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Abstract In multi-slice super-resolution reconstruction (MS-SRR),
a high resolution image, referred to as the SRR image, is estimated
from a series of multi-slice images with a low through-plane resolution.
This work proposes a framework based on the Bayesian mean squared
error of the Maximum A Posteriori estimator of an SRR image to com-
pare the accuracy and precision of two commonly adopted magnetic
resonance acquisition strategies in MS-SRR. The first strategy consists
of acquiring a set of multi-slice images in which each image is shifted
in the through-plane direction by a different, sub-pixel distance. The
second consists of acquiring a set of multi-slice images in which each
image is rotated around the frequency or phase-encoding axis by a
different rotation angle. Results show that MS-SRR based on rotated
multi-slice images outperforms MS-SRR based on shifted multi-slice
images in terms of accuracy, precision and mean squared error of the
reconstructed image.

1 Introduction

In conventional magnetic resonance imaging, a direct high
resolution (HR) acquisition with a high signal-to-noise ratio
(SNR) is often impractical due to the long scan time required.
Previous studies have demonstrated the potential of multi-
slice super-resolution reconstruction (MS-SRR) to address
this issue by improving the inherent trade-off between resolu-
tion, SNR, and scan time [1]. The MS-SRR method consists
of estimating an HR image, named SRR image, from a series
of multi-slice images with a low through-plane resolution,
hereafter referred to as the low resolution (LR) images [2].
Two acquisition strategies are more commonly adopted. The
first consists of acquiring a set of LR images in which each
image is shifted in the through-plane direction by a different,
sub-pixel distance [3]. The second acquisition strategy con-
sists of acquiring a set of LR images in which each image
is rotated around the frequency or phase-encoding axis by
a different rotation angle [4, 5]. The rotated scheme allows
for a better sampling of the k-space compared to the shifted
scheme since each LR image samples a different part of the
k-space. Conversely, in the shifted scheme, all the LR images
sample the same part of the k-space, causing the MS-SRR to
rely exclusively on recovering the aliased frequencies in the
slice-encoding direction.

The first comparison among MS-SRR acquisition protocols
based on the two strategies was proposed in [4, 5]. A second
comparison was proposed more recently in the context of fe-
tal imaging, in which the segmentation quality of the SRR im-
age was adopted as a performance criterion [6]. In both cases,
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the performance analysis focused on the non-regularized MS-
SRR problem. However, MS-SRR estimation consists of
solving an inverse problem, and regularization is required to
find a stable solution [7]. Therefore, in this work, we extend
the analysis to the regularized case, developing a framework
in which the Bayesian mean squared error (BMSE) of the
Maximum A Posteriori (MAP) estimator is proposed as a
performance criterion [8]. The MAP estimator is built in-
corporating prior knowledge about the reconstruction target.
The BMSE is chosen as a performance criterion to compare
the acquisition strategies in terms of accuracy and precision
for the class of reconstruction targets described by the prior
distribution. The BMSE results are verified with Monte Carlo
simulation experiments.

2 Materials and Methods

2.1 Super-resolution model

Let r € RN~*! be the vector containing the intensities of
the noiseless HR target magnitude image. Furthermore, let
Sy € RNs*1 with m = 1,..,M, be the vector containing the
intensities of the m-th noiseless LR multi-slice magnitude
image. Then, s,, can be modeled as:

sm(r) = D(AF)BG(®,)r, (1)

with G € RN>Ne B € RNNe ' € RNs*Nr Jipear operators
that describe a geometric transformation, blurring and down-
sampling, respectively. G is a function of the geometric
transformation parameter ®,,, which represents the rotation
angle or the shift of the m-th multi-slice image according to
the acquisition strategy. B models the sampling function of
the magnetic resonance imaging (MRI) acquisition method.
For multi-slice acquisitions, the sampling function can be
separated into three functions applied in orthogonal direc-
tions aligned with the MR image coordinates. The in-plane
directions (frequency and phase-encoding) are modelled by a
periodic sinc and the through-plane direction (slice-encoding)
by a smoothed box. D is a function of the anisotropy fac-
tor AF, representing the ratio of the slice thickness to the
in-plane resolution.

The sampling of the LR images can be expressed here
as a matrix-vector multiplication s(r) = Ar where s =



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine

19 - 23 July 2021, Leuven, Belgium

[sT,....s3)" € RMN*T and A = [AT, .. A}]T € RMNo:
with A,, = D(AF)BG(®,,) € RN-*Nr_ For a detailed descrip-
tion of the implementation, we refer to [9].

2.2 Conditional data distribution

Let § € RMNs*! be the vector containing the intensities of the
M acquired magnitude LR images, subject to noise. Because
of the relatively high SNR of the thick slices composing the
LR images, the noise distribution can be well approximated
by a zero-mean Gaussian distribution [10]. If all voxels are
assumed to be statistically independent and the standard devi-
ation of the noise ¢ to be temporally and spatially invariant,
the conditional probability density function (PDF) of the data
points p(8|r) is equal to the product of the marginal PDFs of
the individual data points and can be expressed as follows:

1
i <o (~5o 5-smB). @

2.3 Prior distribution

The prior distribution is modelled as a stationary Gaussian
Markov Random Field [11]. This corresponds with the as-
sumption of a multivariate Gaussian prior of the form:

p(r) < exp (—%(r—F)TKl(r—F)> , 3)

parametrised in terms of its mean r and precision (inverse-
covariance) matrix K—!, which is sparse, positive definite,
and encodes statistical assumptions regarding the value of
each HR image voxel based on the values of its neighboring
voxels. Let r; be the i-th HR voxel and rp, € RN the
voxels from the neighborhood surrounding r;, where N, is
the number of neighborhood voxels, and d; represents the
neighborhood voxels indices. We assume the conditional
probability of the i-th HR voxel given the neighborhood
voxels p(r;|ry,) to be Gaussian and of the form:

e ’
_7 I — Z ajrj7 ) (4)

p(ri[ry,) o< exp

where & = {a j}I}I;l is the vector of the so-called field poten-
tials. It can be demonstrated [12] that Eq. (4) holds if and
only if the joint PDF p(r) assumes the form in Eq. (3) with:

1
-1 __ 192 )
ai-e{

Therefore, the hyperparameters @, T, and A characterize the
prior distribution.

i=J,
Jj € d;. )

2.4 MAP estimator

The MAP estimator of r maximizes the posterior PDF p(r[§)
with respect to r, where p(r|§) is defined according to Bayes’
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theorem [8] as:

p(r[8) < p(8|r)p(r). (6)
Therefore, the MAP estimator assumes the form:

= argmax Inp(r|§)
r

)

N S 2 —\Tye—1 -
—argmin s[5~ Arl3+ (r )K" (r 7).
which admits the closed-form solution:

f=(c2ATA+K )7 (6 2ATS+K'E).  (8)

2.5 Bayesian MSE

The BMSE is proposed as a performance criterion to com-
pare the two MS-SRR acquisition protocols described in the
introduction section. Let us first define the component-wise
MSE of t as:
MSE(r); = E |( 1) (f—r)T] N 9)
JoJ
where [Eg[.] is the expectation operator over §. The MSE can

be decomposed as the sum of a variance term and a squared
bias term:

MSE(r), =%+ B(r)B (] . (0

JJ
where £ € RN>Nr and B € RN~*! are the covariance matrix
and the bias vector of F, respectively. For the MAP estimator
defined in the previous subsection, we have:

T =0 2QATAQ, (11)
B(r)=QK'(r—t), (12)

with
Q=(c’ATA+K ). (13)

The BMSE of the estimator of r can now be defined from the
MSE as [8]:

BMSE(r), = E, [MSE(r)], (14)

where E,[.] is the expectation operator over r. The BMSE can
also be decomposed as the sum of a variance and a squared
bias term, which can be linked to the MSE components as
follows:

BMSE(r); =E¢[E], ; +E; [B (r)B" (r)]

%+ Ex |B(r) B (r)] -

Ji’

where E; [£] = Z, since £ does not depend on r, and the
squared bias term of the BMSE can be calculated as the
expectation over r of the MSE squared bias component in Eq.
(12):

E: |B(r)B" (r)] = QK~'Q. (16)
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To simplify the notation, we define:

RBMSE — {, /BMSE (r)j}ljil, (17)
v={VIu} (1s)
b= {\/E [: (r)BT<r)]M}1_:, 19

where the dependency of RBMSE and b on r was omitted.
In the following sections, we will refer to v and b as the
standard deviation component and absolute bias component
of the BMSE, respectively.

2.6 Acquisition protocols

The acquisition protocols are shown in Table 1. For all the
protocols we fixed M/AF = 2. This choice ensures that
the MS-SRR estimation problem is not under-determined
(M/AF > 1) [5] and that the k-space is efficiently sampled
when the LR images are acquired with the rotated scheme
(M > %AF) [13]. Furthermore, it ensures that all the ac-
quisition protocols require the same scan time. The HR
protocol is included as a reference and represents a conven-
tional multi-slice acquisition with AF = 1, repeated twice. In
the SRrot protocols, the acquired images are simulated ro-
tated around the phase-encoding axis. The rotation angles are
uniformly distributed in the open interval [0, 180), with steps
of 180/M°. In the SRsh protocols, the acquired images are
simulated shifted in the through-plane direction. The shifts,
expressed in HR voxel indices, are uniformly distributed in
the closed interval [ —AF(M —1)/(2M), AF(M —1)/(2M)],
with steps of AF/M.

Protocols AF M @ ={®,}1 |
HR 1 2 [0, 0]°

SRrot; 1 2 [0, 90]°

SRrotp 2 4 [0, 45,90, 135]°

SRrots 3 6 [0, 30, 60, 90, 120, 150]°

SRroty 4 8 [0, 22.5,45,67.5,
90, 112.5, 135, 157.5]°

SRsh; 1 2 [-0.25,0.25]

SRshy 2 4 [-0.75,-0.25, 0.25, 0.75]

SRshj 3 6 [-1.25,-0.75,-0.25,
0.25,0.75, 1.25]

SRshy 4 8 [-1.75,-1.25,-0.75, -0.25,
0.25, 0.75, 1.25, 1.75]

Table 1: MS-SRR acquisition protocols.

2.7 Prior hyperparameters estimation

The translational symmetry of the acquisition strategies along
the phase-encoding axis was exploited to evaluate the frame-
work in 2D, thereby reducing computational complexity and
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memory consumption. In order to estimate the prior hyper-
parameters, a training dataset was generated. The dataset,
composed of 500 synthetic noiseless HR 2D T1-weighted
(T1-w) magnitude brain images of size 120 x 120, was simu-
lated starting from 10 anatomical brain models available in
the Brainweb database [14]. The images, each representing
an independent realization of r, were simulated with different
acquisition planes (sagittal, transverse, and coronal) and T1
contrast. Additionally, each image was slightly rotated to sim-
ulate different head orientations, where the rotation angles
were independently sampled from a Gaussian distribution
with mean 0 and standard deviation 1. The hyperparameters
a and A were estimated from the images within the training
dataset using the kernel-regression approach proposed in [15]
from the non-zero voxels within the training dataset and their
respective 3 X 3 neighborhoods. All the elements of the prior
mean T were set equal to the mean intensity of the non-zero
voxels within the training dataset. The choice of setting the
prior mean of all voxels equal to the same constant ensures
the prior to be invariant to the positioning (translation) of the
head within the field of view.

2.8 Protocols comparison

We assumed the images acquired with the HR protocol to
have an SNR = 20, where the SNR was defined as the ratio
of the mean intensity of the brain voxels within the train-
ing dataset to the standard deviation of the noise. The thus
obtained standard deviation of the noise was fixed for all pro-
tocols, resulting in an SNR that increases with AF, as more
signal is received from thicker slices. The BMSE as well
as its separate squared bias and variance components were
computed for each acquisition protocol using the closed-form
expressions derived in the subsection 2.5.
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Figure 1: Boxplots of the RBMSE and of the BMSE standard
deviation component v and absolute bias component b computed
inside a ROL
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Figure 2: Monte Carlo simulation results for the protocols HR, SRrot4 and SRsh4. §,,, r, T represent the n-th acquired LR image, ground
truth image and estimated SRR image, respectively. The mean absolute bias, the mean standard deviation, and the mean RMSE values

computed inside the brain mask are reported.

2.9 Monte Carlo simulation

A 2D TI1-w axial brain slice, initially excluded from the
training dataset, was used as ground truth (GT). The acquisi-
tion process was simulated for the protocols HR, SRrot4 and
SRshy using the MS-SRR forward model in Eq. (1), and the
simulated images were corrupted with noise, as described
in the previous subsection. The Conjugate Gradient method
[16] was used to solve the minimization problem in Eq. (7).
Absolute bias, standard deviation, and RMSE maps were
computed from 100 noise realizations for each protocol.

3 Results and Discussion

The distributions of the RBMSE maps inside a region of
interest (ROI) for all the acquisition protocols are reported in
Fig. 1, where the ROI was defined as the part of the field of
view common to all the acquired images of all the acquisition
protocols. The SR protocols based on the rotated acquisition
scheme SRrot showed lower RBMSE values compared to the
HR protocol and the SR protocols based on the shifted ac-
quisition scheme SRsh. Increasing the AF led to an RBMSE
improvement for the SRrot protocols, while the SRsh proto-
cols showed the opposite trend. This difference is caused by
both the absolute bias component b, which increases severely
with AF for the SRsh protocols, and the standard deviation
component v, which reduces significantly with AF for the
SRrot protocols. The results of the Monte Carlo simulation
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for the HR, SRrot4 and SRshy protocols are reported in Fig.
2. The close agreement between the Monte Carlo results and
the BMSE results demonstrates that the prior distribution
was able to describe the statistics of the target image. The
observed difference in terms of RBMSE between the SRrot
and SRsh protocols (up to a factor 2, approximately) suggests
that adopting the rotated acquisition scheme over the shifted
scheme in a MS-SRR experiment can lead to a substantially
reduced scan time while preserving the same MSE of the
estimated SRR image. The main limitations of this work are
the assumptions that the image registration parameters and
the point spread function of the MRI acquisition process are
perfectly known. The effect on the current analysis of nonide-
alities, such as motion artifacts and inconsistent modelling
of the slice profile, will be the subject of future work. Ad-
ditionally, real data experiments will be included to validate
the proposed framework. Furthermore, we plan to extend the
current study by applying the optimal experimental design
theory principles to find the optimal acquisition settings for
an MS-SRR experiment in terms of BMSE.

4 Conclusion

The potential of the BMSE framework for optimal experi-
ment design was demonstrated by comparing two conven-
tionally adopted MS-SRR acquisition protocols. The MS-
acquisition strategy based on rotated multi-slice images out-



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine

19 - 23 July 2021, Leuven, Belgium

performed the strategy based on shifted images in terms of
estimation accuracy and precision, evaluated by the squared
bias and variance terms of the BMSE of the MAP estima-
tor, respectively. The results confirmed and extended the
conclusion of [4, 5] and [6] to regularized MS-SRR.
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