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ABSTRACT

Novel quantum phases of matter and developing practical control over their
characteristics is one of the primary aims of current condensed matter physics.
It offers the potential for a new generation of energy, electronic and photonic
technologies. Among all the newly found phases of matter, topological insula-
tors are novel phases of quantum matter with fascinating bulk band topology
and surface states protected by specific symmetries . For example, at the
boundary of a strong topological insulator and a trivial insulator, metallic
surface states appear that are protected by time-reversal symmetry. As a
result, the bulk continues to be insulating, while the surface can support
exotic high-mobility spin-polarized electronic states.

Since there is no such thing as a clean system, impurities and other
disorders are always present in materials. Even while impurities appear to be
unfavourable to a system at first look, doping the host system with impurities
allows us to engineer different electronic properties of systems, such as the
Fermi level or electron density. Because of the symmetry protected metallic
states in topological insulators, charge transport responds distinctively to
magnetic and non-magnetic impurities.

This doctoral dissertation explores how the longitudinal charge transport
in magnetic topological thin films and the anomalous Hall effect on the
surface of 3D magnetic topological insulators is influenced by point-like
and randomly distributed dilute magnetic impurities. We are interested
in how charge transport in these systems responds to the orientation of
the magnetization orientation and how this response evolves based on the
system’s main characteristics, such as the magnitude of the Fermi level or
gate voltage.

Because topological insulators have a strong spin-orbit coupling, the in-
teraction between conducting electrons and local magnetic impurities is very
anisotropic. We will show that this anisotropy even enhances when magnetic
topological thin films are exposed to a substrate or gate voltage. Therefor, to
properly capture this anisotropy in charge transport calculations, we rely on
a generalized Boltzmann formalism together with a modified relaxation time
scheme.
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We show that magnetic impurities affect the charge transport in topologi-
cal insulators by inducing a transition selection rule that governs scatterings
of electrons between various electronic states. We see that this selection rule
is highly sensitive to the spin direction of the magnetic impurities as well as
the position of the Fermi level. According to this selection rule and depending
on the position of the Fermi level, two different transport regimes are realized
in magnetic topological thin films. In one of these regimes, our findings show
that a dissipationless charge current can be generated. In other words, even
if there are many magnetic impurities in the system, electrons do not no-
tice them and, remarkably, conduct charge without dissipation. Outside this
regime, the charge transport is always dissipative and its sensitivity to the
spatial orientation of the magnetic impurities can be effectively modulated by
a substrate or gate voltage.

In this doctoral thesis, we also explore the anomalous Hall effect (AHE) on
the surface of 3D magnetic topological insulators. The AHE is generated by
three mechanisms: the intrinsic effect (owing to a nonzero Berry curvature),
the side jump effect, and the skew scattering effect. They compete to dominate
the AHE in distinct regimes. Analytically, we calculate the contributions of
all three mechanisms to the scattering of massive Dirac fermions by mag-
netic impurities. Our results reveal three transport regimes based on the
relative importance of the engaged mechanisms. The identification of these
three distinctive transport regimes can assist experimentalists in achieving
a regime in which each contribution is dominant over the others, allowing
them to measure them separately. Typically, this is not feasible empirically
since the total value of the experimentally observed AHE conceals the specific
information of each of the three contributions.

Based on our analytical calculations, we prove that the AHE can change
sign by varying the orientation of the surface magnetization, the concentra-
tion of impurities, and the location of the Fermi level, which is consistent
with previous experimental findings. In addition, we show that by suitably
adjusting the given parameters, any contribution to the AHE, or even the
entire AHE, can be turned off. For example, in a system with in-plane magne-
tization, one can turn off the AHE by pushing the system into the completely
metallic regime.

Furthermore, we demonstrate that any contribution to the AHE, or even
the whole AHE, can be turned off by appropriately changing the provided
parameters. For example, in a system with in-plane magnetization, the AHE
can be turned off by pushing the system into the fully metallic regime.



NEDERLANDSTALIGE ABSTRACT

De zoektocht naar nieuwe kwantumfasen en het realiseren van praktische
controle over hun karakteristieken vormt momenteel een van de belangrijkste
doelstellingen in de vaste-stoffysica. Het biedt het potentieel voor een nieuwe
generatie technologieën. Topologische isolatoren vormen zo’n nieuwe kwan-
tumfase met een fascinerende bulk band topologie en oppervlakte-toestanden
beschermd door bepaalde symmetrieën. Zo vormen zich bijvoorbeeld op het
grensvlak van een sterke topologische isolator en een triviale isolator metal-
lische oppervlakte-toestanden die beschermd zijn door tijdsomkeersymmetrie.
De bulk blijft isolerend, terwijl het oppervlak exotische spin-gepolariseerde
elektronische toestanden met een grote mobiliteit ondersteunt.

Een materiaal bevat altijd onzuiverheden en andere vormen van wanorde.
Ook al lijkt de aanwezigheid van onzuiverheden op het eerste zicht steeds
ongunstig te zijn, laat het doteren van een materiaal met onzuiverheden
toe om de elektronische eigenschappen ervan te tunen, zoals het Fermi-
niveau of de elektronendichtheid. Omwille van de door symmetrie bescherm-
de oppervlakte-toestanden zal de aanwezigheid van magnetische en niet-
magnetische onzuiverheden het ladingstransport in topologische isolatoren
verschillend beïnvloeden.

In deze thesis wordt bestudeerd hoe het longitudinale ladingstransport
in dunne magnetische topologische filmen en het ‘anomalous’ Hall effect
beïnvloed worden door puntachtige en random gedistribueerde magnetische
onzuiverheden. We zijn geïnteresseerd in hoe het ladingstransport in deze
systemen beïnvloed wordt door de orientatie van de magnetisatie en hoe deze
respons afhankelijk is van belangrijke karakteristieken van het systeem,
zoals het Fermi-niveau of een aangelegde gate spanning.

Omdat topologische isolatoren een sterke spin-baan koppeling hebben,
is de interactie tussen de geleidende elektronen en de lokale magnetische
onzuiverheden sterk anisotropisch. We zullen tonen dat deze anisotropie zelfs
kan versterkt worden in dunne magnetische topologische filmen die inter-
ageren met een substraat of onderhevig zijn aan een gate spanning. Om dit
anisotroop ladingstransport volledig te kunnen vatten werd gebruik gemaakt
van een veralgemeend Boltzmann formalisme samen met een aangepast
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relaxatie-tijd schema.
De magnetische onzuiverheden bepalen het ladingstransport door een se-

lectieregel op te leggen die de verstrooiing van elektronen tussen verschillende
elektronische toestanden bepaalt. Deze selectieregel blijkt sterk afhankelijk
van de magnetisatierichting van de onzuiverheden en van het Fermi-niveau.
Ten gevolge van deze selectieregel en afhankelijk van het Fermi-niveau,
kunnen twee verschillende transportregimes gerealizeerd worden in dunne
magnetische topologische filmen. Zo kan een weerstandsloze ladingsstroom
gegenereerd worden, waarbij de magnetische onzuiverheden de elektronen
ongestoord laten passeren. Buiten dit regime is het ladingstransport steeds
dissipatief en kan de afhankelijkheid van de oriëntatie van de magnetisatie
gemoduleerd worden via een substraat of een gate spanning.

Daarnaast exploreren we in deze thesis ook hoe het ‘anomalous’ Hall effect
(AHE) op het oppervlak van een 3D topologische isolator beïnvloed wordt door
de richting van de oppervlakte-magnetisatie en hoe deze respons afhangt
van de massa van de Dirac fermionen. Het AHE wordt gegenereerd door drie
mechanismen: het intrinsieke effect (t.g.v. een Berry kromming verschillend
van nul), het ‘side jump’ effect, en het ‘skew scattering’ effect, die elk het
AHE kunnen domineren, afhankelijk van het regime. De bijdrage van elk
mechanisme tot de verstrooiing van massieve Dirac Fermionen aan magnetis-
che onzuiverheden werd analytisch bepaald. Onze resultaten tonen dat drie
verschillende transportregimes kunnen geïdentificeerd worden op basis van
het onderlinge relatieve belang van de drie mechanismen. De identificatie
van deze drie verschillende trasportregimes kan experimentatoren helpen om
een regime te realiseren waarin een mechanisme dominant is, waardoor ze
apart kunnen gemeten en bestudeerd worden.

Onze analytische berekeningen tonen ook dat het teken van het AHE kan
veranderen door veranderingen in de oriëntatie van de oppervlaktemagneti-
satie aan te brengen, de concentratie aan onzuiverheden te wijzigen of het
Fermi-niveau aan te passen. Dit is in overeenstemming met experimentele
observaties. Daarnaast tonen we dat elk van de drie bijdragen, door het aan-
passen van deze parameters, kan uitgezet worden, en dat zelfs het hele AHE
kan verdwijnen. Bijvoorbeeld, in een systeem met enkel een magnetisatiecom-
ponent in het vlak kan het AHE uitgezet worden door het systeem volledig in
het metallische regime te brengen.
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1
INTRODUCTION

Topological insulators (TIs) are of great interest in both fundamental physics
and applied technology. Whenever the bulk of a D-dimensional topological
insulator, like any other band insulator, is gapped, (D-1)-dimensional gapless
states appear on its surfaces or edges [1–3]. These lower-dimensional metallic
surface or edge states are protected by particular symmetries, such as time-
reversal (TR) or crystalline symmetry [4]. TR invariant three-dimensional
insulators are a large family of topological insulators occurring in materials
with strong spin-orbit interaction.

Within a certain energy range, surface states of a 3D topological insulator
(3DTI) can be described by an effective 2D massless Dirac Hamiltonian [1].
However, terms such as quadratic-in-momentum and anisotropic hexagonal-
warping should be considered within the efficient Hamiltonian at higher
energies [5–7].

Strong spin-orbit coupling (SOC) in TIs couples the spin of electrons to
their momentum, resulting in spin-dependent charge transport [8, 9]. For
example, backscattering of electrons from impurities on the surface of a
3DTI is prohibited as long as the impurity potential does not break the
TR symmetry [10]. The SOC and the topologically protected edge states
give rise to the quantum anomalous Hall effect (QAH) [11, 12], topological
magnetoelectric effect [13], and a variety of other novel quantum phenomena
[14–18].
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2 INTRODUCTION

All these exotic features of TIs have attracted a lot of interest theoretically
and experimentally [1–3]. Revealing these topological transport features on
the surface of 3DTIs or in thin topological films is an important direction
of research. As there is no such thing as a pure material, impurities will
always appear in it, and therefore we must understand how they influence
the functioning of the base system. For this purpose, the dependency of charge
transport in topological materials on the type of disorder and the range of
disorder-electron interaction has been extensively studied [19].

When topological materials are doped with magnetic impurities, the story
of charge transport differs significantly from that of non-magnetic topological
materials. The collective behaviour of randomly distributed pointlike mag-
netic impurities in topological insulators will break time-reversal symmetry
and forces the system into a gapped system. As a consequence, backscat-
tering is no longer prohibited. This story becomes more interesting, when
opposite surfaces in topological materials hybridize, and the substrate (or a
gate voltage) breaks inversion symmetry.

1.1 Motivation

Although considerable studies have been devoted to the charge transport in
magnetic topological materials in different systems and different regimes,
less attention has been paid to the effect of the orientation of the magnetic
impurities on the charge transport in 3DTIs.

In this doctoral thesis, we are primarily motivated to investigate how
charge transport in magnetic 3DTIs responds to changes in the orientation of
magnetization and how this response depends on the system’s main character-
istics, for example the value of the Fermi level. In addition, we are interested
to know how this response can be controlled by external fields. To realize
this goal, we investigate theoretically the longitudinal charge conductivity in
magnetic topological ultra-thin films in chapters 3 and 4, after describing the
applied theoretical methodology in chapter 2.

In chapter 3, we study how changing the spin orientation of point-like,
short-range, and randomly distributed dilute magnetic impurities affects the
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charge transport in magnetic topological ultra thin films. Magnetic impurities
induce a chirality selection rule that governs electron transitions. This selec-
tion rule is sensitive to the spin direction of the impurities and the position of
the Fermi level. Depending on this transition selection rule induced by the
magnetic impurities, two distinct transport regimes are realized.

In chapter 4, we investigate how a substrate (or gate voltage) can affect
the response of the charge transport in magnetic topological ultra-thin films
to the orientation of the magnetization.

The Boltzmann approach is modified in chapter 5 to explore the anomalous
Hall effect (AHE) on the surface of magnetic 3DTIs. In this chapter, we
take into account changes in the orientation of the magnetic impurities, in
addition to other degrees of freedom, to better understand the physics behind
the experimentally observed sign change of the AHE observed in magnetic
topological materials [20].

In all three chapters 3, 4 and 5, we rely on low-energy Hamiltonians that
capture the fundamental mechanics of these systems. We proceed by giving
a brief historical overview of the development of the topological phases and
consequently topologically protected transport properties.

1.2 What is topology?

To comprehend the topological aspects of electronic properties of TIs, the
concept of topology has first to be clarified. In this section, we make a link
between topological properties of shapes in mathematics and topological
properties of materials using the Gauss-Bonnet theorem. This link highlights
the significance of topological quantities in topological materials.

A manifold is a topological space in geometry that, near each point, resem-
bles Euclidean space. If manifold A and B can be adiabatically deformed into
each other, they have the same topology. Otherwise, we will call them topologi-
cally distinct. Mathematicians develop topological parameters to differentiate
various manifolds and objects with the same topology take the same value for
a particular topological parameter.

The Gauss–Bonnet theorem plays a crucial role in our understanding of
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Figure 1.1: Illustration of normal planes, normal vector, normal selection and tangent
plane (adopted from Ref. [21]).

topology. This theorem relates the Gaussian curvature, as a local property, to
the Euler characteristic, as a global or topological property for a 2D closed
manifold. To define the curvature for a curve at a particular point, we draw
a circle to meet the point. The curvature of each drawn circle is defined as
k = 1

R , where R denotes the radius of a particular circle. It is obvious that lots
of curves can be drawn at a particular place on a manifold.

As shown in Fig. 1.1, at each point on a 2D manifold, we can find a normal
vector that is perpendicular to the surface, and the planes containing the
normal vector are referred to as normal planes. The intersection of a normal
plane and a 2D manifold yields a curve known as a normal section, and the
curvature of this curve is known as the normal curvature. Different normal
selections will have different curvatures at most points on a particular 2D
manifold. The largest and smallest values of these curvatures are called
the principal curvatures, which are denoted by k1 and k2. The Gaussian
curvature is defined as κ = k1k2. For example for a sphere k1 = k2 = 1

R and
κ= 1

R2 . The Euler characteristic χ was classically defined for the surfaces of
polyhedra, and it is χ=V −E+F, where V , E, and F denote the numbers of
vertices (corners), edges and faces in the given polyhedron. For example for
a octahedron, V = 6, E = 12, F = 8, resulting in χ= 2. For a closed 3D object,
χ= 2(1− g), where g denotes the genus in the manifold, or in other words, χ
measures the number of "handles" on the object. Now, for any compact and
two-dimensional manifold, the two introduced concepts, Euler characteristic
and Gaussian curvature can be connected. The integral of the Gaussian
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curvature over the entire manifold reads∫ ∫
M
κ dS = 2πχ. (1.1)

For every 2D closed manifold,
∫ ∫

M κ dS over the whole manifold is invariant
no matter how the manifold is deformed (adiabatically), and its value only
cares about the topology of the manifold M. Eq. 1.1 is somewhat surprising
because the Gaussian curvature depends on the local geometry of the manifold
while the Euler characteristic is entirely independent of the geometry. As a
result, regardless of how we deform the geometry of the manifold, the same
total curvature persists.

The representation of shapes in geometry is essential. A right-angled
triangle differs from an equilateral triangle, for example. Topologically, these
two triangles, as well as many other forms, are identical. In general, two
objects are topologically identical if one of them can be stretched, shrunk,
bent, or twisted to look like the other. It is not allowed to tear or attach. A
triangle, a square, and a circle are all topologically equivalent, but none are
topologically equivalent to a line segment. We would have to tear a triangle
to produce a line segment, then stick two line segments together to form a
triangle.

After this brief introduction to the concept of topological properties, the
question arises: what functions in condensed matter physics as genus and
Gaussian curvature? The question will be answered in section 1.4.1. We
first discuss the function of an energy gap in the topological classification of
materials before answering this question.

1.3 The role of the energy gap in the
topological classification of materials

To systematically study the electronic properties of crystals and classify them
based on their electrical conductivity, we employ band theory which is one of
the triumphs of quantum mechanics in the 20th century. Within this theory,
Bloch’s theorem states that solutions to the Schrödinger equation in a periodic
potential take the form of a plane wave modulated by a periodic function.
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Bloch’s theorem employs the translational symmetry of crystals to distinguish
electronic states in terms of their crystal momentum k, defined in a periodic
Brillouin zone.

The Bloch states uk are eigenstates of the Bloch Hamiltonian H(k), de-
fined in a single unit cell of a crystal. The eigenvalues of Bloch Hamiltonian
H(k), E(k) are energy bands that collectively construct the band structure.
According to the band structure of an insulator, an energy gap separates the
occupied valence band states from the empty conduction band states. The size
of the energy gap in good insulators is larger than the size of the energy gap
in semiconductors.

In material science, one way to classify materials is based on the size of
the gap that appears in their band structure. However, in terms of topology,
a particular semiconductor can be adiabatically transformed to a particular
perfect insulator. Hence, based on their electronic properties they belong to
two distinct classes, while in terms of topology they are in the same class.
Generally speaking, quantum phases with an energy gap are topologically
equivalent provided that they can be smoothly deformed to each other without
closing the gap, as shown in panel a of Fig. 1.2. In other words, insulators
are topologically equivalent if there exists an adiabatic path connecting their
associated Hamiltonians (in parametric space) provided that the energy gap
remains finite. Indeed, such insulators are topologically equivalent to the
vacuum which based on Dirac’s relativistic quantum theory has an energy
gap between conduction and valence bands.

Then, as long as the interior remains insulating, changing the material
parameters does not change the topological class which is characterized by
the presence (or absence) of robust surface conduction. While the number of
holes in closed 2D surfaces can be any positive integer, there are only two
topologically distinct types of TR invariant insulators: topological insulators
(surface conduction) and trivial insulators (no surface conduction). Just as we
can only deform a sphere to a donut if a hole is created, we can only transition
between a trivial and a topological insulator if the interior of the materials
stops being an insulator. Due to the fact that the surface of a topological
insulator has a boundary with air, a trivial insulator, the material must
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E

Figure 1.2: (a): Smooth deformation in which there is an adiabatic path connecting a
particular state ui to u f without closing the gap. (b): Non-smooth deformation. The gap
vanishes during the transformation ui → u f .

conduct across the interface to transition between two topologically distinct
regions. This is why, regardless of the details, the surface of a topological
insulator conducts electricity.

1.4 The quantum Hall effect (QHE)

The electronic states in the QHE are the first discovered topological states.
The QHE is a perfect phenomenon in which local non-topological electronic
properties are connected to the topological properties, as seen in mathematics.
We begin by introducing the classical-quantum Hall effect, which serves as
the foundation for the QHE.

The Hall effect was discovered by Edwin Hall in 1879. It occurs when a
conductor is subjected to a magnetic field and a in-plane electric field. The
solution of the motion equation of electrons,

m
d2r
dt2 =−eE− ev×B, (1.2)

describes the trajectory of an electron in the presence of electric and magnetic
fields as follows

r(t)= v0t+r0(t), (1.3)

where v0 = (E×B)/B2, r0(t)= r0 (cosωct,sinωct,0), ωc = eB/m. Also, e, me

and v are the charge, mass and velocity of electrons, respectively. Considering
the electric and magnetic fields are perpendicular to each other (i.e. E =
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Ex̂ and B = Bẑ) the solution to Eq. (1.3) is a superposition of a circular
motion with frequency ωc = eB/me (cyclotron frequency), and a linear motion
with velocity E/B. Therefore electrons move in a spiral trajectory along the
equipotential lines.

However, von Klitzing (1980) discovered the quantized version of the Hall
effect [22]. In the QHE, a 2D electron gas, for example in a GaAs/AlAs
quantum well is subjected to a strong magnetic field (typically several Tesla)
at low Temperatures T < 4K . The energy of electrons in the electron gas can
be described by the Landau theory, which says that charged particles in a
uniform magnetic field have quantised energy, the Landau levels

εn = (n+1/2)~ωc, n ∈N. (1.4)

Each Landau level is degenerate and can accommodate a large, but finite
number of electrons. According to the experimental data observed for the
QHE, the Hall resistivity RH takes the value

RH = h
e2

1
ν

, (1.5)

where h is the Planck’s constant and ν takes on only integer values in integer
QHE. The above transverse resistivity RH takes on a plateau form, as seen by
the green curve in Fig. 1.3. It is constant over a wide range of magnetic fields
and moves to the next plateau as the magnetic field vastly varies. When RH

is at a plateau, the longitudinal resistivity ρxx is zero, and when RH changes
from one plateau to the next, ρxx spikes. From our classical calculation based
on the Drude model, the Hall conductivity reads

RH = B
nee

, (1.6)

which depends on the density of electrons ne. Comparing the Eqs. 1.6 and 1.5,
we see that if we choose

ne = B
Φ0

ν, (1.7)

with Φ0 = 2π~
e , we reach the Eq. 1.5. This is indeed the density of electrons

required to fill precisely ν landau levels to get Eq. 1.5. Furthermore, when ν

Landau levels are filled, there is a gap in the energy spectrum: to occupy the
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Figure 1.3: (a): Longitudinal (the red line) and transverse resistivities (the green line)
observed in the QHE as function of the applied magnetic field. Image adapted from [22]. (b):
Density of electronic states in the QHE.

next state costs an energy ~ωc where ωc is the cyclotron frequency. As long as
we are at a temperature κBT . ~ωc, these states will remain empty. When
we turn on a small electric field, there is nowhere for the electrons to move:
they are stuck in place like in an insulator. This means that the scattering
time is infinite and the longitudinal resistivity is zero. In contrary to the bulk,
as panel d of Fig. 1.4 presents, when an electron orbital center is close to the
system’s edge, an electric field causes the cyclotron orbits to drift along the
edge, resulting in Hall current characterized by quantized Hall conductivity.

1.4.1 The TKNN invariant

What is the distinction between QHE and normal insulators? As explained
by Thouless, Kohmoto, Nightingale, and den Nijs (TKKN) the answer is a
matter of topology [23]. In other words, small changes in the Hamiltonian
describing the QHE, such as disorder, have little effect on the amount ν of
filled Landau levels. The observed transverse conductance in QHE is a global
property that is unaffected by Hamiltonian "deformations". This robustness
of the number of edge states seems to be quite close to the robustness of the
Euler characteristic. This interesting point inspired TKKN to search for a
topological invariant characterizing the quantum Hall effect. Their idea relies
on the concept of a magnetic unit cell. Suppose the number of flux quanta per
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unit cell in a 2D periodic system subjected to a perpendicular magnetic field
is rational. In that case, the periodicity is maintained by taking a larger unit
cell, demonstrating that the Hall conductance is provided by a topological
quantum number, the TKNN integer [24, 25].

e)

g=0

b)a)

f)
Cyclotron

orbits

c)

g=1

N=0

N=1
QHE

Ordinary 

insulator

d)

Figure 1.4: (a): The most simple insulator, with electrons bound to atoms in closed shells.
(b): A simple model insulating band structure for which the chern number N = 0. (c): A sphere
with genus g = 0. (d): The cyclotron motion of electrons in the QHE. (e): The Landau levels in
the QHE for which chern number N = 1. (f): A donut with genus g = 1.

Topologically, gapped band structures can be identified by looking at the
equivalence group of the Hamiltonian H(k) that can be smoothly deformed
into each other without closing the energy gap. The Chern invariant is a
topological tool that can distinguish these groups. The Chern invariant is
rooted in fiber bundle theory [26], however it can be physically understood in
terms of the Berry phase. When k is transported around a closed-loop, Bloch
wave functions uk acquires a well-described Berry phase given by the line
integral of Am = i〈um(k) | ∇k | um(k)〉. Thouless and coworkers showed that
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when the Fermi level lies in the gap, the Hall conductance can be written as
[23]

σxy = N
e2

h
, (1.8)

where
N =∑

nm = 1
2π

∑
m

∫
d2k(∇× Am(k)). (1.9)

The total Chern number N summed over all occupied bands is invariant
even if there are degeneracies between occupied bands, provided the gap
separating occupied and empty bands remains finite.

Comparing Eq. (1.8) with the experimentally observed Hall conductance
σxy = ν e2

h proves that N = ν. The Chern number N is a topological invariant in
the sense that it can not change when the Hamiltonian varies smoothly (see
panel a of Fig. 1.2). The connection between ν and the topological invariant N
explains why the experimentally observed Hall conductance is robust against
smooth deformations and why the Hall conductance has been measured to
one part in 109 [27].

We are now prepared to answer the question raised at the end of sections
1.2. We asked what functions as genus and Gaussian curvature in condensed
matter physics. Now we can say that the Chern number and the Berry cur-
vature play the same role in the band topology of condensed matter systems
as genus and Gaussian curvature do in the topology of manifolds in mathe-
matics. The Chern number can distinguish the QHE from all gaped system
that are topologically equivalent to vacuum, in the same way that genus can
distinguish a sphere from a donut, as shown in Fig. 1.4.

In the following sections, we will describe other members of the topological
material family that are distinct from ordinary insulators.

1.5 Quantum spin Hall state

The quantum Hall state was the first discovered topological state. As dis-
cussed in the last section, the quantum Hall insulator requires a high mag-
netic field to reveal its topological nature. Then the question arises: Is it
essential for a system to be exposed to a magnetic field to acquire topological
states?
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When time reversal symmetry is preserved in a system, the total Berry
curvature ∑∫

d2k∇× Am(k), (1.10)

is an odd function of momentum and consequently the Hall conductance
vanishes [28]. As a result, it was assumed that topological phases required
broken TR symmetry. However, Haldane made a remarkable discovery in
1988 [29]. He considered an electron model on a honeycomb lattice and
demonstrated that the Hall conductance in such a system is quantized to the
values σxy = e2

h in the absence of the magnetic field. Following the discovery
of graphene [30–32], whose dispersion is characterized by massless Dirac
fermions at two particular places in the Brillouin zone, people became again
interested in the Haldane model.

Kane and Mele found that the addition of spin-orbit coupling can turn
graphene into an insulating phase with quantized non-zero spin Hall con-
ductance defined as σxy,s = σxy,↑−σxy,↓. They proved that their model gives
two QHE states, equivalent to two copies of the Haldane model with oppo-
site magnetic fields for the two spin orientations [33]. This phase is known
as a quantum spin Hall (QSH) insulator or a 2D time-reversal-invariant
topological insulator.

The QSH and the QHE are fundamentally different. Although they both
have chiral edge states, as shown in Fig. 1.5, the inclusion of TR symmetry
in the QSH significantly changes the system’s behaviour. TR symmetry is
broken for a single copy of the QHE state by the magnetic field. However, TR
is preserved in the combined form because the TR operator reverses both the
direction of the magnetic field and the spin.

To preserve TR symmetry, a spin-up electron moving clockwise must
match up with a spin-down electron moving counterclockwise. Therefore, the
two edge states propagate in opposite directions and with opposite spins
in the QSH, as shown in panel e of Fig. 1.5. Kane and Mele demonstrated
that spin-orbit coupling can act as a magnetic field with an opposite sign for
opposite spins. As panel e of Fig. 1.5 demonstrates, TR symmetry is broken
for each spin orientation separately in the presence of spin-orbit coupling, but
it is preserved for the system as a whole.
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QHE (Chern insulator)

c)
f)

e)

a)

d)
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Spinless 1D chain Spinful 1D chain
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“2=1+1”
“4=2+2”

B

QSE (2D topological insulator)

B

𝐵𝑡 = 0

Figure 1.5: (a): An electron has two degrees of freedom, allowing it to travel in both
directions. (b): Electrons in the QHE have one degree of freedom and can only move in one
direction. (c): Edge states in QHE. (d): Electron degrees of freedom in a one-dimensional
spinful chain. (e): The direction of propagation is linked with the spin of the electron, therefore
electrons with opposite spins propagate in opposite directions. (f): Edge states in the QSH.

Due to graphene’s weak spin-orbit coupling, Kane and Mele’s proposal
appeared to be extremely difficult to reach. Soon after, Bernevig, Hughes, and
Zhang proposed that QSH states could exist in HgTe and CdTe quantum wells
[34]. They expected that the HgTe-based quantum well heterostructure would
be capable of hosting a pair of counter-propagating edge states connected by
time-reversal symmetry. In 2007, the Molenkamp group at the University of
Wuerzburg, Germany, confirmed the prediction [35].

1.5.1 Bulk-Edge correspondence

As we explained for the QHE and QSH, a topological state of matter is
insulating in the bulk, but it allows gapless edge states that are robust to
disorder. As we already discussed, the bulk in the QHE is characterized by
the TKNN number (or Chern number).

In the QHE, the Chern number is equal to the number of stable gapless
edge states. The bulk topology protects the edge states in this way. But what
exactly is behind this "topological protection"? We can say that the bulk
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topology is responsible for some fractionalization on the edge states. The
typical degrees of freedom for the electron are spatially separated on opposite
edges.

As shown by panel a of Fig. 1.5, in a one-dimensional spinless channel, an
electron has two degrees of freedom: right and left movement. On the other
hand, panel b of Fig. 1.5 demonstrates that the QHE has only left-moving
electrons on the top edge and only right-moving electrons on the bottom edge
(or vice versa). As a result of an electron’s inability to reverse its direction
of travel, backscattering on a particular edge is blocked. The QHE can be
compared as a highway, where electrons going in opposite directions must
drive in separate lanes. The symbolic equation "2 = 1 + 1" can be used to
depict the spatial separation that results in chiral edge channels, where each
"1" represents a distinct chirality. This “chiral transport rule” is very effective
at suppressing electron scattering because electrons must always move in the
same direction to avoid impurities and so cannot backscatter.

The QSH state, on the other hand, can be thought of as two copies of
the QHE state, one for each spin, as previously stated. The top edge of
a QSH system has just half the degrees of freedom of a one-dimensional
spinful system. Because spin is correlated with the propagation direction, the
resulting edge states are called helical. As panel d and e of Fig. 1.5 depict, the
symbolic equation “4 = 2 + 2” can be used to depict this new pattern of spatial
separation, where each "2" represents a distinct helicity. Although electrons
can go now forward and backward on the same edge, there is a new “transport
rule” that prevents backscattering: to backscatter, an electron must flip its
spin, which is not possible when only non-magnetic impurities are present.
The QSH state is a novel topological state of matter because it has a bulk
insulating gap and gapless boundary states that are robust to disorder (in the
presence of TR symmetry).

When the z-component of the spin of an electron is conserved, each channel
in the QSH has a finite opposite Chern number, for instance, v↑ = +1 and
v↓ =−1. Consequently, the total Chern number would be zero and the Hall
conductance in the QSH state disappears. Hence the TKNN or Chern number
cannot provide us with a good classification of the QSH states.
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The proper topological invariant to characterize this new state is the Z2

invariant. When the QSH state is trivial, with no robust gapless edge states,
this topological invariant is zero, and when the QSH state is nontrivial, it is
1.

In the following sections, we will study the Z2 invariant in more detail.

1.5.2 The Z2 invariant

At the interface of two materials with opposite signs of the bulk band gap, the
band structure slowly changes as we go across the interface. The energy gap
vanishes somewhere along the way, otherwise the two materials would belong
to the same topological class. As a consequence, the ordering of bands at the
border changes from an inverted to usual material. The band structure of the
QSH can be trivial or non-trivial, depending on the details of the edge states
and their robustness to disorder. The following section will try to characterize
the edge states in trivial and non-trivial QSH states.

1.5.2.1 TR symmetry

Physical laws are considered invariant under TR symmetry if the generated
motion obeys the same rules when the movement is reversed. Therefore,
according to quantum mechanics,

[H,T]= HT −TH = 0, (1.11)

where T denote the TR symmetry operator and H is the Hamiltonian of
the system. Under the action of the TR symmetry operator, the momentum
p 7−→ −p and the location x preserves. Then to preserve the fundamental
commutator [x, p] = i~, the time reversal operator has to be antiunitary.
The antiunitarity property of the time-reversal operation allows to write
this operation as a product of a unitary transformation U and the complex
conjugation K : T = UK . In the case of the spin 1/2 particles we can write
T = iσyK which has the important property T2 =−1 [36].
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1.5.2.2 Kramers theorem and TR-invariant momenta points
(TRIMs)

According to Kramers theorem, for a system with a Hamiltonian that obeys
Eq. (1.11) all of its eigenstates are at least twofold degenerate. In other words,
if we have an eigenstate |ψn〉 with an energy En, there is at least one distinct
state with the same energy like T |ψn〉. We can prove that T |ψn〉 and |ψn〉
are distinct. If we assume that they are the same, i.e, T |ψ〉 = eiφ |ψ〉 (with
φ ∈R ), then T2|ψ〉 = Teiφ|ψ〉 = e−iφT|ψ〉 = e−iφeiφ|ψ〉 = |ψ〉, which contradicts
T2 |ψ〉 = −|ψ〉. Therefore, T |ψ〉 and |ψ〉 are distinct sates. These two states
are called Kramers partners and together make a Kramers pair.

In the case of a lattice model, a reduced Bloch Hamiltonian on the first
Brillouin zone can be introduced as

H (k)= e−ik.rHeik.r (1.12)

with corresponding eigenvalues Ek and eigenstates |uk〉 = e−ik.r |ψk〉. When
the system has TR symmetry, [H,T] = 0, the reduced Bloch Hamiltonian
H (k) satisfies TH (k)T−1 =H (−k). Therefore, the Kramers partners have
opposite momentum and spins, meaning that

E(k,↑)= E(−k,↓). (1.13)

Furthermore, if inversion symmetry holds, the following equation holds

E(k,↑)= E(−k,↑). (1.14)

If both Eq. 1.13 and 1.14 are simultaneously satisfied, bands are spin degen-
erate at TR-invariant momenta points (TRIMs)

E(k,↑)= E(k,↓). (1.15)

In addition bands are spin degenerate at points defined by −k = k+G, where
G is a reciprocal lattice vector. For a square Brillouin zone, Fig. 1.6 shows
four TRIMs Γ0,Γ1,Γ2,Γ3. As Fig. 1.7 shows, Kramers’ theorem requires the
electronic states to be at least twofold degenerate at the two TRIMs, Γ0 and
Γ1. Away from these two TRIMs, SOC removes this degeneracy. When TR
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Figure 1.6: Representation of four TRIMs in the Brillouin zone.

symmetry is preserved, the crossing of bands at TRIMs is robust. Compared
to zero band gap systems, the introduction of a magnetic field breaks TR
symmetry and destroys the TRIMs, resulting in a gap in the edge dispersion.

𝐸𝐹
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Figure 1.7: Dispersion of edge states with (a) trivial topology and (b) nontrivial topology.
The grey bands represent the bulk bands, and EF denotes the Fermi level. As shown in (a),
spin-orbit coupling (SOC) results in band spin splitting, while TR symmetry forms pairs
located at k and −k.

The band structure corresponding to QSH states is depicted in Fig. 1.7
along Γ0−Γ1. The number of Kramers pairs of edge states crossing the Fermi
level distinguishes non-trivial topological states from trivial states in the
QSH. In panel a of Fig. 1.7, there are an even number of Kramers pairs of edge
states crossing the Fermi level. However, there are always an odd number of
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Kramers pair of edge states at the Fermi level in panel b of Fig. 1.7. Thus it
seems that these two panels describe two topologically distinct phases.

An index can systematically distinguish these two cases as

Nk = m+2p, (1.16)

where Nk is the number of Kramers pairs of edge states that cross the Fermi
energy, and p is an integer number. When Nk is even, m = 0 and the system
is in its trivial phase, while when Nk is odd m = 1 and the systems has a
non-trivial topological state. Because m has just two potential values, it is
referred to as a Z2 invariant.

The physical consequence of m = 1 is that the corresponding edge states
are robust against smooth deformations. Thus, for example, the edge states
in panel a can be pushed out of the band gap (by tuning the Hamiltonian
smoothly) without closing the gap, while this is not possible in panel b without
closing the gap.

Even though we addressed the Z2 invariant in terms of the parity of the
number of Kramers pairs of edge states at the Fermi level in our discussion,
the Z2 invariant is entirely determined by the bulk topology. In the following
section, we explain how this topological invariant can be computed in the
presence of TR and spatial inversion symmetries.

1.5.2.3 Z2 invariant in systems with extra symmetry

The vast majority of insulators are conventional insulators. To find topological
insulators empirically, we need to define criteria based on their band structure
to topologically distinguish them from other conventional systems. The value
of the Z2 invariant is one of these criteria. However, calculating the Z2

invariants is a difficult task in general.

Kane and Mele showed that the Z2 invariant can be found by using the
Pfaffian function [37]. Even though this method is tedious, Murakami applied
it to find the QSH phase in two-dimensional bismuth bilayers [38]. Later Fu
and Kane used Wannier functions instead of Bloch functions to calculate this
invariant [39]. Wannier functions are linked to topology through a relation
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that connects matrix elements of the position operator in the Wannier basis
to the Berry connection.

However, if the crystal has extra symmetry, calculating the Z2 invariant
is much easier. If the z component of the electron’s spin Sz is conserved in a
2D system, then up and down spins have independent Chern integers n↑, n↓.
However, TR symmetry requires n↑+n↓ = 0, whereas a quantized spin Hall
conductivity can be defined by the difference Nk = n↑−n↓ [40]. For this case,
the Z2 invariant ν can be found by

(−1)ν = Nk mod 2. (1.17)

Comparing the above equation with Eq. 1.16 proves that Nk represents the
number of Kramers pairs of edge states that cross the Fermi energy.

In addition, when the crystal has inversion symmetry, calculating the Z2

invariant is much easier. For this case, instead of checking the number of
Kramers pairs that cross the Fermi energy, the topological invariant ν can be
found by determining the parity of the occupied bands at TRIMs [41]. Thus,
the existence of inversion symmetry significantly simplifies the evaluation
of the Z2 invariants. In such a system, the bands have a definite parity at
the four time-reversal and parity invariant points in the Brillouin zone. Thus,
the parity of bands at these points can be used to calculate the Z2 topological
invariants without knowing about the global properties of the energy bands.

At four special points Γi the Bloch states are also eigenstates of parity with
eigenvalues ζn (Γi)=±1. In this condition, the Z2 invariant can be represented
as the product of the parities of the occupied bands at the TRIMs as

(−1)ν =
4∏

i=1

(
N∏

n=1
ζn (Γi)

)
, (1.18)

where n runs over the Kramers pairs of the 2N occupied bands[41]. This
method is quite helpful in identifying topological insulators using band struc-
ture calculations [42, 43].
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1.6 3D Topological insulators

1.6.1 The Z2 invariant in 3D

For a 2D TI, the Z2 invariant can be found by taking into account only TRIMs
instead of covering the whole Brillouin zone. Unlike the Chern number, which
is defined only in even dimensions, the Z2 index can also be applied to three-
dimensional insulators. In 3D, there are eight different TRIMs defined by
the reciprocal lattice vectors b1, b2, and b3 as Γi=n1n2n3 = n1b1+n2b2+n3b3

with ni = 0,1. For each of these TRIMs, we specify a parameter δn1n2n3 =±1,
which can be calculated by

δi =
√

Det[w (Γi)]
Pf[w (Γi)]

, (1.19)

where the unitary matrix wi j(k)= 〈
ui(−k)|T|u j(k)

〉
, and P f denote the Pfaf-

fian function and T is the time-reversal operation [41]. It is now possible to
construct Z2 invariants v0, ν1, ν2 and ν3 as follows

(−1)ν0 = ∏
ni=0,1

δn1n2n3, (1.20)

(−1)νi=1,2,3 = ∏
ni=1,n j 6=i=0,1

δn1n2n3. (1.21)

When ν0 = ν1 = ν2 = ν3 = 0, the system is a trivial insulator. When ν0 = 0, and
one of the other invariants does not vanish, the system is a weak topological
insulator. This weak topological insulator can be constructed by stacking
layers of 2D QSH insulator. They are called weak topological insulators,
because unlike the 2D helical edge states in the QSH, TR symmetry does
not protect them and it is likely that disorder will turn them into trivial
insulators.

ν0 determines whether an even or an odd number of TRIMs (at which
band inversion occurs) is enclosed by the surface Fermi circle. When ν0 = 1,
the system is said to be a strong topological insulator. In this case, as panel b
of Fig. 1.8 shows, there are an odd number of band inversions at the TRIMs
in the surface Brillouin zone of a strong topological insulator.
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Figure 1.8: (a): Fermi circles for a weak topological insulator. (b): Shows the Fermi circles
for a strong topological insulator. (c): The Fermi circle encloses a single Dirac point in the
simplest strong topological insulator [44].

1.6.2 Experimental realizations

In 2006, three theoretical groups independently discovered that the topo-
logical characterization of the QSH state has a natural generalization in
3D [45–47]. In 2007, Fu, Kane, and Mele connected the bulk topological
order to the presence of conducting surface states [48]. Later, some other 3D
topological insulators (3DTI) were predicted in several real materials, such
as Bi1−xSbx, H gTe [41]. In 2008, the first 3DTI was identified in Bi1−xSbx

through angle-resolved photoemission spectroscopy (ARPES) [49]. Later soon
in 2009, second-generation of 3DTIs, like Bi2Se3, were predicted theoretically
[50] ans discovered experimentally [51].

The applied transport measurements on 2DTIs are not suitable for trans-
port measurements on 3DTI. However, in 3D, there are other methods for
proving the existence of surface states, like ARPES. In ARPES, a laser
beam is shone on the sample’s surface, and consequently some electrons
are released through the photoelectric effect. The dispersion relation of the
surface can be found based on the conservation of energy and measuring the
electrons’ momentum. Note that surface states are separated from bulk states
by the change in the energy of incoming photons: absorption only occurs if
there is a component of the electron that travels along the surface.

As predicted [52], the first ARPES experiments on Bi1−xSbx revealed an
odd number of Dirac cones on the surface states [49], as shown in Fig. 1.9.
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Figure 1.9: The presence of 5 surface states in Bi1−xSbx based on ARPES data. The bulk
bands are identified by white stripes [49].

As Fig. 1.9 demonstrates, the surface structure of Bi1−xSbx was rather
complex, and the band gap was very small. As a result, people began looking
for materials with a larger band gap and a simpler surface spectrum. They
were successful in discovering new materials, which are known as the second
generation of 3DTIs.

Second-generation 3DTIs, such as Bi2Se3, can provide topologically pro-
tected behaviour in ordinary crystals at room temperature and zero magnetic
fields. Furthermore, the family of compounds: Bi2Se3, Bi2Te3, and Sb2Te3

are stoichiometric compounds rather than alloys, as in Bi1−xSbx, and hence
can be prepared at higher purity. To highlight the significance of having
a pure 3DTI, it is worth mentioning that while 3DTIs are supposed to be
resistant to non-magnetic disorder, this can only be shown experimentally in
high-purity samples.

As Fig. 1.10 shows, in these new materials a band inversion occurs at
k = 0, leading to the (ν0 : ν1ν2ν3)= (1;000) topological class. The (ν0 : ν1ν2ν3)=
(1;000) phase observed in the Bi2Se3 differs from the (ν0 : ν1ν2ν3)= (1;111)
phase in Bi1−xSbx. Even though the phase seen in the Bi2Se3 has the same
strong topological invariant ν0 = 1 as Bi1−xSbx, this series have more poten-
tial to be the reference material for future applications. For example, Bi2Se3

has a significant band gap of 0.3 eV, indicating that it can exhibit topological
insulator behavior at room temperature in its high-purity form.



1.6. 3D TOPOLOGICAL INSULATORS 23

Figure 1.10: Local density of states for Sb2Se3 (a), Sb2Te3 (b), Bi2Se3 (c) and Bi2Te3.
Except for panel (a), the surface states can be recognized as red lines dispersed in the bulk
gap around the Γ point [53].

According to ARPES and theory [51], the Bi2Se3 surface state has a
nearly idealized single Dirac cone, as shown in Fig. 1.11 [49]. Another re-
markable property of a strong 3DTI is that, because the Fermi circle encloses
an odd number of Dirac points (single Dirac cone in Bi2Se3), the Berry phase
gained by an electron traveling around the Fermi circle (see panel b of Fig.
1.11) is π. This fact has important implications for transport in strong topo-
logical insulators in the presence of disorder. For example, when there is a
weak disorder, the π Berry phase causes antilocalization by changing the sign
of the weak localization correction to conductivity [54, 55].

The idea of two channels with opposite spin and propagation direction
does not make sense for a 3DTI, contrary to the QSH phase. As panel b of
Fig. 1.11 shows, for the surface sates of a 3DTI, the spin lies in-plane but
perpendicular to the propagation direction. Panel d of Fig. 1.13 demonstrates
that the low energy spectrum around a Dirac point exhibits a cone-like energy
spectrum. This cone-like energy spectrum can be written as

HD = ~vF (k×σ)z (1.22)

where the ẑ-direction is chosen normal to the surface of the 3DTI. Here, vF ,
k = (kx,ky), are respectively the Fermi velocity, the wave vector, and σ =
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Figure 1.11: (a): Surface electronic states with a single spin-polarized Dirac cone are
discovered using ARPES data for Bi2Se3. (b): The surface Fermi surface has a left-handed
chiral spin texture. (c): Surface electronic structure of Bi2Se3. (d): The spin-polarized surface-
state dispersion in Bi2X3 (ν0 : ν1ν2ν3)= (1;000) [44] .

(σx,σy,σz) is the vector of Pauli matrices acting on the spin of the electrons.

1.7 Magnetic 3DTIs

If the surface of a strong 3DTI preserves the protecting symmetries, it hosts a
set of two-dimensional surface states and consequently odd numbers of Dirac
points. The surface states of a 3DTI provides a unique platform to study the
topological characteristics of Dirac points [56, 57].

TR symmetry can be broken by applying an external magnetic field [58–
61], doping topological insulators with magnetic atoms [62–65], and by the
magnetic proximity effect when a topological insulator is brought in contact
with a ferromagnet [66–71]. When the TR symmetry is broken, an energy
gap is induced near the Dirac point, which changes the nature of the surface
states [72, 73].

The breaking of TR symmetry in a 3DTI can be essential for both funda-
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mental and device applications [74–77]. For example, the topological magneto-
electric effect, which allows electric-field driven spin transistors, requires
a surface band gap [44, 78]. Another promising example is the quantum
anomalous Hall effect, in which gapped surface states are accompanied by
back scattering protected dissipationless edge transport channels [79–82].

The breaking of TR symmetry can also allow us to tune the Fermi level
in 3DTIs. The Fermi level has to be at or near the surface Dirac point in
many interesting theoretical proposals that use topological insulator surfaces.
To highlight the importance of the Fermi level, note that it is naturally
positioned near the Dirac point in graphene due to carbon atom chemistry.
Hence, graphene can be used in basic science and microelectronics since the
density of carriers can be adjusted by an applied electrical field. However, the
Fermi level in a 3DTI depends on the material electrostatic characteristics
and is not always at the Dirac point. Therefore, breaking of TR symmetry, for
example by doping the system with magnetic impurities, can vary the Fermi
level.

Moreover, 3DTIs have an extremely strong SOC, resulting in band in-
version. This large SOC affects the spin of electrons. On the other hand, we
know that the spin of electrons can be controlled by magnetic moments, as in
magnetic materials. Consequently, when electrons experience both a strong
SOC and magnetic interactions there are more degrees of freedom available
to control the spin of electrons. When it comes to the charge transport in
magnetic 3DTIs, the interplay of the SOC, magnetism and external electric
field leads to many exotic features that we discuss in detail in chapters 3, 4
and 5.

1.7.1 Magnetic impurity induced gap

In a strong topological insulator, the surface Fermi circle encloses an odd
number of Kramers degenerate Dirac points. As we already discussed, the
simplest case of a strong 3DTI has a single Dirac point (see panel a of Fig.
1.13) which can be described by the Hamiltonian,

Hsur f ace = ~vF(k×σ)z, (1.23)
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where z is perpendicular to the surface and vF is the Fermi velocity. The above
Hamiltonian is similar to the 2D Dirac Hamiltonian for graphene. However,
there is one significant distinction between these two cases. In graphene, the
Dirac Hamiltonian components indicates the two sublattices or pseudospin
degrees of freedom. However, in the case of a strong 3DTI, the two components
describe the electron’s spin.

When a 3DTI is doped with magnetic impurities and the impurity density
is low enough to ignore impurity-impurity interactions, the Hamiltonian
given in Eq. 1.23 converts to

HM = Hsur f ace + Ĥz
ex+ Ĥ‖

ex, (1.24)

where

Ĥz
ex+ Ĥ‖

ex =
∑

r
( Jzsz(r) Sz(r)+ J‖

(
sx(r) Sx + sy(r) Sy

)
, (1.25)

and Jz and J‖ are the coupling parameters, Si(r) is the spin of a magnetic
impurity at r and s i(r)=ψ†(r)σiψ(r) is the spin of the surface electrons. For
example, when Sb2Te3 is doped with vanadium as magnetic impurity, Jz and
J‖ which depend on the overlap between the surface states and the magnetic
impurities are found to be in the range of 0.1−0.5 eV [83, 84].

In the mean field approximation, the electron-impurity exchange interac-
tion in Eq. (1.25) converts to

Ĥz
ex+ Ĥ‖

ex
MFA≈ M ·~σ, (1.26)

where M is the average magnetization. Consequently, in this approximation,
the full Hamiltonian in Eq. (1.24) transforms to

HMF A
M = ~vF(k×σ)z +Mxσx +Myσy+Mzσz, (1.27)

with eigenvalues

Eks = s
√(

~vF kx +My
)2+ (

~vF ky−Mx
)2+ (Mz)2 , (1.28)

where s = ± corresponds to the upper and lower bands. When the average
magnetization is in-plane, Mz = 0, we can rewrite Eq. (1.27) as HMF A

M =
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a b

Figure 1.12: (a) Charge local density of states (LDOS) in terms of the distance r from
the magnetic impurity for electron energies E = 30meV (black line) and E = 70meV (blue
line). (b) Charge LDOS as a function of electron energy E at positions r = 0 (blue line) and
r = 20nm (red line). In both panels the magnetic impurity strength is Jz < Sz >= 50meV and
the coupling range r0 = 13 nm [85].

vF(~k− eA) · (ẑ× σ̂). The vector potential A = −M× ẑ
evF

only shifts the posi-

tion of the Dirac point in the
(
kx,ky

)
plane. Under the gauge transforma-

tion
(
kx,ky

)→ (
qx + eAx/~, qy+ eA y/~

)
, this vector potential can be removed,

and consequently does not influence the physical observables. Consider-
ing this transformation, the energy dispersion in Eq. (1.28) converts to
Eqs = s

√
(~vF)2 (

q2
x + q2

y
)+ (Mz)2 , indicating that only the z-component of the

average magnetization can open an energy gap. In what follows, we describe
how, in addition to the direction of the magnetic moments, the strength of
the exchange interaction, the spatial extension of the impurities, and their
density all play essential roles in the gap opening.

The interaction of electrons with a single spatially extended magnetic
impurity with a z-direction spin can be defined as follows:

H ex =
∑
r

JzΘ(r− r0)Szsz(r), (1.29)

where Θ (r− r0) is the step function and r0 determines the range of the
exchange interaction. In panels a and b of Fig. 1.12, the calculated local
density of states (LDOS) is shown in terms of the distance r from the magnetic
impurity and the energy of electrons, respectively [85]. The black curve in
panel a shows that LDOS suppress for r < r0(= 13nm) when E(= 30eV ) <
Jz < Sz > (= 50meV ). Panel b of this figure shows LDOS as a function of
electron energy E at positions r = 0nm (blue line) and r = 20nm (red line),
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Figure 1.13: (a − b): Gapless dispersion of a non-magnetically doped Bi2Se3. (c − d):
Absence of a gap in the band structure of a pure Bi2Se3. (e- f ): Band structure for a
(Bi0.9TI0.1)2Se3. (g−h): Gap creation in magnetically doped Bi2Se3. (i− j): Gapped band
structure of (Bi0.88Fe0.12)2Se3.7. (k− l): Emergence of a gap in the surface band structure of
a (Bi0.84Fe0.16)2Se3.7 [65].

with r0 = 13nm. Also, this panel indicates that each extended magnetic
impurity can generate a gap in its vicinity and the size of the gap depends
on the strength of the impurity-electron interaction Jz < Sz >. Because each
magnetic impurity generates a local gap, we can deduce that when the system
is doped with many magnetic impurities, the system is gaped everywhere (at
least at the mean-field level). For example, panels i and k of Fig. 1.13 show
the opening of a gap in Fe-doped Bi2Se3 for two different concentrations of
Fe [65]. However, as panels c and e show, doping Bi2Se3 with non-magnetic
materials can not open an energy gap at the surface band structure.

Panels a and b of Fig. 1.12 illustrate that LDOS converges to the impurity-
free value |E|

2π~2v2
f

when r > r0(= 30nm) (far from the impurity). As a result of

this observation, we can deduce that a weak and point-like magnetic impurity
is incapable of opening a significant local gap. Consequently, no significant
gap occurs in a system when it is doped with dilute, weak, and point-like
magnetic impurities. Also, it is demonstrated that the LDOS around the Dirac
point can be disrupted by the formation of low-energy resonance state(s) due
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to the presence of a point-like magnetic impurity, but this is insufficient to
destroy the Dirac point (locally) [86]. As a result of this findings, as considered
in chapters 3, 4, and 5, the dilute and point-like impurities considered in this
doctoral dissertation act as local scatterers and do not open a gap.

From a theoretical standpoint, adding the magnetic impurities to the
surface of a 3DTI seems promising. However, most of the exciting surface
phenomena occur when the surface is insulating, though most ferromagnets in
nature are metallic. Then, one needs to place the Fermi level inside the surface
energy gap and it is not easy experimentally for all 3DTIs. Furthermore,
to open a gap in the surface band structure, the magnetization must be
perpendicular to the surface. However, having a magnetization perpendicular
to the surface is difficult to achieve experimentally as well.

A topological insulator doped with magnetic impurities can exhibit long-
range magnetic ordering in both the metallic and insulating phases in the
bulk. Magnetic ordering on the surface can be consequently induced by the
bulk magnetization. However, when the Fermi energy is close to the Dirac
point the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, generated
by Dirac fermions, is typically ferromagnetic and can form a long-range
magnetic ordering on the surface, independent of the bulk magnetic ordering
[85]. Therefore, in magnetically doped 3DTIs, a gap can be created in the
surface band dispersion, with or without bulk ferromagnetism.

Pushing the Fermi level into the generated surface gap is the next chal-
lenging step in observing various fascinating phenomena in topological mag-
netic insulators. When this challenging step is completed, many striking
topological phenomena can now be supported by the generated insulating
states, including the image magnetic monopole induced by a point charge[14],
the half quantum Hall effect on the surface with a Hall conductance of e2

2h

[87], and a K err−Faraday angle quantization in units of the fine structure
constant [88].

Furthermore, the gap that appears is tunable, which is a fascinating
feature. This exotic characteristic allows one to manipulate surface transport,
and also to change the magnetization by an external electric field [89].
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Figure 1.14: Bi2Se3 crystal structure with three primitive lattice vectors t1, t3, t3. The red
square indicates a quintuple layer [90].

1.8 Thin films of topological insulators

Charge transport in topological thin films (TTFs) is a main topic in this thesis.
TTFs are suitable for electrical and spintronic device applications due to their
adjustable gap and spin-orbit coupling. Different experimental techniques
such as molecular beam epitaxy (MBE) and the vapour–liquid-solid (VLS)
method can be used to fabricate TTFs [91, 92]. Quintuple-by-quintuple (see
a quintuple layer of Bi2Se3 in Fig.1.14) growth of a TTF is possible using
modern experimental techniques and precise control of the growth conditions.

A 3DTI is typically made up of two surfaces (top and bottom surfaces, for
example). Because the two surfaces of a typical 3DTI are uncorrelated, charge
transport on one surface is independent of charge transport on the other one.
When the thickness of a thin film is comparable to the decay length of the
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surface states into the bulk, the two surface states hybridize. The spatial
overlap of the wave functions of the top and bottom surface states open a gap
in the energy spectrum of a TTF. For instance, when the thickness of a thin
film of Bi2Se3 is smaller than six quintuple layers (QLs), the emergence of a
gap owing to the finite size effect can be realized [94].

The effective low-energy Hamiltonian for the hybridized Dirac cones on
the top and bottom surfaces of a TTF, grown on a substrate, is described by

HSIA
eff =

[
h+(k) Vσ0

Vσ0 h−(k)

]
, (1.30)

in which
hτz(k)= E0−Dk2+~vF (σ×k)z +τz

(
∆

2
−Bk2

)
σz, (1.31)

where
(
∆
2 −Bk2) and V are induced by the finite size effect and substrate,

respectively. D and E0 depend on the characteristics of the TTF and σ0 is the
identity matrix. The basis states of Pauli matrices in the above expression
stand for spin-up and spin-down states of real spin. τz =±1 corresponds to
the upper (lower) 2×2 block in Eq. 1.30.

Each of the two surfaces of a thick topological film has a single gapless
Dirac cone, represented in panel a of Fig. 1.15 by solid and dashed lines for the
top and bottom surfaces, respectively. Due to inter-surface interaction in TTFs,
two degenerate Dirac cones in panel a are transformed into two degenerate
gapped Dirac hyperbolas in panel b of Fig. 1.15. The energy spectra of the
gapped surface states shown in panel b is given by

E± = E0−Dk2±
√(

∆

2
−Bk2

)2

+ (~vF)2 k2 , (1.32)

where the +(−) sign stands for the conduction (valence) band. As panel c
of Fig. 1.15 illustrates, the substrate upon which the film is grown lifts the
Dirac cone at the top surface while lowers it at the bottom, removing the
Dirac cones’ degeneracy. In fact the top surface of the film is exposed to air
while the bottom surface is attached to a substrate, then inversion symmetry
does not hold in the z-direction, leading to structure inversion asymmetry
(SIA). Combination of the inter-surface coupling and SIA generates two non-
degenerate gapped Dirac hyperbolas, as shown in panel d of Fig. 1.15. The
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Figure 1.15: The evolution of gapless Dirac cones in the presence of both inter-surface
coupling and SIA. The black solid and green dashed lines represent the states located at the
top and bottom surfaces. Adapted from [93].

QL 𝐸0 D ( eV Å2 ) Δ (eV) B ( eV Å2 ) 𝑉𝐹 ( 105 𝑚 𝑠−1) V ( eV )

2 -0.470 -14.4 0.252 21.8 4.71 0

3 -0.407 -9.7 0.138 18.0 4.81 0.038

4 -0.363 -8.0 0.070 10.0 4.48 0.053

5 -0.345 -15.3 0.041 5.0 4.53 0.057

6 -0.324 -13.0 0 0 4.52 0.068

Table 1.1: The numerical values used to fit Eq. (1.33) to the experimental data shown in
Fig. 1.16. Adapted from [94].

inner (outer) branches of the conduction or valence bands of this system are
given by

E1,± = E0−Dk2±
√(

∆

2
−Bk2

)2

+ (V +~vFk)2 ,

E2,± = E0−Dk2±
√(

∆

2
−Bk2

)2

+ (V −~vFk)2 .

(1.33)

Figure 1.16 shows the experimental result acquired by angle-resolved photoe-
mission spectroscopy (ARPES) for 1 to 6 QL of Bi2Se3 films [94]. Using values
given in table 1.1, Eq. (1.33) can be fitted to these experimental results..
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Figure 1.16: a-e: ARPES spectra of 1, 2, 3, 5 and 6 QL of Bi2Se3 along the Γ–K direction
measured at room temperature. Adapted from [94].

1.9 Structure of the thesis

In this doctoral thesis, we investigate the charge transport in magnetic
TIs. There are two major topics in this thesis: (1) the longitudinal charge
transport in magnetic topological ultra-thin films (chapter 3 and 4), and (2)
the anomalous Hall effect (AHE) on the surface of magnetic 3DTIs (chapter
5).

In chapter 2, we begin by describing the Boltzmann continuum model,
which is the method applied in chapters 3, 4 and 5. This chapter describes
the electrons’ transition rate, relaxation times, and conductivity of the sys-
tem based on Boltzmann’s formalism. The interaction between conducting
electrons and the magnetic impurities is anisotropic in magnetic topological
ultra-thin films due to the strong intrinsic spin-orbit coupling, as discussed
in chapters 3 and 4. Thus, this chapter discusses how to solve the associ-
ated Boltzmann equation for these system using a generalized relaxation
time approximation. Besides this, because chapter 5 looks at the AHE on
the surface of magnetic 3DTIs, the final part of chapter 2 reviews all the
related mechanisms, including side jump scattering, skew scattering, and
Berry curvature in the presence of magnetic and non-magnetic impurities.

In chapter 3, we study the charge transport in a magnetic topological
ultra-thin film in the absence of a substrate. Since the system is very thin,
the wave functions of the top and bottom surface states overlap, causing a
finite size effect gap to emerge in the band structure. Once this ultra-thin



34 INTRODUCTION

film comes into contact with a ferromagnet, the gap of the system varies as a
result of the induced ferromagnet phase via the proximity effect, resulting in
two non-degenerate conduction subbands.

This chapter describes how magnetic impurities affect the charge trans-
port by inducing a chirality selection rule that governs the transitions of
electrons. This selection rule is sensitive to the spin direction of the impuri-
ties and the position of the Fermi level. Based on these details, two distinct
transport regimes are realized. When electrons occupy only the lower conduc-
tion subband, a dissipationless charge current is accessible if all magnetic
impurities are ordered in-plane. In contrast, when both conduction subbands
contribute to the electronic current, the charge transport of a free-standing
magnetic topological ultra-thin film is always dissipative, demonstrating how
much Fermi level can influence the charge transport in this system.

In chapter 4, we study how charge transport in a magnetic topological
ultra-thin film responds to a substrate. We follow the same methodology
we used in chapter 3 to calculate the charge transport. Combination of the
spin-orbit coupling and structural inversion asymmetry leads to Rashba-like
effect in this system, resulting in many exotic transport features.

As it is observed for a free-standing magnetic ultra-thin film, our calcu-
lation identifies two distinct regimes for charge transport in a realistic thin
film as well. Surprisingly, we will see in this chapter that our results show
that a dissipationless charge current can be obtained even in the presence
of the substrate (or a gate voltage). Most importantly, we will show that the
response of the charge transport in this system to changes in the orientation
of the magnetic impurities can be controlled by the substrate potential or a
gate voltage.

Finally, in chapter 5, the anomalous Hall conductivity of 3DTIs is studied
in terms of the Fermi level, the band gap, the orientation of the surface mag-
netization, and the concentration of magnetic and non-magnetic impurities
using the modified Boltzmann continuum approach along with a generalized
relaxation time approximation. The anomalous Hall conductivity is caused by
three mechanisms: the intrinsic effect (due to a nonzero Berry curvature), the
side jump effect, and the skew scattering effect. They compete to dominate
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the anomalous Hall effect in various regimes.
Analytically, we compute the contributions of all three mechanisms to

the scattering of massive Dirac fermions by magnetic and nonmagnetic im-
purities. Our results for the AHE in this system identify three transport
regimes depending on the relative relevance of several engaged mechanisms.
Understanding the behavior of these three mechanisms, we provide a clear
scenario for the recently empirically reported sign change of the AHE.
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2
CHARGE TRANSPORT IN THE SEMICLASSICAL

FORMALISM

Since in chapters 3, 4, 5 of this thesis, the Boltzmann semiclassical approach is
employed to investigate the longitudinal and transverse conductivity of a topo-
logical insulator, this chapter is devoted to the description of this methodology.
The disordered topological insulators studied in this thesis host magnetic
and non-magnetic impurities. Depending on the type of these impurities,
electrons’ scattering off the impurities can be isotropic or anisotropic. Hence,
in the following sections, we thoroughly describe the Boltzmann transport
formalism and the correct relaxation time scheme for the charge transport
calculation in isotropic and anisotropic systems.

2.1 Transport of electrons in a perfect crystal

Electrons undergo no scattering in a perfect crystal, resulting in an infinite
relaxation time and charge conductivity. This dissipationless charge current
in a perfect crystal is inconsistent with our classical picture for the motion
of electrons. According to our classical point of view, electrons collide with
ions when they move inside a crystal, reducing their energy and velocity. In
contrast, according to electrons’ wave nature, a wave can propagate through
a periodic array of ions without energy loss due to coherent constructive inter-
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ference [1]. Note that even in a perfect crystal, phonon-related fluctuations
can reduce the conductivity, though for short times or at very low temper-
atures, phonon-related fluctuations have a negligible effect on the electron
transport, so it is possible to consider a material without scattering.

Unlike perfect crystals, electrons always scatter off impurities, vacancies,
or other imperfections and lose their energy in realistic materials. At very
low temperature, in contrary to many conduction-limiting mechanisms which
depend on the temperature, scattering from impurities plays the dominant
role in the charge transport. In what follows, we discuss step by step the effect
of ions, external fields, and impurities on the charge transport of electrons
within the semiclassical framework.

2.2 The free-electron model versus the
semiclassical model

In solid-state physics, the free-electron model was the first and the simplest
model employed to investigate dynamics of electrons in an electron gas. It was
developed in 1927, mainly by Arnold Sommerfeld, who combined the classical
Drude model with quantum mechanical Fermi–Dirac statistics.

The free-electron theory considers metals as composed of a quantum
electron gas in which ions play almost no role, and electrons are free particles.
This model can resolve many of the inconsistencies arising from the Drude
model and gives insight into several other properties of metal. In the free-
electron theory, electrons move between different scattering events according
to the classical equations of motion. According to the quantum mechanical
point of view, these classical equations can be interpreted as the evolution of
wave packets constructed from free electron states.

The De Broglie wavelength of electrons is given by

λ= h
p

, (2.1)

which, h = 4.13566×10−15 eV .s−1, and is about 1 Angstrom. This value is
comparable to the inter-atomic spacing in common crystals. Therefore, when
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electrons interact with the ions, the electrons reveal their wave nature. How-
ever, the free-electron theory disrespects this fact and hence presents several
inadequacies that contradict experimental results. For example, this model
gives several physical quantities with the wrong temperature dependence
or with no dependence like the electrical conductivity. It also cannot explain
the existence of long mean free paths of electrons at low temperatures. In
addition, it fails to predict the behavior that originates from the motion of
ions and phonon scattering at very low temperature.

Contrary to the free-electron theory, the semiclassical model takes into
account the effect of ions on the transport of electrons. This model respects the
wave nature of electrons when they interact with ions. The known effective
Hamiltonian of the electrons in the system provides us with the energy of
electrons (as a function of the electron’s momentum) and consequently the
velocity of Bloch’s electrons. Therefore, the crystal periodic potential plays
a crucial role in the system’s transport calculation in this model. In other
words, instead of using the plane waves (free particles in the free-electron
model), we use Bloch waves (electrons+ions) in the semiclassical model. In
this sense the semiclassical framework represents a generalization of the free
electron model.

2.3 The effect of external fields in
semi-classical model

In the previous section, we discussed that we are not allowed to treat electrons
as particles when it comes to the interaction between electrons and ions.
However, in this section, we explain that we can treat the electrons as particles
when we investigate their response to slowly varying potentials.

According to the Heisenberg uncertainty principle,

∆x∆p ∼ ~ (2.2)

where, ∆x and ∆p are uncertainties in the position and momentum of the
electrons, respectively. If we want to consider the electrons as particles, they
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Lattice constant

Wavelength of the present potentials

De Broglie wavelength of electrons

Figure 2.1: Compares the de Broglie wavelength of an electron with the
wavelength of an external field and the lattice constant of a crystal.

must have well defined positions,
∆x
x

<< 1. (2.3)

For conducting electrons, the above equation gives
1

kF
<< x, (2.4)

where 1
kF

∼ a, a is the lattice constant of a crystal and kF is the Fermi momen-
tum. Therefore, if the region in which the electrons move is much larger than
the lattice constant, electrons can be described by states that are well-defined
in position space and momentum space. In most materials, the mean free
path of electrons is on the order of hundreds of angstroms and decreases
with temperature. For these materials, the semiclassical description can be
satisfactorily employed .

As the transport of electrons through a system is induced by an electric
field, the electron response to this external field needs to be taken into account
in the transport calculation. External fields usually slightly change over the
atomic spacing dimensions, see Fig. 2.1. For example, visible light changes
over a thousand angstroms. Then, the semiclassical model can be applied for
describing the response of electrons to these external fields. However, contrary
to this case, by reducing the external field’s wavelength to, for example, X -
rays, the semiclassical approach is not applicable.

In the semiclassical regime, the time evolution of the position r and
momentum ~k of the electrons exposed to the external electric field E and
magnetic field B are given by

ṙ= vk = ~k
m

= 1
~
∇kεk, (2.5)
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k̇=− e
~ (E+ ṙ×B) , (2.6)

where εk is the energy of the electrons in the state k.
Let us understand the above equations using the free-electron theory and

the semiclassical theory. The free-electrons theory indicates that the above
equations describe the behavior of a wave packet constructed from plane
waves (free particles)

ψ(r, t)=∑
k′

g(k′)exp[i
(
k′ ·r− ~k′2t

2m

)
] , g(k′)≈ 0, |k−k′|>∆k, (2.7)

where r and k are the mean position and momentum about which the above
wave packet is localized. However, the same equations have a different mean-
ing within the semiclassical theory. In semiclassical theory, they describe the
behavior of a wave packet constructed from Bloch levels in a given band,

ψn(r, t)=∑
k′

g(k′)ψnk′ exp[
i
~
εn(k′)t] , g(k′)≈ 0, |k−k′|>∆k. (2.8)

Since ∆k is small compared with the Brillouin zone’s size, εk varies little over
the present levels in the wave packet. Therefore, Eq. 2.5 can be interpreted
as the group velocity of the wave packet. In short, the classical equations of
motion describe the dynamical behavior of free particles in the free-electron
theory, and Bloch electrons in the semiclassical theory.

2.4 The evolution of the electron distribution
function

In the semiclassical point of view electrons are characterized by their coordi-
nates r and momentum p, in six-dimensional phase space. The distribution
function in a six-dimensional space specifies how many particles are in an
element of ∆r ∆p. In contrast, particles in quantum mechanics cannot be de-
scribed by a well-defined coordinate and momentum simultaneously. However,
a statistical ensemble of quantum particles can be described by a function of
p and r that is similar to the distribution function in the classical picture. If
this function in quantum mechanics only slowly depends on the coordinates,
it can be identified with the classical particles’ distribution function.
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Calculating the transport properties of a system by the semiclassical
method requires a nonequilibrium distribution function of electrons f (k,r, t)
so that f (k,r, t)∆k∆r

4π3 is the number of electrons at time t in the semiclassical
phase space volume ∆k ∆r about point r and k. In this section, we system-
atically take into account the effect of external fields and impurities on the
transport of the conducting electrons and finally extract the Boltzmann trans-
port equation which yields the nonequilibrium distribution function of Bloch
electrons.

In equilibrium, the quantum distribution function f0 is the Fermi-Dirac
distribution function,

f0 = 1
1+exp[εk−µ

κBT ]
, (2.9)

where κB = 8.61733×10−5eV K−1 is the Boltzmann constant and T is the
temperature of the system. Note that the Fermi-Dirac distribution function is
independent of the scattering of electrons from the present impurities. When
the system is driven out of equilibrium, the distribution function of electrons
evolves due to: 1) external fields or a temperature gradient, 2) scatterings
from the impurities, 3) diffusion. In what follows, we discuss the role of each
of them in the evolution of the electron distribution function.

2.4.1 The effect of external fields on the electron
distribution function

According to the classical equation of motion, the momentum of electrons
evolves under the action of the external fields E and B as

k̇=− e
~ (E+ ṙ×B) . (2.10)

Electrons with momentum k− k̇δt at time t = 0 will have momentum k at
time δt. Thus,

fk(r,δt)= fk−k̇δt(r,0), (2.11)

which leads to

∂ fk(r,δt)
∂t

)
f ields

=− e
~

(E+vk ×B)
∂ fk(r,δt)

∂k
. (2.12)
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2.4.2 The effect of diffusion on the electron
distribution function

Let’s assume that there is an electron in location r−vkδt at time t = 0 that
moves a distance vkδt with velocity vk, and reaches the point r at time δt.
Therefore, the number of electrons around r at time δt is equal to the number
of electrons around r−vkδt at time t = 0,

fk(r,δt)= fk(r−vkδt,0). (2.13)

Therefore,

fk(r,0)+ ∂ fk(r,0)
∂t

·δt = fk(r,0)− ∂ fk(r,0)
∂r

·vkδt (2.14)

which for a general time result in

∂ fk(r, t)
∂t

)
di f f usion

=−∂ fk(r, t)
∂r

·vk. (2.15)

2.4.3 The effect of scatterings on the electron
distribution function

Let W(k,k′) define the rate of a scattering from the occupied state k to
the empty state k′. To study electron transport in a quantum regime, we
need to find the scattering matrix (or T-matrix) of the electrons. Within the
semiclassical framework, the scattering rate, as a classical object, can be
obtained by its connection to the scattering matrix through Fermi’s golden
rule. However, only the absolute value of the T-matrix elements are present
in the scattering rate. Consequently, all the phase information of the T-matrix
elements is lost. In this section, we forget about the golden rule’s insufficiency,
but later we will discuss how we can restore all the missing phase information.

The transition rate Wkk′ for the scattering of itinerant electrons from state
k to state k′ within the first Born approximation is given by [2, 3]

Wkk′ = 2πnim

~
|Tkk′|2δ(εk′ −εk), (2.16)
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with nim the impurity concentration and the scattering T-matrix defined as

Tkk′ = 〈ψk|Vsc|ψk′〉, (2.17)

where |ψk〉 and |ψk′〉 are the initial and final states of the electrons, and Vsc

is the scattering potential operator. The rate of change of the distribution
function fk due to scatterings is related to the scattering rate as

∂ fk

∂t

)
scattering

=∑
k′

fk′[1− fk]Wk′k− fk[1− fk′]Wkk′. (2.18)

The first term in the right-hand side of the above integral denotes the rate at
which an electron from an occupied state k′ (with the occupation number fk′)
scatters into an empty state k (with the occupation number fk), and the second
term is the loss term. The scattering rate Wk′k may depend on the filling factor
fk. When scatterings are particle–particle collisions, generally speaking, the
energy of the involved particles is not conserved during the scattering time.
However, at low energies electrons scatter off impurities without energy loss.
For this type of scatterings, the scattering rate is independent of the filling
factors. In addition for elastic scattering , the scattering rate is symmetric
under the exchange of indexes k and k′, so Wkk′ =Wk′k. Consequently,

∂ fk

∂t

)
scattering

=∑
k′

[ fk′ − fk]Wk′k. (2.19)

2.5 The Boltzmann equation

There will be no net change in the distribution function under steady-state
conditions, and hence the total sum of the partial derivative terms obtained
above will be zero,

∂ fk

∂t

)
di f f usion

+ ∂ fk

∂t

)
f ields

+ ∂ fk

∂t

)
scattering

= 0. (2.20)

We rewrite the nonequilibrium distribution function of electrons as

fk = f0+ gk, (2.21)

where gk is the deviation of the electron distribution function from the equi-
librium case. Simplifying Eqs. (2.12), (2.15), (2.19) and using (2.21) results
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in
−vk ·∇r f0− e

~ (E+vk×B)∇k f0

=−∂ fk
∂t

)
scattering

+vk ·∇r gk+ e
~ (E+vk×B) ·∇k gk.

(2.22)

Keeping terms only to first order in the electric field gives

− ∂ f0
∂εk

·vk ·
[
−(εk−µ)

T ∇T + eE−∇µ
]

=−∂ fk
∂t

)
scattering

+vk ·∇r gk+ e
~ (vk×B) ·∇k gk.

(2.23)

For steady states of non-interacting electrons in a spatially homogeneous
system (on scales much larger than the distance between scatterers) in which
the external applied electric field is uniform in space, and also the temper-
ature of the system is constant over the whole system, the above equation
simplifies to

(−e)(−∂ f0

∂εk
) vk ·E= −∂ fk

∂t

)
scattering

. (2.24)

The above equation for a system with multiple conduction subbands is given
by

(−e)(−∂ f µ0
∂εk

) vµk ·E= ∑
k′,µ′

[ f µ
′

k′ − f µk ] Wµµ′

k′k , (2.25)

where µ is the band index. The above equation is known as Boltzmann equa-
tion. This equation is very powerful because it takes care of the summation of
various unlimited series of Feynman diagrams in the quantum linear response
theory and keeps the physical meaning of all expressions transparent.

2.5.1 The standard relaxation time scheme

The Boltzmann equation is a very complex equation that can be analyti-
cally solved only under simplifying assumptions. Within the relaxation time
approximation (RTA), we assume that the perturbation gµk decays in time as

gµk(t)= gµk(0)exp[−t/τµk], (2.26)

where τµk represents the time constant for relaxation of the perturbation. This
effective relaxation time τµk has, in general, no well-defined meaning and does
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not adequately describe the experimentally observed transport properties.
Following the RTA,

−∂ f µk
∂t

)
scattering

=−∂gµk
δt

= gµk
τ
µ

k
. (2.27)

By using the above equation along with Eq. (2.24) we arrive at

gµk = −∂ f µk
∂t

)
scattering

·τµk = e

(
−∂ f µ0
∂ε

µ

k

)(
vµk ·E

)
τ
µ

k. (2.28)

When all the scattering events are isotropic, the transition rate depends only
on the angle between k and k′, φ− =φk−φk′. Now, combining Eq. (2.25) with
the above equation gives

− e

(
−∂ f µ0
∂ε

µ

k

)
(vµk ·E)= e

(
−∂ f µ0
∂ε

µ

k

)∑
k′

Wµµ′

kk′ (τ
µ′

k′v
µ

k′ ·E−τµkvµk ·E). (2.29)

For isotropic scatterings, the relaxation time of electrons only depends on
the energy of the electrons (and not on their momentum), then for the elastic
scatterings τµk = τ

µ

k′ = τ
µ

k. Accordingly, we finally end up with the frequently
used standard relaxation time τµk, as follows

1
τ
µ

k

= ∑
k,µ′

Wµµ′

kk′

1−
vµ

′

k′ ·E
vµk ·E

 . (2.30)

τ
µ

k is constant on the whole Fermi surface when the Fermi energy is fixed.
After finding the relaxation time τµk, the electron distribution function is given
by

gµk = e

(
−∂ f µ0
∂εk

)(
vµk ·E

)[ ∑
k,µ′

Wµµ′

kk′ (1−
vµk′ ·E
vµk ·E

)
]−1

. (2.31)

With this nonequilibrium electron distribution function, the isotropic response
of the system to the externally applied electric field can be calculated by

σαβ =− e
AEβ

∑
k,µ

vµα(k)[ f µ0 + gµk], (2.32)

where α and β= x, y and A is the system’s surface area.
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2.5.2 The modified relaxation time scheme

In anisotropic systems, the conducting electrons’ dynamics is highly sensitive
to the direction of external electric field. Therefore, depending on the direction
of the external electric field, electrons have different relaxation times. To
capture this anisotropy in the transport of electrons, Schliemann and Loss
proposed [4] the following expression for gk,

gµk =−e(−∂ f µ0
∂ε

µ

k

)vµkE
[ τ

µ

‖ (k)

1+
(
τ
µ

‖ (k)

τ
µ

⊥(k)

)2 +
τ
µ

⊥(k)

1+
(
τ
µ

⊥(k)

τ
µ

‖ (k)

)2

]
, (2.33)

where
1

τ
µ

‖ (k)
= ∑

k′,µ′
Wµµ′

kk′ [1−
vµk′

vµk
cosφ−], (2.34)

1
τ
µ

⊥(k)
= ∑

k′,µ′
Wµµ′

kk′
vµ

′

k′

vµk
sinφ−. (2.35)

Based on this method, after evaluating the above integrals for each k-point of
the Fermi surface separately, the nonequilibrium distribution function that
solves the Boltzmann equation can be obtained. Contrary to the author’s
claim, the given expressions in Eqs. (2.34) and (2.35) do not correctly capture
the present anisotropy in the electron dynamics, because the τµ⊥(k) and τ

µ

‖ (k)
only partially capture the anisotropy. The expressions Eqs. (2.34) and (2.35)
for τµ⊥(k) and τ

µ

‖ (k) are found assuming that they depend only on the energy
of the electrons. However, in anisotropic systems, they depend also on the
momentum of electrons. Therefore, the result contradicts the underlying
assumptions.

However, later in 2009 a substantial improvement in solving the Boltz-
mann equation for anisotropic systems was made by Výborný and et al.
[5]. According to this new method (the modified relaxation time scheme),
the nonequilibrium distribution function of electrons moving with veloc-
ity vµk = vµk(cosφk,sinφk,0) in the presence of a external electric field E =
E(cosχ,sinχ,0) is given by

fk = f µ0 + gµk = f µ0 + e
∂ f µ0
∂εk

vkE
(
τ
µ

1(k)cosχ+τµ2(k)sinχ
)
, (2.36)
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in which two proposed relaxation times τµ1(k) and τ
µ

2(k) can have positive as
well as negative values, in contrast to the standard relaxation time that is
always positive. In addition, unlike the standard relaxation time, the two
introduced relaxation times in Eq. (2.36) are sensitive to the direction of
the driving electric field. For a system with isotropic dispersion, εk = εk,
substituting Eq. (2.36) in the Boltzmann equation gives,

vµk cos(φk−χ)=∑
k′

([
vµkτ

µ

1(k)−vµ
′

k′τ
µ′
1 (k′)

]
cosχ+

[
vµkτ

µ

2(k)−vµ
′

k′τ
µ′
2 (k′)

]
sinχ

)
Wµµ′

kk′ .

(2.37)
When E= Ex̂, χ= 0, the above equation results in

τ
µ

1(k)=
cosφk+ ∑

k′,µ′
τ
µ′
1 (k′) Wµµ′

kk′
vµ

′

k′

vµk∑
k′,µ′

Wµµ′
kk′

, (2.38)

and if E= E ŷ, χ= π
2 , we arrive at

τ
µ

2(k)=
sinφk+ ∑

k′,µ′
τ
µ′
2 (k′) Wµµ′

kk′
vµ

′

k′

vµk∑
k′,µ′

Wµµ′
kk′

. (2.39)

The above two integral equations are two decoupled inhomogeneous Fredholm
equations of the second kind expressed in the form of

F(x)= q(x)+λ
∫ b

a
S(x, y)F(y)d y. (2.40)

Given the function S(x, y), and q(x), the problem is to find the unknown func-
tion F(x). One practical way to solve these Fredholm equations of the second
kind is to expand the unknown function F(y) in Fourier series. Therefore,
we also replace the two unknown functions τµi (k) in Eqs. (2.38) and (2.39)
with their Fourier expansions τµi (k)=∑

n
(τµc

in(k)cosnφk +τµs
in(k)sinnφk). Next,

solving the following system of equations yields the Fourier coefficients τµc
in(k)

and τ
µs
in(k) for i = 1,2,
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

π τ
µc
1n(k)−∫ [cosφk + ∑

k′,µ′,n

[(
τ
µc
1n(k′)cosnφk′ +τµs

1n(k′)sinnφk′
)
Wµµ′

kk′
vµ

′

k′

vµ
′

k′

]
∑

k′,µ′
Wµµ′

k,k′

]
cosnφk′dφk′ = 0

π τ
µs
1n(k)−∫ [cosφk + ∑

k′,µ′,n

[(
τ
µ′c
1n (k′)cosnφk′ +τµ′s1n (k′)sinnφk′

)
Wµµ′

kk′
vµ

′

k′

vµ
′

k′

]
∑

k′,µ′
Wµµ′

k,k′

]
sinnφk′dφk′ = 0

,

(2.41)

π τ
µc
2n(k)−∫ [sinφk + ∑

k′,µ′,n

[(
τ
µc
2n(k′)cosnφk′ +τµs

2n(k′)sinnφk′
)

Wµµ′

kk′
vµ

′

k′

vµk

]
∑

k′,µ′
Wµµ′

kk′

]
cosnφk′dφk′ = 0

π τ
µs
2n(k)−∫ [sinφk + ∑

k′,µ′,n

[(
τ
µc
2n(k′)cosnφk′ +τµs

2n(k′)sinnφk′
)

Wµµ′

kk′
vµ

′

k′

vµ
′

k′

]
∑

k′,µ′
Wµµ′

kk′

]
sinnφk′dφk′ = 0

.

(2.42)

Note that conservation of the number of particles imposes

N =∑
k,µ

f µ0 =∑
k,µ

( f µ0 + gµk), (2.43)

so that,
∑
k,µ

gµk = 0, and hence all the constant terms in the Fourier expansions

are zero. Depending on the system under study the above two systems of
equations Eq. (2.41) and (2.42) can be solved analytically or numerically. Next,
the contribution of each band to the conductivity of a system can be obtained
by

σ
µ

αβ
= e2

AEβ

∑
k

vµα(k)vµk E τ
µ

1(k)δ(εµk −εF)cosχ+

e2

AEβ

∑
k

vµα(k)vµk E τ
µ

2(k)δ(εµk −εF)sinχ.
(2.44)

Finally, finding the contribution of electrons from all conduction subbands
yields the total conductivity σαβ =∑

µ
σ
µ

αβ
.

By defining the Anisotropic Magnetoresistance(AMR) as

AMR =
∑
µ

(σµxx −σµyy)∑
µ

(σµxx +σµyy)
, (2.45)
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we can systematically measure the degree of sensitivity of the charge current
to the direction of applied electric field. It is evident that the AMR is zero
isotropic systems for which σ

µ
xx =σµyy.

2.6 The semiclassical framework for the
anomalous Hall effect (AHE)

This semiclassical Eq. (2.25) deals only with gauge-invariant quantities, such
as the scattering rate, band velocity, and the distribution function. Neverthe-
less, since in this equation, the only role of the electric field is to accelerate
wave packets, and the only role of impurities is to produce incoherent instan-
taneous events, it is clear that this approach must often be insufficient. In
studying the AHE, more than ever, we need to modify the semiclassical frame-
work to incorporate all the relevant phenomena correctly. In the following
section, we first introduce the AHE and all the extrinsic mechanisms (side
jump and skew scattering) and intrinsic mechanism (anomalous velocity) that
play a role in the AHE. Next, we discuss how the Boltzmann equation can
be modified to correctly capture these effects in the AHE. As we will discuss,
we will add some corrections to the band velocity of the electrons, transition
rate, and also the electron distribution function to prepare the Boltzmann
equation for studying the AHE.

2.6.1 The anomalous Hall effect

When a non-ferromagnetic metallic sample is exposed to an external perpen-
dicular magnetic field, a voltage difference is generated across the plane of the
sample due to the Lorentz force. This observed voltage generates a transverse
current. This well-known phenomenon was first discovered by Edwin Hall in
1879 [6]. The Hall resistivity is given by

ρxy = R0 B, (2.46)

where R0 = 1
n e

is the Hall coefficient. The Hall effect provides us such an accu-
rate tool to measure the concentration and type of charge carriers (electrons or
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holes). Due to the significant influence of the Hall effect on condensed matter
physics, it is frequently called the queen of solid-state transport experiments.

One year later in 1880 [7], Hall discovered that the transverse charge
current was ten times larger in ferromagnetic iron than in non-magnetic
conductors. For such a ferromagnetic system it is empirically shown that

ρxy = R0 B+RsM, (2.47)

where Rs is the anomalous Hall coefficient. The second term caused by mag-
netization M is independent of the external magnetic field and then persists
even in the absence of the external magnetic field. Surprisingly, in some
materials, the magnetization contribution to the generated Hall current is
significantly dominant. For example, in nickel, the anomalous Hall coefficient
is about 100 times larger than the ordinary Hall coefficient near the Curie
temperature [8].

Even though the AHE is a well-recognized phenomenon, it has been
an enigmatic problem for almost a century, and there is still debate about
its origin in various materials. The main reason is that understanding the
AHE requires knowledge about some topological concepts that have been
formulated only recently. However, now it is clear that the AHE originates
from three effects: skew scattering, side jump, and non-zero Berry curvature.
The side jump and skew scattering rely on the disorder, while the non-zero
Berry-phase curvature is an intrinsic effect. In what follows, we will explain
these three effects separately.

2.6.2 The intrinsic contribution to the AHE

In 1954, Karplus and Luttinger (KL) [8] proposed that the AHE is a conse-
quence of the spin-orbit interaction that is present in ferromagnetic materials.
Owing to the spin-orbit interaction, the electrons acquire an anomalous veloc-
ity when an external electric field is applied, which depends on their spins,
as shown in Fig. 2.2(a) and is perpendicular to both the electric field and the
magnetization’s mean direction. Surprisingly, in ferromagnetic materials, the
average of the anomalous velocity over all occupied electronic states can be
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Figure 2.2: (a): Intrinsic effect due to the Berry curvature, (b): skew scattering,
(c): and coordinate shift .

non-zero. Since this non-zero anomalous velocity does not rely on disorder, it
has been referred to as the intrinsic mechanism of the AHE.

When Karplus and Luttinger proposed the intrinsic mechanism for the
AHE, the concept of Berry phase was not recognized. Berry in 1984 [9] showed
that the phase of a quantum system is a non-arbitrary quantity that can be
measured in some cases. After the proposal of the Berry phase, Chang et
al. [10] and Sundaram et al. [11] connected the already observed anomalous
velocity in the AHE and the Berry phase. They demonstrated that the Berry
phase can be used to explain the anomalous velocity of Bloch electrons and
that the integral of the Berry curvature over all occupied Bloch states can be
used to determine the anomalous Hall conductivity. The anomalous velocity
is given by

van
k =−k̇× (∇k × Ak), (2.48)

where Ak = i〈uk|∇k|uk〉 is the Berry connection, and uk(r) = e−ik·rψk(r). As
will be shown later, the semiclassical framework takes into account this
anomalous velocity to properly study the AHE.

2.6.3 The skew scattering contribution to the AHE

KL model only studied the AHE in a perfect crystal without any scatterings
from disorder or impurities and therefore is known as the intrinsics contribu-
tion to the AHE. Soon after the KL model, Smit [12, 13] argued that the AHE
vanishes in a perfect crystal and proposed the skew-scattering as the primary
mechanism behind the AHE. Skew scattering is an extrinsic mechanism due
to the presence of impurities in a material.
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When an electron approaches a charged impurity, it experiences an electric
field. In the presence of spin-orbit interaction, this electric field generates a
magnetic field that is perpendicular to both the electric field and the velocity
of electrons. The generated magnetic field is inhomogeneous in space because
it depends on the electron’s velocity and scattering potential, and both of them
vary in space. This inhomogeneous magnetic field gives rise to a different
Zeeman energy for electrons with opposite spins. Therefore, as shown in Fig.
2.2(b), electrons with opposite spins scatter with different angles, which is
called skew scattering. In what follows, we will discuss how this asymmetric
scattering can be captured in the semiclassical framework.

Within the semiclassical framework, the scattering rate, as a classical
object, can be obtained by its connection to the scattering matrix through
Fermi’s golden rule. However, it should be noted that only the absolute value
of the T-matrix elements are present in the scattering rate. Consequently, all
the phase information of the T-matrix elements is lost. In this section we will
discuss how we can restore this missing phase information.

The electron state after scattering ψk′ in Eq. (2.51) satisfies the Lippmann-
Schwinger equation

|ψk′〉 = |ψk〉+ Vsc

εk′ −H0+ iη
|ψk′〉. (2.49)

For weak disorder, |ψk′〉 can be approximated by a truncated series in powers
of Vkk′ = 〈ψk|Vsc|ψk′〉. By applying Eq. (2.49) and Eq. (2.17), Tkk′ up to third
order in Vsc is given by

Tkk′ =Vkk′ +∑
k′′

Vkk′′Vk′′k′

εk −εk′′ + iη
+ ∑

k′′′

∑
k′′

Vkk′′Vk′′k′′′Vk′′′k′

(εk −εk′′ + iη)(εk −εk′′′ + iη)
. (2.50)

Substituting this expansion for Tkk′ into

Wkk′ = 2π
~
|Tkk′|2δ(εk′ −εk), (2.51)

leads to the following scattering rate up to fourth order in the scattering
potential

Wkk′ =W (2)
kk′ +W (3)

kk′ +W (4)
kk′ , (2.52)

where W (2)
kk′ is symmetric under changing k ←→ k′, and is given by

W (2)
kk′ = 2π

~
〈|Vkk′|2〉disδ(εk −εk′) , (2.53)
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where dis denotes averaging over all possible distributions of impurities in
our system. For dilute and randomly placed impurities, it has been shown that
〈|Vkk′|2〉dis ∼ nim [2], with nim the concentration of impurities. As a result,
electron transport is influenced by the strength of the electron-impurity
interaction as well as the density of impurities. One of the main contributions
to the AHE originates from skew scattering. In order to investigate this
contribution, we need to calculate the asymmetric part of the transition rate,

W (a)
kk′ = Wkk′ −Wk′k

2
. The first asymmetric term is given by

W (3)
kk′ = 2π

~

(∑
k′′

〈
Vkk′Vk′k′′Vk′′k

〉
dis

εk −εk′′ − iη
+ c.c.

)
δ(εk −εk′) . (2.54)

W (3)
kk′ itself can be written as a sum of a symmetric term W (3s) and an asymmet-

ric term W (3a). Then, W (3)
kk′ = W (3a)

kk′ +W (3s)
kk′ , where W (3s/a)

kk′ =
W (3)

kk′ ±W (3)
k′k

2
. Since

the symmetric part of W (3)
kk′

W (3s)
kk′ = 4π

~
P

(∑
k′′

Re[〈Vkk′Vk′k′′Vk′′k〉dis]
εk −εk′′

)
, (2.55)

just renormalizes W (2)
kk′, it does not introduce a new physical contribution to

the scattering and is further not considered. Note, P in the above equation
refers to the principal value. The remaining asymmetric term W (3a)

kk′ can be
expressed as

W (3a)
kk′ = −(2π)2

~
δ(εk −ε′k)×∑

k′′
Im〈(Vkk′Vk′k′′Vk′′k)〉disδ(εk −εk′′) . (2.56)

This contribution scales with the impurity concentration (for a so-called non-
Gaussian disorder model [18]) as (Vkk′Vk′k′′Vk′′k)dis ∼ nim . Consequently we
can expect that the transverse conductivity associated to this term will be in-
versely proportional to n im [2]. Therefore, this contribution to the conductivity
of the system dominates in very dilute systems.

Two different scattering processes contribute to the fourth order expres-
sion for the scattering rate. A fourth order scattering process can occur at
a single defect, but also two second order scattering processes can occur at
two different defects. As the sequence of scatterings that lead to these two



2.6. THE SEMICLASSICAL FRAMEWORK FOR THE ANOMALOUS HALL EFFECT
(AHE) 59

second order pair scattering events is arbitrary, this process leads to three
contributions in the expression for W (4)

kk′ [14]

W (4)
kk′ =

∑
k′′

∑
k′′′

[〈Vk′′′kVkk′′〉dis

εk −εk′′ + iη
〈Vk′′k′Vk′k′′′〉dis

εk −εk′′′ − iη

]
× δ(εk −εk′)

+∑
k′′

∑
k′′′

[〈Vk′′kVkk′〉dis

εk −εk′′′ − iη
〈Vk′k′′′Vk′′′k′′〉dis

εk −εk′′ − iη
+ c.c

]
× δ(εk −εk′)

+∑
k′′

∑
k′′′

[〈Vkk′Vk′k′′′〉dis

εk −εk′′′ − iη
〈Vk′′′k′′Vk′′k〉dis

εk −εk′′ − iη
+ c.c

]
× δ(εk −εk′).

(2.57)

The factors like 〈Vk′′′lVkk′′〉dis are all proportional to nim, and therefore these
contributions to W (4)

kk′ are proportional to n2
im. The fourth order contribu-

tion due to a scattering event at a single impurity contains factors like
〈Vkk′′Vk′′k′′′Vk′′k′Vk′k〉dis which are proportional to nim. This non-Gaussian cor-
relation yields a term in the transition rate which is physically similar to W (3a)

kk′

(with respect to the concentration of impurities) but much smaller. Therefore
we only consider the contribution of the two second order pair scattering
events in W (4)

kk′. The term W (4)
kk′ expressed above is responsible for producing

the second contribution of the skew scattering in the anomalous Hall conduc-
tivity, in the non-crossing approximation, similar to the results presented in
the appendix of Ref. [14]. This second contribution of the skew scattering is
disorder-independent. In the weak disorder limit that we consider, the energy
width of the Bloch state spectral peaks is smaller than the gap, allowing us to
ignore direct interband scattering. Therefore we will only consider intraband
transitions in calculating W (2)

kk′ and W (3)
kk′. We consider electron transport in

electron doped systems, thus the Fermi level εF lies inside the conduction
band. However, for W (4)

kk′ we also incorporate the off-diagonal scattering matrix
elements as they produce virtual transitions that mix states in the two bands
in a way which is ultimately crucial [15].

2.6.4 The side jump contribution to the AHE

During a scattering event, not only the momentum of engaged particles
but also the coordinate of particles vary. This effect was first realized by
Berger [16]. When a wave packet scatters from an impurity with spin-orbit
interaction, the scattered wave packet will experience a deflection in the
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transverse direction, as shown in Fig. 2.2(c). This occurred deflection depends
on the spin of the electrons. After averaging over many scatterings, such
random deflections cancel each other, and only changes of the momentum is
considered. Hence, usually, such a displacement during the scattering time is
ignored in the transport calculation. However, when the Berry curvature is
non-zero, this anomalous coordinate shift does not disappear. Note, the side
jump and intrinsic contributions are distinguishable in systems with complex
band structures [17], because they have different dependence on the system
parameters. The anomalous deflection which electrons experience during
scattering time δrkk′ is given by the following gauge invariant expression
[18, 19]

δrk′,k =
〈

uk′ | i
∂

∂k′ uk′

〉
−

〈
uk | i

∂

∂k
uk

〉
− D̂k′,kArg

(
Vk′,k

)
, (2.58)

where Arg(Vkk′) is the argument of Vkk′ and

D̂k′,k = ∂

∂k′ +
∂

∂k
. (2.59)

While the phase information of the scattering amplitude is absent in the first-
order Born approximation, the third term on the right hand side of Eq. (2.58)
is responsible for restoring this information to the dynamics of the charge
carriers.

There are two distinct effects due to the anomalous coordinate shift. First
one is an additional correction to the velocity of electrons, vs j

k =∑
k′ Wkk′δrkk′,

and the second one is a change in the potential energy of the electrons if an
external electric field exists,

∆Uk′,k = eE ·δrk′,k. (2.60)

2.7 The Boltzmann formalism for the AHE

This section will explain how the Boltzmann transport formalism can correctly
incorporate the intrinsic and extrinsic effects in the AHE for a system with a
single conduction band.
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2.7.1 The velocity of electrons

To obtain the current density of the system J=∑
k vk fk, we need to calculate

the velocity vk of the itinerant electrons and also their distribution function
fk in the presence of an external electric field and randomly placed dilute
magnetic and non-magnetic impurities. The conventional semi-classical ap-
proach just studies electrons at scattering events and ignores the evolution of
the wave packets during the scattering time interval where a side jump can
occur. Furthermore, in a system with broken either time reversal or inversion
symmetries, an additional term should be added to the velocity expression
of electrons to incorporate properly the effect of the non-zero Berry-phase
curvature in the electron dynamics. If we incorporate both extra effects, which
are missing in the conventional semiclassical approach, the velocity can be
written as

vk = 1
~
∇kεk − k̇× (∇k ×Ak)+∑

k′
Wkk′δrkk′. (2.61)

2.7.2 Distribution function

After obtaining all terms for the velocity expression of the electrons, the next
step is to calculate the distribution function of the electrons. Therefore we
write the electron distribution function as follows

fk = f 0+ gs
k + ga1

k + ga2
k + gad

k . (2.62)

The largest deviation from the Fermi-Dirac distribution is given by gs
k. It

arises from the symmetric part of the scattering rate W (2)
kk′ and also describes

the longitudinal conductivity. ga1
k is defined as the deviation due to the asym-

metric part of the scattering rate W (3a)
kk′ , and ga2

k due to W (4)
kk′. Finally, gad

k is
responsible for capturing the effect of the side jump. Substituting the transi-
tion rate Wkk′ expressed in Eq. (2.52) along with the above non-equilibrium
distribution function into Eq. (2.29), we obtain the following self consistent
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time-independent integral equations

− eE ·vk

(
−∂ f 0

∂εk

)
=∑

k′
W (2)

kk′
(
gs

k − gs
k′
)

, (2.63)∑
k′

W (3a)
kk′

(
gs

k − gs
k′
)+∑

k′
Wkk′

(
ga1

k − ga1
k′

)= 0 , (2.64)

− eE ·vs j
k

(
−∂ f 0

∂εk

)
=∑

k′
Wkk′

(
gad

k − gad
k′

)
, (2.65)∑

k′
W (4)

kk′(gs
k− gs

k′)+
∑
k′

Wkk′(ga2
k − ga2

k′ )= 0. (2.66)

In the presence of an external electric field E, electrons acquire an extra po-
tential energy ∆Ukk′ =−eE·δrkk′ during the side jump δrkk′. Since the energy
of the electrons is conserved during elastic scattering, this change in potential
energy during a side jump event should be compensated by a change in the
kinetic energy of the electrons given by ∆εkk′ = εk′ − εk = eE ·δrkk′. There-
fore, based on conservation of energy, one obtains

∑
k′ Wkk′[( f 0(εk)− f 0(εk′)]=

−eE ·vs j
k

(
−∂ f 0

∂εk

)
, which reduces to Eq. (2.65) based on

∑
k′ Wkk′[( f 0(εk)+ gad

k )−
( f 0(εk′)+ gad

k′ )]= 0. As ga1
k , ga2

k and gad
k are small compared to gs

k, we approxi-
mate Wkk′ in Eqs. (2.64), (2.65) and (2.66) by W (2)

kk′.

It is now interesting to deduce how each contribution to the distribution
function scales with the impurity concentration. Since w(2)

kk′ ∼ nim, we find,
based on equation Eq. (2.63), that gs

k ∼ n−1
im. Like W (2)

kk′, W (3a)
kk′ ∼ nim, therefore

referring to Eq. (2.64) shows that ga1
k ∼ n−1

im. As it is clear that vs j
k ∼W (2)

kk′ ∼ nim,
then based on Eq. (2.65) one can conclude that gad

k ∼ n0
im. Finally, let us

consider ga2
k . Since w(4)

ll′ ∼ n2
im and gs

l ∼ n−1
im we come to the conclusion that

ga2
l ∼ n0

im.

2.7.3 Current density

The next step is to calculate the relevant terms in the current density. Using
Eqs. (2.61) and (2.62), the charge current density is given by

J =−e
∑

l
f lvl

' Jan + Js + Jad + Js j + Jsk1+ Jsk2 ,
(2.67)
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where Jan =−e
∑

l f 0(εl)van
l is the anomalous current density, Js =−e

∑
l gs

l v0l

is the regular contribution to the charge current, arising from impurity scat-
tering events within the first-order Born approximation, Jad =−e

∑
l gad

l v0l

and Js j =−e
∑

l gs
l v

s j
l are consequences of the side jump effect on the distri-

bution function and the electron velocity, respectively. Jsk1 =−e
∑

l ga1
l v0l and

Jsk2 =−e
∑

l ga2
l v0l result from skew scattering. In the second line of Eq. (2.67),

among the 15 terms we just consider 6 terms non-negligible. It is obvious
that

∑
l f 0

l (v0l +vs j
l )= 0 for the equilibrium distribution function. In addition,

we have ignored the small contributions
∑

l(ga1
l + ga2

2 + gad
l )vs j

l . Moreover, as
van is already linear in the electric field, the non-linear contributions to the
current

∑
l(gs

l + ga1
l + ga2

l + gad
l )van

l are also omitted.

In order to solve the integral equations (2.63), (2.64), (2.65) and (2.66), we
rely on the generalized relaxation-time approach. In this approach, the dif-
ferent contributions to the non-equilibrium distribution function are written
as

gp
k = eE

[
λ

p
1k cosχ+λp

2k sinχ
] ∂ f0

∂εk
. (2.68)

Here, p stands for s, a1, a2 and ad. χ is the angle of E with the x̂-direction,
λ

p
ik (i = 1,2) are the generalized mean free paths of the charge carriers. In

anisotropic systems, the size of the mean free paths of electrons depends
on the relative direction of the drift velocity of the electrons respect to the
external electric field. Hence, in order to capture this anisotropy, two different
mean free paths are introduced in the proposal for the electron distribution
function, namely λp

1k and λ
p
2k. λp

1k corresponds to those electrons that move
parallel to the external electric field and λ

p
2k for those electrons that move

perpendicular to the external electric field. Then, since in isotropic systems,
electrons feel the same scattering potential in every direction, the form of
this proposal for the distribution function of the electrons reduces to the
well-known relaxation time formalism in isotropic systems.

Considering now an electric field in the x̂ or ŷ direction E = Ex̂i (x̂1 =
x̂, x̂2 = ŷ) and substituting gp

l from Eq. (2.68) into Eqs. (2.63), (2.64), (2.65)
and (2.66), we arrive at

vk · x̂i =
∑
k′

W (2)
kk′

[
λs

ik−λs
ik′

]
, (2.69)
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vs j
k · x̂i =

∑
k′

W (2)
kk′

[
λad

ik −λad
ik′

]
, (2.70)

∑
k′

W (2)
kk′

[
λa1

ik −λa
ik′

]+∑
k′

W (3a)
kk′

[
λs

ik−λs
ik′

]= 0, (2.71)

∑
k′

W (4)
kk′

[
λs

il−λs
ik′

]+∑
k′

W (2)
kk′

[
λa2

ik −λa2
ik′

]= 0. (2.72)

To solve the above equations, all mean free paths λp
ik are expanded in Fourier

series. Finally we obtain the Fourier coefficients and consequently the correc-
tions to the distribution function of electrons caused by each of the involved
mechanism in the AHE.
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3
CHARGE TRANSPORT IN A FREE STANDING

MAGNETIC TOPOLOGICAL ULTRA THIN FILM

In a 3D topological insulator (3DTI), the conducting electrons on the surface
interact with the impurities present in the surface and bulk. A possible way to
decrease the bulk’s effect on the surface transport is increasing the surface-to-
volume ratio, making the 3DTI thinner. Interestingly, when the thickness of
a topological ultra-thin film (TTF) is comparable with the decay length of the
surface states into the bulk, the wave functions of the top and bottom surface
states overlap, which leads to opening a gap in the surface band structure
[1–4]. For example, this regime is realized in a thin film of Bi2Se3 when its
thickness is less than six quintuple layers (QLs) [6].

In this chapter, we investigate the charge transport of massive Dirac
fermions in a magnetic topological ultra-thin film (MTF) in the presence of
short-range and randomly placed dilute magnetic impurities. The magnetic
impurities are localized scattering centres that force massive Dirac fermions
to change their host state. When the magnetic impurities are not aligned fully
perpendicular to the MTF, the short-range interaction between them and
the conducting electrons is anisotropic due to the spin-momentum locking
of electrons. By applying the semi-classical Boltzmann formalism, [24–26],
and using a modified relaxation time scheme [27], to truly capture the effect
of the present anisotropic interactions, the charge transport of a MTF is

67
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investigated.

Note, even though the emergence of the finite size effect gap in a MTF
reduces the system’s conductivity, we show that a MTF can provide us with
a system in which the massive Dirac fermions generate a dissipation-less
charge current in the presence of magnetic impurities.

Interestingly, we found that the charge current of a MTF is always dissipa-
tive when both non-degenerate massive Dirac cones in a MTF are filled with
electrons. Nevertheless, all the possible electronic transitions are forbidden
by the chirality selection rule when only a single band is filled, and the mag-
netic impurities are aligned in-plane. Remarkably, in consequence, the charge
transport along a MTF will be dissipation-less. Finally, let us emphasize
that the observed fully suppression of the resistivity is a consequence of the
hybridization induced gap and hence is not achievable in a 3DTI.

To explain our findings, we address a chirality selection rule induced by
magnetic impurities. This chirality selection rule governs electrons’ inter-
subband and intra-subband transitions. The chirality selection rule is strongly
dependent on the spatial orientation of the magnetic impurities. Then, by
changing the magnetic impurities’ tilt angle, the chirality selection rule
changes, and consequently, the intra-subband and inter-subband transitions
of conducting electrons will be influenced.

In this chapter, Sec. 3.1, presents the effective Hamiltonian for a MTF
and the applied formalism. In Sec. 3.2.1, we investigate the charge transport
of a MTF in the two-band regime. The charge transport and the resistivity
of a MTF in the single-band regime is studied in Sec. 3.2.2. In Sec. 3.3, we
summarize our findings and conclude with our main results.

3.1 Hamiltonian and formalism

A thick topological film has two surfaces, in which each surface hosts helical
gapless states with a specific spin texture (see panel a in Fig. 3.1). As the thick
film becomes thinner, the gapless helical states on the opposite surfaces start
to hybridize. As panel b of Fig. 3.1 shows, this hybridization opens a gap of 2∆
in the energy spectrum of the thin film. The size of the hybridization induced
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Figure 3.1: (Color online) (a) Schematic view of a topological thick film with different spin
texture for electrons in the upper and lower surface. (b) A topological thin film with an energy
gap of 2∆ opened by hybridization between two opposite surfaces. (c) Illustration of how
magnetization M further changes the electronic spectrum of a thin film.

gap decays exponentially with the thickness of the system[5]. For example,
it has been experimentally demonstrated that increasing the thickness of
a Bi2Se3 thin film reduces the energy gap and when the thickness reaches
6nm the gap disappears [6, 7]. However, in this chapter, the size of the
hybridization induced gap is fixed, and the thickness dependency of this gap
is not considered in our calculations.

A gap in the surface states of a 3DTI opens if time-reversal symmetry
(TRS) is broken [8, 9]. The TRS can be broken in a 3DTI by exerting an exter-
nal magnetic field on the system [10–13], by doping the system with magnetic
impurities[14–17], and by the magnetic proximity effect when a topological
insulator is brought in contact with a ferromagnet [18–23]. Breaking the TRS
in a 3DTI destroys the chiral surface states, though it cannot remove the
surface states’ degeneracy. In contrast to this system, in a MTF, TRS breaking
converts two degenerate massive Dirac cones to two non-degenerate massive
Dirac cones, as shown in panel c of Fig. 3.1.

The Hamiltonian describing low energy electrons in a MTF is given by
[4, 28]

H0 = ~vF(kyσ1−kxσ2)⊗τ3+∆mσ3⊗1+∆⊗τ2, (3.1)

on the bases of |t ↑〉, |t ↓〉, |b ↑〉, and |b ↓〉, where t and b denote the top and
bottom surface states and ↑, ↓ represent the spin-up and spin-down states,
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respectively. σi and τi (i = 1, 2, 3) are Pauli matrices in the spin and surface
space, respectively.

∆m can originate from the magnetic proximity effect. For example, it has
been shown that this magnetic proximity effect occurs when EuS, a ferromag-
netic insulator with a band gap of 1.6 eV, and a TC (Curie temperature) of 16
K is grown on a 20 quintuple-layer (QL) thick Bi2Se3 [29]. Also, this effect is
observed when a 15-nm-thick Bi0.5Sb1.5Te3 thin film is in contact with a 15-
or 40-nm-thick SrRuO3 [30]. In another experimental work, a (BixSb1−x)2Te
thin film becomes ferromagnetic by proximity coupling in a heterostructure
with yttrium iron garnet (YIG), a magnetic insulator, as evidenced by the
measured anomalous Hall effect (AHE) [31].

In this work, we restrict ourselves to the low energy regime and keep
terms up to linear order in momentum k. In the presence of the inversion
symmetry, we assume that vF is the same for both surface states. Switching to
new bases |± ↑〉, |± ↓〉, with |± ↑〉 = (|t ↑〉±|b ↑〉)/p2 and |± ↓〉 = (|t ↓〉±|b ↓〉)/p2 ,
H0 reduces to the two decoupled block-diagonal matrix

H0 =
(

h+ 0
0 h−

)
, (3.2)

where hν = ~vF(kyσx −νkxσy)+ (∆+ν∆m)σz. The energy dispersion of this
Hamiltonian is given by

εs
ν = s

√
(~v f k)2+ (∆+ν∆m)2 , (3.3)

where s = +/−1 denotes the conduction/valence band. The chiral index ν

distinguishes the outer subbands (ν = +) from the inner subbands (ν = −).
The chiral index of the inner subbands is of the opposite sign to the sign of
∆ ·∆m, while the chiral index of the outer subbands is the sign of ∆ ·∆m. The
last term in Hν, (∆+ν∆m), is the mass term. The value of the energy gap for
the outer subbands is 2|∆+∆m| and 2|∆−∆m| for the inner subbands, (see Fig.
3.2).

The chiral basis states that diagonalize the Hamiltonian H0 in Eq. (3.2),
are ψs

ν = us
νeik·r, where
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Figure 3.2: Band structure of a Bi2Se3 MTF, for vF=4.8 ( 105 m s−1 ), ∆=69
meV, and ∆m=35 meV [6].

|us
ν〉 =

1p
2



1+γs
+√

1+γs
+

ie−iφk δν,+1

1−γs
+√

1−γs
+
δν,+1

−i
1+γs

−√
1+γs−

eiφk δν,−1

− 1−γs
−√

1−γs−
δν,−1


, (3.4)

γs
ν(k)= ∆+ν∆m

εs
ν

, 〈us
ν| |us′

ν′〉 = δs,s′δν,ν′ and the δν,ν′ is the Kronecker delta. For

a MTF, these so-called surface states emerge in the entire film. Nevertheless,
they always lie in the bulk energy gap and therefore can be distinguished
from the bulk states.

In order to find the charge current of massive Dirac fermions in a MTF, the
non-equilibrium distribution function of the massive Dirac fermions fk should
be obtained. We assume that the electric field is weak, hence we consider
f νk = f 0

k +δ f νk , where f νk denotes the non-equilibrium distribution function of
electrons residing in band ν and state k and f 0

k is the equilibrium Fermi-Dirac
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Figure 3.3: An electron under the presence of an electric field E =E(cosχ,sinχ,0) scatters
off a particular point like magnetic impurity S im = Sim(0,sinθ,cosθ), with initial velocity
vk = vk(cosφk,sinφk,0) and final velocity vk′ = vk′(cosφk′ ,sinφk′ ,0).

distribution function. Note, f 0
k does not contribute to the current and δ f νk is

linear in the applied electric field E. Since only the Fermi electrons contribute
to the charge transport, s =+1, we drop the index s in what follows. We apply
the semi-classical Boltzmann equation (BE)

∂ f νk
∂t − e(−∂ f 0

∂ενk
)E.vνk =∑

ν′,k′ Wνν′(k,k′)
(
f ν

′
k − f νk′

)
, (3.5)

to find the distribution function of charge carriers in the presence of the
external electric field E =E(cosχ,sinχ,0) (see Fig. 3.3) and the dilute and ran-
domly placed magnetic impurities. During the scattering time, the itinerant
electrons with velocity vνk = ∇kε

ν
k = vνk(cosφk,sinφk,0), scatter from band ν

and state k to band ν′ and state k′, with transition rate Wνν′(k,k′).
We model the interaction between an arbitrary electron located at r and a

single magnetic impurity at R im as Vsc(r−R im)= Jδ(r−R im)S im ·Se, where
Se = hσ/2 stands for the spin of the electron, J is the exchange coupling, and
S im = Sim(0,sinθ,cosθ) is the spin of the magnetic impurity, (see Fig. 3.3).
The delta function refers to the short-range nature of the electron-impurity
interaction. We can treat the spin of magnetic impurities classically in the
regime of large magnetic spin |Sim|, weak interaction J, and J|S|=constant.
Without loss of generality, we assume that the mean magnetic moment of the
impurities is in the yz plane, as shown in Fig. 3.3. Because the direction of the
electric field can be adjusted, this assumption has no physical consequence.
We suppose that the fluctuations around the average magnetic moment are
negligible, thus all magnetic impurities are parallel. This alignment can be
validated experimentally by applying an external magnetic field for a short
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period and then switching it off [65]. Depending on how electrons interact
with random and point-like impurities, the BE is solved differently. If the
scattering potential Vsc scatters electrons isotropically, the relaxation time
scheme suggests the following form for the non-equilibrium distribution
function at zero temperature [33],

δ f νis(k)= e
∂ f 0

∂ενk
vνk E τνis(cosφk cosχ+sinφk sinχ), (3.6)

where
1

τνis(k)
= ∑

k′,ν′
Wνν′(1− vν

′
k′

vνk
cos[φk′ −φk]). (3.7)

and τνis,1 = τνis cosφk and τνis,2 = τνis sinφk.
However, this method does not apply to our work because, even though the

low energy dispersion of a MTF is isotropic, due to the in-plane component of
the magnetic impurities, the scattering potential is not isotropic. To capture
this anisotropy, Eq. (3.6) should be modified as follows [27]

δ f νk = e
∂ f 0

∂ενk
vνk E (τν1(k)cosχ+τν2(k)sinχ), (3.8)

where τνi (k) are the modified relaxation time.
By applying Eq. (3.5) for both bands simultaneously, and substituting Eq.

(3.8) for f νk , one arrives at the following set of equations,

cos(φk −χ)− ∑
k′,ν′

W+ν′[τ+1 (k)−τν′1 (k′)
vν

′
k′

v+
k

]
cosχ− ∑

k′,ν′
W+ν′[τ+2 (k)−τν′2 (k′)

vν
′

k′

v+
k

]
sinχ= 0

cos(φk −χ)− ∑
k′,ν′

W−ν′[τ−1 (k)−τν′1 (k′)
vν

′
k′

v−
k

]
cosχ− ∑

k′,ν′
W−ν′[τ−2 (k)−τν′2 (k′)

vν
′

k′

v−
k

]
sinχ= 0.

(3.9)

By following the method described in Sec. 2.5.2, the Eqs. (3.9) can be solved.
The result gives us the Fourier coefficients τνc

1n, τνs
1n, τνc

2n, τνs
2n. Accordingly, by

obtaining these coefficients, one can straightforwardly find the corresponding
relaxation times τνi (k)=∑

n(τνc
in cosnφk +τνs

in sinnφk). Finally, replacing func-
tions τν1(k) and τν2(k) in Eq. (3.8) with the found relaxation times yields the
distribution function of the electrons with a particular chirality.
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Next, the contribution of each band to the conductivity of the MTF can be
obtained by

σναβ =
e2

AEβ

∑
k

vνα(k)vνk E τν1(k)δ(ενk −εF)cosχ

+ e2

AEβ

∑
k

vνα(k)vνk E τν2(k)δ(ενk −εF)sinχ,
(3.10)

where α and β denote x and y directions. Finally, finding the contribution of
all electrons from these two bands yields the total conductivity σαβ =∑

ν
σναβ.

3.2 Results

We divide our discussion into two parts. In the first part, Sec. 3.2.1, we assume
that both bands are filled with electrons, and both are involved in the charge
transport. In this regime the Fermi energy is thus arranged to be above the
bottom of the subband with plus chirality. In the second part, Sec. 3.2.2, only
the subband with minus chirality is filled and contributes to the conductivity.
Since our results show completely distinctive features in these two regimes,
we present them separately.

3.2.1 Two-band regime

Being in the two-band regime requires ∆+∆m 6 εF , where ∆+∆m is the
energy of electrons with plus chirality at the Γ point (k = 0). Defining ε̃F = εF

∆

and ∆̃m = ∆m
∆

, the condition 1+∆̃m 6 ε̃F guarantees that the system is properly
driven in the two-band regime.

3.2.1.1 Transition rate and lifetime of electrons

The transition rate Wνν′(k,k′) for electrons determines how likely a scattering
event is in which an electron from band ν and state k scatters off a mag-
netic impurity and ends up being in band ν′ and state k′, by respecting the
conservation of energy. By using the Eq. (3.4), the scattering T-matrix

Tνν′(k,k′)=
(

T++ T+−

T−+ T−−

)
, (3.11)
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within the first Born approximation is given by

T = JSim


−cosθ (T ++

1 −T ++
2 ei(φk′−φk)) −isinθ (T +−

1 −T +−
2 ei(φk′+φk))

isinθ (T −+
1 −T −+

2 e−i(φk′+φk)) cosθ (T −−
1 −T −−

2 e−i(φk′+φk))

 ,

(3.12)
where T νν′

1 =
√

(1−γ+ν (k))(1−γ+
ν′(k

′)) , T νν′
2 =

√
(1+γ+ν (k))(1+γ+

ν′(k
′)) . Accord-

ing to the Eq. (2.16) transition rate Wνν′(k,k′) of the electrons becomes

W̄νν′(k,k′)=cos2θ[(1/2)[(T νν′
1 )2+ (T νν′

2 )2]−T νν′
1 T νν′

2 cos(φk′ −φk)]δνν′δ(ενk −εν
′

k′)+
sin2θ[(1/2)[(T νν′

1 )2+ (T νν′
2 )2]+T νν′

1 T νν′
2 cos(φk′ +φk)](1−δνν′)δ(ενk −εν

′
k′),

(3.13)
where W̄νν′(k,k′)= ~Wνν′ (k,k′)

πJ2S2
imnim

. In Eq. (3.13), the first and second terms corre-
spond to the intra-subband and inter-subband scatterings, respectively. Note
that while intra-subband scatterings are isotropic, inter-subband scatterings
are anisotropic. Therefore, depending on whether the chirality of electrons is
preserved during the scatterings or not, the scattering event is isotropic or
anisotropic.

As Fig. 3.4 shows the most and least probable intra-subband scatterings
of Fermi electrons W̄++

F (φk,φk′) are respectively backward, φk′ −φk =±π, and
forward scatterings, φk′ −φk = 2nπ, with n = 0, 1 or −1. However, the most
and the least probable inter-subband scatterings occur when φk′ +φk =π or
3π, and φk′ +φk = 2nπ, respectively. Therefore, these two possible scatterings
are very distinct. For example, there is always a huge chance for all electrons
to be backscattered during an intra-subband transition, while a few electrons
have this chance in an inter-subband scattering.

Apart from that, intra-subband and inter-subband scatterings can be
clearly distinguished by their responses to the variation in the surface mag-
netisation direction. According to Fig. 3.4, changing the direction of the
magnetic impurities, from zero to π

2 , decreases the transition rate for all
intra-subband scatterings by three orders of magnitude, while it enhances the
transition rate for all inter-subband scatterings by two orders of magnitude.
Besides, note that changing the orientation of the magnetic impurities weak-
ens or strengthens different scattering events without changing the profile of
the transition rate against φk and φk′.
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Figure 3.4: W̄νν′(k,k′) for Fermi electrons in an intra-subband scattering
(+ 7−→+) and an inter-subband scattering (+ 7−→−) versus direction of k and
k′, for different orientations of the magnetic impurities θ, and for ∆̃m = 0.5,
ε̃F = 2.
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Even though there is no net charge current along the system in the
absence of the external electric field, still the electrons travel between the
allowed states. Having the transition rate of different scattering events let us
calculate how long an electron remains in its host state that helps us to have
a broader view of the dynamics of conducting electrons.

Using Eq. (3.13) the lifetime of an electron with chirality ν is given by

τνq = (
∑
k′,ν′

Wνν(k,k′))−1 = t0/2
1+γ2

ν cos2θ+γνγν′ sin2θ
, (3.14)

where t0 = 4~3v2
F

ενk J2S2
imnim

. Note that in the above expression if ν = + then ν′ =
−, and vice versa. According to the above equation, while τ−q decreases by
increasing θ, τ+q increases. Therefore, in the absence of an electric field, by
increasing θ from 0 to π

2 , electrons travel from the subband with minus
chirality to the other subband with plus chirality. Finally, all electrons end
up having the same lifetime for θ = π

2 . We can conclude that by changing the
orientation of the magnetic impurities, one can change the occupation number
of electrons in each subband.

Considering that in the absence of an external electric field, there is no
preferred scattering event, all transition rates can be weighted equally, as is
done in the calculation of the lifetime. But, with the external electric field,
the distribution of electrons in different states changes to make some of the
possible scatterings more favorable for the charge transport, and suppresses
other unfavorable transitions.

3.2.1.2 Conductivity

The BE takes into account both the effect of the electric field and the impuri-
ties in the system’s charge transport. As Eq. (3.13) implies, charge conduction
in a MTF consists of both isotropic and anisotropic transitions. Since these
two types of events are correlated, their contributions to the total charge
current cannot be separated. Hence, we employ the modified relaxation time
scheme for all the possible scattering events in the MTF to obtain the conduct-
ing electrons’ relaxation times. In what follows, we first compare the found
modified relaxation times with the calculated standard relaxation times, to
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prove the requirement of the modified relaxation time. By applying the Eqs.
(3.13) and (3.7) the standard relaxation time of an electron in band ν and
state k will be

τνis(k)= t0

4+ (γ2
ν−1)(1+2sin2θ cos2φk)

. (3.15)

The standard relaxation time scheme is applicable only when all the scatter-
ing events are isotropic, in which the transition rate depends only on the angle
between k and k′, ∆φ=φk −φk′. Consequently, the corresponding relaxation
time depends only on the magnitude of k, not on its direction. Nevertheless,
the expression in Eq. (3.15) contradicts this point. The apparent contradiction
implies that the system is not isotropic. However, we can ignore this contradic-
tion and still follow this approach in order to just make an estimation for the
relaxation time, without going through a lengthy calculation that solving Eq.
(3.9) requires. We will demonstrate that the value of the standard relaxation
times τνis,i deviate too much from the modified relaxation times τνi in a system
with in-plane magnetization.

Fig. 3.5 quantitatively compares τ̃νi = τνi
t0

, with τ̃νis,i =
τνis,i
t0

. In all panels
dashed and solid curves correspond to the electrons with minus and plus
chirality, respectively.

As Eq. (3.13) indicates, when the MTF has a perpendicular magnetization,
all electrons keep their chirality unchanged during a scattering event and
encounter an isotropic transition. Therefore, it is obvious why these two
methods produce the same relaxation times. However, when one increases
the in-plane component of the magnetization, the standard relaxation time
starts to deviate from the other accurate ones. At θ = π

2 , the value of the
standard relaxation time differs too much from the accurate value, especially
for electrons with minus chirality. In addition, changing the orientation of
the magnetic impurities from θ = 0 to π

2 makes electrons with minus chirality
distinguishable from those with plus chirality by referring to their relaxation
times.

Eq. (3.9) correctly captures the anisotropy of scattering events by including
the two different modified relaxation times τν1 and τν2 for each subband and
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Figure 3.5: Modified relaxation times τ̃νi and standard relaxation times τ̃νis,i are shown
versus φk for three different orientations of the magnetic impurities, θ = 0, π4 , π2 . In all
panels dashed and solid curves correspond to the electrons with minus and plus chirality,
respectively.

provide us with,

τνi (k)= τνq
t0

([
t0−λν τνc

i1 +λν′ tan2θτν
′c

i1

]
δi1 cosφk +

[
t0−λντνs

i1 −λν′ tan2θτν
′s

i1

]
δi,2 sinφk

)
,

(3.16)
where

τνc
11 =

Λν′(1+ tan2θ)+ t0

ΛνΛν′(1− tan4θ)+ t0[t0+Λν+Λν′]
τ̄νq, (3.17)

τνs
21 =

Λν′(1− tan2θ)+ t0

ΛνΛν′(1− tan4θ)+ t0[t0+Λν+Λν′]
τ̄νq, (3.18)

and λν(k)= [1−γ2
ν(k)]cos2θ, Λν =λντνq and τ̄νq = t0τ

ν
q.
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By using Eq. (3.10) along with the given relaxation times by Eq. (3.16), we
arrive at the following expressions for the two components of the contribution
of each subband in the total conductivity,

σνxx[
e2

h
]= 2Γν(Γν

′ +1)σ0

1+ [Γν+Γν′]cos2θ+ΓνΓν′ cos2θ
,

σνyy[
e2

h
]= 2Γν(Γν

′
cos2θ+1)σ0

1+ [Γν+Γν′]cos2θ+ΓνΓν′ cos2θ
,

(3.19)

where

Γν = ε̃2
F − (1+ν∆̃m)2

2(ε̃2
F + [1+ν∆̃m][1+ν∆̃m cos2θ])

, (3.20)

and σ0 =
~2v2

F

nimS2
imJ2

. Also we found that σνxy =σνyx = 0. The total conductivities

of the system in the x and the y directions can be obtained by σxx = ∑
ν=±

σνxx,

and σyy = ∑
ν=±

σνyy.

3.2.1.3 The effect of magnetic impurities

The contribution of each subband to the total conductivity along with the
total conductivity versus θ are shown in Fig. 3.6. In panel a the Fermi energy
lies close to the bottom of the subband with plus chirality, and in panel b the
Fermi energy lies far from the bottom of the subband with plus chirality.

As Fig. 3.6(a) demonstrates, electrons in the subband with minus chirality
contribute significantly more to the total conductivity of a MTF, regardless
of the direction of the external electric field. As Fig. 3.7 shows, when the
electric field is applied along the y direction, the value of the relaxation time
of electrons with minus chirality, τ−2 is always greater than the value of the
relaxation time of electrons with opposite chirality, τ+2 for any given value of
θ. In addition, electrons with minus chirality drift faster than others, see Fig.
3.8. Since the charge conductivity is only controlled by these two parameters,
it can be understood why the contribution of electrons with minus chirality is
significantly higher for this case.

When the electric field is applied in the x direction, the same discussion
for the dominance of electrons with minus chirality in controlling the total



3.2. RESULTS 81

0 π

6
π

3
π

2

0.5

1

1.5

θ

σ
i
i
[
e
2 h
]

a

Δ

m=0.5

ϵ

F=2

0 π

6
π

3
π

2

1

2

3

4

θ

b

Δ

m=0.5

ϵ

F=7 σ


xx

σ

xx
+

σ

xx
-

σ

yy

σ

yy
+

σ

yy
-
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Figure 3.8: The velocity of the Fermi electrons versus ε̃F for different values of ∆̃m.

conductivity is valid only when the magnetization orientation is between
0< θ < π

4 . Beyond this regime, π
4 < θ < π

2 , the relaxation time of electrons with
minus chirality, τ−1 (green curve panel a in Fig. 3.7), is shorter than the relax-
ation time of electrons with plus chirality, τ+1 (cyan curve in the same panel Fig.
3.7). However, even though electrons with minus chirality experience more
scattering events than others, in this case, their larger velocity compensates
for this. Hence, they again dominate the total conductivity, even in the regime
of π

4 < θ < π
2 .

Moreover, if one fills conduction subbands with more electrons, Fermi
electrons in subbands with opposite chirality end up having very similar
relaxation times (see panel b of Fig. 3.7), regardless of the direction of the
external electric field. In addition, as Fig. 3.8 shows, all electrons conduct
charge with the same velocity when ε̃F is large. Therefore, as all curves in
Fig. 3.6 demonstrate, all high energy electrons, regardless of their chirality
contribute equally to the charge current.

Notice that all the conductivities shown in Fig. 3.6 strongly depend on the
orientation of the magnetic impurities only when the electric field is applied
in the x direction. Surprisingly, the total conductivity and the contribution
of each subband almost do not vary with θ when the electric field is applied
along the y direction.

The weak dependence of σνyy and σyy on θ can be understood by looking
at the spin torque of electrons induced by the magnetic impurities during



3.2. RESULTS 83

the scattering time. With an electric field in the y direction, the average
momentum of the electrons is also in the y direction. In a 3D TI, the spin
of the electrons would be oriented along the x direction due to the spin-
momentum locking. In the case of a MTF, the spin can also have a small
z component: 〈Se

z〉 = ∆+ν∆m
εk

(the smallest value is reached for electrons with
minus chirality ν=− and for high energy electrons). Nevertheless, the spin of
the electrons is in this case always approximately perpendicular to the spin
of the magnetic impurities (which lies in the yz plane), especially for high-
energy electrons and for electrons with negative chirality. Consequently, the
torque will be large, and independent of θ, resulting in a small conductivity,
almost independent of θ. In case the electric field is along the x direction, the
angle between the spin of the electron and the magnetic impurities depends
strongly on θ, and thus also the torque, resulting in a strong θ dependence
for σxx.

3.2.1.4 Anisotropic magneto-resistance

In this section we systematically measure the degree of sensitivity of the
charge current to the direction of the electric field by calculating the anisotropic
magneto-resistance (AMR) for each subband AMRν and the total AMR

AMR=
∑
ν(σνxx −σνyy)∑
ν(σνxx +σνyy)

,

AMRν = σνxx −σνyy

σνxx +σνyy
.

(3.21)

The external electric field affects the momentum of electrons, and due to the
large spin-momentum locking, it consequently affects the spins of electrons.
On the other hand, since the spin of electrons interacts with the spin of
magnetic impurities, the external electric field subsequently influences the
strength of scatterings and, consequently, the system’s conductivity. Then,
it is obvious why changing the direction of the external electric field can
strongly affect the conductivity of a MTF.

By using Eqs. (3.19) and (3.21), we find

AMRν = σνxx −σνyy

σνxx +σνyy
= Γν

′
sin2θ

1+Γν′ cos2θ
. (3.22)
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According to Eq. (3.22), for a MTF with a fully out of plane magnetization,
θ = 0, the value of AMRν is zero for both bands and as we already knew, the
system is isotropic. On the other hand, for a MTF with a completely in-plane
magnetization, AMRν[θ = π

2 ] = Γν′. Accordingly, the value of the AMRν for
each band ranges from 0 to Γν

′
.

According to Eq. (3.22), AMRν depends on Γν
′
, which implies that the

anisotropy in the conductivity of a particular band originates from the inter-
subband scatterings, in agreement with Eq. (3.13).

Figs. 3.9(a) and 3.9(b) compare the AMR with AMR+ and AMR−, in terms
of θ, with ε̃F=2, 7, and ∆̃m=0.5. All curves increase by increasing θ, regardless
of the value of ε̃F and the chirality of the electrons. This is due to the fact
that the strength of inter-subband scattering, which is responsible for the
anisotropy, increases by increasing θ, see Eq. (3.13).

As Fig. 3.6(a) demonstrates, when the Fermi energy lies on the bottom
of the band with plus chirality, ε̃F = 2, (σ+

xx −σ+
yy)' (σ−

xx −σ−
yy), though (σ−

xx +
σ−

yy)& (σ+
xx +σ+

yy), which eventually leads to AMR+ &AMR−, (see Fig. 3.9(a)).
Hence, for this case, electrons with plus chirality play the important role in
the anisotropy of the derived conductivity of the MTF.

For the case of ε̃F = 7, (Fig. 3.9(b)), σ+
xx 'σ−

xx and σ+
yy 'σ−

yy, which results
in AMR+ ' AMR−. Therefore, electrons that reside in the top of their host
bands have the same share in generating the anisotropy in the conductivity.

The red curves in Figs. 3.9(a) and 3.9(b) demonstrate that the anisotropy
in the total conductivity increases by increasing θ. This is due to the fact that
σxx diverges greatly from σyy by increasing θ (see Figs. 3.6).

Now, we assume that all the magnetic impurities are aligned in a fixed
particular direction and consider that the Fermi energy position is also fixed.
Note that the value of the hybridization induced gap ∆ is fixed in this work.
However, the size of the energy gap 2|∆+ν∆m| can be altered by changing the
value of ∆m. In what follows, we investigate how the degree of the anisotropy
in each band’s conductivity and the total conductivity can be controlled by
tuning the size of the energy gap.

Fig. 3.9(c) shows AMR−, AMR+ and AMR versus ∆̃m, for two values of θ
and with ε̃F = 2. As expected, the contribution of each band and also the total
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conductivity is isotropic when all magnetic impurities are aligned perpendic-
ular to the surface of a MTF. In case of having all the magnetic impurities
aligned in-plane, AMR− and AMR have a decreasing trend versus ∆̃m, while
AMR+ has an increasing trend against ∆̃m.

When θ = π
2 , based on Eq. (3.13), just inter-subband scatterings are pos-

sible for electrons, regardless of their chirality. In addition, as Eq. (3.13)
indicates, the transition rate Wνν′(k,k′) for an inter-subband scattering is
symmetric with respect to the chirality index. Accordingly, the probability
of an inter-subband scattering is independent of the chirality of electrons.
However, during an inter-subband transition, the band with minus chiral-
ity can host much more electrons. Therefore, the produced conductivity by
electrons with plus chirality is much more anisotropic compared to the gen-
erated current by electrons with minus chirality, see Fig. 3.9(c). Regarding
the anisotropy in the total charge current, because the transition rate of
all inter-subband scatterings decreases with increasing ∆̃m, the amount of
produced anisotropy decreases (the red curve in Fig. 3.9(c)).

Now, we assume that the size of the energy gap is kept fixed, and we
discuss how changing the value of the Fermi energy can change the amount
of anisotropy in the conductivity of each band and the total conductivity. We
have so far considered that the anisotropy in the conductivity of a particular
band and the total charge current vanishes if the magnetic impurities are
aligned perpendicular to the surface. In the case of θ = π

2 , by increasing ε̃F , not
only the transition rate for all possible inter-subband scatterings increases
but also the number of occupied states by electrons after an inter-subband
scattering increases, regardless of their chirality. Therefore AMR−, AMR+

and AMR enhance by increasing ε̃F (see Fig. 3.9(d))

3.2.1.5 Comparison between the charge conductivities of a MTF
and a magnetic 3DTI (3DMT)

By comparing the conductivity of a MTF with the conductivity of a 3DMT we
can understand how the hybridization between the top and bottom surfaces
of a MTF affects the system’s charge conductivity.

In a 3DTI the thickness of the system is much larger than the decay
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length of the surface states into the bulk and the wave functions of the top
and bottom surfaces do not overlap. As a result, the 3DTI is a gapless system.
In fact, the value of the hybridization induced gap ∆ decays exponentially as
a function of the thickness of the system [6]. In the absence of ∆ and ∆m, the
dispersion of a 3DTI consists of two degenerate massless Dirac cones.

For what follows, we split our discussion into two parts. In the first part,
we assume that both the MTF and the 3DMT lack the magnetic dopants that
induce the gap ∆m. In the second part, we investigate the effect of including
∆m. In a TTF, two Dirac cones are degenerate, but unlike the dispersion of
a 3DTI, these two Dirac cones are always massive due to the permanent
presence of the hybridization induced gap ∆.

In Figs. 3.10(a) and 3.10(b) we compare the charge conductivity of a TTF
and a 3DTI [34] versus ε̃F , and for two distinct orientations of the magnetic
impurities θ = 0, π

2 . Here, we assume that the Fermi energy is fixed, and the
size of ε̃F can be altered by tunning the ∆. These two panels show that the
conductivity of a 3DTI is larger than the conductivity of a TTF, regardless of
the direction of the external electric field and the orientation of the magnetic
impurities. Decreasing the value of ∆, by increasing the thickness of the
system, increases ε̃F and consequently enhances the charge conductivity of
the TTF. For large values of ε̃F , which correspond to a significantly thick TTF,
the charge conductivity of a TTF is the same as of a 3DTI.

According to Fig. 3.10(a), when the external electric field is applied in
the x direction, the charge conductivity of a TTF differs significantly from
the charge conductivity of a 3DTI if θ = π

2 . However, this is not true when
the spins of the magnetic impurities are perpendicular to the surface of the
TTF, i.e θ = 0. In contrast to the case of E = Ex̂, Fig. 3.10(b) shows that when
E = E ŷ, the difference between the charge conductivity of a TTF and a 3DTI
is insensitive to the variations in the orientation of the magnetic impurities.
The zero conductivity of the TTF corresponds to the situation in which the
Fermi energy lies at the bottom of both subbands. It should be noticed that
since the Fermi energy is fixed in the conduction subband of the 3DTI, its
conductivity is always nonzero and constant.

Now, we compare the conductivity of a 3DMT with the conductivity of a
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MTF. By dopping a 3DTI with strong magnetic dopants, the time-reversal
symmetry is broken, which leads to the removal of the surface chiral states
and the conversion of the degenerate massless Dirac cones to degenerate
massive Dirac cones. However, in contrast to the 3DMT, the breaking of
the time-reversal symmetry in a TTF removes also this degeneracy and
consequently results in dispersion with two non-degenerate massive Dirac
cones, each with distinct chirality, see Fig. 3.2.

Figs. 3.10(c) and 3.10(d) show that the conductivity of a 3DMT is larger
than the conductivity of a MTF. By decreasing the size of the hybridization
induced gap, increasing ε̃F , the difference between the conductivity of these
two systems decreases.

When all the magnetic impurities lie in-plane, it is shown that the con-
ductivity of a 3DMT is insensitive to a change in the size of ∆m [34]. In the
same condition, due to the hybridization between two opposite surfaces in
a MTF, the charge conductivity is highly sensitive to any change in ∆m and
consequently in the size of the gap 2|∆±∆m|. Then, the insensitivity of the
charge conductivity of such a system to the gap implies that the system
is thick enough, and the finite size effect gap is absent. By comparing the
sensitivity of the charge conductivity to the gap for different samples with
different thicknesses, the critical thickness for a certain system at which a
crossover from a 3DMT to an MTF occurs can be determined.

Breaking the time-reversal symmetry decreases the conductivity of the
3DMT, and accordingly increases its resistivity. When the Fermi energy lies in
the conduction band, there is always a non-zero resistivity against the charge
transport since the degenerate bands both are simultaneously involved in
the charge transport. However, in the absence of time-reversal symmetry in
a MTF, we can reach a regime in which the resistivity is zero. This will be
clarified in detail in Sec. 3.2.2.

3.2.1.6 Effect of the gap

In this section, we investigate how changing the size of the gap, 2(∆+ν∆m),
influences the charge transport in a MTF. Here, we keep the value of ∆
constant and just change the size of ∆m.
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Fig. 3.11 presents the conductivity of each band and the total conductivity
of the MTF versus ∆̃m = ∆m

∆
, for two critical values of θ, 0 and π

2 , in a system
with constant Fermi energy and ∆, i.e constant ε̃F . According to Fig. 3.11(a),
increasing ∆m raises the contribution of electrons with plus chirality and
decreases the conductivity of electrons with minus chirality, whatever is θ or
the direction of the electric field. The shown behavior of the total conductivity
in Fig. 3.11(b) can be generally explained by checking the response of velocity
and occupation number of electrons to ∆̃m. For this purpose, in what follows,
we will check the response of the occupation number of electrons to ∆̃m, and
the velocity of electrons.

When θ =π/2, the electron occupation number in both bands is the same
at ∆̃m = 0 according to Figs. 3.12(a) and 3.12(b). When the size of ∆m increases,
although the occupation number of electrons with minus chirality increases,
the yellow curve in Figs. 3.12(a) and 3.12(b), the occupation number of con-
ducting electrons with plus chirality decreases and finally reaches zero value
at ∆̃m = 1, see the blue curves in Figs. 3.12(a) and 3.12(b). The velocity of
electrons in both bands interestingly shows a similar trend (see Fig. 3.12(c)).
Therefore, when the external electric field is applied in the x direction and
θ =π/2, since the total occupation number of electrons, the red curve in Fig.
3.12(a), and the average velocity of electrons, the red curve in Fig. 3.12(c), both
decrease by increasing the value of ∆̃m, the total corresponding conductivity
decreases for θ =π/2, the green curve in Fig. 3.11(b).

When the external electric field is applied in the y direction the corre-
sponding conductivity changes too slowly (almost constant) for θ = π

2 , as the
total occupation number of electrons (green curve in Fig. 3.12(b)) changes too
slowly for this case and dominates the behavior of the conductivity. For other
orientation of the magnetic impurities the calculated conductivity can also be
understood in this way.

3.2.2 The single-band regime

Here, we investigate the charge transport of a MTF when only the band with
minus chirality is filled. To keep the MTF in this regime the Fermi energy
can range within ∆−∆m 6 εF 6∆+∆m.
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Figure 3.12: Panels a and b show the occupation number of electrons in each band with
respect to ∆̃m for constant values of θ and ε̃F . Panel c shows the velocity of electrons with
distinctive chirality against ∆̃m.

If only electrons with minus chirality participate in transport, it is ex-
pected that the generated charge current shows some exotic features, which
are absent in the two-band regime. To explain why we have such an expecta-
tion, let us check the chiral selection rule, which governs electrons’ transition
between different states in a MTF. The interaction between an electron and a
local magnetic impurity is given by

Hm = H(1)
m +H(2)

m , (3.23)
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where

H(1)
m = JSim cosθ

(
σz 0
0 − σz

)
,

H(2)
m = JSim sinθ

(
0 −i σz

i σz 0

)
,

(3.24)

in the spin-chirality Hilbert space. The full Hamiltonian of electrons is H =
H0 + Hm. To check how the chirality of electrons varies through different
transitions, one can define the chirality operator in the spin-chirality basis
set as

C =σ0⊗τz =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (3.25)

where C∗C = CC∗ = 1, C2 = 1 and C |us
ν〉 = ν |us

ν〉. We can check the possible
conservation of chirality by calculating the commutator [H,C]. Using Eq.
(3.2), Eq. (3.24) and Eq. (3.25) we arrive at

[H,C]= [H0,C]+ [H(1)
m ,C]+ [H(2)

m ,C]. (3.26)

Since [H0,C]= 0, and [H(1)
m ,C]= 0, one finds [H,C]= [H(2)

m ,C]. We can conclude
that scatterings caused by H(1)

m has to conserve chirality (corresponding to
the intra-subband transitions), while scatterings caused by H(2)

m change the
chirality (corresponding to the inter-subband transitions). When all the mag-
netic impurities are perpendicular to the surface, θ = 0, one finds H(2)

m = 0,
and consequently only intra-subband transitions are allowed. For an in-plane
orientation of the magnetic impurities, θ = π/2, one finds H(1)

m = 0, and only
inter-subband transitions can occur. In the single-band regime inter-subband
transitions are forbidden because of the conservation of energy. A dissipation-
less charge current can therefore be expected in the single-band regime for a
MTF if θ =π/2.

Now, we calculate the resistivity of a MTF in this regime to prove this
exciting finding. Since in what follows, we discuss the charge transport of
just electrons with minus chirality, we drop the chirality index for the sake of
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convenience. The found transition rate for the electrons with minus chirality
is

W̄(k,k′)= cos2θ[1+γ2+cosφ−(γ2−1)]δ(εk−εk′), (3.27)

where φ− = φk′ −φk, W̄ = ~w
πJ2S2

imnim
, γ = ∆−∆m

εk
. As Eq. (3.27) shows, the out

of plane component of the magnetic impurities controls the transition of
electrons. By weakening this component of the magnetic impurities, the scat-
tering probability decreases for all possible scattering events, and eventually
vanishes at θ = π

2 . In other words, if all the magnetic impurities lie in-plane,
electrons stay forever in their host state and never scatter into the other
states.

Substituting Eq. (3.27) in Eq. (3.9) yields the following relaxation time for
electrons in this regime

τk = t0

cos2θ

1
3+γ2 cosφk. (3.28)

This indicates that the relaxation time of electrons increases by increasing θ
and diverges at θ = π

2 , which once again confirms that electrons with minus
chirality do not encounter any scattering events in this situation.

Replacing the relaxation time in Eq. (3.10) with Eq. (3.28) yields the
following charge conductivity of electrons in this regime

σxx[
e2

h
]=σyy[

e2

h
]= σ0

cos2θ

ε̃2
F − (∆̃m −1)2

3ε̃2
F + (∆̃m −1)2

,

σxy =σyx = 0.
(3.29)

Accordingly, the resistivity matrix will be

ρ =σ−1 =
(
ρxx ρxy

ρ yx ρ yy

)
= ρxx

(
1 0
0 1

)
, (3.30)

where ρxx[ h
e2 ]= ρ yy[

h
e2 ]= ρ0 cos2θ

3ε̃2
F + (∆̃m −1)2

ε̃2
F − (∆̃m −1)2

, and ρ0 =
nimS2

imJ2

~2v2
F

.

This result also shows another remarkable finding: the conductivity of
a MTF in the single-band regime is always isotropic, σxx =σyy, in contrary
to the extracted conductivity for this system in the two-band regime, Eq.
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(3.19). The anisotropy in the conductivity for a MTF in the two-band regime
originates from the magnetic impurities’ in-plane component. However, in
the single-band regime, the in-plane component of the magnetic impurities is
not able to scatter electrons, see Eq. (3.27), and consequently, the calculated
conductivity for this regime is isotropic.

Fig. 3.13(a) shows this resistivity as a function of θ. It decreases by in-
creasing θ, and indeed eventually vanishes at θ = π

2 , regardless of the value
of ε̃F , and ∆̃m. This provides us with another criterion to distinguish the
single-band regime from the two-band regime in the charge transport of a
MTF. Since ∆ is constant, the value of the energy gap 2|∆−∆m| decreases by
increasing the value of ∆m. Therefore, by increasing the value of ∆m, or ∆̃m,
the conductivity increases, and consequently, the corresponding resistivity
decreases (Fig. 3.13(b)).
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Figure 3.13: The scaled resistivity ρ̃xx = ρxx
ρ0

of a MTF in the single-band regime versus θ
(a), and ∆̃m (b).

Finally, we want to stress that the charge current in this regime stays
dissipationless as long as the chirality selection rule remains unchanged. The
presence of extra effects can modify the band dispersion and may break the
chirality selection rule, making the charge current dissipative. For example,
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an in-plane magnetic field causes the band dispersion to be an asymmetric,
tilted Dirac cone [35, 36]. Hence, it can generate a finite resistivity in this
regime. A perpendicular electric field can also modify the transition selection
rule by breaking the inversion symmetry [37], even though the dispersion
relation remains symmetric.

3.3 Conclusion

The charge transport of a magnetic topological ultra-thin film (MTF) is in-
vestigated by applying the Boltzmann semi-classical formalism along with a
modified relaxation time scheme. Two distinct regimes are identified depend-
ing on whether both conduction bands are engaged in the charge transport
or not. For each regime, the relaxation times of electrons and the system’s
charge conductivity are found analytically. When both conduction bands are
filled with electrons, the generated charge current is anisotropic. In contrast
to this regime, we found that the conductivity of a MTF is isotropic when
only a single conduction band is involved in the transport. The extracted
conductivity in both of these regimes is highly sensitive to the orientation
of the magnetic impurities, the size of the energy gap, and the Fermi level’s
value.

Interestingly, the magnetic impurities induce a chirality selection rule that
governs electrons’ transitions during different scattering events. When both
of the conduction bands are filled, the charge current is always dissipative.
Nevertheless, when only a single band is occupied, the chiral selection rule
forbids all the transport channels for electrons if the magnetic impurities lie
in plane. In consequence, the charge transport in a MTF will be surprisingly
dissipation-less.

This study provides a criterion to specify a crossover from a 3DTI to a
MTF. When all the magnetic impurities are in-plane in a 3DMT, the measured
charge conductivity is insensitive to the gap. In contrast, in a MTF with in-
plane magnetic impurities, the charge conductivity is highly sensitive to the
gap. This criterion can be used to determine the critical thickness for a certain
system at which a crossover from a 3DMT to a MTF occurs.
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THE EFFECT OF STRUCTURAL INVERSION

ASYMMETRY ON THE CHARGE TRANSPORT IN

MAGNETIC TOPOLOGICAL ULTRA-THIN FILMS

In a TTF grown on a substrate the inversion symmetry is not preserved along
the z direction (normal to the thin film) since the top surface is exposed to
the air while the bottom surface is attached to the substrate. This is also the
case when an external perpendicular electric field is exerted on a TTF. This
structural inversion asymmetry (SIA) splits each spin-degenerate band into
two subbands separated in momentum space [39]. This Rashba-like effect
(the combination of SOC and SIA) can be controlled by a gate voltage. The
tunability of the band structure in a TTF is important for spintronic devices
like Datta-Das spin field-effect transistors [40], in which the spin structure is
electrically tuned.

In this chapter, we combine the breaking of time-reversal symmetry (TRS)
and SIA: we explore the role of a substrate or a perpendicular electric field
on the charge transport of a magnetic topological ultra-thin film grown on a
substrate (MTF), in the presence of short-range and randomly placed dilute
magnetic impurities. In a previous chapter, we investigated the transport
properties of a free-standing MTF. Here we demonstrate that SIA enhances
the anisotropy induced by the magnetic impurities. We combine the Boltz-
mann formalism [41–43] with a modified relaxation time scheme [44] to
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appropriately describe this strong anisotropy in the charge transport.
As we will describe later, our analytical and numerical results reveal

two different transport regimes. When only a single conduction subband
contributes to the charge transport, a dissipationless charge current can
exist. This effect occurs when the current generating external electric field is
parallel to fully in-plane oriented magnetic impurities. Interestingly, this dis-
sipationless current does not happen if both conduction subbands are involved
in the transport. We further show that the effect that the magnetic impurities
have on the charge transport in a MTF can be tuned by a gate voltage (or the
substrate). We comprehensively study different scattering events and discuss
the underlying physics behind our numerical and analytical results.

We have organized the rest of this chapter as follows. In Sec. 4.1, we
introduce the effective Hamiltonian for a MTF, and briefly discuss the applied
methodology. Sec. 4.3 presents our result and discussion. Secs. 4.3.1 and 4.3.2
present our discussion on the charge transport of a MTF in the single-subband
and two-subband regimes, respectively. Sec. 4.4 sums up our findings and
discussion with the principal results.

4.1 Hamiltonian and basic notations

The setup of the system under study is shown in Fig. 4.1. We base our study
on the effective Hamiltonian which describes the surface states of a MTF as

∅𝒌′

𝑆𝑖𝑚

Z

𝒗𝑘′

E
Y

X

𝒗𝑘

∆

V

Figure 4.1: An electron under the presence of an electric field E =
E(cosχ,sinχ,0) scatters off a particular point like magnetic impurity S im =
Sim(0,sinθ,cosθ), with initial velocity vk = vk(cosφk,sinφk,0) and final veloc-
ity vk′ = vk′(cosφk′,sinφk′,0).
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derived in Refs. [46–48]. The Hamiltonian is given by

H0 =



∆+∆m iαe−iφk V 0

−iαeiφk −∆−∆m 0 V

V 0 −∆+∆m iαe−iφk

0 V −iαeiφk ∆−∆m

 , (4.1)

where α = ~vF k with vF being the Fermi velocity of electrons, and φk =
arctan(ky/kx), see Fig. 4.1. ∆ describes the hybridization gap, ∆m is the gap
that originates from the magnetic exchange field, and V represents the SIA.
The effect of different contributions ∆, ∆m and V on the electronic band
structure are now introduced successively.

A thick topological film has two surfaces, and each surface hosts helical
gapless states. The corresponding band structure for these surface states is
shown in Fig. 4.2(a) for ∆=∆m =V = 0. When the thickness of a topological
thin film is small, the spin-polarized states in opposite surfaces hybridize,
leading to a hybridization gap of 2∆ at the Dirac point, as shown in Fig. 4.2(b).
The size of this gap depends on the thickness of the sample [34].

Experimentally, TTFs have been doped with magnetic atoms in order
to create MTFs in which time-reversal symmetry is broken. For example,
(Bi,Sb)2Te3 and Bi2Se3, have been doped with Cr [49–54], V [55, 56] or
Fe [57]. A ferromagnetic phase can now be formed through different mecha-
nisms [16–26], and consequently this induces the gap ∆m in the surface band
structure.

The SIA between the top and bottom surfaces is represented by the SIA
potential V in the Hamiltonian (4.1). Even though a TTF is gapped due to the
hybridization between the top and bottom surfaces (∆ 6= 0), the massive Dirac
fermions are still degenerate. A substrate or a perpendicular electric field
removes this degeneracy. While ∆ is a characteristic of the system, the energy
gap of a MTF can be engineered by ∆m and V , giving rise to new transport
features which will be discussed in this work.

Under a unitary transformation [48], the Hamiltonian (4.1) transforms
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ϵk

k

Δ=0, V=0, Δm=0

(a)

ϵk

k

Δ≠0, V=0, Δm=0

(b)

ϵk

k

Δ≠0, V≠0, Δm=0

(c)

ϵk

k

Δ≠0, V≠0, Δm≠0

(d)
+ -

Figure 4.2: Band Structure of a 3DTI (a), TTF (b), TTF with SIA (c), and a
MTF including SIA (d).

into two 2×2 blocks

H0 =



Γ+Λ 0 0 −iηe−iφk

0 −(Γ−Λ) −iηeiφk 0

0 iηe−iφk Γ−Λ 0

iηeiφk 0 0 −(Γ+Λ)

 , (4.2)

where η = αcosΘ, Γ = √
(αsinΘ)2+∆2

m , cosΘ = ∆
Λ

, and Λ =
p
∆2+V 2 . The

eigenstates of the Hamiltonian H0 are

ψs
µ =

1√
1+ (βs

µ)2



i δµ,+1 β
s
µ

i δµ,−1 β
s
µ

δµ,−1 eiφk

δµ,+1 e−iφk

 eik·r, (4.3)
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with corresponding eigenenergies εs
µ = s

√
(Γ+µΛ)2+η2 , with βs

µ =
√

1+µγs
µ

1−µγs
µ

,

and γs
µ =

Γ+µΛ
εs
µ

. The dispersion of this system consists of two bands, the

outer bands labeled by µ= 1 and the inner bands by µ=−1, see Fig. 4.2(d).
The energy gaps between the bands are G± =∆m ±

p
∆2+V 2 .

4.2 Boltzmann formalism for the charge
current

In the presence of a weak charge transport generating electric field, linear
response theory gives

J =−e
∑
k,µ

( f 0
k +δ f µk )vµk =σE, (4.4)

where J, σ and E are the current density, charge conductivity and in-plane
applied electric field, respectively. The summation runs over the allowed
states for electrons within all bands. f 0

k +δ f µk denotes the non-equilibrium
distribution function for the electrons and f 0

k is the Fermi-Dirac distribution
function. We apply the Boltzmann equation to find δ f µk for massive Dirac
Fermions in a MTF in the presence of an electric field E =E (cosχ,sinχ,0), see
Fig. 4.1, and of dilute, point-like and randomly located magnetic impurities.

For steady states of non-interacting electrons in a spatially homogeneous
system (on scales much larger than the distance between the scatterers), the
Boltzmann equation reads

− e(−∂ f 0

∂ε
µ

k
)E.vµk = ∑

µ′,k′
wµµ′(k,k′)

(
f µk − f µ

′

k′

)
, (4.5)

where vµk = ∇kε
µ

k = vµk(cosφk,sinφk,0) is the band velocity of the electrons.
Note that we have dropped the index s in the above expression as only
the Fermi electrons contribute to the charge transport. The transition rate
wµµ′(k,k′) for the scattering of itinerant electrons from band µ and state k to
band µ′ and state k′ within the first Born approximation is given by [58]

wµµ′(k,k′)= 2πnim

~
|〈k,µ|Vsc|k′,µ′〉|2δ(εµk −ε

µ′

k′), (4.6)
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where nim denotes the density of the magnetic impurities. The density of the
magnetic impurities is proportional to nim ∼ Na x

a3 , where Na is the number
of atoms per unit cell of the host material, a is the lattice constant, and x
is the concentration of magnetic impurities. Taking typical values x ∼ 0.01,
a3 ∼ 150Å3, and Na ∼ 5, we get nim ∼ 1020 cm−3.

We model the interaction between an arbitrary electron located at r
and a single magnetic impurity at R im as Vsc(r)= J(r−R im)S im ·Se, where
Se = hσ/2 denotes the spin of the electron, and S im is the spin of the magnetic
impurities. In dilute magnetic systems, the exchange coupling takes the form
J(r−R im)= J0δ(r−R im). Based on first-principles calculations, it has been
shown that for Bi2Te3 lightly doped with Mn, J0 ranges from 0.125 meV to
8 meV [59]. We assume that the magnetic impurities are all ordered in the
same direction and each of them lies in the yz plane, S im =Sim(0,sinθ,cosθ),
as shown in Fig. 4.1.

By considering H0 as the base Hamiltonian, the interaction between
the weak localized magnetic impurities, which act as local scatterers, and
the electrons is taken into account perturbatively. Thus, we write the full
Hamiltonian as

H =H0+Vsc, (4.7)

where Vsc = J0δ(r−R im)τ0⊗S im ·Se and τ0 is a 2×2 unit matrix.

Under the same unitary transformation that converts H0 into H0, the
perturbation term Vsc converts into the following block diagonal form

Vsc =
(

h+ 0
0 h−

)
, (4.8)

with

h± =±sinφk sinθ
(
cosφk[1−cosΦ]∓sinΦcotθ

)
τx

±sinθ
(
cosΦcos2φk +sin2φk ±cotθsinΦcosφk

)
τy

+sinθ
(
cotθ cosΦ∓sinΦcosφk

)
τz,

(4.9)

where cosΦ= ∆m
Γ

and τi (i = x, y, z) are the Pauli matrices. The full Hamilto-
nian in the new basis is H = H0+Vsc.
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The scattering of massive Dirac fermions from local magnetic scatterers is
highly anisotropic due to the in-plane component of the magnetic impurities.
Furthermore, the SIA enhances this strong anisotropy. As a result, in order to
accurately capture the anisotropic nature of electron transport, the following
expression for δ f µk is proposed [44]

δ f µk = e
∂ f 0

∂ε
µ

k

E (λµ1(k)cosχ+λµ2(k)sinχ), (4.10)

where λµi (k) are the mean free paths of electrons. Using Eq. (4.5) for both
conduction subbands µ=±, and substituting Eq. (4.10) for δ f µk , one arrives at
the following set of equations

v+
k cos(φk −χ)− ∑

k′,µ′
w+µ′[λ+

1 (k)−λµ′1 (k′)
]
cosχ

− ∑
k′,µ′

w+µ′[λ+
2 (k)−λµ′2 (k′)

]
sinχ= 0,

v−
k cos(φk −χ)− ∑

k′,µ′
w−µ′[λ−

1 (k)−λµ′1 (k′)
]
cosχ

− ∑
k′,µ′

w−µ′[λ−
2 (k)−λµ′2 (k′)

]
sinχ= 0.

(4.11)

One practical way to solve this set of equations is replacing the two
unknown functions λµi (k) with their Fourier expansion λµi (k)=∑

n
(λµc

in cosnφk+
λ
µs
in sinnφk), which leads to

v+
kδi,1 cosφk +v+

kδi,2 sinφk

− ∑
k′,µ′,n

w+µ′[λ+c
in (k)cosnφk −λµ

′c
in (k′)cosnφk′

]
− ∑

k′,µ′,n
w+µ′[λ+s

in (k)sinnφk −λµ
′s

in (k′)sinnφk′
]

= 0,

v−
kδi,1 cosφk +v−

kδi,2 sinφk

− ∑
k′,µ′,n

w−µ′[λ−c
in (k)cosnφk −λµ

′c
in (k′)cosnφk′

]
− ∑

k′,µ′,n
w−µ′[λ−s

in (k)sinnφk −λµ
′s

in (k′)sinnφk′
]

= 0.

(4.12)
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Solving Eqs. (4.12) gives us λµc
1n, λµs

1n, λµc
2n, λµs

2n, from which λ
µ

1(k) and λµ2(k)
can be obtained. Accordingly, replacing functions λµ1(k) and λµ2(k) in Eq. (4.10)
with the obtained mean free paths yields the distribution function of the
electrons f µk . Now that we have found the distribution function of electrons
residing in a particular band, the contribution of each band to the longitudinal
conductivity is given by

σ
µ

ii =
e2

AE i

∑
k

vµi (k)E λ
µ

1(k)δ(εµk −εF)cosχ+

e2

AEi

∑
k

vµi (k) E λ
µ

2(k)δ(εµk −εF)sinχ,
(4.13)

where i = x, y. Adding the contributions of both bands yields the total longitu-
dinal conductivity, σii =∑

µ
σ
µ

ii.

Note that the non-equilibrium distribution function of electrons f µk de-
pends on temperature through ∂ f 0

∂ε
µ

k
. The critical temperature Tc beyond which

the magnetization vanishes on the surface of a TI can be estimated using
[60–62]

kBTc = S(S+1) a2 x
6π~2v2

F
J2

0 (εc −εF), (4.14)

where εc and εF are the cut-off energy and the Fermi energy, respectively.
With the typical values x = 0.01, a = 10 Å, εc = 100 meV , εF = 80 meV , S = 1,
J0 = 10 meV , and vF = 4×105ms−1, the critical temperature Tc is about 3K .
Scanning tunneling microscopy measurements in Bi1.91Mn0.09Te3 report on
magnetic ordering up to Tc = 12K [63]. In Ref. [63] it was also demonstrated
that for temperatures below 12K, magnetic exchange interactions are very
weak and Mn clusters are absent. In a different experiment on a Sb2Te3

tetradymite structure doped with low concentrations of vanadium, Tc ∼ 10K
was measured [64]. The critical temperature of the systems to which our
present formalism applies is thus of the order of 10K . To obtain analytical
relations, we perform our calculations at zero temperature and approximate
∂ f 0

∂ε
µ

k
with the Dirac delta function δ(εµk −εF), as done in Eq. (4.13).
We emphasize that the terms beyond the first Born approximation are not

taken into account, as well as the effect of non-zero Berry curvature, because
it is only responsible for the anomalous Hall effect.
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4.3 Results

We present our results in two subsections. In Sec. 4.3.1, we assume that only
the band µ = −1 is filled and contributes to the conductivity. In Sec. 4.3.2,
both bands µ=± are filled with electrons and both are involved in the charge
transport. Since a MTF possesses completely distinctive features in these two
regimes, we present them separately.

4.3.1 Single-subband regime

In this section we assume that the Fermi level is such that only the conduction
subband labeled with µ=−1, shown in Fig. 4.2d, is filled with electrons and
contributes to the charge transport. First, we find the T-matrix associated
with the intra-subband scatterings, T−−(k,k′) = 〈 k,µ = −1|Vsc|k′,µ′ = −1〉,
which determines the scattering amplitude between two eigenstates of the
Hamiltonian H0, |k,µ=−1〉 and |k′,µ′ =−1〉. Using Eqs. (4.3), (4.6), and (4.9),
we obtain

|T̄−−|2 = sin2θ

(1+β2−)2

(
ξ2
− cot2θ(1+β4

−−2 β2
− cosδφ)

− (ξ2
−−1)(1+β4

−+2 β2
− cosδφ)cos2φk

−2ξ−
√

1−ξ2− (β4
−−1)cotθ cosφk

)
,

(4.15)

where δφ = φk −φk′, ξ− = ∆mΛ√
∆2∆2

m +V 2
(
(ε−k)2−∆2

) +V 2
, and |T̄−−(k,k′)|2 =

|T−−(k,k′)|2
J2

0 S2
imnim

. Then, Eq. (4.6), yields the transition rate for intra-subband scat-

terings w−−(k,k′)= 2π
~ |T−−(k,k′)|2δ(ε−k −ε−k′). With this transition rate for the

Fermi electrons in the single-subband regime, we use the numerical results
obtained from Eqs. (4.12) in Eq. (4.13) to compute the charge conductivity. Fig.
4.3 presents the two dimensionless longitudinal components of the resistivity,

ρxx/ρ0 and ρ yy/ρ0, with ρ0 = 1
σ0

= n imS2
imJ2

0

~2v2
F

h
e2 . Note that ρxx/ρ0 and ρ yy/ρ0,

both are independent of J0, nim and vF .
First we consider a free-standing MTF, i.e. without SIA (V = 0). As the red

curves in Figs. 4.3(a) and 4.3(c) show, both components of the longitudinal
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resistivity vanish in such a free-standing MTF, when all the magnetic impuri-
ties are in-plane, i.e. θ =π/2, and regardless of the direction of the in-plane
external electric field. For a free-standing MTF, Eq. (4.15) becomes

|T̄−−|2(V = 0)= cos2θ

(1+β2−)2 (1+β4
−−2 β2

− cosδφ), (4.16)

and consequently, Fermi electrons do not undergo any scattering when θ =π/2,
and remain forever in their host subband. As a result, the charge current is
dissipationless, ρxx(V = 0)= ρ yy(V = 0)= 0.

By breaking the inversion symmetry with the emergence of V , ρxx/ρ0

becomes non-zero for θ =π/2, while ρ yy/ρ0 remains zero, as shown by the red
curves in Figs. 4.3(b) and 4.3(d). To find the underlying fact behind this exotic
feature of a MTF with SIA, we check the transition selection rule induced
by the in-plane magnetic impurities. For this purpose, we first explain why
the charge current in the single-subband regime of a free standing MTF is
dissipationless when the magnetic impurities are in-plane. Following that,
we investigate how the inversion symmetry breaking affects the current
transition selection rule.

Since the transition selection rule in a free-standing MTF can be well
explained in the spin-chirality space, we map the Hamiltonian H0, given
by Eq. (4.1), into this space. Under the unitary transformation UH0U†, H0

transforms into

H ′
0 =UH0U† =

(
h′
+ Vσx

Vσx h′
−

)
, (4.17)

with

U =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (4.18)

and h′
ν = ~vF(kyσx −νkxσy)+ (∆+ν∆m)σz. ν=±1 are the eigenvalues of the

chirality operator defined as

C =σ0⊗τz =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (4.19)
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Figure 4.3: The resistivity of a MTF with SIA in the single-subband regime,
for ∆= 69 meV , ∆m = 40 meV , and εF = 100 meV , against θ and V . Panels (a)
and (b) correspond to the resistivity of the system when the in-plane external
electric field is perpendicular to the plane of the magnetic impurities, and
panels (c) and (d) show the resistivity when the in-plane external electric
field is parallel to the plane of the magnetic impurities.
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For a free-standing MTF (i.e. without SIA), [H ′
0,C] = 0. Therefore, the

two subbands of the system have distinctive chirality values, for the lower
energy conduction subband ν = −1, and for the higher energy conduction
subband ν=+1. In the same way, for the case of θ =π/2, Vsc transforms into

V ′
sc =UVscU† = J0Simδ(r−R im)

(
0 −i σz

i σz 0

)
. (4.20)

Considering Eqs. (4.19) and (4.20), [C,V ′
sc] 6= 0. Consequently, when all

the magnetic impurities lie in-plane, θ = π
2 , the only allowed scatterings are

those in which the chirality of electrons is not preserved. However, in the
single-subband regime, such inter-subband scatterings would not respect the
conservation of energy and therefore are forbidden. This finding corresponds
with Eq. (4.16), in which |T̄−−|2(θ =π/2)= 0. As a consequence, ρxx[V = 0,θ =
π/2]= ρ yy[V = 0,θ =π/2]= 0.

For a MTF with SIA, V 6= 0 and following Eqs. (4.17) and (4.19) yields
[C,H ′

0] 6= 0, indicating a subband with a mixture of different chiralities. Con-
sequently, the in-plane magnetic impurities can not block all the scattering
channels within the µ=−1 band anymore. However, by checking the transi-
tion rate of the electrons, Eq. (4.15), we realize that |T̄−−|2[θ =π/2]∼ cosφk,
implying that this transition rate stays zero for all the charge carriers with
φk = 3π/2 and these electrons still do no undergo any scattering. φk = 3π/2
corresponds to the direction of the charge current when the in-plane exter-
nal electric field is along the y direction, which explains the dissipationless
current (ρ yy/ρ0)[θ = π/2]= 0 for all values of V , as shown in Figs. 4.3(c) and
4.3(d).

It is also insightful to study the role of the mean free path of the electrons
in these results. Hence, we calculate the dimensionless effective mean free
path of electrons defined as λ1/λ0 =λ−c

1,1/λ0, and λ2/λ0 =
λ−s

2,1
λ0

, with λ0 = ~3v3
F

nimJ2
0 S2

im
using the numerical results obtained from Eqs. (4.12).

As expected from the transition selection rule, the numerical result for
the effective mean free paths of the electrons diverges at θ =π/2 in Fig. 4.4,
when the inversion symmetry is conserved. When the external electric field
is applied along the x direction, the mean free paths of the electrons become
finite by breaking the inversion symmetry, V 6= 0, whatever the value of θ, as
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shown in Fig. 4.4(a). However, when V 6= 0 and the electric field is along the y
direction, Fig. 4.4(c) shows still infinite values for the mean free paths of the
electrons at θ =π/2.

Figs. 4.4(a) and 4.4(c) show that the mean free paths of the electrons
increase with increasing θ, for any given value of V and regardless of the
direction of the electric field. Combining this with the fact that the velocity
of electrons is independent of θ, it explains why the resistivity in Figs. 4.3(a)
and 4.3(c) decreases with increasing θ.

When the external electric field is exerted along the y direction, the mean
free paths of the electrons, as shown in Fig. 4.4(d), increases against V . On
the contrary, as V increases, the velocity of the electrons decreases, see Fig.
4.5. In other words, even though the SIA (causing V to differ from zero) makes
electrons travel longer before being scattered off the magnetic impurities,
it slows them down in this single-subband regime. Eventually the effect of
the substrate on the mean free path of the electrons dominates, and the
resistivity of the system decreases with increasing V , as shown in Fig. 4.3(d).
The situation is different when the electric field is perpendicular to the plane
of the magnetic impurities, thus in the x direction. In this case, the mean
free paths of the electrons can show an increasing as well as a decreasing
trend with respect to V , depending on the spatial orientation of the magnetic
impurities. Consequently, the resistivity of a MTF with SIA can decrease or
increase due to the substrate, as shown in Fig. 4.3(b).

4.3.2 Two-subband regime

In this regime, the Fermi level is positioned such that both bands µ =
± contribute to the charge transport in the MTF. Contrary to the single-
subband regime, charge carriers undergo not only intra-subband but also
inter-subband scatterings in the two-subband regime. Hence, in what fol-
lows, we investigate the probability of both scattering types. Based upon Eqs.
(4.3), (4.6), and (4.9), the probabilities for intra-subband and inter-subband
scattering are respectively given by
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Figure 4.4: The mean free paths of the electrons in the single-subband regime,
in terms of θ and V when ∆ = 69 meV , ∆m = 40 meV , and εF = 100 meV .
Panels (a) and (b) correspond to the system in which the external electric field
is perpendicular to the plane of the magnetic impurities (the x direction), and
panels (c) and (d) show the mean free paths of the electrons when the electric
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Figure 4.5: The velocity of the electrons against V .

|T̄µµ|2 = sin2θ

(1+β2
µ)2×

( [
ξ2
µ cot2θ(1+β4

µ−2 β2
µ cosδφ)

]
−

[
(ξ2
µ−1)(1+β4

µ+2 β2
µ cosδφ)cos2φk

]
−

[
2ξµ

√
1−ξ2

µ (β4
µ−1)cotθ cosφk

])
,

(4.21)

|T̄µµ′|2 = sin2θ

2(β2
µ+1)(β2

µ′ +1)
×(

βµβµ′
[
[ξµ+1]2 cos(φk′ +φk)− (ξ2

µ−1)cos(φk′ +3φk)+ [ξµ−1]2 cos(φk′ +5φk)
]

−
[
4(1−β2

µβ
2
µ′)ξµ

√
1−ξ2

µ cosφk cotθ+2(1+β2
µβ

2
µ′)[1−ξ2

µ]cot2θ
]

+
[
(1+β2

µβ
2
µ′)

(
1+ξ2

µ+ [ξ2
µ−1]cos2φk

)])
,

(4.22)

where |T̄µµ′(k,k′)|2 = |Tµµ′ (k,k′)|2
J2

0 S2
imnim

, and ξµ = ∆mΛ√
∆2∆2

m+V 2
(
(εµk)2−∆2

)
+µV 2

. For a free

standing MTF, Eq. (4.21) that deals with intra-subband scattering in the
two-subband regime, becomes

|T̄µµ|2(V = 0)= cos2θ

(1+β2
µ)2 (1+β4

µ−2 β2
µ cosδφ), (4.23)

which indicates that this type of scattering is isotropic. We can conclude
that the SIA makes the probability of the intra-subband scatterings strongly
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Figure 4.6: The probability of intra-subband back-scattering (a-c), and inter-
subband back-scatterings (d-f), when εF = 300 meV , ∆ = 69 meV , ∆m = 40
meV .

dependent on the direction of an electron, φk. As an example, for the case of
intra-subband back-scatterings, |T̄++|2 is shown in panels a−c of Fig. 4.6, with
respect to φk for some values of θ. As panel a demonstrates, the probability
of a certain intra-subband back-scattering is constant with respect to φk,
and decreases by increasing θ, regardless of the value of φk. However, the
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substrate changes this specific behavior of the probability of back-scatterings
against θ. In other words, depending on the direction of the electrons and the
value of V , increasing the value of θ can increase or decrease the value of the
back-scattering probability in the intra-subband transitions.

For a free-standing MTF, the probability for the inter-subband transitions
given by Eq. (4.22), converts to

|T̄µµ′|2(V = 0)= sin2θ

(β2
µ+1)(β2

µ′ +1)

(
1+β2

µβ
2
µ′ +2βµβµ′ cos(φk′ +φk)

)
. (4.24)

The above equation specifies that the inter-subband scatterings are anisotropic
even in the absence of SIA. Following Eq. (4.22), SIA further enhances the
degree of anisotropy for this type of scatterings. As an example, |T̄+−|2 is
depicted in panels d− f of Fig. 4.6 for inter-subband backscatterings. These
panels demonstrate that the probability of the inter-subband back-scatterings
does not have a constant trend against θ. Depending on the value of V , alter-
ing the spatial orientation of the magnetic impurities can enhance or reduce
the probability for a specific inter-subband back-scattering. This finding can
also be proven for all other possible inter-subband transitions.

We can conclude that the probability of all possible transitions in a MTF
with SIA is highly sensitive to the initial direction of the electrons, φk. Since
the direction of charge carriers is coupled to the direction of the in-plane
external electric field, the charge transport will be strongly dependent on this
direction of the applied electric field. Moreover, the impact of a particular
spatial ordering of the magnetic impurities on the scattering rate of electrons
can be controlled by the substrate (or a gate voltage). Therefore we can
anticipate that this exciting feature will manifest itself in the macroscopic
transport properties like the mean free path of the charge carriers and charge
conductivity of the system.

Based on the numerical results obtained form Eqs. (4.12), we compute the
dimensionless effective mean free paths of the electrons defined as λµ1/λ0 =
λ
µc
1,1/λ0, and λµ2 /λ0 =λµs

2,1/λ0, with λ0 = ~3v3
F

nimJ2
0 S2

im
. When the external electric field

is applied along the x direction, the obtained numerical mean free paths for
both bands are shown against θ in Figs. 4.7(a) and 4.7(c), and in terms of
V in Figs. 4.7(b) and 4.7(d). As Figs. 4.7(b) and 4.7(d) show, depending on
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Figure 4.7: Mean free paths of the Fermi electrons residing in bands µ=±
moving along the x direction versus θ (a, c), and V (b, d), when ∆= 69 meV ,
∆m = 40 meV , and εF = 300 meV .
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the spatial ordering of the magnetic impurities, increasing V can increase or
decrease the average distance which electrons travel before being scattered
by the magnetic impurities. For example, when the magnetic impurities all
are aligned perpendicular to the surface of the MTF, θ = 0, if V increases the
mean free path of electrons will always increase, see the green curves in Figs.
4.7(b) and 4.7(d). In contrary, when all the magnetic impurities are in-plane,
θ = π/2, the average travel distance of electrons during different scattering
events will decrease as V increases (see the cyan curves in Figs. 4.7(b) and
4.7(d)).

Figs. 4.7(a) and 4.7(c) also show that, in a free-standing MTF (V = 0),
varying the spatial orientation of the magnetic impurities from θ = 0 to θ =π/2
causes the electrons to travel further before being scattered. However, the
emergence of the SIA drastically changes this trend. For example, as the red
curves in Fig. 4.7(a) and 4.7(c) show, for some particular value of V , increasing
θ from 0 to π/2, causes electrons in both bands to travel shorter distances
during their relaxation time. Therefore, the value of V can be adjusted to
keep the mean free paths of the electron nearly independent of the spatial
ordering of the magnetic impurities.

Moreover, Fig. 4.8 shows that for small values of V , the SIA slightly
increases the velocity of electrons in subband +, though slows down a bit the
flow of electrons arising from subband −. For larger values of V , the velocity
of electrons in both subbands cannot be altered by changing V . In general,
the substrate has a negligible effect on the velocity of electrons.

μ=+

μ=-

0 13 26 39 52 65

0.93

0.95

0.97

0.99

1

V(meV)

v/
v
F

Figure 4.8: Velocity of electrons in a MTF versus the SIA potential V .

Following Eq. (4.13), the substrate can control the contribution of each
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band in the total conductivity by the velocity of the electrons and their mean
free path. As we already discussed, the SIA potential V has a negligible
effect on the velocity of electrons in each band. Therefore, it is expected that
the conductivity of the system is only determined by the mean free path of
the electrons with respect to θ and V . In what follows, we will verify this
expectation first for the conductivity in the x direction.

By using Eq. (4.13), we add up the contribution of each subband to obtain
the total conductivity of the system. For the case where the external electric
field is perpendicular to the plane of the magnetic impurities (x direction), the
dimensionless quantity σxx/σ0 is shown in Figs. 4.9(a) and 4.9(b), in terms of V
and θ, respectively. As shown in Fig. 4.9(a), the trend of σxx/σ0 against V , can
be strictly upward, almost independent of V , or downward, depending on the
spatial ordering of the magnetic impurities. The yellow and green curves in
Fig. 4.9(a) show that when the in-plane component of the magnetic impurities
is small, σxx/σ0 has a strictly upward trend against V . On the contrary,
when the in-plane component of the magnetic impurities is significant, the
charge conductivity has a decreasing trend against the substrate potential.
Furthermore, if the magnetic impurities are properly aligned, the σxx/σ0 is
almost insensitive to the substrate potential, particularly for large values of
the SIA potential.

As in a free-standing MTF θ rises from 0 to π/2, σxx/σ0 rises steeply, as
shown by the yellow curve in Fig. 4.9(b). In an MTF with SIA, the substrate,
on the other hand, has the ability to significantly moderate this trend toward
θ. As shown by the red curve in Fig. 4.9(b), for large values of V , conductivity
decreases by rising θ, which is in total contrast to the behavior of charge
conductivity in a free-standing MTF (the yellow curve).

When the external electric field is applied in the y direction, the mean
free path of electrons for both subbands is given in terms of θ in Figs. 4.10(a)
and 4.10(c), and in terms of V in Figs. 4.10(b) and 4.10(d). In contrast to the
mean free path of the electrons shown in Figs. 4.7(b) and 4.7(d), Figs. 4.10(b),
4.10(d) demonstrate that the mean free paths of electrons in all subbands
always increase due to the SIA, regardless of the spatial ordering of the
magnetic impurities. In addition, the yellow curves in Figs. 4.10(a), 4.10(c)
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Figure 4.9: Longitudinal conductivity of a MTF in the two-subband regime
along the x direction in terms of V (a) and θ (b), for ∆ = 69 meV , ∆m = 40
meV , and εF = 300 meV .

demonstrate that the mean free path of electrons in a free-standing MTF
(V = 0), is constant for all of θ. This is also valid for the electrons in the “−”
band of a MTF with SIA, as shown by the blue and green curves in Fig 4.10(c).
However, when the SIA potential is significant, by increasing θ, electrons
travel shorter distances during their relaxation time in both subbands, as
demonstrated by the red curves in Figs. 4.10(a) and 4.10(c).

Considering that the SIA has a negligible effect on the velocity of electrons,
we can again anticipate that the longitudinal conductivity along the y direc-
tion will follow the same trend as observed for the mean free path of electrons
in Fig. 4.10. We take into account the contribution of both bands in the total
charge conductivity of a MTF with SIA by using Eq. (4.13). Fig. 4.11 shows the
final result of dimensionless conductivity σyy/σ0. The observed conductivity
has the same trend as found for the mean free path of electrons, as predicted.
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Figure 4.10: Mean free paths of the electrons residing in bands µ=± moving
along y direction versus θ (a, c), and V (b, d), if ∆= 69 meV , ∆m = 40 meV ,
and εF = 300 meV .
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Figure 4.11: Longitudinal conductivity of a MTF with SIA in the two-subband
regime along the y direction in terms of V (a) and θ (b), for ∆ = 69 meV ,
∆m = 40 meV , and εF = 300 meV .

In other words, as shown in Fig. 4.11(a), SIA always enhances σyy/σ0 in a
MTF, regardless of the spatial orientation of the magnetic impurities. Also,
when the SIA potential is insignificant, the longitudinal conductivity along
the y direction is almost independent of the spatial ordering of the magnetic
impurities, as shown by the yellow and blue curves in Fig. 4.11(b). When the
values of the SIA potential is significant, increasing the in-plane component of
the magnetic impurities reduces the charge conductivity along the y direction.

As a result, we can conclude that the substrate or gate voltage can only
affect the effect of magnetic impurities on charge transport when the applied
electric field is directed in the x direction.

To explain why the substrate (or gate voltage) can not control the magnetic
impurities’ effect on the charge current when the electric field is along the
y direction, the spin expectation values of the electrons are considered. The
spin expectation values of the effective components of electron’s spin Sy and



122
THE EFFECT OF STRUCTURAL INVERSION ASYMMETRY ON THE CHARGE

TRANSPORT IN MAGNETIC TOPOLOGICAL ULTRA-THIN FILMS

Sz are given by 〈
Sµ

z
〉=µ∆m(∆2+ζ)

ε
µ

kζ
, (4.25)

〈
Sµ

y
〉=−µ

√
1− ∆

2
m(∆2+V 2)

ζ
cosφk, (4.26)

where ζ=−µV 2+
√
∆2(∆2

m −V 2)+ (Vεµk)2 . According to Eq. 4.26,
〈
Sµ

y
〉

is clearly
sensitive to the direction of the in-plane external electric field. When the ex-
ternal electric field is applied in the y direction, the main contribution to
the charge current comes from the electrons with φk = 3π

2 . Then, based on
Eq. (4.26),

〈
Sµ

y
〉= 0. Therefore, the SIA potential can only alter the strength

of the interaction between magnetic impurities and electrons through Sµ
z .

However, this is not the case when the external electric field is applied in the
x direction. For this case, both effective components of the electron’s spin are
non-zero, and so the SIA potential has more degrees of freedom to influence
the interaction between the electrons and magnetic impurities. As a result,
the SIA can strongly influence the response of the charge conductivity to the
spatial orientation of the magnetic impurities, as shown in Figs. 4.9(b) and
4.9(b). A large value of the SIA potential can even reverse the trend of σxx[θ]
from strictly increasing to decreasing.

4.4 Conclusions

In summary, using the Boltzmann semiclassical formalism and a modified
relaxation time scheme we investigated the charge transport in magnetic
topological ultra-thin films subjected to structural inversion asymmetry and
for general orientations of the magnetic impurities. We analytically derived
the scattering rates for all possible intra- and inter-subband transitions and
discussed the calculated conductivities in terms of the mean free path of
electrons and their velocity.

Depending on the number of conduction subbands involved in the charge
transport, two different transport regimes are realized. When the electrons
occupy only the lower conduction subband, a dissipationless charge current is
found if all the magnetic impurities lie in-plane, and the in-plane external
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electric field is applied parallel to them. In contrast, we found that the charge
current is always dissipative when both conduction subbands contribute to
the electronic current.

We further demonstrated that the conductivity is always highly sensitive
to the direction of the in-plane external electric field, implying extensive
anisotropic charge transport. The magnetic impurities’ effect on the charge
transport can be controlled by the strength of the structure inversion asym-
metry (for example by the strength of a gate voltage). Therefore, by tuning
the gate voltage one can make the charge current nearly independent of the
spatial orientation of the present impurities.

Although a direct comparison with experiments is not yet possible, how-
ever, our theoretical results may explain previous experimental observations.
The strong effect of the magnetization direction on the charge transport
of MTFs was shown in (Bi0.5Sb0.5)2Te3/(Cr0.08Bi0.54Sb0.38)2Te3 bilayer het-
erostructures grown on a GaAs substrate, in which the magnetization di-
rection could be switched by a giant spin–orbit torque. The resulting charge
transport was shown to be highly sensitive to the magnetization direction [65].
The strong influence of structural inversion asymmetry was also observed in
Cr-doped (Bi1−ySby)2Te3, Cr0.15(Bi0.1Sb0.9)1.85Te3 samples grown on dielec-
tric SrTiO3 substrates, showing a non-monotonic trend of the longitudinal
conductivity against gate voltage [66].
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5
THE ANOMALOUS HALL EFFECT IN MAGNETIC

TOPOLOGICAL INSULATORS

This chapter presents the study of the anomalous Hall effect (AHE) on the
surface of a 3D magnetic topological insulator. As we discussed in section 2.6,
the anomalous Hall effect is one of the most fundamental transport properties
of magnetic materials. This phenomenon is the manifestation of the Hall
effect in systems without time-reversal symmetry. This effect has been an
enigmatic problem for almost a century and still remains a poorly understood
phenomenon. Understanding the rich physics behind this effect in different
systems presents a deep insight into magnetic materials. It also enables us to
introduce novel properties which can be used in new devices for prospective
technological advances in spintronics, random access memory, etc. [1, 2].

A magnetic topological insulator with strong spin-orbit coupling is a valu-
able host medium for realizing both the quantized version of the AHE [3–5],
and the unquantized version of the AHE [6, 7].

The dependency of surface charge transport on the type of disorder and
the range of disorder-electron interaction has been extensively studied the-
oretically [8, 9]. The collective behavior of randomly distributed point-like
magnetic impurities on the surface and in the bulk of a topological insulator
can break time-reversal symmetry and drive the system into a gapped system.
This introduced gap in spin space influences, via the spin-orbit coupling, the
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charge dependent properties of the massive Dirac fermions.

Although considerable studies have been devoted to the AHE in differ-
ent systems and different regimes[10–14], less attention has been paid to
this phenomenon in magnetic topological insulators. In the literature, the
AHE that arises from scattering of massive Dirac fermions off non-magnetic
impurities has been studied using the Boltzmann kinetic equation and the
microscopic Kubo-Streda formalism [15, 16], and off magnetic impurities,
with an out-of-plane magnetization based on the kinetic equation for the
density matrix, [17].

In this chapter, we investigate the importance of the magnetization direc-
tion in the AHE. We thoroughly study the three distinct contributions to the
AHE, the contribution arising from the intrinsic Berry-phase curvature [18–
20], the extrinsic side-jump effect [21, 22], and the skew scattering effect [23].
Fully analytical expressions for these contributions to the anomalous Hall
conductivity arising from magnetic impurities with arbitrary magnetization
direction are derived. Our method was chosen to incorporate this anisotropy of
the scattering potential properly. However, we also apply our method to derive
the contributions of non-magnetic isotropic scatterers. In this way, we com-
plete our discussion and it allows us to compare our results for non-magnetic
impurities with those that already have been reported in literature [24].

We found that the calculated AHE can also change sign if one changes the
magnetic easy axis from fully out-of-plane to in-plane. Interestingly, such sign
change of the AHE with respect to the spatial orientation of the magnetiza-
tion has already been experimentally observed in ultra-thin Co0.3nm/Pd0.5nm

multilayers [25]. Besides, it has recently been shown experimentally that
the AHE can undergo a sign change by altering the spatial orientation of
an applied magnetic field in non-magnetic ZrTe5, which is a candidate for a
Dirac or Weyl semmimetal [26]. To the best of our knowledge, a sign change of
the AHE with respect to the spatial orientation of the surface magnetization
has not been reported experimentally for the surface of a topological insulator,
and therefore further experiments on this material can test our model.

Many AHE related experiments have been conducted, and in some of
them, a sign change has been reported against temperature, gate voltage,
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thickness, etc. Different studies have been performed to understand these
observed sign changes [27–30].

Moreover, this work presents a clear and different scenario behind the
sign change of the AHE on the surface of a magnetic TI. Two terms with
opposite signs compete simultaneously to take control of this conductivity.
These terms consist of contributions from the three different effects: the
Fermi level, the spatial orientation of the surface magnetization and/or the
concentration of impurities. Exerting an external electric field determines
the charge carriers’ momentum direction, which is locked to their spin. Also,
by altering the orientation of the TI’s surface magnetization by an applied
field, the scattering potential’s strength can be changed, and by changing the
Fermi level, the spin orientation can be altered. Accordingly, the size and
sign of each contribution can vary. Then, since the relative importance of
the total positive and negative terms changes, the AHE can undergo a sign
and size change against Fermi level, concentration of impurities, and spatial
orientation of the surface magnetization.

Further, the detailed information of each of the three contributions (in-
trinsic Berry-phase curvature, side jump effect and skew scattering effect) to
the AHE is hidden in the total value of the experimentally measured AHE.
Investigating each of these contributions to the AHE experimentally sepa-
rately is therefore not possible. Here, we discuss how one can overcome this
problem by determining the regimes in which each contribution is dominant
over the others.

We have organized the rest of this chapter as follows. In Sec. 5.1, we
introduce the effective model of massive Dirac Fermions on the surface of
a magnetically doped three-dimensional topological insulator. The obtained
results are shown in Sec. 5.2. In Sec. 5.3 we summarize our findings and con-
clude with our main results. Finally, some more detailed results are collected
in the appendices and the derivation of essential expressions to ease tracing
some previous sections’ results.
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5.1 Model Hamiltonian

The minimal effective Hamiltonian describing massive Dirac Fermions on
the surface of a 3D TI is given by

HD = ~vF (k×σ)z +Mσz, (5.1)

where the ẑ-direction is chosen normal to the surface of the TI. Here, vF ,
k = (kx,ky), and M are respectively the Fermi velocity, the wave vector, and
the mass of the surface Dirac electrons, and σ = (σx,σy,σz) is the vector of
Pauli matrices acting on the spin of the electrons. vF and M are material
dependent parameters. For example, in Bi2Se3, vF ' 5× 105 ms−1 [31],
and Dirac massless Fermions have a linear dispersion in the energy range
0. E−ED . 0.3 eV , with ED the energy at the Dirac point. In Ref. [32], it was
shown that a gap of 50 meV can be introduced in the surface band structure
in Fe doped Bi2Se3, (Bi0.88Fe0.12)2Se3, leading to M ' 25 meV.

The eigenvalues and eigenvectors of HD are

ψk,α(r)= eik·r√
A(1+ξ2α

k )

(
e−iφk/2

iαξαk eiφk/2

)
(5.2)

εk,α =α εk =α
√

(~vF k)2+M2 , (5.3)

where α labels the conduction (α = +1) and valence (α = −1) bands, k =
|k|, ξk =

√
(1−γk)/(1+γk) , with γk = M/εk, and φk = arctan(ky

kx
) refers to the

direction of the wave vector of the surface electrons (see also Fig. 5.1). In
the following we will also label the eigenstates and energies with the index
l ≡ (k,α) as the combined (momentum, band) index.

The presence of dilute and randomly placed magnetic impurities on the
surface of a 3D TI scatter electrons and influence the system’s transport
properties. We model the interaction between an electron located at r and a
single magnetic impurity at Rm (m stands for magnetic impurities) as

V m(r−Rm)= Jδ(r−Rm) Sm · s, (5.4)

where Sm and s = ~σ/2 are the impurity spins and the electron, respectively. J
is the exchange coupling, and the Dirac delta function refers to the short-range
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Figure 5.1: Schematical overview of the system under study: a magnetic
impurity on the surface of a TI, with its magnetization in the yz-plane,
tilted over an angle θ. An electron with initial wave vector k approaches the
impurity and elastically scatters off the impurity with φk′ as the polar angle
for k′.

nature of the electron-impurity interaction we have considered in this study.
In the regime of large magnetic spin |S| →∞, weak interaction J → 0 and
J|S|=constant, we can treat the spin of the magnetic impurities classically.
We assume that the magnetic impurities align in the same direction and lie
in the yz-plane. Since the system is not usually pure and often contains non-
magnetic impurities, we also consider the effect of non-magnetic impurities
on the charge transport. Accordingly, we model the interactions between
an electron positioned at r and a single non-magnetic impurity at Rnm (nm
stands for the non-magnetic impurities) as

V nm(r−Rnm)=V nm
0 δ(r−Rnm), (5.5)

where V nm
0 denotes the strength of this interaction. The massive Dirac Hamil-

tonian HD is a consequence of very strong spin-orbit coupling in the TI’s
crystal lattice with many heavy atoms. Therefore, in the presence of such a
strong spin-orbit potential, we disregard the correction to Eq. (5.5) due to
the spin-orbit effect of a single impurity atom [23]. We relied on the modi-
fied Boltzmann formalism [37] separately for these two kinds of impurities
to obtain analytical results for the different contributions to the AHE in a
magnetic TI.

An overview of the system with some important definitions is shown in
Fig. 5.1.
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5.2 Results and Discussions

In this section, we present our results for the anomalous Hall response on a
3D topological insulator’s surface. Different regimes can be identified. As we
discussed in section 2.6, some contributions to the anomalous Hall conductiv-
ity are independent of the impurity concentration, and others are inversely
proportional. Therefore we can express the anomalous Hall conductivity of
the system as

σAHE
i j =σint.AHE

i j +σext.AHE
i j , (5.6)

where we label the term σext.AHE
i j as extrinsic because it depends on impu-

rities’ concentration, while we label the term σint.AHE
i j as intrinsic because

it is independent of the concentration of impurities. If only the first term is
significant and the second term is negligible, we call this regime the intrinsic
regime, and when the first term is minimal and negligible, the system is in
the extrinsic regime. If both contributions are comparable, the system is in
the intermediate regime. Since the system’s anomalous Hall response behaves
differently in these distinctive regimes, they are discussed separately in the
following sections.

5.2.1 The intrinsic regime

σint.AHE
i j originates from three effects simultaneously, namely the Berry-phase

curvature, the side jump effect and the skew scattering. Except the contribu-
tion arising from the Berry-phase curvature, the other contributions in this
regime originate from the impurities, even though the expressions of their
corresponding conductivities do not depend on the concentration of impurities.
In this section, we first investigate each contribution to the σint.AHE

i j , and then
the anomalous Hall conductivity in the intrinsic regime will be studied.

5.2.1.1 Berry curvature contribution

Unlike side jump and skew scattering, this contribution does not rely on the
presence of impurities and interestingly produces a non-zero conductivity
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even in a pure system. As we already mentioned, the non-zero Berry-phase
curvature causes an anomalous velocity van

l and consequently contributes to
the AHE by Jan =−e

∑
l f 0(εl)van

l . In order to calculate this term, one has to
consider the contributions of all electrons residing in the whole Fermi sea,
instead of just considering those electrons in the conduction band. Using
the eigenstates in Eq. (5.2), one arrives at the following expression for the
anomalous velocity

van
k,α =−k̇×Ω k,α = eE

~
× −αMv2

F~
2

2
(
k2v2

F~2+M2
)3/2 ẑ = eE

~
× −αMv2

F~
2

2ε3
k,α

ẑ. (5.7)

This correction to the velocity of electrons produces following contribution to
the conductivity of the system:

σan
xy =

−e2

~

[∫ kF

0
Ωk,+

d2k
(2π)2 +

∫ ∞

0
Ω k,−

d2k
(2π)2

]
=− 1

2m
e2

h
, (5.8)

and consequently σan
xy [ e2

h ]=− 1
2m , with m = εF

M and σan
yx =−σan

xy . Like this expres-
sion, all contributions to the AHE are given in units of e2

h . This contribution
can be regarded as an “unquantized” version of the quantum Hall effect
which is given by σQHE

xy =−1
2 . This term changes within 0≤ |σan

i j [m]|≤ 0.5 , if
1≤ m ≤∞ and since is inversely proportional to m = εF

M , it obviously turns off
in the gaples regime (M = 0). We will show that of the three involved contribu-
tions to the AHE, this contribution dominates the AHE when m = 1, not only
in the intrinsic regime but also in the intermediate regime. Additionally, note
that this contribution to the AHE is an intrinsic contribution originating from
the entire band, whereas other extrinsic contributions arising from impurities
can be regarded as corrections to this term.

5.2.1.2 Side Jump related contributions

As we indicated before, there are two distinct effects due to the anomalous
coordinate shift: the side jump δrkk′ and a change in the energy of the electron.
After averaging over many scattering events, side jumps do not cancel out and
give rise to a non-zero contribution vs j

k to the velocity of the electrons given in
Eq. (2.61). This correction to the velocity of the electrons itself changes the
conductivity of the electrons and we call this contribution σ

s j
i j . The second
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effect is the energy change of an electron when it makes a deflection δrkk′

in the presence of an external electric field E. This change in its potential
energy is given by e δrkk′ ·E, which eventually leads to the deviation of the
distribution function of the electrons that we indicate as gad

l in Eq. (2.62). We
now separately discuss the resultant conductivities σs j

i j and σad
i j .

Using the eigenvectors of the conductive massive Dirac Fermions given
in Eq. (5.2) and applying Eq. (2.58), we obtain the deflections δrm

kk′ and δrnm
kk′

due to the magnetic and non-magnetic scatterings, and they are given by

δrm
kk′[

~vF

εk
]= γ(1/2− c)√

(1−γ2)
[φ̂k′ − φ̂k]+ c tanθ[cosφk′ φ̂k −cosφk φ̂k′]+

(2cγ2 tanθsinφ− cosφ+− c
√
γ2−γ4 sin2φ−)[k̂+ k̂′],

(5.9)

δrnm
kk′[

~vF

εk
]= γ(1−γ2)1/2

4(cos2φ−+γ2 sin2φ−)
(sin2φ−[k̂+k̂′]−2sin2φ−[φ̂k′−φ̂k]), (5.10)

where the two vectors k̂ and φ̂k are unit vectors in spherical coordinates,
respectively in the radial and polar direction, θ is the tilting angle of the
randomly placed point-like magnetic impurities on the surface of the magnetic

TI, c =
(
2sin2φ−+2[γk cosφ−+

√
1−γ2

k tanθ cosφ+]2
)−1

, γ= γk = M
εk

, and φ± =
φk ±φk′

2
. Since electrons undergo two distinctive and independent scattering

events, magnetic and non-magnetic, we treat them separately. As Eq. (5.9)
shows, the side jump of an electron during a magnetic scattering strongly
depends on its incident angle φk, scattering angle φk′ and also θ, the tilting
angle with respect to the ẑ-direction of the magnetic orientation of the surface
impurities.

Fig. 5.2 illustrates the direction of occurred coordinate shift during the
scattering of electrons from magnetic impurities (illustrated by blue vectors)
and non-magnetic impurities (illustrated by red vectors) in terms of φk and
φk′, for different values of m = 1

γk
= εk

M (with εkF the Fermi level) and θ. The
background color in all panels of Fig. 5.2 shows the scattering probability
|Tm

kk′|2 (with J2S2
m = 1), given by

∣∣Tm
kk′

∣∣2 =
∣∣∣∣∣ 2γk

1+γ2
k

sinθ cosφ+ +1−γ2
k

1+γ2
k

cosθ cosφ−+ i cosθsinφ−

∣∣∣∣∣
2

. (5.11)
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Figure 5.2: (Color online) Side jump vectors of electrons during scattering off
magnetic impurities δrm

kk′ are shown in panels a− c, e− g and for scattering
off non-magnetic impurities δrnm

kk′ in panels d and h, in terms of φk, φk′, for
different values of θ and m = εF

M . In panel a, (θ,m) = (0,1.1), in b (θ,m) =
(π4 ,1.1) and in c, (θ,m) = (π2 ,1.1). In the second row, (θ,m) = (0,8), (π4 ,8) and
(π2 ,8) in panels e, f and g, respectively. In addition, δrnm

kk′ is shown in terms of
φk and φk′ for m = 1.1 and 8, in panel o and p, respectively.

Blue corresponds to zero probability, beige with the highest probability. More-
over, the size of the shown side jump vectors in Fig. 5.2 is given by Fig. 5.3.

In the first row in Fig. 5.2, m is taken equal to 1.1, the Fermi energy
is thus just above the lowest surface conduction band state. In panel a the
magnetization is chosen to be perpendicular to the surface of the TI (θ = 0).
Panel a of Fig. 5.3 shows that the side jump for this case is maximal when
φk′ ≈φk ± nπ

2 , with n an odd number, and is minimal when φk′ ≈φk ±nπ, with
n an integer.

In panel b of this figure the side jump and the corresponding probabili-
ties for a magnetic scattering event are shown for a magnetization direction
rotated in the yz-plane with θ = π

4 . Note that the probability for many scatter-
ing events increases, however as panel b of Fig. 5.3 demonstrates, just in a
small region of the (φk,φk′) space the electrons feel a considerable side jump
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Figure 5.3: Numerical value of δrm
kk′ for an Fe-doped topological insulator

Bi2Se3 with vF ' 5×105ms−1 and M = 25 meV against φk and φk′, for different
values of θ and m = εkF

M . In panel a, (θ,m)= (0,1.1), in b (θ,m)= (π4 ,1.1) and in
c, (θ,m)= (π2 ,1.1). In the second row, (θ,m)= (0,8), (π4 ,8) and (π2 ,8) in panels
e, f and g, respectively. In addition, δrnm

kk′ is shown in terms of φk and φk′ for
m = 1.1 and 8, in panel o and p, respectively.

coordinate shift. Increasing θ further to π
2 (thus ending up in a magnetization

in the ŷ-direction) decreases the size of coordinate shift for many scattering
events, demonstrated by panel c of Fig. 5.3. The second row of Figs. 5.2, 5.3
show what happens with the side jump if the Fermi level is increased up
to m = εk

M = 8, again for the same θ values. Note that for a large number of
scattering events with different incident and scattering angle (φk,φk′), the
size of the anomalous coordinate shift decreases (in comparison to the upper
row), though based on Eq. (5.11) its scattering probability in general increases.
Thus, the side jump effect will be maximal for low Fermi level values.

In panels d and h of Figs. 5.2 and 5.3 the coordinate shifts vector, δrkk′

are shown for Fermi electrons in a non-magnetic scattering event. The back-
ground profiles shown in panels d and h of Fig. 5.2 represent the scattering
probability (with V 2

0 =1), now given by∣∣Tnm
kk′

∣∣2 = (1+ [γ2
k−1]sin2φ−), (5.12)

with V0 = V nm
0 . It is clear from panels d and h of these two figures that the

general trend for δrnm
kk′ is that the size of the side jump and the corresponding

scattering event probability are π out of phase.
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In addition, Fig. 5.3 shows that magnetic side jump events can undergo
a one order of magnitude change in their numerical values, by changing the
spatial orientation of the surface magnetization from θ = 0 to π

4 , and also from
π
4 to π

2 .

Combining the found δrkk′ with the Eqs. 2.16, 5.11, and 5.12 yields

vm.s j
k =∑

k′
Wm

kk′δrm
kk′ =ϑm

k

[
(1+2sin2θ)sinφk x̂−cosφk ŷ

]
,

vnm.s j
k =∑

k′
Wkk′δrnm

kk′ =ϑnm
k φ̂k,

(5.13)

where ϑm
k = S2

mJ2nim

8~2vF
Λk and ϑnm

k = V 2
0 ninm

2~2vF
Λk with Λk = γk

√
1−γ2

k and ninm

the concentration of the non-magnetic impurities. Both of these velocity
expressions are only non-zero for gapped systems (i.e. γk 6= 0) and therefore
this effect is a consequence of the gap opening. Also note that Eq. (5.13) show
that vk

nm.s j is always perpendicular to the band velocity vk (directed in the
k̂ direction), in contrary to vk

m.s j. Only when all magnetic impurities are
aligned perpendicular to the surface of the TI (i.e. θ = 0) or when the electrons
move on the surface of the TI in the direction perpendicular to the in-plane
component of the magnetization (i.e. φk = 0) we find vm.s j

k ∥ vnm.s j
k .

To better trace the behavior of the side jump velocity of the electrons
during a magnetic scattering event, Fig. 5.4 is provided to show vm.s j

k as
function of θ and φk. Here ϑm

k was set to 1 and background color representing
cosϕ, with ϕ the angle between vm.s j

k and vk. This figure now reveals when
the side jump contribution to the transverse conductivity is largest.

This figure demonstrates that by increasing θ the side jump velocity
vm.s j

k increases (indicated by the increase in length of the black arrows in
Fig. 5.4) and consequently a larger transverse conductivity can be expected.
The average band velocity of itinerant electrons in the presence of an external
electric field along the x̂/ ŷ direction would be along the −x̂ /− ŷ direction,
corresponding to φk =π and φk = 3π

2 , respectively. Fig. 5.4 shows that the side
jump velocity vm.s j

k of electrons for φk = π is along the ŷ direction and for
φk = 3π

2 is along the −x̂ direction. Therefore, for the corresponding transverse
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Figure 5.4: vm.s j
k is shown as a function of φk and θ, with ϑm

k =1 . The back-
ground color shows cosϕ, with ϕ the angle between vm.s j

k and vk.

conductivities (see section 2.7.3),

σ
m.s j
i j = e2

AE j

∑
k

vm.s j
i gm.s j

k , (5.14)

we can expect that σm.s j
yx < 0 and σm.s j

xy > 0. Furthermore, from the background
color of Fig. 5.4 which shows cosϕ with ϕ the angle between vm.s j

k and vk, we
can deduce that the area for which vm.s j

k ·vk ∼ 0 is larger around φk = 3π
2 than

for φk =π, resulting in |σm.s j
xy | >|σm.s j

yx |.
Now we are ready to derive all side jump contributions in the charge

conductivity of the massive Dirac fermions due to the magnetic impurities
J tot.m.s j = Jm.s j + Jm.ad and the non-magnetic impurities J tot.nm.s j = Jnm.s j +
Jnm.ad. In order to find Jm.ad and Jnm.ad, we need to solve the corresponding
Eq. (2.70). We obtain all the mean free paths λm.ad

i and λnm.ad
i by relying

on their Fourier expansions (see Appendix 5.B) and obtain the following
corresponding charge conductivities

σm.ad
xy = 2(1−m2)

4m(4m2 cos2θ+ g(m2+cos2θ))
, (5.15)

σm.ad
yx = (2−cos2θ)(m2+cos2θ)(g−2)

4m(cos4θ−1+ (m2+cos2θ)(g−2))
, (5.16)

σnm.ad
xy =−σnm.s j

yx = 1−m2

m(m2+3)
, (5.17)
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with g =
(
4[m4+1]+2m2[4cos2θ+cos4θ−1]

)1/2∣∣m2+cos2θ
∣∣ . Because Js j = −e

∑
k gs

kvs j

and using the already reported distribution function gs
k in Ref. [33], we come

to the conclusion that σm.s j
i j =σm.ad

ji and σ
nm.s j
i j =σnm.ad

i j , for i 6= j.
How a contribution to the correction of the transverse charge conductivity

of a system is linked to the longitudinal conductivity has always been a vital
question in this context. The following connections are found

σm.s j
xy =σm.ad

yx = 2−cos2θ
4m

σ̃m.s
yy , (5.18)

σm.s j
yx =σm.ad

xy =− 1
4m

σ̃m.s
xx , (5.19)

σnm.ad
i j =σnm.s j

i j =− 1
m
σ̃nm.s

ii , (5.20)

with σ̃m.s
ii = σm.s

ii /σm
0 , σ̃nm.s

ii = σnm.s
ii /σnm

0 , σm
0 = 2~2v2

F/(nimJ2S2
m) and σnm

0 =
2~2v2

F/(ninmV 2
0 ).
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Figure 5.5: σm.s j
xy and σ

m.s j
yx are plotted in terms of θ for some different values

of m in panel a, and in terms of m for some different values of θ in panel b,
respectively.

σm.s j is plotted against θ for some different values of m in panel a of
Fig. 5.5 and also in terms of m for some different values of θ in panel b
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Figure 5.6: ΛkF function of m.

of this figure. In case of θ = 0, |σm.s j
xy | =|σm.s j

yx | and putting aside the sign of
these conductivities, the system behaves isotropically relative to the external
electric field direction. Increasing θ increases the magnitude of the transverse
conductivities, and this is caused by the interplay between two factors. Firstly,
the backscattering probability is the main mechanism which suppresses both
longitudinal and transverse conductivity. By increasing θ, the backscatter-
ing probability w(2.m)(k,−k)∼ [(1−γ2

k)sin2θsin2φk+cos2θ] decreases, so the
transverse conductivity will increase. Secondly, angular part of the magnetic
side jump velocity [ 1+4sin2φk(sin2θ+sin4θ) ]1/2 increases with increasing
θ and subsequently the conductivity increases. As it is clear from panel b of
the figure, σm.s j is zero if we put the chemical potential exactly on the lowest
state of the surface band structure (m = 1 or µ = M). Beyond m = 1, σm.s j

experiences a peak close to m = 1, and thereafter decreases by increasing m
for all values of θ. This non-monotonic feature of the conductivity arises from
the non-angular part of the side jump velocity (Λk) which has the same trend
against m (as shown in Fig. 5.6). Therefore, deviating the system a bit from
the insulating state and being far enough away from the perfect metallic state
m À 1 or µÀ M, can produce a large value for the side jump conductivity.

Based on Eq. (5.18) and Eq. (5.19) we come to the conclusion that σtot.m.s j
xy =

σ
m.s j
xy +σm.ad

xy =σtot.m.s j
yx , with

σtot.m.s j
xy =σtot.m.s j

yx = (2−cos2θ)σm.s
yy −σm.s

xx

4mσ0
. (5.21)

Therefore, while in the presence of magnetic scatterers σtot.m.s j
xy =σtot.m.s j

yx
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Figure 5.7: σtot.m.s j
i j is plotted in terms of θ for some values of m in panel a,

and in terms of m for some different values of θ in panel b.

and hence the side jump itself has an isotropic feature relative to the direction
of the external electric field, this transverse conductivity somehow measures
the anisotropy of the system when θ = 0, being the difference between the two
components of the longitudinal conductivities σm.s

xx and σm.s
yy .

In addition, using Eq. (5.18) and Eq. (5.19) we find σ
tot.m.s j
xy =σm.s j

xy +σm.s j
yx .

Furthermore, as Fig. 5.5 shows σ
m.s j
yx < 0, then we can rewrite σ

tot.m.s j
xy =

|σm.s j
xy |−|σm.s j

yx |. Finally since always σtot.m.s j
xy ≥ 0, we can conclude that |σm.s j

xy | ≥
|σm.s j

yx |. This inequality surprisingly proves our already made prediction just
based on looking at the profile of vm.s j

k .
Figs. 5.7(a) and 5.7(b) show σ

tot.m.s j
i j in terms of θ and m respectively. In

this figure for two cases θ=0 and θ = π
2 , Jm.ad and Jm.s j cancel out each other

and there is no net conductivity due to the side jump effect. Within 0< θ < π
2 ,

σ
tot.m.s j
xy has a minimum value at m = 1, thereafter increases sharply within

interval of 1 ≤ m . 1.5, until it reaches its maximum value. By further in-
creasing m, the net side jump conductivity decreases until it reaches zero in
the limit of m →∞ or a gapless system. In short, in order to have a maximal
total side jump conductivity arising from just magnetic impurities, we need
to put the chemical potential just above the lowest state in the surface band
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structure and also tune the orientation of the surface magnetization within
the interval π

3 < θ < π
2 .
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Figure 5.8: σtot.m.s j
xy / σm.s

yy [(σm.s
0 )−1] is plotted in terms of θ for some different

values of m in panel a, and against m for some different values of θ in panel
b. σm.s j

yx / σto.m.s
xx [(σm.s

0 )−1] is plotted in terms of θ and m in panel c and d,
respectively.

The longitudinal and transverse conductivities both depend on the spatial
orientation of the magnetic impurities and the value of the Fermi energy.
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Then, to have maximal longitudinal conductivity and minimal transverse
conductivity, or vice versa, m and θ have to be well adjusted. Hence, to study
the relative importance of the transverse conductivity arising from the mag-
netic side jump effect, Fig. 5.8 is provided. According to this figure the ratio
σ

tot.m.s j
xy /σm.s j

yy or σtot.m.s j
yx /σm.s j

xx is maximal when the surface magnetization is
aligned at θ ∼ π

3 (see Figs. 5.8(a) and 5.8(c)), and the chemical potential lies
on the bottom of the conduction band (see Figs. 5.8(b) and 5.8(d)).

Finally, we consider the non-magnetic scattering events, and using Eq. (5.17)
we arrive at

σtot.nm.s j
xy =−σtot.nm.s j

yx = 2(1−m2)
m(m2+3)

, (5.22)

where σtot.nm.s j
i j =σtot.nm.s j

i j +σtot.nm.ad
i j . These results also coincide with the ones

reported in Ref. [24]. Thus also this contribution to the side jump conductivity
is isotropic (ignoring the sign difference). Fig. 5.9 shows σtot.s j

xy in terms of
θ and m, where σ

tot.s j
xy = σ

tot.m.s j
xy +σtot.nm.s j

xy . As Fig. 5.9 shows σ
tot.s j
xy has a

negligible sensitivity against θ. It can easily be verified that this is true
also for σtot.s j

yx . Therefore, among the two different types of impurities, the
non-magnetic impurities contribution to the side jump conductivity σ

tot.s j
i j

dominates.

We also want to stress that both σ
tot.m.s j
yx and σ

tot.nm.s j
yx have positive signs

for all values of m and θ, hence σtot.s j
yx is always positive. However, σtot.m.s j

xy

and σ
tot.nm.s j
xy have opposite signs. Consequently, σtot.s j

xy could change sign if
one changes m or θ. Fig. 5.9 shows this sign change at the boundaries of the
black region in this figure.

Finally, notice that even though the concentration of impurities does not
appear in the final expression for σ

tot.s j
i j , this contribution does originate

from the presence of impurities. There are two parameters which play an
important role in the transport of electrons during their side jump, the so
called side jump relaxation time and the side jump velocity. The first one is
inversely proportional to the concentration of impurities, though the second
one is directly proportional to the concentration of impurities. Therefore,
interestingly, their product is independent of the concentration of impurities.
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Figure 5.9: σtot.s j
xy is plotted in terms of θ and m.

5.2.1.3 Intrinsic Skew Scattering

As we already indicated, skew scattering contributes to the AHE by two
distinct terms. Here, we call the first term conventional skew scattering and
the second term intrinsic skew scattering. The first term depends on the
concentration of impurities and introduces ga1

k in the distribution function fk,
and the other term which is independent of the concentration of impurities
adds ga2

k to fk. Since we deal now with the intrinsic regime in which the
first term is very negligible, we just keep the second term. The associated
contribution to the second term is Jsk2 =−e

∑
k ga2

k vk. In order to find Jsk2, we
first need to calculate w(4)

kk′ through Eq. (2.57) and then by solving Eq. (2.72)
we find ga2

k . Our result for both kinds of impurities are

w(4.m)
kk′ =[w(4)

0 γ(γ2−1)cos2θ(sinφk cosφk′ −sin[φk′ −φk])

−w(4)
0 γ(γ2−1)(sin[φk′ −φk]+sinφk′ cosφk)+

w(4)
0 γ2

√
1−γ2 sin2θ(2sinφk −sinφk′)]δ(εk −εk′),

(5.23)

w(4.nm)
kk′ = 3π(ninmV 2

0 )2

4~
M k2

ε3
k

δ(εk−εk′)sin(φk −φk′), (5.24)

with w(4)
0 = π(nimJ2S2

m)2

4~3v2
F

. Inserting these scattering rates in Eq. (2.72) and

using the already found w(2.m)
kk′ and gs

k expressions, we obtain the following



148 THE ANOMALOUS HALL EFFECT IN MAGNETIC TOPOLOGICAL INSULATORS

transversal conductivities associated to scattering off magnetic and non-
magnetic impurities

σm.sk2
xy = 16(g−2)[m2 −1]

(−cos4θ+ (m2 +2)cos2θ+2m2 +2
)

m
(
[g+2]cos2θ+ [g+4]m2 −2

)(
gcos4θ+2[g−2]m2 cos2θ+ g−4

) , (5.25)

σm.sk2
yx = 4(g−2)

(
bcos2θ− g[2(g+1)m4 + g−2]− [g−2][g+2m2]cos4θ+8m4 −4m2 +8

)
g m

(
[g+2m2]cos2θ+ [g+2]m2

)(
[g−2][cos2θ+m2]+cos4θ−1

) ,

(5.26)

σnm.sk2
xy =−σnm.a2

yx =−3
2

(m2−1)2

m(m2+3)2 , (5.27)

with b = 2[(−2g2 + g+8)m2 −2gm4 + g]. Note that σm.sk2
i j = 0 for m = 1 (the

insulating regime) or in the limit of large m (the perfect metallic regime).
If we align all the surface magnetic impurities perpendicular to the surface
of the TI (θ = 0), the corresponding conductivity is isotropic (ignoring the

difference in sign) σm.sk2
xy [θ = 0]=−σm.sk2

yx [θ = 0]= 12
(
m2−1

)2

m
(
3m2+1

)2 . Also in case of

θ = π

2
this intrinsic contribution of the skew scattering is isotropic σm.sk2

xy [θ =
π

2
]=σm.sk2

yx [θ = π

2
]= 4

3 m
.

To study σm.sk2
i j , Eq. (5.25) and Eq. (5.26) are illustrated in Fig. 5.10. As

it is clear from Fig. 5.10(a), σm.sk2
xy increases with increasing θ for all values

of m, and reaches a maximum in the interval π
4 < θ < π

2 . Fig. 5.10(b) shows
σm.sk2

xy as function of m for some values of θ. Each curve in this figure shows
a maximum value in the interval 1 ≤ m ≤ 2, followed by a sharp decrease.
Interesting all curves in Fig. 5.10(b) approach zero in the limit m →∞.

Figs. 5.10(c) and 5.10(d) present σm.sk2
yx in terms of θ and m, respectively.

Surprisingly σm.sk2
yx is negative for 0 ≤ θ < π

3 and has a positive value for
π
3 < θ ≤ π

2 . This contribution changes sign if one changes the spatial orientation
of the surface magnetization from 0 to π

2 . According to Fig. 5.10(d), for all given
values of θ, |σm.sk2

yx | starts from zero at m = 1, then increases till it reaches a
maximum value within the interval 1≤ m ≤ 2, after which it decreases. Also
in agreement with Fig. 5.10(d) which shows that the σm.sk2

yx at θ = π
2 is positive

for all values of m, the blue curve in this panel is positive for all values of m.
We will see in section 5.2.2 that the conventional skew scattering contri-

bution to the conductivity σm.sk1
i j can be turned off by rotating the surface
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Figure 5.10: σm.sk2
xy is plotted in terms of θ and against m in panels a and b,

respectively. σm.sk2
yx is plotted is plotted against θ and m in panels c and d,

respectively.
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magnetization to lie on the surface of the TI. However, this orientation of the
magnetization cannot turn off σm.sk2

i j , but it can be turned off by increasing
the Fermi level. Furthermore, in case the external electric field is directed in
the x̂ direction, σm.sk2

yx vanishes if θ = π
3 .

As we evaluated the relative importance of the magnetic side jump con-
tribution in Fig. 5.8, we will do the same with the intrinsic skew scattering
contribution. Accordingly, the two ratios σm.sk2

xy /σm.s
yy and σm.sk2

yx /σm.s
xx are illus-

trated in Fig. 5.11. Following this figure, the fraction of electrons that undergo
intrinsic skew scattering reaches the maximum value when 0.4π< θ < π

2 and
the chemical potential is placed very close to the bottom of the conduction
band, regardless of the direction of the external electric field. Besides, by
driving the system into the fully metallic regime, the relative importance of
the intrinsic skew scattering becomes negligible.

Finally, we consider the contribution due to the spin independent intrinsic
skew scattering to the AHE, given in Eq. (5.27). This expression indicates that
this conductivity is isotropic and also like σm.sk2

i j it disappears for large values
of m. By obtaining the two components of the intrinsic skew scattering related
condunctivitis σm.sk2

i j and σnm.sk2
i j , we have found σtot.sk2

i j =σm.sk2
i j +σnm.sk2

i j .

In case that the external electric field is exerted along the ŷ-direction
and the surface magnetization is aligned perpendicular to the surface of

the TI, we find σtot.sk2
xy (θ = 0)=−3(m2−1)2(m4−42m2−71)

2m(3m4+10m2+3)2 . In the other interesting
situation that the external electric field is along the same direction but
the surface magnetization lies on the surface of the TI, one can show that
σtot.sk2

xy (θ = π
2 )= −m4+66m2+63

6m(m2+3)2 . In addition, one can show that σtot.sk2
xy (m= 1)= 0

and σtot.sk2
xy (m→∞)= 0.

Now, if one changes the direction of the external electric field from ŷ
to x̂ and aligns the surface magnetization again perpendicular to the sur-

face of the TI, one can show that σtot.sk2
yx (θ = 0) = 3(m2−1)2(m4−42m2−71)

2m(m2+3)2(3m2+1)2 . In the
other interesting situation that the external electric field is still in the
x̂-direction, but the surface magnetization lies on the surface of the TI,
σtot.sk2

yx (θ = π
2 ) = 17m4+30m2+81

6m(m2+3)2 . Also, like σtot.sk2
xy , the conductivity σtot.sk2

yx van-

ishes at the insulator and perfect metallic condition. While σm.sk2
i j behaves

isotropically with respect to the external electric field direction, not only at
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Figure 5.11: σm.sk2
xy / σm.s

yy [(σm.s
0 )−1] is shown in terms of θ for some different

values of m in panel a, and against m for some different values of θ in panel
b. σm.sk2

yx / σto.m.s
xx [(σm.s

0 )−1] is plotted against θ and m in panels c, d.
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θ = 0 but also at θ = π
2 , σtot.sk2

i j is isotropic just at θ = 0.
σtot.sk2

xy and σtot.sk2
yx are illustrated respectively in panel a and b of Fig. 5.12,

in terms of θ and m. The white lines in these two panels specify the (θ,m)
combinations for which the corresponding conductivity is zero. Panel a shows
that, for 1< m. 2, σtot.sk2

xy undergoes a considerable change with respect to
θ. Putting the chemical potential just above the gap and also aligning the
surface magnetization close to the surface of the TI (π3 . θ . π

2 ) causes the
system to reach its maximum value for σtot.sk2

xy . It is also clear from panel
a that there is just a small (θ,m) region with a significant σtot.sk2

xy , while in
panel b a broad region shows a significant conductivity σtot.sk2

yx .
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Figure 5.12: σtot.sk2
xy and σtot.sk2

yx as functions of θ and m, are plotted in panel a
and b, respectively.

5.2.1.4 Total AHE in the intrinsic regime

After devoting sections 5.2.1, to the different contributions to the AHE in the
intrinsic regime, we are ready to discuss σint.AHE

i j =σan
i j +σtot.s j

i j +σtot.sk2
i j . The

result is illustrated in Fig. 5.13. Based on this figure, we observe that σint.AHE
i j

is anisotropic. The black dashed line in panel a of this figure indicates the
(m,θ) combinations for which σint.AHE

xy [m,θ] = 0. Accordingly, tuning (m,θ)
around this dashed line leads to a sign change in σint.AHE

xy . As it its clear
from panel b of this figure σint.AHE

yx has always a persistent positive sign
against any change in θ or m. Also, note that like the contribution of the
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Figure 5.13: σint.AHE
xy [θ,m] and σint.AHE

yx [θ,m] are plotted in panel a and b,
respectively.

intrinsic skew scattering, tuning the Fermi level just above the gap and also
aligning the magnetization close to the surface, the maximum value for both
components σint.AHE

yx and σint.AHE
xy is attained.

At the end of this section, we consider two special magnetization ori-
entations θ = 0 and π

2 . The total intrinsic anomalous Hall conductivities
corresponding to these two important cases are

σint.AHE
xy [θ = 0]= m6+95m4+79m2−207

2
(
m2+3

)2 (
3m3+m

) , (5.28)

σint.AHE
yx [θ = 0]= m6−81m4−49m2+225

2
(
m2+3

)2 (
3m3+m

) , (5.29)

σint.AHE
xy [θ = π

2
]=−29m4+54m2+45

6m
(
m2+3

)2 , (5.30)

σint.AHE
yx [θ = π

2
]= 17m4+62m2+81

2m
(
m2+3

)2 . (5.31)

Above expressions are shown in Fig. 5.14. According to this figure, the anoma-
lous Hall conductivity of the system with in-plane magnetization in the
intrinsic regime is much larger than the conductivity of the same system in
the same regime with fully out-of-plane magnetization. For a system with
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Figure 5.14: σint.AHE
i j is plotted as function of m for two values of θ = 0 and

θ = π
2 .

fully out of plane easy axis magnetization (θ = 0) and Fermi level close to the
bottom of conduction band, the skew scattering contribution is negligible and
the other two contributions control the AHE with comparable size. For the
same system but with in-plane easy axis magnetization (θ = π

2 ), surprisingly
the contribution arising from skew scattering dominates the AHE. Remark-
ably, all contributions to the AHE in this regime vanish for a system in the
fully metallic state (i.e. a large value of m), whatever the value of θ.

5.2.2 The extrinsic regime

According to our classification in Eq. (5.6), two terms control the AHE. As
we already explained, σin.AHE

i j is negligible against σext.AHE
i j in the extrinsic

regime. Then neither the Berry-phase curvature nor the side jump play a role
in σext.AHE

i j , and the skew scattering is the only involved effect to the AHE
in this regime, by its conventional component Jsk1 = ∑

k vk ga1
k . Since ga1

k is
inversely proportional to the concentration of the impurities, σtot.sk1

i j =σext.AHE
i j

dominates the AHE in a very dilute regime. From Eq. (2.56) we obtain w(3a.m)
kk′

for a magnetic scattering event and w(3a.nm)
kk′ for a nonmagnetic scattering

event

w(3a.m)
kk′ = w(3a.m)

0 cosθsinαk, (5.32)

w(3a.nm)
kk′ = w(3a.nm)

0 sinαk, (5.33)
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Figure 5.15: σm.sk1
yx is plotted in terms of θ and m in panel a and b, respectively.

with w(3a.m)
0 = −π nimJ3S3

mk2

2 ~ εk
δ(εk − εk′) and w(3a.nm)

0 = −π ninmV 3
0 Mk2

2 ~ ε2
k

δ(εk −
εk′). The factor cosθ in the above expression implies that the z component
of magnetization is responsible for the conventional skew scattering in our
system. In addition the factor sinαk shows that the corresponding event
is asymmetric under the exchange of indexes k ←→ k′. The result for non-
magnetic scatterers, Eq. (5.33), is again in agreement with the literature
(see Eq. (70) in Ref. [24]). Substituting w(3a.m)

kk′ in Eq. (2.71) gives us the
corresponding mean free paths λm.a1

i (k)(i = 1,2), from which we obtain the
distribution function gm.a1

k using Eq. (2.68), and subsequently the following
corresponding conductivity for scattering off magnetic impurities (for more
details see the Appendix 5.C):

σm.sk1
xy = ηm 4(2− g)(cos2θ+m2)(m2−1)cosθ

[gcos4θ+2(g−2)m2 cos2θ+ g−4][(g+2)cos2θ+ (g+4)m2−2]
,

(5.34)
with ηm = µ

nimSmJ
. Also, we show that σm.sk1

yx =−σm.sk1
xy .

Fig. 5.15(a), shows that σm.sk1
yx [ηm] smoothly increases by increasing θ,
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Figure 5.16: Effective mean free path of electrons during extrinsic skew
scatterings are plotted against θ, when E= E x̂.

until it reaches a maximum in the interval π
4 < θ < π

2 . Thereafter it sharply de-
creases until it vanishes at θ = π

2 . Panel b shows that putting the surface of the
system into the insulator regime, i.e. m = 1, turns off the transverse conductiv-
ity σm.sk1

yx , regardless of the orientation of the magnetization. For larger values
of m, σm.sk1

yx increases with increasing m. In addition, as shown by the green

curve in panel a, the conductivity saturates at σm.sk1
yx (m →∞)=ηm cosθ

6+3cos2θ
for very large values of m. Thus by closing the gap or driving the system into
a perfect metallic regime, conventional skew scattering still has a non-zero
contribution in the conductivity of the system. This feature reveals one of
the main differences between the magnetic skew scattering contribution and
the other contributions which vanish in a gapless system or in the perfect
metallic regime.

Since the conductivity of electrons during conventional magnetic skew
scattering depends on vk and gm.a1

k (see Appendix 5.C), its behavior with
respect to θ can be easily traced by looking at the behaviour of vk and gm.a1

k

against θ. As vk is independent of θ, studying gm.a1
k against θ is sufficient

for this purpose. Considering that σm.sk1
yx =−σm.sk1

xy , we just discuss the dis-
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tribution function associated to σm.sk1
yx , gm.a1

k = eEλm.a1
1k

∂ f 0

∂εk
. Among all terms

in the Fourier expansion of λm.a1
1k , just λ̃m.a1,s

1,1 = JnimSm
~vF

λ
m.a1,s
1,1 is relevant. Fig.

5.16 clearly demonstrates that when θ increases, λ̃m.a1,s
1,1 and consequently

the number of electrons participating in the conventional magnetic skew
scattering increase very smoothly, and decrease again after a certain value of
θ, and further turn off at the θ = π

2 . Considering the shown trend in Fig. 5.16,
the behavior of the contribution of the extrinsic skew scattering in the AHE
can be understood.

Repeating the same calculations for the conventional skew scattering
contribution due to scattering of non-magnetic impurities, we obtain the
following expression for the conductivity

σnm.sk1
yx =−σnm.sk1

xy = ηnm (m2−1)2

m(m2+3)(5+3m2)
, (5.35)

with ηnm = µ

ninmV0
. The minimum value of |σnm.sk1

i j [m]| is obtained in those
systems with the Fermi level just above the bottom of the conduction band,
and the maximum value is reached in a system with m = 3.5. Eq. (5.35) does
not coincide completely with Eq. (72) in Ref. [24], which might be due to
an extra approximation that is made in Ref. [24]. Like all the previously
discussed contributions, this contribution is zero for an insulating surface
m = 1. In contrast to σm.sk1

i j , this contribution is absent in the perfect metallic
regime m → ∞. Since σtot.sk1

i j = σm.sk1
i j +σnm.sk1

i j = −σtot.sk1
ji , we just discuss

σtot.sk1
yx in the remaining part.

Fig. 5.17 shows σtot.sk1
yx [ηnm] in terms of θ and m for two different values of

ν= ηm

ηnm , ν= 0.1 and ν= 100 in panels a and b, respectively, for the particular
case of nim = ninm. It shows that increasing m increases σtot.sk1

yx , while in-
creasing ν decreases this conductivity. In addition, this contribution becomes
insignificant for small values of m, independent of the value of ν and θ. Also
note that, in contrary to the total contribution of the side jump and intrinsic
skew scattering, the total contribution of the conventional skew scattering
never changes its sign, whatever the value of θ, m or E.

There are some experimental and theoretical evidences that the surface
magnetization of a TI is preferentially orientated in the plane of the surface
or perpendicular to it [6, 40]. For these orientations, θ = 0 and π

2 , σtot.sk1
yx [ηnm]
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Figure 5.17: σtot.sk1
yx [ηnm] is plotted in terms of θ and m for ν= 0.1 and ν= 100

in panel a and b, respectively.

is given by

σtot.sk1
yx [θ = 0]=−ν−νm2

3m2+1
+ m4−2m2+1

3m5+14m3+15m
, (5.36)

σtot.sk1
yx [θ = π

2
]=

(
m2−1

)2

2
(
3m4+14m2+15

) . (5.37)

Investigations of the above expressions show that σtot.sk1
yx [θ = 0] does not

vary much against m for small values of ν. However, for large ν values, it
undergoes a large change with respect to m. Moreover, since the magnetic
skew scattering of the Fermi electrons has no contribution to the AHE in a
system with in-plane magnetization, the σtot.sk1

yx [θ = π
2 ] does not change with

ν.

5.2.3 The intermediate regime

In this regime, extrinsic and intrinsic terms both contribute to the AHE with
comparable sizes. Fig. 5.18 is shown to discuss the behavior of the conductivity
σAHE

i j in terms of θ and m for some values of nim(= ninm) at an arbitrary
ν= ηm

ηnm = 0.83. The First and second row present σAHE
xy and σAHE

yx , respectively.
In the first, second and third column nim = 0.4, 0.7 and 1, respectively. As it
is shown in panels a, b and c there is a crossover from the positive values
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Figure 5.18: σAHE
xy and σAHE

yx are plotted respectively in the first and second
row, in terms of θ and m, for some values of n im. First, second and third
column correspond to nim = 0.4, 0.7 and 1, respectively.

to the negative values for the corresponding conductivity. In addition, the
maximum value of σAHE

xy occurs if we place the Fermi level close to the bottom
of the conduction band and also adjust the surface magnetization close to
π
2 . Surprisingly, in contrast to σAHE

xy , the second row illustrates that σAHE
yx is

always positive. This term in panel d, e and f gets its maximum value for
large values of m (close to 5) and a magnetization within π

4 ≤ θ ≤ π
2 . Then,

although these two components of σAHE
i j behave differently respect to given

parameters, they share this feature that they get their maximum value
around θ ' π

2 .

Moreover, as all panels in Fig. 5.19 except panels a and d show, σAHE
xy un-

dergoes a sign change with respect to nim. This sign change in the anomalous
Hall conductivity has recently been observed experimentally [6]. Remark-
ably, for specific impurity concentrations, the AHE can two times undergo a
sign change by increasing the Fermi level m, as panel b and e of Fig. 5.19
show. This interesting sign change of the AHE is inherited from the non-
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Figure 5.19: σAHE
xy is plotted in terms of nim and m for some values of θ and

ν. The cyan part corresponds to negative values of σAHE
xy and the red part

corresponds to positive values. The first, second and third row correspond to
ν= 10, 0.1 and 0, respectively. Also, first, second and third column correspond
to θ = π

6 , π
3 and 0.44π, respectively.
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Figure 5.20: σAHE
xy and σAHE

yx are plotted in the first and the second column,
respectively. In the first row, these conductivities are plotted against m for
nim = ninm = 1 and ν= 1. In the second row against n im for m = 3 and ν= 1.
The red and blue curves correspond to the cases θ=0 and π

2 , respectively. It is
clear that, in contrast to the case θ = π

2 , sign changes occur with respect to m
or nim for θ = 0.

monotonic behavior of all the contributions to the AHE. In addition, this
non-monotonic behaviour of the AHE distinguishes it from the corresponding
reported longitudinal conductivity [33].

Finally, like in previous sections, we briefly discuss the two cases σAHE
i j [θ =

0] and σAHE
i j [θ = π

2 ]. All red curves in Fig. 5.20, corresponding to σAHE
i j [θ = 0]

undergo a sign change via changing m or nim, in contrary to σAHE
i j [π2 ](blue

curve) which does not show such a sign change. Therefore, since the AHE in
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this regime is very anisotropic, observing its sign change with respect to m or
nim, requires properly adjusting all the involved parameters, the direction
of external electric field, the orientation of the surface magnetization, the
position of the Fermi level, the concentration of the impurities and also the
ratio of the non-magnetic scattering potential to the magnetic scattering
potential. In addition, note that in the absence of magnetic impurities, we
can write the total AHE as

σAHE
i j =σan

i j +σtot.nm.s j
i j +σnm.sk1

i j +σnm.sk2
i j . (5.38)

For i j = xy, one can show, based on Eqs. (5.8), (5.22), (5.35) and (5.27), that
σan

xy < 0, σtot.nm.s j
xy < 0, σnm.sk1

xy < 0 and σnm.sk2
i j < 0. Obviously, in the absence

of magnetic impurities σAHE
xy < 0 for all m ≥ 1. For i j = yx, considering that

σan
yx = −σan

xy , σtot.nm.s j
yx = −σtot.nm.s j

xy , σnm.sk1
yx = −σnm.sk1

xy and σnm.sk2
yx = −σnm.sk2

xy ,
it is clear that in the absence of magnetic impurities σAHE

yx > 0 for all m ≥
1. Therefore, we can conclude that, in the presence of just non-magnetic
impurities, the AHE never undergoes a sign change, whatever the direction
of E. The absence of this sign change in the AHE in a system with only non-
magnetic impurities has been already reported in both the non-crossing [24]
as the crossing regime [15].

Table 5.1 and Fig. 5.21 help us to figure out the story behind the observed
sign changes in this and previous sections. In case the external electric
field is exerted perpendicular to the plane of the surface magnetization, all
contributions to the AHE have a positive sign, except the one produced by
the magnetic intrinsic skew scattering σm.sk2

i j which, depending on (m,θ) can
have a positive or negative sign. When the external electric field is exerted
parallel to the plane of the surface magnetization, all contributions to the
AHE have negative sign, except those arising from the magnetic side jump
and the magnetic intrinsic skew scattering. In the first case (i.e. the electric
field is along x̂), σm.sk2

yx has a negative sign only within 0≤ θ ≤ π
3 , as also shown

in Fig. 5.10. However, since this negative value is insignificant compared to
the sum of the positive terms, the anomalous Hall conductivity always has a
persistent positive sign against (m, θ), if E = Ex̂. Regarding the second case
(i.e. the electric field is along ŷ), all involved mechanisms contribute to the
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 Sign of the different contributions to the AHE 
 

Electric field 𝜎௜௝
௜௡ 𝜎௜௝

௧௢௧.௠.௦௝ 𝜎௜௝
௧௢௧.௡௠.௦௝ 𝜎௜௝

௠.௦௞ଵ 𝜎௜௝
௡௠.௦௞ଵ 𝜎௜௝

௠.௦௞ଶ 𝜎௜௝
௡௠.௦௞ଶ AHE 

 E = E 𝒙ෝ + + + + + + ,  - + +  

E = E 𝒚ෝ - + - - - + - + ,  - 

 

Table 5.1: The signs of the different contributions to the AHE are summarized.
E = Ex̂ is perpendicular to the plane of the surface magnetization (yz-plane)
and E = E ŷ is parallel to the plane of the surface magnetization.

AHE with negative sign except the magnetic side jump and the magnetic
intrinsic skew scattering.

Accordingly, depending on the value of m, θ, ηm and ηnm, the anomalous
Hall conductivity can have a negative or positive sign. In order to produce
an anomalous Hall current with persistent sign against any change in θ, m,
ηnm and ηn, either the sum of the terms with negative sign or the sum of the
terms with positive sign should dominate the AHE.
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Figure 5.21: All contributions to the AHE (solid lines and the total conduc-
tivity (dashed line), plotted against θ. In panel a, m = 1.6, nim = ninm = 1,
ηm = ηnm = 0.8 and in panel b, m = 2, nim = ninm = 1, ηm = ηnm = 1.

An example is shown in Fig. 5.21. In panel a, the significant positive
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component σm.sk2
xy is large enough to overwhelm the sum of the negative

contributions and finally imposes a sign change in σAHE
xy via tuning θ around

π
4 . Though, if we just increase m from m = 1.6 (in panel a) to m = 2 (in panel
b) and keep the other variables unchanged, the relative importance of σm.sk2

xy

weakens and eventually leads to the appearance of the AHE with a persistent
negative sign, as shown in panel b of this figure.

5.3 Summary

In this chapter, the anomalous Hall conductivity of a 3D TI is investigated
systematically using the semi-classical Boltzmann approach along with a
modified relaxation time scheme, in terms of the Fermi level (εF) and the
band gap (2M), the spatial orientation of the surface magnetization θ and
also the concentration of magnetic and non-magnetic impurities. There are
three contributions to the AHE: the intrinsic effect (arising from a nonzero
Berry curvature), the side jump effect, and the skew scattering effect. They
are competing to dominate the anomalous Hall conductivity of the system. By
applying a fully analytical method, we investigate how the spatial orientation
of the surface magnetization and also the value of m = εF /M influence the
transport of the massive Dirac Fermions on the surface of a 3D TI, doped with
a static point like randomly placed, magnetic and non-magnetic impurities.

Since the contribution of non-magnetic impurities to the AHE has been
investigated by others before [24], here we mainly focus on the effect of
magnetic impurities on the AHE. Concerning the side jump contribution, by
tuning the surface magnetization near the TI surface and putting the Fermi
level just above the bottom of the conduction band, one can turn off and on
the total side jump contribution in the presence of both kinds of impurities.

Next, the contributions coming from conventional and intrinsic skew scat-
tering are investigated. Contrary to the total magnetic side jump contribution,
which vanishes in a fully metallic regime, the conductivity corresponding to
magnetic conventional skew scattering surprisingly gets its maximal value
in this regime. However, similar to the side jump magnetic contribution,
it disappears in a system with in-plane magnetization. In the presence of
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non-magnetic impurities, the total contribution of the conventional skew
scattering is still isotropic, and in the metallic regime, it reaches a significant
value if the magnetization is out of the plane.

The skew scattering effect contributes to the AHE through an additional
correction, called the intrinsic term. Our results show that, despite the pre-
vious conventional contribution, this contribution does not vanish at θ = π

2 .
Besides, this intrinsic contribution disappears at the fully metallic regime,
just like the side jump contribution. Remarkably, by applying an external
electric field perpendicular to the in-plane component of the magnetization
and tuning θ around θ = π

3 , one can turn off this term.
By considering all these observations, we conclude that in the metallic

regime (or the gapless regime), the conventional skew scattering dominates
the AHE in a system with a low concentration of magnetic impurities. Out
of this very dilute regime, by tuning θ around π

2 and m around 1 and also
exerting an external electric field perpendicular to the in-plane component
of the magnetization, the AHE gets its maximal reachable value. Suppose
the extrinsic and intrinsic terms contribute to the AHE with comparable
sizes (the intermediate regime). In that case, one can observe a sign change
in the anomalous Hall conductivity not only via tuning the Fermi level or
the spatial orientation of the surface magnetization but surprisingly also via
tuning the concentration of the impurities for a specific range of the other
parameters. Let us highlight that the found AHE’s non-monotonic behavior,
which perfectly distinguishes it from the longitudinal conductivity, manifests
itself in the found sign change. Besides, this sign change of the AHE does not
occur in the absence of magnetic impurities.





APPENDICES

To calculate the current density of the system J=−e
∑

k vk fk, we need to find
the following three terms in the velocity of the electrons vk = vk+van

k +vs j
k and

also the following five terms in the distribution function of the Dirac fermions
fk = f 0+ gs

k + ga1
k + ga2

k + gad
k . These terms in the velocity of the electrons are

calculated in the main text of this work. The next step is to calculate the
equilibrium distribution function of the Dirac fermions. As the dynamics of
these fermions during scattering off non-magnetic impurities is isotropic, it
can be treated by the widely used relaxation time scheme. Here we go through
the details of the calculation of all introduced corrections to the conductivity
of the system that arise from scattering by magnetic impurities. Based on
Eq. (2.68), in order to find gp

k, first the associated mean free paths λp
i have to

be calculated. In section 5.A we first clarify the procedure to obtain λm.s
i . In

section. 5.B, Sec. 5.C and finally in section. 5.D, we go through the calculation
of λm.ad

i , λm.sk1
i , λm.sk2

i , respectively.

5.A Longitudinal magnetic mean free paths

To find the system’s longitudinal conductivity, we need to find the distribution
function of the electrons during their conventional scattering off magnetic
impurities. According to Eq. (2.68) and Eq. (2.69), we arrive at

arrive at

vk · x̂i =∑
k′ w(2.m)

kk′
[
λm.s

i (k)−λm.s
i (k′)

]
, (5.A.1)

where w(2.m)
kk′ is transition rate of magnetic scatterings. Replacing the mean

free path with its Fourier expansion λm.s
i (k,θ)=∑∞

n=1[λ0
i (k)+λm.s,c

i,n(k)cosnφk+
167
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λ
m.s,s
i,n (k)sinnφk] leads to

v0k · x̂i =
∑
k′

∞∑
n=1

w(2.m)
kk′ ( λ0

i +λm.s,c
i,n [cosnφk −cosnφk′]+λm.s,s

i,n [sinnφk −sinnφk′]).

(5.A.2)
where x̂1 = x̂ and x̂2 = ŷ. Before continuing our discussion, note that conserva-
tion of the number of particles imposes

N =∑
k

f 0
k =∑

k
( f 0

k + gs
k + gad

k + ga1
k + ga2

k ). (5.A.3)

Therefore,
∑

k (gs
k + gad.

k + ga1
k + ga2

k )= 0, and hence all the constant terms in
the Fourier expansions for λ0

i are zero. After some calculations we obtain

λm.s
i (k,θ)= α

m.s,0
i + (αm.s,c

i +δi,1)cosφk + (αm.s,s
i +δi,2)sinφk

2(βk cosφk +1)
(
γ2

k cos2θ+1
) λm.s

0 , (5.A.4)

where λm.s
0 = 4~3v3

F

√
1−γ2

k

nim J2S2
mεk

, βk =
γk

√
1−γ2

k sin2θ

γ2
k cos2θ+1

, αm.s,s
i = (γ2

k −1)
λ

m.s,s
i,1

λm.s
0

, and

α
m.s,0
i = γk

√
1−γ2

k sin2θ
λ

m.s,c
i,1

λm.s
0

, αm.s,c
i = (

1−γ2
k

)(
2sin2θ−1

) λm.s,c
i,1

λm.s
0

. As it is

clear from the equations above, λm.s,c
i,1 and λ

m.s,s
i,1 are the only two required

Fourier coefficients of λm.s
i , as the other higher order Fourier coefficients

(n > 1) are a function of these two primary coefficients. These crucial Fourier
coefficients can be obtained straightforwardly as follows:

πλ
m.s,c
i,1 −∫ 2π

0

α
m.s,0
i + (αm.s,c

i +δi,1)cosφk + (αm.s,s
i +δi,2)sinφk

2(βk cosφk +1)
(
γ2

k cos2θ+1
) λm.s

0 cosφkdφk = 0

πλ
m.s,s
i,1 −∫ 2π

0

α
m.s,0
i + (αm.s,c

i +δi,1)cosφk + (αm.s,s
i +δi,2)sinφk

2(βk cosφk +1)
(
γ2

k cos2θ+1
) λm.s

0 sinφkdφk = 0

.

(5.A.5)
After solving the above set of integral equations, we arrive at:

λ
m.s,c
1,1 = 4 ~3v3

F

nimJ2S2
mεk

√
1−γ2

k

1+Γk +
(
1+Γkγ

2
k

)
cos2θ

,λm.s,s
1,1 = 0, (5.A.6)

λ
m.s,c
2,1 = 0, λ

m.s,s
2,1 = 4 ~3v3

F

nimJ2S2
mεk

√
1−γ2

k

1−γ2
k + (1+Γk)(1+γ2

k cos2θ)
, (5.A.7)
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where Γ=
(
1− γ2

k(1−γ2
k)sin2 2θ

(1+γ2
k cos2θ)2

)1/2

. Putting the found nonzero Fourier coeffi-

cient λm.s,c
1,1 and λ

m.s,s
2,1 in Eq. (5.A.4) gives

λm.s
1 =

Ak cosφk +γk sin2θ
√

1−γ2
k

[1+βk cosφk][1+γ2
k cos2θ][A+ [1−γ2

k]cos2θ]
λm.s

0

2
, (5.A.8)

λm.s
2 = (1+Γk)sinφk

[1+βk cosφk][1+ Ak −γ2
k]
λm.s

0

2
, (5.A.9)

where Ak = (1+Γk)(1+γ2
k cos2θ). Therefore, the resultant correction to the

distribution function of the electrons due to the conventional scattering of
electrons from magnetic impurities is

gm.s
k = eE

 Ak cosφk +γk sin2θ
√

1−γ2
k

[1+βk cosφk][1+γ2
k cos2θ][Ak + [1−γ2

k]cos2θ]
λm.s

0

2
cosχ+ (1+Γk)sinφk

[1+βk cosφk][1+ Ak −γ2
k]
λm.s

0

2
sinχ

∂εk f 0 .

(5.A.10)

5.B Side jump associated mean free paths

As it was indicated in the main text, electrons during scattering off magnetic
impurities undergo a side jump which changes the velocity of the electrons
and also their distribution function. This leads to the following two corrections
to the conductivity σm.s j

i j , σm.ad
i j . Since we have already found the associated

distribution function gm.s
k , we needn’t to calculate σm.s j

i j , thus in this section
we just present the details of calculating σm.ad

i j . As before, we ignore the side
jump of the electrons during their skew scattering. As we did to calculate
gm.ad

k , we replace λm.ad
i in Eq. 2.70 with their Fourier expansions λm.ad

i (k,θ)=∑∞
n=1[λm.ad,c

i,n cosnφk +λm.ad,s
i,n sinnφk]. By assuming that the external electric

field is exerted along x̂i, Eq. (2.70) is converted into

vm.s j
k · x̂i =

∑
k′

∞∑
n=1

w(2.m)
kk′ ( λm.ad,c

i,n [cosnφk −cosnφk′]+λm.ad,s
i,n [sinnφk −sinnφk′]).

(5.B.1)
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Using the already found functions vm.s j
k in Eq. (5.13) and using Eq. (5.11), we

arrive at

λm.ad
i (k,θ)= α

m.ad,0
i + [αm.ad,c

i −δi,2]cosφk + (αm.ad,s
i + [2−cos2θ] δi,1)sinφk

2[βk cosφk +1][γ2
k cos2θ+1]

λm.ad
0 ,

(5.B.2)

where αm.ad,0
i = γk

√
1−γ2

k sin2θ
λ

m.ad,c
i,1

λm.ad
0

, αm.ad,c
i = (

1−γ2
k

)(
2sin2θ−1

) λm.ad,c
i,1

λm.ad
0

,

α
m.ad,s
i = (γ2

k −1)
λ

m.ad,s
i,1

λm.ad
0

and λm.ad
0 = ~vF

2εk
γk

√
1−γ2

k . Finally we have to solve

the set of equations


πλ

m.ad,c
i,1 −∫ 2π

0

α
m.ad,0
i + [αm.ad,c

i −δi,2]cosφk + (αm.ad,s
i + [2−cos2θ] δi,1)sinφk

2[βk cosφk +1][γ2
k cos2θ+1]

λm.ad
0 cosφk dφk = 0

πλ
m.ad,s
i,1 −∫ 2π

0

α
m.ad,0
i + [αm.ad,c

i −δi,2]cosφk + (αm.ad,s
i + [2−cos2θ] δi,1)sinφk

2[βk cosφk +1][γ2
k cos2θ+1]

λm.ad
0 sinφk dφk = 0

.

(5.B.3)
Their solution is

λ
m.ad,s
1,1 =

[
√

1−β2
k −1][cos2θ−2]

β2
k[1+γ2

k cos2θ]+ [
√

1−β2
k −1][γ2

k −1]
λm.ad

0 , λ
m.ad,c
1,1 = 0, (5.B.4)

λ
m.ad,c
2,1 =− 1

[ [
√

1−β2
k −β2

k]γ2
k +1]cos2θ−β2

k +
√

1−β2
k +βkγk

√
1−γ2

k sin2θ+1
λm.ad

0 ,

λ
m.ad,s
2,1 = 0.

(5.B.5)
Inserting λm.ad,s

1,1 and λ
m.ad,c
2,1 in Eq. (5.B.2) leads to

λm.ad
1 (k,θ)= (2−cos2θ)sinφk(

1+γ2
k cos2θ+β−1

k [
√

1−β2
k −1][γ2

k −1]
)

[1+βk cosφk]
λm.ad

0 , (5.B.6)

λm.ad
2 (k,θ)=−

γk

√
1−γ2

k sin2θ+ ck cosφk

2[1+βk cosφk][1+γ2
k cos2θ][ck + (1−γ2

k)cos2θ]
λm.ad

0 , (5.B.7)

where ck = (1−β2
k +

√
1−β2

k )(1+γ2
k cos2θ)+βkγk

√
1−γ2

k sin2θ.
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Finally, the associated correction to the distribution function of the elec-
trons arising from the side jump can be written as, based on Eq. (2.68),

gm.ad
k = eEλm.ad

0 ∂εk f 0

[1+βk cosφk]
(2−cos2θ)sinφk cosχ

(1+γ2
k cos2θ+β−1

k [
√

1−β2
k −1][γ2

k −1]])
−

eEλm.ad
0 ∂εk f 0

[1+βk cosφk]

γk

√
1−γ2

k sin2θ+ ck cosφk

2[1+γ2
k cos2θ][ck + (1−γ2

k)cos2θ]
sinχ]

(5.B.8)

5.C Conventional skew scattering associated
mean free path

The conventional and intrinsic skew scattering contribute to the conductivity
of the system via changing the distribution function of the electrons, as the
velocity of the electrons does not change, in contrary to the side jump effect.
Based on Eq. (2.64)

gm.a1
k =

∑
k′ w(2.m)

kk′ gm.a1
k′ +∑

k′ w(3a.m)
kk′

(
gm.s

k′ −gm.s
k

)
∑

k′ w(2.m)
kk′

. (5.C.1)

Since gm.s
k has been already found, we just need to find gm.a1

k . By using
Eq. (5.32), it can be straightforwardly proven that

∑
k′ w(3a.m)

kk′ = 0. Therefore
Eq. (5.C.1) can be rewritten in terms of the mean free paths as

λm.a1
i (k,θ)=

∑
k′ w(3a.m)

kk′ λm.s
i (k′,θ)+∑

k′ w(2.m)
kk′ λm.a1

i (k′,θ)∑
k′ w(2.m)

kk′
. (5.C.2)

Using expansions λm.a1
i (k,θ)=∑∞

n=1[λm.a1,c
i,n(k)cosnφk+λm.a1,s

i,n (k)sinnφk], we
get

λm.a1
i (k,θ)= α

m.a1,0
i +[αm.a1,c

i −δi,2
Jsm cosθ k2

2εk
λ

m.s,s
i,1 ]cosφk+[αm.a1,s

i +δi,1
Jsm cosθ k2

2εk
λ

m.s,c
i,1 ]sinφk

2(1+γ2
k cos2θ)(1+βk cosφk]

, (5.C.3)

where α
m.a1,0
i = γk

√
1−γ2

k sin2θ λ
m.a1,c
i,1 , αm.a1,c

i = (
1−γ2

k

)(
2sin2θ−1

)
λ

m.a1,c
i,1 ,

α
m.a1,s
i = (γ2

k −1)λm.a1,s
i,1 . Four unknown crucial Fourier coefficients λm.a,c

i,1 and
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λ
m.a1,s
i,1 can be found through solving a set of equations such Eq. (5.A.5) and

Eq. (5.B.3). After solving this set of equations, we arrive at

λ
m.a1,s
1,1 = ~vF

JnimSm

2(1−γ2
k)

√
1−γ2

k cosθ

[1+Γk+cos2θ+γ2
k Γk cos2θ][2+Γk+γ2

k Γk cos2θ−2γ2 sin2θ]
, (5.C.4)

λ
m.a1,c
2,1 = ~vF

JnimSm

4(1−Γk)
√

1−γ2
k (1+γ2

k cos2θ) cosθ

[γ2
k(Γk+1)cos2θ−γ2

k+Γk+2][γ2
k(Γk cos4θ+Γk−2)+2(Γk−1)cos2θ]

,

(5.C.5)
and λ

m.a1,c
1,1 =λm.a1,s

2,1 = 0. Inserting the resultant non-zero Fourier coefficients
in Eq. (5.C.3), one obtains the mean free paths of the electrons during mag-
netic conventional skew scattering:

λm.a1
1 (k,θ)=− ~vF

JSmn im

(1+Γk) cosθ sinφk

[(Γkγ
2
k +1)cos2θ+Γk +1][pk + pkβk cosφk]

, (5.C.6)

λm.a1
2 (k,θ)= ~vF

JSmnim

cosθ
{
[(4−4Γk)cos2θ+ (2Γk −3)γ2

k + (2Γk −1)γ2
k cos4θ]cosφk +Bk

}
[1+γ2

k cos2θ] [Γkγ
2
k cos4θ+ (2Γk −2)cos2θ+ (Γk −2)γ2

k][pk + pkβcosφk]
,

(5.C.7)
pk = {γ2[(Γk +1)cos2θ−1]+Γk +2}(1−γ2

k)−3/2, Bk = 2(1−γ2
k)−1/2γk(Γk −1)(1+

γ2
k cos2θ)sin2θ.

Finally, the associated correction to the distribution function of the elec-
trons arising from the side jump can be written, based on Eq. (2.68), as

gm.a1
k =αm.a1

(
[(4−4Γk)cos2θ−2γ2

k + (2Γk −1)γ2
k(cos4θ+1)]cosφk +Bk

(1+γ2
k cos2θ) (Γkγ

2
k cos4θ+ (2Γk −2)cos2θ+ (Γk −2)γ2

k)
sinχ

− (1+Γk) sinφk cosχ
(Γkγ

2
k +1)cos2θ+Γk +1

)
,

(5.C.8)

with αm.a1 = eE∂εk f 0

pk + pkβk cosφk

~vF

JSmn im
.

5.D Intrinsic skew scattering associated
mean free path

Like the conventional skew scattering, this contribution to the skew scattering
just alters the distribution function of the electrons and leaves the velocity of
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the electrons unchanged. Using Eq. (2.66), which connects the conventional
magnetic scattering of electrons to their intrinsic magnetic skew scattering,
we arrive at

∑
k′

w(4m)
kk′

[
λm.s

i (k)−λm.s
i (k′)

]+∑
k′

w(2.m)
kk′

[
λm.a2

i (k)−λm.a2
i (k′)

]= 0, (5.D.1)

which after rewriting gives

λm.a2
i =

∑
k′ w(2.m)

kk′ λm.a2
i (k′)+w(4.m)

kk′
[
λm.s

i (k′)−λm.s
i (k)

]
∑

k′ w(2.m)
kk′

. (5.D.2)

Applying the Fourier expansions of the mean free paths λm.a2
i as λm.a2

i (k)=∑∞
n=1[λm.a2,c

i,n cosnφk +λm.a2,s
i,n sinnφk] leads to

λm.a2
i =

∑
k′,n w(2.m)

kk′ [λm.a2,c
i,n cosnφk′ +λm.a2,s

i,n sinnφk′]+∑
k′ w(4.m)

kk′
[
λm.s

i (k′)−λm.s
i (k)

]
∑

k′ w(2.m)
kk′

.

(5.D.3)

Using the already found w(2.m)
kk′ , w(4.m)

kk′ and λm.s
i (k′), we arrive at

λm.a2
i =

(
[γ3

k −γk]
(
[2cos2θ+1]λm.s.c

i,1 sinφk −λm.s.s
i,1 [cos2θ+2]cosφk

)
−γ2

k

√
1−γ2

k λm.s.s
i,1 sin2θ

)
αm.a2

1

+
(
1
2

[γ2
k −1] λm.a2.s

i,1 sinφk + 1
2

[γ2
k −1] λm.a2.c

i,1 cos2θ cosφk + 1
2
γk

√
1−γ2

k λm.a2.c
i,1 sin2θ

)
αm.a2

0

−4 λm.s
i γk

√
1−γ2

k sinφk sin2θ αm.a2
1 ,

(5.D.4)
where

αm.a2
0 = 1

γ2
k cos2θ+γk

√
1−γ2

k sin2θ cosφk +1
, (5.D.5)

and

αm.a2
1 = nimJ2S2

m

8~2v2
F

1

γ2
k cos2θ+γk

√
1−γ2

k sin2θ cosφk +1
. (5.D.6)

These two crucial non-zero Fourier coefficients λm.s,c
1,1 and λ

m.s,s
2,1 are given in

Eq. (5.A.6) and Eq. (5.A.7). Four unknown crucial Fourier coefficients λm.a2,c
i,1
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and λm.a2,s
i,1 can be obtained by solving a set of equations as we did in Eq. (5.A.5)

or Eq. (5.B.3). After solving this set of equations, we arrive at

λm.a2.s
1,1 [

~vF

εk
]=8(γk −Γkγk)

(
γ4

k(Γk −2)(Γk +1)+γ2
k(Γk −1)

(
γ2

kΓk +1
)
cos4θ−ξk cos2θ+γ2

k +2Γ2
k +Γk −2

)
Γk

√
1−γ2

k

(
[γ2

kΓk +1]cos2θ+Γk +1
)((

cos2θ[Γk −1]−sin2 2θ
)
γ2

k +Γk −1
) ,

(5.D.7)

λm.a2.c
2,1 [

~vF

εk
]=

16γk

√
1−γ2

k [Γk −1]
(−γ2

k cos4θ+ [2γ2
k +1]cos2θ+2γ2

k +2
)

(
γ2

k(Γk +1)cos2θ−γ2
k +Γk +2

)(
γ2

k(Γk cos4θ+Γk −2)+2(Γk −1)cos2θ
) ,

(5.D.8)
where ξk = γ2

k

(
Γk[γ2

k −4Γk +1]+4
)−2Γk, λm.a2.c

1,1 = λm.a2.s
2,1 = 0. We can express

the correction to the distribution function of the electrons due to the magnetic
intrinsic skew scattering as

gm.a2
k =

(
[γ3

k −γk]
(
[2cos2θ+1]λm.s.c

1,1 sinφk −λm.s.s
1,1 [cos2θ+2]cosφk

)−γ2
k

√
1−γ2

k λm.s.s
1,1 sin2θ

)
αm.a2

2

+
(
1
2

[γ2
k −1] λm.a2.s

1,1 sinφk + 1
2

[γ2
k −1] λm.a2.c

1,1 cos2θ cosφk + 1
2
γk

√
1−γ2

k λm.a2.c
1,1 sin2θ

)
αm.a2

3

−4 λm.s
1 γk

√
1−γ2

k sinφk sin2θ αm.a2
2

+
(
[γ3

k −γk]
(
[2cos2θ+1]λm.s.c

2,1 sinφk −λm.s.s
2,1 [cos2θ+2]cosφk

)−γ2
k

√
1−γ2

k λm.s.s
2,1 sin2θ

)
αm.a2

4

+
(
1
2

[γ2
k −1] λm.a2.s

2,1 sinφk + 1
2

[γ2
k −1] λm.a2.c

2,1 cos2θ cosφk + 1
2
γk

√
1−γ2

k λm.a2.c
2,1 sin2θ

)
αm.a2

5

−4 λm.s
2 γk

√
1−γ2

k sinφk sin2θ αm.a2
4 ,

(5.D.9)
αm.a2

2 = eE∂εk f 0αm.a2
1 cosχ, αm.a2

3 = eE∂εk f 0αm.a2
0 cosχ, αm.a2

4 = eE∂εk f 0αm.a2
1 sinχ,

αm.a2
5 = eE∂εk f 0αm.a2

0 sinχ.
As we already proved λm.s,s

1,1 = 0 and λm.s,c
2,1 = 0, finally we can write the final

expression for the correction to the distribution function of the electrons as

gm.a2
k =sinφk

(
[γ3

k −γk][2cos2θ+1]λm.s.c
1,1 αm.a2

2 + 1
2

[γ2
k −1] λm.a2.s

1,1 αm.a2
3 −4 λm.s

1 γk

√
1−γ2

k sin2θ αm.a2
2

)
+ 1

2
[γ2

k −1] λm.a2.c
1,1 cos2θ αm.a2

3 cosφk + 1
2
γk

√
1−γ2

k λm.a2.c
1,1 sin2θαm.a2

3

+sinφk

(
[γ3

k −γk][2cos2θ+1]λm.s.c
2,1 αm.a2

4 + 1
2

[γ2
k −1] λm.a2.s

2,1 αm.a2
5 −4 λm.s

2 γk

√
1−γ2

k sin2θ αm.a2
4

)
+

(
λm.s.s

2,1 [cos2θ+2][γk −γ3
k]αm.a2

4 + 1
2
αm.a2

5 [γ2
k −1] λm.a2.c

2,1 cos2θ
)
cosφk

− 1
2
γk

√
1−γ2

k sin2θ( 2αm.a2
4 γkλ

m.s.s
2,1 −λm.a2.c

2,1 αm.a2
5 ).

(5.D.10)
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6
SUMMARY AND OUTLOOK

In the last chapter of my PhD thesis, I summarize my findings that were
thoroughly discussed in the preceding chapters, as well as describe ongoing
projects and present some proposals for future study.

6.1 Summary

In this doctoral thesis, I have studied in chapter 3 and 4 the longitudinal
charge transport in magnetic topological ultra-thin films (MTF), and in chap-
ter 5 the anomalous Hall effect (AHE) on the surface of a magnetic topological
insulator (3DMT) is studied. Continuum effective model Hamiltonians were
used to characterize the low-energy properties of electrons in these systems.
The Boltzmann transport formalism is used to calculate the distribution
function of electrons in non-equilibrium conditions. The transport properties
of electrons are explored employing this formalism for a system containing
short-range, point-like, and randomly arranged magnetic and non-magnetic
impurities.

The first chapter describes the topological phases of matter in two and
three dimensions and their main characteristics. The Boltzmann continuum
model is explained in chapter 2. Because of the strong intrinsic spin-orbit cou-
pling in topological insulators, the interaction between conducting electrons
and magnetic impurities is anisotropic. This chapter describes how to use a
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modified relaxation time approach to incorporate this anisotropy within the
Boltzmann equation and how to solve this equation.

Chapter 3 investigates charge transport in MTF in the absence of the
substrate (a free-standing MTF). Because these systems are very thin, the
wave functions of electrons in the top and bottom surface states overlap,
creating a finite size effect gap between two degenerate bands. However,
the magnetic proximity effect of a topological ultra-thin film in contact with
a ferromagnet removes this degeneracy and generates two non-degenerate
bands. Short-range and randomly distributed dilute magnetic impurities
induce a transition selection rule, which controls electrons intraband and
interband scatterings. This transition selection rule is quite sensitive to the
spin orientation of the magnetic impurities and the Fermi level position.
According to our findings, this system has two distinct transport regimes. A
dissipationless charge current is achievable if all of the magnetic impurities
are arranged in-plane and just one subband participates in charge transport.
However, when both conduction subbands contribute to the electronic current,
charge transport in a free-standing MTF is always dissipative.

Regardless of the regime in which the system is operating, the found
conductivity is extremely sensitive to the direction of the external electric
field. In addition, our data propose a criterion for defining a crossover from
a 3DMT to a free-standing MTF. When all of the magnetic impurities in a
3DMT are in-plane, the measured charge conductivity is unaffected by the
gap. In contrast to this system, the charge conductivity in a MTF with in-
plane magnetic impurities is extremely sensitive to the gap. As a result, by
varying the system’s thickness and then rechecking the sensitivity of the
charge conductivity to the gap, the critical thickness of the system for which
a crossover from a 3DMT to an MTF happens can be determined.

In chapter 4, we apply the same approach as in chapter 3 to demonstrate
how charge transport in a MTF reacts to a substrate or gate voltage. Our
calculation reveals two different regimes for charge transport in this system,
as seen for a free-standing MTF. Surprisingly, our results demonstrate that
even in the presence of a substrate, a dissipationless charge current can be
generated. In other words, even if the system contains a large number of
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magnetic impurities, electrons do not sense them and carry charge without
dissipation. Most significantly, we found that outside of this regime, the
response of charge transport to changes in the orientation of the magnetic
impurities can be well controlled by the substrate or a gate voltage.

In chapter 5, using the modified Boltzmann continuum approach and a
generalized relaxation time approximation, the anomalous Hall conductivity
on the surface of a 3DMT is studied in terms of the Fermi level, the mass
of the Dirac Fermions, the orientation of the surface magnetization, and the
concentration of magnetic and non-magnetic impurities. Three mechanisms
are responsible for the anomalous Hall conductivity: the intrinsic effect (owing
to a nonzero Berry curvature), the side jump effect, and the skew scattering
effect. They compete in different regimes to dominate the anomalous Hall
effect.

We calculate the contributions of all three mechanisms to the scattering of
massive Dirac fermions by magnetic and nonmagnetic impurities analytically.
Our findings for the AHE in this system identify three transport regimes
based on the relative importance of the various involved mechanisms. We ob-
served a sign change in the anomalous Hall conductivity not only by changing
the Fermi level or the impurity concentration, but also, and surprisingly, by
adjusting the spatial orientation of the surface magnetization. Our results
explain the physics behind this experimentally observed sign shift.

Since the experimentally observed AHE only gives the total anomalous
Hall conductivity and not each of the engaged contributions separately, it
is difficult to study each contribution separately. However, our theoretical
results can help experimentalists to push the whole system into a regime
in which only one mechanism contributes to the AHE, enabling them to
investigate just one of the three involved mechanisms.

6.2 Ongoing projects and plans for the future

The charge transport in a MTF is investigated in chapters 3 and 4 in a linear
regime where the finite size induced gap is constant. However, experimental
findings indicate that when the number of quintuple layers (QL) that are
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engaged in the transport varies, the finite size generated gap changes (see
reference 5 in chapter 3). Our current ongoing research explores the transport
properties of a multilayer of Bi2Se3 with thicknesses ranging from one to 50
quintuple layers (QL). When the system thickness varies, the band structure,
spin structure, energy gap, and induced gate voltage all change, influencing
charge transport. Our results demonstrate that charge transport in this
system is significantly different in two regimes: when the system is less than
six quintuple layers thick (ultra thin-film regime) and when the system is
more than six quintuple layers thick (3D regime).

Furthermore, in another ongoing project, we are examining the effect
of asymmetric magnetization on the charge transport in a thick magnetic
topological film when it is subjected to a gate voltage. Magnetically doped TIs
with different magnetization (for example inward and outward) on opposite
sides can serve as an ideal host medium for axion state manifestation. The
nontrivial Z2 index is preserved in axion insulators by inversion symmetry
rather than time-reversal symmetry. Axion insulators’ naturally gapped sur-
faces result in a half-quantized surface anomalous Hall conductivity. Note, in
each of the studies described in this thesis, the magnetization is oriented in
the same direction all across the system.

Aside from these ongoing projects, we are very interested in studying the
charge transport of electrons at higher energies. In this thesis, we concentrate
on low energy electrical transport. However, terms such as quadratic-in-
momentum and anisotropic hexagonal-warping should be included in the
effective Hamiltonian beyond this low energy regime. We anticipate that
incorporating the hexagonal warping correction of the Fermi surface into our
calculation can significantly alter the system’s transport characteristics.
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7
SAMENVATTING EN TOEKOMSTIG ONDERZOEK

In het laatste hoofdstuk van mijn doctoraatsthesis vat ik mijn bevindingen
samen die grondig werden besproken in de voorgaande hoofdstukken en be-
spreek ook een aantal lopende projecten en enkele voorstellen voor toekomstig
onderzoek.

7.1 Samenvatting

In hoofdstuk 3 en 4 van deze doctoraatsthesis bestudeer ik het longitudinale
ladingstransport in magnetische topologische ultra-dinne films (MTF), en in
hoofdstuk 5 werd het ‘anomalous’ Hall-effect (AHE) op het oppervlak van een
magnetische topologische isolator (3DMT) bestudeerd. De eigenschappen van
elektronen bij lage energie werden beschreven door continue effectieve model
Hamiltonianen. Het Boltzmann transportformalisme werd gebruikt om de
distributiefunctie van elektronen uit evenwichtstoestand te bepalen. De elek-
trontransporteigenschappen werden op basis van dit formalisme bestudeerd
voor systemen met korte dracht, puntachtige en willekeurig geplaatste mag-
netische en niet-magnetische onzuiverheden.

Het eerste hoofdstuk beschrijft de topologische fases van materie in twee
en drie dimensies en hun belangrijkste eigenschappen. Het Boltzmann for-
malisme wordt behandeld in hoofdstuk 2. Omdat topologische isolatoren een
sterke spin-baan koppeling bezitten, is de interactie tussen geleidende elektro-
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nen en magnetische onzuiverheden anisotropisch. Dit hoofdstuk beschrijft hoe
een aangepaste relaxatietijd aanpak gebruikt kan worden om deze anisotropie
binnen het Boltzmann formalisme te beschrijven en hoe deze vergelijkingen
op te lossen.

Hoofdstuk 3 onderzoekt het ladingstransport in een vrijstaande MTF.
Omdat deze systemen zeer dun zijn, overlappen de golffuncties van elektro-
nen gelokaliseerd in het bovenste en onderste oppdervlak, en onstaat er een
eindige bandkloof in de twee ontaarde banden. Echter, in een topologische
ultra dunne film in contact met een ferromagneet zal deze ontaarding ver-
dwijnen door het magnetische nabijheidseffect. Korte dracht en willekeurig
verdeelde magnetische onzuiverheden zorgen voor selectieregels, die bepalend
zijn voor de intraband en interband elektronenverstrooiingen. Deze selec-
tieregel is zeer gevoelig aan de spinoriëntatie van de magnetische onzuiver-
heden en de positie van het Ferminiveau. Volgens onze bevindingen heeft dit
systeem twee kenmerkende transportregimes. Een dissipatieloze stroom is
mogelijk als alle magnetische onzuiverheden in het vlak zijn geöriënteerd
en als slechts een subband meedoet aan het ladingstransport. Echter, wan-
neer beide conductiesubbanden bijdragen aan de elektronenstroom is het
ladingstransport in een vrijstaande MTF steeds dissipatief.

Onafhankelijk van het regime waarin het systeem zich bevindt, blijkt
de conductiviteit extreem gevoelig te zijn aan de richting van het extern
aangelegd elektrisch veld. Daarnaast kon een criterium opgesteld worden
om de overgang van een 3DMT naar een vrijstaande MTF te definiëren. Voor
een 3DMT geldt dat als alle magnetische onzuiverheden in het vlak liggen,
de gemeten ladingsgeleiding niet beïnvloed wordt door de bandkloof. Echter
in een MTF met magnetische onzuiverheden georiënteerd in het vlak blijkt
het ladingstransport net heel gevoelig te zijn aan de bandkloof. Als gevolg
kan door het variëren van de dikte van het systeem en het testen van de
afhankelijkheid van het ladingstransport aan de bandkloof de kritische dikte
bepaald worden die de overgang van een 3DMT naar een MTF aangeeft.

In hoofdstuk 4 wordt dezelfde aanpak als in hoofdstuk 3 gebruikt om te
bestuderen hoe ladingstransport in een MTF verandert door de aanwezigheid
van een substraat of door een aangelegde gate spanning. Onze resultaten
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tonen aan dat nog steeds een dissipatieloze ladingsstroom kan gegenereerd
worden. Daarnaast vonden we dat buiten dit regime de respons van het
ladingstransport op veranderigen in de oriëntatie van de magnetische onzuiv-
erheden goed gecontroleerd kan worden door zo’n gate spanning.

In hoofdstuk 5 werd op basis van de aangepaste Boltmann continuum
aanpak en de veralgemeende relaxatietijd benadering de ‘anomalous’ Hall
conductiviteit op het oppervlak van een 3DMT bestudeerd als functie van het
Ferminiveau, de massa van de Dirac fermionen, de oriëntatie van de opper-
vlaktemagnetisatie en de concentratie aan magnetische en niet-magnetische
onzuiverheden. Drie mechanismen zijn verantwoordelijk voor het ‘anomalous‘
Hall effect (AHE): het intrinsieke effect (t.g.v. een Berry kromming die niet
verdwijnt), het ‘side jump’ effect en het ‘skew scattering’ effect. Zij domineren
het AHE in verschillende regimes.

De verschillende bijdragen van elk mechanisme tot de verstrooiing van
massieve Dirac fermionen door magnetische en niet-magnetische onzuiverhe-
den werden analytisch uitgerekend. Onze resultaten tonen dat er ook drie
verschillende transportregimes geïdentificeerd kunnen worden op basis van
het relatieve belang van de verschillende mechanismen. Daarnaast werd een
tekenverandering geobserveerd in de ‘anomalous’ Hall geleiding die niet enkel
geïnduceerd kan worden door het Ferminiveau of de concentratie aan onzui-
verheden, maar ook door de oriëntatie van de oppervlaktemagenisatie. Deze
inzichten verklaren ook de experimenteel geobserveerde tekenverandering.

Aangezien experimenteel steeds de totale ‘anomalous’ Hall geleiding geme-
ten wordt en niet elke bijdrage apart, is het ook moeilijk om de verschillende
mechanismen apart te bestuderen. Echter, onze theoretische resultaten kun-
nen experimentatoren helpen om het volledige systeem in een welbepaald
regime te brengen waarin slechts één mechanisme bijdraagt tot het AHE, om
zo wel te kunnen focussen op slechts één bijdrage.
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7.2 Lopende projecten en toekomstig
onderzoek

Het ladingstransport in een MTF werd in hoofdstuk 3 en 4 onderzocht in
een lineair regime en waarbij de geïnduceerde bandkloof constant is. Echter,
experimenteel vindt men dat wanneer het aantal ‘quintuple’ lagen (QLs)
betrokken in het transport verandert, ook de geïnduceerde bandkloof veran-
dert. Momenteel onderzoeken we daarom de transporteigenschappen van een
multilaag Bi2Se3 waarbij de dikte varieert van 1 tot 50 QLs. Als de dikte
verandert, verandert de bandenstructuur, de spinstructuur, de energiekloof
en de geïnduceerde gate spanning, hetgeen het ladingstransport zal wijzigen.
Onze resultaten tonen aan dat in dit systeem twee duidelijke regimes kunnen
onderscheiden worden: het ultra-dunne regime waarbij het systeem minder
dan 6 QLs dik is, en het 3D regime als het systeem dikker is.

Daarenboven onderzoeken we de invloed van asymmetrische magnetisatie
op het ladingstransport in een dikke magnetische topologische film met een
aangelegde gate spanning. Magnetisch gedopeerde TIs met tegengestelde
magnetisatie op tegenoverliggende oppervlakken vormen een excellent host
medium voor de axion-toestand. Axion-toestanden trekken heel wat aandacht
omdat hun niet-triviale Z2 index behouden wordt via inversiesymmetrie in
plaats van tijdsomkeersymmetrie. Het is intrigerend dat de gegapte opper-
vlaktetoestanden van axion-isolatoren leiden tot een half-gekwantiseerde
oppervlakte ‘anomalous’ Hall geleiding.

Daarnaast wensen we ook het ladingstransport te exploreren van elektro-
nen bij hogere energieën, waar we in deze thesis nog focussen op lage-energie
fysica. Termen kwadratisch in de impuls en anisotrope hexagonale warping
moeten dan mee in rekening gebracht worden. We anticiperen dat het in
rekening brengen van de hexagonale warping een grote invloed zal hebben op
de transportkarakteristieken.
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