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Abstract. The species-specific components (SSC) of animal sexual signals can facilitate 25	

species recognition and reduce the risks of mismatching and interbreeding. Still, empirical 26	

evidence for SSCs in chemical signals is scarce and limited to insect pheromones. Based on 27	

the proteinaceous femoral glandular secretions of 36 lizard species (Lacertidae), we examine 28	

the SSC potential of proteins in lizard chemical signals. By quantitatively comparing the one-29	

dimensional electrophoretic patterns of the protein fraction from femoral gland secretions, we 30	

first reveal that protein composition is species-specific, accounting for a large part of the 31	

observed raw variation, and allowing us to discriminate species on this basis.. Secondly, we 32	

find increased protein pattern divergence in sympatric, closely related species. Thirdly, lizard 33	

protein profiles show a low phylogenetic signal, a recent and steep increase in relative 34	

disparity, and a high rate of evolutionary change compared to non-signal traits (i.e. body size 35	

and shape). Together, these findings provide strong support for the specific-specificity of 36	

proteins in the chemical signals of a vertebrate lineage. 37	

 38	
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INTRODUCTION 43	

The spectacular diversity of animal signals and displays has been a great source of wonder for 44	

a long period of time (Guilford & Dawkins, 1991; Laidre & Johnstone, 2013). Species-45	

specific components (SSCs), i.e., those features entailed in species recognition, constitute an 46	

important element of this variability (West-Eberhard, 1984; Ord & Stamps, 2009; Schaefer & 47	

Ruxton, 2015). Notable examples include bird song (Becker, 1982), the signature head-bob in 48	

Anolis lizards displays (Stamps & Barlow, 1973), the “whine” intro in the advertisement calls 49	

of some Leiuperinae frogs (Ryan, 1983), and the specific cuticular hydrocarbons of Formica 50	

ants (Martin, Helanterä, & Drijfhout, 2008), all of which exhibit striking species specificity. 51	

Acting as a kind of species-identity badge, SSCs have been implicated in species 52	

recognition mechanisms (Wiley, 1983; Ord & Stamps, 2009), and therefore may play a role in 53	

speciation and the maintenance of reproductive isolation (Dobzhansky, 1937; Mayr, 1942, 54	

1963; West-Eberhard, 1983; Rundle & Nosil, 2005; Sobel et al., 2010; Rabosky, 2016). The 55	

“badge” may consist of a simple and distinct element of the signal, such as the stereotyped 56	

sequence of visual displays (e.g. in lizards; (Ord & Martins, 2006)), specific notes in acoustic 57	

emissions (e.g., in bird songs; (Becker, 1982)), or the presence of particular molecules (e.g., 58	

complex pheromone cocktails of wasps; (Weiss et al., 2015)). In other cases, the “badge” is 59	

more complex and composed of multiple characteristics, as occur for example in the 60	

multicomponent and multimodal communication (Partan & Marler, 1999, 2005). Examples of 61	

this are the head and body combined features of Darwin’s finches (Ratciliffe & Grant, 1983), 62	

the hydrocarbons profiles of crickets (Tyler et al., 2015), as well as visual and chemical cues 63	

in swordtail fish (Hankison & Morris, 2003). While the evolution of a simple or complex 64	

badge may depend upon a combination of natural and sexual selection pressures (Schaefer & 65	

Ruxton, 2015), animal SSCs are expected to share some general design features and among-66	

species variability patterns (Weber et al., 2016; Tibbetts, Mullen, & Dale, 2017). Indeed, in 67	

order to ensure the accurate detection and recognition of conspecifics (Johnstone, 1997a; 68	



Gröning & Hochkirch, 2008; Pillay & Rymer, 2012), SSCs must be highly specific, showing 69	

a narrow within-species variation, and a wide among-species variability (Becker, 1982; Ord & 70	

Stamps, 2009; Tibbetts et al., 2017). Notably, SSC divergence should be strongest between 71	

sibling spatially overlapping (sympatrics and syntopics) species (West-Eberhard, 1984; Percy, 72	

Taylor, & Kennedy, 2006; Schaefer & Ruxton, 2015; Grether et al., 2017), since this 73	

condition requires an enhanced accuracy in species recognition in order to avoid interbreeding 74	

(Gröning & Hochkirch, 2008; Ord & Stamps, 2009; Pfennig & Pfennig, 2009; Grether et al., 75	

2017). In this sense, it would be expected that the evolution of these traits to exhibit weaker 76	

Brownian phylogenetic signal and, possibly, higher evolutionary rates than non-signaller 77	

traits, such as morphology (especially those non-genital), or trophic ecology (Ritchie, 2007; 78	

Arnegard et al., 2010; Weber et al., 2016; Zozaya et al., 2019; Quipildor et al., 2021). Indeed, 79	

SSC is expected to diverge as speciation occurs, contributing to generally increase intra-clade 80	

variability (Symonds & Elgar, 2004; Weber et al., 2016; García-Roa et al., 2017b). 81	

As one of the oldest and most widespread sensory modalities (Ache & Young, 2005), 82	

chemoreception has been shown to function for species recognition in a wide range of animal 83	

taxa (Wyatt, 2003; Smadja & Butlin, 2009). Many lizards, like other squamate reptiles, are 84	

strongly chemically-oriented and are equipped with both a nasal and a well-developed 85	

vomeronasal-lingual system that allow them to efficiently sample and process chemicals from 86	

the environment (Schwenk, 1995; Baeckens et al., 2017b). Further, most lizard species carry 87	

epidermal glands (pre-cloacal or femoral glands, hereafter FG) producing chemical signals 88	

(Martín & López, 2011, 2014; Mayerl, Baeckens, & Van Damme, 2015; Zozaya et al., 2019). 89	

FG secretions consist of a protein-lipid mix (Alberts, 1990; Mangiacotti et al., 2019c,a) used 90	

to convey a wide range of different messages (Martín & López, 2011, 2015; Baeckens, 2019), 91	

including species identity (Gabirot et al., 2010a; García-Roa et al., 2016; MacGregor et al., 92	

2017; Valdecantos & Labra, 2017). The majority of our understanding of the evolution of 93	

chemical signalling in lizards and the role of FG therein originates from the analysis of the 94	



lipophilic fraction alone. Chemical and behavioural analyses suggest that lipids primarily 95	

convey condition-related features of the signaller, such as its fighting ability, health, parasite 96	

load and body size (reviewed in (Martín & López, 2015)), but at least in some taxa, the 97	

composition of the lipid fraction varies greatly among closely related groups and therefore 98	

may also function in species-recognition (Martín & López, 2006; Zozaya et al., 2019). 99	

Interestingly, phylogenetic comparative analyses revealed that lipid fraction has a weak 100	

phylogenetic signal (Baeckens et al., 2018a), with specific compounds following different 101	

evolutionary patterns (García-Roa et al., 2017b; Campos et al., 2020). Maximizing signal 102	

efficacy is considered the main evolutionary driver of both the variability and complexity of 103	

the lipid signal (Baeckens et al., 2017a, 2018a,b), as chemical signals respond to different 104	

environment constraints (Alberts, 1992). For example, xeric environments promote the 105	

increased abundance of less-volatile compounds, which guarantee a more long-lasting signal, 106	

while mesic conditions favour the use of less heavy molecules to enhance detectability 107	

(Heathcote et al., 2014; Baeckens et al., 2018a). Similar conclusions are drawn by the 108	

intraspecific comparison of lipid fraction variability across environmental gradients (Gabirot, 109	

López, & Martín, 2012; Martín et al., 2017). 110	

As we mentioned before about the composition of FG secretions and contrary to the 111	

lipophilic counterpart, hardly anything is known on the protein fraction.. Although a long time 112	

is recognized that FG contained proteins with a possible function in communication (Padoa, 113	

1933; Cole, 1966; Alberts, 1990; Alberts & Werner, 1993), studies of lizard chemical 114	

communication have subsequently ignored them manifestly (Font et al., 2012; Mayerl et al., 115	

2015; Mangiacotti et al., 2017). This underestimation may well have jeopardized our 116	

understanding of species recognition in lizards, as proteins would make excellent SSCs 117	

(Wyatt, 2010, 2014). Indeed, the very first attempt to compare FG proteins among related 118	

lizard species revealed strong support for the species-specificity of the protein profiles 119	

(Alberts, 1991). Unfortunately, Albert (1991) did not consider within-species variability and 120	



the difference among species was almost hidden. Moreover, it was not made under a 121	

phylogenetic comparative analysis framework, which would have allowed ruling out protein 122	

specificity to be a predictable consequence of interspecific genetic differences. Recently, the 123	

interest in the protein fraction has revived (e.g., (Mangiacotti et al., 2017)), and supported an 124	

active role of FG secretions’ proteins in lizard communication, allowing, for example, self-125	

recognition (Mangiacotti et al., 2019b, 2020). Furthermore, FG secretions’ proteins carry 126	

different badge-like information as the sender’s population, the specific clade of origin 127	

(Mangiacotti et al., 2017), and the colour morph identity (Mangiacotti et al., 2019a). Here, we 128	

investigate the interspecific diversity in FG protein profiles across a family of lizards. For 129	

this, we analysed the pattern of phenotypic variability in one-dimensional electrophoretic 130	

profiles (hereafter EPGs) to test the SSC hypothesis. We expect: (1) larger among-species 131	

than within-species EPGs variation; (2) increased EPG divergence in sympatric, closely 132	

related species; (3) high evolution rate of EPGs compared to other non-signal traits. 133	

Lacertid lizards (Lacertidae) constitute an excellent model system for the study of 134	

vertebrate chemical communication in general (Baeckens, 2019) and to test our hypothesis in 135	

particular, for a number of reasons. Firstly, lacertids are strongly chemical-oriented (Baeckens 136	

et al., 2017b; García-Roa et al., 2017a), as they use FG secretions to send and gain different 137	

information about conspecifics (individual identity, species identity, female reproductive 138	

status, health and condition, fighting ability), which are used in make-decision processes 139	

(female choice, rival assessment, territory defence; for details, see  (Martín & López, 2014). 140	

Secondly, based on different phylogenetic analyses (Mendes et al., 2016; Zheng & Wiens, 141	

2016; Garcia-Porta et al., 2019), lacertids constitute a relatively young and species-rich lizard 142	

clade with a well-supported classification.  This allows testing species different evolutionary 143	

approach on traits as for example their evolutionary rate of change. Thirdly, many lacertid 144	

species have (partially) overlapping distributional ranges (Sillero et al., 2014; Roll et al., 145	



2017) and it is not unusual that locally, species occur in the same or adjacent microhabitats 146	

(Arnold, 1987), allowing us to test the effect of sympatry on signal design.  147	

 148	

MATERIAL AND METHODS 149	

Femoral gland secretions: collection and profiling 150	

We analysed samples of FG secretions of 135 male lizards belonging to 36 species (2-4 151	

samples per species), and 12 genera of the Lacertidae family (Table S1). Samples from single 152	

populations were collected between 2002 and 2014, and stored in glass vials fitted with 153	

Teflon-lined stoppers, and kept at −20 °C until analysis. Collection procedures and permits 154	

were described in detail in previous works (Baeckens et al., 2017a, 2018a,b). Briefly: (i) for 155	

all species, secretions were collected during the breeding seasons, i.e., when glandular activity 156	

is at its maximum (Cole, 1966; Alberts, Pratt, & Phillips, 1992; Mangiacotti et al., 2019c); (ii) 157	

secretions were collected immediately after capture; (iii) all samples underwent the same lab 158	

protocols (notably, lipids extraction) which did not alter subsequent protein analysis 159	

(Mangiacotti et al., 2019c). No lizards were killed or injured during the study, and sampling 160	

collection was not invasive and did not cause damage to any animal tissues. 161	

The protein fraction were analysed following the procedures implemented in 162	

(Mangiacotti et al., 2017, 2019c), which allow us to fingerprint the protein components of the 163	

femoral gland secretions of each specimen using Sodium dodecyl sulphate-polyacrylamide 164	

gel electrophoresis (SDS-PAGE). After complete defatting (using n-hexane), proteins were 165	

dissolved in phosphate-buffered saline (PBS; 10 mM, pH 7.4) solution, and their 166	

concentration assessed by the bicinchoninic acid assay (Smith et al., 1985), using bovine 167	

serum albumin as the standard for calibration curve. From each sample, 10 µg of proteins 168	

were added to 10 µL of loading buffer solution (50 mM Tris–HCl pH 6.8, 2% sodium dodecyl 169	

sulphate SDS, 0.1% bromophenol blue, and 10% glycerol), and incubated at 95 °C for five 170	

minutes, before the electrophoresis run. Electrophoresis was performed in a discontinuous 171	



mode (5% stacking gel and 15% running gel) with constant voltage (180 V for 2 h (Garfin, 172	

2009)). Gels were stained with a 0.12% (w/v) Coomassie Blue G-250 solution, containing 173	

10% (v/v) orthophosphoric acid, 10% (w/v) ammonium sulphate and 20% (v/v) methanol. 174	

After removing exceeding coloration with acetic acid (5% v/v), a high quality image of each 175	

gels was obtained (1200 dpi). 176	

A standardized and comparable electrophoretogram (EPG) for each sample was 177	

extracted from each gel image, and used as proxy for the protein composition (Mangiacotti et 178	

al., 2017, 2019c). Images were first converted into grayscale, by applying the luma formula 179	

(Poynton, 2012). Along each lane, the luma approximates the protein concentration at a given 180	

molecular weight. So, we extracted the luma profiles along vertical lines through the middle 181	

of each lane, and obtained the sample EPGs. To make EPGs comparable across gels, they 182	

were: (i) aligned, by fitting a cubic spline on the positions of the standard molecular weights 183	

of each gel; (ii) “de-noised”, by applying a baseline detection algorithm (Gan, Ruan, & Mo, 184	

2006); (iii) divided into 300 equal bins each bearing the mean luma of the pixels falling 185	

within each bin (about ten); (iv) normalized, dividing by the sum of the 300 values composing 186	

each EPG. This way, each EPG consisted of a sequence of 300 normalized luma values which 187	

represent the protein profile and were comparable across samples and gels. All operations 188	

were implemented in R v3.5.2 (R Core Team, 2018) adapting the functions available in 189	

(Mangiacotti et al., 2019c). 190	

 191	

Intra- vs interspecific variation of the protein profiles 192	

To assessed the variability in the protein composition attributable to the species level, we 193	

transformed the normalized EPGs using centred-log-ratio to account for their compositional 194	

nature (Aitchison, 1982; van den Boogaart & Tolosana-Delgado, 2013) and computed the 195	

Euclidean distance matrix among all EPGs pairs. Then, we performed a distance-based 196	

ANOVA (Anderson, 2001) on the resulting matrix, using the species as the grouping factor 197	



and protein concentration as a covariate (Mangiacotti et al., 2019b). Significance was 198	

assessed by 999 permutations of the data, which were stratified within gel, to address the 199	

possible issue of non-independence of EPGs coming from the same electrophoretic run. We 200	

excluded from this analysis Gallotia stehlini, because we only accepted as a minimum three 201	

(see Table S1). A test for the homogeneity of group dispersion was previously conducted 202	

(Anderson, 2006), failing to detect any significant difference (pseudo-F=1.195; P=0.087). 203	

We then reversed the question to assess the ability of EPGs to predict species 204	

membership. Given the high-dimensionality of the EPG data we used a shrinkage-based 205	

diagonal discriminant analysis (Pang, Tong, & Zhao, 2009), where all but one EPGs for each 206	

species were used to train the model, and the remnant one to test it. One-hundred replicates of 207	

the so-built training and testing datasets were randomly chosen, a model was obtained, and its 208	

performance evaluated by the percentage of correctly classified test data (accuracy) (Raschka, 209	

2018). To highlight the most and least important molecular weight regions in discrimination 210	

(i.e., the ones showing the highest or lowest among-species variability, respectively), we 211	

computed a summary scores for each EPG interval, starting from the correlation-adjusted t-212	

scores (CAT scores; (Zuber & Strimmer, 2009; Ahdesmäki & Strimmer, 2012)). We then 213	

classified the obtained scores into three relevance categories: high (scores above the 3
rd

 214	

quartile); intermediate (scores between 1
st
 and 3

rd
 quartile); low (scores below the 1

st
 quartile). 215	

For all the above-mentioned analyses we used R v3.5.2 (R Core Team, 2018) and the 216	

following packages: compositions (van den Boogaart, Tolosana-Delgado, & Bren, 2020); 217	

permute (Simpson, 2019); vegan (Oksanen et al., 2019); sda (Ahdesmaki et al., 2015). 218	

 219	

Divergence of the protein signal in sympatry 220	

To test the effect of sympatry on SSC divergence, we used multivariate distance matrix 221	

regressions (Zapala & Schork, 2012). Notably, we regressed the pairwise distance matrix of 222	

species average EPG, against the pairwise geographic distribution overlap (proxy for the level 223	



of sympatry between two species), adding the pairwise phylogenetic distance (i.e., the 224	

pairwise distance matrix between the tips of the phylogenetic tree) as a control factor.	The 225	

geographic overlap may be a raw proxy of the real sympatry, since two geographically 226	

overlapping species may inhabit different environments, never coming into actual contact. To 227	

account for this issue, we first ran the analysis considering the whole set of species (n = 36), 228	

then we repeated the analysis focusing on Podarcis alone, as this genus was the most 229	

represented (11 spp.) in our dataset and included lizards with quite similar ecological traits 230	

and needs (Böhme, 1986). By restricting the analysis to a single genus, we also narrowed the 231	

evolutionary timeframe, reducing the blurred effect of the simple phylogenetic separation on 232	

the protein signatures. In both analyses, the general procedures to compute the three distances, 233	

and run the regression were the same. 234	

We obtained species EPGs as the geometric mean of conspecific EPGs (Aitchison, 235	

1982; van den Boogaart & Tolosana-Delgado, 2013), and calculated the distances matrix as in 236	

the previous analysis. We normalized distances dividing by the maximum observed value 237	

(Legendre & Legendre, 1998). 238	

The matrix of geographic overlap was obtained basing on the distribution maps 239	

available in (Roll et al., 2017), re-projected into an equal area projection (Europe Equal Area 240	

2001http://www.ec-gis.org). We computed the overlap index (sij) between species i and j as 241	

follows: 242	

𝑠!" =
𝐴! ∩ 𝐴!

min(𝐴! ,𝐴!)
 

where Ai ∩ Aj is the geographic overlap (shared area) between the two distributions Ai and Aj. 243	

We bounded sij between 0 and 1, dividing by the minimum between the Ai and Aj, both to 244	

emphasize the overlap and reduce the inflation toward zero due to the wide distribution of 245	

some species. We converted sij into a distance using the formula: 𝑑!" = 1− 𝑠!"
!  (Legendre & 246	

Legendre, 1998). 247	



The matrix of phylogenetic distances was extracted from the ultrametric, calibrated 248	

phylogenetic tree accompanying the most recent reconstruction of lacertid phylogeny (Garcia-249	

Porta et al., 2019)..  250	

For all the above-mentioned analyses we used R v3.5.2 (R Core Team, 2018) and the 251	

following packages: compositions (van den Boogaart et al., 2020); raster (Hijmans, 252	

2020); rgeos (Bivand & Rundel, 2019); phytools (Revell, 2012). 253	

 254	

Phylogenetic comparative analysis 255	

The third block of analyses used a phylogenetic comparative approach (Adams & Collyer, 256	

2019) on the full species set utilized in the analysis of signal divergence in sympatry.  257	

To track the non-signal evolutionary pattern, for all the 36 species, we compiled a 258	

morphometric dataset (Table S2) including: snout-to-vent length (SVL), head length (HL), 259	

head maximum width (HW), forelimb length (FLL), and hindlimb length (HLL). These 260	

measures are expected to respond to environmental adaptation in lizards (Vanhooydonck & 261	

Van Damme, 1999; Kohlsdorf, Garland Jr., & Navas, 2001; Herrel, Meyers, & 262	

Vanhooydonck, 2002; Herrel, Vanhooydonck, & Van Damme, 2004; Verwaijen, Van 263	

Damme, & Herrel, 2002; Goodman, Miles, & Schwarzkopf, 2008), and they should not show 264	

a signal-like pattern of evolution (Harmon et al., 2003; Arnegard et al., 2010; Weber et al., 265	

2016). We disentangled size and shape information by using the log-transformed SVL as size 266	

proxy, and the residuals of a standardized major axis regression of log-transformed head size 267	

(HS), FLL and HLL against size as shape variables (Kaliontzopoulou, Carretero, & Llorente, 268	

2008); HS was the geometric mean of the head measures (Kaliontzopoulou et al., 2008). All 269	

the shape variables were bound together to constitute the shape matrix. 270	

We first estimated the strength of the phylogenetic signal (K;(Blomberg, Garland, & 271	

Ives, 2003)) on lizard EPGs, size and shape. Being EPGs and shape considering as 272	

multivariate traits, we adopted a distance-based K estimation (Adams, 2014b; Adams & 273	



Collyer, 2019), which equally applies to univariate traits (Adams, 2014b). As in its original 274	

formulation, under a Brownian motion, K has an expected value of 1; so, K < 1 indicates a 275	

low phylogenetic signal, K near or above 1 means the phylogenetic signal is strong. The non-276	

randomness of K was assessed via 999 permutations (Adams & Collyer, 2015). For 277	

interpretational purposes, we also calculated the univariate phylogenetic signal (Kuni) along 278	

the scores of the first principal components (PCs) of the transformed EPGs. We considered 279	

PCs accounting for at least 95% of total variation, and selected the axes which retained 280	

significant Kuni values after Holm correction (Holm, 1979). 281	

Secondly, we estimated the evolutionary rate (σ
2
) of EPGs and morphometric data, and 282	

tested whether the former was larger than the latter. We followed the distance-based method 283	

proposed by Adams (Adams, 2014a), as modified for non-modular datasets (Denton & 284	

Adams, 2015). Together with a σ
2
 estimation for each multivariate or univariate trait, the 285	

pairwise ratios are computed, and tested against the distribution of simulated ratios obtained 286	

under the assumption of no difference in evolutionary rate among the three subsets (Adams, 287	

2014a; Denton & Adams, 2015). 288	

Thirdly, we compared the divergence pattern of EPGs, size and shape, along the 289	

phylogeny, using a disparity-true-time (DTT) analysis (Harmon et al., 2003; Guillerme et al., 290	

2020). Disparity is an index of the among-group morphological difference, evaluated at each 291	

node of the phylogenetic tree (Foote, 1997; Harmon et al., 2003): small values indicate that 292	

trait variation most occurs among clades, and closely related species share similar 293	

phenotypes; on the opposite, large values imply variation is partitioned within subclades, and 294	

distant species may overlap in the morphospace (Harmon et al., 2003). The observed DTT 295	

profile was compared to that obtained by simulating trait evolution under a null model 296	

(Brownian motion; 999 simulations; (Harmon et al., 2003)). The direction and significance of 297	

the difference between the observed and simulated trajectories were tested by the 298	

Morphological Disparity Index test (MDI) and the rank-envelope test (Murrell, 2018). MDI is 299	



an overall measure of the difference between observed- and null-trajectory: positive values 300	

indicate disparity is mainly held within-clades, whereas negative values imply that differences 301	

occur among-clades (Harmon et al., 2003; Slater et al., 2010). The rank-envelope test 302	

compares the whole DTT curve, and identifies the time-points along the trajectory where the 303	

curve deviates from the null model predictions (Murrell, 2018). For both tests we used the R 304	

functions dtt1, getMDIp2t, rank_env_dtt, available in Murrell (Murrell, 2018). 305	

All the analyses were conducted in R v3.5.2 (R Core Team, 2018) using the following 306	

packages: compositions (van den Boogaart et al., 2020); ape (Paradis & Schliep, 2019); 307	

smatr (Warton et al., 2012); geomorph (Adams, Collyer, & Kaliontzopoulou, 2020). 308	

 309	

RESULTS 310	

All samples provided useful EPGs, and a species-specific pattern was notably apparent: the 311	

samples belonging to the same species showed highly similar banding schemes, consistently 312	

sharing the main peaks (Fig 1, grey lines in each species panel); on the opposite, different 313	

species (even congeneric) were characterized by a distinct pattern, both in the position and 314	

intensity of the bands (Fig 2). The distance-based ANOVA found EPGs to be significantly 315	

affected by the "species" factor (pseudo-F=5.013; P≤0.001), which accounted for 63.5% of 316	

the total variation, while the protein concentration did not affect electrophoretic runs (pseudo-317	

F=0.999; P≤0.616). The strong relation between EPGs and species membership was 318	

confirmed by the discriminant analysis, which correctly matched samples and species in 319	

86.5% of cases (accuracy range: 74.3%-100.0%; IRQ=5.71%). CAT scores identified two 320	

main EPGs' regions (HRR1, HRR2, Fig. 1, bottom panel) contributing most to species 321	

discrimination: a low molecular weight zone, between 9 and 18 kDa, and a middle zone 322	

between 38 and 48 kDa. These regions showed the highest interspecific variability. On the 323	

opposite, the most preserved EPG region was between 19 and 25 kDa (Fig. 1), where all the 324	

species showed at least one highly expressed band (Fig. 2). 325	



The sampled lizards differed in geographic overlap, ranging between zero (allopatry) 326	

and one (complete overlap; Table S3). Regarding the Podarcis set, the pairwise overlap 327	

varied between zero and 0.98. The multivariate distance matrix regression on the complete 328	

species dataset revealed a significant effect only for the phylogenetic distance (pseudo-329	

t=15.119; P≤0.001), the geographic overlap being irrelevant (distance-transformed geographic 330	

overlap; pseudo-t=-0.470; P≤0.765). The SSC divergence increased with increasing 331	

phylogenetic distance (β=0.317) supporting the occurrence of a phylogenetic signal. The 332	

same model applied to the Podarcis group reported an importantly different outcome: the 333	

phylogenetic distance still kept a significant effect (β=0.218; pseudo-t=1.872; P≤0.037), but 334	

also the geographic overlap did (pseudo-t=-2.123; P≤0.049), showing a negative trend (β=-335	

0.302; Fig. 3): more specifically, signal divergence (as measured by the distance between 336	

EPGs), was greater between species with more overlapping distributional areas. 337	

The occurrence of a phylogenetic signal in EPGs, suggested by the previous analysis, 338	

may be coupled with a K value of 0.501 associated to protein profiles (P<0.001; Table 1). 339	

Notably, the Gallotia and Acanthodactylus groups occupied distinct areas of the EPG 340	

morphospace (Fig. 4), the former having a typical three-bands scheme in the high-molecular 341	

weight EPG (less expressed than the mid-part), the latter showing a simplified single-band 342	

pattern in the same EPG region (Figs. 1 and 2). The species from the other genera were 343	

dispersed without a clear specific pattern, but with a slight tendency for congeners to 344	

aggregate with each other (Fig. 4). The EPGs’ region of low variability (19-25 kDa), where 345	

all species showed an intense peak (Figs. 1 and 2) may be responsible for this effect and for 346	

the overall weak phylogenetic signal. 347	

The phylogenetic signal of the reference morphological traits was significantly larger 348	

than zero and very strong for body size (K = 1.372; P<0.001; Table 1), small and not 349	

significant for body shape (Table 1). Particularly, body size remains consistently large in the 350	

genus Gallotia, medium in Lacerta and small in the remaining taxa (Fig. 4). No clear pattern 351	



emerged from the analysis of body shape morphospace, but the lower than 1 and not 352	

significant K value (0.398; P=0.081; Table 1) indicated a poor phylogenetic effect (Fig. 4). 353	

With regard to the results of the evolutionary diversification tests, the evolutionary rate 354	

of EPGs (σ
2
 = 11.599; Table 1) was much higher than those of body size (σ

2
 = 0.002; Table 1) 355	

and shape (σ
2
 = 0.0003; Table 1), with both the ratios 

𝜎!"#
!

𝜎
!"#$

!  and 
𝜎!"#
!

𝜎
!!!"#
!  being 356	

significantly larger than one (P≤0.001). Further, MDI of EPGs was significantly higher than 357	

expected under a Brownian motion model (Table 1), and the relative disparity index stayed 358	

above the predicted range from about 50 Mya on, peaking near the crown of the tree (Fig. 5). 359	

In comparison, though also MDI of body shape showed a marginally significant larger-than-360	

zero value (Table 1), the relative disparity index followed a completely different trajectory 361	

(Fig. 5), with values above the prediction only between 32 and 15 Mya. The disparity of body 362	

size did not vary more than expected (Table 1; Fig. 5), supporting the phylogenetic effect on 363	

it. 364	

 365	

DISCUSSION 366	

Species-specific components (SSCs) have been identified in signals of various sensory 367	

modalities and in a wide variety of animal lineages. They have been implicated in 368	

mechanisms of reproductive isolation and speciation (Mayr, 1963; West-Eberhard, 1984; 369	

Smadja & Butlin, 2009; Sobel et al., 2010; Schaefer & Ruxton, 2015; Rabosky, 2016). Here, 370	

we provide comprehensive, albeit indirect, evidence that proteinaceous secretions from the 371	

femoral glands of lacertid lizards might carry SSCs. 372	

The FG protein profiles show a noticeable species-specific pattern, which is a necessary 373	

prerequisite for a signal to bear SSC (Wiley, 1983; West-Eberhard, 1984; Pillay & Rymer, 374	

2012; Schaefer & Ruxton, 2015; Weber et al., 2016). Despite a certain degree of variability 375	

(Fig. 1), within-species EPGs clearly share the same overall silhouette, and can be effectively 376	



discriminated from heterospecific profiles. The intraspecific variability is of the same 377	

magnitude as that observed in the common wall lizard (Podarcis muralis; (Mangiacotti et al., 378	

2017, 2019c)), the desert iguana (Dipsosaurus dorsalis; (Alberts, 1991)), and the green iguana 379	

(Iguana iguana; (Alberts, Phillips, & Werner, 1993)), suggesting that we can reasonably 380	

exclude the bias due to small within-species sample size used to assess both intra- and inter-381	

specific variation. 382	

Most of the interspecific variability is loaded by two disjoint EPG regions (Fig. 1), 383	

where both the number and intensity of the peaks are species-dependent. The intermediate 384	

weight range, which often represents the most intense EPG part, shows a more stable pattern. 385	

However, the level of interspecific variability in EPGs we observed in this study seems large 386	

enough to allow lizards to discriminate species identity using protein SSC alone. Indeed, 387	

lizards are not only able to detect proteins as an independent chemical class (Cooper, 1991; 388	

Mangiacotti et al., 2020), but they can also recognize the occurrence of very slight 389	

differences, e.g., among conspecifics (Alberts & Werner, 1993; Mangiacotti et al., 2019b, 390	

2020), suggesting a very fine chemosensory ability (Cooper, 1994; Schwenk, 1995; Baeckens 391	

et al., 2017b). 392	

Although it may be argued that the specificity of FG proteins may simply be the 393	

consequence of the genetic difference among-species, a further result supporting their 394	

possible SSC function is the tendency of the protein signature to diverge more as the current 395	

geographic overlap increases, at least when congeneric species (i.e., Podarcis group) were 396	

considered. Probably, this tendency did not emerge when non-congeneric species were 397	

included due to the noise added by the accumulated ecological and phylogenetic distance on 398	

the species signature. Inflated divergence between the signals of closely related sympatric 399	

species suggests the occurrence of reproductive character displacement as it is in line with the 400	

idea that SSCs may help in pre-mating isolation and hybridization avoidance (Smadja & 401	

Butlin, 2009; Edwards et al., 2015; Grether et al., 2017). As such, by increasing the distance 402	



between two SSCs, the accuracy of conspecifics recognition improves (Wiley, 1983; 403	

Johnstone, 1997b), contributing to the coexistence of sympatric species. Sympatry of closely 404	

related species may impose high cost in term of fitness to one or both species because of 405	

interspecific aggression (Tynkkynen et al., 2005), competition for resources or reproductive 406	

interactions (e.g., hybridization). Indeed, both current and past hybridization are well-known 407	

in the genus Podarcis (Capula, 1993, 2002; Pinho et al., 2009; Ficetola et al., 2021). While 408	

the first is quantitatively limited, genetic evidence suggests that its effectiveness is not 100% 409	

(Pinho et al., 2009; Caeiro-Dias et al., 2021; Yang et al., 2021). Consequently, selective 410	

pressures are expected to promote character displacement in species traits involved in species 411	

recognition, to reduce detrimental interactions, but only where they occur in sympatry. Thus, 412	

in sympatry, SSCs should rapidly diverge when compared to allopatric populations, as direct 413	

response to the presence of the other species (Pfennig & Pfennig, 2009). Examples of SSC 414	

displacement in sympatry are not rare in animals. In orchid bees (Euglossa sp.), sympatric 415	

species were found to diverge more than allopatric ones in their chemical signals, but only for 416	

a relatively small subset of compounds, which are probably involved in species recognition 417	

(Weber et al., 2016). In two European Odonates of the genus Calopteryx males from 418	

populations of C. splendens living in sympatry with C. virgo have significantly smaller wing 419	

spots than male conspecifics living in allopatric populations (Tynkkynen, Rantala, & 420	

Suhonen, 2004; Cigognini et al., 2014). Wing spot works as SSC in these species and size 421	

reduction in C. splendens males improves recognition by C. virgo males, significantly 422	

decreasing the risk of inter-specific aggression (Tynkkynen et al., 2004). We do acknowledge 423	

that our survey sampled just one population per species, precluding the explicit analysis of the 424	

effect of sympatric congeners at the within-species level (Collyer & Adams, 2007; 425	

Wheatcroft, 2015). Nonetheless, our comparison of species within the ecologically 426	

homogeneous group of wall lizards revealed that the protein signal diverged more in those 427	

species pairs with higher geographic overlap. The amount of geographic overlap can be 428	



viewed as a proxy for the probability of interference, which, in turn, may have favoured the 429	

SSC differentiation (Curé et al., 2012). Indeed, sympatric Podarcis lizards hybridize in 430	

natural conditions (Gorman et al., 1975; Capula, 1993, 2002; Pinho et al., 2009; Jančúchová-431	

Lásková, Landová, & Frynta, 2015), and males engage in interspecific aggressive interactions 432	

(Böhme, 1986; Corti & Lo Cascio, 2002; Downes & Bauwens, 2002; Lailvaux, Huyghe, & 433	

Van Damme, 2012). In this scenario, a mechanism promoting SSC character displacement in 434	

sympatry may reflect the need for a more accurate species recognition mechanism in mating 435	

and male-male contest. In many lacertids, males scent mark the area in which they claim 436	

exclusive rights over females (Edsman, 1986); signals with clear SSCs would aid in avoiding 437	

misguided aggression towards non-conspecifics (López & Martín, 2001, 2002; López, Martín, 438	

& Cuadrado, 2002; Carazo, Font, & Desfilis, 2008; Font et al., 2012). The SSCs in the 439	

peptide fraction of FG secretions may accordingly explain the well-established ability of 440	

lacertid males to distinguish conspecific from heterospecific individuals on the basis of 441	

chemical cues (Barbosa et al., 2005, 2006; Martín & López, 2006; Gabirot et al., 2010b,a; 442	

Labra, 2011; Font et al., 2012). Alternatively or additionally, an enhanced SSC in male scent 443	

may allow females to accurately recognize the species identity of the territory owner, 444	

providing the basis for a pre-mating reproductive barrier (Smadja & Butlin, 2009; Runemark, 445	

Gabirot, & Svensson, 2011; García-Roa et al., 2016). Indeed, previous studies have 446	

established that lacertid females can also recognize conspecifics through chemoreception 447	

(Gabirot et al., 2010b; Labra, 2011), although not in all species (Martín & López, 2006; Font 448	

et al., 2012; Gabirot, Lopez, & Martín, 2013; Martín et al., 2016). Because the role of female 449	

choice in lacertid lizards has been questioned repeatedly (Olsson et al., 2003; Font et al., 450	

2012; Gabirot et al., 2013; Sacchi et al., 2015, 2018; MacGregor et al., 2017), we are inclined 451	

to prefer the scenario in which SSCs evolved to minimize misguided male-male conflict. 452	

However, an (additional) role in avoiding hybridization cannot be excluded. 453	



A third support to the prediction for an SSC-bearing signal come from the 454	

macroevolutionary pattern emerging from the phylogenetic comparative analysis of EPGs. 455	

Firstly, the phylogenetic signal for protein profiles is weak, indicating that EPGs are 456	

evolutionary labile and their variability cannot be explained by classic Brownian motion 457	

along the current tree. Indeed, EPGs evolved much faster than indexes of body size and shape 458	

in the same clade (Table 1). Secondly, much of the EPGs variability has been maintained 459	

within clades, and their disparity boosted towards the tips of the phylogeny, i.e., at most 460	

recent speciation events, highlighting a rapid divergence between sister taxa. Taken together, 461	

the above findings support the SSC-hypothesis. Indeed, the morphological traits used as 462	

reference, and supposed not to bear SSC, did not show any combination of evolutionary 463	

patterns, being characterized by a stronger phylogenetic signal (body size), a slow 464	

evolutionary rate (body size and shape), and a punctual, increased disparity far from the tips 465	

of the tree (body shape). 466	

Other hypotheses, alternative to SSC, may explain the low EPGs phylogenetic signal. 467	

For instance, an equally low K for the lipophilic profiles in FG secretions of lacertid lizards 468	

(K = 0.45) has been attributed to adaptive evolution, driven by environmental conditions 469	

(Baeckens et al., 2017a, 2018a,b; García-Roa et al., 2017b). Such hypothesis may apply also 470	

to the FG proteins, where the species-specific pattern may reflect an environmental adaptation 471	

to increase signal efficiency (Endler, 1992, 1993). Additionally, since proteins are 472	

homogeneously associated to lipids, and may serve as chemical matrix supporting the more 473	

volatile counterpart (Alberts, 1990; Alberts & Werner, 1993), they may show a phylogenetic 474	

pattern of variation correlating with the one observed for lipid composition. However, the 475	

disparity in DDT trajectories of the lipophilic fractions (García-Roa et al., 2017b) and protein 476	

fractions (this study) strongly suggests different drivers. This does not exclude the 477	

environment may have influenced the evolution of some components of the FG proteinaceous 478	

secretions (Symonds & Elgar, 2008; Edwards et al., 2015; Schaefer & Ruxton, 2015), or that 479	



some proteins may associate to lipids (Alberts, 1990; Wyatt, 2014). But rather, it suggests that 480	

the design of the protein signal could be mainly driven by other selective forces. Identifying 481	

whether and which EPG fractions have been shaped by environmental variables or by lipid 482	

composition, on the other hand, open an interesting question which requires specific studies. 483	

In conclusion, using lacertids as model group, we demonstrated that the FG protein 484	

secretions include SSC, which may allow for interspecific recognition on a chemical basis. 485	

Proteins are well-suited to work as elements of species signature in terrestrial vertebrates, 486	

being highly specific, genetically determined, and long-lasting on substrates (Wyatt, 2010, 487	

2014). Lizards are able to detect and respond to protein signals (Alberts & Werner, 1993; 488	

Mangiacotti et al., 2019b, 2020), but additional behavioural studies are needed to confirm that 489	

they actually use protein SSC to modulate interspecific interactions, including perhaps to 490	

avoid interspecific hybridization. Another obvious next step is the identification of the 491	

proteins involved in species recognition. Is species identity coded by the amino acid sequence 492	

of one or more proteins, or does it involve changes in the relative abundance of molecules 493	

within a protein cocktail? Can concomitant changes be found in the vomeronasal receptors? 494	

How fast does this proteinaceous SSC system evolve – in the presence and absence of 495	

congeneric species, and which evolutionary mechanisms are involved? The current finding 496	

that the protein fraction in lizard femoral secretions acts like a species-badge opens a 497	

promising avenue for further investigation. 498	
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Table 1. Phylogenetic signal (K), mean evolutionary rate (σ
2
), and morphological disparity 905	

index (MDI) of the protein profiles (EPG) and the morphological traits (body size and shape). 906	

The P value associated to K was obtained by permutation; the one coupled to MDI by 907	

simulating DTT curves under a Brownian motion model (see methods for detail). 908	

Trait 
K 

σ
2
 

MDI 

value P value P Prank-envelop test 

EPG 0.501 ≤ 0.001 11.599 0.284 <0.001 0.009 

Body size 1.372 ≤ 0.001 0.002 0.062 0.416 0.372 

Body shape 0.398 0.081 0.0003 0.229 0.068 0.012 

 909	

  910	



FIGURE LEGENDS 911	

Figure 1. Top six rows: EPGs for each species group; in each plot: the abbreviation of the 912	

species Latin name is reported at top-left corner (see below for the legend); grey lines = 913	

individual samples; colour line = average profile (the same colour is used for species of the 914	

same genus); sample size is reported at top-right corner; y-axis reports relative intensity of the 915	

electrophoretic profiles, x-axis the molecular weight (kDa); light-purple shaded areas = HRR 916	

(see below). Bottom panel: ranking of the EPG regions according to the CAT scores analysis: 917	

purple shaded = high relevance zones (i.e., the most important zone for discrimination); grey 918	

shaded = intermediate relevance zones; yellow shaded = low relevance zones (i.e., the least 919	

useful for classification); grey lines = species average EPGs; HRR = High Relevance Region, 920	

i.e., the overall areas of high relevance corresponding to the same shaded areas in the single 921	

species plots. Species names legend: Acabee = Acanthodactylus beershebensis; Acabos = A. 922	

boskianus; Acaoph = A. opheodurus; Acasch = A. schreiberi; Acascu = A. scutellatus; 923	

Algmor = Algyroides moreoticus; Algnig = A. nigropunctatus; Daloxy = Dalmatolacerta 924	

oxycephala; Galgal = Gallotia galloti; Galsim = G. simonyi; Galste = G. stehlini; Holgue = 925	

Holaspis guentheri; Ibebon = Iberolacerta bonnali; Ibecyr = I. cyreni; Ibegal = I. galani; 926	

Ibemon = I. monticola; Lacbil = Lacerta bilineata; Lacmed = L. media; Lacsch = L. 927	

schreiberi; Lacvir = L. viridis; Mesgut = Mesalina guttulata; Mesoli = M. olivieri; Phokul = 928	

Phoenicolacerta kulzeri; Podboc = Podarcis bocagei; Podcar = P. carbonelli; Poderh = P. 929	

erhardii; Podgai = P. gaigeae; Podgua = P. guadarramae; Podlio = P. liolepis; Podmel = P. 930	

melisellensis; Podmil = P. milensis; Podmur = P. muralis; Podpel = P. peloponnesiacus; 931	

Podvau = P. vaucheri; Psaalg = Psammodromus algirus ; Zooviv = Zootoca vivipara. 932	

 933	

Figure 2. Phylogenetic tree of the lacertid lizards included in the comparative analyses. 934	

Below each tip, a “virtual lane” representing the average EPG for that species has been added: 935	



blue intensity is proportional to the relative expression of protein of a given molecular weight. 936	

Tips are coloured according to genus; tip labels are the abbreviation of the species Latin name 937	

(see caption to Fig. 1 for details). 938	

 939	

Figure 3. Divergence of the protein signal and geographic overlap in the Podarcis species of 940	

our dataset. Top panel: geographic distribution of the ten Podarcis species considered in the 941	

analysis; bottom-left panel: phylogeny of the same Podarcis species ensemble (from (Garcia-942	

Porta et al., 2019)); bottom-right panel: regression of the distance matrix of Podarcis EPGs 943	

corrected for phylogeny against the geographic distribution overlap (converted to distance in a 944	

way that larger overlap corresponds to lower distance; see methods for details); solid line 945	

represents the fitted regression, dashed line the 95% confidence interval, grey crosses = 946	

phylogenetically corrected pairwise distances. 947	

 948	

Figure 4. Phylomorphospace representation of the analised multivariate traits (EPGs, left 949	

panel; body shape, bottom-right panel), together with the body size phenogram (top-right 950	

panel).. The intensity of the phylogenetic signal (K) is reported for each trait in each panel. 951	

Points in the space are coloured according to the genus. When principal components (PC) are 952	

used to represent the morphospace, their percentage contributions are reported along the axes. 953	

For EPGs (left panel), it was also reported the value of the univariate phylogenetic signal 954	

(Kuni) of each PC, while the associated phenotypic variability is represented by a “virtual 955	

lane” simulating an electrophoretic run: the greater the intensity of blue, the greater the 956	

expression of the band. 957	

 958	

 959	



Figure 5. Disparity-through-time plots of EPGs (top), body size (left-bottom) and shape 960	

(right-bottom): solid line = observed trajectory; dashed line = predicted trajectory (median) 961	

after 1000 runs of a Brownian motion model; grey area = 95% confidence interval according 962	

to the rank envelope test. MDI and rank envelope tests results are also reported for each trait. 963	
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