
This item is the archived peer-reviewed author-version of:

Electronically tunable quantum phase slips in voltage-biased superconducting rings as a base for

phase-slip flux qubits

Reference:
Kenawy Ahmed, Magnus Wim, Milošević Milorad, Sorée Bart.- Electronically tunable quantum phase slips in voltage-biased superconducting rings as a base for

phase-slip flux qubits

Superconductor science and technology - ISSN 0953-2048 - 33:12(2020), 125002 

Full text (Publisher's DOI): https://doi.org/10.1088/1361-6668/ABB8EB 

To cite this reference: https://hdl.handle.net/10067/1726430151162165141

Institutional repository IRUA



Electronically tunable quantum phase slips in voltage-biased superconducting

rings as a base for phase-slip flux qubits

Ahmed Kenawy,1, 2 Wim Magnus,3 Milorad V. Milošević,3, 4 and Bart Sorée2, 3, 5

1)Institute for Theoretical Physics, KU Leuven, B-3001 Leuven, Belgium

2)IMEC, B-3001 Leuven, Belgium

3)Department of Physics, University of Antwerp, B-2020 Antwerp, Belgium

4)NANOlab Center of Excellence, University of Antwerp, Belgium

5)Electrical Engineering Department, KU Leuven, B-3001 Leuven, Belgium

(Dated: 25 October 2021)

Quantum phase slips represent a coherent mechanism to couple flux states of a superconducting loop.
Since their first direct observation, there have been substantial developments in building charge-insensitive
quantum phase-slip circuits. At the heart of these devices is a weak link, often a nanowire, interrupting a
superconducting loop. Owing to the very small cross-sectional area of such a nanowire, quantum phase slip
rates in the gigahertz range can be achieved. Instead, here we present the use of a bias voltage across a
superconducting loop to electrostatically induce a weak link, thereby amplifying the rate of quantum phase
slips without physically interrupting the loop. Our simulations reveal that the bias voltage modulates the
free energy barrier between subsequent flux states in a very controllable fashion, providing a route towards a
phase-slip flux qubit with a broadly tunable transition frequency.

I. INTRODUCTION

The macroscopic quantum coherence of the supercon-
ducting wavefunction is accompanied by a plethora of
consequent phenomena, among which is flux quantiza-
tion. Due to the single-valuedness of the wavefunction,
the magnetic flux enclosed by a superconducting loop
must be quantized, hence the flux state of the loop is
precisely characterized by the phase winding number n.

To make a transition between two flux states of a super-
conducting loop, the phase of the order parameter ψ must
make a discontinuous jump by an integer multiple of 2π,
referred to as a phase slip1. The phase discontinuity
occurs locally at a point where the modulus |ψ| is strongly
suppressed. These events can be broadly classified into
deterministic and stochastic phase slips. Deterministic
phase slips occur when the free-energy barrier to the
subsequent flux state is reduced to zero by increasing
the external magnetic flux2,3. For a non-zero barrier, a
stochastic phase slip, via either thermal activation over
the barrier3–5 or quantum tunneling6–8, can occur, and
its rate depends exponentially on the barrier height.

Tunneling through the free-energy barrier, referred to
as quantum phase slips (QPS), explains the non-zero
resistance of ultra-thin superconducting nanowires at
very low temperatures9. In 2005, however, Mooij sug-

gested that quantum phase slips can coherently couple
the discrete flux states of an isolated superconducting
loop, a phenomenon dubbed coherent quantum phase
slips (CQPS). Consequently, he proposed that a charge-
insensitive qubit can be constructed by embedding a
nanowire in a superconducting loop, in a manner that
it presents a weak link and becomes a favorable spot
for nucleation of phase slips, and CQPS results in the
superposition of two distinct macroscopic flux states10,11.
CQPS can be understood as a phenomenon dual to the
Josephson effect, where coherent exchange of vortices
along the phase-slip line plays the role of Cooper-pair
tunneling across an insulating barrier12–16. Phase-slip
flux qubits have been demonstrated using disordered
superconducting nanowires17–19. Moreover, their exper-
imental realization spurred interest in fabricating other
quantum phase-slip circuits such as quantum interference
devices20,21, and single-charge transistors22,23.

In this paper, we circumvent the need for advanced
nanostructuring by controlling the weak links in a su-
perconducting ring electronically. More specifically, we
present in detail the effect of a bias voltage on quantum
phase slips in continuous, uninterrupted superconducting
rings. In particular, we characterize the free-energy
barrier between flux states for various ring geometries
as a function of bias voltage using the time-dependent
Ginzburg–Landau (GL) simulations, and reveal that
the barrier can be precisely tuned down to vanishingly
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FIG. 1. Free energy F of a superconducting loop of
radius R = ξGL, normalized by the condensation energy FC.
The enclosed flux φ is normalized by the flux quantum Φ0 =
h/(2e). The blue line is obtained from a numerical solution
of the GL equation, where a deterministic transition from the
flux states n = 0 to n = 1 occurs at φc = 1/

√
2. The grey

dashed lines correspond to the free-energy in the absence of
any fluctuations. The energy barrier ∆F is defined as the
difference between the saddle state Fs (red solid line) and the
energy of the flux states.

small values, for which the rate of quantum phase slips
is strongly amplified. As a consequence, such design
can serve as a model for a phase-slip flux qubit whose
transition frequency is electronically tunable in a broad
frequency range.

This paper is organized as follows. First, a background
on deterministic and stochastic phase slips is given in
Sec. II. In Sec. III, the effect of bias voltage on the free-
energy barrier between subsequent flux states is discussed
in detail. Finally, in Sec. IV, we present a model for
an electronically-controlled phase-slip qubit, and discuss
the achievable rate of quantum phase slips as a function
of the bias voltage for various ring geometries. Sec. V
summarizes our results.

II. PHASE SLIPS IN A SUPERCONDUCTING RING

Transitions between flux states of a superconducting loop
occur via either deterministic or stochastic phase slips.
For a deterministic phase slip to occur, the magnetic
flux threading the loop must be increased till the free-
energy barrier to the subsequent flux state is brought to
zero. For a loop of radius R whose width and thickness
are much shorter than the coherence length ξGL and the
penetration depth λ, the critical flux for a transition from
the flux state n = 0 to n = 1 is given by24–26

φc =
1√
3

R

ξGL

√

1 +
ξ2GL

2R2
, (1)

where the flux φ is normalized by the quantum of
flux Φ0 = h

/

2e. The critical flux defines the Eckhaus
instability point where fluctuations of the order param-
eter, either due to noise or sample inhomogeneities, can

grow to nucleate a phase-slip event25. For instance, the
transition from n = 0 to n = 1 occurs at φc = 1/

√
2, as

illustrated in Fig. 1.

The occurrence of a deterministic phase slip presumes
flux can be increased till the instability point is reached.
However, as the flux increases the energy barrier between
flux states decreases, and a stochastic phase slip is more
likely to occur. In other words, thermal activation over
the barrier or macroscopic quantum tunneling, can result
in a phase slip well before the instability point is reached.

Within the framework of the Langer-Ambegaokar-
McCumber-Halperin (LAMH) theory27,28, the rate of
thermally-activated phase slips (TAPS), is given by

ΓTAPS = ΩTAPS e−∆F/kBT , (2)

where ∆F is the free-energy barrier, and the attempt
frequency can be written as

ΩTAPS =
L

ξGL

1

τ

√

∆F

kBT
, (3)

where L is the length of a wire or the circumference of a
loop, and the relaxation time is defined as

τ =
πh̄

8kB(Tc − T )
, (4)

where Tc is the critical temperature of the supercon-
ductor. Analogously, the simplest form for the rate of
quantum phase slips is obtained by replacing the thermal
energy kBT by h̄/τ , leading to the expression29

ΓQPS = B ΩQPS e
−a∆Fτ/h̄, (5)

where a and B are numerical factors of order unity.
This phenomenological model has been shown to fit the
resistance of ultra-thin wires quite accurately9,30,31.

The essential parameter in the rate expressions is the
barrier ∆F , defined by the trajectory the loop tra-
verses to make a transition between two metastable
flux states27. These trajectories are characterized by
intermediate saddle points in the free-energy landscape,
referred to as saddle states. Based on LAMH theory,
the energy barrier is defined as the difference between
the free-energy of the saddle state Fs and the initial flux
state (cf. Fig. 1).

For a loop with a circumference L≫ ξGL, the free energy
of the saddle state reads32

Fs = −FC

[

(2 + ∆)2

9
− 8

3

√
2∆

ξGL

L

]

, (6)

where FC is the condensation energy, and ∆ is a parame-
ter denoting the difference between the maximum and the
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minimum of the order parameter of the saddle state, and
can be determined from the transcendental equation32

2πn = 2πφ+

√

1−∆

3

L

ξGL
+ 2arctan

√

3∆

2− 2∆
, (7)

as a function of the normalized flux φ.

The energy of the saddle state Fs, along with the
barrier ∆F , is illustrated in Fig. 1. A distinction can
be made between a stochastic phase slip occurring well
before the instability point, and a deterministic one
occurring at the critical flux φc. Evidently, the free
energy barrier vanishes at the instability point.

In the limit R ≫ ξGL, and in the absence of external
magnetic flux (i.e. φ = 0), the barrier reduces to the
original formula obtained by the LAMH theory for a one-
dimensional wire

∆F =
8
√
2

3

B2
c

2µ0
wd ξGL, (8)

where Bc is the thermodynamic critical field, and the
product wd is the cross-sectional area. The energy
barrier is linearly proportional to the product of the
cross-sectional area and the coherence length, which
intuitively corresponds to the volume over which the
modulus of the order parameter goes to zero to allow a
phase discontinuity. Consequently, quantum phase slips
are typically observed in superconducting wires that are
only few nanometers in width9,17–19.

III. TRANSITIONS BETWEEN FLUX STATES IN THE

PRESENCE OF BIAS VOLTAGE

To allow for less stringent requirements on the cross-
sectional area of the superconductor, one must employ
an additional barrier-reducing mechanism, thereby com-
pensating for the increased area to preserve the rate of
quantum phase slips. In this section, we show that bias
voltage modulates the energy barrier, and subsequently
the rate of stochastic phase slips. To visualize the effect of
the bias voltage (see Fig. 2), we resort to the simulations
based on the time-dependent Ginzburg-Landau (GL)
equation33,34

(

∂

∂t
+ iκV

)

ψ = −
(

i

κ
∇+A

)2

ψ +
(

1− η
)

ψ, (9)

where V is the electrostatic potential, and A is the
magnetic vector potential. The complex order parameter
is defined as ψ =

√
η exp(iδ). Equation (9) is written in a

dimensionless form where the space coordinate is scaled
by the penetration depth λ and the order parameter by
its equilibrium value1, where κ stands for the λ/ξGL ratio.

FIG. 2. Model for a superconducting ring of radius R
and a width w, subjected to a bias voltage Vb. The angle
between the bias contacts is denoted by α, whereas the extent
of each contact is quantified by the angle γ.

The time t is scaled by the ratio ξ2GL/D where D is the
diffusion coefficient.

In our simulations, equation (9) is solved self-consistently
with the continuity equation, which in the Coulomb
gauge reduces to

σ∇2V = ∇ ·
(

1

2iκ

(

ψ∗∇ψ − ψ∇ψ∗
)

− ηA

)

, (10)

with the dimensionless conductivity σ given by σnDκ2µ,
where σn is the normal-state conductivity and µ is the
magnetic permeability. The supercurrent stemming from
the superconducting order parameter ψ for given mag-
netic field satisfies the Neumann boundary conditions at
all sample boundaries, and the electrostatic potential is
bound by the value of bias defined between the voltage
leads.

A. Superconducting ring with a width w ≪ ξGL

To gain an insight into the effect of bias voltage, we
first consider a model where the ring width w is much
shorter than the coherence length and the penetration
depth (w ≪ ξGL, λ). As a consequence, the variation
of the order parameter along the radial direction is
negligible. Furthermore, we set the angle α = π, the
potential V (π) = Vb, and V (0) = 0 (see Fig. 2).

Due to the bias voltage, the order parameter exhibits a
non-uniform profile along the circumference of the ring
with minima at θ = π/2 and 3π/2, where θ is the
azimuth angle (see Fig. 1 in the supplementary material
for an example of the supercurrent density induced by
bias voltage). These weak points serve as a preferential
location to nucleate a phase slip. In particular, based on
the summation of the current driven by bias voltage and
the current driven by the external flux, the phase-slip
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FIG. 3. Effect of bias voltage on a superconducting

loop. a The critical flux φc as a function of bias voltage Vb

for various radii of the ring. The dots represent the simulated
data points. b,c Comparison between analytical (solid lines)
and numerical (crosses) solutions for the scalar potential V
and the superfluid velocity vs as a function of the azimuth
angle θ. Parameters used: κ = 1, σ = 1, and Vb = 0.5.

location is determined. For instance, in the flux state
n = 0, the minimum is at θ = π/2, whereas in n = 1
state it is at θ = 3π/2.

Importantly, because of this additional current induced
by bias voltage, deterministic phase slips can occur at
a lower magnetic flux. For instance, the critical flux,
given in Eq. (1), for the transition from n = 0 to n = 1
decreases as a function of bias voltage, and tends to the
degeneracy point φ = 1/2 (see Fig. 3a).

For a ring of a radius comparable to the coherence length,
and in the limit of small bias voltage, we obtain an
analytical solution for the scalar potential

V =
Vb
2

[

1 +
eβθ − eβ(π−θ)

eβπ − 1

]

, (11)

and for the superfluid velocity

vs =
Vbκ

√
σ

2

[

eβθ + eβ(π−θ)

eβπ − 1
− coth

(

βπ

2

)

]

, (12)

where β = κR/
√
σ. These expressions agree well with

the GL numerical solution, as depicted in Fig. 3b,c.
Evidently, the superfluid velocity at the phase-slip center
(either at θ = π/2 or 3π/2) increases linearly with bias
voltage, thereby reducing the magnetic flux required for
a deterministic phase slip.

Equivalently, from the energy standpoint, as the bias
voltage increases, the free-energy barrier between sub-
sequent flux states decreases. Importantly, because the
saddle-state energy is weakly dependent on flux near the
degeneracy point φ = 1/2 (Fig. 1), the energy barrier
between the states n = 0 and n = 1 can be conservatively
approximated by

∆F ≈ F (φc)− F (φ = 1/2), (13)

which can be extracted from the numerical solution
of the GL equation (as depicted in Fig. 4b). This
approximation is valid in the limit that the bias voltage is
large enough to reduce the instability point to the vicinity
of the degeneracy point.

Moreover, because there is a single favourable location to
nucleate a phase slip, the barrier is not reduced uniformly
along the loop. Put differently, there is a single location
in the ring where attempts to escape the present flux
state go through a reduced barrier. For other locations,
the barrier is effectively not reduced. To account for
this non-uniformity, the ring can be divided into two
sections, a section with a length ξGL where the barrier is
reduced due to the presence of bias voltage, and a section
with a length L − ξGL where the barrier is effectively
uninfluenced. The rate of phase slips occurring in the
latter will be much lower than the former due to the
exponential dependence of the rate on the barrier height.
Therefore, in the presence of bias voltage, the attempt
frequency must be modified to

Ω =
1

τ

√

∆F

kBT
. (14)

B. Superconducting ring with a finite width

Before proceeding to evaluating the rate of quantum-
phase slips, we examine the effect of bias voltage on a
superconducting ring of finite width w. In contrast to
the previous section, the magnetic flux now comes in two
flavours, either as localized within the ring or uniform
throughout the space.
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FIG. 4. Free-energy spectrum of a voltage-biased superconducting ring threaded by a solenoid field. The free
energy is normalized by the condensation energy FC, and the flux enclosed within the ring by the flux quantum. The unbiased
case (Vb = 0) is shown in (a), whereas a bias voltage Vb = 0.8 is used for (b-d). The angle α between the bias contacts (see
Fig. 2) is varied between the panels. A conservative estimate of the free-energy barrier ∆F , in line with Eq. (13), is depicted
in (b). Parameters used: R = w = ξGL, κ = 1, γ = 7◦ and σ = 1.

FIG. 5. Free-energy spectrum of a voltage-biased

superconducting ring in a uniform magnetic field. The
free energy F , normalized by the condensation energy FC, is
given as a function of the external magnetic flux enclosed by
the outer rim of both unbiased (a) and biased (b) rings. The
dotted-grey lines represent the degeneracy points between flux
states, as given in Eq. (15). Parameters used: R = w =
ξGL, κ = 1, α = 180◦, γ = 7◦, and σ = 1.

First we consider the localized case, where the magnetic

field is focused through e.g. solenoid core piercing the
ring. The free-energy spectrum of the unbiased ring is
shown in Fig. 4a. Since the body of the superconducting
ring is not exposed to any external magnetic field, all the
minima of the free-energy are at integer flux quanta and
have the same energy. Moreover, the degeneracy point
between two flux states n and n + 1 is exactly at φ =
n + 1/2, where φ is the normalized flux enclosed by the
inner/outer rim of the ring.

In agreement with Fig. 2, upon biasing the superconduct-
ing ring, the critical flux for a deterministic phase-slip
tends to the half-flux quantum. However, depending on
the angle α between the contacts, one can selectively fa-
vor transitions that increment or decrement the vorticity
of the ring. For instance, for α = 180◦, the bias voltage
divides the ring into two symmetric arms, thereby the
summation of the current induced by bias voltage and the
circulating current due to the enclosed flux is identical in
the states n and n + 1. Thus, the symmetry of the free
energy spectrum is preserved, as seen in Fig. 4b (see also
Fig. 2 in the supplementary material).

In contrast, for α = 120◦, the current induced by the bias
voltage in the upper shorter arm of the ring is larger than
its counterpart in the longer arm. As a consequence, this
geometry favors transitions that increment the vorticity
of the ring (see the free energy spectrum in Fig. 4c). A
mirror reflection of this energy spectrum is obtained for
the explementary angle α = 360 − 120 = 240◦, where
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vorticity-decrementing transitions are favored.

Second, we consider the case of a uniform magnetic field.
The main difference with the solenoid case is that the
vortex dynamics is no longer solely governed by the flux-
quantization requirement, but also by the Meissner effect
since the magnetic field impinging on the ring will be
screened. Accordingly, as evident in Fig. 5a, the minima
of the free-energy deviate from the integer flux quantum.
Moreover, in terms of the flux φ enclosed by the outer
rim, the degeneracy point between flux states are at35

φm = m
lnχ

χ2 − 1
, (15)

where m is an integer, and the ratio χ is defined
as R/(R + w). Similar to the solenoid case, the bias
voltage reduces the free-energy barrier, or equivalently
the critical flux for a deterministic transition to the
subsequent flux state. Incidentally, the uniform case
tends to the solenoid case as the width of the ring
decreases in comparison to the coherence length.

Based on Fig. 4 and Fig. 5, for a symmetric free-energy
barrier between two flux states n and n + 1, the ring
must be locally flux biased with φ = n+ 1/2. Moreover,
upon employing bias voltage to modulate the barrier, an
angle α = π must be used if preservation of symmetry is
needed.

IV. PROPOSAL FOR A PHASE-SLIP FLUX QUBIT

To tune the transition frequency of Josephson-based
qubits, the junction must be replaced by two in parallel,
thereby forming a SQUID. The effective Josephson en-
ergy of the SQUID—and in turn the transition frequency
of the qubit—depends on the overall magnetic flux en-
closed by the SQUID loop36–38. The additional flux-bias
loop, however, renders Josephson-based qubits sensitive
to flux noise, which motivates the need for establishing
electronically tunable weak links. For example, Refs. 39
and 40 suggested placing the superconductor in a planar
electric field to locally suppress the Cooper-pair density
and hence form a weak link. In this paper, however, we
suggest inducing the weak link in a superconducting ring
using bias voltage. In this section, we calculate the free-
energy barrier for voltage-biased aluminum nanorings
and the corresponding rate of quantum phase slips.
Moreover, we propose using these rings as phase-slip flux
qubits, where the transition frequency is tunable by bias
voltage.

The parameters for aluminum are in line with those
measured in Ref.31. Specifically, the critical tempera-
ture Tc is 1.32 K. For our calculations, we assume T =
Tc/2, such that the rate of thermally-activated phase
slips is suppressed, and quantum phase slips dominate.

Although the time-dependent GL equations are derived
in the immediate vicinity of the critical temperature,
they have been extensively used in literature, and their
predictions agree well with experiments even away from
the critical temperature. In our approach, we follow the
success of recent simulations in Ref.41, using the same
empirically introduced temperature-dependence of the
superconducting length scales, beyond the GL theory as
originally derived.

The bias voltage is applied along the outer rim of the
ring, where the geometry is characterized by the angles α
and γ, as depicted in Fig. 2. Since our purpose is to
symmetrically couple the flux states n = 0 and n = 1,
we take the angle α = π and the applied magnetic flux
is localized within the ring throughout this section. We
consider a superconducting ring of radius R = 100 nm,
width w = 100 nm, and thickness d = 10 nm, and
investigate how the critical flux changes as a function
of the superconducting length-scales of the Cooper-pair
condensate. Namely, motivated by the ever-present
disorder in experimentally deposited samples, we vary
the mean-free path ℓ, which in the dirty limit changes the
coherence length and the penetration depth of the ring.
For each mean-free path, the normal-state resistivity
is obtained from the well-known relation ρℓ = 4 ×
10−6 µΩ .cm2 for aluminum thin films42.

The critical flux φc as a function of the bias voltage is
shown in Fig. 6 for ℓ = 6, 9, and 12 nm. The correspond-
ing coherence lengths at the considered temperature
are ξGL(T ) = 110, 135, 150 nm. Evidently, for less
disorder, i.e. larger mean-free path, the coherence length
increases. Accordingly, the ratio between the width of
the ring and the coherence length decreases, thereby ap-
proaching the one-dimensional limit where w ≪ ξGL. As
a consequence, the critical flux at which a deterministic
phase-slip occurs is reduced. Furthermore, in accordance
with Fig. 3a, as the radius of the ring increases with
respect to the coherence length, the critical flux increases.
In our subsequent analysis, we limit ourselves to one
particular choice of the mean-free path, namely ℓ = 6
nm and detail the effects of geometry on performance of
the proposed device.

First, we explore the effect of the bias contact angle γ (see
Fig. 2) on the relation between the energy barrier and the
bias voltage. As expected, the energy barrier decreases
as a result of increasing the bias voltage (as shown in
Fig. 7a). More important, the descent rate, characteriz-
ing the effectiveness of bias voltage, also depends on the
angle γ. As γ decreases, the slope decreases, denoting to
a reduced sensitivity to bias voltage.

Second, we explore the effect of varying the width of the
ring while keeping the bias angle γ = 18◦ unchanged
(Fig. 7b). Evidently, the larger the width, the higher
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FIG. 6. Critical flux φc for a deterministic phase-slip

as a function of the bias voltage Vb, for three aluminum
rings with different mean-free paths ℓ. The radius of the rings
is R = 100 nm, and their width w = 100 nm. Dots show the
simulated data points.

the energy barrier since the condensation energy of the
ring increases, as given in Eq. (8). Thus, a larger
bias voltage is required to reduce the barrier to zero.
To decouple the effect of enlarging the ring from the
increased arc length of the bias voltage contacts, we
present the dotted line for w = 100 nm and γ = 13.5◦ in
Fig. 7b, having the same product γ (R+w) as the sample
with w = 50 nm and γ = 18◦ (shown as blue curve in
Fig. 7b). The direct comparison of the two cases for
fixed γ (R + w) product reveals nearly identical slopes
of their ∆F (w) characteristics. Incidentally, for precise
control over the free-energy barrier, and subsequently the
rate of stochastic phase slips, the width of the ring must
be comparable or even smaller than the radius of the
ring. This requirement ensures that the supercurrent
induced by bias voltage flows predominantly azimuthally.
Otherwise, the radial component of the current becomes
important, and can strongly suppress the Cooper-pair
density near the biasing leads, thereby changing the
preferential location of phase-slips. A detailed discussion
on the effects of ring size on the behaviour of the proposed
device is provided in the supplementary material.

The corresponding rate of quantum phase slips is shown
in Fig 7c, calculated based on Eq. (5), in the strong

damping regime with a = π
/

6
√
2 ≈ 0.37, as derived

in Ref. 43. With the bias voltage increased, the rate
of quantum phase slips increases exponentially to the
gigahertz regime, where a desired qubit level spacing is
achieved. Specifically, at the degeneracy point φ = 1/2,
the eigenstates of the ring are the symmetric and the
anti-symmetric superpositions of the flux states n = 0
and n = 1. Incidentally, the superposition of two
macroscopic flux states were first measured in Refs. 44–
46 for superconducting rings interrupted by one or more
Josephson junctions.

The Hamiltonian of this two-level system takes the form

H = hΓqps(Vb) σz, (16)

up to a constant energy shift corresponding to the
operating point F (φ = 1/2). Based on Fig. 7b, the
operational bias voltage is determined by the width of the
ring. Moreover, the tunability of the qubit is determined
by the geometric extent of the bias voltage over the outer
rim of the ring, characterized here by the biasing angle γ.

Various insights into the tunability/sensitivity of the
proposed qubit as a function of the device geometry can
be obtained by approximating the relation between the
free-energy barrier and the bias voltage to be linear (see
Fig. 7a). In particular, the rate of quantum based slips
can be cast in the form

ΓQPS =
1

τ
√
a

√

ǫ(b− cVb)e
−ǫ(b−cVb), (17)

where the dimensionless constant ǫ = aFCτ/h̄, b is the
free-energy barrier, normalized by the condensation en-
ergy, at zero bias voltage, and c is the slope. Maximizing
Eq. (17), the highest phase-slip rate is 1/(

√
2aeτ), at a

bias voltage V max
b = b/c − 1/(2cǫ). Consequently, for a

fixed frequency operation, it is preferential to operate
at the sweet spot V max

b where the rate is insensitive
to charge fluctuations in the first order. The tunabil-
ity/sensitivity of the qubit can be characterized by the
full width at half maximum (FWHM) given by

FWHM =
1

2cǫ

[

W

(−1

4e

)

−W−1

(−1

4e

)]

≈ 3.59

2cǫ
, (18)

where W is the Lambert function. Consequently, to
reduce the qubit sensitivity, the biasing angle γ must
be minimized to reduce the slope c, along with reducing
the the relaxation time τ and condensation energy, for
instance by using a ring with a smaller thickness d, as
depicted in Fig. 7d.

To sum up, the bias-induced modulation of the energy
barrier is a double-edged sword. On the one hand,
it allows for tuning the transition frequency, a desired
quality in qubits. On the other hand, due to the
exponential dependence of the rate of quantum phase
slips on the barrier, the qubit is sensitive to charge
fluctuations. As seen in Fig. 7d, bias voltage fluctuations
in the order of 1µV shift the qubit transition frequency
by a few gigahertz.

The main advantage of the proposed qubit is that the rate
of quantum phase slips, and in turn the transition fre-
quency of the qubit, depends on macroscopic parameters,
namely the geometry of the ring and the coherence length
of the superconductor. As a consequence, it is immune
to fluctuations and defects occurring over a length scale
much shorter than the coherence length. Moreover,
because the bias voltage provides a complete control
over the free-energy barrier (Fig. 7), it can absorb small
deviations of the superconducting parameters, thereby
ensuring a well-defined transition frequency.
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FIG. 7. Quantum-phase-slip rate as a function of bias voltage Vb. a Free-energy barrier ∆F for a superconducting
ring of radius R = 100 nm, width w = 50 nm, and thickness d = 10 nm for various bias contact angles γ (cf. Fig. 2). Dots
show the simulated data points. b Free-energy barrier ∆F as a function of the ring width, for fixed γ = 18◦. The dotted line
corresponds to an angle γ = 13.5◦ for the case w = 100 nm, for comparison with the case of (w, γ) = (50 nm, 18◦), having the
same γ (R + w) product. c The rate of quantum phase slips ΓQPS corresponding to the panel (a). d Sensitivity of the largest
quantum phase slip rates on the bias voltage, for three thicknesses of a disordered aluminum ring, namely d = 5, 10, and 15
nm (and remaining parameters ℓ = 6 nm, R = 100 nm, w = 50 nm, and γ = 3◦).

V. SUMMARY

As the main topic of this paper, we have set out to
investigate the effect of bias voltage on the transitions
between subsequent flux states of a superconducting
ring in an external magnetic field. Our time-dependent
Ginzburg-Landau simulations revealed that the applied
bias voltage suppresses superconductivity in the arms
of the ring, thereby electronically inducing a weak link
for nucleation of quantum phase slips. Moreover, the
bias voltage controllably modulates the superconducting
carrier density in those weak links, so that the free-
energy barrier between flux states can be precisely tuned.
That in turn governs the dynamics of deterministic and
stochastic phase slips, where the rate of quantum phase
slips increases exponentially as a function of bias voltage.

Based on the demonstrated barrier reduction by elec-
tronic means, we estimate the rate of quantum phase slips
in typical aluminum nanorings to reside in the gigahertz
range. This frequency is further tunable by sample
size and width, quality of the material (i.e. mean-free
path and the coherence length of the superconducting
condensate), as well as by temperature. Our general
findings are not sensitive to the imperfections in the
sample geometry or position and size of the leads.
Accordingly, our results suggest a roadmap towards the

most broadly tunable phase-slip flux qubits to date, with
rather robust operation and precise electronic control,
and without need for challenging nanostructuring beyond
the fabrication of the ring itself.
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