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Abstract

The (bio)chemical process industry is under an increasing pressure due to smaller

margins and increasing societal and legislative demands for a sustainable future. In

this context model-based optimization contributes to the solution because it serves

to improve the processes’ performance. Furthermore, multiobjective optimization

techniques provide the decision maker with a deeper insight in the tradeoffs when

choosing an operating condition. However, an accurate process model is needed to

apply these techniques efficiently. In this paper, a novel interface is developed

between state-of-the-art gradient-based optimization techniques and the widely

used process simulator Aspen Plus. Furthermore, specific challenges and solutions

for overcoming the gap between process simulators and optimization tools are

highlighted. The resulting interface allows gradient-based techniques to be exploited

for optimization of complex industrial processes modeled in the advanced Aspen

Plus environment. The interface ensures constraints satisfaction, and a higher

computational performance than gradient free methods.

Keywords: Multiobjective optimization, Gradient-based optimization, Process

optimization, Aspen Plus

1. Introduction1

In light of the societal and legislative pressure on the process industry to increase2

its sustainability and to remain competitive in a more globalized world, model-based3

process optimization can play an important role both in process design and oper-4

ation (Liu and Huang, 2012; Ren et al., 2016). When optimizing (bio)chemical5
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processes, conflicting objectives are often present (Logist et al., 2009; Vallerio et al.,6

2015). A common example is the search for higher profitability while improving the7

safety of operation and reducing the energy consumption. However, the frequent8

influence of inconmeasurable parameters makes their numerical weighting into a9

single (economical) function practically infeasible. Therefore, a more informative10

approach is to provide the decision maker with a thorough view on the set of pos-11

sible optimal solutions, in such a way that the sensitivity of the solutions and/or12

opportunity cost of the decision can be evaluated. Hence, the optimization method-13

ology considered in this work is focused on dealing simultaneously with multiple and14

conflicting objectives, generating as result a set of possible solutions which offer the15

different tradeoffs between the objectives of interest.16

17

Before model-based optimization can be performed, an accurate process model is18

required. For some applications this entails developing and executing costly exper-19

iments (Espie and Macchietto, 1989; Van Derlinden et al., 2010; Telen et al., 2014).20

In many process engineering approaches however this can be obtained by means of a21

process simulator. In this paper, Aspen Plus is considered as process simulator as it22

is widely used for the design and operation of chemical processes. However, it does23

not include advanced multiobjective optimization algorithms, which normally are24

able to generate valuable tradeoff knowledge of the investigated process models and25

can be expected to improve the process insight significantly. In the case of gradient-26

based optimization algorithms though, actual knowledge on the model equations is27

required, either the system of equations itself or sufficient information on the size,28

structure and gradient of the system, hence limiting its implementation to cases29

for which this information is available or can be formulated. This limitation mo-30

tivates this work in which a connection between a widely used commercial process31

simulator and state-of-the-art gradient-based optimization techniques is established.32

33

The solution of a multiobjective optimization (MOO) problem can be performed by34

a wide variety of algorithms. According to Ramzan and Witt (2006) the solution35

approaches can be divided in two: ideal multiobjective optimization procedures and36

preference-based multiobjective optimization procedures. This is equivalent to what37
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Logist et al. (2010) discuss when dividing the methods in vectorization and scalar-38

ization techniques. In both references the former case corresponds to methods that39

can directly tackle the MOO problem and produce at once a representation of the40

Pareto front. Information coming from the decision maker is then used to select one41

of the tradeoff solutions. Stochastic evolutionary algorithms, Genetic Algorithms42

(GA) and particle swarm optimization for multiple objectives are examples of these43

methods (Rangaiah and Bonilla-Petricolet, 2013). The latter case on the other hand44

corresponds to methods which reformulate the MOO into one or multiple paramet-45

ric single objective problems to solve them individually.46

47

Rangaiah and Bonilla-Petricolet (2013) subclassify the scalarization methods de-48

pending on two features: the introduction of the decision maker’s preferences and49

the possibility to obtain one or multiple solutions. Classical scalarization meth-50

ods which require a priori decision maker’s information, produce only one non-51

dominated solution. If multiple solutions are desired, it is required to program a52

sequence of different problems with different values for the parameters. Some exam-53

ples of the former category are the weighted methods (e.g., global criterion, weighted54

sum, weighted min-max, weighted product, exponential weighted), ε-constraint and55

the goal programming methods (Miettinen, 1999). In contrast, examples of the56

latter are Normal Boundary Intersection (NBI) (Das and Dennis, 1998) and Nor-57

malized Normal Constraint (NNC) (Messac et al., 2003) where the preference is58

articulated a posteriori or interactively(Logist et al., 2010; Vallerio et al., 2015).59

60

In this contribution, some selected methods for the vectorization and scalarization61

approaches are applied. The aim is to compare their performance on the process62

simulator interface using a debutanizer column model as an illustrative case study,63

and to highlight the advantages of the proposed gradient-based approach using64

the scalarization methods. Some of these advantages are a better performance in65

terms of computational time and a higher accuracy to tackle constrained problems66

(Logist et al., 2013). In the last part the interface using scalarization methods is67

exploited for the optimization of two industrially relevant case studies, the butyl68

acetate production process and the methanol production via methane tri-reforming.69
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70

Enabling MOO in a process simulator is not straightforward. The most common71

approach found in literature employs black box optimization which does not require72

model information. This type of interfaces between the process simulator and the73

optimization algorithm are built to transfer model evaluation values (dependent74

variables) and the iterative values of the decision variables (independent variables).75

In this direction, Diwekar et al. (1992) proposed a Mixed Integer Nonlinear Pro-76

gramming (MINLP) synthesizer using Aspen Plus through a stochastic annealing77

algorithm. Tarafder et al. (2005) implement NSGA-II (Deb et al., 2002) to ap-78

ply MOO of a simulated industrial styrene monomer manufacturing process. Jang79

et al. (2005) developed and hybrid genetic algorithm that introduces a quadratic80

search in a region defined after some generations of the GA, and coupled it to As-81

pen Plus. Gutierrez and Briones (2009) use NSGA-II in the MOO of a rigorous82

model for Petlyuk sequences in Aspen Plus. Similarly Bravo et al. (2010) use GA83

in the design and optimization of a Extractive Dividing Wall Column. Eslick et al.84

(2011) present a framework for the MOO of processes using Aspen Plus models,85

Excel and modeFRONTIER, where the optimization algorithm is NSGA-II. Taras86

and Woinaroschy (2012) use NIMBUS algorithm (Miettinen, 1999) and a GA in an87

interactive MOO framework, interfacing SuperPro Designer and Matlab. Finally,88

Wang and Feng (2013) optimize the hydrogen production in a refinery modeled in89

Aspen Plus using NSGA-II.90

91

In contrast, to exploit gradient-based optimization algorithms, either the set of92

model equations is made available or sufficient gradient information is provided di-93

rectly to the solver. Only few cases are found to be based on the availability of94

the model equations. Hakanen et al. (2006) developed an integrated multiobjective95

design tool for process design using BALAS which is a steady state simulation pack-96

age for chemical processes with emphasis on pulp and paper processes. Bortz et al.97

(2014) propose a scheme for MOO acquiring the required model information from98

the available source code of CHEMASIM which is an equation oriented steady-state99

flowsheet simulator developed by BASF SE. On the contrary, most of the flowsheet100

simulators do not make the system of model equations available. Therefore, differ-101
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ent approaches have been investigated to provide the gradient information to the102

Nonlinear Programming (NLP) solvers. Harsh et al. (1989) exploited the derivative103

information available from an optimization problem formulated in FLOWTRAN to104

interface it with a Mixed-Integer Nonlinear Programming (MINLP) algorithm and105

accomplish the retrofit of an ammonia process. Diaz and Bandoni (1996) proposed,106

using the same flowsheet simulator, to estimate numerically the gradient informa-107

tion by finite differences and using it in the MINLP formulation for the optimization108

of an ethylene plant. Based as well in numerical estimation of the gradient informa-109

tion, Navarro-Amoros et al. (2014) introduce a framework for integrating chemical110

process simulators, explicit equations and third party models with gradient based111

optimization.112

113

A slightly different approach is the use of the equation set object (ESO). This ap-114

proach relies on interfacing a set of information (e.g., gradient and variable infor-115

mation) which is defined according to CAPE-OPEN standards (Lang and Biegler,116

2007). This interface allows access to the structure of the model (i.e., the number117

of variables and equations, and the sparsity pattern of the Jacobian), as well as to118

information on the involved variables (i.e., their names, current values, and lower119

and upper bounds) (Leineweber et al., 2003). Some examples are presented by120

Leineweber et al. (2003) at optimizing dynamic processes using MUSCOD-II and121

by Lang and Biegler (2007) whom developed the software tool DynoPC to optimize122

dynamic processes modeled in gPROPMS.123

124

Alternatively to process simulators that support the CAPE-OPEN standard, other125

simulator packages have developed equivalent strategies to be interfaced with op-126

timization algorithms. In Chen et al. (2009) an IPOPT based solver and CAPE-127

OPEN solvers were encapsulated and embedded into the Aspen custom modeler128

via the Aspen Open Solvers (AOS) interface using Dynamic Link Libraries (.dll129

files). This shows that the AOS interface supports similar operations to the ESO130

interface. However, in the case of the AOS interface, the model information is not131

handled out of the process simulator but the optimization algorithm is embedded132

into the simulation instead, reducing significantly the flexibility of the interface and133
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making it less accessible. Alternatively to the AOS approach, the Open Object134

Model Framework (OOMF) included within the AspenTech software packages of-135

fers programmatic access to the equation-oriented engine (Aspen, 2011). In this136

contribution the OOMF is exploited to develop an interface with similar capabil-137

ities to an CAPE-OPEN ESO interface for Aspen Plus. This interface allows the138

connection of Aspen Plus to gradient-based MOO methods, such that Pareto op-139

timal points can be computed more efficiently using gradient information from the140

model that has been computed analytically by the Equation Oriented (EO) engine.141

Furthermore, the specific challenges and solution approaches for the use of process142

simulator models in optimization tools are highlighted. This contribution is ex-143

pected to provide users with an increased insight in the process operation and allow144

for a more informed decision.145

146

The paper is structured as follows. Section 2 introduces the mathematical for-147

mulation of MOO and describes the employed methods. In section 3, the strategy148

and the developed interface are discussed, it covers aspects on the optimization tool149

and the process simulator Aspen Plus. The description of the three considered case150

studies is provided in section 4. The obtained numerical results are presented and151

discussed in section 5. The conclusions are summarized in the final section of the152

paper.153

2. Multiobjective optimization154

In this section the mathematical formulation of the considered MOO problems155

is presented. Subsequently the employed MOO techniques are discussed.156

2.1. Mathematical formulation157

Multiobjective optimization (MOO) refers to the simultaneous optimization of158

two or more objective functions which are typically conflicting. In practice this159

means that by improving one of the objectives another is worsened. The formulation160

of a MOO problem considered in this paper is given by:161
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min
u∈Rnu

[J1(x,u), . . . , Jn(x,u)] (1a)

subject to:

0 ≥ g(x,u) (1b)

bl < u < bu (1c)

with: y = [u⊤,x⊤]⊤ (1d)

In this formulation J ∈ Rn is the set of objective functions defined by independent162

variables (controls) u ∈ Rnu and dependent variables (states) x ∈ Rnx . The rela-163

tion between the two set of variables is given by a fully determined system of model164

equations 0 = f(x,u) with f ∈ Rnx . These are the flowsheet equations solved inde-165

pendently by the process simulator and they represent e.g., thermodynamics, mass166

and energy balances and reaction kinetics. The vector y is used in view of concise-167

ness to represent the set of variables with a total number of variables ny = nx+nu.168

The vector g denotes the nc equality and inequality constraints of the problem.169

Additionally, in this formulation the lower (bl) and upper bounds (bu) for the in-170

dependent variables are explicitly established as boundary constraints (Rangaiah171

and Bonilla-Petricolet, 2013).172

173

The feasible space Ω of the optimization problem is defined as the set of vectors174

y which satisfy all the constraints and bounds set in Equations (1b), (1c) and (1d).175

The difference between single objective optimization (SOO) and multiobjective opti-176

mization (MOO), is that finding a unique vector y which optimizes simultaneously177

all conflicting objectives is not possible. Consequently for a MOO problem a set of178

vectors y∗ is found as Pareto-optimal. A point y∗ ∈ Ω , is Pareto optimal iff there179

does not exist another point, y ∈ Ω , such that Jj(y) ≤ Jj(y
∗) for all j ∈ 1, ..., n180

and Ji(y) < Ji(y
∗) for at least one objective function i (Vallerio et al., 2015).181

182

The solution of a MOO problem and the construction of its Pareto front can be183

perform following two approaches (Logist et al., 2010): vectorization and scalariza-184

tion methods.185
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2.2. Scalarization methods186

Scalarization methods transform the multiple objective optimization problem187

(MOOP) into a (series of) parametric single objective optimization problems. There-188

fore, they do not tackle directly the whole MOOP but they still can produce mul-189

tiple non-dominated results by solving the parametric single problems sequentially.190

Additionally, since these methods often exploit deterministic gradient-based opti-191

mization approaches they tend to be fast and are able to account efficiently for192

constraints both on decision variables as well as dependent variables (Logist et al.,193

2010, 2013).194

195

In this contribution two scalarization methods are implemented, the Normal Bound-196

ary intersection (NBI) and the Normalized Normal contraint (NNC). These methods197

are able to cope with the intrinsic drawbacks of the simpler a priori scalarization198

methods (e.g., weighted sum, and ε-constraint). They produce a uniform spread of199

points on the Pareto front, covering non-convex segments as well, and the solution200

is independent of the objectives’ scale (Logist et al., 2010).201

202

These two methods are based on a geometric approach of the objective function203

space. The anchor points i.e., the individual minimization of each of the different204

objectives, are determined first, subsequently a convex combination is used to re-205

formulate the problem following two different approaches. NBI (Das and Dennis,206

1998) searches for the Pareto optimal points over (quasi-)normal lines to the convex207

combination plane, looking for the points in the feasible objective space that are208

closest to the utopia point, i.e., the point consisting of all the individual minima.209

Meanwhile NNC (Messac et al., 2003) looks for optimal solutions for one of the orig-210

inal objectives but in a reduced version of the feasible space. This is constrained211

by normal hyperplanes based on the remaining objective functions. The detailed212

formulation and description of the resulting optimization problems can be found213

in Logist et al. (2010).214

2.3. Vectorization methods215

Vectorization methods are typically based on stochastic search procedures by216

sequential evaluations of the objective functions. The main feature is the ability to217
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tackle directly the MOO problem and to produce multiple non-dominated results218

simultaneously. Additionally, they are considered as easy to implement, flexible to219

be coupled with process simulators and generally regarded as global optimization220

approaches (Logist et al., 2010). The higher capability of these methods to de-221

termine global optimal solutions is mainly based on random search with multiple222

sampling in the feasible space and it is improved if multiple non-dominated indi-223

viduals are kept simultaneously so the chances are higher for finding a path that224

leads to a global solution. The model is treated as a black box and therefore model225

information is not required (Bortz et al., 2014). Specifically, the elitist Nondomi-226

nant Sorting Genetic Algorithm (NSGA-II) (Deb et al., 2002) is frequently used for227

solving many chemical engineering applications. The NSGA-II method is chosen as228

the vectorization approach to solve MOO problems in this contribution.229

230

NSGA-II is an improved version of the NSGA algorithm (Srinivas and Deb, 1994).231

It is an evolutionary algorithm (EA) based on a multiobjective genetic algorithm. It232

follows the Goldberg ranking method (Goldberg, 1989) in the fitness assignment and233

evaluation, which is based on the Pareto optimality or Pareto ordering. Further-234

more, NSGA-II uses the crowded distance and the crowded tournament selection235

strategies to preserve the diversity among solutions in the Pareto front while it236

preserves non-dominated individuals found at intermediate generations (Nakayama237

et al., 2009).238

3. The interface between a process simulator and an optimization tool239

In this section the developed interfaces linking the process simulator to the240

optimization tool are discussed. The first interface is for the black box optimization241

approach while the second one is aimed at gradient-based optimization by accessing242

the so-called equation set object. Detailed information is presented on how the243

complete simulation-optimization scheme is implemented. First, the description of244

the employed software tools is presented. Subsequently, the requirements of the245

interface and the proposed solution are discussed.246
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3.1. Software tools247

Matlab R2014b is used as optimization platform. It allows to implement a248

wide variety of optimization algorithms, using embedded functions, as part of the249

optimization toolbox, or scripted by the user. This contribution aims to com-250

pare the vectorization and scalarization approaches, and Matlab offers the required251

flexibility to implement multiple optimization algorithms. On the one hand, the252

NSGA-II method is employed via Matlab’s function gamultiobj. This is a variant253

of NSGA-II created to run on Matlab’s environment (Bau et al., 2015). On the254

other hand, algorithms for NBI and NNC are scripted in the CasADi environment.255

CasADi is a symbolic framework for automatic differentiation and numerical op-256

timization (Andersson et al., 2012), which additionally provides an interior point257

method (IPOPT (Wächter and Biegler, 2006)) to solve the resulting NLP problems.258

Finally, Aspen Plus is used as process simulator, it offers EO mode (Apen, 2005),259

which guarantees handling gradient information of the model equations.260

261

IPOPT is exploited along this work to solve the NLPs resulting from the appli-262

cation of the NBI and NNC methods to the MOOPs. This method is based on the263

application of the interior point method or barrier method to solve inequality con-264

straints. Line search methods are applied for the solution of the IPOPT problem,265

therefore gradient information is needed. In this work a low rank update based on266

the BFGS scheme is used (Nocedal and Stephen, 1999), because the exact Hessian267

is not available.268

3.2. Interface description269

Three different approaches are identified for interfacing process simulators and270

optimization algorithms, i.e., black box optimization, access to the equation set ob-271

ject and access to the set of model equations. The main difference between the three272

approaches is what information is transferred to the external optimization tool.273

274

Black box optimization: This is a well-known and often exploited approach275

for interfacing a process simulator and complex stochastic optimization algorithms276

(e.g., Aspen Plus and NSGA-II being executed on Matlab or Visual basic). This277

approach is based on exploiting the information contained in successive objective278
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function evaluations since the model remains unknown. There exist several refer-279

ences based on this approach. For example, Gerali and Romagnoli (2015) present280

an optimization framework using a multiobjective stochastic optimization approach281

to incorporate tradeoffs between cost and financial risk for the design of integrated282

biorefineries. However, there are limitations in applying this approach. For example283

in the case of using NSGA-II, it has been reported that the performance decreases if284

other constraints than simple bounds for the decision variables are included (Logist285

et al., 2013). In this work black box optimization will be implemented for compar-286

ison.287

288

Access to equation set object (ESO): This approach refers to implementing289

the ESO interface defined according to CAPE-OPEN standards. This is transfer-290

ring a set of information derived from the model but not the model equations. The291

set of information is defined as the minimum required to execute gradient-based292

optimization algorithms. Different from the identified references following this ap-293

proach Leineweber et al. (2003), Schopfer et al. (2005), Lang and Biegler (2005),294

Lang and Biegler (2007), which all used gProms, Aspen Plus does not support this295

standard. Therefore the approach presented in this contribution exploits OOMF296

to get programmatic access to the equation oriented engine and querying the same297

minimal information provided by an ESO interface. Taking advantage of this fea-298

ture, an ESO equivalent interface is constructed to link Aspen Plus and Matlab.299

This interface has the capability of efficiently exploiting gradient-based optimiza-300

tion algorithms.301

302

Access to the set of model equations: This approach is the ideal approach303

from an optimization point of view. It could require a single interaction between304

process simulator and optimizer, i.e., the transfer of the set of model equations.305

Therefore, this approach can result in a high performance. Unfortunately it is lim-306

ited by the typically constrained access to model equations in process simulators.307

Only few cases exist in the literature following this approach. In Sadrieh and Bahri308

(2011) an implementation is presented using models from Aspen Plus via Aspen309

Custom Modeller (ACM). However, this is a highly complex procedure that re-310
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quires additional program utilities to interpret the process model and to integrate311

the complete implementation into ACM. Therefore, limiting the applicability and312

iteration with the optimization solver. Consequently this approach has not been313

followed in this work.314

3.3. Interface architecture315

The conceptual architecture for the developed interface of this contribution is316

the result of four components, i.e., the simulation software, the middleware, the317

wrapper protocol and the optimization platform. Figure 1 represents this struc-318

ture graphically, where the interface is strictly formed by the middleware and the319

wrapper protocol (dashed line). On the one hand the middleware protocol is imple-320

mented to allow partial automation of the process simulator and to transfer in both321

directions the required information. Some middleware protocols are ActiveX(COM)322

and CORBA. On the other hand the employed wrapper protocol serves to interpret323

the information transferred by the middleware and transform it on useful informa-324

tion that can be exploited either by the optimization algorithm or simulator.325

326

The type of optimization to be performed, i.e., either black box or accessing the327

ESO, determines what type of information needs to be transferred and which in-328

teractions have to be enabled between the process simulator and the optimization329

platform. In case of black box optimization, it consists of only the values of the330

dependent and independent variables for which read and writing actions should be331

allowed. In contrast when gradient-based optimization is aimed at, more complex332

information structures and actions have to be considered. The ESO CAPE-OPEN333

standard is used as reference to define what should be considered on the interface334

(CO-LaN, 2003):335

❼ Obtain the current values of a specified subset of the variables (controls and336

states).337

❼ Alter the values of any specified subset of the independent variables (controls).338

❼ Get the structure of the sparse matrix representing the partial derivatives of339

a specified subset of the equations with respect to a specified subset of the340

variables.341

12

Postprint version of paper published in Computers & Chemical Engineering 2018, vol.109, p. 119-137.
The content is identical to the published paper, but without the final typesetting by the publisher.

Journal homepage: https://www.journals.elsevier.com/computers-and-chemical-engineering
Original file available at: https://www.sciencedirect.com/science/article/pii/S0098135417303198



❼ Compute the residuals of any specified subset of the equations at the current342

variable values.343

❼ Get a sparse matrix containing the values of the partial derivatives of a spec-344

ified subset of the equations with respect to a specified subset of the variables345

(at the object’s current variable values).346

The implementation of the two selected approaches, black box optimization and347

optimization accessing the ESO, can be graphically represented by Figures 2 and348

3 respectively. The interface constructed in both cases (middleware and wrapping349

protocol) can be described as the result of two sub-interfaces: (i) a control interface350

(dash line), and (ii) an information interface (dotted line). A more detailed discus-351

sion on some specific aspects that were considered to establish these interfaces are352

split in the following four parts: (i) simulation, (ii) control interface, (iii) informa-353

tion interface, and (iv) optimization.354

355

Simulation: Here the appropriate strategy of solution should be established, i.e.,356

sequential modular or equation oriented. While for black box optimization it is pos-357

sible to run the simulation in any mode, for the optimization accessing the ESO it358

is restricted to equation oriented.359

Control interface: As a common feature for both approaches the ActiveX frame-360

work is used to construct the control interface, it enables communication within361

applications running on Windows.362

Information interface: This is intended to transfer the required data. Therefore,363

it follows different schemes for the two distinct optimization approaches, due to364

the nature of the information to be transferred. The information interface for the365

black box optimization approach uses additional features of the ActiveX interface.366

Numerical values of a given set of variables (dependent and independent variables)367

are transferred. As explained before, since Aspen Plus does not supports the ESO368

CAPE-OPEN standard, an alternative approach is followed exploiting the Open369

Object Model Framework (OOMF). A detailed description of the script language370

used by the OOMF kernel is given in Aspen (2011). The middleware in this case371

is defined as a set of ASCII and text files that contain the required data. These372

are sucesively accessed to take the information either by Aspen Plus or Matlab, in373
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each direction. The structure given to the middleware consist of three main files.374

The first one contains variables information, i.e., variable name, values, scale factor,375

specification, and units. The second file, corresponds to the equations’ information376

including the residual values. Finally, the last file is created to report the Jacobian.377

Hence all this information is generated every time the simulation converges and378

serves to provide the optimization routine in Matlab with the required elements at379

each NLP solver iteration.380

381

Due to its dependence on creating ASCII and text files, the middleware is consid-382

ered as a bottleneck for the computational performance of the proposed approach.383

However, it is at the authors’ current best knowledge the only way provided by the384

OOMF to retrieve the gradient information available in the equation oriented engine385

of Aspen Plus. Later, the case studies show that the possible restriction imposed386

by this feature is compensated by the higher performance and accuracy obtained387

since analytically derived gradient information is being retrieved. This overcomes388

the main limitation of previous gradient-based approaches which depend on the389

numerical estimation of the gradient information through finite differences (Diaz390

and Bandoni, 1996; Navarro-Amoros et al., 2014). Nocedal and Stephen (1999)391

report that the finite differences aproximation requires n (forward-difference) or 2n392

(central-difference) more evaluations of the objective/constraint functions than the393

analytic differentiation, to evaluate the Jacobian. With n being the number inde-394

pendent variables.395

396

In Matlab, the wrapper function interprets the information collected from the files397

according to Equation 2. The assumption R ≈ 0 is taken based on the fact that the398

EO engine in Aspen Plus internally solves the system of model equations by finding399

the values of the dependent variables x that minimize the residual (Apen, 2005).400

For this the EO engine utilizes analytical first order derivatives of the model equa-401

tions and a numerical perturbation method in cases the analytical differentiation402

is not possible. Therefore, this guarantees the availability of the required gradient403

information while the residual values (R) correspond to the error after convergence404

of the system of equations. These can later be used to evaluate the validity of405
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the results reported by the simulation. However, it should be considered that the406

assumption R ≈ 0 introduces ”noise” to the NLP solver because the states and407

therefore the Jacobian values are not exact.408
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∂fne
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(2)

Optimization: The routine for the black box optimization approach is based on409

NSGA-II. The MOO approach accessing the ESO is performed based on the NBI410

and NNC scalarization methods. For these methods the NLP solver has to be411

provided with the corresponding gradient information of the model at each iteration.412

Therefore a Callback structure for functions is implemented. This is a method in413

IPOPT for defining routines that should be executed at each iteration. Internally414

the Callback function is formulated to communicate the values of the controls,415

generated at each iteration of the NLP solver to the Aspen simulation via the416

information interface. Then the Aspen simulation runs to generate new results,417

which are gathered back to the Callback function in Matlab via the second part of418

the information interface. At this point the collected information is transformed419

into elements that can be handled by the IPOPT method. As a gradient-based420

NLP solver, IPOPT depends on the evaluation of the gradient of the objective and421

constraint functions with respect to the controls. Since the gradient information422

received from the information interface is the Jacobian in the form given by Equation423

(2), it is split into two matrices, one containing the partial derivatives with respect424

to the controls while the other contains the partial derivatives with respect to the425

states. Afterwards, the sensitivity matrix (Ascher and Petzold, 1998) (i.e., the426

inverse of the partial derivatives with respect to states) is operated according to427

Equation 3 to get the partial derivatives of the states with respect to the control428

variables, which in turn are required by IPOPT to fully establish the gradient of429

the objective and constraint functions according to Equation 4.430
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In order to make the gradient information available to IPOPT, two different432

approaches have been implemented:433

Linearization of the states:. Linear functions were formulated in the form x ≈434

∂x
∂uu + C to represent the system of flowsheet equations in the process simulator.435

These are valid only locally and therefore are updated at each iteration of the436

IPOPT solver with the values for ∂x
∂u and C. This is a dummy formulation that437

serves only to transfer the gradient information to the IPOPT routine.438

Embedding a function and its Jacobian:. Alternatively a more complex programing439

structure involves developing functions for embedding the states as callback func-440

tions with a known Jacobian matrix ( ∂x∂u ) in CasADi. This approach offers the441

same numerical outcome as the previous one, but the differentiation of the states in442

Matlab is not needed during the optimization. As part of the first case study these443

two approaches will be compared.444

445

The developed Interface for gradient-based MOO of processes simulated in As-446

pen Plus is refered as INPROP (INterface for PRocess OPtimization). The Matlab447

scripts that constitute this software tool are made freely available for academic pur-448

poses on the website https://cit.kuleuven.be/biotec/software/inprop-1. Complete449

details on the described interface can be found in these scripts. Additionally, the450

files corresponding to the three implemented case studies are available as well in451
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this website as supplementary files.452

4. Case studies453

In the first subsection the debutanizer column case study is presented. It is454

used as an illustrative case to evaluate and compare the performance and limita-455

tions of the methods implemented in the optimization interface, i.e., scalarization456

and vectorization methods. The butyl acetate and the methanol production pro-457

cesses are introduced as more complex case studies to exploit the developed op-458

timization interface with the gradient-based scalarization approach in industrially459

relevant flowsheets.460

4.1. Debutanizer461

The deubutanizer column is is a common distillation unit in refineries, it is462

used as part of different processes to fractionate light products. For instance on a463

delayed coking unit the debutanizer column is part of the vapor recovery section464

where an improved separation between the gas and naphtha coming from the de-465

layed coking unit is achieved. The implemented Aspen simulation for this process466

is made available as the Supplementary file A. In Figure 4 the simulated column467

with the independent and dependent variables is presented. The composition of the468

feed stream is presented in Table 1. Some approximations used in the simulation469

for this composition are the following: (i) the butenes are approximated by pure 1-470

butene, (ii) fractions defined by range of boiling points are approximated by a single471

compound (hydrocarbon) with a boiling point in the middle of the range. For the472

C5 - 453.15 K fraction, n-heptane is being used, this alkane boils at 373.15 K. For473

the 453.15 K - 623.15 K fraction 1-pentadecane is used, as this alkane has a boiling474

point at 544.15 K.475

476

Two commonly used equations of state for this kind of systems are: (i) Peng-477

Robinson (PR) and (ii) Soave-Redlich-Kwong (SRK). In Ahmadi et al. (2015) the478

accuracy of a set of property methods for a debutanizer column regarding actual479

real measurements is investigated finding that PR is the most accurate method480

for this system. For the simulations the Radfrac method in Aspen Plus is chosen481
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in combination with the ideal equilibrium model. The latter differs from the rate482

based model as it does not take into account limitations due to heat-mass transfer483

and liquid-vapor diffusion. Additionally, the efficiencies for all trays are set equal to484

one. Other specifications needed for the simulations are introduced in Table 2. For485

this case study the reflux ratio (RR) and the distillate rate are to be used as the486

independent variables or controls in the optimization. The remaining states and an487

overview of the control variables are given in Table 3.488

4.2. Butyl acetate production489

A commercially viable chemical route to produce butyl acetate is based on the490

transesterification of methyl acetate (MeAC) using butanol (BuOH) (Tang et al.,491

2005). This category of reactions corresponds to an ester reacting with an alcohol in492

the presence of a catalyst. From this reaction a new couple ester-alcohol is produced493

due to the exchange of the organic groups present in the feed. In this case study the494

products are butyl acetate (BuAc) and methanol (MeOH) (Luyben et al., 2004).495

The exact chemical reaction is presented in Equation (5). This process has been496

proven to be economically feasible, because the MeAC, which is a low value side497

product from the production of poly-(vinyl)-alcohol (PVA), is converted into MeOH498

and high purity BuAc. The former product is recycled as feedstock for the PVA499

production (Steinigeweg and Gmehling, 2004) while the BuAc can be used in many500

applications and has a higher added value.501

CH3COOCH3 +CH3(CH2)3OH ⇌ CH3COO(CH2)3CH3 +CH3OH

MeAc + BuOH ↔ BuAc +MeOH

(5)

The complete production process requires multiple separation stages to achieve high502

purity outlet streams and recover most of the reactants. The main difficulty in this503

separation is the presence of two binary azeotropes in the mixture: (i) methyl ac-504

etate and methanol and (ii) butyl acetate and butanol (Luyben, 2011). Therefore505

multiple production approaches have been proposed. The traditional approach con-506

sist of a Continuous Stirred Tank Reactor (CSTR) followed by a set of separation507

columns, for which two techniques are commonly used: i.e., pressure swing dis-508

tillation and the use of an entrainer (Jimenez et al., 2002). Several alternatives509
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to the traditional process have been investigated. Gangadwala and Kienle (2007)510

evaluates an option based on a reactive distillation column and side reactor coupled511

with non-reactive distillation columns. However, this case study is based on the512

traditional scheme using the pressure swing technique for the separation stage.513

514

In Figure 5 the simulation flowsheet of the butyl acetate production process is pre-515

sented. This corresponds to the simulation developed by Verheyden (2014) which in516

turn is based on the flow diagram and operation conditions for the process presented517

by Luyben et al. (2004). These operational conditions are used in this work as a518

benchmark to check the achieved improvements via process optimization. In the519

process the input streams consisting of MeAc and BuOH are brought into a CSTR520

at the given conditions. Inside the reactor the transesterification reaction takes521

place, as a reversible reaction, catalyzed by a strong acid (Wang et al., 2008). The522

reaction kinetics are given according to Equation 6. Some thermodynamic proper-523

ties of this reaction are: (i) the equilibrium constant is close to the unit, therefore524

the dependence on the temperature is weak and (ii) the enthalpy of the reaction is525

low (Luyben et al., 2004). The outlet stream from the reactor, containing the four526

involved chemical substances is then sent to the first distillation column. From this527

the top product is rich in MeAc and MeOH while the bottom product is a mixture of528

mainly BuAc and BuOH. For the light product a second separation step is applied,529

in this case the top product is a mixture at almost the azeotropic MeAc-MeOH530

composition. This stream is recycled to the reactor. The bottom product of the531

second distillation column is almost pure methanol. Meanwhile the heavy product532

from the first distillation column is also subsequently separated, in this case into533

high purity BuAc as bottom product and a stream concentrated on BuOH, which534

is recycled to the reactor (Luyben et al., 2004).535

r = kFCMeAcCBuOH − kRCBuAcCMeOH

KF = 7 · 106e
− 71960/RT

KR = 9.467 · 106 exp
− 72670/RT

(6)

Due to the complexity of the mixtures, for which two binary azeotropes occur, an536

activity model is required to describe the vapor-liquid equilibrium present in the537
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system. For this (Verheyden, 2014) uses NRTL in the simulation. Table 4 contains a538

summary of the fixed process conditions and parameters to model the butyl acetate539

production process, the detailed information can be found in the Supplementary540

file B. Table 5 presents the complete list of variables and states used to formulate541

the MOO problem.542

4.3. Methanol production via methane tri-reforming543

Traditionally one of the more common commercial routes to produce methanol544

is the catalytic conversion of syngas (gas mixture of carbon monoxide CO and hy-545

drogen H2). There exist many carbon sources that can be used as feedstock to546

obtain syngas. An increasing attention goes to production routes exploiting the547

valorization of side streams, renewable materials and waste, since value is added548

to these material streams with an environmentally positive impact. Recently par-549

ticular attention has been focused to the methane tri-reforming, as an alternative550

approach for the conversion of CO2 in the flue stack gas without the CO2 pre-551

separation (Song and Pan, 2004). Thus producing methanol from methane and552

flue gas involves two reaction stages. First the tri-reforming, which is a complex553

thermo-chemical conversion involving several reactions to convert CH4, CO2, O2554

and H2O into syngas. Zhang et al. (2013) present the set of 9 reactions normally555

related to this conversion. Secondly, for the methanol production, the syngas in a556

proportion H2/CO around 2 is brought to reaction conditions to produce a mix-557

ture of MeOH and water. In Equation (7) the methanol production reactions are558

presented. The third reaction corresponds to the reversible water gas shift reaction559

(Navarro-Amoros et al., 2014).560

CO+ 2H2 → CH3OH (7a)

CO2 + 3H2 → CH3OH+H2O (7b)

CO + H2O ↔ CO2 +H2 (7c)

Figure 6 corresponds to the flowsheet modeled in Aspen Plus for this case study.561

This is the production scheme proposed and studied by Zhang et al. (2013). In the562

process, the two gas streams (flue gas and methane) are put together and preheated563

20

Postprint version of paper published in Computers & Chemical Engineering 2018, vol.109, p. 119-137.
The content is identical to the published paper, but without the final typesetting by the publisher.

Journal homepage: https://www.journals.elsevier.com/computers-and-chemical-engineering
Original file available at: https://www.sciencedirect.com/science/article/pii/S0098135417303198



to the reaction temperature before entering into the reactor. The tri-reforming is564

modeled in a Gibbs reactor which computes the composition at the outlet as the565

equilibrium composition, that minimizes the total Gibbs free energy over all the566

species, at the reactor conditions. The reactor output is then cooled down and567

compressed. After achieving the desired reaction pressure for the methanol produc-568

tion, the temperature is adjusted, cooling or heating is required depending on the569

desired reaction temperature. As suggested by Zhang et al. (2013) the methanol570

reactor is modeled as an equilibrium reactor considering only reactions (7a) and571

(7b), since in these conditions the the water gas shift reaction is linearly depen-572

dent and its conversion is negligible. As part of preliminary studies the CO and573

CO2 conversion of the modeled methanol reactor were validated with respect to the574

values reported by Navarro-Amoros et al. (2014). This validation showed adequate575

results in the range between 5 to 30 MPa and from 480 to 570 K. After reaction, the576

gaseous product is expanded and cooled down to separate most of the methanol and577

water from non-condensable gases. The gas separated in the flash drum contains578

high levels of unreacted syngas due to the low conversion in the methanol reactor.579

Therefore this stream is recirculated to the reactor. A purge is taken from the580

recycle stream to avoid accumulation of inert gases (mainly N2) in the loop. The581

recycle stream has to be compressed to enter the reactor again. The liquid product582

from the flash separation is then expanded again to reduce even further the amount583

of non-condensable gases and then the remaining liquid is distilled to adjust the584

quality of the methanol product to be ≥99,5%.585

586

As suggested by Zhang et al. (2013), Peng Robinson equation of state was the587

thermodynamic model implemented for this flowsheet simulation. The optimal588

conditions reported by Zhang et al. (2013) were reproduced to serve as reference589

and to evaluate the advantages of the results obtained via MOO of the process.590

Following the same approach presented by Navarro-Amoros et al. (2014) the kinet-591

ics of the methanol reactions were considered only to determine the reactor volume592

required to achieve the equilibrium concentrations predicted in Aspen Plus. The593

reader can find the kinetic models and parameters in Navarro-Amoros et al. (2014).594

Table 6 contains a summary of fixed process conditions and parameters to model595
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the methanol production process, the detailed information can be found in the Sup-596

plementary file C. The independent variables were selected based on what previous597

studies have evaluated about this process (Zhang et al. (2013); Navarro-Amoros598

et al. (2014); Luyben (2010)), and what are considered to be the most impor-599

tant operational parameters for this process. Table 7 presents the complete list of600

independent variables and states involved in the formulation of the MOO problem.601

5. Simulation results602

Section 5.1 discusses the results for the debutanizer while the results for the603

butyl acetate and methanol production processes are presented in sections 5.2 and604

5.3 respectively.605

5.1. Debutanizer606

As this case study serves to illustrate and compare the results obtained by607

applying the two possible MOO approaches, two different MOO optimization for-608

mulations are evaluated. The first problem is based on objective J1, which has no609

physical interpretation but was chosen to highlight the advantages and main issues610

of each approach. This function was formulated to exhibit two optimal solutions in611

the feasible space, and it is given according to:612

J1 =− (p1u2
1

p2x2
3

+ p3x4 − p4x
2
1 − p5x2 − p6x3 − ep3u1u2)

p1 = 2.266 · 10−3 p2 = 185.185

p3 = 7.854 · 10−4 p4 = 1.712 · 10−5

p5 = −1.626 · 10−5 p6 = 555.555

(8)

In contrast the second MOO problem is based on a realistic profit function for the613

debutanizer column (J2). This is based on the formulation and the values presented614

by White (2012). This function considers the income as result of the price for both615

products which are affected by the quality. Different from the case evaluated in the616

reference, in this case a step increase in the price for the top product is applied617

through a logistic function, while a linear increase on the price is formulated for618

the bottom product. The costs correspond to the energy consumption and the raw619

material. The total is expressed in relative terms, based on the mass inlet flow.620
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This function is formulated in Equation 9. The logistic function that determines621

the price for the distillate product is defined to establish two conditions, a low622

quality product (> 4% C5) and a high quality product (< 4% C5).623

J2 =− (income− costs)/x8 [$/kg]

income =u2

(

a1
1 + e(−a2(x3−a3))

+ a4

)

+ x4(a5(x5 + x6 + x7 − a6) + a7)

costs =a8x7 + a9(x1 + a10x2)

a1 = 0.240 a4 = 0.480 a7 = 0.740 a10 = 0.500

a2 = −500 a5 = 8.0 a8 = 0.740

a3 = 0.040 a6 = 0.017 a9 = 0.0140

(9)

Two additional objective functions are specified to complete the two MOO formula-624

tions. The aim is to investigate conflicting objectives that are normally considered625

as accounted by the profit function. Constructing the Pareto front for this problem626

allows a sensitivity analysis on the tradeoffs between the different objectives to en-627

hance process understanding and to made a more thorough decision on the chosen628

optimal operational conditions. These functions are the total energy consumption629

J3 and the quality of the distillate product J4. The former is defined as the sum630

of the condenser and reboiler duties, while the quality of the distillate product is631

established by the content of n-Pentane (nC5) in the stream. Equation 10 denotes632

objective functions J3 and J4. The constraints for this problem are the minimum633

quality for the bottom product and the controls boundaries, given in Equation 11.634

J3 =
2

∑

i=1

|xi| [MW ]

J4 = x3 [wt.frac.]

(10)

635

g(x) : x5 − 0.01 6 0

5 < u1 < 25

9000 < u2 < 25000

(11)
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5.1.1. Single objective optimization636

Here only the illustrative objective function is considered in order to evaluate637

and compare performance aspects of the methods applied. In Figures 7 and 8 the638

obtained results are presented. These denote contour graphs where the axes corre-639

spond to the control variables, distillate rate (u2) against reflux ratio (u1), and the640

colored contour lines correspond to different value levels for the objective function.641

On these graphs the black dashed line represents the quality constraint (g(x)) when642

it is exactly equal to zero, which along with the contour lines were drawn from a643

sensitivity analysis. In the figures the red points correspond to the results at each644

iteration of the NLP solver while the blue marks are the (local) optimal points in645

each case. Two cases are presented for each approach. In the case of the optimiza-646

tion accessing the ESO (Figures 7a and 7b), the difference is the convergence to two647

distinct optimum solutions. Since the direction of convergence is determined by the648

initial guesses for the controls, the effect of two different initial values can be seen649

in the figures. For the case in Figure 7a the best known minimum is found with the650

initial guess u0 as [20, 11000] while for Figure 7b the local minimum is obtained for651

u0 is [20, 11500]. This shows the need for applying globalization procedures like the652

multiple starting point search when using gradient based methods.653

654

The black box optimization results for different parameter values of the gamul-655

tiobj function, are presented in Figures 8a and 8b. The former corresponds to656

the case when the problem is solved with the default values, the problem does not657

converge to a solution and remains iterating in the neighborhood of the optimal so-658

lution. Figure 8a is the result if the iteration is forced to stop. In addition to the no659

convergence problem, a limited accuracy for satisfying the imposed constraint is ob-660

served. As can be seen in Figure 8 most of the results are in the neighborhood of the661

constraint line however only a few of them are exactly on the line or above it which662

are the conditions for fulfilling the constraint g(x) ≤ 0. This means that at least663

under the default parameters, the genetic algorithm has limitations for convergence664

and satisfaction of the inequality constraint. In order to overcome these limitations665

the effect of modifying some parameters has been investigated. Population size,666

function tolerance and maximum stall generations have been adapted. In general667
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the successful strategy has been to reduce population size, imposing milder stopping668

criteria and offering lower tolerance to validate constraint satisfaction. One of the669

closest solutions obtained from this evaluation is presented in Figure 8b. The chosen670

parameters to produce this solution are: population size = 10, function tolerance671

= 1 · 10−4, maximum stall generations = 30 and constraint tolerance = 5 · 10−4.672

A clear improvement is observed regarding the constraint satisfaction, however the673

result obtained is far from the optimal solution.674

675

In Table 9 the numerical results are presented. Only the results for the cases676

where the best known optimum is obtained are reported. In the case of black box677

optimization the reported values corresponds to the solution presented in Figure678

8b. Regarding the optimization accessing the ESO two sets of results are presented.679

These correspond to using the two methods implemented for transferring the gra-680

dient information to IPOPT. As it can be seen the difference on the results is not681

significant, being lower than 0.1% for the objective function. In terms of computa-682

tional time, as expected the time required by the gradient-based approach is lower683

than the black box optimization, this should correspond with fewer evaluations re-684

quired of the objective function and therefore lower time spent on the solution of685

the flowsheet simulation.686

5.1.2. Multiobjective optimization687

First, the bi-objective problem, using the illustrative function and the total en-688

ergy demand (J1 and J3), is solved. The results for the optimization accessing689

the ESO, and the black box optimization are depicted in Figure 9. In both cases690

the optimization problem was solved defining a feasible space that guarantees the691

presence of the two known optimal solutions on the illustrative function. For the692

convergence of the black box optimization the quality constraint was imposed as693

design specification in the simulation. This guarantees fulfilling the constraint con-694

dition while simplifies the optimization problem so the NSGA-II method has to695

solve a constraint-free problem. Thus the limitation of the genetic algorithm to696

cope with constraints is surpassed, however this impose an extra limitation because697

the design specifications in Aspen Plus can be only equality conditions. In Aspen698

Plus a design specification is an additional equation that has to be solve in the699
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system. Additionally, some parameters of the gamultiobj function are adjusted dif-700

ferent from the default values. This is the function tolerance = 1 · 10−2, maximum701

stall generations = 10, and Pareto fraction = 0.3. The last parameter is used to702

control the elitism of the genetic algorithm and in this case is adjusted to generate703

a Pareto front with the same number of points produced by the ESO approach, so704

the results are comparable.705

706

In Figure 9 the results from both methods for the Pareto front are plotted together707

with the curve that describes the border of the feasible space for the problem. This708

is obtained via sensitivity analysis and contains exact solutions. From these results709

some aspects are highlighted. First, a high accuracy is observed on the results from710

both optimization methods, but with limited reproducibility of the Pareto front. In711

the case of the ESO approach non-optimal Pareto solutions are present, while for712

the black box optimization the optimal points do not represent a uniform spread713

over the Parteo front. The non-optimal Pareto solutions are solutions at the border714

of the feasible region, that are dominated by other point in the Pareto front. When715

this is verified, it can be observed that only the Pareto front obtained via black box716

optimization meets the condition for all its points. The Pareto front obtained from717

the ESO approach contains a sub-set of 4 solutions which are non-optimal Pareto718

points, because there are other solutions that for the same values of J1 require lower719

energy J3 . Therefore, the solution for this bi-objective problem is a discontinuous720

Pareto front due to the presence of two minimun points for one of the objective721

functions. Regarding the computational cost, Table 10 presents the time required722

for convergence in each case. The fastest performance is obtained again for the723

gradient-based approach.724

725

Finally the MOO with three objectives is formulated, i.e., illustrative function J1,726

total energy demanded J3 and distillate quality J4 are considered. In this case the727

feasible space is defined to be only in the region of the best known minimum for the728

illustrative function which is the desired result. In Figure 10 the solutions generated729

by black box optimization and accessing the ESO are depicted. The black box opti-730

mization approach produces a solution that is restricted to a line, this is presented731
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in the Figure with small circles(o). It is interesting to see how this solution links732

the three anchor points, however it is only a subset of the Pareto points generated733

by the ESO approach.734

735

To efficiently solve MOO problems via ESO approach some adjustment on the736

options for the IPOPT solver can be applied. This to guarantee convergence of the737

solver and increase computational performance using milder termination conditions.738

In Table 12, the used solver parameters are reported for the three case studies. Fi-739

nally, the performance of the two optimization approaches is illustrated in Table740

10. These correspond to the solutions depicted in Figure 10. The high efficiency741

of the black box optimization should be noted. However, it should be considered742

that in this case the result is limited to just one part of the Pareto front generated743

via the ESO approach. Therefore it offers a very limited amount of information. A744

similar behavior has been discussed by Logist et al. (2013). Note that in general745

for all results the performance of the gradient-based approach performs worse with746

the embedded function than with the simple states linearization.747

748

In contrast with the previous results, that serve only to evaluate the performance749

of the methods, the MOO problem formulated based on the profit function J2, the750

energy consumption J3 and the distillate quality J4 serves to critically evaluate op-751

timal operational conditions for the debutanizer column. The results via ESO and752

black box approach corresponding to this MOO problem are presented in Figure753

11. In this case it was decided to impose the problem’s inequality constraint ex-754

plicitly in the optimization problem formulation for the black box approach. Thus755

both approaches are implemented in the same way in order to be compared. As756

expected since no design specification are set in Aspen Plus, the black box opti-757

mization produces a set of Pareto solutions (black circles (o)) that is spread over758

the Pareto front. However the solution via the ESO approach remains more infor-759

mative because of the even distribution of the Pareto points. Additionally, many760

of the optimal solutions obtained via black box optimization are out of the region761

between individual minima, some of the solutions present small violations of the762

quality constraint and the three anchor points are not part of the solution. Re-763
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garding computational performance, the results presented in Figure 11 comprise 45764

points in both cases and its convergence required 2.61 and 2.65 minutes for ESO765

and black box approach respectively. In this case both optimization approaches766

offer equivalent computational performance, therefore the ESO approach should be767

preferred because of the better quality of the results.768

769

From the results in Figure 11 the conflictive character of the three objectives is770

clear. Even though the profit function (Equation 9) depends on both terms, i.e.,771

distillate quality and energy consumption, the behavior of none of them is fully772

correlated to the profit function. From these results it is interesting to see how the773

maximum profit results from having a low quality distillate(> 4% C5), these can774

be attributed to the fact that for those conditions higher quality is achieved for775

the bottom product, which influences the profit function more because of its linear776

increase on price and the higher productivity. Additionally, this result is achieved777

at a lower energy demand than if high quality were desired for both top and bot-778

tom products. In terms of sensitivity analysis or the opportunity cost the Pareto779

front presents what would be interesting regions for a decision maker. The region780

of optimal solutions close to the maximum profit shows how lowering the profit on781

small proportions can generate significant reductions on energy demand and im-782

provements on the quality of the product. An interesting tradeoff for the decision783

maker would be to evaluate the solutions with a high quality distillate(< 4% C5) to784

see how the profit and energy demand are affected. This is for instance a distillate785

with 3.9 % C5 can be obtained with 11.4 MW less energy demanded and only a786

reduction of 4.2 % in the profit for the operation. The later profit reduction is due787

to the reduction on the quality of the bottom product. An alternative approach788

to reflect the value of the information provided on the Pareto front is the ease on789

evaluating the opportunity cost for certain decisions, e.g., if the energy provided to790

the process is reduced or limited the impact can be rapidly determined and new791

operational conditions established to guarantee the best possible outcome.792

5.2. Butyl acetate production793

Two different MOO problems were evaluated for this case study. As common794

objective functions, the total energy demanded (J1) and the recycle flow (J2) in the795
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process were minimized. The benefit obtained by any improvement in the former796

objective is clear while for the latter, an indirect improvement of the process is797

expected. The reduction of inventories circulating in the process, which directly798

implies the reduction in size of equipments, pipelines and accessories (e.g., valves799

and fittings) is one of these positive effects. The first MOO optimization problem800

is completed with the quality of the methanol produced as by-product as third ob-801

jective function (J3). For the original process a benchmark of purity > 92.8% is802

specified. This quality specification is traditionally sufficient since the product is803

recycled to the PVA production. However, the tradeoff between a higher quality804

of this product and the energy demand might result in a more valuable outcome.805

The second MOO problem formulated for this case study replaces the quality ob-806

jective function by a profit-cost function (J4). As in the first case study including807

this objective results in a more realistic application of the proposed interface on a808

practical-industrially relevant case.809

810

The first objective function corresponding to energy consumption is given in Equa-811

tion (12a). The total recycle flow is expressed as the summation of the two distillate812

streams from columns C2 and C3 which are totally recycled in the process. Equa-813

tion (12b) denotes this objective function. For the quality of the methanol product814

stream the formulation is given in Equation (12c), and it corresponds to the maxi-815

mization of the molar fraction of methanol in the product stream from column C2.816

Finally the profit-cost function is presented in Equation (13). To determine the817

profit over the process operation, the sales of the two products i.e., butyl acetate818

and methanol are considered as income. A fixed price is considered for the butyl819

acetate, since it is accepted only at the quality standards. In contrast methanol has820

only a lower quality bound and a higher purity is technically feasible. Therefore821

the value of any improvement in the methanol quality is weighted through a price822

function. Similar to the profit function for the debutanizer, a logistic function was823

used to establish price levels depending on the product quality. In this case the824

methanol was evaluated at three different quality conditions, a low quality prod-825

uct (> 92.8% CH3OH), a medium quality (> 98.5% CH3OH) and a high quality826

product (> 99.5% CH3OH). The operational costs result from the needed energy827
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and the feedstock. Value is only assigned to the butanol stream, because as ex-828

plained before the input stream containing methyl acetate is a side stream from829

the PVA process. In Equation (14) the mathematical formulation of the complete830

optimization problem is presented.831

J1 =
15
∑

i=1

|xi| [MW ] (12a)

J2 = x18 + x19 [kmol/s] (12b)

J3 = −x16 [mole.frac.] (12c)

832

J4 =− (income− costs) [$/h]

income =a1x21 +

(

a2
1 + e(−a3(x16−a4))

+
a5

1 + e(−a6(x16−a7))
+ a8

)

x20

costs =a9x22 + 3600× a10(−x2 − x3 − x6 − x11 − x13)+

3600× a11(x8 + x14 + x15) + a11(x1 + x4 + x5 + x7 + x9 + x10 + x12)

a1 = 0.9000 a4 = 0.9935 a7 = 0.9790 a10 = 1.0× 10−10

a2 = 0.30 a5 = 0.20 a8 = 0.20 a11 = 9.0× 10−5

a3 = 6000 a6 = 600 a9 = 0.60 a12 = 8.98× 10−9

(13)

833

min
u∈R6

[J1, J2, J3]

s.t.: g1(x) : 0.928− x16 6 0

g2(x) : 0.995− x17 6 0

0.24 < u1 < 0.4 0.55 < u2 < 0.62

0.75 < u3 < 1.2 0.5 < u4 < 0.7

1.87 < u5 < 2.5 0.65 < u6 < 0.75

(14)

In Figure 12 the optimal results are depicted for both optimization problems.834

Figure 12a corresponds to the methanol quality-based Pareto front, while Figure835

12b presents the results for the profit-based MOO optimization. In both cases the836

solution is presented with reference to the original process conditions (+). From837

Figure 12 the optimization potential of the process becomes clear. Hence, these838
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results can be studied to evaluate the advantages that each individual optimal con-839

dition offers and the possible tradeoffs between them. The optimal solutions for the840

four objectives are presented in Table 11, together with the reference condition of841

the original process (Luyben, 2011). The optimal solution for the energy demand842

(J1) results in a reduction of 2.214 [MW] which is a reduction of 9.94%. If the the843

recycle flows are minimized (J2), a total reduction of 0.0239 [kmol/s] is achieved,844

this is equivalent to 29.2% less than the original total recycle flow. From these indi-845

vidual minima it is interesting to see that contrary to what can be expected, having846

the maximum reflux ratio in the columns does not necessary imply the highest total847

energy demand. This is explained by the fact that by increasing the reflux ratio, a848

higher purity is obtained on the top products which in turn are recycled to the reac-849

tor section with lower contents of the product substances. This means shifting the850

reaction equilibrium towards the products which in turn drives to higher conversion851

and then at the end less material have to be processed by the distillation train. For852

this specific result, the energy demand is even lower than in the original process853

(21.419 vs. 22.284 [MW]). Furthermore, the corresponding distillate to feed ratios854

in each column can be seen as the adjusted variable to meet the quality constraints.855

856

In the case of maximizing the methanol quality (J3) the molar concentration of857

methanol in the product stream (bottom of the C2-column) increases from the858

benchmark value, 92.8% to 99.6%. This improvement brings the product quality859

closer to the commercial grade for methanol. To achieve this optimal condition, the860

controls are varied to a new condition that favors the purification of methanol. As861

it can be seen in Table 11, it is the optimal condition with the highest distillate to862

feed ratio (u4) and a relatively low reflux ratio (u3) in column C2. This explains863

the high purity on the bottom stream (methanol), but it also implies larger flow864

and lower quality for the distillate, which goes against the conditions identified for865

low energy demand. In fact, this optimal condition implies the highest total energy866

demand and total recycle flow from the possible solutions. Finally the conditions867

for maximum profit (J4) are similar to those achieved for maximum methanol qual-868

ity. However, the methanol quality is slightly lower, being sufficient to achieve the869

maximum value of the logistic price function. The consumed energy is significantly870
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less not only due to the reduction of the methanol quality but because of the explicit871

inclusion of the energy cost in the objective function. The optimal solution for the872

profit function is in fact a specific tradeoff point between quality and energy. This873

can be seen when comparing the two Pareto fronts in Figure 12. The individual874

maximum for the profit function corresponds to a Pareto point in the valley region875

close to the optimal methanol quality in Figure 12a. The optimal values for the876

independent variables show that one of the reasons for maximum profit is a lower877

distillate to feed ratio (u4) in column C2 than for the optimal quality, being this878

a reason as well for the lower energy demand compare to the maximum methanol879

quality.880

881

Regarding different tradeoff solutions for the butyl acetate process, in Figure 12882

the obtained Pareto fronts present steep regions between, on the one hand, the en-883

ergy and recycle anchor points and on the other hand, the quality of methanol or the884

profit. In case of Figure 12a, it is only after high quality values are reached (mole885

fraction> 0.985) that a pronounced change on direction is seen, making any further886

increase on quality highly expensive in terms of energy demand, with a fast increase887

on the required recycle and therefore with a less significant gain on the profit. This888

can be considered as a favorable property in case the desired tradeoff between these889

objectives is to have a significant increase in methanol purity and therefore profit890

but keeping energy demand and recycle flow below the original process values. One891

possible solution corresponds to the optimal solution having 99.4mole% of methanol892

purity and the minimum energy demand. Thus for this solution the energy demand893

would be 21.1925 [MW] and the recycle flow 0.066 [kmol/s]. This solution repre-894

sents a tradeoff where 97% of the potential improvement on quality is achieved while895

49% and 66% of their potentials reductions are achieved for energy demand and re-896

cycle flow. The maximum potential of improvement for each objective function897

corresponds to pass from the original process condition to each individual optimal898

solution. Other optimal solutions can be chosen depending on the decision maker’s899

preferences or criteria. From Figure 12b it is interesting to see that this Pareto900

front has a combination of concave and convex regions, which are attributed manly901

to the steps on the price function for methanol. Additionally the region towards902
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the border of minimum energy in the Pareto front shows a very particular behavior.903

Since the improvement on methanol quality is restricted due to the condition of low904

energy demand, the profit is kept relatively low till the point when the limitation is905

overcome and a very sharp increase in profit is produce due to the sudden increase906

in methanol quality.907

908

Regarding convergence of the series of parametric SOOPs (the tradeoff points of in-909

terest) issues occurred when the NBI method was applied. It is considered that the910

noise introduced by the convergence error tolerance in Aspen Plus affects the solu-911

tion of the parametric subproblems more than the original single objective problems,912

this convergence issue is discussed as well by Jang et al. (2005). Therefore, since913

the NBI method transforms the three objective functions into equality constraints914

to formulate the parametric single objectives, the problem becomes more complex915

and sensitive to be affected by noise. Hence the NNC method is used as alterna-916

tive. Since this method is based on the same principle applied by the ε-constraint917

method, the resulting parametric formulation does not depend on modifying and918

combining the objective functions and therefore is assumed to be less prone to the919

same issues experienced with NBI.920

921

In order to prevent or reduce the possible negative effect of noise propagation from922

the inexact convergence of Aspen Plus to the NLP solver some aspects can be con-923

sidered when modeling the process, formulating and solving the NLP problem. The924

equation oriented mode of Aspen Plus offers several parameters to configure its925

internal NLP solver, e.g., method applied, tolerances, number of iterations. These926

features can be adjusted to reduce as much as possible the residual value after927

convergence (R) and therefore to have more accurate solutions for the states and928

Jacobian. However imposing tight conditions (e.g., very low tolerances) can turn929

the model unstable reducing convergence robustness and making the optimization930

parsimonious. In case the process model contains non supported units for analytical931

derivation in the EO mode, the perturbation size for the numerical derivation that932

is applied in Aspen Plus, can be adjusted to find and equilibrium between error in933

the approximation and convergence noise. Navarro-Amoros et al. (2014) discusses934
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how to reduce the noise amplification due to recycles in the flowsheet. The system935

can be modeled with open recycles so the simulator does not have to converge for936

those streams. This task is transferred to the external NLP solver. Even though937

the optimization problem becomes larger (i.e., more variables and explicit equality938

constraints) the use of the explicit solver makes the solution more robust, less prone939

to noise and the computational time was found to be similar. Finally, as observed940

in this contribution for MOO the NNC method should be preferred over the NBI. In941

general, methods that do not require adding explicit nonlinear equality constraints942

should be preferred.943

944

Through preliminary evaluations it was found that higher convergence robustness945

can be given to the model in Aspen Plus if additional constraints are set to the946

optimization problem in order to avoid unfeasible conditions for the solver in Aspen947

Plus. Specifically for the butyl acetate production process it was found that for948

the region with high methanol quality and low energy the NLP solver pushes the949

independent variables of the first distillation column (C1 reflux u1 and distillate to950

feed u2 ratios) to values that result in no liquid and/or vapor flow at certain stages951

in the column. Therefore resulting in major errors for the convergence in Aspen.952

Based on the preliminary results it was concluded that since the mass balances are953

not explicitly constraints for the optimization solver, and since in the original prob-954

lem formulation there exist no constraint over any condition of the column C1, the955

solver tries to set the conditions of the tower towards a perfect separation of the956

mixtures MeAc/MeOH in the top and BuAc/BuOH in the bottom product. This957

condition drives the simulation very close to an infeasible region for convergence. To958

reduce this effect it was decided to impose two additional constraints on a minimum959

concentration (traces) of these products on the respective streams so the conditions960

of the column are kept in a feasible region.961

962

5.3. Methanol production963

For this process three objective functions were optimized, i.e., the carbon effi-964

ciency, total energy consumption and the profit. First, since the main purpose of965

this process is to treat the CO2 present on the flue gas from combustion processes966
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(e.g. from electric power plants or thermal installations) and to produce an added967

value product, the carbon efficiency is critical to determine the extent of effective-968

ness of the process. The carbon efficiency is formulated as the ratio between carbon969

atoms that are converted to the added value product (i.e. CH3OH) and the carbon970

atoms from the carbon source (i.e. CO2 and CH4). In Equation (15a) this objective971

is formulated as the ratio between the molar flow of these substances in the inlet972

streams and the top product of the distillation column. Other methanol molecules973

present in side streams (e.g. purge) as well as the unreacted material are considered974

losses. The second objective function evaluates the total energy demand per kmol975

of methanol produced, as established in Equation (15b).976

977

Finally, the third objective function is a profit-cost function. This objective con-978

siders the income based on the methanol sales and the operational cost due to979

feedstock and the energy consumed. Additionally in this case the annualized capi-980

tal cost (ann.CC) of the main units is considered since the operational conditions981

will determine the size and design requirements of these units. This objective is982

formulated according to Equation (16). Quality is not considered in this case as a983

parameter to define the product selling price. The product price is fixed based on its984

compliance with the quality specification, as it is established in the first constraint985

(Equation 17). The feedstock and energy costs are presented in Table 8, these val-986

ues are taken from Zhang et al. (2013). The ann.CC is determined from the total987

capital cost (Total.CC) as described by Navarro-Amoros et al. (2014) considering a988

time horizon (n) of 10 years and an interest rate per year (i) of 8 %. To evaluate989

the capital cost only a subset of the units are considered. They are: compressors,990

methanol reactor and flash vessels. These units are considered as main contributors991

to the capital cost and these will be directly affected by the operational conditions992

evaluated in the optimization problem. The tri-reforming reactor is considered as993

well a main contribution to the capital cost of the process, however in this case994

a fixed capital cost is assumed since, contrary to the methanol reactor, the favor-995

able conditions for kinetics and equilibrium of the tri-reforming process are both996

achieved at high temperatures. Moreover since it is a very fast reaction in the997

range of temperatures to be evaluated it can be assumed that the most favorable998
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conditions are governed by the reaction equilibrium. The boundaries established999

for the independent variables and the constraints on the optimization problem are1000

formulated in Equation 17. The first three constraints guarantee a correct set of1001

pressures in the process, with successively lower pressure for the two separators and1002

the distillation column. The other two constraints set quality conditions for the1003

products, i.e, methanol and water (diluted methanol).1004

J1 = −

(

x2

u1 + x1

)

(15a)

J2 =

∑19
i=5 |xi|

x2/3600
[MJ/kmol] (15b)

1005

J3 =−
(

income− costs−
ann.cc

8000

)

[$/h]

income =a1x2

costs =a2u1 + 3600× a3(−x11 − x12 − x14 − x15 − x16 − x18)+

3600× a4(x5 + x7 + x8 + x9 + x19) + a5(x6 + x17 + x13)

ann.CC =(Total.CC)
i ∗ (1 + i)n

(1 + i)n − 1
; i = 0.08 n = 10

a1 = 0.80 a3 = 1× 10−10 a5 = 8.98× 10−9

a2 = 0.50 a4 = 9× 10−5

(16)

1006

min
u∈R6

[J1, J2, J3]

s.t.: g1(u) : 0 < u6 − u9 6 70 g2(u) : 0 < u9 − u10 6 25

g3(u) : u13 − u4 = 0 g4(x) : 0.993− x3 6 0 g5(x) : x4 − 0.85 6 0

200 < u1 < 800 1 < u2 < 5 400 < u3 < 980

50 < u4, u13 < 300 200 < u5 < 300 25 < u6 < 40

25 < u7 < 50 0.05 < u8 < 0.3 9 < u9 < 30

9 < u10 < 30 1.5 < u11 < 3 0.95 < u12 < 0.988

(17)

In Figure 13 the optimization results are depicted. In this case the reference1007

conditions (+) are the optimal values reported for the same process by Zhang et al.1008

(2013). As in the previous case studies the results of the MOO immediately point1009
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out the potential process improvement compare to reference conditions, and there-1010

fore the significant added value of applying this optimization strategy. The numer-1011

ical optimal solutions for the three objectives are presented in Table 13, together1012

with the reference condition of the original process (Zhang et al., 2013). Regarding1013

individual optimal solutions, the process shows a theoretical high potential to signif-1014

icantly improve the carbon efficiency obtained with the reference conditions. With1015

a carbon efficiency of 96 %, this process has a enormous environmental potential.1016

However apart from the optimal conditions in the methanol reactor and the process1017

loop, the most significant contribution to achieve the high carbon efficiency is the1018

use of an almost stoichiometric amount of methane for the tri-reforming. From a1019

practical point of view these conditions can be undesired because they demand a1020

very accurate control of the reactor conditions to guarantee the highest possible1021

conversion of CO2. In practice an small excess of methane could be fed into the1022

reactor to guarantee the desired conversion. The profit (J3) was maximized, reach-1023

ing the highest value of 4733.5 [✩/h] of economical benefit. However it has to be1024

considered that a real value should be significantly lower due to the capital costs1025

that were not considered because of their approximated constant character. Finally1026

regarding energy, the minimum energy demand required by the process (J2) is cal-1027

culated to be 994.9 [MJ/kmol], which means a reduction of 26.6 % (360 [MJ/kmol]).1028

1029

Similarly to what was found for the butyl acetate case, the convergence for this1030

MOOP was obtained using NNC as scalarization method and two additional con-1031

straints were added to guarantee robustness for the model convergence in Aspen1032

Plus. These constraints do not have a physical interpretation but help to avoid1033

conditions that result on simulation errors in Aspen Plus. In this case, through1034

preliminary studies, the distillation column was found as the most prone unit to1035

generate errors. Therefore constraints were added to guarantee a minimum concen-1036

tration of the trace components in both distillate and bottom products.1037

1038

Finally, the detailed inspection of the Pareto front in Figure 13 shows that the1039

system has a strong convex behavior on the Pareto front. In turn there exist1040

strongly advantageous solutions that a decision maker could choose. Similar to1041
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the profit-based MOO optimization for the butyl acetate case, the Pareto front1042

shows a particular shape on the side of tradeoff points with minimum energy de-1043

mand. Since these solutions are limited by a low energy consumption, they offer a1044

moderate improvement on the carbon efficiency compare to the one obtained at the1045

opposite side of the Pareto front. Therefore, starting from the points of minimum1046

energy demand and maximum profit, there is a preferential path for rapidly increase1047

on the carbon efficiency till a value around 93 % is achieved. This implies that there1048

exist a region with tradeoff solutions that offer a significant improvement on the1049

carbon efficiency keeping a relatively low energy demand and a high profit. One1050

posible optimal solution in this region would be the one corresponding to 93.17 %1051

carbon eficiency, 1033.8 [MJ/kmol] required energy and a profit estimated of 4024.21052

[✩/h]. This solution is significantly better than the reference conditions regarding1053

the three objectives simultaneously, and it represents an improvement of 85.6, 89.21054

and 63.8 % of the maximum potential improvement for each objective.1055

1056

Regarding computational performance of the latter case studies, in Table 14 the1057

computational time for each case study applying the developed gradient-based op-1058

timization interface is reported. All problems were solved with a laptop computer1059

featuring an Intel rCoreTM i7-4500U at 2.40 GHz and 8 GB of RAM. The table1060

shows the problem scale in each case. The scale is given by the model’s size (i.e.,1061

in Aspen Plus the number of equations/dependent variables and number of inde-1062

pendent variables), and the scale of the optimization problem which considers the1063

number of degrees of freedom (i.e., a sub set of the independent variables in Aspen1064

Plus) and the number of constraints. The number of Pareto points produced in the1065

solution is taken into account to determine the average time spent per optimal point1066

as an indicator of the computational performance. Even though the scale of the1067

methanol case study is smaller in terms of number of equations in the simulation,1068

the computational performance is slower. With 86.4 seconds per Pareto point it1069

takes around three times longer than the butyl acetate case. This difference can1070

be attributed to the model and optimization complexity. Even though the solution1071

of the methanol case requires the convergence of less equations, it takes longer to1072

the EO solver to find a solution. This is attributed to the system complexity which1073
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includes two reactors, one of which depends on the total Gibbs free energy mini-1074

mization algorithm of Aspen Plus. Additionally, the higher number of degrees of1075

freedom results in a larger optimization problem, possibly with a higher compu-1076

tational effort if the constraints are highly nonlinear. Evidence of these elements1077

can be found in the results reported by IPOPT regarding the time spent evaluating1078

the objective functions and constraints (where the time required by Aspen Plus to1079

converge is the major contributor) and the number of evaluations of these functions.1080

While for the butyl acetate case the average time per evaluation is the 1.3 s, for1081

the methanol case is 1.9 s. This clearly demonstrates the higher complexity for1082

simulating the latter case study. Moreover, finding one Pareto point for the butyl1083

acetate case required in average 13 evaluations while for the methanol case 37 were1084

needed in average. This corresponding to the higher scale of the latter optimization1085

problem.1086

1087

These results demonstrate the key role that the model complexity in Aspen Plus1088

plays for the computational performance of the optimization interface. Therefore1089

it is difficult to establish the limiting scale for which the solution of the optimiza-1090

tion problems becomes infeasible using the developed interface. Even for very large1091

optimization problems with many degrees of freedom and constraints, results in1092

acceptable computational time can be achieved if the model complexity in Aspen1093

Plus is sufficiently low. This is possible due to the robustness of the CasADi -1094

IPOPT framework. As an illustration of the computational efficiency of CasADi,1095

Vallerio et al. (2016) have reported convergence time around 19 minutes for large1096

scale dynamic optimization problems with 30 states 52,272 variables and 123,5521097

constraints.1098

6. Conclusion1099

Aspen and CasADi have been selected as the tools for computer-aided engi-1100

neering in order to enable MOO in a flowsheet simulator. Two interfaces have been1101

successfully constructed. The first one corresponds to approaches for black box opti-1102

mization while the second one accesses the ESO. The former, based on vectorization1103

methods, corresponds with the scheme that has been most commonly exploited in1104
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the current state-of-art. It has been implemented to generate reference results for1105

the first case study. The latter interface, based on scalarization methods is the main1106

contribution of this paper. In addition the specific challenges of interfacing process1107

simulators with optimization tools have been highlighted. The presented novel im-1108

plementation allows gradient-based MOO of processes simulated with Aspen Plus,1109

benefiting from the gradient information produced by the Aspen’s EO engine.1110

1111

Exploiting the gradient-based optimization results in a higher accuracy of the Pareto1112

front and better capabilities to tackle constrained problems. Using the debutanizer1113

column as a very intuitive case study with an illustrative objective function and a1114

more realistic profit function, it has been possible to demonstrate the higher per-1115

formance of this optimization approach. On the one hand, it demands, in the worse1116

case similar computational time to the black box optimization, since fewer evalu-1117

ations of the objective functions are required. And on the other hand it produces1118

always more accurate and informative optimal solutions that serve to approximate1119

the complete Pareto front. In terms of limitations of the developed optimization1120

interface, these can be subdivided into two groups. On the one hand, some aspects1121

are inherent to the MOO methods applied. This is illustrated in the debutanizer1122

case study with the possibility of obtaining non-global optimal solutions and the1123

tendency to produce non-optimal Pareto solutions. On the other hand, related di-1124

rectly to the architecture of the interface, the fact that the optimization accessing1125

the ESO relies on a bi-level optimization scheme, where the system of flowsheet1126

model equations is solved independently while in the upper level the MOO problem1127

is solved based on those results, introduces uncertainty into the problem. Even1128

though this limitation was surpassed in this contribution using NNC instead of NBI1129

as scalarization method, this aspect could represent problems for other applications.1130

1131

The developed tools have been illustrated with three relevant case studies, i.e.,1132

the debutanizer column, the butyl acetate process and the methanol production via1133

tri-reforming. In all cases the Pareto front obtained proved to be very informative,1134

providing beneficial tradeoffs for the optimization of each process. Specifically in the1135

butyl acetate and methanol case studies, significant improvements with respect to1136
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the current reference operating conditions have been observed. These results show1137

that interfacing a process simulator for MOO can provide the process engineer with1138

a better insight into the process conditions, while providing more alternatives to1139

the decision maker. In future work the goal is to integrate the presented interface1140

with interactive methods as discussed by Vallerio et al. (2015).1141
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Tables1317

Compound/Fraction wt%
Propene (225.55 K) 1.2
Propane (230.95 K) 3.2
Isobutane (260.15 K) 0.5
Butane (272.15 K ) 2.3
Butenes (266.68 K ) 1.8
C5 - 453.15 K 81.8
453.15 K - 623.15 K 9.2

Table 1: Feed composition for the debutanizer column.

48

Postprint version of paper published in Computers & Chemical Engineering 2018, vol.109, p. 119-137.
The content is identical to the published paper, but without the final typesetting by the publisher.

Journal homepage: https://www.journals.elsevier.com/computers-and-chemical-engineering
Original file available at: https://www.sciencedirect.com/science/article/pii/S0098135417303198



Parameter Value Units
Feed Temperature 441.15 K
Feed Pressure 1.52 MPa
Feed Mass Flow 38.3 kg/s
Number of stages 16 -
Feed stage 7 -
Pressure at condenser 1.1 MPa
Degrees subcooled 288.15 K

Table 2: Process conditions and fixed parameters for the debutanizer column opti-
mization.
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Variable Optimization Simulation Units

Controls
u1 Mass reflux ratio -
u2 Distillate mass flow kg/s

States

x1 Reboiler duty MW
x2 Condenser duty MW
x3 C5 wt fraction in distillate -
x4 Bottoms mass flow kg/s
x5 Isobutane wt fraction in bottoms -
x6 Butane wt fraction in bottoms -
x7 Butene wt fraction in bottoms -
x8 Feed mass flow kg/s

Table 3: Description of the model states and control variables for the debutanizer.
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Parameter Value Units

Feed 1
(MeAc)

Pressure 1.013 MPa
Temperature 305 K

Flow 100 kmol/h
MeAc 0.6 Mole-frac.
MeOH 0.4 Mole-frac.

Feed 2
(BuOH)

Pressure 1.013 MPa
Temperature 305 K

Flow 59.4 kmol/h
BuOH 1.0 Mole-frac.

Reactor Temperature 350 K

C1
Num. stages 37 -

Cond. Pressure 0.122 MPa

C2
Num. stages 27 -

Cond. Pressure 0.111 MPa

C3
Num. stages 47 -

Cond. Pressure 0.405 MPa

Table 4: Process conditions and fixed parameters to model and optimize the butyl
acetate production process.
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Variable Optimization Simulation Units

Controls

u1 Reflux ratio C1 -
u2 Distillate to feed ratio C1 -
u3 Reflux ratio C2 -
u4 Distillate to feed ratio C2 -
u5 Reflux ratio C3 -
u6 Distillate to feed ratio C3 -

States

x1 B4 Heat duty MW
x2 B5 Cooling duty MW
x3 CSTR Cooling duty MW
x4 B10 Heat duty MW
x5 C1 Reboiler duty MW
x6 C1 Condenser duty MW
x7 B11 Heat duty MW
x8 P9 Work duty MW
x9 B12 Heat duty MW
x10 C2 Reboiler duty MW
x11 C2 Condenser duty MW
x12 C3 Reboiler duty MW
x13 C3 Condenser duty MW
x14 P6 Work duty MW
x15 P3 Work duty MW
x16 Methanol purity (B2) Mole frac.
x17 Butyl acetate purity (B3) Mole frac.
x18 Molar flow distillate C2 kmol/s
x19 Molar flow distillate C3 kmol/s
x20 Mass flow methanol produced kg/h
x21 Mass flow butyl acetate produced kg/h
x22 Mass flow butanol (inlet) kg/h

Table 5: Optimization variables designation for MOO of the butyl acetate process.
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Parameter Value Units

CH4
Pressure 0.101 MPa

Temperature 298.15 K
CH4 1.0 Mole-frac.

Fluegas

Pressure 0.101 MPa
Temperature 423.15 K

Flow 1000 kmol/h
CO2 0.1 Mole-frac.
O2 0.03 Mole-frac.
N2 0.67 Mole-frac.
H2O 0.2 Mole-frac.

Dist. Column Num. stages 19 -

Table 6: Process conditions and fixed parameters to model and optimize the
methanol production process.
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Variable Optimization Simulation Units

Controls

u1 Methane molar flow (inlet) kmol/h
u2 Pressure reforming reactor MPa
u3 Temperature reforming reactor K
u4 Pressure methanol reactor MPa
u5 Temperature methanol reactor K
u6 Pressure Separator 1 MPa
u7 Temperature Separator 1 K
u8 Purge fraction -
u9 Pressure Separator 2 MPa
u10 Pressure dist. column MPa
u11 Reflux ratio dist. column -
u12 Distillate - feed ratio dist. column -
u13 Discharge pressure recycle compressor MPa

States

x1 CO2 molar flow (fluegas) kmol/h
x2 CH4O flow (methanol) kmol/h
x3 CH4O purity (methanol) Mole-frac.
x4 CH4O fraction (water) Mole-frac.
x5 In-pre work duty MW
x6 H-1 Heat duty MW
x7 Press-1 work duty MW
x8 Press-2 work duty MW
x9 Press-3 work duty MW
x10 H-2 Heat duty MW
x11 C-2 Heat duty MW
x12 Dist. condenser duty MW
x13 Dist. reboiler duty MW
x14 C-1 Heat duty MW
x15 C1 Heat duty MW
x16 C2 Heat duty MW
x17 Reforming reactor heat duty MW
x18 Methanol reactor heat duty MW
x19 Recycle comp. work duty MW
x20 CO conc. MeOH reactor Mole frac.
x21 CO2 conc. MeOH reactor Mole frac.
x22 H2 conc. MeOH reactor Mole frac.
x23 H2O conc. MeOH reactor Mole frac.
x24 CH4O conc. MeOH reactor Mole frac.
x25 Equilibrium constant RX Eq.7a -
x26 Equilibrium constant RX Eq.7b -
x27 H2 converted MeOH reactor kmol/h
x28 Actual vol. gas flow Separator 1 m3/h
x29 Actual vol. gas flow Separator 2 m3/h

Table 7: Optimization variables designation for MOO of the methanol process.
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Item Specification Price

Chemicals
Methanol ≥ 99.5 wt % pure 0.8 (✩/kg)
Methane ≥ 99 mol % pure 0.5 (✩/kg)

Utilities
Cooling water 4,184 J/kg 0.1 (✩/GJ)
Electricity - 0.09(✩/kWhr)

Heat 55,688 kJ/kg 0.5 (✩/kg)

Table 8: Chemicals and utilities prices for profit evaluation
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Results
Optimization accessing ESO

Black box
optimization

States
linearization

Embedded
state function

Convergence time [min] 0.61 0.72 1.35

Controls
u1 23.88 23.85 21.95
u2 10679 10679 10640

Objective function -557.76 -557.71 -497.39
Constraint 0 0 1.69 · 10−4

Table 9: Results for the optimization of the ilustrative objective function for the
debutanizer column, subject to the quality constraint.
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Convergence time [min]
Optimization accessing ESO

Black box
optimization

States
linearization

Embedded
state function

Bi-objective 16 Pareto points 2.99 3.73 3.47
Tri-objective 45 Pareto points 9.38 10.51 2.41

Table 10: Convergence time for bi and tri objective optimization problems for the
debutanizer column using the ilustrative function.
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Results

Total
energy
demand
minimized

Total
recycle
flow
minimized

Methanol
quality
maximized

Profit
maximized

Original process
Luyben (2011)

Controls

u1 0.2400 0.2968 0.3793 0.3149 0.3170 -
u2 0.5883 0.5739 0.5904 0.5915 0.6119 -
u3 1.0758 1.2000 1.0542 0.9820 0.9960 -
u4 0.5407 0.5000 0.6333 0.6021 0.6199 -
u5 2.6971 3.8000 2.4588 2.5304 1.9200 -
u6 0.6657 0.6560 0.6842 0.6562 0.6946 -

Objective
functions

J1 20.0699 21.4196 24.3717 21.7163 22.2840 MW
J2 0.0643 0.0579 0.0838 0.0735 0.0818 kmol/s
J3 -0.9280 -0.9280 -0.9960 -0.9951 -0.9284 (-)mole frac.
J4 -3411 -3398 -5419 -5463 -3375 (-)✩/h

Table 11: Results for the multi-objective optimization of the butyl acetate produc-
tion process.
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IPOPT options
Debutanizer

Butyl
Acetate

MethanolIllustrative
case

Profit MOO

Convergence tol. 1× 10−5 def. 1× 10−5 1× 10−5

Dual infeasibility tol. def. def. 1.5 1× 10−5

Constraint violation tol. def. def. 1× 10−3 1× 10−5

Complementarity tol. def. def. 1× 10−3 1× 10−5

Acceptable iter. 5 def. 3 3
Accep. convergence tol. 0.05 def. 0.5/5 5× 10−3

Accep. dual inf. tol. 0.05 def. 0.5/5 5× 10−3

Accep. constraint vio. tol. 1× 10−3 def. 5× 10−3 1× 10−4

Accep. Complementarity tol. 1× 10−2 def. 1× 10−4 1× 10−4

Accep Obj. change tol. 1× 10−3 def. 5× 10−3 5× 10−2

Hessian approximation limited-memory
Linear solver MUMPS
Pivot tolerance default: 1e-6

Table 12: IPOPT options used for the solution of the case studies.
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Results
Carbon
effic.
maximized

Total
energy
demand
minimized

Profit
maximized

Original process
Zhang et al.
(2013)

Controls

u1 345.93 378.80 365.19 400.00 kmol/h
u2 1.0000 3.7428 2.1283 1.0000 MPa
u3 980.00 942.96 980.00 850.00 K
u4 300.00 173.76 50.000 50.000 MPa
u5 200.00 200.00 200.00 220.00 K
u6 40.000 31.804 40.000 24.000 MPa
u7 25.000 31.617 25.000 25.000 K
u8 0.0500 0.3000 0.0500 0.0500 -
u9 9.1178 9.0000 12.750 10.000 MPa
u10 9.0000 9.0000 12.750 10.000 MPa
u11 3.0000 1.5000 1.5000 1.5000 -
u12 0.9880 0.9880 0.9888 0.9888 -
u13 300.00 173.76 50.000 50.000 MPa

Objective
functions

J1 -0.9604 -0.8483 -0.8693 -0.7617 (-effc.)
J2 1566.9 994.9 1150.5 1354.9 [MJ/kmol]
J3 -931.5 -4269.0 -4733.5 -2771.2 [(-)✩/h].

Table 13: Results for the multi-objective optimization of the methanol production
process.
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MOO Problem

Problem scale
Number
Pareto
pints

Total
time
[min]

Time per
Pareto
point
[min]

Simulation Optimization

# Eq.
Ind.
var.

deg. of
freedom

const.

Butyl acetate
Quality-based 2919 169 6 6 28 13 0.46
Profit-based 2919 169 6 6 28 14.4 0.52

Methanol via tri-reforming 1572 306 13 7 15 21.6 1.44

Table 14: Computational performance for the MOO of the butyl acetate and
methanol processes.
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Figures1318

Figure 1: Concept of the interface architecture.
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Figure 2: Scheme of the interface constructed for black box optimization exploiting
a genetic algorithm in Matlab.
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Figure 3: Scheme of the interface constructed for optimization accessing the ESO
exploiting gradient-based optimization algorithms of CasADi for Matlab.
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Figure 4: Debutanizer column with decision variables and model states.
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Figure 5: Traditional butyl acetate production process Luyben et al. (2004).

66

Postprint version of paper published in Computers & Chemical Engineering 2018, vol.109, p. 119-137.
The content is identical to the published paper, but without the final typesetting by the publisher.

Journal homepage: https://www.journals.elsevier.com/computers-and-chemical-engineering
Original file available at: https://www.sciencedirect.com/science/article/pii/S0098135417303198



Figure 6: Methanol production process via tri-reforming.
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(a) Best known optimal solution for ESO approach.

(b) Local optimal solution for the ESO approach.

Figure 7: Convergence to different optimal points in a ilustrative objective function
- optimization accessing the ESO for the debutanizer column.
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(a) Unsuccessful black box optimization.

(b) Black box optimization.

Figure 8: Convergence issues when problem must cope with constraints - black box
optimization for the debutanizer column.
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Figure 9: Comparison of the obtained Pareto front in the bi-objective optimization
case for the debutanizer column.
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Figure 10: Comparison of the Pareto front obtained via ESO approach (x) and
black box optimization (black o) for the debutanizer column.
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Figure 11: Pareto front for the profit-energy-quality optimization of the debutanizer
column via ESO approach (x) and black box optimization (o).
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(a) Quality-based MOO.

(b) Profit-based MOO.

Figure 12: Pareto front via ESO approach for MOO of the butyl acetate production
process.
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Figure 13: Pareto front via ESO approach for the carbon efficiency-energy-profit
optimization of the methanol production via tri-reforming.
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