̄) (ελ,n − µλ)ψλ,m(x̄)dx̄
∫

φ∗λ,n(x⊥)φλ,m(x⊥)dx⊥

= ∑
λ

∑
n

∫
ψ+

λ,n(x̄) ξ̂λ,n ψλ,n(x̄) dx̄

with
∫

φ∗λ,n(x⊥)φλ,m(x⊥)dx⊥ = δn,m.
The interaction part of the Hamiltonian becomes:

V̂ =∑
i,j

m,n

∫
V̂eh(x̄−ȳ)ψ+

λ,i(x̄)φ
∗
λ,i(x⊥)ψ+

λ′,j(ȳ)φ
∗
λ′,j(y⊥)ψλ′,m(ȳ)φλ′,m(y⊥)ψλ,n(x̄)φλ,n(x⊥)dx̄ dȳ dx⊥dy⊥

=∑
i,j

m,n

∫
V̂eh(x̄−ȳ)ψ+

λ,i(x̄)ψ
+
λ′,j(ȳ)ψλ′,m(ȳ)ψλ,n(x̄)dx̄dȳ

∫
φ∗λ,i(x⊥)φ∗λ′,j(y⊥)φλ′,m(y⊥)φλ,n(x⊥)dx⊥dy⊥

= ∑
i,j

n,m

∫
Fij,nm V̂eh(x̄−ȳ)ψ+

λ,i(x̄)ψ
+
λ′,j(ȳ)ψλ′,m(ȳ)ψλ,n(x̄)dx̄dȳ

where
Fij,nm =

∫
φ∗λ,i(x⊥)φ∗λ′,j(y⊥)φλ′,m(y⊥)φλ,n(x⊥)dx⊥dy⊥ . (3.8)

This factor accounts for the overlap of the way functions and we will see later in this
chapter that it has important effects on the electron-hole pairing.

23



Chapter 3. Multi-component Electron-Hole Superfluidity in Multi-band System

We can write the total Hamiltonian using a new notation able to differentiate the
carriers to reduce the number of indexes: ψe,n(x̄) = cn(x̄), ψh,n(ȳ) = dn(ȳ).

Ĥ =∑
n

∫
c+n (x̄) ξ̂e,n cn(x̄) dx̄ +

∫
d+n (ȳ) ξ̂h,n dn(ȳ) dȳ

+ ∑
i,j

n,m

∫
Fin,jmV̂eh(x̄−ȳ)

[
c+i (x̄)d

+
j (ȳ)dm(ȳ)cn(x̄)

]
dx̄ dȳ .

(3.9)

The above Hamiltonian is still an interacting electron problem and is too hard to solve
exactly. Hence we introduce the mean field approximation and we replace the operators
with their average value:

c+n (x̄)d
+
m(ȳ)dm(ȳ)cn(x̄) ≈

〈
c+n (x̄)d

+
m(ȳ)

〉
dm(ȳ)cn(x̄) + c+n (x̄)d

+
m(ȳ) 〈dm(ȳ)cn(x̄)〉 , (3.10)

and we define the order parameter,

∆nm(x̄, ȳ) = ∑
i,j

V̂eh(x̄−ȳ)Fij,nm
〈
ci(x̄)dj(ȳ)

〉
, (3.11)

that describes the pairing potential between electrons and holes from subbands n and m.
We can write the mean field BCS-Bogoliubov Hamiltonian from Eq. (3.9) :

Ĥ =∑
n

∫
[c+n (x̄)ξ̂e,ncn(x̄) + d+n (x̄)ξ̂h,ndn(x̄)] dx̄ + ∑

n,m

∫
[c+n (x̄)d

+
m(ȳ)∆nm(x̄, ȳ) + h.c] dx̄ dȳ .

(3.12)

We pass to the Heisenberg picture where the ψλ,n and ψ+
λ,n are,

ψλ,n(x̄, τ) = eĤτ/h̄ ψλ,n(x̄) e−Ĥτ/h̄ , ψ+
λ,n(x̄, τ) = eĤτ/h̄ ψ+

λ,n(x̄) e−Ĥτ/h̄ , (3.13)

and we write the equations for the field operators,

− h̄ ∂τψλ,n(x̄, τ) =
[
ψλ,n(x̄, τ), Ĥ

]
. (3.14)

Using the anti-commutation relations:

{ψλ,n(x̄), ψλ,m(ȳ)} =
{

ψ+
λ,n(x̄), ψ+

λ,m(ȳ)
}
= 0 ,{

ψλ,n(x̄), ψ+
λ,m(ȳ)

}
= δn,mδ(x̄−ȳ) ,

{cn(x̄), dm(ȳ)} =
{

c+n (x̄), d+m(ȳ)
}
=
{

cn(x̄), d+m(ȳ)
}
= 0 ,

we calculate the kinetic term of Eq. (3.14),
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3.1. Multi-band Electron-Hole Superfluidity

[
ψλ,n(x̄, τ), K̂

]
=

[
ψλ,n(x̄, τ), ∑

λ′,m

∫
ψ+

λ′,m(ȳ) ξ̂λ′,m ψλ′,m(ȳ)dȳ

]
= ∑

λ′,m

∫
dȳ
[
ψλ,n(x̄, τ)ψ+

λ′,m(ȳ)ξ̂λ′,mψλ′,m(ȳ)− ψ+
λ′,m(ȳ)ξ̂λ′,mψλ′,m(ȳ)ψλ,n(x̄, τ)

]
= ∑

λ′,m

∫
dȳ
[(

δn,mδλ,λ′δ(x̄−ȳ)− ψ+
λ′,m(ȳ)ψλ,n(x̄, τ)

)
ξ̂λ′,mψλ′,m(ȳ)− ψ+

λ′,m(ȳ)ξ̂λ′,mψλ′,m(ȳ)ψλ,n(x̄, τ)
]

= ξ̂λ,nψλ,n(x̄, τ)−∑
λ′,m

∫
dȳ
[
ψ+

λ′,m(ȳ)ψλ,n(x̄, τ)ξ̂λ′,mψλ′,m(ȳ) + ψ+
λ′,m(ȳ)ξ̂λ′,mψλ′,m(ȳ)ψλ,n(x̄, τ)

]
= ξ̂λ,nψλ,n(x̄, τ)−∑

λ′,m

∫
dȳ
[
ψ+

λ′,m(ȳ)ψλ,n(x̄, τ)ξ̂λ′,mψλ′,m(ȳ)− ψ+
λ′,m(ȳ)ξ̂λ′,mψλ,n(x̄, τ)ψλ′,m(ȳ)

]
= ξ̂λ,nψλ,n(x̄, τ)

and then the interaction term of Eq. (3.14),

[
cn(x̄, τ), V̂

]
=

[
cn(x̄, τ), ∑

i,j

∫
dȳ dȳ′[c+i (ȳ)d

+
j (ȳ

′)∆ij(ȳ, ȳ′) + ∆+
ij (ȳ, ȳ′)dj(ȳ)ci(ȳ′)]

]

=[cn(x̄), ∑
i,j

∫
dȳ dȳ′c+i (ȳ)d

+
j (ȳ

′)∆ij(ȳ, ȳ′)]+

[cn(x̄), ∑
i,j

∫
dȳ dȳ′∆+

ij (ȳ, ȳ′)dj(ȳ)ci(ȳ′)]

The first term of the interaction term will give us:[
cn(x̄), ∑

i,j

∫
dȳ dȳ′c+i (ȳ)d

+
j (ȳ

′)∆ij(ȳ, ȳ′)

]

= ∑
i,j

∫
dȳ dȳ′

[
cn(x̄)c+i (ȳ)d

+
j (ȳ

′)∆ij(ȳ, ȳ′)− d+j (ȳ)c
+
i (x̄)∆ij(ȳ, ȳ′)cn(x̄)

]
= ∑

i,j

∫
dȳ dȳ′

[(
δn,iδ(x̄−ȳ)− c+i (ȳ)cn(x̄)

)
d+j (ȳ

′)∆ij(ȳ, ȳ′)− d+j (ȳ
′)c+i (ȳ)∆ij(ȳ, ȳ′)cn(x̄)

]

= ∑
i,j

∫
dȳ dȳ′

[
d+j (ȳ

′, τ)∆nj(x̄, ȳ′)− c+i (ȳ)cn(x̄)d+j (ȳ
′)∆ij(ȳ, ȳ′)− d+j (ȳ

′)c+i (ȳ)∆ij(ȳ, ȳ′)cn(x̄)
]

= ∑
i,j

∫
dȳ dȳ′

[
d+j (ȳ

′, τ)∆nj(x̄, ȳ′) + c+i (ȳ)d
+
j (ȳ

′)cn(x̄)∆ij(ȳ, ȳ′) + c+i (ȳ)d
+
j (ȳ

′)∆ij(ȳ, ȳ′)cn(x̄)
]

= ∑
j

∫
dȳ′d+j (ȳ

′, τ)∆nj(x̄, ȳ′) ,

while the second term:
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[
cn(x̄), ∑

i,j

∫
dȳ dȳ′∆+

ij (ȳ, ȳ′)dj(ȳ′)ci(ȳ)

]

= ∑
i,j

∫
dȳ dȳ′

[
cn(x̄)∆+

ij (ȳ, ȳ′)dj(ȳ′)ci(ȳ) + ∆+
ij (ȳ, ȳ′)dj(ȳ′)ci(ȳ)cn(x̄)

]
= ∑

i,j

∫
dȳ dȳ′

[
cn(x̄)∆+

ij (ȳ, ȳ′)dj(ȳ′)ci(ȳ) + ∆+
ij (ȳ, ȳ′)cn(x̄)dj(ȳ′)ci(ȳ)

]
= 0 .

so we obtain: [
ψλ,n(x̄, τ), V̂

]
= ∑

j
∆nj(x̄, ȳ)ψ+

λ′,j(ȳ, τ)

Finally, the equation of motion Eq. (3.14) for ψλ,n becomes,

− h̄∂τψλ,n(x̄, τ) = ξ̂λ,nψλ,n(x̄, τ) + ∑
j

∆nj(x̄, ȳ)ψ+
λ′,j(ȳ) , (3.15)

and with the same procedure we have the equation of motion for ψ+
λ,n,

− h̄∂τψ+
λ,n(x̄, τ) = −ξ̂+λ,nψ+

λ,n(x̄, τ) + ∑
j

∆+
nj(x̄, ȳ)ψλ′,j(ȳ) . (3.16)

3.2 Two-Band Mean Field Theory including Interband Pairing.

In Chapters 4, 5 and 6 we will study two different systems where the pairing has two-
band character, so we reduce the approach to a two-band approach. We will see that
these two systems define two very different classes of two-band systems:

• In the Double Bilayer Graphene system, the two bands contributing to the pairing
are the conduction and valence bands. In contrast with conventional multi-band
superconductors, the bands here are not nested and there is a unique Fermi surface.

• In the double TMD monolayer system there are two bands contributing to the pair-
ing because of the splitting of the bands caused by strong spin-orbit coupling. The
bands are concentric subbands as in the multi-band superconductors.

A preliminary result was derived for two-band superconductors in 1963 [112], here we
will derive the most general set of equations to describe these two-band systems includ-
ing all the possible pairing channels.

In a two-band system, we write Eqs. (3.15)-(3.16) in a matrix form as:

− h̄∂τ


c1(x̄)
d+1 (ȳ)
c2(x̄)
d+2 (x̄)

 =


ξe,1 ∆11 0 ∆12
∆+

11 −ξ+h,2 ∆+
12 0

0 ∆21 ξe,2 ∆22
∆+

21 0 ∆+
22 −ξ+h,2




c1(x̄)
d+1 (ȳ)
c2(x̄)
d+2 (x̄)

 (3.17)

We have in principle four pairing channels, each one associated to a ∆nm. We refer to
∆11, ∆22 as intraband pairing channels, that involve an electron and a hole from the same
band, and ∆12, ∆21 interband pairing channel, where the carriers come from different
bands [113].
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Now we define the set of Green functions [111], the normal Green functions (within a
layer),

G(e)
nm(x̄τ, x̄′τ′) = −1

h̄
〈

Tτ cn(x̄, τ)c+m(x̄
′, τ′)

〉
, (3.18)

G(h)∗
nm (x̄τ, x̄′τ′) = −1

h̄
〈

Tτ d+n (x̄, τ)dm(x̄′, τ′)
〉

, (3.19)

and the anomalous Green functions (for different layers),

Fnm(x̄τ, x̄′τ′) = −1
h̄
〈

Tτ cn(x̄, τ)dm(x̄′, τ′)
〉

, (3.20)

F∗nm(x̄τ, x̄′τ′) = −1
h̄
〈

Tτ d+n (x̄, τ)c+m(x̄
′, τ′)

〉
, (3.21)

where Tτ is the time-ordering operator.
We write the Green functions evolution on the basis of Eqs. (3.15)-(3.16) as,

− h̄∂τGnm(x̄τ, x̄′τ′) = δ(τ−τ′)δ(x̄−x̄′)δnm + ξ̂e,nGnm(x̄τ, x̄′τ′)+
2

∑
j

∆nj(x̄, ȳ)F∗jm(x̄τ, x̄′τ′) , (3.22)

− h̄∂τ Fnm(x̄τ, x̄′τ′) = ξ̂e,nFnm(x̄τ, x̄′τ′) +
2

∑
j

∆nj(x̄, ȳ)G∗jm(x̄τ, x̄′τ′) , (3.23)

− h̄∂τG∗nm(x̄τ, x̄′τ′) = δ(τ−τ′)δ(x̄−x̄′)δnm − ξ̂+h,nG∗nm(x̄τ, x̄′τ′)−
2

∑
j

∆∗nj(x̄, ȳ)Fjm(x̄τ, x̄′τ′) , (3.24)

− h̄∂τ F∗nm(x̄τ, x̄′τ′) = −ξ̂+h,nF∗nm(x̄τ, x̄′τ′) +
2

∑
j

∆∗nj(x̄, ȳ)G(e)
jm (x̄τ, x̄′τ′) . (3.25)

We now introduce the Fourier transforms:

Gnm(x̄τ, x̄′τ′) = − kBT
h̄ ∑

ω

e−iω(τ−τ′)Gnm(ω, x̄, x̄′) ,

G∗nm(x̄τ, x̄′τ′) = − kBT
h̄ ∑

ω

e−iω(τ−τ′)G∗nm(ω, x̄, x̄′) ,

Fnm(x̄τ, x̄′τ′) = − kBT
h̄ ∑

ω

e−iω(τ−τ′)Fnm(ω, x̄, x̄′) ,

F∗nm(x̄τ, x̄′τ′) = − kBT
h̄ ∑

ω

e−iω(τ−τ′)F∗nm(ω, x̄, x̄′) ,

with

Gnm(ω, x̄, x̄′) =< x̄|Gnm(ω)|x̄′ > , Fnm(ω, x̄, x̄′) =< x̄|Fnm(ω)|x̄′ > ,
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where T is the temperature and ω = kBT(2n + 1)π are the fermionic Matsubara frequen-
cies.

Using

< x̄|ξ̂λ,n|x̄′ >= δ(x− x̄′)ξ̂λ,n(x̄) , < x̄|∆nj|x̄′ >= δ(x− x̄′)∆nj(x̄) ,

we can rewrite Eqs. (3.22)-(3.25):

ih̄ωGnm(ω) = δnm + ξ̂e,nGnm(ω) +
2

∑
j

∆njF∗jm(ω) , (3.26)

ih̄ωFnm(ω) = ξ̂e,nFnm(ω) +
2

∑
j

∆njG∗jm(ω) , (3.27)

ih̄ωG∗nm(ω) = δnm − ξ̂h,nG∗nm(ω)−
2

∑
j

∆∗njFjm(ω) , (3.28)

ih̄ωF∗nm(ω) = −ξ̂h,nF∗nm(ω) +
2

∑
j

∆∗njGjm(ω) . (3.29)

We introduce the Nambu matrices:

ξλ =

(
ξ
(λ)
1 0
0 ξ

(λ)
2

)
, Gω =

(
G11 G12
G21 G22

)
, ∆ =

(
∆11 ∆12
∆21 ∆22

)
, Fω =

(
F11 F12
F21 F22

)
,

(3.30)
and we rewrite the equations in a more compact way:

(ih̄ω− ξe)Gω = I + ∆ F∗ω , (3.31)
(ih̄ω− ξe)Fω = ∆ G∗ω , (3.32)
(ih̄ω + ξh)G

∗
ω = I− ∆∗ Fω , (3.33)

(ih̄ω + ξh)F
∗
ω = ∆∗Gω . (3.34)

We pass in the reciprocal space for the uniform case,

<k|Gω|k′> = (2π)2δ(k− k′)Gω(k) ,

<k|ξλ|k′> = (2π)2δ(k− k′)ξλ(k) ,
<k|∆|k′> = ∆(k− k′) ,

and from Eq. (3.31) we get:

<k|(ih̄ω− ξe)Gω|k′> =<k|I|k′> + <k|∆ F∗ω|k′>∫ d2k′′

(2π)2 <k|(ih̄ω−ξe)|k′′><k′′|Gω|k′> = (2π)2δ(k−k′)I

+
∫ d2k′′

(2π)2 <k|∆|k′′><k′′|F∗ω|k′>∫
d2k′′δ(k−k′′)(ih̄ω−ξe)(2π)2δ(k′′−k′)Gω(k′′) = (2π)2δ(k− k′)I

+
∫

d2k′′∆(k−k′′)δ(k′′−k′)F∗ω(k
′′)
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(2π)2δ(k− k′)(ih̄ω− ξe)Gω(k) = (2π)2δ(k− k′)I + ∆(k−k′)F∗ω(k
′)

making the further assumption ∆(k− k′) = (2π)2δ(k− k′)∆(k), and applying the same
procedure to all the other Eqs. (3.31)-(3.34) we obtain:

(ih̄ω− ξe)Gω(k) = I + ∆F∗ω(k) ,
(ih̄ω− ξe)Fω(k) = ∆G∗ω(k) ,
(ih̄ω + ξh)G

∗
ω(k) = I− ∆∗ Fω(k) ,

(ih̄ω + ξh)F
∗
ω(k) = ∆∗Gω(k) ,

We arrange the equations in a matrix:
ih̄ω− ξ

(e)
1 0 ∆11 ∆12

0 ih̄ω− ξ
(e)
2 ∆21 ∆22

−∆∗11 −∆∗12 ih̄ω + ξ
(h)
1 0

−∆∗21 −∆∗22 0 ih̄ω + ξ
(h)
2




G11 G12 F11 F12
G21 G22 F21 F22
F∗11 F∗12 G∗11 G∗12
F∗21 F∗22 G∗21 G∗22

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(3.35)

and we solve the system of the equations (See details of the resolution in Appendix A).
We finally determine the normal Green functions in all the channels:

G11[iω, k] =
(ih̄ω− ξ

(e)
2 )(ih̄ω + ξ

(h)
1 )(ih̄ω + ξ

(h)
2 )− (ih̄ω + ξ

(h)
1 )∆2

22 − (ih̄ω + ξ
(h)
2 )∆12∆21

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

G21[iω, k] =
(ih̄ω + ξ

(h)
2 )∆11∆21 + (ih̄ω + ξ

(h)
1 )∆21∆22

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

G12[iω, k] =
(ih̄ω + ξ

(h)
2 )∆11∆12 + (ih̄ω + ξ

(h)
1 )∆22∆12

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

G22[iω, k] =
(ih̄ω− ξ

(e)
1 )(ih̄ω + ξ

(h)
1 )(ih̄ω + ξ

(h)
2 )− (ih̄ω + ξ

(h)
2 )∆2

11 − (ih̄ω + ξ
(h)
1 )∆12∆21

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

(3.36)
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and the anomalous Green functions:

F11[iω, k] =
(ih̄ω− ξ

(e)
2 )(ih̄ω + ξ

(h)
2 )∆11 − (∆11∆22 − ∆12∆21)∆22

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

F21[iω, k] =
(ih̄ω− ξ

(e)
1 )(ih̄ω + ξ

(h)
2 )∆21 + (∆11∆22 − ∆12∆21)∆21

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

F12[iω, k] =
(ih̄ω− ξ

(e)
2 )(ih̄ω + ξ

(h)
1 )∆12 + (∆11∆22 − ∆12∆21)∆12

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

F22[iω, k] =
(ih̄ω− ξ

(e)
1 )(ih̄ω + ξ

(h)
1 )∆22 − (∆11∆22 − ∆12∆21)∆11

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

(3.37)

with

χ1 = δξ1 +

√
a + b

2
, χ2 = δξ2 +

√
a− b

2
, χ3 = −δξ1 +

√
a + b

2
, χ4 = −δξ2 +

√
a− b

2
,

a = E2
1 + E2

2 + 2∆12∆21 ,

b = δξ2
1 − δξ2

2 +

√
(T2

1 − T2
2 )

2 + 4∆12∆21((ξ
(e)
1 − ξ

(e)
2 )(ξ

(h)
1 − ξ

(h)
2 ) + (∆11 + ∆22)2) ,

(3.38)

where we introduced the notation:

δξn =
ξ
(e)
n − ξ

(h)
n

2
, ξn =

ξ
(e)
n + ξ

(h)
n

2
, E2

n = ∆2
nn + ξ2

n , T2
n = ∆2

nn + ξ
(e)
n ξ

(h)
n . (3.39)

Using the anomalous Green functions and the definition of the order parameter (Eq.
(3.11)), we can derive the self-consistent mean field equations for ∆nm:

∆nm(k) = −
kBT
L2

2

∑
i,j=1

∑
k′
Fnm,ij(k, k′)Veh(|k− k′|)∑

ω

e−iω0+ Fij[iω, k′] , (3.40)

where
Fnm,ij(k, k′) =

〈
ik′
∣∣ nk

〉 〈
mk

∣∣ jk′
〉

, (3.41)

is the form factor representing the overlap of the single-particle wave functions [114].
Equation (3.40) describes the superfluid gap ∆ that opens in the excitation quasi-

particle energy when electron-hole pairs are formed. In a multi-component system, each
∆nm is associated with a {nm}-partial condensate. On the right hand side of Eq. (3.40),
the superfluid gaps ∆ij(k) appear implicitly in the Fij, meaning that the condensate is a
coherent mixture of intraband (i = j) and interband (i 6= j) condensates. The condensates
are coupled when form factor Fnm,ij(k, k′) 6= 0. The form factor describes the probability
of Josephson-like virtual transfer of a pair from bands nm to bands ij.
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3.3. Random Phase Approximation for the Screening

Using the normal Green functions we can derive the density equation:

n = gsgv
kBT
L2

2

∑
n=1

∑
k,ω

e−iω0+Gnn[iω, k] , (3.42)

The factor gs accounts for the spin degeneracy and gv for the valley degeneracy of a
system.

After performing the summation over the Matsubara frequencies ω, in the limit of
zero temperature, we can solve Eq. (3.40) coupled with Eq. (3.42) in order to obtain the
zero temperature superfluid gaps ∆nm and the chemical potential µ.

3.2.1 BEC-BCS crossover

The evolution of the BEC-BCS crossover with the density can be investigated studying
the superfluid gap and the chemical potential. The properties of these two quantities
provide some of the criteria used to distinguish the different regimes of the BEC-BCS
crossover [115].

In the strongly interacting BEC regime, the superfluid gap ∆, as a function of k has a
high and broad peak. The maximum ∆max is greater or of the order of the Fermi energy
EF. The peak is centred at k = 0, and it extends to large values of k. In the BEC regime the
chemical potential is negative µ � EF and in the limit of very low density µ = −EB/2,
where EB is the two-body binding energy.

In the weakly interacting BCS regime, the superfluid gap ∆, as a function of k has
small and narrow peak centred at kF (Fermi wave-vector). The maximum of the gap is
∆max � EF. In the BCS regime the chemical potential coincides with the Fermi level EF.

The different regimes of the BEC-BCS crossover can also be identified by introducing
the superfluid condensate fraction c [116, 117]. This is defined as the fraction of carriers
in pairs, npair, relative to the total number of carriers. The number of the pairs is given by
[117],

npair =
∫
| 〈cn(x̄)dm(x̄)〉 |2dx̄dȳ . (3.43)

In a one-band system, it is straightforward to show that the condensate fraction is:

c =
∑k,ω e−iω0+ |F[iω, k]|2

∑k,ω e−iω0+G[iω, k]
. (3.44)

The classification is for c > 0.8 the condensate is in the BEC regime, for c < 0.2 in the
BCS regime. Otherwise the condensate is in the Crossover regime [118].

The definition in Eq. (3.44) can be extended for multi-band systems in case of multi-
condensates [119], where for each condensate we can define a condensate fraction. We
will calculate the condensate fractions for the specific systems in Chapters 4 and 6.

As introduced in Section 2.2, the obstacle for an observation of the BCS regime is
given by the screening that becomes more and more effective with the increase of the
density. In the next section we will deal with the approximation we use to include the
screening effects in the interaction Veh(|k− k′|) in Eq. (3.42).

3.3 Random Phase Approximation for the Screening

Unlike in superconductors, the long-range nature of the bare Coulomb interaction means
that screening of interactions must be taken into account. With carriers in two differ-
ent layers, the Coulomb interaction in one layer induces a charge response not only in
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the same layer but also in the opposite layer. We use the linear-response Random Phase
Approximation (RPA) to describe the screening. A comparison of the good agreement
of zero-temperature superfluid properties for a double layer electron-hole system calcu-
lated using the present mean field RPA approach [42], with the corresponding results
calculated using diffusion quantum Monte Carlo [118], indicates that the present RPA
approach should be a quantitatively good approximation.

In the RPA, electrons respond as mutually non interacting particles to a sum of the ex-
ternal potentials plus the mean field Hartree potentials from the charge densities induced
by the electrons. The effective potential is:

W(q, Ω) =
(

1 + V(q)χ(RPA)(q, Ω)
)

V(q) , (3.45)

where q = |k− k′|.
V̂(q) is the matrix of the bare interactions:

V(q) =
(

Vee Veh
Veh Vhh

)
, Vee(q) = Vhh(q) =

2πe2

ελε0

1
q

, Veh(q) = −
2πe2

εε0

e−dq

q
.

(3.46)
Vee and Vee are the bare repulsive potentials between same carriers within a single layer,
Veh is the bare interlayer attraction and d is the interlayer distance. ελ is the relative
dielectric permittivity of the layers and ε is the relative dielectric permittivity of the sur-
rounding medium. For simplicity, we consider the two layers embedded and separated
using the same material. (This corresponds to the actual experimental situation where
Boron Nitride is used both as substrate and as a spacer [14, 81, 120]). This choice allows
us to treat Vee = Vhh. For simplicity we use Vee = VS and Veh = VD

In Eq. (3.45), χ(RPA) is the matrix of density-density response functions in the RPA:

χ(RPA)(q, Ω) = [1−V(q)Π(q, Ω)]−1 Π(q, Ω) . (3.47)

Here Π is the matrix of the dynamic polarizabilities.

3.3.1 Screened Interaction in the Normal State

In the Normal State (there is no pairing between opposite carriers) the carriers in each
layer do not respond to the opposite layer charge distribution. The polarizabilities of the
system are Πe, for the n-doped layer, and Πh for the p-doped layer, so we can write the
Π as:

Π(q, Ω) =

(
Πe 0
0 Πh

)
. (3.48)

The off-diagonal terms that account for the interlayer polarizabilities are identically zero
in this case. In the case of equal densities, due to the particle-hole symmetry, polarizabil-
ities are equal in both layers: Πe = Πh = ΠN .

For a multi-band system we can write:

ΠN(q, Ω) = gsgv ∑
i,j

Πij
N(q, Ω) . (3.49)

where gs and gv are the spin and valley degeneracies. The lowest-order polarizability
of the non-interacting 2D electron gas is the Stern-Lindhard function [121]. In the static
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limit (Ω→ 0) for bands i and j it is written:

Πij
N(q, T) =

1
L2 ∑

k
Fi,j(k, k + q)

nF[ε i(k), T]− nF[ε j(k + q), T]
ε i(k)− ε j(k + q)

, (3.50)

where nF[ε i(k), T] is the Fermi distribution of the particle function for the i band at tem-
perature T. Note that we adopt a sign convention for which the real part of ΠN is nega-
tive.

Using ΠN we can now write the eigenvalues of the RPA matrix (Eq. (3.47)) in the
static limit as

χ
(RPA)
1 =

ΠN(q)
1− (VS(q) + VD(q))ΠN(q)

,

χ
(RPA)
2 =

ΠN(q)
1− (VS(q)−VD(q))ΠN(q)

,
(3.51)

and from Eq. (3.45) we get [122]:

WS(q) =
VS(q)−ΠN(q)

(
V2

S (q)−V2
D(q)

)
1− 2ΠN(q)VS(q) + Π2

N(q)
(
V2

S (q)−V2
D(q)

) , (3.52)

WD(q) =
VD(q)

1− 2ΠN(q)VS(q) + Π2
N(q)

(
V2

S (q)−V2
D(q)

) . (3.53)

WS is the statically screened intralayer repulsion between same carriers and WD is
the the statically screened interlayer attraction between electrons and holes in different
layers.

For a one-band 2D electron gas, ΠN is negative. For q < 2kF, it is equal to the Density
Of States (DOS) ΠN(q) = −DOS, and for q > 2kF it falls to zero [121]. Because of negative
sign, ΠN reduces the strength of the electron-hole attraction WD (Eq. (3.53)) for q < 2kF.
This leads to the familiar effect of the screening in real space: the screened potential is cut
off to zero when r ' rc, defining a screening length rc. The effect of the screening due to
the normal polarizability increases with the increase of kF, thus with the density.

3.3.2 Screening Interaction in the Superfluid State

When the system in in the Superfluid State, the formation of electron-hole pairs gives rise
to a direct response of charge density in one layer on the electric field in the other layer.
This is described by anomalous polarizability ΠA and the polarizability matrix is:

Π(q, Ω) =

(
ΠN ΠA
ΠA ΠN

)
. (3.54)

The normal intralayer polarizabilities of each layer (Eq. (3.50)) also change with re-
spect to intrinsic polarizabilities due to the appearance of the superfluid gap in the energy
spectrum. The normal and anomalous polarizabilities are calculated as loops consisting
of two normal or anomalous Green functions, respectively [76]:

Πnm,ij
N (q, Ω) =

T
L2 ∑

k,ω
Fnm,ij(k, k + q)Gnm[iω + iΩ, k + q]Gij[iω, k] , (3.55)
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Πnm,ij
A (q, Ω) =

T
L2 ∑

k,ω
Fnm,ij(k, k + q)Fnm[iω + iΩ, k + q]Fij[iω, k] , (3.56)

ω = kBT(2n + 1)π are the fermionic Matsubara frequencies and Ω = kBT2nπ are the
bosonic Matsubara frequencies. The total polarizabilities are:

ΠN(q) = gsgv ∑
n,m,i,j

Πnm,ij
N (q, Ω) , (3.57)

ΠA(q) = gsgv ∑
n,m,i,j

Πnm,ij
A (q, Ω) , (3.58)

At zero temperature and in the static limit Ω → 0, Eq. (3.55) will result in a negative
ΠN , similar to the normal state, while Eq. (3.56) will result in a positive ΠA. In Eq.
(3.56) we also see that ΠA is proportional to the superfluid gaps ∆ij, since Fij[iω, k] ∝ ∆ij.
This means that, while the normal polarizability depends on the carrier population, the
anomalous polarizability depends on the population of electron-hole pairs.

We can rewrite the eigenvalues of the RPA matrix (Eq. (3.47)) in the superfluid state
as

χ
(RPA)
+ =

ΠN(q) + ΠA(q)
1− [VS(q) + VD(q)][ΠN(q) + ΠA(q)]

,

χ
(RPA)
− =

ΠN(q)−ΠA(q)
1− [VS(q)−VD(q)][ΠN(q)−ΠA(q)]

,
(3.59)

and we find the statically screened interaction in the superfluid state:

WS(q) =
VS(q)−ΠN(q)[V2

S (q)−V2
D(q)]

1− 2[VS(q)ΠN(q)−VD(q)ΠA(q)] + [Π2
N(q)−Π2

A(q)][V
2
S (q)−V2

D(q)]
,

(3.60)

WD(q) =
VD(q) + ΠA(q)[V2

S (q)−V2
D(q)]

1− 2[VS(q)ΠN(q)−VD(q)ΠA(q)] + [Π2
N(q)−Π2

A(q)][V
2
S (q)−V2

D(q)]
.

(3.61)

The electron-hole interaction Veh in the gap equation (Eq. (3.40)) is replaced with the
statically screened interlayer interaction WD [76, 123, 124] and this then is:

Veh(q) =
VSe−qd + ΠA(q)V2

S (1− e−2qd)

1− 2VS[ΠN(q) + e−qdΠA(q)] + [Π2
N(q)−Π2

A(q)]V
2
S (1− e−2qd)

. (3.62)

There are three competing length scales characterizing a double layer system: the
barrier thickness d, the average inter-particle separation in a layer r0, and the radius of
the electron-hole bound pairs rpair. The most favourable conditions for the pairing are
achieved at small interlayer separation, d� r0. In this regime , kFd� 1 and the electron-
hole interaction is well approximated by:

Veh(q) =
VS(q)e−qd

1− 2VS(q)(ΠN(q) + ΠA(q))
. (3.63)
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Equation (3.63) shows that because of their opposite signs there is significant cancel-
lation between ΠN and ΠA. For a fixed density, so fixed ΠN , the cancellation between ΠA
and ΠN is more effective as the superfluid gap ∆ increases [76]. From a physical point of
view, this effect due to the superfluid gap in the energy spectrum reducing the number
of states available for the normal state screening. The presence of a condensate reduces
the population of free carriers available for screening and so the superfluidity weakens
the screening [42].

By comparing the superfluid properties calculated using diffusion quantum Monte
Carlo [125] with the results for the same system calculated within mean field without
screening, Ref. [42] demonstrated that neglecting screening becomes an excellent ap-
proximation at low density, in the BEC regime (see Fig. 3.2). In this regime the strong
interactions tightly bind the pairs (rs is large). This makes the pairs compact on the scale
of the inter-particle separations, rpair � r0. In this regime the superfluid gap ∆ in the
single-particle excitation spectrum is much larger than the Fermi energies EF. This com-
pletely suppresses the long wavelength excitations needed for screening. The majority
of the particles are in the condensate, the condensate fraction c > 0.8, and there are few
free particles available for screening. In Eq. (3.63), the cancellation between normal and
anomalous polarizability is almost complete, ΠN = −ΠA, so the net result is the un-
screened electron-hole interaction.

FIGURE 3.2: Superfluid gap ∆max at T = 0 as a function of rs = r0/aB, calculated
with Coulomb electron-hole interaction which is unscreened (US) (dotted green
line); screened in the superfluid state (SS) (solid red line); screened in the normal

state (NS) (dash-dotted blue line) (From Ref.[42]).

The competition between superfluidity and screening changes when we increase the
density (rs decreases). At high density the inter-particle separation is small and the pairs
are in the weak-coupling BCS regime, so they are overlapping rpair > r0. In the BCS
regime, the superfluid gap ∆ is small compared with EF and so cannot suppress the long
wavelength excitations needed for screening. The condensate fraction is small so the
number of free particles available for screening is large. This is reflected in Eq. (3.63),
because at high density ΠA is very small and cannot cancel with ΠN , so the electron-
hole interaction is strongly screened. We will see in Chapters 5 and 6 that after a certain
threshold density, for rs < 2.3, the screening is so strong that it kills the superfluidity.
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Chapter 4

BCS-BEC Crossover in Double
Bilayer Graphene

In this chapter, we apply our multi-component approach to a Double Bilayer Graphene system to
investigate electron-hole pairing properties. We include valence band contributions to the pairing
mechanism and we investigate the multi-component superfluidity resulting in this system. We
find the BEC-BCS crossover phenomena properties depend sensitively not only on the carrier
densities but also on the tunable energy band gap [15, 16].

The recent fabrication of two very close conducting bilayer graphene sheets, one con-
taining electrons and the other holes encapsulated in thin hexagonal boron nitride (hBN)
[81, 120] (Fig. 4.1), raises exciting possibilities of observing high-temperature superfluid-
ity.

FIGURE 4.1: Double Bilayer Graphene system. VTG and VBG are the potentials ap-
plied by the Top and Bottom Gates, and VBB is the bias applied between them. The
potentials are used to change independently the carrier densities of the layer and to

induce a perpendicular electric field that opens a band gap.

The Double Bilayer Graphene system (DBG) was proposed in 2013 [10] to overcome
problems due to the linear dispersion of the energy bands in monolayer graphene (See
Section 2.4). The reason for the substitution of monolayers with bilayers is that the hy-
bridization between graphene layers modifies the energy dispersion from linear to ap-
proximately parabolic at low energy. In parabolic bands the Fermi energy is linearly
proportional to the density n, EF = h̄24πn

2mgsgv
, so it can be tuned continuously relative to the

strength of the electron-hole Coulomb attraction [78] by varying the electron and hole
densities. From Eq. (2.3), rs for a parabolic band system is:

rs =
e2

4πεε0〈r0〉
1

EF
=

e2

4πεε0

2mgsgv

h̄2√4πn
= gsgv

r0

aB
. (4.1)
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By decreasing the densities, the system is moved from the region of weak interactions
to the region where the Coulomb interactions dominate over kinetic energies. Exper-
imentally this is possible because in DBG system the graphene bilayers can be made
electrically independent. This means that the top and bottom bilayer carrier densities
can be independently controlled with potentials in external metal gates deposited on the
graphene bilayer [82] (Fig. 4.1).

The perpendicular electric field produced by top and bottom gates induces a band
gap Eg in the energy spectrum between the conduction and valence bands, by creating
a charge imbalance between the two graphene layers [126]. This band gap can also be
continuously tuned from zero to 250 meV at room temperature [79]. The existence of
such a tunable band gap is remarkable and opens up additional appealing possibilities
for this system:

• The small band gap energy (much smaller than the band gaps in conventional semi-
conductors) is the same order as the energies for the pairing processes, ∼ 100 meV,
predicted in this system from Ref. [10]. This means that we cannot neglect the
valence band. We expect additional electron-hole pairing from this second band,
making of DBG a multi-component superfluidity system.

• In contrast with multi-component high-temperature superconductors such as iron-
based materials where the carrier densities are difficult to tune and the energy sep-
aration between the bands is fixed [110, 127], in DBG system we can tune both the
carrier densities and the band gap.

Interestingly multi-component superfluidity in this system is unconventional and
novel. In iron-based, magnesium diborides, and similar materials with strong multi-band
and multi-gap character [128, 129], the multi-bands are nested [107] so there are multiple
Fermi surfaces for the different bands. In contrast, in DBG the conduction and valence
bands are inverted relative to one another, so the remote band provides additional phase
space for the pairs but there is only one Fermi surface.

In this chapter, we investigate multi-component superfluidity in DBG at zero temper-
ature, and we focus on the effects on the pairing and on the BCS-BEC crossover phenom-
ena of the closeness of the conduction and valence bands.

4.1 Double Bilayer Graphene

The system consists of two AB stacked bilayers (a hexagon centre in one layer is above
a carbon atom below it) where the layers are arranged so that half of top layer atoms lie
directly over the centre of a hexagon in the bottom layer, and half of the atoms lie over
an atom of the bottom layer. The two aligned atoms belong to the A sub-lattice in one
layer and B sub-lattice in the other. The two bilayers are separated by a trilayer of hexag-
onal Boron Nitride (hBN) of thickness d ∼ 1 nm. This thin insulating barrier has been
shown to be sufficiently strong to suppress tunnelling and the resulting recombination of
electrons and holes from opposite bilayers [69, 70, 130].

The electronic bands of bilayer graphene can be described using a tight-binding ap-
proach that describes the properties of tightly bound electrons in solids [131]. The tight-
binding parameters for graphene are the intercell distance a = 0.246 nm and the in-
tralayer hopping parameter t0 ∼ 3.16 eV [132]. The hybridization between layers is
driven by the interlayer coupling between A and B sub-lattices with interlayer hopping
parameter t1 ∼ 0.4 eV. The tight-binding Hamiltonian with symmetric band gap is then
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[133]:

Hk =


Eg/2 h̄vFke−iφk 0 −t1

h̄vFkeiφk Eg/2 0 0
0 0 −Eg/2 h̄vFke−iφk

t1 0 h̄vFkeiφk −Eg/2

 , (4.2)

where k is the wave vector in a layer centred in the K valley. There is a double degenerate
energy solution for the two inequivalent K and K′ valley. vF =

√
3at0/2h̄ is the Fermi

velocity ∼ 106 m/s in monolayer graphene.
The eigenvalues of this Hamiltonian give the four bands energy dispersion [134]:

εγ±(k) = γ
1
2

√
(t1 ± Γ)2 + E2

g

(
1− 4(h̄vFk)2

t2
1

)
Γ =

√
t2
1 + 4(h̄vFk)2 +

4(h̄vFk)2E2
g

t2
1

.

(4.3)
where the index γ indicates the conduction bands γ = + or the valence bands γ = −.
The valley degeneracy effect appears only in the valley degeneracy factor, gv = 2.

For a gapless system, Eg = 0, Eq. (4.3) reduces to:

εγ±(k) = γ
t1

2
±

√
t2
1
4
+ (h̄vFk)2 . (4.4)

The two lowest energy bands, ε+− and ε−−, touch each other at the K point and for
energies |εγ−| < t1 are approximately parabolic. While the two high energy bands, ε++

and ε−+, which result from the strong coupling between layers, have energies |εγ+| ≥ t1.
For Eg non-zero a band gap is opened at k = 0, the two low energy bands are increasingly
deformed from parabolas and the separation in energy between the two high energy
band increases.

In this chapter we are interested in the effect of the proximity in energy between
conduction and valence band in our calculation for superfluidity, so we focus on energy
processes of the order of the Eg. Because Eg < t1, we can neglect the two high-energy
bands and we take the single-particle energy dispersions equal to the low energy bands.
The resulting 2× 2 reduced Hamiltonian is [135]:

Hk =
h̄2

2m∗

(
0 (kx − iky)2

(kx − iky)2 0

)
+

(
Eg/2 0

0 Eg/2

)
, (4.5)

Thus the low energy conduction and valence bands for each bilayer graphene sheet εγ

are identical and can be approximated as parabolic:

ε+(k) =
h̄2k2

2m∗
+

Eg

2
, ε−(k) = −

h̄2k2

2m∗
−

Eg

2
, (4.6)

The effective masses for the electrons and the holes are equal, m∗ = m∗e = m∗h = 0.04 me,
where me is the bare electron mass [136].

4.2 Mean Field Equations

We apply the theoretical approach introduced in Chapter 3 to derive the zero temperature
mean field equations in DBG system.

Because of the standard transformation for hole in valence band in particle (see dis-
cussion below Eq. (3.1)) we can write ε

(e)
γ (k) = ε

(h)
γ (k) = εγ(k). The band index γ = +
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FIGURE 4.2: Bilayer graphene electron and hole bands after standard particle-
antiparticle transformation and with parabolic approximation. The arrows indicate

all the possible channels of pairing.

accounts for the contribution of the conduction bands (where the Fermi level is located)
and γ = − accounts for the valence bands. There are two bands in each bilayer, the pair-
ing can occur between an electron and hole coming from the conduction or the valence
band, so there are in principle 4 pairing channels (Fig. 4.2).

We will restrict the calculation to equal electron and hole density so the Fermi energies
for electrons and holes are equal and the chemical potential is µ(e) = µ(h) = µ. Because
the electron and hole bands are identical, from Eq. (3.39), we can write:

ξ
(e)
γ (k) = ξ

(h)
γ (k) = ξγ(k) = εγ(k)− µ , (4.7)

T2
γ(k) = E2

γ(k) = ξ2
γ(k) + ∆2

γγ(k) . (4.8)

Because the electron and hole band gap are equal, the two interband pairing terms will
be symmetric, so ∆+− = ∆−+. With these simplifications, the terms in Eq. (3.38) become:

χ1 = χ3 =

√
a + b

2
, χ2 = χ4 =

√
a− b

2
,

a = E2
+ + E2

− + 2∆2
+− , b =

√
(E2

+ − E2
−)

2 + 4∆2
+−((ξ+ − ξ−)2 + (∆++ + ∆−−)2) .

(4.9)

The normal Green functions for DBG are (see Eq. (3.36)):

G++[iω, k] =
−(ih̄ω + ξ+)(h̄2ω2 + E2

−)− (ih̄ω + ξ−)∆2
+−

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ2)
,

G+−[iω, k] =
∆+−[(ih̄ω + ξ−)∆++ + (ih̄ω + ξ+)∆−−]

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ2)
,

G−−[iω, k] =
−(ih̄ω + ξ−)(h̄2ω2 + E2

+)− (ih̄ω + ξ+)∆2
+−

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ2)
,

(4.10)
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and the anomalous Green functions are (see Eq. (3.37)):

F++[iω, k] =
−(h̄2ω2 + E2

−)∆++ + ∆2
+−∆−−

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ2)
,

F+−[iω, k] =
∆+−[(ih̄ω− ξ−)(ih̄ω + ξ+)− ∆2

+− + ∆++∆−−]
(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ2)

,

F−−[iω, k] =
−(h̄2ω2 + E2

+)∆−− + ∆++∆2
+−

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ2)
.

(4.11)

We note that Eqs. (4.10) and (4.11) have a similar structure of the Green functions for
multi-band superconductors in Ref. [137] even though, in contrast with the supercon-
ducting concentric bands of Ref. [137], the DBG has counter-centric bands.

We here neglect the interband pairing and we will justify this choice in the discussion
of the results. There are two condensates, a condensate with electrons and holes from
conduction band and superfluid gap ∆++, and a condensate with electrons and holes
from valence band and superfluid gap ∆−− [114]. With ∆+− = 0, χ1 = E+ and χ2 = E−
and Eqs. (4.10)-(4.11) give G+− = 0 and F+− = 0.

With only intraband pairing, the Green functions become:

G++[iω, k] =
(ih̄ω + ξ+)

(ih̄ω− E+)(ih̄ω + E+)
, G−−[iω, k] =

(ih̄ω + ξ−)

(ih̄ω− E−)(ih̄ω + E−)
,

F++[iω, k] =
∆++

(ih̄ω− E+)(ih̄ω + E+)
, F−−[iω, k] =

∆−−
(ih̄ω− E−)(ih̄ω + E−)

.
(4.12)

We introduce the Bogoliubov amplitudes vγ and uγ for the conduction and valence bands:

v2
γ(k) =

1
2

(
1− ξγ(k)

Eγ(k)

)
, u2

γ(k) =
1
2

(
1 +

ξγ(k)
Eγ(k)

)
, (4.13)

and we then rewrite Eqs. (4.12):

G++[iω, k] =
u2
+

(ih̄ω− E+)
+

v2
+

(ih̄ω + E+)
,

G−−[iω, k] =
u2
−

(ih̄ω− E−)
+

v2
−

(ih̄ω + E−)
,

F++[iω, k] =
u+v+

(ih̄ω− E+)
− u+v+

(ih̄ω + E+)
,

F−−[iω, k] =
u−v−

(ih̄ω− E−)
− u−v−

(ih̄ω + E−)
.

(4.14)

The sum over the Matsubara frequencies, ω, (see Appendix Sec. A.1 for details) gives:

∑
ω

e−iω0+Gγγ[iω, k] = v2
γ(k)(1− nF[Eγ, T]) + u2

γ(k)nF[Eγ, T] , (4.15)

and

∑
ω

e−iω0+ Fγγ[iω, k] =
∆γγ

2Eγ
(1− 2nF[Eγ, T]) , (4.16)
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In the limit of zero temperature, the Fermi distributions nF[Eγ, 0] = 0, so we have:

Gγγ[k] = v2
γ(k) , Fγγ[k] =

∆γγ(k)
2Eγ(k)

. (4.17)

Superfluid Gap Equations in DBG

We introduce the more compact notation with ∆γγ ≡ ∆γ. The zero temperature the
coupled superfluid gap equations are derived from Eq. (3.40):

∆+(k) = −
∫ d2k′

(2π)2 Veh(|k− k′|)
[
F++(k, k′) ∆+(k′)

2E+(k′)
+F+−(k, k′) ∆−(k′)

2E−(k′)

]
,

∆−(k) = −
∫ d2k′

(2π)2 Veh(|k− k′|)
[
F−−(k, k′) ∆−(k′)

2E−(k′)
+F−+(k, k′) ∆+(k′)

2E+(k′)

]
.

(4.18)

The form factors (Eq. (3.41)) are non-zero only for n = m = γ (i = j = γ′):

Fγ,γ′(k, k′) =
〈
γ′k′

∣∣ γk
〉 〈

γk
∣∣ γ′k′

〉
= |

〈
γk
∣∣ γ′k′

〉
|2 . (4.19)

These form factors are determined from the eigenvectors of the reduced matrix in Eq.
(4.5) [135]. The 2-component eigenvectors Ψ+(k) and Ψ−(k) are:

Ψ+ =

(
cos(αk/2)

− sin(αk/2)ei2φk

)
eikr , Ψ− =

(
sin(αk/2)

cos(αk/2)ei2φk

)
eikr , (4.20)

where αk = tan−1
{

h̄2k2/(m∗Eg)
}

. Calculating the overlap of Ψγ(k) with Ψγ′(k′) we
obtain:

Fγγ′(kk′) =
1
2
[1 + γγ′(cos(αk) cos(αk′) + sin(αk) sin(αk′) cos(2φ))] , (4.21)

where φ = cos−1(k̂k′). Because of the identical conduction and valence band we have
F+−(kk′) = F−+(kk′) Note that F++(kk′) for the conduction bands is different from
the form factor for a one-band system [10] because of the effect of the modification of the
single-particle distribution function caused by band gap Eg.

In the superfluid gap equations, Eqs. (4.18), the coupling of ∆+ with ∆− arises only
from Josephson-like transfers of pairs. In a Josephson-like transfer a pair from a band is
virtually excited into the other band. Pairs in the valence band can excite into the conduc-
tion band where they reinforce the strength of the ∆+. At the same time, the excitations
of pairs increases the population of valence-band vacancies (Fig. 4.3). Since we are us-
ing the term “holes” for the carriers in the p-doped bilayer, to avoid confusion we will
refer to an absence of a carrier in the otherwise filled valence band as a anti-particle. The
pairs in the valence band are formed from the pairing of anti-particles. The number of
anti-particles available to form pairs in the two bilayers determines the strength of the
valence band superfluid gap ∆−.

The coupling and the strength of the Josephson-like transfer are regulated by Eg
through its appearance in the form factors in Eqs. (4.18). This means that, for the first
time, when we tune Eg we are able to tune the magnitude of the Josephson-like pair
transfer.

In this chapter, we take the interaction term in Eqs. (4.18) as unscreened,

Veh(|k− k′|) = −2πe2

εε0

e−d|k−k′|

|k− k′|
, (4.22)
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where d is the thickness of the insulating barrier separating the two bilayer sheets. The
dielectric constant for a hBN insulating barrier of thickness d ≥ 1 nm is ε ∼ 2 [138]. The
effective Rydberg energy of the system is Ry = 68 meV (Eq. (2.1)) and the effective Bohr
radius aB = 5.4 nm (Eq. (2.2)).

As discussed in Section 3.3.2, neglecting the screening is an excellent approximation
in the BEC regime because the strong interaction tightly binds the pairs and makes them
compact on the scale of the average inter-particle separations r0 [42]. For example, at
density of 1× 1011 cm−2 (rs ∼ 13), r0 = 18 nm is much larger than the minimum electron-
hole separation, d = 1 nm, and the effective Bohr radius in DBG (r0/aB ∼ 3.4). The
unscreened approximation remains surprisingly accurate even in the Crossover regime
at intermediate densities [10], predicting superfluid gaps correctly to within ∼ 20% [42].
However, at larger densities where BCS regime is expected, n ≥ 5× 1011 cm−2 (rs ≤ 6),
the ratio r0/aB ∼ 1.5, and the unscreened approximation completely breaks down since
at these densities there is very strong screening which kills the superfluidity [10, 76]. For
this reason we restrict our results here to densities n ≤ 5× 1011 cm−2 (rs ≥ 6).

Density Equation in DBG

The total density equation is derived from Eq. (3.42):

n = n+ + n− = gsgv ∑
γ

∫ d2k
(2π)2 v2

γ(k) . (4.23)

In graphene the spin and valley degeneracy are gs = 2 and gv = 2.
Equation (4.23) presents two problems:

1. The equation includes all occupied states in the valence band. This results in an
impractically large n−.

2. The closeness in energy of the valence band and Josephson-like transfers, means
that we must distinguish between the total density of carriers in the conduction
band n+ and the doping density n0+. This is because for a small band gap, particles
near the top of the valence band can be readily excited by the interactions into the
low lying states of the conduction band. This has the effect of increasing the number
of the particles in the conduction band, so n+ > n0+, and of depleting the number
of particles at the top of the valence band (Fig. 4.3). This corresponds to introducing
a density of anti-particles into the valence band.

We write the doping density as [139, 140]:

n0+ = gsgv ∑
k

[
v2
+(k)− u2

−(k)
]

. (4.24)

n0+ is equal to the total number of carriers in the conduction band n+ = gsgv ∑k v2
+(k) less

the number of carriers in the conduction band that have been excited by the interactions
from the valence band. The number of excited carriers equals the number of empty states
(anti-particle states) left behind in the valence band. This can be written as gsgv ∑k u2

−(k).
The chemical potential µ is obtained by solving the n0+ density equation, Eq. (4.24),

coupled with the gap equations, Eqs. (4.18). The increase in the number of carriers in the
conduction band will push up the Fermi energy. We define an effective Fermi momentum
k∗F =

√
πn+, and an effective Fermi energy in the conduction band E∗F = (h̄k∗F)

2/2m∗.
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FIGURE 4.3: The density distribution v2
γ(k) for electrons, as a function of εγ(k) for a

system at low density with Eg = 0. The dashed line indicates the density distribu-
tion for the normal system (∆ = 0) at the same density. The green area represents
the number of anti-particle in the valence band. The energy scale is in units of the

effective Rydberg energy.

BCS-BEC Crossover in DBG

As we introduced in Section 3.2.1 we use three criteria to identify the BCS-BEC crossover
regimes. The ratio of the superfluid gap ∆γ to E∗F is a criterion to determine if the system
is in the strongly interacting regime, ∆γ/E∗F � 1, or in the weakly interacting regime,
∆γ/E∗F < 1. A second criterion uses the chemical potential. µ is equal to the E∗F in the BCS
regime, detaches from E∗F when the Crossover regime is entered and becomes negative
when the BEC regime is entered. The different regimes of the BCS-BEC crossover can
also be identified by the value of the superfluid condensate fraction c.

In our system there are two condensate fractions, for the conduction band c+ and for
the valence band c−. For the conduction band, the usual one-band expression for the
condensate fraction (Eq. (3.44)) is readily generalized to be the number of pairs divided
by the total number of carriers in the conduction band,

c+ =
∑k u2

+(k) v2
+(k)

∑k v2
+(k)

. (4.25)

The pairs in the valence band are formed from the pairing of anti-particles of the two
sheets, so the corresponding definition of c− is the ratio of the number of pairs in the
valence band to the number of anti-particles in the valence band,

c− =
∑k u2

−(k) v2
−(k)

∑k u2
−(k)

. (4.26)

The usual classification is used with cγ > 0.8 for the BEC regime, cγ < 0.2 for the BCS
regime and 0.2 < cγ < 0.8 for the Crossover regime.

4.3 Results

Figure 4.4 compares the contributions to pair formation from the conduction and valence
bands as a function of n0+. In terms of importance in the pair formation, the conduction
and valence bands have different roles depending on the magnitude of the band gap and
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FIGURE 4.4: The relative number of condensate pairs in the conduction band (solid
lines) and valence band (dashed lines) as functions of n0+. Values of the energy

band gap Eg are labelled.

on the density. The ratios n±pair/(n+
pair + n−pair) are shown for different energy band gaps,

where nγ
pair = ∑k u2

γ(k) v2
γ(k).

We see in Fig. 4.4 that for large values of Eg, pair formation is confined to the con-
duction band and is independent of n0+. This is due to the weak contribution of the
Josephson-like transfer. For smaller Eg, we distinguish two behaviours with respect to
density n0+. For large n0+, the average kinetic energy of the carriers in the conduction
bands 〈K〉 is large relative to the average strength of the Coulomb interactions, 〈V〉. Since
∑k v2

+(k)� ∑k u2
−(k), there are only a negligible number of carriers excited out of the va-

lence band, so a negligible number of anti-particle pairs are present. On the other hand,
small n0+ does not necessarily imply that the average kinetic energy of the carriers in the
conduction bands is small relative to the average strength of the Coulomb interactions,
since for sufficiently small energy band gaps Eg, both ∑k v2

+(k) and ∑k u2
−(k) can be large

and nearly equal. In the limit Eg = 0, they become equal, ∑k v2
+(k) = ∑k u2

−(k) and both
bands contribute equally to the pair formation, whether the interactions are strong or
weak.

Figure 4.5 shows the condensate fractions and the chemical potential as functions of
n0+ for different Eg. We recall for n0+ > 5 × 1011 cm−2 that screening is expected to
suppress superfluidity in what would otherwise be the BCS regime [10], so we focus on
density range n0+ < 5× 1011 cm−2. For a large bandgap, Eg = 150 meV, (Fig. 4.5(a)),
the behaviour of c± and µ is as expected close to results for a one-band system [115]. For
large n0+ ∼ 5× 1011 cm−2, c+ ∼ 0.8, so the conduction band condensate is already in the
Crossover regime. As n0+ decreases, c+ becomes > 0.8 and the conduction band conden-
sate enters the BEC regime. The chemical potential goes negative at the BEC boundary,
and it is everywhere less than E∗F. As n0+ goes to zero, the conduction band condensate
enters the deep BEC limit and µ → −EB/2, half the binding energy of an independent
electron-hole pair (Fig. 4.6). The value of the binding energy EB is calculated as a two-
body bound state (see details in Appendix C). In notable contrast with the behaviour of
c+, we see that c− ∼ 1 always, so the valence band condensate remains in the BEC regime
over the full range of n0+ shown. This is because there are very few anti-particles in the
valence band when Eg is large.

For a smaller gap, Eg = 90 meV (Fig. 4.5(b)), the conduction band condensate is
slower to enter the BEC regime with decreasing n0+. This is because excitations from the
valence band now significantly increase the total population of carriers in the conduction
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FIGURE 4.5: The condensate fraction and the chemical potential as functions of n0+
for different values of Eg, as labelled. In the upper panels, the solid and dashed
lines indicate the condensate fraction in the conduction band and valence band,
respectively. In the lower panels, the solid lines show the chemical potential µ and
the dashed lines the effective Fermi energy E∗F. The light shaded area represents
the energy band gap. Screening is expected to suppress the superfluidity for n0+ >

5.0× 1011 cm−2.

band. The chemical potential µ therefore goes negative only at very low n0+. It is inter-
esting that in the zero n0+ limit, µ approaches the mid-point of the band gap, µ→ −Eg/2
instead of −EB/2, behaviour analogous to the intrinsic limit in a conventional semicon-
ductor.
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FIGURE 4.6: Low-density limit of chemical potential as a function of Eg. EB is the
binding energy.

Figure 4.6 shows the behaviour of the chemical potential in the zero-density limit as
a function of Eg. The one-band limit µ→ −EB/2 is only recovered when Eg > EB, while
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for Eg < EB the conventional semiconductor value is recovered.
Figure 4.5(c) is for the gapless system, Eg = 0. In this case, there are many carriers

in the conduction band excited from the valence band. This makes the effective Fermi
energy E∗F as a function of n0+ significantly larger than in Figs. 4.5(a) and 4.5(b), and
at the same time a large number of anti-particles are created in the valence band. For
this reason, both the conduction and valence band condensates remain always in the
Crossover regime for all n0+ with the chemical potential µ always positive. A curious
point is that for Eg = 0, a negative value of µ would signify only an inversion of the
carrier populations in the bands, so that even for negative values of µ, the system would
remain in the Crossover regime.
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FIGURE 4.7: The superfluid gap energy ∆±(k) in the conduction and valence bands,
for different values of energy band gap Eg and different densities n0+ as labelled.

Figure 4.7 shows the momentum dependent superfluid energy gaps ∆±(k). The re-
sults are for low density n0+ = 0.5 × 1011 cm−2, rs = 19 (dotted lines), intermediate
density n0+ = 1.5× 1011 cm−2, rs = 10 (dashed lines), and high density n0+ = 5× 1011

cm−2, rs = 6 (solid lines). For large Eg, Fig. 4.7(a), ∆+(k) � ∆−(k). This result is due
to the large Eg in the form factor (Eq. (4.21)) that suppresses Fγγ′(k, k′) for γ 6= γ′ and
nearly decouples the gap equations (Eqs. (4.18)). This means that the number of paired
anti-particles in the valence band, ∑k(u

−
k )

2, remains small for all n0+. Consistent with
the conclusion in Fig. 4.5(a), the very broad peaks in ∆−(k) for all n0+, indicate that the
valence band condensate for large Eg always remains in the BEC regime. Because the
∑k(u

−
k )

2 is small, the conduction band contains very few carriers excited from the va-
lence band, so the evolution of the conduction band condensate with n0+, is very similar
to the one-band system:

• for small n0+, ∆+(k) � E∗F, its peak is at k = 0 and it is very broad, characteristics
of the BEC regime;

• for large n0+, the peak in ∆+(k) becomes of order E∗F, it narrows and detaches from
k = 0, though never reaching k = k∗F, characteristics of the Crossover regime.
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For smaller Eg, Figs. 4.7(b) and 4.7(c), the ∆±(k) are comparable and are not very
sensitive to n0+. This is because the Fγγ′(kk′) for γ 6= γ′ are no longer small, and so
strongly couple the two gap equations. The insensitivity of the superfluid gaps to n0+ is
a consequence of the large number of carriers in the conduction band excited from the
valence band for all n0+. This means that the total number of carriers in the conduction
band remains large for all n0+. Thus the conduction band condensate remains trapped
in the Crossover regime and is unable to reach the BEC regime even when n0+ becomes
very small.
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FIGURE 4.8: Maximum superfluid gap energy ∆± in the conduction and valence
bands as functions of the energy band gap Eg. Dotted lines: n0+ = 0.5× 1011 cm−2;

dashed lines: n0+ = 1.5× 1011 cm−2; solid lines: n0+ = 5× 1011 cm−2.

Figure 4.8 further characterizes the multi-component nature of the superfluidity. As
expected, for zero band gap the Josephson-like transfer is strong and the consequent
reinforcement of the anti-particle population will strongly couple the superfluid conden-
sates. The maximum superfluid gap energy for the conduction band ∆+ is equal to ∆−,
the maximum superfluid gap for the valence band. We see that for small band gaps, there
is a significant boost of both ∆+ and ∆− until Eg < ∆+. For large band gap, Eg > ∆+,
pairs have insufficient energy to excite into the other band and the superfluidity is not
able to take advantage of the valence band. The valence band condensate is completely
decoupled from the conduction band condensate. This results in ∆+ � ∆− and there is
only one significant superfluid gap and one significant condensate.

We can also present a phase diagram of the BEC-BCS crossover regimes as a function
of the energy band gap and of the density. Figure 4.9 shows that by using the tunable
band gap Eg, we can move the boundaries of the BCS-BEC crossover while keeping the
density fixed.

We recall we have neglected interband pairing. Our results justifies this approxima-
tion both for large and small gaps Eg. For large Eg it is clear because of the large energy
differences in the corresponding denominators. For small Eg, the large number of carri-
ers in the conduction band excited from the valence band means a large effective Fermi
energy, so the interband pairing terms again contain large energy difference denomina-
tors, reflecting the large energy separation of the carriers in the valence band from the
effective Fermi energy. In addition, the matrix elements for the interband pairing terms
in both cases are expected to be small (see Ref. [141]), and this would further reduce the
interband pairing contribution.
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4.4 Conclusions

In summary, we have shown that the tunable band gap Eg in DBG is important to de-
termine the properties of the multi-component electron-hole superfluidity in this sys-
tem because it controls the coupling between the conduction and valence band conden-
sates. When Eg is small and the density low (∑k v2

+(k) ∼ ∑k u2
−(k)), the multi-component

character becomes evident. Continuously tuning Eg up to higher values will induce a
switching-over of the number of superfluid components from two to one.

We can distinguish two regions defined by the energy competition between the band
gap Eg and the effective Fermi energy E∗F:

• For Eg � E∗F, the superfluidity is always in the Crossover regime even when n0+
is very small. The conduction band condensate does not enter the BEC regime
because excitations from the valence band maintain a large number of carriers in
the conduction band.

• When Eg ≥ E∗F, the conduction band condensate enters the BEC regime for small
n0+ because a large Eg suppresses excitations from the valence band.

These multi-component properties are reflected in the asymptotic behaviour of the chem-
ical potential in the small n0+ limit (Fig. 4.6).

We conclude that a compromise is necessary to have optimal conditions for super-
fluidity. The band gap Eg must not be too small, otherwise excitations from the valence
band will maintain too high the density of carriers in the conduction band. This keeps
the conduction band in the high-density regime that is not favourable for superfluidity
because of the screening. On the other hand, a too large Eg weakens the superfluidity
since it excludes the reinforcing contributions from the valence band. We find that an
optimal choice for Eg is in the range 80-120 meV.
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Chapter 5

Multi-component Screening and
Superfluidity in Biased Electron-Hole
Double Bilayer Graphene

In this chapter, we extend the investigation on Double Bilayer Graphene by using a complete the-
oretical approach that includes both conduction and valence band contributions to the screened
Coulomb interaction and the real low-energy band structure of bilayer graphene. By tuning of
the band gap we investigate the effect of the different screening contributions and of the effect of
distortion of the bands into a Mexican hat-like shape that accompanies the band gap opening. We
find there is strong competition between superfluidity and the screening and that this competi-
tion affects in different way the intraband and interband screening. We find significant effects
due to the flattening of the bands. We find our results are in agreement with the experimental
observations [17].

In the previous chapter, we demonstrated the competition in this system at zero tem-
perature of three competing energy scales: the Fermi energy EF, the band gap Eg, and the
magnitudes of the valence and conduction band superfluid gaps. There is a fourth com-
peting energy not yet included: the strength of the electron-hole attraction for a given
separation of the bilayers.

In contrast with most works on superconductors, for electron-hole superfluidity the
long-range nature Coulomb attraction between the electrons and holes means that screen-
ing must be fully accounted for [42, 76, 124]. As discussed in Section 3.3.2, Ref. [42]
demonstrated that neglecting screening is an excellent approximation at low density,
which is BEC regime, where the pairs are compact on the scale of the inter-particle separa-
tions, rpair � r0. However, the screening effect becomes more important at high density,
when the system enters the BCS regime, where the pairs are overlapping, rpair > r0.

References [10, 118] took into account screening in DBG and they showed that su-
perfluidity exists only over a finite density range. However, they considered only the
conduction band of bilayer graphene approximated with a parabola. In Chapter 4 we
neglected screening, but we took into account both the valence and conduction bands.
We demonstrated that the proximity in energy of the valence band affects the pairing
processes. Thus a complete theoretical approach is required to include both conduction
and valence bands also in the screening.

In Chapter 4 we used the parabolic approximation for both bands. In doing so, we
neglect the bilayer graphene property that the opening of the band gap is accompanied
by a distortion of the bands from parabola. By increasing the band gap the band becomes
flatter, leading to van Hove-like singularities and to large Density Of States (DOS) [78],
and develops a Mexican hat-like shape, leading to a low doping Fermi surface which is a
ring. This unusual topology of the Fermi surface greatly enhances electron-electron in-
teractions and strongly affects the polarizability of bilayer graphene [142]. Because the
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effects of flattening and of the Fermi ring are important at low densities, where super-
fluidity is predicted, the theoretical approach need to include the distortion of graphene
bilayer bands.

In this chapter, in our unified calculation, we systematically examine the competing
effects driving and impeding the emergence of a superfluid state in DBG:

• The small band gaps compared with the Fermi energy that makes multi-band pair-
ing significant;

• the combination of intraband and interband screening effects;

• and the graphene bilayer Mexican hat bands when there is a band gap.

In a recent experiment enhanced tunnelling conductance at equal carrier densities
was reported in a DBG system with a 1.4 nm WSe2 insulating barrier [13]. As introduced
in Section 2.2.1 this is a signature that strongly points to the existence of an electron-hole
superfluid condensate, as predicted theoretically. The signature was observed only at
lower densities and is in quantitative agreement with the theoretical predictions [10] of
an upper limit of the carrier density for the superfluidity.

5.1 The extended theoretical approach

The DBG system was introduced in Section 4.1 of the previous chapter. The distortion of
the band from parabolic does not affect the pairing symmetries (Fig. 4.2). We focus on
equal electron and hole densities, and we neglect the interband pairing. This means that
we can retain the mean field equations obtained in Section 4.2.

The superfluidity is described by the coupled conduction and valence band gap equa-
tions (Eqs. (4.18)), ∆+ and ∆−. The chemical potential is calculated from the density
equation, Eq. (4.23). The approach is extended by substituting:

• the parabolic εγ(k, Eg) in Eqs. (4.18) and (4.23) with the Mexican hat-like shape;

• and the unscreened Veh(|k− k′|) in Eqs. (4.18) with the screened interaction.

5.1.1 Bilayer Graphene Dispersion

We recall that the energy band dispersions for a single bilayer graphene in AB stack-
ing are given by Eq. (4.3), calculate from a tight-binding Hamiltonian with a symmetric
opening of the gap (Eq. (4.2)).

In the previous chapter, we have shown in Fig. 4.8 that, with unscreened approxima-
tion, the energy scale of the pairing processes, ∆ ∼ 100 meV, is smaller than t1 ∼ 400 meV.
Thus, we retain in the calculation only the two low-energy bands as we did previously.

εγ(k) = γ
1
2

√
(t1 − Γ)2 + E2

g

(
1− 4(h̄vFk)2

t2
1

)
Γ =

√
t2
1 + 4(h̄vFk)2 +

4(h̄vFk)2E2
g

t2
1

.

(5.1)
Without a band gap, the conduction and valence bands in bilayer graphene are parabolic

at low energies. However, the opening of a band gap Eg is accompanied by a flattening
of the low-energy bands and the appearance of a small maximum centred on the K point,
the Mexican hat shape [143]. The small maximum grows in height with increasing Eg
(Fig. 5.1). In addition, the DOS around the K point is strongly enhanced by the develop-
ment of van Hove-like singularities [78], resulting in a significant decrease in the Fermi
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5.1. The extended theoretical approach

FIGURE 5.1: a) Low-energy band structure of a single bilayer graphene εγ=±(k),
with zero band gap (dashed black curve) and with finite band gap Eg (solid coloured

curves), as labelled. b) Corresponding Density Of States (DOS), for different Eg.

energy EF (Fig. 5.7). The large build-up of the DOS at the bottom of the bilayer conduc-
tion band significantly reduces EF at a given density compared with EF for the parabolic
band, but the flattening of the bands increases kF. In addition, at low densities EF lies
below the central maximum of the conduction band defining a Fermi ring.

Form factor

The form factor in Eqs. (4.18) is modified together with the bilayer graphene energy dis-
persion. To obtain the complete form factor we calculate the 4-component eigenvalues
Ψγ(k, φk) of the Hamiltonian Eq. (4.2). The form factors Fγγ′(kk′) are calculate numeri-
cally as |Ψγ(k, φk)Ψ′γ(k′, φk′)|2 (Eq. (4.19))

Figure 5.2 shows the comparison between Fγγ′(kk′) with bilayer real dispersion and
with parabolic approximation (Eq. (4.21)).
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FIGURE 5.2: The form factor for equal bands F++ = F−− and opposite bands F+−,
in the case |k| ∼ |k′| and φk′ − φk 6= 0 but small. The solid lines are form factors
with real dispersion and the dashed lines are the form factor in low energy parabolic
approximation. The kF is calculated for the maximal density reported in this work,

n = 7× 1011 cm−2. The values of the band gap Eg are labelled.
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We show the form factors at small q = |k− k′|, where the interaction is stronger, thus
the effect of the form factor should be more relevant. The curves are in good agreement
for k < 2kF. We will see this correspond to the q-region where the screening is more
important (See discussion after Eq. (3.53) and discussion in Section 5.2.1). Changing the
value of φk′ − φk, the magnitude of the terms F++ = F−− and F+− is modified, but the
agreement for k < 2kF is not affected. For these reasons, in the gap equations (Eqs. (4.18))
we retain the analytic expression for the form factor (Eq. (4.21)) as a good approximation.

5.1.2 Screened Interaction in Double Bilayer Graphene

To include the screening of the interaction in the superfluid gap equations (Eqs. (4.18)),
we use the Random Phase Approximation introduced in Section 3.3 for static screening.

Screening in Normal State

The screened interlayer Coulomb potential in the normal state is described by Eq. (3.53)
[123],

Veh(q) =
VD(q)

1− 2ΠN(q)VS(q) + Π2
N(q)

(
V2

S (q)−V2
D(q)

) , (5.2)

where q = |k − k′|. VS(q) is the bare repulsive Coulomb interaction between carriers
in the same bilayer and VD(q) = −VS(q) e−dq the bare attractive Coulomb interaction
between electrons and holes in the opposite bilayers. ΠN(q) is the static polarizability in
a single graphene bilayer, and is given by,

ΠN(q) = gsgv ∑
γ,γ′

∑
k
Fγ,γ′(k, k′)

nF[εγ(k)]− nF[εγ′(k′)]
εγ(k)− εγ′(k′)

, (5.3)

where it is useful to distinguish Πintra(q), the intraband contributions in the sum with
γ = γ′ for which the stimulus and response are in the same band, and Πinter(q), the
interband contributions with γ = −γ′, for which the stimulus and response occur in
opposite bands [144].

References [122, 135, 145–147] investigated the separate properties of Πintra and Πinter

for bilayer graphene in the normal Fermi liquid state. They showed that the two terms
have qualitatively different dependencies on the momentum transfer q.

For Πintra(q), only the conduction band contributes, Πintra(q) ' Π++(q). The valence
band contribution Π−−(q) is always zero because the valence band is completely full.
The conduction band contribution Π++(q) scales with the DOS in the conduction band
and increases with conduction band density n. Π++(q) = 0 for n = 0. There is a peak in
Π++(q) at q = 2kF, and then for q > 2kF it falls to zero (See solid green line in Fig. 5.3(c))
This behaviour leads to the familiar effect of the screening in real space: the screened
potential is cut off to zero when r ≥ rc, defining a screening length rc.

For Πinter(q) the enormous reservoir of carriers in the valence band ensures that
Πinter(q) is not zero even when the conduction band density n = 0. At q = 0, we al-
ways have Πinter(0) = 0, because interband vertical scatterings and back scatterings are
forbidden, F+−(k, k) = 0 in Eq. (5.3). Πinter(q) grows monotonically from zero with q,
and becomes larger than Πintra(q) for q > 2kF (See dashed green line in Fig. 5.3(c)). In real
space, the large-q behaviour of Πinter(q) reduces the strength of screened interaction at
small r < rc. Since Πinter(q) involves excitations across the band gap Eg, Πinter(q) should
be sensitive to Eg, being strongest for small Eg.
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Since they worked at high densities, Refs. [122, 135, 145, 146] neglected the small
maximum in εγ(k) centred at the K point and the flattening of the bands, the effect of
which become non-negligible at low densities [147].

Screening in Superfluid State

As introduced in Section 3.3.2, in the the superfluid state, the pairing between electrons
and holes modifies the density-response of the system and thus the screening. The RPA
screened interaction in the superfluid state is given by [76, 124],

Veh(q) =
VD(q) + ΠA(q)(V2

S (q)−V2
D(q))

1− 2(VS(q)ΠN(q)−VD(q)ΠA(q)) + (Π2
N(q)−Π2

A(q))(V
2
S (q)−V2

D(q))
.

(5.4)
The normal polarizability ΠN(q) is modified from the polarizability in the Fermi liq-

uid state (Eq. (5.3)) by the superfluidity. To calculate the normal and anomalous polar-
izabilities, ΠN(q) and ΠA(q), we use Eqs. (3.55) and (3.56) in the case of DBG with only
intraband pairing with n = m = γ(i = j = γ′).

Πγγ′

N (q, Ω) =
T
L2 ∑

k,ω
Fγ,γ′(k, k′)Gγγ[iω + iΩ, k′]Gγ′γ′ [iω, k] , (5.5)

Πγγ′

A (q, Ω) =
T
L2 ∑

k,ω
Fγ,γ′(k, k′)Fγγ[iω + iΩ, k′]Fγ′γ′ [iω, k] . (5.6)

We use the Green functions derived in the Section 4.2, in Eq. (4.14). We perform
the summation over the Matsubara frequencies ω, in the static limit Ω → 0 and at zero
temperature (see details in Appendix Sec. B.1). We obtain:

ΠN(q) =gsgv ∑
γ,γ′

Πγγ′

N (q) ,

Πγγ′

N (q) =−
∫ d2k′

(2π)2 Fγ,γ′(k, k′)
u2

γ(k)v2
γ′(k

′) + v2
γ(k)u2

γ′(k
′)

Eγ(k) + Eγ′(k′)
,

(5.7)

ΠA(q) =gsgv ∑
γ,γ′

Πγγ′

A (q) ,

Πγγ′

A (q) =
∫ d2k′

(2π)2 Fγ,γ′(k, k′)
2uγ(k)vγ(k)vγ′(k′)uγ′(k′)

Eγ(k) + Eγ′(k′)
,

(5.8)

From Eq. (5.8), we see that ΠA(q) is directly proportional to the superfluid gaps since
uγ(k)vγ(k) = ∆γ(k)/2Eγ(k). ΠA(q) strictly depends on the population of electron-hole
pairs in the bands. We again define intraband and interband contributions,

Πintra
n,a (q) = ∑

γ

Πγγ
n,a(q) , Πinter

n,a (q) = ∑
γ

Πγ,−γ
n,a (q) . (5.9)

We recall from the discussion in Section 3.3.2 that in the superfluid state, the pres-
ence of the superfluid gap in the energy spectrum blocks the low-lying small-q excita-
tions needed for screening, and superfluid pairing reduces the population of free carriers
available for screening. Thus in the superfluid state, screening of the long-range interac-
tions is weakened compared with screening in the Fermi liquid state. Analytically, the
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reduction in screening is caused by the partial cancellation of the normal and anomalous
polarizabilities (Eqs. (5.7)-(5.8)) (See solid green line in Fig. 5.3(d)).

References [10, 42, 76] considered only the conduction band, and found within mean
field that superfluidity can significantly weaken screening in DBG. Recently, quantum
Monte Carlo calculations on this system have produced results in good quantitative
agreement with the mean field results [118]. In Refs. [10, 42, 118], no solutions to Eqs.
(4.18), (4.23), (5.7) and (5.8) of physical relevance existed in the weak-coupled BCS su-
perfluid regime for ∆ � EF. Only in the strong-coupled Crossover and BEC regimes,
with superfluid gaps ∆ > EF, did solutions exist. This result means that when ∆ > EF,
such a wide range of low-lying excited states in the energy spectrum are blocked, that
the screening of the electron-hole attractive interaction is sufficiently weakened to allow
the superfluidity to exist. Further, the large superfluid condensate fraction in the strong-
coupled Crossover and BEC regimes, means that the population of free carriers available
for screening is significantly reduced. Since the weak-coupled regime would occur at
high density, this leads to the prediction of a maximum value of the density for superflu-
idity to exist, that is a threshold density for superfluidity.

5.2 Results

Here we present the results of the self-consistent calculation of the screened interaction
Veh(q) between electron-hole bilayers for the superfluid state with intraband and inter-
band contributions. We solve Eqs. (4.18) with Eq. (5.4) for fixed band gap Eg and density
n. At each iteration, the superfluid gaps and the normal and anomalous polarizabilities
(Eqs. (5.7)-(5.8)) are calculated until convergence, using the superfluid gaps from the
preceding iteration.

5.2.1 Polarizabilities with Bilayer Graphene

Figure 5.3 shows that the polarizabilities Π(q) for the normal and superfluid states are
sensitive to the evolution in the shape of the bands accompanying the development of a
band gap. This result shows the polarizabilities for fixed density and a fixed Eg. r0 is the
inter-particle spacing within each bilayer.

Figures 5.3(a)-(c) compares Π(q) for the normal state (Eq. (5.3)) calculated using the
bilayer bands for a small band gap at low density, with Π(q) calculated for parabolic
bands for the same band gap and density. Figures 5.3(b)-(d) makes a similar comparison
for Π(q) = ΠN + ΠA in the superfluid state (Eqs. (5.7)-(5.8)).

In the normal state (Fig. 5.3(a)), the polarizability with the bilayer bands is stronger
than the polarizability with the parabolic bands over the full range of momentum trans-
fers q that affect screening, qr0 . 4. The additional peak in Π(q) near qr0 = 2 for the
bilayer bands comes from the small maximum in the conduction band around the K
point. The peak only appears at densities low enough for EF to lie below this maximum.
The maximum generates conduction-band vacancies which add to the intraband screen-
ing contribution in this region. Π(q) then continues larger for the bilayer bands out to
qr0 ∼ 4, because the flattening of the bands increases kF for a given density.

Figure 5.3(c) separates the intraband and interband contributions to Π(q) in the nor-
mal state. For the bilayer bands, the momentum-transfer range 0 . qr0 . 5 is domi-
nated by the intraband contributions, while for qr0 > 5 the interband contributions are
larger. In contrast, for the parabolic bands the intraband contributions dominate only for
0 . qr0 . 3, with the interband contributions larger for qr0 > 3. The switch-over from
predominantly intraband to predominantly interband screening occurs at a larger qr0 for
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FIGURE 5.3: (a) Comparison of polarizability in the normal state using bilayer
bands (orange line) and for parabolic bands (green line) for the same density
n = 0.25 × 1011 cm−2 and same band gap Eg = 35 meV. (b) Comparison of the
corresponding polarizabilities in the superfluid state. (c) Intraband contributions
(solid lines) and interband contributions (dashed lines) to the polarizability in the
normal state for bilayer bands (orange lines) and for parabolic bands (green lines).
(d) Corresponding intraband and interband contributions to the polarizability in

the superfluid state.

the bilayer bands because of the flattening of the bilayer bands. The flattening increases
kF for a given density compared with the parabolic bands. The interband polarizability
for the bilayer bands is smaller because of their much larger DOS.

In the superfluid state (Fig. 5.3(b)), the polarizability for the bilayer bands is very
small for qr0 < 4, while for the parabolic bands it is small only for qr0 . 2. The source of
this difference is that in the presence of superfluidity, the cancellation between the ΠA(q)
and ΠN(q) contributions to the screening, only occurs for the intraband screening. The
interband anomalous polarizability is negligible for the following reason. The interband
screening arises from excitations from the huge reservoir of carriers in the valence band
into the conduction band, and vice versa. The number of pairs in the condensates in both
bands contributing to the anomalous polarizability is thus always much smaller than the
enormous population of free carriers available for the normal polarizability. Since the
intraband contribution for the bilayer bands is significant up to qr0 ∼ 5 (Fig. 5.3(c)), the
ΠA(q) is much more effective in cancelling the screening for the bilayer bands than it is
for the parabolic bands, where the screening is suppressed only up to qr0 ∼ 3. This prop-
erty also blocks the extra low-lying screening excitations coming from the small maxi-
mum at the bottom of the bilayer conduction band that caused the peak near qr0 = 2 in
the normal state Π(q) in Fig. 5.3(a). Once the superfluidity has blocked the intraband
screening, what remains is the interband screening. We have already seen that interband
screening is much weaker for the bilayer bands than for the parabolic bands because of
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the large DOS at the bottom of the bilayer conduction bands.
To summarize, the primary new effects of the bilayer bands are that (i) the intraband

contributions dominate out to significantly larger values of qr0 than for parabolic bands,
and we recall that only intraband contributions are suppressed by superfluidity; and (ii)
the residual interband contributions to the screening are much smaller for bilayer bands
than for parabolic bands, because of the large enhancement of the DOS in the low-lying
states of the bilayer conduction bands. The net result of these two effects is a screening
effect weaker when the band gap is opened because of the flattening of the band.

5.2.2 Multi-band Screening

Figure 5.4 shows the electron-hole interactions Veh(q) in the normal (Eq. (5.2)) and in
the superfluid state (Eq. (5.4)) plotted as a function of momentum-transfer q. Also the
unscreened interaction VD(q) is shown.
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band gaps Eg, as labelled) and for the normal state (squares). For clarity, for the
normal state, results are only shown for Eg = 35 and 210 meV. The upper and lower
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(a) is with only intraband contributions to the screening. Column (b) is with only
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interband contributions to the screening. Ry = 68 meV is the effective Rydberg.

Figure 5.5 compares the self-consistent Veh(r) for the superfluid state in real space
with the corresponding screened interaction for the normal state. These are the Fourier
transforms of the curves Veh(q) shown in Fig. 5.4. r is the component of the electron-hole
separation parallel to the bilayers, and r0 is the average inter-particle distance within a
bilayer calculated from the density.

Figure 5.4(a) isolates the effect of the intraband screening processes, that is, what the
screened interaction Veh(q) would be if only the Πintra(q) contribution to Π(q) taken from
the full self-consistent calculation, were retained. At low density, in the normal state, the
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FIGURE 5.5: The electron-hole interaction as displayed in Fig. 5.4, but in real space.
The color codes and the symbols are the same as in Fig. 5.4.

large intraband polarizability up to qr0 ' 4 (Fig. 5.3) kills the interaction for qr0 ≥ 4.
Veh(r) is completely screened out to zero by r/r0 ≥ 0.3 (Fig. 5.5(a)). However in the su-
perfluid state, the intraband screened potential is, instead, completely unscreened. This
is because the anomalous polarizability Πintra

A (q) fully cancels the normal polarizability
Πintra

N (q). As the density is increased, the anomalous intraband polarizability becomes
ineffective, the cancellation of Πintra

N (q) by Πintra
A (q) is no longer complete, so the intra-

band screened potential in the superfluid state is weaker than the unscreened potential.
A new effect in the superfluid state is introduced at this density for the smallest band gap
shown, Eg = 35 meV: the range of the intraband screened potential in the superfluid state
becomes similar to the screened interaction for the normal state. This makes the interac-
tion short-ranged (Fig. 5.5(a)), completely cut off by r/r0 ≥ 0.4. This effect is shown first
for small band gaps and later, increasing the density, for large gaps. When the interaction
becomes short-ranged, it is too weak to sustain superfluidity (Fig. 5.6).

Figure 5.4(b) isolates the effect of the interband screening processes, that is, what the
screened interaction Veh(q) would be if only the Πinter(q) contribution to Π(q) taken from
the full self-consistent calculation, were retained. In contrast to the intraband screening,
we see that for interband screening there is no cancellation at all of Πinter

N (q) by Πinter
A (q)

(Fig. 5.3). Therefore Πinter(q) is unchanged from the normal to the superfluid state, and
so in the absence of intraband screening, the screened interaction Veh(r) would be the
same in the normal and superfluid states. The large interband contributions to the nor-
mal polarizability significantly weaken the short-range part of Veh(r). This effect is Eg-
dependent, since the population of free carriers in both bands increases with decreasing
Eg. The interband screening at large q leads to the weakening of the real-space interaction
at small r (Fig. 5.5(b)).

Finally, Fig. 5.4(c) shows the complete screened interaction when both intraband and
interband contributions to Π(q) taken from the full self-consistent calculation, are in-
cluded. In the normal state, the total screened interaction is always very weak. In the
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superfluid state, at low density there is only the interband screening, so there is no screen-
ing of the total interaction at small q. Thus for Eg = 35 meV, Veh(r) is completely screened
out by r/r0 ' 0.4. The interband contributions weaken Veh(r) and in this way affect the
threshold density for superfluidity. A smaller Eg results in more interband screening,
weakening the electron-hole pairing interactions, and leading to a lower threshold den-
sity. Because of interband screening, when superfluidity does exist, the superfluid gaps
are significantly smaller than for the corresponding system with unscreened interactions.
For screening as strong as in the normal state, the superfluidity is always killed.

5.2.3 Superfluid Gaps
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FIGURE 5.6: Solid lines: maximum of the conduction and valence band superfluid
gaps ∆± = maxk ∆±(k) as a function of density for different band gaps Eg, as la-
belled. The upper x-axis shows the parameter rs. Dotted red line: Parabolic bands
with band gap Eg = 210 meV. Dashed black line: maximum of the superfluid gap
∆ = maxk ∆(k) for the corresponding system when only the conduction band is

considered. For reference, the superfluid gap for one band is shown as ∆1B/3.

Figure 5.6 shows the dependence on density of the maximum of our calculated su-
perfluid gaps ∆± = maxk ∆±(k) for the conduction and valence bands (Eqs. (4.18)). The
maxima initially increases with density, since the number of carriers available for pair-
ing is increasing. For very small densities, the ∆+ and ∆− are independent of Eg. This
is because, as we have discussed, the intraband screening is totally suppressed by the
superfluidity and the interband screening is negligible when EF becomes less than Eg.
As the density increases, the curves eventually pass through a broad maximum and then
turn over. This is because intraband screening becomes increasingly effective as the den-
sity is increased, so the superfluid gaps decrease. EF is increasing with the density, so
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eventually ∆+ becomes less than EF. At this point, the condensate fraction drops below
. 0.2, so there is now a large population of normal-state free carriers available for screen-
ing, and the presence of these free carriers enhances the screening. Finally, as the density
continues to increase, there is a superfluid threshold density at which ∆+ and ∆− drop to
zero. Above the threshold density, screening of the electron-hole interactions is so strong
that it kills superfluidity. For very small band gaps Eg < EF, the interband contributions
to the screening are strong, and the threshold density is very low. In the other limit, for
large band gaps, the threshold density is large.

In Fig. 5.6, for comparison we also show the superfluid gaps for a corresponding
system with Eg = 210 meV but for parabolic conduction and valence bands with effective
masses m?

e = m?
h = 0.04me. We note that with the real graphene bilayer bands, the

superfluidity extends over a much wider density range than for the parabolic bands. As
discussed in Section 5.2.1 because the bilayer bands become flatter with increasing Eg,
the screening becomes weaker as Eg increases. For the same Eg, the density range for the
superfluidity is four times larger with the bilayer graphene bands than with parabolic
bands.

Finally, Fig. 5.6 shows the maximum of ∆ for the system with only a parabolic con-
duction band discussed in Ref. [10], again for m?

e = m?
h = 0.04me.

We note in the multi-band system, that for larger band gaps Eg & 140 meV, the pre-
dicted density range over which the superfluidity occurs is similar to the density range
for the one-band system.

It is important to note that, while we present Fig. 5.6 for fixed band gaps Eg and
tunable density, in real experiments Eg has a weak dependence on the carrier density n
because it is sensitive to the transverse electric fields E from the metallic gates used to
tune the density. The transverse electric fields across the bottom (EB) and top (ET) bilayer
graphene can be described as [81],

EB = (enB/2ε0) + enT/ε0 + EB0 ,
ET = enT/2ε0 + ET0 , (5.10)

where EB0 (ET0) is the electric field from unintentional doping at the density neutrality
point in the bottom (top) bilayer graphene. EB0 and ET0 can be determined experimen-
tally. For weak E, Eg can be approximated by Eg ∼ αE, with α ∼ 0.1 e C nm [133].

An unexpected result in Fig. 5.6 is that, even for large band gaps, Eg ∼ 200 meV, the
conduction band superfluid gap ∆+ remains nearly an order of magnitude weaker than
the superfluid gap in the one-band system. This is due to the interband contributions to
the screening which we have seen are not weakened by the superfluidity.

Another unexpected result in Fig. 5.6 is that, even for small band gaps Eg, the va-
lence band superfluid gap ∆− � ∆+ for the conduction band. As we have discussed,
this result indicates a decoupling of the two superfluid gap equations, Eqs. (4.18), with
Josephson-like transfer of pairs always remaining negligible. The reason is that the multi-
band screening always results in superfluid gaps that are much smaller than the band
gaps, that is, ∆+ � Eg (Fig. 5.7). It is difficult to generate large ∆+ > Eg because the re-
sulting Josephson-like transfer of electron-hole pairs from the valence to the conduction
bands would leave in the valence bands a significant population of vacancies. These free
valence-band vacancies would add to the screening and hence reduce ∆+. When the band
gap is reduced, the interband screening becomes stronger, which weakens the superfluid
gaps. In this way, the superfluid gap remains smaller than the band gap, ∆+ < Eg.

To illustrate why Josephson-like transfer of electron-hole pairs are small when ∆± �
Eg, Fig. 5.8 shows the Bogoliubov amplitudes (Eq. (4.13)) for this case. The density of
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FIGURE 5.8: Bogoliubov amplitudes u(k) and v(k) as function of energy, for density
n = 1× 1011 cm−2 and band gap Eg = 35 meV.

valence-band vacancies available to form pairs in the valence-band condensate is deter-
mined by the overlap of the Bogoliubov amplitudes, v−k(k)u−(k). Figure 5.8 shows that
this overlap will be vanishingly small whenever ∆± � Eg, and hence the valence band
superfluid gap ∆−(k), which is proportional to v−k(k)u−(k), will be extremely small. If
∆−(k) is small, the interband coupling term for ∆+(k) will also be very small. Inter-
band pairing terms, in which superfluid pairs form with carriers from different bands,
will also be extremely small because of the vanishingly small population of valence-band
vacancies available to contribute to such pairs.

We can neglect intralayer interactions between carriers within the same bilayer com-
pared with interlayer interactions between electrons and holes in opposite bilayers in our
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density range of interest. The average separation of the electrons and holes is of the or-
der of the barrier thickness d = 1 nm, while for n . 7× 1011 cm−2 (rs & 5) the average
separation of carriers within each layer is much larger, r0 & 6.7 nm (r0/aB & 1.3).

We have chosen for this example a DBG system with a d = 1 nm hBN barrier (d/ab =
0.18). An increase of the barrier thickness not only reduces of the average strength of the
bare interlayer interaction VD, but the effect of screening is also increased. This is because
of the presence in the denominator of Eq. (5.4) of the VD factor attached to the anomalous
polarizability ΠA. Therefore, we expect a decrease in the threshold density analogous to
Ref. [10] for all the values of Eg.

5.2.4 One-band Superfluidity from Multi-band Screening

In the absence of screening, the system naturally divides into two regimes depending on
the energy scales [15]: (i) for Eg & EF, the system resembles a one-band system because
the contributions from the valence band are negligible; (ii) for Eg . EF, the contribution
from the valence band is significant.

However, when the electron-hole pairing attraction is screened, the compensatory
nature of multi-band screening pushes the system to resemble a one-band system, even
when the band gap Eg is small. We have seen that interband screening keeps ∆+ <
Eg. The near complete absence of valence-band vacancies generated by the superfluid,
together with negligible Josephson-like pair transfers, keeps ∆− very small. The large
DOS at the bottom of the bilayer conduction band keeps EF smaller than Eg, even for
relatively large densities and very small band gaps.

Further independent confirmation of the nearly one-band nature of the superfluidity
comes from the behaviour of the chemical potential in the limit of small conduction band
density, limn→0 µ (Fig. 5.9).
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FIGURE 5.9: The chemical potential µ as a function of density n. The squares
mark the low-density limiting values limn→0 µ (see Table 5.1). The crosses mark the
threshold densities at which superfluidity disappears. Above the threshold density,

the system is in the normal state, and thus µ = EF.

For one-band, the chemical potential goes to one-half the binding energy of a sin-
gle electron-hole pair. The binding energy of an isolated electron-hole pair in a single
graphene bilayer, EB, has been calculated as a function of band gap Eg (See details in
Appendix C) and are in agreement with the values in Ref. [148]. If the conduction and
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Eg 210 140 70 35 7
lim
n→0

µ -21 -17 -11 -6 -2

EB/2 -23 -17 -9 -5 -1

TABLE 5.1: Comparison of the binding energy EB of one isolated electron-hole pair
in a single graphene bilayer of band gap Eg, [148] with the low-density limiting
behaviour of the chemical potential µ in double bilayer graphene with the same Eg,

from Fig. 5.9. Units are meV.

valence band condensates were strongly coupled, they would become symmetric in the
low density limit, in analogy with an intrinsic semiconductor. In this case, the limiting
value of the chemical potential would lie at the mid-point of the band gap, Eg/2, rather
than at half the binding energy [15]. In fact, Table 5.1 shows that limn→0 µ in the super-
fluid state always lies close to the value of EB/2 taken from Ref. [148], which is behaviour
consistent with a one-band system.

5.3 Conclusion

In summary, we have shown that the small band gaps characteristic of bilayer graphene is
responsible for an enhancement of the overall screening. This is due to the additional in-
terband contributions to the screening provided by carriers from the filled valence bands.

Despite the small band gaps, Josephson-like pair transfers between the condensates
in the valence and conduction bands are negligible. This unexpected result is because
multi-band screening always keeps the superfluid gaps small compared with the band
gap: any Josephson-like transfer of electron-hole pairs from the valence to the conduction
bands leaves behind an increased population of free valence-band vacancies, and these
add to the screening. The increased screening reduces the superfluid gap. The net effect
of this compensation is to keep the superfluid gap smaller than the band gap.

The suppression of Josephson-like pair transfers means that the superfluid conden-
sates in the valence and conduction bands are decoupled, with the superfluid condensate
in the valence band very weak, so that the superfluidity is dominated by the decou-
pled conduction band condensate. The conduction band superfluid gap is significantly
weakened by the additional interband screening arising from excitations from the valence
band.

We have shown that the distortion of the parabolic bands in Mexican-hat shape signif-
icantly affects the pairing processes. The very large DOS at the bottom of the bilayer con-
duction band from van Hove-like singularities, together with the flattening of the band
results, for a given density, in a much smaller Fermi energy EF than for the parabolic
band. The small Fermi energies permit the superfluidity to be very effective in suppress-
ing screening, with the superfluid gap blocking a wide range of low-lying excitations on
the scale of EF.

The net result of the multi-component screening and of the evolution of the low-
energy bilayer graphene bands with variable band gap, is a complex interplay of energy
and length scales beyond the already rich mean field results discussed in the previous
Chapter. The comprehensive results presented here, demonstrate the robustness of dou-
ble bilayer graphene as an optimum platform for realizing and exploiting electron-hole
superfluidity under practical experimental conditions.
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The recent report of observation of enhanced interlayer tunnelling in electron-hole
DBG [13] strongly points to the existence of an electron-hole condensate, as predicted the-
oretically. The experimental system consists of a DBG with a 1.4 nm tungsten diselenide
(WSe2) insulating barrier. The WSe2 barrier has a dielectric constant ε ∼ 7, significantly
larger than the hBN dielectric constant of the barrier we have been studying. However,
the barrier thickness d/aB = 0.07 (aB = 19 nm for WSe2) for the experimental system is
significantly smaller than our value d/aB = 0.18 (aB = 5.4 nm for hBN). These two dif-
ferences push the threshold density in opposite directions, meaning that we can expect
the threshold densities for the theoretical and experimental systems to be comparable. In
the experimental system, enhanced interlayer tunnelling at equal densities was reported
for n < 8× 1011 cm−2. For the theoretical system, we recall that the maximum threshold
density was n ∼ 7× 1011 cm−2.

We will show in the next chapter, how our approach is valid for other van der Waals
heterostructures [72] that share common features with double bilayer graphene, such as
double monolayers of transition metal dichalcogenides, separated by an atomically thin
insulating barrier [73]. Interest in these van der Waals heterostructures continues to grow
and their quality is increasing.
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Chapter 6

Electron-Hole Superfluidity in
Coupled Transition Metal
Dichalcogenides Monolayers

In this chapter, our multi-component approach is applied to study electron-hole superfluidity in a
double Transition Metal Dichalcogenide monolayer system. We consider the multi-band nature of
the TMDs due to the splitting of the bands caused by the strong spin-orbit coupling. We include
the self-consistently screened Coulomb interaction. We show that the large misalignment of the
bands in the two monolayers results in interesting new effects. The superfluidity can be multi-
component and dominated by two band condensates with strikingly different properties. These
properties display a remarkable sensitivity to the doping of the monolayers. We find that the mul-
ticomponent nature of the superfluidity contributes to the high transition temperatures observed
in a TMD system [18, 19].

The hunt for electron-hole superfluidity received impetus from the discovery of atom-
ically thin graphene and from the observation of a strong signature of superfluidity in
DBG [13]. Development of other 2D materials like the Transition Metal Dichalcogenides
(TMDs) followed graphene. Over the past 5 years, TMD bilayers have attracted a lot of
attention because interlayer excitons have a large binding energy, long life-time and they
are stable at room temperature [149].

As introduced in Section 2.7, because of these excitonic properties these TMD bilay-
ers have been proposed to observe high-temperature exciton superfluidity [11]. Further-
more, in the quest of electron-hole superfluidity TMD monolayers are appealing for other
two reasons:

• Because of the large band gap Eg & 1 eV [150, 151], the problems due to the detri-
mental effect of the valence band screening are overcome.

• Because of the strong spin-orbit coupling [106, 152], the TMD heterostructures are
interesting platforms for investigating novel multi-component effects for electron-
hole superfluidity.

In this chapter, we discuss a double layer system consisting of coupled TMD mono-
layers. We investigate the effects of multi-component superfluidity in double TMD mono-
layers using a mean field multi-band approach that includes the band splitting caused by
the strong spin-orbit coupling of the conduction and valence band. We find that the split-
ting of the conduction and valence bands by spin-orbit coupling into multi-bands, con-
sisting of two concentric parabolic spin-polarised subbands, makes superfluidity in dou-
ble TMD monolayers resemble high-temperature multi-band superconductivity. There
are close relations with multi-band superfluidity in ultracold Fermi gases [153] and with
electric-field induced superconductivity at oxide surfaces [154, 155].
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6.1 Double TMD Monolayer

We focus on the group-VI TMD monolayers MoS2, MoSe2, WS2, and WSe2. These are
semiconductors with large and direct band gaps, Eg & 1 eV [150, 151].

The electronic bands of a TMD monolayer can be described using the tight-binding
approach. The tight-binding Hamiltonian is [152]:

H =


(Eg + λc)/2 atkeiφk 0 0

atke−iφk (−Eg + λv)/2 0 0
0 0 (Eg − λc)/2 atke−iφk

0 0 atkeiφk −(Eg + λv)/2

 . (6.1)

The electronic dispersion in a single valley is [156]:

εσ,±(k) = σ
λc + λv

2
±

√
a2t2k2 +

(Eg − σ(λv − λc))2

4
, (6.2)

with the plus (minus) sign labelling the conduction (valence) band and σ = ± as spin
index. Table 6.1 gives the tight-binding parameters for these TMDs monolayers.

a (nm) t (eV) Eg (eV) λc (eV) λv (eV) m∗e (me) m∗h(me)
MoS2 0.32 1.10 1.66 -0.003 0.15 0.40 0.48

MoSe2 0.33 0.94 1.47 -0.021 0.18 0.43 0.50
WS2 0.32 1.37 1.79 0.027 0.33 0.30 0.44
WSe2 0.33 1.19 1.60 0.038 0.36 0.30 0.39

TABLE 6.1: TMD monolayer Lattice constant (a), hopping parameter (t), band gap
(Eg), and spin-orbit coupling splitting of conduction bands (λc) and valence bands
(λv) [106, 152, 157]. The effective masses are calculated in the low-energy parabolic

approximation.

The effective masses in the low-lying nearly parabolic bands are large, resulting in very
strong coupling of the electron-hole pairs [11].

We present results for the specific system MoSe2-hBN-WSe2, with one TMD mono-
layer n-doped and the other p-doped, and then draw general conclusions for the class of
semiconductor TMDs. The monolayers can be independently doped [99] and are sepa-
rated by an insulating trilayer of hexagonal Boron Nitride (hBN) with thickness d = 1
nm. The few monolayers of insulating hexagonal Boron Nitride (hBN) inhibit electron-
hole recombination [14, 158], avoid hybridization, and leave the bands of the MoSe2 and
WSe2 little changed [100, 159]. Figure 6.1 shows their low-lying band structures of the
MoSe2 and WSe2 monolayers.

6.2 Mean Field Equations

We apply the theoretical approach introduced in Chapter 3 to derive the zero temperature
mean field equations in double TMD monolayer system. For the p-doped monolayer,
we are using the standard particle-hole transformation (see discussion below Eq. (3.1)).
Thanks to the large band gaps, we only need to consider conduction band processes. A
Coulomb pairing interaction, in contrast with conventional BCS pairing, does not depend
on the electron and hole spins. Therefore for each monolayer, we label the bottom and
top conduction subbands by β = b and β = t.
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FIGURE 6.1: The low-lying band structures of monolayer MoSe2 and WSe2 centred
in the K valley. Red and blue lines are for the opposite spins. The spin configuration

is opposite in the two valleys [152].

In principle there are four possible electron-hole pairings, corresponding to four su-
perfluid condensates [137] {ββ′}. The first index β refers to the electron subbands and
the second β′ to the hole subbands. Figure 6.2 shows a schematic representation of the
active bands with the possible pairing channels.
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FIGURE 6.2: Subbands of double TMD monolayers. For the p-doped monolayer, the
valence band has been mapped into a conduction band using the standard particle-
hole transformation. The bottom electron εe

b(k) and hole εh
b(k) subbands have been

aligned. Zero energy is set at εe
b(k = 0). The arrows show the possible pairing
channels {ββ′}.

Due to the large valley separation in momentum space, intervalley scattering is neg-
ligible, so the effect of the two valleys appears only in a valley degeneracy factor, gv = 2.

Table 6.1 shows that monolayer TMDs are characterized by the spin-orbit splitting
and the spin splitting of the valence bands λv is an order of magnitude larger than the
spin splitting of the conduction bands λc. This results in a misalignment between the
electron and hole bands. The misalignment strongly affects the electron-hole pairing pro-
cesses, and due to the very different misalignment of the bands (Fig. 6.3), the n-doped-
MoSe2 with p-doped-WSe2 (denoted as system A) has markedly different properties from
the p-doped-MoSe2 with n-doped-WSe2 (system B).
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FIGURE 6.3: Subbands of system A (the n-doped-MoSe2 with p-doped-WSe2) and
system B (p-doped-MoSe2 with n-doped-WSe2) centred in the K valley.

Because the electron and hole effective masses are very similar, for simplicity in the
calculation of the superfluid gaps we use parabolic band approximation for electrons and
holes of equal curvature m∗e = m∗h = m∗. The trigonal warping is negligible for n < 1013

cm−2 [160].
We consider the two bottom bands aligned, so there is a misalignment between the

two top bands:

ε
(e)
b (k) = ε

(h)
b (k) =

h̄2k2

2m∗
, ε

(e)
t (k) =

h̄2k2

2m∗
+ |λe

c| , ε
(h)
t (k) =

h̄2k2

2m∗
+ |λh

v| , (6.3)

where λe
c is the spin splitting of the conduction bands in the n-doped layer and λh

v the
splitting of the valence bands in the p-doped layer. The misalignment between the top
bands is δλ = |λh

v| − |λe
c|.

The kinetic energy terms are ξ
(i)
β (k) = ε

(i)
β (k)− µ(i) where ε

(i)
β (k) is the energy disper-

sion for the i = e, h monolayer. We will restrict the calculation to equal electron and hole
density and the chemical potential is µ = (µ(e) + µ(h)/2. From Eq. (3.39), we can write:

ξβ(k) = (ξ
(e)
β + ξ

(h)
β )/2 , δξb = 0 , δξt = −δλ/2 , (6.4)

E2
β(k) = ξ2

β(k) + ∆2
ββ(k) , T2

b (k) = E2
b(k), T2

t (k) = ξ
(e)
t (k)ξ(h)t (k) + ∆2

tt(k) . (6.5)

With these simplifications, the terms in Eq. (3.38) become:

χ1 = χ3 =

√
a + b

2
, χ2 = −δλ

2
+

√
a− b

2
, χ4 =

δλ

2
+

√
a− b

2
,

a = E2
b + E2

t + 2∆12∆21 , b = −δξ2
t +

√
(E2

b − T2
t )

2 + 4∆12∆21(|λe
cλh

v|+ (∆bb + ∆tt)2) .
(6.6)

The normal Green functions for double TMD monolayers are (Eq. (3.36)):
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Gbb[iω, k] =
(ih̄ω + ξb)[(ih̄ω− ξ

(e)
t )(ih̄ω + ξ

(h)
t )− ∆2

tt]− (ih̄ω + ξ
(h)
t )∆bt∆tb

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ4)
,

Gtb[iω, k] =
∆tb[(ih̄ω + ξ

(h)
t )∆bb + (ih̄ω + ξb)∆tt]

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ4)
,

Gbt[iω, k] =
∆bt[(ih̄ω + ξ

(h)
t )∆bb + (ih̄ω + ξb)∆tt]

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ4)
,

Gtt[iω, k] =
(ih̄ω + ξ

(h)
t )[(ih̄ω− ξb)(ih̄ω + ξb)− ∆2

bb]− (ih̄ω + ξb)∆bt∆tb

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ4)
,

(6.7)

and the anomalous Green functions are (Eq. (3.37)):

Fbb[iω, k] =
(ih̄ω− ξ

(e)
t )(ih̄ω + ξ

(h)
t )∆bb − (∆bb∆tt − ∆bt∆tb)∆tt

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ4)
,

Ftb[iω, k] =
∆tb[(ih̄ω− ξb)(ih̄ω + ξ

(h)
t ) + (∆bb∆tt − ∆bt∆tb)]

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ4)
,

Fbt[iω, k] =
∆bt[(ih̄ω− ξ

(e)
t )(ih̄ω + ξb) + (∆bb∆tt − ∆bt∆tb)]

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ4)
,

Ftt[iω, k] =
(ih̄ω− ξb)(ih̄ω + ξb)∆tt − (∆bb∆tt − ∆bt∆tb)∆bb

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ1)(ih̄ω + χ4)
.

(6.8)

Unlike in DBG and in two-band superconductors where the bands are symmetric,
here Ftb 6= Fbt, because of the bands misalignment. We find that the interband pairing
more advantageous in the {tb} channel with respect to the {bt}. This is due to the large
energy separation, λh

v, between the ξ
(e)
b and the ξ

(h)
t [113]. We find that the {bt} and

{tb} interband pairing make negligible contributions to the condensates, so for simplicity,
we confine our attention to the mean field equations for the superfluid gaps ∆bb(k) and
∆tt(k).

We consider only the {bb} and {tt} pairing with different superfluid gaps ∆bb and
∆tt. We put ∆bt = 0 and ∆tb = 0, so Gbt = 0, Gtb = 0, Fbt = 0, Ftb = 0. This results in
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χ1 = Eb, χ2 = −δλ/2 + Et and χ4 = δλ/2 + Et and the Green functions become:

Gbb[iω, k] =
(ih̄ω + ξb)

(ih̄ω− Eb)(ih̄ω + Eb)
,

Gtt[iω, k] =
(ih̄ω + ξ

(h)
t )

(ih̄ω + δλ/2− Et)(ih̄ω + δλ/2 + Et)
,

Fbb[iω, k] =
∆bb

(ih̄ω− Eb)(ih̄ω + Eb)
,

Ftt[iω, k] =
∆tt

(ih̄ω + δλ/2− Et)(ih̄ω + δλ/2 + Et)
,

(6.9)

We can rewrite Eq. (6.9) in terms of the Bogoliubov amplitudes v2
β and u2

β

v2
β(k) =

1
2

(
1−

ξβ(k)
Eβ(k)

)
, u2

β(k) =
1
2

(
1 +

ξβ(k)
Eβ(k)

)
, (6.10)

so

Gbb[iω, k] =
u2

b
(ih̄ω− Eb)

+
v2

b
(ih̄ω + Eb)

,

Gtt[iω, k] =
u2

t
(ih̄ω + δλ/2− Et)

+
v2

t
(ih̄ω + δλ/2 + Et)

,

Fbb[iω, k] =
ubvb

(ih̄ω− Eb)
− ubvb

(ih̄ω + Eb)
,

Ftt[iω, k] =
utvt

(ih̄ω + δλ/2− Et)
− utvt

(ih̄ω + δλ/2 + Et)
.

(6.11)

We sum over the Matsubara frequencies ω (see Appendix Sec. A.2 for details), and
we obtain:

∑
ω

e−iω0+Gbb[iω, k] =v2
b(k)(1− nF[Eb, T]) + u2

b(k)nF[Eb, T] , (6.12)

∑
ω

e−iω0+Gtt[iω, k] =v2
t (k)(1− nF[χ4, T]) + u2

t (k)nF[χ2, T] , (6.13)

∑
ω

e−iω0+ Fbb[iω, k] =− ∆bb(k)
2Eb

(1− 2nF[Eb, T]) , (6.14)

∑
ω

e−iω0+ Ftt[iω, k] =− ∆tt(k)
2Et

(1− nF[χ4, T]− nF[χ2, T]) . (6.15)

We want to calculate the limit of zero temperature for the Fermi distributions nF.
Because |λh

v| � |λe
c| then δλ > 0, so the energy term χ4 > 0 always but χ2 > 0 only when

Et(k) > δλ/2. Thus for T → 0 we have nF[Eb, 0] = 0, nF[χ4, 0] = 0, and

nF[χ2, 0] =
{

1 χ2 < 0
0 χ2 > 0

= 1− θ[χ2] = 1− θ

[
Et(k)−

δλ

2

]
, (6.16)

where θ[χ2] is a Heaviside step function.
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From Eqs. (6.13)-(6.15) we have,

Gbb[k] = v2
b(k) , Gtt[k] = v2

t (k) + u2
t (k)(1− θ[Et − δλ/2]) , (6.17)

Fbb[k] = −
∆bb(k)
2Eb(k)

, Ftt[k] = −
∆tt(k)
2Et(k)

θ[Et(k)− δλ/2] . (6.18)

Since we are neglecting the interband pairing contributions, we retain the form factors
only for n = m(i = j), Fnn,ii(k, k′) ≡ Fn,i(k, k′). Furthermore, the screened Coulomb
interaction Veh(|k−k′|) conserves the spin of the electron-hole pair and there are no spin-
flip scattering processes. Since there are no spin-flip scattering processes, Josephson-like
pair transfers between different bands are forbidden. This means that Fn,i(k, k′) = 0
for n 6= i. The resulting zero temperature superfluid gap equations (Eq. (3.40)) are thus
decoupled:

∆bb(k) = −
∫ d2k′

(2π)2Fb,b(k, k′)Veh(|k− k′|) ∆bb(k′)
2Eb(k′)

, (6.19)

∆tt(k) = −
∫ d2k′

(2π)2Ft,t(k, k′)Veh(|k− k′|) ∆tt(k′)
2Et(k′)

θ[Et(k′)− δλ/2] . (6.20)

Equation (6.19) has the same form as for a decoupled one-band system, because the
two bottom bands are aligned [112]. In contrast, Eq. (6.20) shows explicitly the effect of

misalignment of the top bands (Fig. 6.3) through the term θ[
√

ξt(k)2 + ∆2
tt(k) − δλ/2].

This can only drop below unity at higher densities, where the pair coupling strength is
weak compared with the misalignment.

The form factors are obtained numerically by calculating the overlap of the wave
functions, eigenvectors of the tight-binding Hamiltonian (Eq. 6.1)

Veh
kk′ in Eqs. (6.19)-(6.20) is the screened electron-hole interaction. To include the

screening of the interaction we use the Random Phase Approximation for static screen-
ing in the superfluid state (Eq. (5.4)) described in Section 3.3.2. To calculate the normal
and anomalous polarizabilities, ΠN(q) and ΠA(q), we use Eqs. (3.55) and (3.56) in the
specific case of double TMD monolayers with only intraband scattering allowed due to
spin-orbit coupling (n = m = i = j = β).

Πββ
N (q, Ω) =

T
L2 ∑

k,ω
Fβ,β(k, k′)Gββ[iω + iΩ, k′]Gββ[iω, k] , (6.21)

Πββ
A (q, Ω) =

T
L2 ∑

k,ω
Fβ,β(k, k′)Fββ[iω + iΩ, k′]Fββ[iω, k] . (6.22)

with q = |k− k′|
We use the Green functions in Eq. (6.11). We perform the sum over the Matsubara

frequencies ω, in the static limit Ω→ 0 and at zero temperature (see details in Appendix
Sec. B.2).

Πbb
N (q) = − 1

L2 ∑
k
Fb,b(k, k′)

v2
b(k)u

2
b(k
′) + u2

b(k)v
2
b(k
′)

Eb(k) + Eb(k′)
, (6.23)

Πbb
A (q) =

1
L2 ∑

k
Fb,b(k, k′)

2 ub(k)vb(k)ub(k′)vb(k′)
Eb(k) + Eb(k′)

. (6.24)

While for the top bands we obtain:
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Πtt
N(q) = −

1
L2 ∑

k
Ft,t(k, k′)

[
u2

t (k)u
2
t (k
′)

θ[Et(k)− δλ
2 ]− θ[Et(k′)− δλ

2 ]

Et(k)− Et(k′)

+v2
t (k)u

2
t (k
′)

θ[Et(k′)− δλ
2 ]

Et(k) + Et(k′)
+ u2

t (k)v
2
t (k
′)

θ[Et(k)− δλ
2 ]

Et(k) + Et(k′)

]
,

(6.25)

Πtt
A(q) =

1
L2 ∑

k
Ft,t(k, k′) ut(k)vt(k)ut(k′)vt(k′)

θ[Et(k)− δλ
2 ] + θ[Et(k)− δλ

2 ]

Et(k) + Et(k′)
−

θ[Et(k)− δλ
2 ]− θ[Et(k)− δλ

2 ]

Et(k)− Et(k′)
,

(6.26)

For a given chemical potential µ, equal electron and hole densities ne = nh = n in
one monolayer is determined as a sum of the subband carrier densities nb and nt by (Eq.
(3.42)):

n = gsgv ∑
β=b,t

nβ , (6.27)

nb =
∫ d2k

(2π)2 v2
b(k) , (6.28)

nt =
∫ d2k

(2π)2 v2
t (k) + u2

t (k)(1− θ[Et(k)− δλ/2]) . (6.29)

Because of the spin polarization in the valleys, the spin degeneracy is gs = 1.
As we have discussed in Section 3.2.1 we can identify the regimes of the superfluid

BEC-BCS crossover, by investigating the evolution of the superfluid gaps (Eqs. (6.19)-
(6.20)) and the evolution of the chemical potential evaluated in Eq. (6.27). We also intro-
duce, for this system, the two superfluid condensate fractions cbb and ctt corresponding
to the {bb} and {tt} condensates. These are the number of pairs in a {ββ} divided by the
total number of carriers in the β bands (Eq. (3.44)) ,

cββ =
∑k u2

β(k) v2
β(k)

∑k v2
β(k)

. (6.30)

6.3 Results

We took equal effective masses m∗e = m∗h = 0.44 me, a barrier thickness d = 1 nm, and
dielectric constant ε = 2, for monolayers encapsulated in a few layers of hBN [138]. The
effective Rydberg energy of the system is Ry = 800 meV and the effective Bohr radius
aB = 0.43 nm.

Figure 6.4 shows the dependence on WSe2 electron density of the maximum of the
superfluid gaps ∆ββ = maxk ∆ββ(k) (Eqs. (6.19)-(6.20)) in systems A and B. Figure 6.5
shows the corresponding evolution of the chemical potential µ and Fig. 6.6 shows the
evolution of the condensate fractions (Eq. (6.30)).

We see in Fig. 6.4 that, at low densities, electrons and holes occupy only the bottom
bands so there is only a {bb} condensate. The form of ∆bb is similar for systems A and B.
In the low-density limit, the paired electrons and holes occupy the two-body bound state
with its binding energy Eb

B ∼ 375 meV. The chemical potential for this state is given by
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FIGURE 6.4: The maximum of the superfluid gaps ∆bb and ∆tt as a function of n of
WSe2. Positive density corresponds to system A, negative density to system B.

the well-known one-band limit, µ ∼ −Eb
B/2 [161, 162], (Fig. 6.5). Note that at very low

density µ(e) = µ(h) for the carrier of the bottom bands.

FIGURE 6.5: Chemical potential as function of density n of WSe2. For reference, the
energy bands are shown as a function of k with the same energy scale. The bound

state energies Eb
B/2, Et

B/2 are also indicated with respect to the bands.

In this case, the {bb} condensate is in the strong-coupled BEC regime, with conden-
sate fraction Cbb > 0.8 (Fig. 6.6).
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FIGURE 6.6: Corresponding condensate fraction Cbb and Ctt as function of density
n of WSe2. The blue shaded area is the BEC regime.

As the density is increased ∆bb also increases, since the number of electrons and holes
available for pairing increases. The pairs start to overlap, and this results in an increasing
chemical potential µ and a decreasing Cbb.

In contrast, for the top bands, ∆tt is only non-zero in system B. At low density, ∆tt = 0
also in system B, since the pairing population is zero. In the low-density limit of the
top bands, the paired electrons and holes will occupy a two-body bound state with a
binding energy that lies Eb

B − δλ below the top band ε
(e)
t . Relative to the zero of energy,

the two-body bound state for the top bands is located at,

− 1
2

Et
B = −1

2
(Eb

B − δλ) + λe
c . (6.31)

For the {tt} condensate to be populated and ∆tt to be non-zero µ must exceed − 1
2 Et

B.
(Fig. 6.5)

With increasing density, Cbb drops below 0.8 and the {bb} condensate enters the
Crossover regime, while the {tt} condensate is always in the BEC regime with Ctt > 0.8.
This results in an interesting new mixture of condensates that are in different regimes of
pairing. ∆bb then passes through a maximum because of screening that becomes increas-
ingly important and weakens the interaction. ∆tt follows a similar sequence of behaviour,
however the step function in Eq. (6.20), reduces the pairing strength because of the mis-
alignment of the top bands. This is the reason that ∆tt is everywhere weaker than ∆bb.

When µ becomes positive, the weakening due to screening is accelerated due to the
build-up of the free carriers in the bottom bands. Eventually screening, combined with
the misalignment of the top bands, kills the superfluidity. ∆ drops sharply to zero in both
{bb} and {tt} channels at the same threshold density n0 (r0/aB = 3.3). For n > n0, the
screening of the pairing interaction is so strong that it kills superfluidity [10].

We see in Fig. 6.4 that the behaviour of ∆tt in systems A and B is completely different.
In system A the chemical potential remains below the isolated bound state Et

B associated
with the top bands over the full range of densities up to n0. With µ lying below 1

2 Et
B

(Fig. 6.5), the population of pairs in the {tt} channel remains zero. Interestingly, the only
difference between system A and B is the choice of doping which results in the markedly
different misalignment of the top bands, leading to one-component or two-components
superfluidity.
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6.3.1 Multi-component superfluidity in different TMD monolayers

The results on MoSe2-hBN-WSe2 indicates that the presence of a second component in
the superfluidity for double TMD monolayers depends on the position of the two-body
bound state for {tt} bands, and Eq. (6.31) show that this position is determined by the
misalignment of the top bands.

Fig. 6.5 indicates that the two-body bound state for {tt} condensate can only exist
if it lies below the minimum of the top bands. Otherwise there is a decay channel to
continuum states. This means that in Eq. (6.31), (Eb

B − δλ) must be positive for a two-
body bound state in the top bands to exist. This is a condition for the second condensate
to exist: δλ < Eb

B.
By using this condition we can draw more general conclusions about the multi-component

nature of the superfluidity in different double TMD monolayers. Table 6.2 shows (Eb
B −

δλ) for different combinations of TMD monolayers. Multi-component superfluidity is
possible only when (Eb

B − δλ) > 0. The Eb
B are calculated for double TMD monolayers

with separation d = 1 nm (See details in Appendix C).

p-MoS2 p-MoSe2 p-WS2 p-WSe2
n-MoS2 249 228 -37 -69
n-MoSe2 276 253 -9 -49

n-WS2 252 232 -28 -65
n-WSe2 260 233 -24 -57

TABLE 6.2: (Eb
B − δλ) in meV for different combinations of TMD monolayers. δλ is

determined from Table 6.1. The values marked in bold identify those systems where
multi-component superfluidity is possible ((Eb

B − δλ) > 0).

6.4 Transition Temperature

The strikingly high transition temperatures for electron-hole superfluidity in double TMD
monolayer structures comes from two properties in which they greatly differ from other
double layer systems:

• large threshold densities for superfluidity;

• multi-component superfluidity that can be switched on and off.

In 2D, the superfluid transition temperatures are given by TBKT, the Berezinskii-Kosterlitz-
Thouless (BKT) temperature [163]. The monolayers have near parabolic bands, so we can
approximate [164, 165],

TBKT =
π

2
ρs(TBKT) ' n

πh̄2

2gsgvm∗
. (6.32)

ρs(T) is the superfluid stiffness. TBKT is proportional to the density, so to achieve high
transition temperature the density must be maximized. In Fig. 6.4, we note that the
threshold densities n0 for the superfluidity are much larger than n0 ∼ 8× 1011 cm−2 ob-
served in DBG [13, 17], n0 ∼ 4× 1012 cm−2 for phosphorene [94], and n0 ∼ 5× 1010 cm−2

for GaAs [22]. n0 is large for the double TMD monolayers for two main reasons: (i) the
large effective masses of the electrons and holes means a large effective Rydberg energy,
thus large superfluid gaps ∆ that strongly suppress the screening; (ii) the large TMD
monolayer band gaps Eg eliminate valence band screening, making the electron-hole
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pairing interaction very strong [17]. These large threshold densities in the double TMD
monolayers lead to high BKT transition temperatures. Equation (6.32) gives maximum
transition temperatures for systems A and B at their threshold densities n = 15× 1012

cm−2 of TA
BKT = 110 K and TB

BKT = 120 K.
While at first sight, the coupling in DBG between the conduction and valence band

condensates should reinforce the superfluid gaps as shown in Chapter 4, because of the
small band gaps in bilayer graphene there are a large number of free carriers that are eas-
ily excited from the valence band, and these greatly enhance the screening. The enhanced
screening weakens the superfluid gaps. We showed in Chapter 5 that this effect domi-
nates over the reinforcement of the superfluid gaps. In TMDs, the large band gap means
that screening from the remote bands is negligible. Because of spin selection, the con-
densates are not directly coupled in the superfluid gap equations (Eqs. (6.19)-(6.20)), but
there is anyway a great advantage in having a second condensate. The pairing in the {tt}
condensate removes free carriers from the top bands that would otherwise strengthen the
screening. Thus two-component superfluidity persists up to higher densities compared
to the one-component system.

As a final extra remark, unlike DBG, there are no chiral symmetry degrees of freedom
in TMDs. Reference [114] has suggested that these additional degrees of freedom in DBG
would lead to topological excitations of quarter vortices. If so, in DBG but not in TMDs,
there would be a prefactor of 1/16 in Eq. (6.32). This would dramatically reduce TBKT.

To identify the double TMD monolayers with the highest transition temperatures, we
look for the highest binding energies in combination with multi-component superfluidity.

Table 6.3 gives the corresponding two-body binding energy for the {bb} bands, Eb
B,

for different combinations of TMD monolayers. Of the double monolayers which are
predicted in Table 6.2 to exhibit multi-component superfluidity (marked in bold), we
see from Table 6.3, it is MoSe2–MoSe2 which has the highest two-body binding energy.
MoSe2–MoSe2 has the largest transition temperature: TBKT ∼ 160 K.

p-MoS2 p-MoSe2 p-WS2 p-WSe2
n-MoS2 396 405 390 388
n-MoSe2 405 412 400 390

n-WS2 375 385 375 368
n-WSe2 372 375 368 365

TABLE 6.3: Two-body binding energy for the {bb} bands: Eb
B in meV for different

combinations of TMD monolayers calculated using the parameters in Table 6.1.

6.5 Conclusion

In summary, we have investigated multi-component effects for electron-hole multi-band
superfluidity in n-p and p-n doped MoSe2-hBN-WSe2 heterostructures (Systems A and
B, respectively). Both systems are multi-band and can stabilize superfluidity at temper-
atures above 100 K. Surprisingly, we find that only in system B can superfluidity have
two components. For both systems, we would have expected to be able to tune from one-
to two-component superfluidity by increasing the density, as recently observed in multi-
band superconductors [155], and this is indeed the case for system B. However for system
A, the very large misalignment of the electron and hole top bands, means that there are no
carriers available for pairing in the topmost band before screening has become so strong
that it completely suppresses superfluidity. Therefore only one-component superfluidity
is possible in system A. This is a remarkable result: activation of the second-component
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of the superfluidity in this heterostructure depends crucially on the choice of which TMD
monolayer is n-doped and which p-doped.

Another intriguing result is that one can see from Fig. 6.3 that it is possible tune from
a system of purely dark excitons (System A) to a system of only bright excitons (System
B) simply by interchanging the doping.

The strikingly different behaviour of ∆tt in the two systems can be probed using
Angle-Resolved Photoemission Spectroscopy (ARPES) [166]. ARPES measures the spec-
tral function which, in a one-component superfluid state like system A, will have a single
peak centred at a negative frequency corresponding to ∆bb. However in system B, when
it switches from one-component to two-components superfluidity, two peaks associated
with the superfluid gaps ∆bb and ∆tt will appear in the spectral function at negative fre-
quencies [167]. Other experimental techniques that can be used to detect the presence or
absence of the second superfluid gap ∆tt are Andreev reflection spectroscopy [168, 169]
and scanning tunnelling microscopy (STM) [170].

The large superfluid gaps at zero temperature and in the Crossover regime should
lead to pseudogaps in the single-particle excitation spectra [171] above TBKT that persist
up to high temperatures. These could also be detected by the ARPES and STM. System
B, at densities where both the superfluid components are close to their maximum gaps,
would favour large pseudogaps, while configurations with one large gap and one small
or zero gap would lead to screening of superfluid fluctuations and suppression of the
pseudogap [172].

Experimental evidence for exciton condensation, based on interlayer tunnelling and
electroluminescence, was reported in n-MoSe2/p-WSe2 [14], which is our system A. The
high transition temperatures, 100 K at density 1012 cm−2, suggest an exciton condensate
with short-range coherence [173], associated with the pseudogap state [174].

This approach can be generalised to determine electron-hole superfluidity proper-
ties in different combinations of double TMD monolayers. Among the different double
TMD monolayer systems we can select the configurations where the superfluidity can
be tuned from one- to two-components. These correspond to TMD monolayer config-
urations where the misalignment between the higher energy bands is smaller than the
exciton binding energy. We show that MoSe2–MoSe2 has the largest transition tempera-
ture, as high as TBKT ∼ 160 K.
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Chapter 7

3D Superlattice to exploit
high-temperature electron-hole
superfluidity

In this chapter, we propose a new system based on a stack of Transition Metal Dichalcogenide alter-
nating electron and hole monolayers to exploit electron-hole superfluidity in a three-dimensional
superlattice. We show that with a 3D superlattice, we overcome the restriction of low critical
temperatures associated with the Berezinskii-Kosterlitz-Thouless transition temperature charac-
teristic of 2D systems [21].

The presence of superfluidity is associated with the spontaneous breaking of the con-
tinuous symmetry, allowing for the formation of long-range order with a fixed phase.
The phase correlation is a constant for temperature below a critical temperature Tc, falls
off exponentially with the distance for T > Tc, and falls off according to a power law for
T = Tc, the latter indicating quasi-long-range order. Tc is defined as the temperature at
which the superfluid gap vanishes. One might reasonably expect that the critical temper-
ature could be further increased towards the limit set by the large pair binding energies
and the large superfluid gaps which can be as large as 1000K. However, Mermin, Wagner
[175] and Hohenberg [176] provided rigorous proofs that a spontaneous breaking of con-
tinuous symmetry is not possible in 2D (or lower dimensions) at non-zero temperature.
This general theorem, which precludes the existence of long-range order in 2D systems,
seems to preclude also the existence of 2D superfluidity.

In 2D systems, it is in fact still possible to have a phase transition and quasi-long-
range order below a critical temperature. This phase transition is associated with the
dissociation of bound vortex-antivortex pairs into unbound vortices and antivortices. A
vortex is the flow of the condensate phase around a region of normal fluid known as the
vortex core. This phase transition was first described by Berezinskii [177] and Kosterlitz
and Thouless [163] and is referred to as the BKT transition. A single vortex or antivor-
tex destroys the phase ordering in the system, but for a vortex-antivortex pair, there is
still a near uniform phase order at distances far from the pair. This means that bound
vortex-antivortex pairs do not destroy the superfluidity but formation of single vortices
or antivortices does. Vortex-antivortex pairs have lower energies and entropy than free
vortices. In order to minimize free energy, the system undergoes a transition at a criti-
cal temperature TBKT. Below TBKT, there are only bound vortex-antivortex pairs. Above
TBKT, there are free vortices. Thus the maximum transition temperature in 2D is not lim-
ited by the electron-hole binding energy or superfluid gap, but by the BKT topological
transition introduced in Section 6.4 (Eq. (6.32)). The transition temperature TBKT is pro-
portional to the carrier density and does not directly depend on the coupling strength.
As we have discussed in the previous chapter, the density for superfluidity cannot be
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increased indefinitely because strong screening of the Coulomb interactions at high den-
sities kills superfluidity.

In this chapter, we overcome these restrictions associated with Mermin-Wagner and
exploit strong electron-hole coupling, by considering superfluidity in a three-dimensional
(3D) superlattice, consisting of a stack of alternating electron and hole monolayers.

7.1 3D superlattice

While we focus on a superlattice of alternating n-doped WS2 and p-doped WSe2 mono-
layers, the same approach would work for other systems of stacked 2D layers (Fig. 7.1).
We consider an AA stacked superlattice of WS2 and WSe2 monolayers, with the tungsten
atoms horizontally aligned, and the chalcogen atoms horizontally aligned. The distance
between the atoms of different layers is d ∼ 0.6 nm.

FIGURE 7.1: Schematic representation of the infinite superlattice of alternating n-
and p-doped monolayers of two different TMDs, indicated by green and black lines.

The WS2/WSe2 band alignment is type-II: conduction band and valence band edges
are located in different layers [101]. This keeps the electrons and the holes spatially sep-
arated in their monolayers without the need for an insulating barrier, and ensures long
lifetime for the interlayer excitons [104]. There are by now many examples of superlattice-
based superconductors [178], including the high-temperature cuprates [179, 180].

To investigate this system we use a self-consistent mean-field approach. We restrain
the calculation to low densities so only the lowest energy bands are occupied and the
pairing is single-component.

Here the nature of the interactions is 3D. The average inter-particle distances for the
densities we are considering are much larger than the small distance between layers.
Due to the hybridization between the bands of the different type monolayers, there is
a small intralayer contribution to the electron-hole potential. This is because, while the
electrons and holes in the hybridized bands are mostly in opposite layers, there is a small
probability they will be in the same layer.

It is interesting to note that since pairing by the screened Coulomb attraction is pri-
marily generated by two-particle scattering processes with small momentum exchange,
pair formation is 3D in character.

We determine the 3D superfluid gap ∆(k) at zero temperature, where in k = ~k‖ + ~kz
we can distinguish the in-plane ‖-direction and in the perpendicular z-direction.

∆(k) = − 1
AN2d ∑

k
VRPA(k, k′)

∆(k′)
2E(k′)

, (7.1)

where E(k) =
√

ξ2(k) + ∆2(k), with ξ(k) = 1
2 (εe(k) + εh(k))− µ. N is the number of the

layers of surface area A.
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In Eq. 7.1, the terms in the summation over k′‖ are non-negligible only at low en-
ergies, but the summation over k′z has significant contributions across the full Brillouin
zone, i.e. between ±π/2d. The details and the expression of the electron-hole interaction
VRPA(~k,~k′) are given in the paper [21].

The dielectric constant ε =
√

εzε‖ accounts for static screening. For WS2 it is ε = 9.9,
and for WSe2 ε = 11.2 [181]. In the limit of no hybridization between the different TMD
types, the system would effectively consist of two decoupled bulk TMDs with an inter-
layer distance twice that of their normal bulk forms. The dielectric constant is approxi-
mately halved when the inter-layer distance is doubled [96]. For the WS2/WSe2 super-
lattice, we therefore take as the value of the dielectric constant for the heterostructure
superlattice ε = 5.5, half of the average of the two bulk TMDs.

The density equation is:

n =
gvgs

AN2d ∑
k

v2(k) . (7.2)

Where gv = 2 and gs = 1 for the same reasons discussed in Section 6.2, and v2(k) is the
Bogoliubov amplitude.

7.2 Results

FIGURE 7.2: Maximum superfluid gap ∆ as function of equal electron and hole
densities n.

Figure 7.2 shows the maximum of the momentum-dependent superfluid gap ∆(k),
as a function of the 3D electron and hole densities n. For reference the top axis shows an
effective 2D carrier density, defined as n2D = 2dn. At large densities, Coulomb screening
suppresses the superfluidity. Below an onset density n0, large gap superfluidity self-
consistently weakens the screening sufficiently for superfluidity to appear. As the den-
sity is further decreased, ∆ increases to a maximum value of 48 meV (560 K), and then
decreases. Note that even for very small values of n, ∆ remains in excess of 10 meV (120
K). These large values of ∆ reflect the strong electron-hole Coulomb pairing interaction.

At high densities at weak-coupling, the superfluid transition temperature Tc can be
determined from the mean-field equations, generalized to finite temperatures,

∆(k, T) = −∑
k′

VRPA(k, k′, T)
∆(k′, T)
2E(k′)

tanh
[

E(k′)
2kBT

]
. (7.3)
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FIGURE 7.3: BEC (solid, blue) and BCS (solid, red) critical temperature calculated as
a function of the 3D and effective 2D density. The dashed black curve is a possible

interpolation of the critical temperature between the BEC and BCS expressions.

As the density is lowered, we enter the Crossover regime. With the increased pairing
strength, the chemical potential µ must drop below the Fermi energy EF to keep the
density fixed. This drop incorporates a large part of the effect of the fluctuations that
build up as the Crossover regime is penetrated. Although within the Crossover regime,
the Tc determined from the Eq. (7.3) using the self-consistent µ, starts to overestimate
the actual transition temperature, this overestimate is expected to be no more than 20%
across the full Crossover regime [182, 183].

In the self-consistent screening, we retain the superfluid gap at zero T, since the pseu-
dogap arising from the pair fluctuations should remain of the order of ∆(T = 0) in the in-
termediate coupling regime [171], and so to a large extent the low-lying excited states will
continue to be excluded from the screening excitations, thus suppressing the detrimen-
tal Coulomb screening. In this way, we take into account a major part of the fluctuation
effects that renormalize Tc to lower values, by incorporating a large part of the fluctu-
ations through the reduction of the chemical potential and through the development of
the pseudogap.

In the deep BEC regime at low densities (C > 0.9), this method for determining Tc
becomes unreliable, primarily because the pseudogap is replaced by a real gap of the
order of the pair binding energy. In the deep BEC, we can approximate the electron-hole
pairs as point-like bosons, so we can use the Tc for BEC of non-interacting bosons. The Tc
for BEC of non-interacting bosons is determined by inverting the equation [184],

n =
gvgs

AN2d ∑
k

1
eξ(k)/kBTc − 1

. (7.4)

The Tc thus obtained is known to underestimate the actual Tc for BEC as determined by
Quantum Monte Carlo [185]. Finally, in the density range from the upper boundary of
the BEC regime to the start of the deep BEC, we use a smooth interpolation of Tc between
the high- and low-density results.

Figure 7.3 shows the resulting superfluid transition temperature in the superlattice.
In the deep-BEC regime, Tc (blue curve) can approach 100 K. This is many orders of
magnitude larger than the BEC transition temperatures found in ultra-cold atom systems
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[29, 186, 187]. These BEC transition temperatures are so much larger because the effective
electron and hole masses are tiny compared to atomic masses, and because our densities
are several orders of magnitudes larger than in ultra-cold atom systems. Note that this
result is in agreement with the result in the corresponding 2D system, reported in Chapter
6. This is because in the deep-BEC the electron-hole pairs are compact. The electron-hole
interaction is maximal for electrons and holes in two close layers and the superfluidity
reverts to a 2D character.

Increasing the density causes Tc to rapidly rise, pushing it to a maximum in the
Crossover regime (red curve) very close to room temperature, Tc = 270K, conveniently
accessible in a domestic refrigerator.

7.3 Conclusions

The superfluid transition in a 3D superlattice is not topological, and for strong electron-
hole pair coupling, the transition temperature can approach room temperature. A further
advantage of a 3D system over 2D systems is that it is much less susceptible to disorder
because percolation and screening favour 3D conduction. Our results open the way to
generating 3D electron-hole superfluidity at room temperature in this and related super-
lattices.

While for calculating convenience we use the realistic band structure of an infinite
superlattice, our conclusions remain valid for corresponding finite superlattices consist-
ing of more than a few monolayers. To detect the superfluidity, a neutral supercurrent
parallel to the superlattice layers that is uniform in the perpendicular direction, could
be set up in a counterflow configuration by electrically contacting together the n-doped
layers, and similarly with the p-doped layers. Alternatively, a capacitance spectroscopy
measurement [188] could detect the drop in the density of states for the superfluid state
relative to the normal state. The onset of superfluidity will be characterized by a jump
in the inverse of the total capacitance across the sample [22], and then, as the density is
decreased, the total capacitance will monotonically increase.
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Chapter 8

Conclusions and Future perspectives

8.1 Conclusions

We have investigated multi-component electron-hole superfluidity in coupled layer sys-
tems, focusing on two very different systems. One system consists of two parallel bilayer
graphene sheets (DBG), the other system is a bilayer heterostructure of Transition Metal
Dichalcogenides (TMD). Table 8.1 collects properties for superfluidity in these two sys-
tems. For reference we also include other double layer systems that have been proposed
for electron-hole superfluidity. We summarize results obtained in Table 8.2.

mass-ratio m∗e(me) m∗h(me) Eg(eV)
valence band

screening
multi-component

superfluidity

DQW m∗h ∼10 m∗e 0.067 0.3 1.5 no no
DMG m∗h = m∗e 0 0 0 yes no superfluidity
DBG m∗h = m∗e 0.04 0.04 ≤ 0.25 yes no
DMP m∗h = m∗e 0.15 0.15 1.5 no no
TMD m∗h ∼1.3 m∗e 0.3 - 0.5 0.4 - 0.6 1.5 - 2.0 no yes

TABLE 8.1: Double layer system properties relevant for electron-hole superfluidity.
DMP values are for the zigzag direction. m∗e and m∗h: electron and hole effective

masses; Eg: energy band gap.

dT(nm) dE(nm) nT
0 nE

0 TBKT (K) TE
c (K)

DQW 12 - 25 [22] 25 [60, 61] <0.7 [22] − < 0.5 [22] −
DMG 1.0 [189] 1.0 [77] − − − −
DBG 0.5 - 2.0 [10, 17] 1.4 [13] 7 [17] 8 [13] 14 - 27 [10] 1.5 [13]
DMP 2.0 - 10 [94] − 10 - 40 [94] − 10 - 90 [94] −
TMD 1.0 [18] 1.0 [14] 150 [18] 10 [14] > 100 [18] 100 [14]

TABLE 8.2: Experimental (E) and theoretical (T) parameters of the different systems.
d: layer separation; n0: superfluid threshold density (1011cm−2); TBKT , TE

c : predicted
and observed transition temperature for superfluidity.

In Chapter 4 we extended the one-band approach used in Ref. [10] in order to further
investigate Double Bilayer Graphene. Unlike monolayer graphene, the energy dispersion
of the conduction and valence bands at low energies in bilayer graphene is approximately
parabolic, and it is possible to tune the small band gaps. We demonstrated that because
the band gaps are so small, the valence band provides an additional channel of pairing
and hence an additional condensate. Thus the superfluidity is multi-component. The
conduction and valence band condensates are coupled through a Josephson-like transfer
of the pairs between the condensates. We show for the first time that by tuning the band
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gaps we can tune the Josephson-like transfer and thus tune the coupling between the
condensates. By tuning this coupling one can change the strength of the pairing and in
this way move between the different regimes of the BEC-BCS crossover.

In Chapter 5, we extended the investigation of Double Bilayer Graphene to include
the intraband and interband screening and the distortion of the bilayer graphene band
from parabolic to Mexican hat-like which accompanies the opening of the band gap. We
confirmed that the presence of intraband screening results in an upper limit of the car-
rier density for the superfluidity [42]. Above this threshold density, screening kills the
superfluidity. The presence of the additional interband screening from the valence band
strongly reduces the threshold density. We demonstrated that the effect of the strong
interband screening is weaker for large band gaps. This is due to the large separation be-
tween the bands that weakens the interband processes and to the Mexican-hat flattening
of the bands that favours the intraband correlations over the interband correlations.

In Chapter 6 we proposed the TMD heterostructure MoSe2-hBN-WSe2 to observe
high-temperature electron-hole superfluidity. The TMD monolayers MoS2, MoSe2, WS2,
and WSe2 are semiconductors with direct band gaps comparable to that in GaAs. The
large band gap eliminates the detrimental effects of the interband screening mentioned
above for graphene. The electron and hole effective masses in TMDs are larger than for
bilayer graphene, and this also increases the coupling strength of the electron-hole pairs
[11]. We show that in the double TMD system, because the strong spin-orbit coupling,
each conduction and valence band is split into two subbands. This raises the interesting
possibility of multi-component superfluidity arising because of the existence of two sub-
bands. The spin-orbit coupling splitting of the conduction bands λc is an order of magni-
tude smaller than the splitting of the valence bands λv. We find that the misalignment of
the bands that results from this, determines if the superfluidity is one- or two-component,
and the misalignment strongly affects the properties of the second component. We show
that the choice of the doping of the TMD monolayers determines the misalignment and
thus the multi-component nature of the superfluidity. The choice of doping also per-
mits the excitons to be tuned from purely dark excitons to purely bright excitons. If the
superfluidity is multi-component we are able to tune from one- to two-components by
increasing the density, as was recently observed in multi-band superconductors [155]. We
predicted maximum transition temperatures of TBKT ∼ 100 K in MoSe2-hBN-WSe2. Very
recently enhanced tunnelling conductance signatures of BEC was reported in this same
system with transition temperature Tc ∼ 100 K [14], consistent with these predictions.

In Chapter 6 we discussed the transition temperatures of electron-hole superfluid-
ity in 2D systems, recalling how larger threshold densities lead to higher Berezinskii-
Kosterlitz-Thouless transition temperatures. To achieve high transition temperatures in
double layer systems a requirement is to be able to access the strongly interacting BEC
regime. In this regime, superfluidity suppresses the screening, thus allowing stronger
electron-hole pairing. The stronger the pairing interaction, the larger is the density range
across which the superfluidity persists. We have shown that the double TMD monolayers
are optimal candidates for achieving high-temperature superfluidity, because:

• The effective masses in TMD monolayers are large, resulting in a binding energies
and electron-hole pairing interactions stronger than in other coupled layer systems.

• The effective masses in TMD monolayers are almost equal, in contrast to GaAs
DQWs, where the mass imbalance weakens the pairing.

• Valence band screening, which has a detrimental effect on the electron-hole pairing
strength in DBG, is negligible in double TMD monolayer system because of the
large band gap.
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• The presence of the second condensate in double TMD monolayers reinforces the
superfluidity.

In Chapter 7 we have shown that a stack of alternating electron and hole TMD mono-
layers can be used to exploit electron-hole superfluidity in a three-dimensional (3D) su-
perlattice. We show that with a 3D superlattice, we overcome the restriction of low crit-
ical temperatures associated with the BKT transition temperature characteristic of 2D
systems, so that strong electron-hole coupling results in high transition temperatures.

8.2 Future Outcomes

A very interesting result of this thesis illustrates the importance in the pairing processes
of a quasi-flat electronic band. In Chapter 5 we found that the flattening of the bands,
associated with the Mexican-hat dispersion in the DBG system, causes a significant en-
hancement of the electron-hole superfluidity. Because of the increase in the Density of
States from the flattening of the band, the interaction between electron and holes be-
comes stronger. Stronger electron-hole pairing corresponds to larger threshold densities
for superfluidity. We recall that larger threshold densities lead to higher BKT transition
temperatures.

In the last two years it has become experimentally possible to engineer and tune the
flat bands in van der Waals bilayers by twisting one layer relative to the other [190].
Twisting induces a moiré pattern, the resulting lattice potential modulates the interlayer
hybridization and modifies the electronic structure [191]. At specific magic twist angles
the bands become completely flat.

By controlling the flatness of the bands it should be possible not only to generate ex-
citon superfluidity but also a large number of the other strongly-correlated exotic phases
that have been predicted in the literature, including enhanced Wigner crystal [192], exciton-
insulator [193], exciton supersolid [194], Charge Density Wave [195], FFLO and Sarma
superfluid phases [63].

1st Research Line - Interlayer Excitons

A number of observations in TMD heterobilayers have shown that the moiré lattice leads
to very strongly bound exciton states [196], and that these interlayer moiré excitons have
very different optical properties depending on the twisting angle [197, 198]. The flat-
tening of the bands modifies the electron and hole wave-functions, affecting the exciton
binding energy and lifetime. To date there is little theoretical study on this. One research
line focuses on how the properties of the interlayer excitons can be tuned by flattening
the bands.

2nd Research Line - Flat Band Exciton Superfluidity

A second research line would investigate electron-hole superfluidity with tunable flat
bands to determine the dependence of the pairing on the bands up to high temperatures.
The flattening of the bands makes the excitons strongly bound, causing the system to
maintain the strong pairing up to large densities. This would increase the BKT transition
temperature.

The flattening of the bands will also modify the competition between the screening
and the superfluidity in a subtle way [17]. The possibility of using the twisting angle
to control the flattening of the bands means we can experimentally tune the interaction
strength and so move the boundaries of the BEC-BCS crossover phenomenon. This effect
has not been investigated.
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3rd Research Line - Exotic Phases

With van der Waals stacking, we can couple electron and hole bilayers that are designed
to have different electronic configurations (different twisting angles). A third research
line would study excitonic properties in systems with different flatness for the electron
and hole bands. This also opens up the possibility of exotic superfluid phases like the
FFLO and Sarma phases which occur when the electron and hole bands have different
flattening [63].

4th Research Line - New Phase Diagrams

A fourth research line would examine competing strongly correlated phases in electron-
hole coupled layers, with the flattening of the bands as a control parameter. Flattening
the bands removes kinetic energy as a phase diagram parameter, leaving the intralayer
and interlayer interactions as the parameters. The flattening of the bands also affects all
the Coulomb interactions because it modifies the screening [17].

Phase diagrams with density, interlayer distance and temperature as parameters have
been proposed for strongly correlated exotic phases including enhanced Wigner crystal
[192], exciton-insulator [193], exciton supersolid [194] and Charge Density Wave [195].
The flattening of the bands could be used as a new parameter to move in a controlled
way the boundaries of the phases in these phase diagrams.
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Appendix A

Two-Band Green Functions

This Appendix contains the explicit calculation of the Green functions of a two-band
system. We solve here the Green function matrix (3.35) defined in Chapter 3.


ih̄ω− ξ

(e)
1 0 ∆11 ∆12

0 ih̄ω− ξ
(e)
2 ∆21 ∆22

−∆∗11 −∆∗12 ih̄ω + ξ
(h)
1 0

−∆∗21 −∆∗22 0 ih̄ω + ξ
(h)
2




G11 G12 F11 F12
G21 G22 F21 F22
F∗11 F∗12 G∗11 G∗12
F∗21 F∗22 G∗21 G∗22

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(A.1)

where ω = kBT(2n + 1)π are the fermionic Matsubara frequencies.
To make the calculation more clean, we use the following notation:

z1 = ih̄ω− ξ
(e)
1 , z2 = ih̄ω− ξ

(e)
2 , z3 = ih̄ω + ξ

(h)
1 , z4 = ih̄ω + ξ

(h)
2 . (A.2)

We write explicitly the system from the first column of the Green function matrix (Eq.
(A.1)): 

z1G11 − ∆11F∗11 − ∆12F∗21 = 1
z2G21 − ∆21F∗11 − ∆22F∗21 = 0
−∆∗11G11 − ∆∗12G21 + z3F∗11 = 0
−∆∗21G11 − ∆∗22G21 + z4F∗21 = 0

(A.3)

that becomes 
z1G11 = 1 + ∆11F∗11 + ∆12F∗21

z2G21 = ∆21F∗11 + ∆22F∗21
z1z2[−∆∗11G11 − ∆∗12G21 + z3F∗11] = 0
z1z2[−∆∗21G11 − ∆∗22G21 + z4F∗21] = 0

(A.4)

We substitute the first two equation in the last two equations:{
−z2∆∗11(1 + ∆11F∗11 + ∆12F∗21)− z1∆∗12(∆21F∗11 + ∆22F∗21) + z3F∗11 = 0
−z2∆∗21(1 + ∆11F∗11 + ∆12F∗21)− z1∆∗22(∆21F∗11 + ∆22F∗21) + z4F∗21 = 0

and we obtain{
−z2∆∗11 − z2|∆11|2F∗11 − z2∆∗11∆12F∗21 − z1∆∗12∆21F∗11 − z1∆∗12∆22F∗21 + z1z2z3F∗11 = 0
−z2∆∗21 − z2∆11∆∗21F∗11 − z2∆12∆∗21F∗21 − z1∆21∆∗22F∗11 − z1|∆22|2F∗21 + z1z2z4F∗21 = 0

{
−(z2|∆11|2 + z1∆∗12∆21 − z1z2z3)F∗11 = (z2∆∗11∆12 + z1∆∗12∆22)F∗21 + z2∆∗11
(z2∆12∆∗21 + z1|∆22|2 − z1z2z4)F∗21 = −(z2∆11∆∗21 + z1∆21∆∗22)F∗11 − z2∆∗21
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now we can derive:
F∗11 =

z2∆∗21(z2∆∗11∆12−z1∆∗12∆22)+(z2∆12∆∗21+z1|∆22|2−z1z2z4)z2∆∗11
(z2|∆11|2+z1∆∗12∆21−z1z2z3)(z2∆12∆∗21+z1|∆22|2−z1z2z4)−(z2∆∗11∆12+z1∆∗12∆22)(z2∆11∆∗21+z1∆21∆∗22)

F∗21 =
z2∆∗11(z2∆12∆∗21+z1|∆22|2−z1z2z4)−z2|∆11|2+z1∆∗12∆21−z1z2z3)z2∆∗21

(z2|∆11|2+z1∆∗12∆21−z1z2z3)(z2∆11∆∗21+z1∆21∆∗22)−(z2∆∗11∆12+z1∆∗12∆22)(z2∆12∆∗21+z1|∆22|2−z1z2z4)

(A.5)
We substitute F∗11 and F∗21 in the Eqs. (A.4) and after algebraic transformations we get:



F∗11 =
z2z4∆∗11−∆∗11|∆22|2+∆∗12∆∗21∆22

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z4z1∆∗12∆21−z2z3∆12∆∗21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

F∗21 =
z2z3∆∗21−∆∗12|∆21|2+∆∗11∆21∆∗22

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z4z1∆∗12∆21−z2z3∆12∆∗21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

G11 =
z2z3z4−z3|∆22|2−z4∆∗12∆21

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z4z1∆∗12∆21−z2z3∆12∆∗21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

G21 =
z4∆∗11∆21+z3∆∗21∆22

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z4z1∆∗12∆21−z2z3∆12∆∗21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

(A.6)

We apply the same procedure to recover all the Green function in the matrix.
We write explicitly the system from the second column of the Green function matrix

(Eq. (A.1)): 
z1G12 − ∆11F∗12 − ∆12F∗22 = 0
z2G22 − ∆21F∗12 − ∆22F∗212 = 1
−∆∗11G12 − ∆∗12G22 + z3F∗12 = 0
−∆∗21G12 − ∆∗22G22 + z4F∗22 = 0

(A.7)

that becomes 
z1G12 = ∆11F∗12 + ∆12F∗22

z2G22 = 1 + ∆21F∗12 + ∆22F∗22
z1z2[−∆∗11G12 − ∆∗12G22 + z3F∗12] = 0
z1z2[−∆∗21G12 − ∆∗22G22 + z4F∗22] = 0

(A.8)

and we find:

F∗12 =
z1z4∆∗12−|∆12|2∆∗21+∆∗11∆12∆∗22

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z1z4∆∗12∆21−z2z3∆12∆∗21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

F∗22 =
z1z3∆∗22−|∆11|2∆∗22+∆11∆∗12∆∗21

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z1z4∆∗12∆21−z2z3∆12∆∗21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

G12 =
z4∆11∆∗12+z3∆∗22∆12

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z1z4∆∗12∆21−z2z3∆12∆∗21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

G22 =
z1z3z4−z4|∆11|2−z3∆12∆∗21

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z1z4∆∗12∆21−z2z3∆12∆∗21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

(A.9)

We write explicitly the system from the third column of the Green function matrix (Eq.
(A.1)): 

z1F11 − ∆11G∗11 − ∆12G∗21 = 0
z2F21 − ∆21G∗11 − ∆22G∗21 = 0
−∆∗11F11 − ∆∗12F21 + z3G∗11 = 1
−∆∗21F11 − ∆∗22F21 + z4G∗21 = 0

(A.10)
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that becomes 
z3z4[z1F11 − ∆11G∗11 − ∆12G∗21] = 0
z3z4[z2F21 − ∆21G∗11 − ∆22G∗21] = 0

1 + ∆∗11F11 + ∆∗12F21 = z3G∗11
∆∗21F11 + ∆∗22F21 = z4G∗21

(A.11)

and we find:

F11 =
(z2z4∆11−∆11|∆22|2+∆12∆21∆∗22)

z1z2z3z4−z2z4|∆11|2−z2z3∆12∆∗21−z1z4∆∗12∆21−z1z3|∆22|2+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

F21 =
(z1z4∆21−∆12|∆21|2+∆11∆∗21∆22)

z1z2z3z4−z2z4|∆11|2−z2z3∆12∆∗21−z1z4∆∗12∆21−z1z3|∆22|2+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

G∗11 =
z1z2z4−z1|∆22|2−z2∆12∆∗21

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z2z3∆12∆∗21−z1z4∆∗12∆21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

G∗21 =
z4∆11∆∗21+z3∆21∆∗22

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z4z1∆12∆∗21−z2z3∆∗12∆21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

(A.12)

We write explicitly the system from the fourth column of the Green function matrix
(Eq. (A.1)): 

z1F12 − ∆11G∗12 − ∆12G∗22 = 0
z2F22 − ∆21G∗12 − ∆22G∗22 = 0
−∆∗11F12 − ∆∗12F22 + z3G∗12 = 0
−∆∗21F12 − ∆∗22F22 + z4G∗22 = 1

(A.13)

that becomes 
z3z4[z1F12 − ∆11G∗12 − ∆12G∗22] = 0
z3z4[z2F22 − ∆21G∗12 − ∆22G∗22] = 0

∆∗11F12 + ∆∗12F22 = z3G∗12
1 + ∆∗21F12 + ∆∗22F22 = z4G∗22

(A.14)

and we find:

F12 =
z2z3∆12−|∆12|2∆21+∆11∆∗12∆22

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z2z3∆12∆∗21−z1z4∆∗12∆21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

F22 =
z1z3∆22−|∆11|2∆22+∆∗11∆12∆21

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z2z3∆12∆∗21−z1z4∆∗12∆21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

G∗12 =
z4∆∗11∆12+z3∆22∆∗12

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z1z4∆12∆∗21−z2z3∆∗12∆21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

G∗22 =
z1z3z4−z4|∆11|2−z3∆∗12∆21

z1z2z3z4−z2z4|∆11|2−z1z3|∆22|2−z1z4∆12∆∗21−z2z3∆∗12∆21+(∆11∆22−∆12∆21)(∆∗11∆∗22−∆∗12∆∗21)

(A.15)
We chose the order parameter ∆nj, to be real. This is always possible in the absence

of an external field, since the equations of the Green function defined in Chapter 3 are
invariant under the transformation

∆(k)→ ∆(k)e2iφ , ∆(k)∗ → ∆∗(k)e−2iφ , (A.16)

for a constant phase φ. With this choice we can rewrite the Green functions as
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F11 =
z2z4∆11−∆11∆2

22+∆12∆21∆22

z1z2z3z4−z2z4∆2
11−z1z3∆2

22−(z2z3+z1z4)∆12∆21+(∆11∆22−∆12∆21)2

F21 =
z1z4∆21−∆12∆2

21+∆11∆21∆22

z1z2z3z4−z2z4∆2
11−z1z3∆2

22−(z2z3+z1z4)∆12∆21+(∆11∆22−∆12∆21)2

F12 =
z2z3∆12−∆2

12∆21+∆11∆12∆22

z1z2z3z4−z2z4∆2
11−z1z3∆2

22−(z2z3+z1z4)∆12∆21+(∆11∆22−∆12∆21)2

F22 =
z1z3∆22−∆2

11∆22+∆11∆12∆21

z1z2z3z4−z2z4∆2
11−z1z3∆2

22−(z2z3+z1z4)∆12∆21+(∆11∆22−∆12∆21)2

(A.17)



G11 =
z2z3z4−z3∆2

22−z4∆12∆21

z1z2z3z4−z2z4∆2
11−z1z3∆2

22−(z2z3+z1z4)∆12∆21+(∆11∆22−∆12∆21)2

G21 = z4∆11∆21+z3∆21∆22
z1z2z3z4−z2z4∆2

11−z1z3∆2
22−(z2z3+z1z4)∆12∆21+(∆11∆22−∆12∆21)2

G12 = z4∆11∆12+z3∆22∆12
z1z2z3z4−z2z4∆2

11−z1z3∆2
22−(z2z3+z1z4)∆12∆21+(∆11∆22−∆12∆21)2

G22 =
z1z3z4−z4∆2

11−z3∆12∆21

z1z2z3z4−z2z4∆2
11−z1z3∆2

22−(z2z3+z1z4)∆12∆21+(∆11∆22−∆12∆21)2

(A.18)

To write the expression in a more compact way we rewrite the denominator:

(ih̄ω− ξ
(e)
1 )(ih̄ω− ξ

(e)
2 )(ih̄ω + ξ

(h)
1 )(ih̄ω + ξ

(h)
2 )− (ih̄ω− ξ

(e)
2 )(ih̄ω + ξ

(h)
2 )∆2

11

− (ih̄ω− ξ
(e)
1 )(ih̄ω + ξ

(h)
1 )∆2

22 − ((ih̄ω− ξ
(e)
2 )(ih̄ω + ξ

(h)
1 ) + (ih̄ω− ξ

(e)
1 )(ih̄ω + ξ

(h)
2 ))∆12∆21

+ (∆11∆22 − ∆12∆21)
2 = (ih̄ω−χ1)(ih̄ω−χ2)(ih̄ω+χ3)(ih̄ω+χ4)

(A.19)

where,

χ1 = δξ1 +

√
a + b

2
, χ2 = δξ2 +

√
a− b

2
, χ3 = −δξ1 +

√
a + b

2
, χ4 = −δξ2 +

√
a− b

2
,

(A.20)
with

δξγ = (ξ
(e)
γ − ξ

(h)
γ )/2 , ξγ = (ξ

(e)
γ + ξ

(h)
γ )/2 , E2

γ = ∆2
γγ + ξ2

γ , T2
γ = ∆2

γγ + ξ
(e)
γ ξ

(h)
γ ,

a = E2
1 + E2

2 + 2∆12∆21 ,

b = δξ2
1 − δξ2

2 +

√
(T2

1 − T2
2 )

2 + 4∆12∆21((ξ
(e)
1 − ξ

(e)
2 )(ξ

(h)
1 − ξ

(h)
2 ) + (∆11 + ∆22)2) .

(A.21)

We can rewrite the Green functions in Eqs. (A.17)-(A.18) as function of ω and k:
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F11[iω, k] =
(ih̄ω− ξ

(e)
2 )(ih̄ω + ξ

(h)
2 )∆11 − (∆11∆22 − ∆12∆21)∆22

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

F21[iω, k] =
(ih̄ω− ξ

(e)
1 )(ih̄ω + ξ

(h)
2 )∆21 + (∆11∆22 − ∆12∆21)∆21

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

F12[iω, k] =
(ih̄ω− ξ

(e)
2 )(ih̄ω + ξ

(h)
1 )∆12 + (∆11∆22 − ∆12∆21)∆12

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

F22[iω, k] =
(ih̄ω− ξ

(e)
1 )(ih̄ω + ξ

(h)
1 )∆22 − (∆11∆22 − ∆12∆21)∆11

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

G11[iω, k] =
(ih̄ω + ξ

(h)
1 )[(ih̄ω− ξ

(e)
2 )(ih̄ω + ξ

(h)
2 )− ∆2

22]− (ih̄ω + ξ
(h)
2 )∆12∆21

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

G21[iω, k] =
(ih̄ω + ξ

(h)
2 )∆11∆21 + (ih̄ω + ξ

(h)
1 )∆21∆22

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

G12[iω, k] =
(ih̄ω + ξ

(h)
2 )∆11∆12 + (ih̄ω + ξ

(h)
1 )∆22∆12

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
,

G22[iω, k] =
(ih̄ω + ξ

(h)
2 )[(ih̄ω− ξ

(e)
1 )(ih̄ω + ξ

(h)
1 )− ∆2

11]− (ih̄ω + ξ
(h)
1 )∆12∆21

(ih̄ω− χ1)(ih̄ω− χ2)(ih̄ω + χ3)(ih̄ω + χ4)
.

(A.22)

To obtain the mean field superfluid gaps (Eq. (3.40)) and density (Eq. (3.42)) defined
in Chapter 3, we need to sum over the Matsubara frequencies ω. We obtain the tempera-
ture dependent Green functions as a function of k:

F11 =
nF[χ1, T]

(
(χ1 + ξ

(h)
2 )(χ1 − ξ

(e)
2 )∆11 −D∆22

)
(χ1 − χ2)(χ1 + χ3)(χ1 + χ4)

−
nF[−χ3, T]

(
(χ3 − ξ

(h)
2 )(χ3 + ξ

(e)
2 )∆11 −D∆22

)
(χ1 + χ3)(χ2 + χ3)(χ3 − χ4)

−
nF[χ2, T]

(
(χ2 + ξ

(h)
2 )(χ2 − ξ

(e)
2 )∆11 −D∆22

)
(χ1 − χ2)(χ2 + χ3)(χ2 + χ4)

+
nF[−χ4, T]

(
(χ4 − ξ

(h)
2 )(χ4 + ξ

(e)
2 )∆11 −D∆22

)
(χ1 + χ4)(χ2 + χ4)(χ3 − χ4)

,

(A.23)

F12 = ∆12

nF[χ1, T]
(
(χ1 + ξ

(h)
1 )(χ1 − ξ

(e)
2 ) +D

)
(χ1 − χ2)(χ1 + χ3)(χ1 + χ4)

−
nF[−χ3, T]

(
(χ3 − ξ

(h)
1 )(χ3 + ξ

(e)
2 ) +D

)
(χ1 + χ3)(χ2 + χ3)(χ3 − χ4)

−
nF[χ2, T]

(
(χ2 + ξ

(h)
1 )(χ2 − ξ

(e)
2 ) +D

)
(χ1 − χ2)(χ2 + χ3)(χ2 + χ4)

+
nF[−χ4, T]

(
(χ4 − ξ

(h)
1 )(χ4 + ξ

(e)
2 ) +D

)
(χ1 + χ4)(χ2 + χ4)(χ3 − χ4)

 ,

(A.24)

F21 = ∆21

nF[χ1, T]
(
(χ1 − ξ

(e)
1 )(χ1 + ξ

(h)
2 ) +D

)
(χ1 − χ2)(χ1 + χ3)(χ1 + χ4)

−
nF[−χ3, T]

(
(χ3 + ξ

(e)
1 )(χ3 − ξ

(h)
2 ) +D

)
(χ1 + χ3)(χ2 + χ3)(χ3 − χ4)

−
nF[χ2, T]

(
(χ2 + ξ

(h)
2 )(χ2 − ξ

(e)
1 ) +D

)
(χ1 − χ2)(χ2 + χ3)(χ2 + χ4)

+
nF[−χ4, T]

(
(χ4 − ξ

(h)
2 )(χ4 + ξ

(e)
1 ) +D

)
(χ1 + χ4)(χ2 + χ4)(χ3 − χ4)

 ,

(A.25)
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F22 =
nF[χ1, T]

(
(χ1 − ξ

(e)
1 )(χ1 + ξ

(h)
1 )∆22 −D∆11

)
(χ1 − χ2)(χ1 + χ3)(χ1 + χ4)

−
nF[−χ3, T]

(
(χ3 + ξ

(e)
1 )(χ3 − ξ

(h)
1 )∆22 −D∆11

)
(χ1 + χ3)(χ2 + χ3)(χ3 − χ4)

−
nF[χ2, T]

(
(χ2 + ξ

(h)
1 )(χ2 − ξ

(e)
1 )∆22 −D∆11

)
(χ1 − χ2)(χ2 + χ3)(χ2 + χ4)

+
nF[−χ4, T]

(
(χ4 − ξ

(h)
1 )(χ4 + ξ

(e)
1 )∆22 −D∆11

)
(χ1 + χ4)(χ2 + χ4)(χ3 − χ4)

,

(A.26)

where D = ∆11∆22 − ∆12∆21.

G11 =
nF[χ1, T]

(
(χ1 − ξ

(e)
2 )(χ1 + ξ

(h)
1 )(χ1 + ξ

(h)
2 )− ∆2

22(χ1 + ξ
(h)
1 )− ∆12∆21(χ1 + ξ

(h)
2 )

)
(χ1 − χ2)(χ1 + χ3)(χ1 + χ4)

−
nF[χ2, T]

(
(χ2 − ξ

(e)
2 )(χ2 + ξ

(h)
1 )(χ2 + ξ

(h)
2 )− ∆2

22(χ2 + ξ
(h)
1 )− ∆12∆21(χ2 + ξ

(h)
2 )

)
(χ1 − χ2)(χ2 + χ3)(χ2 + χ4)

+
nF[−χ3, T]

(
(χ3 + ξ

(e)
2 )(χ3 − ξ

(h)
1 )(χ3 − ξ

(h)
2 )− ∆2

22(χ3 − ξ
(h)
1 )− ∆12∆21(χ3 − ξ

(h)
2 )

)
(χ1 + χ3)(χ2 + χ3)(χ3 − χ4)

−
nF[−χ4, T]

(
(χ4 + ξ

(e)
2 )(χ4 − ξ

(h)
1 )(χ4 − ξ

(h)
2 )− ∆2

22(χ4 − ξ
(h)
1 )− ∆12∆21(χ4 − ξ

(h)
2 )

)
(χ1 + χ4)(χ2 + χ4)(χ3 − χ4)

,

(A.27)

G12 = ∆12

nF[χ1, T]
(
(χ1 + ξ

(h)
2 )∆11 + (χ1 + ξ

(h)
1 )∆22

)
(χ1 − χ2)(χ1 + χ3)(χ1 + χ4)

+
nF[−χ3, T]

(
(χ3 − ξ

(h)
2 )∆11 + (χ3 − ξ

(h)
1 )∆22

)
(χ1 + χ3)(χ2 + χ3)(χ3 − χ4)

−
nF[χ2, T]

(
(χ2 + ξ

(h)
2 )∆11 + (χ2 + ξ

(h)
1 )∆22

)
(χ1 − χ2)(χ2 + χ3)(χ2 + χ4)

+
nF[−χ4, T]

(
(χ4 − ξ

(h)
2 )∆11 + (χ4 − ξ

(h)
1 )∆22

)
(χ1 + χ4)(χ2 + χ4)(−χ3 + χ4)

 ,

(A.28)

G12 = ∆21

nF[χ1, T]
(
(χ1 + ξ

(h)
2 )∆11 + (χ1 + ξ

(h)
1 )∆22

)
(χ1 − χ2)(χ1 + χ3)(χ1 + χ4)

+
nF[−χ3, T]

(
(χ3 − ξ

(h)
2 )∆11 + (χ3 − ξ

(h)
1 )∆22

)
(χ1 + χ3)(χ2 + χ3)(χ3 − χ4)

−
nF[χ2, T]

(
(χ2 + ξ

(h)
2 )∆11 + (χ2 + ξ

(h)
1 )∆22

)
(χ1 − χ2)(χ2 + χ3)(χ2 + χ4)

+
nF[−χ4, T]

(
(χ4 − ξ

(h)
2 )∆11 + (χ4 − ξ

(h)
1 )∆22

)
(χ1 + χ4)(χ2 + χ4)(−χ3 + χ4)

 ,

(A.29)

G22 =
nF[χ1, T]

(
(χ1 − ξ

(e)
1 )(χ1 + ξ

(h)
1 )(χ1 + ξ

(h)
2 )− ∆2

11(χ1 + ξ
(h)
2 )− ∆12∆21(χ1 + ξ

(h)
1 )

)
(χ1 − χ2)(χ1 + χ3)(χ1 + χ4)

−
nF[χ2, T]

(
(χ2 + ξ

(h)
1 )(χ2 − ξ

(e)
1 )(χ2 + ξ

(h)
2 )− ∆2

11(χ2 + ξ
(h)
2 )− ∆12∆21(χ2 + ξ

(h)
1 )

)
(χ1 − χ2)(χ2 + χ3)(χ2 + χ4)

+
nF[−χ3, T]

(
(χ3 + ξ

(e)
1 )(χ3 − ξ

(h)
1 )(χ3 − ξ

(h)
2 )− ∆2

11(χ3 − ξ
(h)
2 )− ∆12∆21(χ3 − ξ

(h)
1 )

)
(χ1 + χ3)(χ2 + χ3)(χ3 − χ4)

−
nF[−χ4, T]

(
(χ4 + ξ

(e)
1 )(χ4 − ξ

(h)
1 )(χ4 − ξ

(h)
2 )− ∆2

11(χ4 − ξ
(h)
2 )− ∆12∆21(χ4 − ξ

(e)
1 )
)

(χ1 + χ4)(χ2 + χ4)(χ3 − χ4)
.

(A.30)

The functions contain four Fermi distributions at temperature T, nF[χn, T] = (eχn/kBT +
1)−1 and nF[−χn, T] = 1− nF[χn, T]. From this equations we can recover the particular
cases described in Chapter 4 and Chapter 6 in the limit of zero temperature with:

nF[χn, 0] =
{

1 χn < 0
0 χn > 0

= 1− θ[χn] , (A.31)
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where θ[χn] is a Heaviside step function.

A.1 Double Bilayer Graphene Green Functions

For Double Bilayer Graphene we reduce the equations Eqs. (A.23)-(A.30) without inter-
band pairing with ∆12 = ∆21 = 0, D = ∆11∆22.

With bilayer graphene parabolic identical bands we get χ1 = χ3 = E+ and χ2 =
χ4 = E−, so we have nF[−χ3, T] = 1 − nF[χ1, T] = 1 − nF[E+, T] and nF[−χ4, T] =
1− nF[χ2, T] = 1− nF[E−, T].

F++ = −∆++

2E+
(1− 2nF[E+, T]) , (A.32)

F−− = −∆−−
2E−

(1− 2nF[E−, T]) , (A.33)

G++ =
E+ − ξ+

2E+
(1− nF[E+, T]) +

E+ + ξ+
2E+

nF[E+, T] , (A.34)

G−− =
E− − ξ−

2E−
(1− nF[E−, T]) +

E− + ξ−
2E−

nF[E−, T] . (A.35)

A.2 Double TMD monolayer Green Functions

For double TMD monolayer system we reduce the equations Eqs. (A.23)-(A.30) without
interband pairing with ∆12 = ∆21 = 0, D = ∆11∆22. With TMD monolayer parabolic
bands we get χ1 = χ3 = Eb, χ2 = −δλ/2 + Et and χ4 = δλ/2 + Et

Fbb = −
∆bb

2Eb
(1− 2nF[Eb, T]) , (A.36)

Ftt =
∆tt

2Et
nF[χ2, T]− ∆tt

2Et
(1− nF[χ4, T]) , (A.37)

Gbb =
Eb − ξb

2Eb
(1− nF[Eb, T]) +

Eb + ξb

2Eb
nF[Eb, T] , (A.38)

Gtt =
nF[χ2, T](χ2 + ξ

(h)
t )

2Et
+

(1− nF[χ4, T])(χ4 − ξ
(h)
t )

2Et

=
Et + ξt

2Et
nF[χ2, T] +

Et − ξt

2Et
(1− nF[χ4, T]) .

(A.39)
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Appendix B

Density Response Function in the
Superfluid State

The density response functions that appear in the screened interaction are introduced in
Chapter 3. The normal and anomalous polarizabilities in presence of superfluidity are
calculated as loops consisting of two normal or anomalous Green functions, respectively
[76]:

Πnm,ij
N (q, Ω) =

T
L2 ∑

k,ω
Fnm,ij(k, k + q)Gnm[iω + iΩ, k + q]Gij[iω, k] , (B.1)

Πnm,ij
A (q, Ω) =

T
L2 ∑

k,ω
Fnm,ij(k, k + q)Fnm[iω + iΩ, k + q]Fij[iω, k] , (B.2)

where the {i, j, n, m} indexes label the band of the system, T is the temperature, ω =
kBT(2n + 1)π are the fermionic Matsubara frequencies and Ω = kBT2nπ are the bosonic
Matsubara frequencies.

The total normal and anomalous polarizabilities are:

ΠN(q, Ω) = gsgv ∑
n,m,i,j

Πnm,ij
N (q, Ω) , (B.3)

ΠA(q, Ω) = gsgv ∑
n,m,i,j

Πnm,ij
A (q, Ω) . (B.4)

B.1 Double Bilayer Graphene Polarizabilities

In the specific case of Double Bilayer Graphene with intraband pairing and Josephson-
like transfer, n = m = γ (i = j = γ′) and the polarizabilities are:

Πγγ′

N (q, Ω) =
T
L2 ∑

k,ω
Fγ,γ′(k, k + q)Gγγ[iω + iΩ, k + q]Gγ′γ′ [iω, k] , (B.5)

Πγγ′

A (q, Ω) =
T
L2 ∑

k,ω
Fγ,γ′(k, k + q)Fγγ[iω + iΩ, k + q]Fγ′γ′ [iω, k] (B.6)

The Green functions in terms of Bogoliubov amplitudes (Eq. (4.14)) are,

Gγγ[iω, k] =
u2

γ(k)
(ih̄ω− Eγ(k))

+
v2

γ(k)
(ih̄ω + Eγ(k))

,

Fγγ[iω, k] =
uγ(k)vγ(k)

(ih̄ω− Eγ(k))
− uγ(k)vγ(k)

(ih̄ω + Eγ(k))
.

(B.7)
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In this system, Eqs. (B.5)-(B.6) become:

Πγγ′

N (q, Ω) =
T
L2 ∑

k,iωn

Fγ,γ′(k, k′)[
u2

γ(k)
(ih̄ω− Eγ(k))

u2
γ′(k

′)

(ih̄ω + iΩ− Eγ′(k′))
+

v2
γ(k)

(ih̄ω + Eγ(k))

u2
γ′(k

′)

(ih̄ω + iΩ− Eγ′(k′))

+
u2

γ(k)
(ih̄ω− Eγ(k))

v2
γ′(k

′)

(ih̄ω + iΩ + Eγ′(k′))
+

v2
γ(k)

(ih̄ω + Eγ(k))

v2
γ′(k

′)

(ih̄ω + iΩ + Eγ′(k′))

]
,

(B.8)

Πγγ′

A (q, Ω) =
T
L2 ∑

k,iωn

Fγ,γ′(k, k′)[
uγ(k)vγ(k)

(ih̄ω− Eγ(k))
uγ′(k′)vγ′(k′)

(ih̄ω + iΩ− Eγ′(k′))
− uγ(k)vγ(k)

(ih̄ω + Eγ(k))
uγ′(k′)vγ′(k′)

(ih̄ω + iΩ− Eγ′(k′))

− uγ(k)vγ(k)
(ih̄ω− Eγ(k))

uγ′(k′)vγ′(k′)
(ih̄ω + iΩ + Eγ′(k′))

+
uγ(k)vγ(k)

(ih̄ω + Eγ(k))
uγ′(k′)vγ′(k′)

(ih̄ω + iΩ + Eγ′(k′))

]
,

(B.9)

with k′ = k + q.
We work in the static limit, so Ω → 0. We divide the sum in four terms and we

perform the sum over the Matsubara frequencies ω:

Πγγ′

N (q) =
1
L2 ∑

k
Fγ,γ′(k, k′)[

u2
γ(k)u

2
γ′(k

′)
nF[Eγ(k), T]− nF[Eγ′(k′), T]

Eγ(k)− Eγ′(k′)
+ v2

γ(k)u
2
γ′(k

′)
1− nF[Eγ(k), T]− nF[Eγ′(k′), T]

−Eγ(k)− Eγ′(k′)

+u2
γ(k)v

2
γ′(k

′)
1− nF[Eγ(k), T]− nF[Eγ′(k′), T]

−Eγ(k)− Eγ′(k′)
+ v2

γ(k)v
2
γ′(k

′)
nF[Eγ(k), T]− nF[Eγ′(k′), T]

Eγ(k)− Eγ′(k′)

]
,

(B.10)

Πγγ′

A (q) =
1
L2 ∑

k
Fγ,γ′(k, k′) uγ(k)vγ(k)uγ′(k′)vγ′(k′)[

nF[Eγ(k), T]− nF[Eγ′(k′), T]
Eγ(k)− Eγ′(k′)

−
1− nF[Eγ(k), T]− nF[Eγ′(k′), T]

−Eγ(k)− Eγ′(k′)

−
1− nF[Eγ(k), T]− nF[Eγ′(k′), T]

−Eγ(k)− Eγ′(k′)
+

nF[Eγ(k), T]− nF[Eγ′(k′), T]
Eγ(k)− Eγ′(k′)

]
.

(B.11)

After simplification we get:

Πγγ′

N (q) =
1
L2 ∑

k
Fγ,γ′(k, k′)

[(
u2

γ(k)u
2
γ′(k

′) + v2
γ(k)v

2
γ′(k

′)
) nF[Eγ(k), T]− nF[Eγ′(k′), T]

Eγ(k)− Eγ′(k′)

−
(

v2
γ(k)u

2
γ′(k

′) + u2
γ(k)v

2
γ′(k

′)
) 1− nF[Eγ(k), T]− nF[Eγ′(k′), T]

Eγ(k) + Eγ′(k′)

]
,

(B.12)
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Πγγ′

A (q) =
1
L2 ∑

k
Fγ,γ′(k, k′) 2 uγ(k)vγ(k)uγ′(k′)vγ′(k′)[

nF[Eγ(k), T]− nF[Eγ′(k′), T]
Eγ(k)− Eγ′(k′)

+
1− nF[Eγ(k), T]− nF[Eγ′(k′), T]

Eγ(k) + Eγ′(k′)

]
.

(B.13)

Note that the first term of the Πγγ′

N at q = 0 is proportional to the Density Of State, as in
the normal state.

At zero temperature, the Fermi distribution is nF[Eγ(k), T] = 0, so we obtain:

Πγγ′

N (q) = − 1
L2 ∑

k
Fγ,γ′(k, k′)

v2
γ(k)u2

γ′(k
′) + u2

γ(k)v2
γ′(k

′)

Eγ(k) + Eγ′(k′)
, (B.14)

Πγγ′

A (q) =
1
L2 ∑

k
Fγ,γ′(k, k′)

2 uγ(k)vγ(k)uγ′(k′)vγ′(k′)
Eγ(k) + Eγ′(k′)

. (B.15)

B.2 Double TMD monolayer Polarizabilities

In the specific case of double TMD monolayer with only intraband scattering allowed
due to spin-orbit coupling, n = m = i = j = β, and the polarizability is:

Πββ
N (q, Ω) =

T
L2 ∑

k,ω
Fβ,β(k, k + q)Gββ[iω + iΩ, k + q]Gββ[iω, k] , (B.16)

Πββ
A (q, Ω) =

T
L2 ∑

k,ω
Fβ,β(k, k + q)Fββ[iω + iΩ, k + q]Fββ[iω, k] , (B.17)

with Green functions in terms of Bogoliubov amplitudes (Eq. (6.11)),

Gbb[iω, k] =
u2

b(k)
(ih̄ω− Eb(k))

+
v2

b(k)
(ih̄ω + Eb(k))

,

Gtt[iω, k] =
u2

t (k)
(ih̄ω− χ2(k))

+
v2

t
(ih̄ω + χ4(k))

,

Fbb[iω, k] =
ub(k)vb(k)

(ih̄ω− Eb(k))
− ub(k)vb(k)

(ih̄ω + Eb(k))
,

Ftt[iω, k] =
ut(k)vt(k)

(ih̄ω− χ2(k))
− ut(k)vt(k)

(ih̄ω + χ4(k))
,

(B.18)

where χ2 = −δλ/2 + Et and χ4 = δλ/2 + Et.
For this system, Eqs. (B.5)-(B.6) become:

Πbb
N (q, Ω) =

T
L2 ∑

k,ω
Fb,b(k, k′)[
u2

b(k)
(ih̄ω− Eb(k))

u2
b(k
′)

(ih̄ω + iΩ− Eb(k′))
+

v2
b(k)

(ih̄ω + Eb(k))
u2

b(k
′)

(ih̄ω + iΩ− Eb(k′))

+
u2

b(k)
(ih̄ω− Eb(k))

v2
b(k
′)

(ih̄ω + iΩ + Eb(k′))
+

v2
b(k)

(ih̄ω + Eb(k))
v2

b(k
′)

(ih̄ω + iΩ + Eb(k′))

]
,

(B.19)
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Πtt
N(q, Ω) =

T
L2 ∑

k,ω
Ft,t(k, k′)[
u2

t (k)
(ih̄ω− χ2(k))

u2
t (k
′)

(ih̄ω + iΩ− χ2(k′))
+

v2
t (k)

(ih̄ω + χ4(k))
u2

t (k
′)

(ih̄ω + iΩ− χ2(k′))

+
u2

t (k)
(ih̄ω− χ2(k))

v2
t (k
′)

(ih̄ω + iΩ + χ4(k′))
+

v2
t (k)

(ih̄ω + χ4(k))
v2

t (k
′)

(ih̄ω + iΩ + χ4(k′))

]
,

(B.20)

Πbb
A (q, Ω) =

T
L2 ∑

k,ω
Fb,b(k, k′)[

ub(k)vb(k)
(ih̄ω− Eb(k))

ub(k′)vb(k′)
(ih̄ω + iΩ− Eb(k′))

− ub(k)vb(k)
(ih̄ω + Eb(k))

ub(k′)vb(k′)
(ih̄ω + iΩ− Eb(k′))

− ub(k)vb(k)
(ih̄ω− Eb(k))

ub(k′)vb(k′)
(ih̄ω + iΩ + Eb(k′))

+
ub(k)vb(k)

(ih̄ω + Eb(k))
ub(k′)vb(k′)

(ih̄ω + iΩ + Eb(k′))

]
,

(B.21)

Πtt
A(q, Ω) =

T
L2 ∑

k,ω
Ft,t(k, k′)[

ut(k)vt(k)
(ih̄ω− χ2(k))

ut(k′)vt(k′)
(ih̄ω + iΩ− χ2(k′))

− ut(k)vt(k)
(ih̄ω + χ4(k))

ut(k′)vt(k′)
(ih̄ω + iΩ− χ2(k′))

− ut(k)vt(k)
(ih̄ω− χ2(k))

ut(k′)vt(k′)
(ih̄ω + iΩ + χ4(k′))

+
ut(k)vt(k)

(ih̄ω + χ4(k))
ut(k′)vt(k′)

(ih̄ω + iΩ + χ4(k′))

]
,

(B.22)

with k′ = k + q.
We work in the static limit, so Ω → 0. We divide the sum in four terms, we perform

the sum over the Matsubara frequencies ω:

Πbb
N (q) =

1
L2 ∑

k
Fb,b(k, k′)[

u2
b(k)u

2
b(k
′)

nF[Eb(k), T]− nF[Eb(k′), T]
Eb(k)− Eb(k′)

+ v2
b(k)u

2
b(k
′)

1− nF[Eb(k), T]− nF[Eb(k′), T]
−Eb(k)− Eb(k′)

+u2
b(k)v

2
b(k
′)

1− nF[Eb(k), T]− nF[Eb(k′), T]
−Eb(k)− Eb(k′)

+ v2
b(k)v

2
b(k
′)

nF[Eb(k), T]− nF[Eb(k′), T]
Eb(k)− Eb(k′)

]
,

(B.23)

Πtt
N(q) =

1
L2 ∑

k
Ft,t(k, k′)[

u2
t (k)u

2
t (k
′)

nF[χ2(k), T]− nF[χ2(k′), T]
χ2(k)− χ2(k′)

+ v2
t (k)u

2
t (k
′)

1− nF[χ4(k), T]− nF[χ2(k′), T]
−χ4(k)− χ2(k′)

+u2
t (k)v

2
t (k
′)

1− nF[χ2(k), T]− nF[χ4(k′), T]
−χ2(k)− χ4(k′)

+ v2
t (k)v

2
t (k
′)

nF[χ4(k), T]− nF[χ4(k′), T]
χ4(k)− χ4(k′)

]
,

(B.24)
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Πbb
A (q) =

1
L2 ∑

k
Fb,b(k, k′) ub(k)vb(k)ub(k′)vb(k′)[

nF[Eb(k), T]− nF[Eb(k′), T]
Eb(k)− Eb(k′)

− 1− nF[Eb(k), T]− nF[Eb(k′), T]
−Eb(k)− Eb(k′)

−1− nF[Eb(k), T]− nF[Eb(k′), T]
−Eb(k)− Eb(k′)

+
nF[Eb(k), T]− nF[Eb(k′), T]

Eb(k)− Eb(k′)

]
,

(B.25)

Πtt
A(q) =

1
L2 ∑

k
Ft,t(k, k′) ut(k)vt(k)ut(k′)vt(k′)[

nF[χ2(k), T]− nF[χ2(k′), T]
χ2(k)− χ2(k′)

− 1− nF[χ4(k), T]− nF[χ2(k′), T]
−χ4(k)− χ2(k′)

−1− nF[χ2, T]− nF[χ4(k′), T]
−χ2(k)− χ4(k′)

+
nF[χ4, T]− nF[χ4(k′), T]

χ4(k)− χ4(k′)

]
.

(B.26)

After simplification we get:

Πbb
N (q) =

1
L2 ∑

k
Fb,b(k, k′)

[(
u2

b(k)u
2
b(k
′) + v2

b(k)v
2
b(k
′)
) nF[Eb(k), T]− nF[Eb(k′), T]

Eb(k)− Eb(k′)

−
(
v2

b(k)u
2
b(k
′) + u2

b(k)v
2
b(k
′)
) 1− nF[Eb(k), T]− nF[Eb(k′), T]

Eb(k) + Eb(k′)

]
,

(B.27)

Πtt
N(q) =

1
L2 ∑

k
Ft,t(k, k′)[

u2
t (k)u

2
t (k
′)

nF[χ2(k), T]− nF[χ2(k′), T]
Et(k)− Et(k′)

− v2
t (k)u

2
t (k
′)

1− nF[χ4(k), T]− nF[χ2(k′), T]
Et(k) + Et(k′)

−u2
t (k)v

2
t (k
′)

1− nF[χ2(k), T]− nF[χ4(k′), T]
Et(k) + Et(k′)

+ v2
t (k)v

2
t (k
′)

nF[χ4(k), T]− nF[χ4(k′), T]
Et(k)− Et(k′)

]
,

(B.28)

Πbb
A (q) =

1
L2 ∑

k
Fb,b(k, k′) 2 ub(k)vb(k)ub(k′)vb(k′)[

nF[Eb(k), T]− nF[Eb(k′), T]
Eb(k)− Eb(k′)

+
1− nF[Eb(k), T]− nF[Eb(k′), T]

Eb(k) + Eb(k′)

]
,

(B.29)

Πtt
A(q) =

1
L2 ∑

k
Ft,t(k, k′) ut(k)vt(k)ut(k′)vt(k′)[

1
Et(k)− Et(k′)

(
nF[χ2(k), T]− nF[χ2(k′), T] + nF[χ4(k), T]− nF[χ4(k′), T]

)
1

Et(k) + Et(k′)
(
2− nF[χ4(k), T]− nF[χ2(k′), T]− nF[χ2(k′), T]− nF[χ4(k′), T

)]
.

(B.30)
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At zero temperature, the Fermi distributions, nF[Eb, 0] = 0, nF[χ4, 0] = 0, and nF[χ2, 0] =
1− θ

[
Et(k)− δλ

2

]
.

For the bottom band polarizability we recover the one-band expression [10]:

Πbb
N (q) = − 1

L2 ∑
k
Fb,b(k, k′)

v2
b(k)u

2
b(k
′) + u2

b(k)v
2
b(k
′)

Eb(k) + Eb(k′)
, (B.31)

Πbb
A (q, Ω) =

1
L2 ∑

k
Fb,b(k, k′)

2 ub(k)vb(k)ub(k′)vb(k′)
Eb(k) + Eb(k′)

, (B.32)

while for the top bands we obtain:

Πtt
N(q) =−

1
L2 ∑

k
Ft,t(k, k′)

[
u2

t (k)u
2
t (k
′)

θ[Et(k)− δλ
2 ]− θ[Et(k′)− δλ

2 ]

Et(k)− Et(k′)

+v2
t (k)u

2
t (k
′)

θ[Et(k′)− δλ
2 ]

Et(k) + Et(k′)
+ u2

t (k)v
2
t (k
′)

θ[Et(k)− δλ
2 ]

Et(k) + Et(k′)

]
,

(B.33)

Πtt
A(q) =

1
L2 ∑

k
Ft,t(k, k′) ut(k)vt(k)ut(k′)vt(k′)

θ[Et(k)− δλ
2 ] + θ[Et(k)− δλ

2 ]

Et(k) + Et(k′)
−

θ[Et(k)− δλ
2 ]− θ[Et(k)− δλ

2 ]

Et(k)− Et(k′)

. (B.34)

In the limit of small misalignment δλ → 0, the theta function θ[Et(k)] = 1, so the
polarizability in the top bands go to the familiar expression.
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Appendix C

Two-Body Binding Energy

This Appendix contains the explicit calculation of the two-body binding energy EB. The
solutions of this calculations give the value of the chemical potential µ in the limit of zero
density for the different systems investigated in Chapter 4 (Fig. 4.6), Chapters 5 (Fig. 5.9,
Table 5.1) and Chapter 6 (Fig. 6.5 and Table 6.3).

In order to obtain the two-body binding energy EB we solve the two-body Schroedinger
Equation for a one-band model. The Hamiltonian of the system is

H = He + Hh + Heh , (C.1)

and the binding energy is the eigenvalue EB = Ee + Eh − Eeh. As explained in Chapter 3
we neglect the intralayer interactions so Ee = 0, Eh = 0 and EB = −Eeh.

Heh = − h̄2

2mr

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
− e2

4πεε0
√

ρ2 + d2
, (C.2)

with mr reduced mass, d distance between the carriers and ε the dielectric constant of the
barrier.

We evaluate Eeh using a variational approach with parameter α:

Eeh =
∫

d2ρ φα(ρ) Heh φα(ρ) , (C.3)

with variational wave function

φα(ρ) = N e−
√

ρ2+d2
α → N =

√
2
π

ed/α 1

α
√

1 + 2d
α

. (C.4)

We obtain in this way Eeh(α). The numerical value EB corresponds to the minimum
of −Eeh(α).

C.1 Double Bilayer Graphene Binding Energy

To obtain EB for DBG as we show in Chapter 4 we simply include the band gap Eg in Eq.
(C.2):

Heh = − h̄2

2mr

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
− e2

4πε
√

ρ2 + d2
+ Eg , (C.5)

Equation (C.3) is evaluated for different values of Eg with m(e) = m(h) = 0.04me, d = 1
nm and ε = 2. The numerical values EB/2 are listed in Table 5.1.
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The binding energy in Chapter 5 is calculated including the effect of the screening.

Heh = − h̄2

2mr

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
−Veh(ρ) + Eg , (C.6)

where Veh(ρ) is the Fourier transform of Veh(q) (Eq. (5.2)) in the zero density limit for the
corresponding Eg. Equation (C.3) is evaluated with m(e) = m(h) = 0.04, d = 1 nm and
ε = 2. The numerical values EB/2 are listed in Table 5.1.

C.2 Double TMD monolayer Binding Energy

To obtain EB for Double TMD Monolayers as we show in Chapter 6 we use Eq. (C.2). The
different values in Table 6.3 are the result of the evaluation of Eq. (C.3) using the values
of the masses from Table 6.1, d = 1 nm and ε = 2.
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