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9Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, I-84084 Fisciano (Sa), Italy

10School of Mechanics, Civil Engineering and Architecture,
and MIIT Key Laboratory of Dynamics and Control of Complex Systems,

Northwestern Polytechnical University, Xi’an 710072, China
11Experimental Physics of Nanostructured Materials, Q-MAT,
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Considering a non-centrosymmetric pinning texture composed of a square array of triangular
holes, the magnetic flux penetration and expulsion is investigated experimentally and theoretically.
A direct visualization of the magnetic landscape obtained by magneto-optical technique on a Nb film
is complemented by a multiscale numerical modeling. This combined approach allows the magnetic
flux dynamics to be identified from the single flux quantum limit up to the macroscopic electromag-
netic response. Within the theoretical framework provided by time-dependent Ginzburg-Landau
simulations, an estimation of the in-plane current anisotropy is obtained and its dependence with
the radius of curvature of hole vertices is addressed. These simulations show that current crowding
plays an important role in channeling the flux motion, favoring hole to hole flux hopping rather than
promoting interstitial flux displacement in between the holes. The resulting anisotropy of the critical
current density gives rise to a distinct pattern of discontinuity lines for increasing and decreasing
applied magnetic fields, in sharp contrast to the invariable patterns reported for centrosymmet-
ric pinning potentials. This observation is partially accounted for by the rectification effect, as
demonstrated by finite element modelling. At low temperatures, where magnetic field penetra-
tion is dominated by thermomagnetic instabilities, highly directional magnetic flux avalanches with
finger-like shape are observed to propagate along the easy axis of the pinning potential. This mor-
phology is reproduced by numerical simulations. Our findings demonstrate that anisotropic pinning
landscapes and, in particular, ratchet potentials, produce subtle modifications to the critical state
field profile that are reflected in the distribution of discontinuity lines.

I. INTRODUCTION

The physics of mechanical ratchet and pawl systems
were popularized by Richard Feynman’s lectures [1] as
an ingenious mechanism seemingly defying the second
law of thermodynamics by extracting work from a system
in thermal equilibrium. Feynman himself and many au-
thors afterwards elucidated the thermodynamic physics
involved in this process by showing that the system must
be out-of-equilibrium for the ratchet effect to be opera-
tive [2]. Later on, general conditions and the associated
set of rules for achieving a net displacement of parti-
cles with zero-mean excitations were clearly established
[3]. Nowadays, it is widely recognized that the physics
of ratchet systems is at the root of many different ap-
plications, such as molecular motors in the biological
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realm [4], particle separation [5], directional cell migra-
tion [6, 7], rectification of self propelled swimmers [8–11],
and Leidenfrost-based liquid pumping [12, 13].

Particular interest has been devoted to the ratchet of
magnetic flux quanta in superconductors [14, 15] due
to the unmatched versatility of these systems to read-
ily and independently adjust the density of particles and
the strength of the interacting potential. Besides being
a playground of choice for investigating vortex ratchet,
asymmetric ratchet potentials have been proposed as a
practical approach to remove unwanted flux from certain
sensitives areas in devices such as SQUID detectors [14].
Although the directional flux motion induced by ratchets
is by now very well understood at the microscale [16, 17],
little is known about the impact of non-centrosymmetric
pinning landscapes on the magnetic flux distribution at
the macroscale.

In 2007, Albrecht et al. [18] investigated the pene-
tration of magnetic flux in a 200 nm thick MgB2 film
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with an asymmetric pinning landscape produced by sub-
strate surface steps of one unit cell. In the smooth mag-
netic flux penetration regime taking place at the highest
investigated temperatures, the critical current densities
were determined from the distribution of magnetic flux
density in the remanent state. The very weak unidimen-
sional vertical modulation (∼ 0.38 nm) was shown to
yield an anisotropy of only a few percent between the
critical current densities flowing respectively along and
perpendicular to the steps. In contrast, in the regime
where the flux penetration was subject to thermomag-
netic instabilities, and for which sudden bursts of mag-
netic flux avalanches develop, a much stronger anisotropy
was observed, with magnetic flux avalanches propagat-
ing far more easily perpendicular to the steps. However,
their activity and morphology were similar irrespective
of whether the propagation occurred along the easy or
the hard direction of the asymmetric pinning landscape.
This may not come as a surprise considering that the
coherence length of MgB2 exceeded the period of the
pinning lattice. Later on, Menghini et al. [19] inves-
tigated the magnetic flux avalanche regime in Pb films
with a square lattice of asymmetric pinning potentials
formed by two antidots of different sizes. In this case,
since the pinning sites were substantially larger than the
coherence length and the penetration depth of Pb, a very
clear directional flux penetration was observed. At high
temperatures, finger-like flux front progressed more fa-
vorably along the hard direction of the ratchet potential.
At intermediate temperatures, an isotropic flux front de-
veloped, whereas at low temperatures avalanches burst
into the sample along the easy direction of the asym-
metric pinning landscape. Both results, in MgB2 and in
Pb, were satisfactorily explained within a thermomag-
netic model for the dendritic instability described in Ref.
[20]. Nevertheless, it is puzzling that no manifestation of
ratchet effect on the smooth magnetic flux penetration
has been reported.

In this work, we investigate the directional magnetic
flux penetration in a square array of triangular holes, a
prototypical example of ratchet pinning potential. The
sample is described in Sec. II and two regimes of mag-
netic flux penetration are studied with magneto-optical
imaging techniques in Sec. III. First, for the smooth pen-
etration regime at T = 5 K, it is experimentally observed
that the trapped flux pattern formed during a zero-field-
cooled magnetization exhibits a gradual change in shape.
The central discontinuity line, separating two regions
with current flowing in opposite directions, changes from
a horizontal orientation to a vertical one as the exter-
nal field is lowered. Second, for the thermomagnetically
unstable regime at 2.5 K, it is shown that the network
of triangular holes leads to magnetic flux jets with flux
avalanches propagating preferentially along the easy di-
rection. In Sec. IV, these results are analyzed by means
of numerical models in a multiscale approach. First, a
time-dependent Ginzburg Landau model of a similar sys-
tem with the same density of holes is used to investigate

the anisotropy in the critical current densities and their
dependence with the applied magnetic field. A finite el-
ement model of the smooth penetration regime is then
constructed that integrates the dependence of the cur-
rent densities with direction and magnetic field, but now
with parameters being adapted to the experimental ob-
servations. This model is shown to reproduce the meta-
morphosis of the central d-line. Last, a model for the flux
avalanches is used to study the anisotropic penetration
of such avalanches and their morphology as a function of
the size and period of the array of holes. A summary of
the results and conclusions are given in Sec. V.

II. SAMPLE PREPARATION

The investigated samples were lithographically defined
Nb films deposited by UHV dc magnetron sputtering
with thickness of 45 nm on top of Si/SiO2 substrates.
The geometrical characteristics of the patterned samples,
obtained via lift-off processing, are shown in Fig. 1 and
consist of a square array of period 4 µm with equilat-
eral triangular motifs of side 1.5 µm covering the entire
5 × 5 mm2 Nb film. The triangular motifs are through
holes as corroborated by the atomic force microscopy im-
ages shown in Fig. 1(c). The critical temperature of the
sample is Tc = 6.8 K.

FIG. 1. (a) Schematic representation of nanostructured su-
perconducting Nb sample (yellowish square) with a square
array of triangular holes on Si/SiO2 substrate (black layer).
(b) Bright field optical microscopy image of the array of holes
taken at the lower-right corner of the sample. (c) Atomic
force microscopy image of a 10 × 10 µm2 area.

Using the temperature derivative of the upper critical
field near Tc and the dirty limit expressions [21], we es-
timate the zero temperature superconducting coherence
length, ξ(0) ∼ 8 nm and penetration depth, λ(0) ∼ 132
nm for the Nb film. Therefore, for the whole temper-
ature range here investigated the size of the triangular
holes largely exceeds ξ and λ. The distance between the
sample borders and the closest rows of triangular holes
is 1 µm all along the sample perimeter so as to avoid
pronounced asymmetric edge barriers [22].
The magneto-optical (MO) technique employed for

imaging the flux penetration morphology is based on
the occurrence of the Faraday effect in an indicator film
placed on top of the superconducting specimen [23]. The
indicators used in the present work are Bi-substituted
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yttrium iron garnet films (Bi:YIG) with in-plane magne-
tization [24]. In all measurements, the magnetic field was
applied perpendicular to the film plane.

III. MAGNETO-OPTICAL INVESTIGATION

A. Anisotropy of the critical current density

In the investigated sample, several coexisting sym-
metries may influence the penetration of magnetic flux.
First, the square shape of the sample, with random pin-
ning, imposes a critical state at full penetration with cur-
rent densities flowing parallel to the sample edges. Thus,
the superconducting current density is organized in sec-
tors delimited by the so-called discontinuity lines (or d-
lines) where the current density changes abruptly its di-
rection. These lines are easy to identify by MO imaging
in thin films, as they generate a sharp variation of the
magnetic field component perpendicular to the film. For
an isotropic sample, the expected pattern of penetrated
flux has two diagonal d-lines crossing at the center of
the sample. The second symmetry in the system is re-
lated to the square array of holes, which has the same
C4 symmetry as the sample borders and is not expected
to modify the d-line patterns. However, the placement
of holes along a square array may affect the propagation
of magnetic flux avalanches, as the rows and columns of
the array may form preferential channels of vortex pene-
tration [25–28]. The third symmetry is the C3 symmetry
of the triangular pinning centers. A first effect comes
from the fact that the triangular shape of the holes offers
slightly larger cross sections for currents flowing along the
x-direction than for those flowing along the y-direction.
As a result, a slight current anisotropy breaking the C4

symmetry is expected. A second source of C4 symmetry
breaking arises from the pinning landscape. As it will be
confirmed by the time-dependent Ginzburg-Landau anal-
ysis of Sec. IVA, the pinning force is weaker for vortices
moving out in the direction of the triangle tip (moving
up, along the easy axis) and stronger for vortices mov-
ing towards the triangle base (moving down along the
hard axis). This additional breaking of the C4 symmetry
gives rise to a ratchet effect with consequences on both
the critical state and thermomagnetic avalanches in the
system.

B. Critical states

Figure 2 shows magneto-optical images of our sample
at 5 K after zero-field cooling. At µ0H = 0.05 mT the
flux is expelled from the superconducting film and accu-
mulates at its borders. At µ0H = 1.37 mT the magnetic
field has nearly entirely penetrated the sample and an X-
shape d-line pattern is generated, while the precursor of
a central horizontal discontinuity line also appears to be
formed. By further increasing the field to µ0H ≥ 1.8 mT,

a horizontal d-line at the center of the structure clearly
develops, evidencing an asymmetry between the different
sectors delimited by the d-lines. After the maximum ap-
plied field µ0H ≥ 8 mT has been achieved, the applied
field is decreased and the d-lines change from dark to
bright contrast. The MO images corresponding to a field
decreasing from µ0H ≥ 3.13 mT down to µ0H ≥ 0.75 mT
unveil a progressive evolution of the central horizontal d-
line towards a central vertical d-line. The fact that the
d-line pattern can evolve during the decreasing magnetic
field is a remarkable behavior, which has never been ob-
served in systems with centrosymmetric pinning forces.

C. Thermomagnetic avalanches

For T = 4 K, the smooth penetration regime breaks
down and the regime of abrupt magnetic flux avalanches
is accessed. The MO images obtained at T = 2.5 K,
after zero-field cooling and progressively increasing the
magnetic field, are shown in Fig. 3.

At low fields, the avalanches are seen to penetrate ex-
clusively from the bottom border and develop along an
easy-axis direction with a well defined needle-like shape
and very short perpendicular branching. At high fields,
avalanches are also triggered at the top edge and show
45-degree ramifications, as those observed in thin films
decorated with a square array of square holes [29, 30].
Moreover, 90-degree branches also develop and follow the
main directions of the square lattice of holes.

In contrast to the highly anisotropic thermomagnetic
avalanches reported in Ref. [18], the flux avalanches do
not develop perpendicularly to the easy direction, but
parallel to it.

IV. MULTISCALE NUMERICAL MODELS

The consequences of the symmetries of the triangular
hole pinning array are investigated within a multiscale
analysis. The first model, formulated with the Ginzburg-
Landau equations at the scale of single vortices, allows us
to estimate the variations of the critical current density
as a function of the direction of flow and the geometry
of the triangular holes. The second model is based on
continuous electrodynamics and is used to determine the
patterns of d-lines obtained in the fully penetrated state
and in the remanent state for an anisotropic critical cur-
rent density exhibiting a ratchet effect. The last model,
also based on continuum electrodynamics, is devoted to
the study of thermomagnetic avalanches in the presence
of the array of triangular holes.

A. Time-dependent Ginzburg-Landau simulations

As a first step we focus on the interactions between the
superconducting condensate populated by the magnetic
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FIG. 2. Selected set of magneto-optical images at T = 5 K for the square Nb sample with triangular holes oriented as shown
in the first figure. Starting from the upper-left corner, the field is increased up to 8 mT and then decreased. The first three
images correspond to an increasing field, the remaining ones to a decreasing field. The d-lines are seen to move laterally and
vertically, while the orientation of the central d-line changes as the field is decreased.

FIG. 3. Anisotropic penetration of magnetic flux avalanches
of thermomagnetic origin as observed by magneto-optical
imaging at 2.5 K.

flux quanta (vortices) and the asymmetric pinning po-
tential. The time-dependent Ginzburg-Landau (TDGL)
framework is selected for this task as it can describe com-
plex interplay among the vortices in arbitrary geometries,
in the presence of externally applied magnetic fields and
currents, at temperatures close to the superconducting
transition temperature, Tc. Such an approach was re-
cently considered for the study of an hexagonal array
of triangular antidots in Al thin films [31]. Here, the
TDGL numerical simulations were performed in the effec-
tive type-II limit, i.e. κ∗ = Λ/ξ ≫ 1, where Λ = 2λ2/d is
the effective Pearl penetration depth, λ is the penetration
depth, d is the thickness of the film, ξ is the coherence
length, and the thin-film limit d ≪ λ is assumed. The
material and geometric properties are extracted from the
experimental data. In the following subsection, we focus
on the main results from the TDGL analysis, while we
report the specifics of the numerical method in App. A 1.

We start our analysis by investigating the supercon-
ducting response of a specimen corresponding to an ex-
perimental unit cell of area L× L (L = 8 µm) with four

equilateral triangular holes of size a = 1.5 µm and ar-
ranged in a square lattice of period W = 4 µm, as shown
in the sketch in Fig. 4(a). The specimen is exposed to
the perpendicular external field B and the gradually in-
creasing in-plane injected electrical current density J ,
which in turn gives rise to the finite voltage in the sys-
tem. From the obtained voltage-current density charac-
teristics, V (J) [see top inset in Fig. 4(a)], and based on
the point where the extracted voltage reaches the value
of 20 µV we are able to determine the critical current
density, Jc, at which the onset of vortex dynamics oc-
curs (see App. A 1 for more details). The obtained Jc is
represented as a function of the applied magnetic field,
as well as the direction of the applied current, which is
summarized in Fig. 4. For convenience, we introduce the
notation Jc(θ,B) [or, when possible, Jc(θ) for the sake
of simplicity], where θ indicates the angle of the direc-
tion along which the current density was applied to the
system, relative to the x-axis (see the bottom sketch in
Fig. 4(a)). In the absence of any additional random pin-
ning, the critical current density exhibits a monotonic
field dependence in the considered B range, as well as an
anisotropic character, as seen on Fig. 4(a). More specifi-
cally, there is a ratchet asymmetry that is apparent when
comparing cases where J is injected along either the pos-
itive x-axis [Jc(0, B)] or the negative x-axis [Jc(π,B)].
This effect is the consequence of the phenomenon of vor-
tex rectification [32], associated with the existence of an
easy (+y) and a hard (−y) directions for magnetic flux
displacement. As a side-note, the same effect can be ob-
tained by changing the polarity of B, while keeping the
direction of J fixed along the +x-axis.

Besides the θ = 0 and θ = π directions, we also show
in Fig. 4(a) a Jc curve for the case θ = π/2. Since
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FIG. 4. (a) Critical current density, Jc, as a function of the applied magnetic field, B, obtained for different directions of the
applied current density, J , at T = 4.5 K. In the adopted notation, the argument θ = 0, π/2, π indicates the angle (measured
from the positive x axis) at which J is applied. Jc values were extracted from the voltage vs. current-density curves, V (J),
using a 20 µV criterion. The upper inset in (a) shows a typical V (J) curve taken at 115 mT, while the lower one shows the
overview of the simulated geometry. (b) Selected ratios of Jc(B) characteristics. (c) Ratio Jc(0, B)/Jc(π,B) as a function of
B in the presence of random pinning, for the cases of median pinning distances DM = 5 ξ (dense pinning) and 10 ξ (sparse
pinning). For each DM , two pinning site radii R were considered, namely 1 ξ and 1.5 ξ. (d) Ratio Jc(0, B)/Jc(π,B) as a function
of the diameter of the hole corner, D, (red full line), represented with Jc(0, B) (red squares) and Jc(π,B) (black squares), at
B = 115 mT. The Cooper-pair density snapshots (1)-(3) depict the vortex behavior at the critical current (1), at the onset of
vortex channeling from the pinning site vertices (2), and at the onset of full vortex channeling spanning across pinning sites (3).
The differences between the low and high curvatures of the corner diameter D are shown on insets (4) and (5), respectively,
illustrating the overall impact of D on the current crowding in the system.

the rectification along the y-axis is not seen, we do not
show the θ = 3π/2 curve, as it reduces to the θ = π/2
case. As a way to quantify the strength of the directional
asymmetry (i.e. rectification effect), we consider ratios
of Jc(θ,B) curves for different values of θ, as shown in
Fig. 4(b). It can be seen that the critical current ratios
Jc(0, B)/Jc(π,B) and Jc(0, B)/Jc(π/2, B) increase with
B within the considered range of magnetic field values.

Once the applied current density reaches Jc, the onset
of vortex dynamics is reached. At J & Jc, vortices remain
arranged in the triangular lattice, as can be seen in the
zoomed-in Cooper-pair density (CPD, quantified by |∆|2)
snapshot (1) shown in Fig. 4, which is taken for B = 115
mT and θ=0. Moreover, due to the sharp corners of the
triangular holes the emerging current-crowding effect can
be seen, as evidenced by the increase of the supercurrent
density around the triangle top vertex [33]. The increase

in supercurrent density eventually facilitates the vortex
depinning from the hole, where newly depinned vortices
push the vortices in front of them, leading to a cascade
effect resulting in some of the vortices being pushed out
of the specimen. This in turn allows new vortices to enter
the specimen, and the cycle of vortex motion is repeated.
Since vortices have a normal core, as they move the or-
der parameter ∆ is suppressed at the front of the core
and restored behind it. In this process the Cooper pairs
in front of the vortex are being converted into normal
quasiparticles populating the vortex core, while the core
quasiparticles relax into Cooper pairs behind the vortex.
When the applied current density increases, so does the
velocity of the vortex motion, resulting in the formation
of regions with different vortex kinematics [34, 35]. At
high enough vortex velocities (i.e. applied current den-
sity) the finite conversion rate of the quasiparticles into



6

Cooper pairs will no longer be sufficient to fully recover
superconductivity behind the passing vortex before the
adjacent one arrives, leading to two effects: (i) the core
of the original vortex effectively deforms from a circular
to an elongated shape, and (ii) an incoming vortex expe-
riences a region of suppressed superconductivity where
there is less drag and faster motion is facilitated [36].
Finally, this results in the formation of channels of sup-
pressed superconductivity where fast-moving flux quanta
with core deformation exist. An example of formation of
such channels can be seen on the CPD snapshot (2) in
Fig. 4, while snapshot (3) taken at even higher applied
current density depicts fully formed channels connecting
the adjacent holes where a complete suppression of su-
perconductivity happens. These latter events are also
known as phase-slip lines.

Besides the above described main trajectory for the
vortex motion (across the holes), a secondary lane of in-
terstitial vortices moving in between the holes can also
be identified. A convenient way to estimate the impact
of the motion of the interstitial vortices on the overall Jc
behavior is to consider a case where random pinning is
present, in addition to the square lattice of holes. For
this purpose we introduced a random pinning based on
a normal distribution of sites, with a geometric median
distance DM between the sites of either 5 ξ (dense pin-
ning) or 10 ξ (sparse pinning). For each DM two values
of pinning strength were considered, controlled by the ra-
dius of the pinning site, R = 1 ξ and 1.5 ξ. These results
are shown in Fig. 4(c) in form of Jc(0, B)/Jc(π,B) ratios
as a function of the magnetic field. Similar to what we
have seen in the absence of random pinning, Jc ratios fol-
low the same profile, increasing with B, within the range
of considered magnetic fields, with the sole difference of
the rectification effect being slightly enhanced, as the
newly added random pinning suppresses the motion of
the interstitial vortices. The impact of the pinning den-
sity and strength becomes pronounced at higher fields, a
region heavily cluttered by the interstitial vortices [37].
There, the sparse and low-intensity pinning yields the
lowest rectification (still exceeding the no-pinning case),
which then increases as the pinning intensity and density
are increased.

Finally, the results presented above correspond to
nearly perfect triangular holes. Real samples contain un-
avoidable imperfections and in particular rounded tips as
a consequence of the limited nanofabrication resolution.
In order to test the robustness of the Jc(0, B)/Jc(π,B)
ratio, we consider several cases of holes (no random pin-
ning) at T = 4.5 K and B = 115 mT with rounded
corners, where a corner diameter, D, is varied from 0 to
200 nm, in steps of 25 nm. Although D estimated from
scanning electron microscopy inspection does not exceed
20 nm, an effective rounding of the vertices could result
from a border dead layer, as discussed in [38]. The corre-
sponding Jc(0, B)/Jc(π,B) ratio presented in Fig. 4(d)
indicates a progressive non-linear deterioration of the
ratchet efficiency as the corners become less sharp. On

the same plot, we also show that Jc(0, B) and Jc(π,B)
increase with D. As D increases the asymmetry imposed
by very sharp hole corners becomes less influential, which
in turn reduces the ratchet effect. Moreover, less sharp
vertices lead to reduced current crowding, as the current
density in the specimen around the holes can be more
uniformly distributed. This is apparent on the zoomed-
in CPD snapshots (4) corresponding to D = 25 nm and
(5) corresponding to D = 175 nm. Indeed, for J = Jc
in (4) we see a very narrow region of suppressed CPD
around the vertex, from which a singular vortex can nu-
cleate, whereas in (5), the region of suppressed CDP is
much more distributed, and even two distinct vortex nu-
cleation spots can be noticed. As a result, the reduction
of the current crowding effect with increasing D will de-
lay the onset of vortex motion to higher currents, thus
resulting in an increasing Jc(θ,D).

B. Continuous electrodynamic model of the critical
states

The TDGL model discussed in the previous section
pointed to an anisotropic distribution of the critical cur-
rent density Jc(θ,B), with the strongest difference aris-
ing between θ = 0 and θ = π. In this section, we in-
vestigate the consequence of such an anisotropy on the
critical states of the system. The model is expected to
capture the physics of the problem over length scales of a
few microns to a few mm, and the aim is to show that the
critical current density anisotropy arising from the trian-
gular holes is causing the central d-line metamorphosis
observed in MOI images.
Returning to the symmetries of the system, it can

be reminded that for fully penetrated states, the square
shape leads to a pattern of screening currents organized
in four sectors with respective average flows directed
along θ = 0, π/2, π, and 3π/2. In addition, the ratchet ef-
fect leads to different vortex dynamics between the hard
and the easy directions. Thus, three different critical
current densities are expected to arise. For a magnetic
flux density pointing along +z, vortex motion along the
easy direction (+y) is associated with a small current
density, Jc(π,B), whereas vortex motion along the hard
direction (-y) is associated with a large current density
Jc(0, B) > Jc(π,B). The current densities Jc(π/2, B)
and Jc(3π/2, B), which are respectively associated with
vortex motion along the +x or -x directions, are expected
to be equal, due to both the C3 symmetry of the triangu-
lar holes and the common C4 symmetry of the sample and
the pinning array. From these symmetry considerations
and the analysis carried out in Sec. IVA, we expect the
inequalities Jc(0, B) > Jc(π/2, B) > Jc(π,B) to hold.
A first analysis is performed with the Bean model, as-

suming critical current densities that vary with the angle
θ, but do not depend on the magnetic flux density. (The
argument B is therefore omitted.) Figure 5 shows the
three possible patterns of d-lines (white solid lines) that
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may arise in a fully penetrated sample, after zero-field-
cooling. Current continuity across the d-lines must be
satisfied in each case, yielding the following conditions:

Jc(0) (w − δw2) = Jc

(π

2

)

w = Jc(π) (w + δw1), (1)

with y = δw2 − δw1 > 0 for panel (a),

Jc(0) (w − δw) = Jc

(π

2

)

w = Jc(π) (w + δw), (2)

for panel (b), and

Jc(0) (w − δw) = Jc

(π

2

) (

w − x

2

)

= Jc(π) (w + δw) (3)

with x < 2δw, for panel (c). Interestingly, these continu-
ity conditions entail strong constraints for the following
sum of ratios of critical current densities:

RJ =
Jc(π/2)

Jc(θ)
+

Jc(π/2)

Jc(π)
=











2− y/w < 2 for (a),

2 for (b),

2 w
w−x/2 > 2 for (c),

(4)

so that the actual patterns realized in experiments ap-
pear to result from a delicate balance between the three
current densities, and can be used as a direct probe of
the intrinsic anisotropy induced by the array of holes.
It is important to note that the Bean model with a field

independent Jc (i.e., Jc(θ)) is insufficient to reproduce
the change in the central d-line observed in the experi-
ments. An additional mechanism should be invoked to
account for the change in RJ from values above 2 to val-
ues below 2 as the external field is decreased. The most
natural extension is a magnetic-field dependence, with Jc
given as Jc(θ,B). To illustrate this dependence, we con-
sider again the data provided by the analysis of Sec. IVA.
Figure 6 shows ratios Jc(θ,B)/Jc(0, B) obtained with the
TDGL approach for three different strengths of the exter-
nal field. For a fixed field, the points are consistent with
a generic ovoid shape having a larger extension towards
θ = 0 than θ = π, with Jc(π/2, B) reaching an interme-
diate value. The continuous curves are guides to the eye
to illustrate the shape of the critical surfaces. These sur-
faces are deformed as the external field is increased, from
an almost elliptic curve for the lowest fields to ovoids ex-
hibiting a larger difference between Jc(0, B) and Jc(π,B)
for the largest ones.
To proceed, we use a finite-element model with a three-

dimensional H-φ formulation solving Maxwell’s equa-
tions in the magnetodynamic approximation (the dis-
placement current is neglected),

Ḃ = −∇×E, ∇×H = J, and ∇ ·B = 0, (5)

where B = µ0 H and a genuine constitutive law E(J)
must be chosen, to take into account both the anisotropy
and the magnetic flux density dependence of the critical
current density. In the remainder of this section, we con-
centrate on the E(J) law while we present the detailed
formulation used in App. A 2.

FIG. 5. Three possible patterns defined by the discontinu-
ity lines (white solid lines) for the considered sample be-
ing magnetized after zero-field-cooling conditions, assuming
Jc(θ) independent of B. All patterns respect the inequalities
Jc(0) > Jc(π/2) > Jc(π), as long as y = δw2 − δw1 > 0 in
panel (a) and x < 2 δw in panel (c). For the sake of com-
parison, the pattern of d-lines corresponding to an isotropic
superconductor is indicated with white dotted lines.

The anisotropic magnetic response is introduced by
means of the thermodynamic model suggested by Badia
et al. [39, 40], describing hard superconductors driven
out-of-equilibrium with overcritical currents. In the crit-
ical state, the superconductor system is characterized by
critical currents Jc lying along a critical curve in the
(Jx, Jy) plane. When external stimuli induce a displace-
ment of vortices, an out-of-equilibrium state is reached
with J outside the critical curve. Then, the system re-
laxes back to equilibrium while dissipating energy at a
rate, E ·J, that can be evaluated from a dissipation func-
tion, F(J). In Ref. [39], it was shown that the transient
electric field can be expressed as E = ∇J F . This rela-
tionship serves as a thermodynamically consistent E(J)
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FIG. 6. Critical points, Jc(θ,B)/Jc(0, B), obtained in the TDGL approach for different intensities of the applied field. The
TDGL critical points Jc(θ,B) with θ = 0, π/2, and π are represented for Ba = 14.3 mT (diamond), 57.2 mT (squares), and
200.6 mT (circles). The continuous curves are guides to the eye.

constitutive law.

Within this theory, the main challenge in modelling
the anisotropy in critical currents consists in finding an
expression for F that encodes the desired symmetries of
the problem. It is suggested in [40] that a practically
manageable function F has the generic form

F = F0 (E(J))M , (6)

where E(J) is a function of the current density with the
prescribed pinning symmetries and the index M is a di-
mensionless parameter that depends on pinning and mag-
netic relaxation properties of the material. The index M
is reminiscent of the critical index n appearing in the
isotropic E = Ec (J/Jc)

n law. The level set F = Fc

defines the critical surface enclosing the critical region,
which must be convex. Note that the parameter Fc can
be chosen arbitrarily, similar to the fact that the critical
electric field Ec in an E ∼ Jn law is chosen arbitrarily.

In order to identify an E(J) law that respects the
main characteristics that were revealed in the TDGL
study, we seek a form of E yielding a critical surface
with Jc(0, B) > Jc(π/2, B) > Jc(π,B) and a continuous
evolution for intermediate angles, with an ovoid shape
showing an increasing ratio Jc(0, B)/Jc(π,B) as B is in-
creased. To construct E , we keep a minimal number of
powers of J and work with the ansatz

E = Es + Ea, (7)

Es =
(

Jx
Jc,x

)2

+

(

Jy
Jc,y

)2

, (8)

Ea = − Cx√
Es

(

Jx
Jc,x

)3

, (9)

where Jc,x, Jc,y, and Cx are parameters that determine
the ovoid extension along the main axes. Note that E(J)
is a homogeneous function of degree two. We found that
this choice yields convex critical regions independent of
the value of Fc. More specifically, taking Fc = F0 yields

the critical current densities

Jc(0, B) =
Jc,x√
1− Cx

, (10)

Jc(π/2, B) = Jc(3π/2, B) = Jc,y, (11)

Jc(π,B) =
Jc,x√
1 + Cx

. (12)

To illustrate different limits, the critical surface is a circle
when Cx = 0 and Jc,x = Jc,y, in which case it describes
an isotropic superconductor with an E ∼ Jn law where
n = 2M − 1. The critical surface is an ellipse when Cx =
0 and Jc,x 6= Jc,y, which corresponds to an anisotropic
response without the ratchet effect. Last, in the general
case with Jc,x 6= Jc,y and Cx > 0, the critical surface
is not symmetric. For a proper choice of constants, it
takes the form of an ovoid with Jc(0, B) > Jc(π/2, B) >
Jc(π,B), as desired.
In the system with an array of triangular holes, the

shape of the ovoid is expected to vary with B and we are
seeking to reproduce a situation where the critical state
changes from a topology with a horizontal central d-line
(panel (c) in Fig. 5) to one with a vertical central d-line
(panel (a) in Fig. 5). Thus, the parameters Jc,x, Jc,y,
and Cx are allowed to vary with B in such a way that
the current ratio RJ in Eq. (4) decreases from a value
larger than 2 at large B to one below 2 at small B. The
parameters Jc,x and Jc,y are assumed to follow Kim’s
law [41]. For Cx, we choose a bounded, continuous, and
strictly increasing function of B. Thus, we have

Jc,x =
jc,x,0

1 +B/Bx
, (13)

Jc,y =
jc,y,0

1 +B/By
, (14)

Cx = Cx,0
B +B1

B +B2

, (15)

with 7 parameters jc,x,0, Bx, jc,y,0, By, Cx,0, B1, and B2

to be appropriately chosen.
We seek parameters that respect the constraints that

were revealed by the TDGL analysis: Jc(0, B) >



9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.8

1.9

2

2.1

2.2

2.3

B [mT]

R
J

(a)

Parameter Value Unit

jc,x,0 1 MA/cm2

Bx 1.4 mT

jc,y,0 0.95 MA/cm2

By 1.58 mT

Cx,0 0.15 -

B1 1 mT

B2 1.1 mT

(b)

FIG. 7. (a) Magnetic field dependence of the current ratio RJ . (b) Selected set of parameters.

Jc(π/2, B) > Jc(π,B) for all B, with an anisotropy
Jc(0, B)/Jc(π,B) that increases with B. (See Fig. 4(b).)
Further, RJ(B) is required to be an increasing function of
B, which equals 2 and yields the d-line structure of panel
(b) in Fig. 5 for B ∼ 1 mT, as indicated by the experi-
ments in Fig. 2. The set of parameters in Fig 7(b) sat-
isfies all these requirements and produces a succession of
critical states that follows the experimental observations,
as illustrated in Fig. 8 for a selection of critical states ob-
tained while decreasing the applied field after an initial
magnetization to 5 mT. One can see that the central
critical line is horizontal for external fields higher than
1 mT, degenerates into a single point at µ0 Ha ∼ 1 mT,
and then becomes vertical as Ha is further lowered to
reach the remanent state. The corresponding curve of
RJ as a function of B is shown in Fig. 7(a).

A few comments are in order. First, a parametrization
based on the TDGL numerical results can be found that
yields a similar succession of critical states, however with
a d-line metamorphosis taking place at larger fields than
∼ 1 mT. This should not come as a surprise, as even
though the studied TDGL system has a density of holes
similar to the experimental sample, it only contains a few
holes and is thus different from the sample. Here, the
TDGL study is used to reveal the main characteristics in
the current anisotropy and the retained parametrization
is chosen to reproduce the experimental orders of mag-
nitude. Second, it appears that while a transformation
of the central d-line is easy to obtain by implementing a
magnetic field dependence, a metamorphosis from a hori-
zontal to a vertical line requires one to identify the proper
parameters. In practice, we found that under moderate
variations of the parameters, one may obtain a succes-
sion of critical states in the wrong order — a vertical line
transforming into a horizontal one. This behavior sug-
gests that while the d-line pattern can reveal fairly small
asymmetries in the system (the current anisotropy is of
the order of a few percent), the critical states result from
a delicate balance between the different current densities.
A third comment concerns the model main assumption,
that the anisotropy in the current densities is homoge-
neous. More specifically, the C4 symmetry of the hole

network is ignored, together with the likely occurrence
of channels of propagation of the magnetic flux along
its principle axes. The current formalism with convex
F functions would need to be adapted to include this
additional symmetry. A last comment concerns the ad-
equacy of our findings with the experimental pictures in
Fig. 2. The model proposed here provides a plausible
mechanism for explaining the transformation of the cen-
tral d-line, namely that the ratchet effect, embodied in
the θ dependence of the critical surface Jc(θ,B), needs
to be field-dependent. While our model reproduces the
d-line structures of the observed critical states, it can
be seen that other experimental characteristics are not
captured. The simulated central lines are shorter than
the experimental ones. Moreover, the simulated central
d-line respects a left-right mirror symmetry, whereas the
experimental line appears to be shifted to the left and to
the bottom as Ha is decreased. The two lower experi-
mental oblique lines also seem to have ‘kinks’ for certain
values of Ha. These discrepancies might be due to the
presence of defects that perturb the magnetic flux pene-
tration and possibly introduce asymmetries that are not
included in our model.

C. Numerical modelling of thermomagnetic flux
instabilities

Several ingredients ruling the magnetic flux penetra-
tion were not accounted for by the phenomenological
model presented in the previous section. First, the actual
array of triangular holes was indirectly considered by an
effective pinning yielding an anisotropic current density,
while the detailed geometry of the pinning array was ig-
nored. Second, the possible local thermal heating caused
by rapid flux motion was neglected. In this section, we
numerically investigate the influence of these two effects
on the morphology of the flux penetration.
In the numerical simulations, we consider a square su-

perconducting film with size of 2w = 5 mm and thickness
of d = 45 nm, which is exposed to a gradually increasing
transverse magnetic field. The superconducting film is
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(a) (b)
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FIG. 8. Out-of-plane component of the simulated magnetic flux density, µ0Hz, for different applied fields Ha. The magnetic
flux density is expressed in mT. The set of parameters used is that in Fig. 7(b). The critical states shown correspond to the
decreasing stage after having applied a maximum flux density of 5 mT, with either (a) µ0Ha = 3.11 mT, (b) µ0Ha = 1 mT,
(c) µ0Ha = 0.75 mT, or (d), for the remanent state.

assumed to be in thermal contact with a substrate which
is kept at a constant temperature T0 (i.e. the environ-
mental temperature). The superconducting film contains
a periodic array of equilateral triangular holes of side b
and period s. (See inset in Fig. 9(a).)

The electrodynamics of the superconducting film ex-
posed to a transverse magnetic field is obtained by solving
Maxwell’s equations in the magnetodynamic approxima-
tion (the displacement current is neglected),

Ḃ = −∇×E, ∇×H = Jsδ(z) and ∇ ·B = 0, (16)

with B = µ0H and ∇·Js = 0. Here, the film thickness d
is neglected against the other characteristic length scales
and thus the current density is given as Jsδ(z), with Js

the sheet current and δ(z) the Dirac delta distribution.

The time evolution of the temperature in the system
is governed by the heat propagation equation

dcṪ = dκ∇2T − h(T − T0) + Js ·E, (17)

where κ and c are the thermal conductivity and the spe-
cific heat of the superconducting film, h is the coefficient
of heat transfer between the superconducting film and
the substrate, and T0 is the substrate temperature which
is kept constant. The thermal parameters κ, c, and h are
assumed to be proportional to T 3 [42].

The constitutive relationship between current and elec-
tric field is given by [42]

E = ρ(Js)Js/d, (18)

with a non-linear resistivity

ρ(Js) =







ρ0(Js/Jcs)
n−1, Js ≤ Jcs, T ≤ Tc,

ρ0, Js > Jcs, T ≤ Tc,
ρn, T > Tc,

(19)

where ρ0 is a constant, ρn is the normal state resistivity,
Jcs is the critical sheet current density, and n is the flux
creep exponent. The temperature dependencies are taken
as

Jcs = Jc0s(1− T/Tc) and n = n0Tc/T, (20)

where Jc0s and n0 are constants. Equations (16) together
with the material law are numerically solved by an effi-
cient Fourier real-space hybrid algorithm and the integral
method (see details in Refs. [42, 43]) with boundary con-
ditions setting ρ = ρn in the holes (see Ref. [44]). Simu-
lations details and parameters are given in App. A 3.
Panels (a) and (b) in Fig. 9 show the contour plots of

the magnetic field distribution in a superconducting film
with a periodic array of small triangular holes for com-
mon parameters and different working temperatures T0.
Since exactly reproducing the 1.5 × 106 triangular holes
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FIG. 9. Magnetic-flux distribution in a superconducting film
with a periodic pinning array of equilateral triangular holes
of side b and period s, obtained by numerical simulations for
(a) T0 = 5 K, Ba = 0.6 mT, Jc0s/d = 1.2 × 1011 A/m2,
b = 76.5 µm, s = 127.6 µm; (b) T0 = 2.5 K, Ba = 0.3 mT,
Jc0s/d = 1.2 × 1011 A/m2, b = 76.5 µm, s = 127.6 µm;
(c) T0 = 2.5 K, Ba = 1.1 mT, Jc0s/d = 3.6 × 1011 A/m2,
b = 178.6 µm, s = 408.2 µm; (d) T0 = 2.5 K, Ba = 0.6 mT,
Jc0s/d = 1.2× 1011 A/m2, b = 382.7 µm, s = 994.9 µm.

of the experimental sample requires prohibitively large
computing resources, we limit the simulations to an array
of N×N holes with N = 32. For the high temperature of
5 K, the flux smoothly penetrates to the center of the film
without any thermomagnetic instability and eventually a
clear X-shape d-line is formed (Fig. 9(a)), which is con-
sistent with the experimental result at µ0H = 1.37 mT,
which is shown in Fig. 2. This indicates that the magnetic
field morphology induced by current flow is not sensitive
to the asymmetry of triangle holes. For the low tem-
perature (T0 = 2.5 K), however, several finger-like flux
avalanches are observed at Ba = 0.3 mT (Fig. 9(b)).
Note that the flux avalanches first nucleate at the bot-
tom edge and then develop along the easy direction as
revealed by the experiment (see Fig. 3).

As the size of the holes could affect the crowding level
of current flow around the holes, we further investigate
the flux avalanches in the superconducting films with a
periodic array of triangular holes of different sizes. For
intermediate triangular holes (b = 178.6 µm, s = 408.2
µm), the first avalanche is also triggered at the bottom
edge and subsequently other magnetic flux avalanches
appear along the other borders (Fig. 9(c)). Moreover,

FIG. 10. Magnetic-flux distribution of superconducting films
with a periodic array of equilateral triangular holes of side b =
382.7 µm, and period s = 994.9 µm, in a decreasing magnetic
field with Ḃa = −5 T/s after the applied field increase to 6
mT at T0 = 2.5 K.

it can be seen that the morphology of avalanches enter-
ing from the bottom is finger-like whereas those origi-
nating from other sides exhibit sideway branching. The
branches of dendritic flux avalanches from the upper edge
are likely to develop and grow along the two corners
of the triangular holes, which can be clearly observed
in the superconducting film with even bigger holes (see
Fig. 9(d)). One can see that a narrow channel consist-
ing of magnetic flux moving from the sample borders to
the closest triangular holes is firstly formed. When the
flux channel with elevated temperature [45] reaches the
holes, the magnetic flux fills the triangular holes through
these channels. Then, the secondary avalanches are trig-
gered at the sharp corners of the triangular holes, which
spread to neighboring holes. To conclude, the avalanches
occurring at the bottom edge and developing along the
vertical upward direction are more likely to form finger-
like morphology, while the flux avalanches triggered at
the upper edge will spread laterally along the bottom
corners of the triangular holes to form more branched
avalanches. Since the size of triangular holes affects the
morphology and size of flux avalanches, considering that
all the triangular holes in our simulations are much larger
than those in the experimental samples, the morphology
of avalanches shown in Fig. 9 cannot perfectly replicate
the experimental results. Notwithstanding the hole size
difference, the simulated anisotropy of flux avalanches is
consistent with the results observed in experiments.

In Fig. 10, we show the flux avalanches in the super-
conducting film shown in Fig. 9(d), which is exposed to
a decreasing applied magnetic field after it was first in-
creased to 0.6 mT. Bright regions correspond to posi-
tive penetrated flux, dark areas represent negative flux
(antiflux). As shown in panel (a), there are several re-
versed flux avalanches occurring in the film, all of them
nucleating near the avalanches already triggered during
the increasing field and penetrating the film through the
same tracks, which is consistent with the experimental
results reported in Ref. [46]. By comparing Fig. 10(a)
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with Fig. 9(d), one can find that the antiflux penetrates
the film and is trapped by the hole, so that the flux in
the holes is gradually restored. When the applied mag-
netic field is further reduced to −0.55 mT, as shown in
panel (b), three antiflux avalanches are triggered and ex-
pand along new paths. Notice that a larger negative
flux is trapped by the holes in this process. Overall, the
avalanches of antiflux triggered in a decreasing field pre-
fer to reuse the paths of the flux avalanches which were
created by increasing field.

V. CONCLUSIONS

We considered samples with a non-centrosymmetric
pinning texture induced by a square array of triangular
holes. We investigated the resulting magnetic flux recti-
fication effect for both the smooth flux penetration and
the thermomagnetic instability regimes. For the former
regime, the magneto-optical images revealed a pattern of
discontinuity lines that evolves under decreasing fields,
with the central horizontal line metamorphosing into a
vertical one. A time-dependent Ginzburg-Landau model
showed that the array of holes leads to a ratchet effect,
with critical current densities distributed as a function of
the angle along a critical line in the form of an ovoid. The
TDGL analysis further revealed that vortices nucleate at
the vertices of the triangular holes and then preferentially
move from hole to hole, whereas interstitial vortices see
their motion hampered by bulk pinning. This scenario
is robust for small variations of pinning strengths, defect
sizes, and also a moderate rounding of the triangular hole
vertices. An analysis of the magnetic flux distribution
at the level of continuous electrodynamics showed that
the observed evolution of the central d-line can be re-
produced provided two essential properties are satisfied:
(i) the system shows a ratchet effect with an asymmetry
for currents flowing parallel to the bases of the triangular
holes, and (ii), the critical current densities vary with the
local magnetic flux density.
For the thermomagnetically unstable regime, experi-

ments showed anisotropic bursts of magnetic flux, with
vortices preferentially leaving the triangular holes from
their vertices, in accordance with the precursor behav-
ior observed in the TDGL calculations. Further calcu-
lations at the continuous electrodynamics level showed
that avalanches developping along the easy direction have
a finger-like morphology, whereas those occuring in the
opposite direction spread laterally and yield additional
branches, as vortices leave the holes through lateral ver-
tices. When the field is reduced after an initial magne-
tization, the antiflux avalanches tend to reuse the path
of avalanches triggered during the field increase, thereby
confirming the earlier experimental results of Ref. [46].
These findings show that non-centrosymmetric pin-

ning textures can induce rectification of the magnetic
flux penetration, bring subtle modifications to the criti-
cal state profiles, and affect the morphology of magnetic

flux avalanches. While an anisotropic pinning can be
exploited to guide the flux penetration in magnetic flux
lenses, observing the evolution of the critical states with
the external field can be used as a macroscopic tool to
determine their efficiency.

Acknowledgments

This work is supported in part by the Fonds de
la Recherche Scientifique - FNRS, under Grant No.
U.N027.18 and T.0204.21, the COST actions CA16218
and CA19108, and Research Foundation - Flanders
(FWO). L. J. and C. X. acknowledge the support by the
National Natural Science Foundation of China (Grants
No. 11972298 and No. 11702218). The authors
also acknowledge the Brazilian agencies São Paulo Re-
search Foundation (FAPESP, grants 2007/08072-0 and
09/10818-5), Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior - Brasil (CAPES)-Finance Code
001, and National Council of Scientific and Technologic
Development (CNPq).
M. Motta and L. Burger contributed equally to this

work.

Appendix A: Numerical models and methods

1. TDGL method

The TDGL framework provides the information about
the spatio-temporal distribution of the inhomogeneous
superconducting complex order parameter, ∆(r, t), in the
presence of the magnetic vector potential A(r, t) and the
electrostatic potential ϕ(r, t). The underlying dimension-
less equations of the model are:

u
∂∆

∂t
= (∇− iA)

2
∆+ (1− |∆|2)∆− iϕ∆, (A1)

and

∇2ϕ = ∇
(

|∆|2 [∇Θ−A]
)

, (A2)

where time is given in units of τGL(T ) = π~/8kBTcuf(T )
(~ being the reduced Planck’s constant, kB the Boltz-
mann constant, u = 5.79 is the average ratio of the re-
laxation times of the order parameter amplitude |∆(r, t)|
and the order parameter phase, Θ(r, t) [47], and f(T ) =
1 − T/Tc is the thermal kernel carrying the tempera-
ture dependence of the system), corresponding to the
Ginzburg-Landau (GL) relaxation time. All distances
are expressed in units of the coherence length, ξ(T ) =

ξ(0)/
√

f(T ). The order parameter is scaled with its bulk

value, ∆GL(T ) = 4
√
ukBTc/π

√

f(T ), while the units
of electrostatic and magnetic potentials are ϕGL(T ) =
~/e∗τGL(T ) and AGL(T ) = Bc2(T )ξ(T ), respectively
(e∗ = 2e is the charge of the Cooper pair and Bc2(T ) =
Φ0/2πξ

2(T ) is the bulk upper critical magnetic field, also
used to scale the overall magnetic field, B, with Φ0 be-
ing the magnetic flux quantum). The unit of the current
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density J is JGL(T ) = σnϕGL(T )/ξ(T ), where σn is the
electrical conductivity of the system.
The applied electrical current density Ja is injected

into the system via the boundary conditions describing
the superconductor-normal (SN) interface ∇ϕ(rNS) =
Ja (i.e. the normal contacts, where rNS denotes the SN
interface region) along which the condition ∆(rNS) = 0
must be satisfied, too. Along the direction perpendicular
to the flow of the current density superconductor-vacuum
(SV) boundaries are applied, preventing leakage of both
the supercurrent density (∇ − iA)∆(rSV ) = 0 (rSV de-
notes the SV interface region) and the normal current
density ∇ϕ(rSV ) = 0 through these boundaries. Dur-
ing the investigation of Jc(θ,B) behavior, in the cases
θ = 0 and θ = π, the SN region was located between
y = 0 and y = L, along the entire x direction (where
the sign of the applied current was reversed between the
cases θ = 0 and π). For θ = π/2, the SN region was
located between x = 0 and x = L, along the entire y
direction. The voltage V was extracted as an average of
the electrostatic potential difference ∆ϕ = ϕ(r1)−ϕ(r2)
where regions r1 and r2 are lines parallel to the normal
contacts and separated from them each by a distance of
40 ξ. Simulations of the dynamics of the superconduct-
ing condensate are performed on a computational grid of
size ∆x = ∆y = 0.1 × ξ(T ), where for each value of ap-
plied current density and magnetic field, duration of the
simulation was set to 105× τGL(T ) time units in order to
guarantee that either the steady-state or the state of the
dynamic equilibrium is reached. The bath temperature
of the system was set to 4.5 K.

2. Continuous electrodynamics approach with a
finite element formulation

We use a finite-element model with a three-dimensional
H-φ formulation. The simulation domain, Ω, contains
the superconducting film, defining a conducting domain
Ωc, embedded in a non-conducting domain Ωc

c = Ω/Ωc.
The domain Ω is discretized in elements and the mag-
netic field, H, is approximated as a linear combination
of elementary functions as follows:

H = Ha + h, (A3)

h =
∑

ei∈Ωc

aiψi +
∑

nj∈Ωc
c

bj∇φj , (A4)

where Ha and h are the applied and the reaction fields,
respectively. The functions ψi are linear and defined on

the element edges ei of Ωc (excluding its surface), while
φj are linear nodal functions defined on the nodes of Ωc

c

(including the surface of Ωc). The coefficients ai and
bj are the unknowns of the problem. The H-φ formu-
lation follows from a standard integration of Faraday’s
law over Ω, leading to a weak formulation of the prob-
lem [48]. Additionally, we follow the method introduced
in [49] to avoid truncation errors which are inherent to
the finite extension of the simulating domain. Shell-
transformations [50] are implemented over a region Ω/Ωb,
where Ωb is an arbitrary region which includes Ωc.

The simulation domain is meshed with Gmsh [51],
while the H-φ formulation is solved with GetDP [52].
The simulated domain consists in a series of 13 extruded
layers of the same planar unstructured mesh (Delaunay
triangulation). The mesh size is varying from 10 µm
in the central area of the film where the metamorphosis
of the d-line is observed, to 50 µm along the film bor-
ders and 5 mm along the boundary of the transforma-
tion shell. The discretization in time is made with finite
differences using an implicit Euler method. At each time
step, the non-linear equations are resolved with Newton-
Raphson iterations until the residual is lower than an
absolute value of 10−6 or the relative difference between
the current and the first iterative step is lower than 10−6.
The time stepping is adapted according to the required
number of iterations.

3. Continuous electrodynamics simulations of
avalanches

The simulations are implemented on a domain with a
rectangular area of 2Lx × 2Ly discretized on a 256× 256
equidistant grids, where Lx = Ly = 1.3w and w is the
half-size of the square sample in simulations. The super-
conducting parameters used in the numerical simulations
are given as Tc = 6.8 K, Jc0s/d = 1.2× 1011 A/m2, and
ρ0 = ρn = 5 × 10−9 Ωm [29]. The thermal parameters
vary with temperature as κ = 20 W/Km ×(T/Tc)

3, h =
104 W/Km2×(T/Tc)

3 and c = 3×104 W/Km3×(T/Tc)
3,

respectively [29]. We adopt n0 = 20 and limit the creep
exponent to n(T ) ≤ 100 for convergence issues [45]. The
superconducting film is exposed to an increasing mag-
netic field ramped at a rate Ḃa, from an initial zero-field
cooled state.
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