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Abstract In X-ray Computed Tomography (XCT), the Discrete Al-
gebraic Reconstruction Technique (DART) has been proposed as a
practical method for reconstructing images measured of an object that
is composed of only a small number of different materials. For such
objects, DART has shown the potential to reconstruct high quality
images even in the case of a low number of radiographs or a limited
angular range. To this end, DART follows a set of rules to enforce
the material discreteness prior knowledge. However, these rules are
static in that they remain unchanged throughout the entire reconstruc-
tion process, which limits the full potential of the DART concept. To
increase flexibility during the reconstruction process, we introduce an
update framework that dynamically adjusts update rules throughout
the iterations. Our experiments show that such dynamic update strat-
egy leads to increased reconstruction quality and lower computational
burden.

1 Introduction

In X-ray Computed Tomography (XCT), prior knowledge
about the object to be reconstructed is often exploited to im-
prove the quality of images reconstructed from limited data.
A specific class of prior knowledge is the assumption that the
object consists of only a small number of different materials.
The domain of Discrete Tomography (DT) studies algorithms
that reconstruct objects adhering to this assumption. In 2011,
the Discrete Algebraic Reconstruction Technique (DART)
was proposed as a practical algorithm that provides high re-
construction quality in tomographic reconstruction problems
with limited X-ray projection data [1]. Since then, many
variations of the DART algorithm have been reported [2-7].

The DART algorithm iteratively interchanges a reconstruc-
tion step, where the image is updated by minimizing the
projection distance, and a segmentation step, where the im-
age pixels are classified into the few different material classes.
However, the rules used by DART to attribute labels to the
pixels to be updated, are rigid in the sense that they do not ex-
ploit knowledge gained about the intermediate reconstructed
images throughout the iterations. This slows down the algo-
rithm or causes it to converge to a local minimum [8].

To improve upon the rigid DART update rules, we propose a
generalization of the DART update strategy by introducing
a dynamic update probability map of the image throughout
the reconstruction. We express update strategies as changes
to the update probability map and we exploit the probability
map sequence by using a tabu-search framework. We show
that this approach improves both convergence speed and
reconstruction quality.
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2 Materials and Methods

2.1 The DART algorithm

DART assumes that the object to be scanned consists of a
small number (typically k < 5) of different materials. Let
{p1 < ... < px} be the gray values representing the different
materials present in the object and x € R" the representation
of the pixel grid of attenuation values of the object. Given the
measured projection data p € R” and the system matrix W &
R™*"_the reconstruction problem comes down to solving the
linear system

Wx =p, suchthatxe {pi,..,pr}". (1)
To this end, the following steps are performed in the DART
algorithm: First, an initial reconstruction is calculated with
the use of an Algebraic Reconstruction Method (ARM), such
as ART, SART or SIRT [9]. Without loss of generality, we
will use the SIRT algorithm as the ARM. The output vector
is denoted as x(?). Since the output of an ARM has continu-
ous gray values, which violates the discreteness assumption,
a segmentation step is performed to enforce discreteness.
Similar to [1], we use a global thresholding step with the
following mapping function:

S(Xap) R — {plapZa"'>pk}n X—S,

P, xi<T
P2, T1ISxi<T .

§; = i=1,..,n,
Prs T < X,

where the thresholds 7; are calculated as

o — PitPit

7 5 k=1

; 2)
The resulting discrete image is denoted as s(®) = §(x(©)).

Let s() be the segmentation from the /-th iteration of DART.
First, all pixels in s(*) classified either as boundary or interior
pixels. A pixel is considered interior when it belongs to the
same material class as its neighbours. All other pixels are
considered boundary pixels. Only the boundary pixels are
updated in the next ARM iteration while interior regions are
kept fixed. Let (Wy,...,wy) be the columns of the system
matrix W. The boundary pixels are reconstructed on the
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residual data:

W(Z)X(Z) =p-— WiS,@, (3)
W) = (Wi, s Wi 1, Wit 1, s Wa), 4)
X(g) == (x17"xi—17-xi+17“7xn)T (5)

To minimize the risk of local minima, each interior pixel
also has a probability p of being included in the next recon-
struction step. Solving the reduced system (3) yields a new
vector containing updated values for the boundary pixels and
the fixed pixels that were randomly selected. Along with
the fixed pixels, a new image x(‘*!) is computed. Finally, a
smoothing operation is performed by convolving the image
with a 3 X 3 mean kernel.

The above process is repeated until a convergence criterion is
met or a predetermined maximum number of DART iterations
is reached.

2.2 The Tabu-search concept

Tabu-search is a mathematical optimization method that em-
ploys a memory structure to improve local search methods.
By manipulating adaptive memory structures, Tabu-search
methods can reach parts of the solution space that would oth-
erwise have been left unexplored by more traditional methods.
There exist many variations that characterize the memory
structure in Tabu-search [10]. However, one of specific inter-
est for the DART update rules is frequency based memory.
This variant contains and uses information on the amount
of times a certain attribute has appeared in recent solutions.
If the presence of a property is correlated to good solutions,
then remembering search directions where many solutions
with this property exist increases the probability of finding an
optimal solution. There are various metrics that we can track
about a reconstruction that change once the DART algorithm
nears convergence. An example of that would be how many
pixels still change their material class. By measuring the
class change for each pixel individually, we essentially create
a frequency based memory structure related to the material
labeling of the image. We can exploit changes in this struc-
ture to adapt the DART algorithm update step. In this way,
the solution guiding process becomes more refined over time.

In the next section, we will generalize the DART update step
as a framework which uses a probability map to function as a
frequency based memory structure for the update step inside
the algorithm as shown in Figure 1. We will also describe an
algorithm called Tabu-DART, which uses a dynamic set of
rules to update the probability map. By changing the values
of the probability map, we directly influence the frequency
with which individual pixels are updated in the following
iterations.

2.3 Tabu-DART: using a probability map to function
as memory for DART

Tabu-search is a heuristic technique which uses the concept
of memory to increase control of the solution space. We
implemented this concept in the DART update step because it
directly relates to both convergence speed and reconstruction
quality of the DART algorithm. In [1], this step is based on
a boundary criterion and a probability parameter p for each
pixel. Instead of one parameter p describing the probability
that an interior pixel is updated in the next iteration, Tabu-
DART uses a map:

P:R"—[0,1]",x — px 6)

As such, each pixel in the image has its own unique proba-
bility and for each pixel it is individually decided whether or
not it is updated in the next iteration. The Tabu-DART can
be summarized as follows:

1. After an initial segmentation, the probability map p,(f)

is initialized.

2. During the partitioning step, a random value rl-([) be-

tween O and 1 is generated for each pixel xgz). If

rl.(g) < p,(f), then the pixel is selected for update.

3. At the end of every DART iteration, a feedback step is
added that updates the probability map based on changes
between the new segmented image and the one found in
the previous DART iteration. In this way, the probabil-
ity map adapts quickly to changes in the reconstructed
image.

Initial image Discrete image

Projection Data

Figure 1: A flowchart of the Tabu-DART algorithm.

Note that this framework encloses the original DART algo-

rithm [1] with random parameter p and segmentation s(¢) as
follows:
o (0.
,(f) _ {1, if 5; is boundary =1 (D)
; (D) ,
p, ifs;’ otherwise

We decided on a different approach in Tabu-DART. Each
pixel x; is linked to a probability vector of length k represent-
ing the probabilities that x; belongs to each material class.
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We denote this vector by vy;. By using the entropy

H (xj) = —vy, logy (Vy)), (®)

a single value representing uncertainty of the pixel x; can be
calculated. Varga et al. [11] described a method to calculate
the entropy for binary images. Let y; be the value of pixel x;
as a result of the initial ARM iterations. Then, the probability
vector vy, for a pixel x; is defined

VX]' - [y]7 1 _y]]7

and this becomes the input into (8). However, this approach is
applicable only to binary images. As to generalize it to more
than two classes, we suggest the following for the output y
from the ARM. Let

1 1
d, = yeees
[vi — pol [vi — pxl
vy = dy
g

The resulting vector v,, is input into (8) to yield a single
value /7 (x;) measuring uncertainty for the pixel x;. These
uncertainty values are used to initialize the probability map.
The probability map update step is also different and based
on three rules:

1. A pixel changing class during the last DART iteration,
indicates that the uncertainty of which class it belongs
to is still high. To ensure that the pixel will be updated
again in the next iteration, its update probability is set
to 1.

. When a pixel did not change material classes compared
to the last DART iteration, its corresponding update
probability is halved instead. In this way, stable regions
are iteratively removed from the reconstruction problem.

As was pointed out in [1], the boundary plays a key role
as it holds the most uncertainty in the image. the update
probability of each boundary pixel is set to 1 as in [1].

3 Experiments and Results

3.1 Simulation experiments

To evaluate the effect of the proposed dynamic update strat-
egy on the reconstruction quality, we simulated projection
datasets of a laminate profile phantom (Figure 2) with de-
creasing angular range with a geometry that represents the
one used when scanning objects in the UAntwerp FlexCT
scanner [12]. We assumed a monochromatic beam with
fan-beam geometry with a phantom size of 200 x 400, a
Source-Object-Distance (SOD) of 360 mm and a Source-
Detector-Distance (SDD) of 90 mm. The voxel size was
set to 0.120 mm. We varied the angular range from 40 to
140 degrees, with the number of projections taken varying
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from 20 up to 70. The simulation was performed with the
ASTRA toolbox [13]. Simulated Poisson noise with an aver-
age photon count of 25000 was added to the projection data.
The reconstruction was performed using both the DART and
Tabu-DART algorithms described in Section 2. In addition,
we implemented the ADART algorithm [2] and a variant of
it employing the Tabu-DART based map update. The update
step for ADART is given by:

{

where the boundary set B§k) changes over time. A total of

50 initial SIRT iterations were run, followed by 95 DART
iterations. Following the original paper [1], each DART
iteration contained a subroutine of 10 masked SIRT iterations,
the value for p for DART and ADART was set to 0.15, and
the smoothing factor was set to 0.1. This amounts to 1000
SIRT iterations for each method. To counteract the effects of
noisy data, a relaxation factor A was introduced to the SIRT
algorithm in the following way:

1
p

if i€ Bf
if i ¢ BX,

Pk (xi,8)

xHD = x® L ACcWTR(p — Wx®), 9)

where each DART iteration A was set to the number of free
pixels divided by the total number of pixels. To measure
the performance of the methods, we calculate the number of
misclassified pixels, denoted as the pixel error.

Figure 2: The Laminate phantom used in the experiment

3.2 Simulation results

Figure 3 shows the pixel error as a function of the angular
range for the four DART methods described in the previous
section and the average relaxation factor A. These errors
have been averaged over 50 repetitions with different seeds
for the generation of the Poisson noise. We observe a lower
pixel error for the algorithms based on Tabu-search compared
to the original methods (DART and ADART) for each choice
of angular range. The reconstructions are shown in Figure 4.
The visual difference, however, is negligible. The relaxation
factor in this experiment was set to reflect the number of
freed pixels. These directly influence the computational cost
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Figure 3: The pixel error as a function of the angular range for the laminate phantom (left) and the average relaxation factor (right).
Tabu-DART and Tabu-DART start outperforming DART and ADART once the missing wedge becomes large. The relaxation factor
represents the system size and indicates where the algorithm performance starts deteriorating.

(@) DART  (b) Tabu-DART  (c) ADART  (d) Tabu-ADART

() DART  (f) Tabu-DART  (g) ADART  (h) Tabu-ADART

Figure 4: Reconstruction for a 100 ° angular range. The first
row (a-d) shows the laminate image resulting from the methods.
The second (e-h) row shows difference images with the phantom.
While there is a difference in pixel error, the visual difference is
negligible.

of performing the DART iterations, and are lowest for Tabu-
DART and Tabu-ADART. Our approach allows for a lower
pixel error and similar visual quality at a lower computational
cost. A sudden increase of A can be observed for all methods
once the removed wedge increases past 110°. This indicates
the breaking point of the DART algorithm, reconstruction
becoming more and more unreliable past this point.

4 Conclusion

We have introduced a new update strategy which generalizes
the rigid update rules that DART and some of its variants use
in subsequent iterations. By representing the update strategy
with a probability map we yield more dynamic control of the

reconstruction regions and even singular pixels. The specific
example of the framework that we presented is however far
from optimal. Because of the flexibility of the framework it
is possible to introduce complex selection methods that are
based on priors already used in other methods such as Total
Variation minimization (TV) algorithms, statistical recon-
struction methods, or even learned priors. This is a subject
of our further work.
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