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Abstract 1 

Building mathematical models in predictive microbiology is a data driven science. 2 

As such, the experimental data (and its uncertainty) has an influence on the final 3 

predictions and even on the calculation of the model prediction uncertainty. Therefore, 4 

the current research studies the influence of both the parameter estimation and 5 

uncertainty propagation method on the calculation of the model prediction uncertainty. 6 

The study is intended as well as a tutorial to uncertainty propagation techniques for 7 

researchers in (predictive) microbiology. To this end, an in silico case study was applied 8 

in which the effect of temperature on the microbial growth rate was modelled and used 9 

to make simulations for a temperature profile that is characterised by variability. The 10 

comparison of the parameter estimation methods demonstrated that the one-step 11 

method yields more accurate and precise calculations of the model prediction 12 

uncertainty than the two-step method. Four uncertainty propagation methods were 13 

assessed. The current work assesses the applicability of these techniques by considering 14 

the effect of experimental uncertainty and model input uncertainty. The linear 15 

approximation was demonstrated not always to provide reliable results. The Monte 16 

Carlo method was computationally very intensive, compared to its competitors. 17 

Polynomial chaos expansion was computationally efficient and accurate but is 18 

relatively complex to implement. Finally, the sigma point method was preferred as it is 19 

(i) computationally efficient, (ii) robust with respect to experimental uncertainty and 20 

(iii) easily implemented. 21 

 22 

Keywords: Prediction uncertainty, parameter estimation, sigma point method, 23 

linear approximation, Monte Carlo method.  24 

25 
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1 Introduction  26 

During the last decades, researchers in the field of predictive microbiology have 27 

focused on developing and fine-tuning a wide range of mathematical models that 28 

contribute to the assessment and prediction of microbial food safety and quality. 29 

Currently, there is a wide interest in moving towards mechanistic modelling methods 30 

such as individual based models (e.g., Kreft et al., 1998; Tack et al., 2015) or systems 31 

biology approaches (e.g., Brul et al., 2008; Vercammen et al., 2017). In practice, 32 

however, the state-of-the-art for real life application will remain for a considerable time 33 

the use of grey box models. These grey box models are built to deliver a simplified 34 

representation of the relevant microbial response (e.g., growth rate, inactivation rate, 35 

probability of growth). Grey box models require experimental data to select 36 

mathematical model structures and to estimate the most suitable combination of model 37 

parameters. As such, building mathematical models in the field of predictive 38 

microbiology will remain, for the time being, a data driven science.  39 

The experimental data used to build a mathematical model will influence the 40 

choice of the model structure and the estimated values of the model parameters. As 41 

such, the experimental data also influences the model predictions that will be obtained. 42 

Knowing this, several publications have focused on assessing the quality and validity 43 

of the models that are obtained. For example, Ross (1996) developed indices to evaluate 44 

the accuracy and bias of models based on the predicted generation time. Apart from the 45 

accuracy, also variation plays an important role when modelling microbial responses. 46 

The sources of variation in predictive microbiology were distinguished as follows by 47 

Van Impe et al. (2001): (i) the type and quantity of microorganisms in the initial 48 

microbial load, (ii) the true intrinsic and extrinsic conditions that characterise a food 49 

product, (iii) the lack of observations both in the monitoring points and the number of 50 
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samples, (iv) random noise which inevitably corrupts measurements. The sources of 51 

variation can be categorised as uncertainty or variability. Uncertainty refers to the 52 

precision with which a state or parameter is known (e.g., error on an experimental 53 

measurement) and variability refers to the natural variation of a variable or process (e.g., 54 

microbial growth rate). 55 

Due to the inevitable presence of variation in building predictive models, it is 56 

generally deemed important to assess the accuracy of the model predictions. This is 57 

often simplified to finding the confidence intervals of the parameter estimates. The 58 

confidence intervals of the parameter estimates (or simply the variation of the parameter 59 

estimates) can lead to the calculation of the uncertainty on the model prediction. As 60 

such, the user of a predictive model can be provided with an estimate of, e.g., a 95% 61 

confidence interval of the model prediction. The determination of this uncertainty is 62 

indispensable when using predictive models for quantitative microbial risk assessments 63 

(Zwietering, 2015). As (the uncertainty on) the estimated values of the model 64 

parameters are determined by (the uncertainty on) the experimental data, also the 65 

calculated uncertainty on the model parameters and model prediction will be 66 

determined by the experimental data. Consequently, it is worth wondering how to 67 

ensure that the provided uncertainty is actually reliable. 68 

This research studies how a reliable determination of the prediction uncertainty 69 

can be obtained. The focus lies on modelling and predicting the growth of 70 

microorganisms as a function of temperature, but the results should be transferable to 71 

other conditions and to modelling of microbial inactivation as well. However, further 72 

research should be performed to confirm the conclusions of this research for other 73 

applications. It is worth noting that an accurate determination of the model prediction 74 

uncertainty will become more difficult for more complex models (e.g., in case of 75 
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multiple influencing variables and interactions). Two steps in the modelling procedure 76 

are investigated with respect to their influence on determining the model prediction 77 

uncertainty: (i) the parameter estimation method and (ii) the uncertainty propagation 78 

method. These are deemed most influential on the calculation of the prediction 79 

uncertainty. For this purpose, a case study was applied in which a mathematical model 80 

was built for the effect of temperature on the microbial growth rate and used to predict 81 

microbial growth for a temperature profile that is characterised by variability. This 82 

research also is meant to serve as a tutorial to uncertainty propagation techniques for 83 

scientists working in the field of (predictive) microbiology.  84 
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2 Materials and methods 85 

For the current research, data is simulated according to the protocol explained in 86 

Section 2.1. The parameters of the predictive model will be estimated according to the 87 

methods explained in Section 2.2. This section also explains the method generally used 88 

to determine the model parameter accuracy. Finally, Section 2.3 elaborates on the 89 

different methods for uncertainty propagation that are tested in this publication to 90 

calculate the model prediction uncertainty. 91 

 92 

2.1 Simulation protocol 93 

Experiments are always simulated at the same 8 temperatures (10, 15, 20, 25, 30, 94 

35, 40, 45°C). At each temperature, the maximum specific microbial growth rate 95 μmax [h−1], which is reached during the exponential phase of growth, is calculated 96 

according to the Cardinal Temperature Model with Inflection (CTMI) of Rosso et al. 97 

(1993): 98 μmax(T) = μopt ∙ (T−Tmin)2∙(T−Tmax)(Topt−Tmin)∙[(Topt−Tmin)∙(T−Topt)−(Topt−Tmax)∙(Topt+Tmin−2T)] (1) 99 

In this equation, Tmin [°C] and Tmax [°C] represent the minimum and maximum 100 

temperature that allow microbial growth. Topt [°C] is the optimum temperature at which 101 

the optimum growth rate μopt [h−1] is reached, as such 𝜇𝑜𝑝𝑡 = 𝜇𝑚𝑎𝑥(𝑇𝑜𝑝𝑡). The value 102 

of μmax [h−1] (at any temperature) is then used to simulate a growth curve using the 103 

model of Baranyi and Roberts (1994): 104 

dn(t)dt = 11+exp(−q(t)) ∙ μmax(T) ∙ [1 − exp(n(t) − nmax)]  (2) 105 

dq(t)dt = μmax(T)  (3) 106 

with n(t) [ln (CFU/mL)] the natural logarithm of the population density at a time 107 

point t [h], nmax [ln (CFU/mL)] the natural logarithm of the maximum population 108 
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density and q(t)[−] the natural logarithm of the physiological state of the cell. The 109 

initial values of n(t) and q(t) are respectively n0 and q0. Nominal values for Tmin, 110 Topt, Tmax, μopt, n0, q0 and nmax were chosen arbitrarily for a hypothetical 111 

microorganism and are listed in Table 1. Growth curves were simulated until the 112 

population density reached a value approximating the nominal nmax. In these growth 113 

curves, 8 samples were taken at equidistant time points. Gaussian noise with zero mean 114 

was added to these samples to simulate the variation of the experimental data. The 115 

standard deviation of the Gaussian noise was taken equal to 0.28 ln (CFU/mL) based 116 

on the mean squared error of previous (unpublished) parameter estimation results with 117 

secondary models for growth. Discrepancy between the model structure and the 118 

microbial system under study is not considered in this research. Also the effect of the 119 

experimental design was not considered in this research.  120 

The simulations used to compare different methods for assessing the propagation 121 

of uncertainty from experimental data to model predictions (Section 3.2) are based on 122 

a temperature profile that is characterised by variability as well. An arbitrary 123 

temperature profile was selected for these simulations to mimic the food chain of a 124 

product that is kept at refrigeration temperatures. The different steps of the temperature 125 

profile are listed in Table 2. Fig. 1 illustrates the temperature profile with all parameters 126 

at their mean value. The durations of each step was considered to have a uniform 127 

distribution. Both the linear approximation and the sigma point method (described in 128 

Section 2.3) rely on the mean value and variance for their computations. As such, also 129 

the normal distributions that correspond with these uniform distributions are listed. 130 

Based on the lower bound (𝑙𝑏) and upper bound (𝑢𝑏) of the uniform distribution, the 131 

mean (1/2(ub + lb)) and variance (1/12(ub − lb)2) of the normal distribution were 132 

calculated. 133 
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Simulations also took into consideration that the temperature of the food product 134 

will change gradually when placed in an environment with a new temperature. As such, 135 

the model used to make predictions on the microbial growth is made both more complex 136 

and more realistic. The hypothetical food product was given the shape of a cube with 137 

edges of 0.1 m. As such, the total surface area of the product, A, is 0.06 m². It is packed 138 

in low density polyethylene with a thickness, d, of 1 mm and a thermal conductivity, k, 139 

of 0.33 W/mK. The heat capacity of the product, C, is chosen to be equal to that of 140 

water, i.e., 4 181 J/K. Given that the heat transfer through the product is neglected 141 

compared to the heat transfer through the packaging (a single temperature for the entire 142 

food product was assumed), the change of temperature T inside the food product is 143 

given by the following differential equation: 144 

dTdt = k ∙ A ∙ ∆Td∙C  (4) 145 

with k the thermal conductivity, A the surface area of the product, ∆T the 146 

difference in temperature between the food product and its environment, d the thickness 147 

of the packaging and C the heat capacity. The temperature at t = 0 h is taken equal to 148 

the temperature of the environment in the first step. The above equation in combination 149 

with the temperature profile in Table 2 leads to the temperature of the food product that 150 

is the input to the secondary model of Eq. 1.  151 

 152 

2.2 Parameter estimation 153 

Parameter estimations were performed using the function lsqnonlin of MATLAB 154 

R2016a (The Mathworks). As such, the objective of the parameter estimation was the 155 

minimisation of the Sum of Squared Errors (SSE) between the measurements and model 156 

predictions. Two types of parameter estimations are considered in this publications, i.e., 157 

the one-step and two-step method (Akkermans et al., 2016). In case of the one-step 158 
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method, all primary and secondary model parameters are estimated in a single step 159 

using all experimental data (at different temperatures). With the two-step methods, the 160 

maximum specific growth rate is first estimated by fitting a primary model to every 161 

growth curve and then, the parameters of the secondary model are estimated using the 162 

growth rates at different temperatures as a dataset. For the remainder of the explanation 163 

of the parameter estimation method, the one-step method is used as an example. The 164 

objective function is then formulated as:  165 

SSE =  ∑ (nm,i − n p,i(𝒑))2νm i=1   (5) 166 

with nm and n p the measured and predicted cell densities. νm is the total number 167 

of measurements and 𝒑 the vector of model parameters. The 95% confidence interval 168 

of every parameter pi is calculated based on the Student’s t-distribution: 169 

[pi ± t0.975,νm−νp ∙ √σpi2 ] (6) 170 

where νp is the number of parameters and consequently νm − νp is the number of 171 

degrees of freedom. σpi2  is the variance on the model parameter pi and is found on the 172 

main diagonal of the variance covariance matrix Vp, which is approximated as the 173 

inverse of the Fisher Information Matrix F (Walter and Pronzato, 1997): 174 σp,i2 = Vp(i, i) (7) 175 Vp =  F−1 (8) 176 F = 1MSE ∙ JT ∙ J (9) 177 

MSE =  SSE νm−νp (10) 178 

with J the Jacobian matrix and MSE the mean sum of squared errors. 179 

 180 
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2.3 Uncertainty propagation techniques 181 

In this research, four methods are considered to propagate the variability of the 182 

experimental data and the variability of the model inputs to the model predictions. The 183 

theoretical explanation of these uncertainty propagation techniques is found below.  184 

 185 

Monte Carlo method 186 

When applying the Monte Carlo method, random samples are drawn from all 187 

known or estimated distributions of the model parameters and inputs. Based on these 188 

random samples, a single sample of the output distribution is calculated (Poschet et al., 189 

2003). By repeating this procedure, a large set of samples of the model output is 190 

obtained, and as such, the distribution of the model output is characterized. This method 191 

is relatively easy to implement using widely available random number generators (e.g., 192 

the function random in MATLAB). This method is considered the most accurate 193 

method to approximate the distribution of a model output, as no assumptions are made 194 

about the probability distributions and the model equations are not simplified (e.g., not 195 

limited to normally distributed variables). Consequently, it forms the basis of 196 

commonly used risk analysis software products such as @Risk (Palisade).  197 

  198 

Linear approximation  199 

An alternative calculation of the uncertainty on the model output is possible by 200 

making a linear approximation of the model predictions and assuming normally 201 

distributed probabilities (Van Impe et al., 2001). In this case, the variance of the model 202 

output can be calculated directly, without the use of an iterative technique. The 203 

variance-covariance matrix of a set of model predictions (Vy) is calculated as (Omlin 204 

and Reichert, 1999): 205 

https://doi.org/10.1016/j.ijfoodmicro.2018.05.027


Post-print version of paper published in https://doi.org/10.1016/j.ijfoodmicro.2018.05.027. 

The content is identical to the published paper, but without the final typesetting by the publisher. Vy = J ∙ Vp ∙ J′ (11) 206 

The model outputs y for the current case study are equal to the cell densities n. 207 

The variance of each measurement is obtained from the main diagonal of Vy. As such, 208 

the (1 − α)100% confidence bounds on the model output are calculated similarly to 209 

the confidence bounds on the model parameters (Seber and Wild, 2003): 210 

[yi ± t(1−α2 ,νm−νp)√Vy(i, i)] (12) 211 

The true uncertainty is expected to be even higher than that calculated by the above 212 

equation because (i) the variance on the parameter estimates that is calculated, is 213 

actually the lower bound of the true variance and (ii) the black or grey box models used 214 

here remain an oversimplification of the complex microbiological systems that are 215 

studied (Omlin and Reichert, 1999). When making predictions with growth or 216 

inactivation models, the true variability also increases in case of lower population 217 

densities due to the variability between individual cells (see, e.g., Pin and Baranyi 218 

(2006)).  219 

 220 

Sigma point method 221 

The sigma point method was devised by Julier and Uhlmann (1996) and is aimed 222 

at calculating nonlinear transformations of probability distributions. This method is also 223 

referred to as the unscented transformation. In the sigma point method, the uncertainty 224 

on the model output is calculated based on a specific set of model inputs and parameters, 225 

drawn from their distribution. Different from the Monte Carlo method, model inputs 226 

and parameters are not generated randomly but chosen in a systematic way. The 227 

mathematical notation of this method was based on the work of Telen et al. (2015). In 228 

this notation, 𝒙 will be the vector of both model inputs and parameters with a known 229 

variance-covariance matrix Vx. A set of model outputs is calculated as follows: 230 
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In the above equations Vx,i expresses the ith row of the variance-covariance matrix 234 

and νx is the total number of variable parameters and inputs. As such, the output of the 235 

mathematical model has to be calculated 2νx + 1 times. The mean value of the model 236 

predictions is then calculated as: 237 

y̅ = 13 ((3 − νx)y0 + 12 ∑ yi2νxi=1 )   (16) 238 

Moreover, the variance-covariance matrix of the model predictions (Vy) is 239 

approximated with the following equation: 240 Vy = 13 ((3 − νx)(𝑦0 − 𝑦̅)(𝑦0 − 𝑦̅)T) + 13 (12 ∑ (𝑦𝑖 − 𝑦̅)(𝑦𝑖 − 𝑦̅)T2νxi=1 )  (17) 241 Vy can then be used in combination with Eq. 12 to calculate the confidence bounds 242 

on the model output.  243 

 244 

Polynomial chaos expansion 245 

Polynomial chaos expansion (PCE) was first presented by Wiener (1938) and its 246 

use in uncertainty quantification has been illustrated in, e.g., Webster et al., (1996), 247 

Tatang et al., (1997) and Xiu and Karniadakis, (2002). The PCE method exploits 248 

information on the distribution of uncertain variables (assuming that these uncertain 249 

variables are independent) to accurately compute the mean and variance of a model 250 

response. The PCE of the model output y(𝒙) is written as follows: 251 y(𝒙) = ∑ aiΦi(𝒙)∞i=0    (18) 252 

Due to the infinite number of terms, this expansion is in practice truncated to a 253 

finite number of terms: 254 
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with L the number of terms in the PCE, i a term based index, ai the PCE 256 

coefficients that have to be determined, Φ𝑖(𝒙) the multivariate orthogonal polynomials 257 

and 𝒙 the vector of both model inputs and parameters which are assumed to be 258 

independent, with a known variance-covariance matrix Vx. Note that L depends on the 259 

order of the PCE m and the total number of variable (i.e., uncertain) parameters νx as 260 

follows:  261 L = (m+νx)!m!νx!     (20) 262 

The multivariate polynomials Φ𝑖(𝒙) are derived from the probability distributions 263 

of the variable parameters. As the variables are considered to be independent, these 264 

multivariate polynomials Φ𝑖(𝒙) are constructed by deriving univariate orthogonal 265 

polynomials ϕi(xi) for each variable parameter xi from the probability distribution 266 

functions, see e.g., Nimmegeers et al., (2016). 267 

Hence, only the L PCE coefficients ai are unknown and need to be determined. 268 

Different methods exist to compute these coefficients: intrusive (Ghanem et al., 1991; 269 

Debusschere et al., 2004) and non-intrusive sampling-based methods (Tatang et al., 270 

1997; Fagiano and Khammash, 2012; Nimmegeers et al., 2016). Intrusive methods use 271 

Galerkin projection to compute the coefficients. Non-intrusive sampling-based methods 272 

on the other hand, repetitively evaluate the model equations in so-called collocation 273 

points xj to calculate the coefficients as a weighted sum of the model responses 274 

evaluated in the different νc collocation points. Assuming that the truncation error of 275 

the PCE is sufficiently low, the following linear system in the PCE coefficients ai has 276 

to be solved: 277 
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Note that the number of potential collocation points (following from the 279 

combination of these roots) is typically higher than the number of unknown PCE 280 

coefficients. In this article, stochastic collocation (Tatang et al., 1997) is used such that 281 

the number of collocation points equals the number of unknown coefficients (i.e., νc =282 L) and the system in Eq. (21) has a unique solution. For the collocation points, sets that 283 

span the high probability regions of their distributions are selected. Since normalized 284 

univariate orthogonal polynomials ϕi(xi) have been used for the PCE, the mean and 285 

variance of the model output can be calculated as follows: 286 y̅ = a0   (22) 287 Vy = ∑ ai2L−1i=1  (23) 288 

As the PCE coefficients are a weighted sum of model output evaluations in the 289 

collocation points (i.e., the solution of Eq. (21)), the mean and variance are calculated 290 

as a weighted sum of the model output evaluations in the collocation points. 291 
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3 Results and discussion 292 

Both the choice of the parameter estimation method and the method to 293 

approximate the model prediction uncertainty is studied here. In both cases, the 294 

influence of the experimental uncertainty on the accuracy of the model prediction 295 

uncertainty is taken into account by applying a Monte Carlo method with randomly 296 

generated experimental measurements. Once the parameter estimation method is 297 

selected in Section 3.1, this method is applied for all simulations in Section 3.2. 298 

 299 

3.1 Assessing the parameter estimation method 300 

In this section, the influence of the parameter estimation method on the parameter 301 

estimation and model prediction uncertainty (and its accuracy) is assessed. The two 302 

methods compared here are the one-step and two-step parameter estimation method. 303 

For this purpose, Monte Carlo simulations with 5000 iterations were performed. In each 304 

iteration (i) experimental data was generated, (ii) parameter estimations were performed 305 

with both methods on this data, (iii) uncertainty on the model parameters was 306 

calculated, (iv) model predictions were made over a temperature range of 10 to 45°C 307 

and (v) the uncertainty on these model predictions was determined. For this case study, 308 

the quality of the parameter estimation method was only assessed using the Monte Carlo 309 

method (5000 iterations, used as a benchmark) and the linear approximation for both 310 

the model parameter and model prediction uncertainty. Due to the high number of 311 

iterations, the Monte Carlo simulation is expected to present a measure of the true 312 

variability. The determination of the uncertainty on the model parameters and model 313 

prediction according to the linear approximation is also calculated in the Monte Carlo 314 

method, which results in a distribution of these uncertainties. Based on these 315 

distributions, 95% confidence bounds of the uncertainties are determined empirically 316 
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by ordering the data and determining the values that separate the 2.5% lowest and 317 

highest values. As such, no assumption is made on the distribution of these values.  318 

The model predictions used in this section are estimates of the doubling time as a 319 

function of temperature. Doubling time was chosen here instead of the growth rate as it 320 

is considered more relevant for microbial food safety/quality to accurately assess the 321 

time needed for a certain increase of the microbial population than to assess the 322 

microbial increase in a given period of time (because simulation times will be longer in 323 

case of lower growth rates). In essence, the assessment of the model prediction 324 

uncertainty on the doubling time corresponds to the assessment of the model prediction 325 

uncertainty on the time required to reach a threshold on the microbial load.  The 326 

doubling time (td) is calculated as:  327 td = ln(2)μmax(T) (24) 328 

For both parameter estimation methods, it was found that the average values of 329 

the parameter estimates approximated the nominal (given) values. However, clear 330 

differences were found between the two methods with respect to the uncertainty on the 331 

parameter estimates. The true variation of the parameter estimates is illustrated with the 332 

Monte Carlo methods in Fig. 2 for the (a) one-step and (b) two-step method. The 333 

calculation of the 95% confidence bounds with the linear approximation is provided in 334 

the same figure as well. The Monte Carlo methods demonstrated that the uncertainty 335 

on the parameter estimates was (slightly) higher for the one-step method. This is 336 

probably due to the fact that the growth rates, used as intermediate parameters in the 337 

two-step method, were estimated with relatively good accuracy. By using these 338 

estimates as inputs for the second parameter estimation, the two-step method led to 339 

lower uncertainty on the estimated values of the secondary model parameters. However, 340 

the one-step method performed much better with respect to the linear approximation. 341 
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The variation on the 95% confidence bounds calculated with the linear approximation 342 

was much lower for the one-step than for the two-step method. Moreover, in case of the 343 

two-step method, the average values of the 95% confidence bounds for the linear 344 

approximation were much higher than those calculated with the Monte Carlo method. 345 

This means that the two-step method results in less precise and less accurate 346 

calculations of the 95% confidence bounds than the one-step method when applying 347 

the commonly used linear approximation. This is due to the fact that information on the 348 

variability of the model parameters is lost by making the intermediate step in the two-349 

step method. 350 

Fig. 3 contains 95% confidence bound on the predicted doubling time according 351 

to the Monte Carlo method for both the (a) one-step and (b) two-step method. This 352 

figure also contains the linear approximation of the 95% confidence bound with a 95% 353 

errors to indicate the variation on this approximation. Comparing the results of the one-354 

step and two-step parameter estimation method shows that the variation of the 355 

prediction (as calculated with the Monte Carlo method) is almost identical for both 356 

methods. On average, the one-step method leads to a good linear approximation of the 357 

95% confidence bounds on the prediction with only limited variation. On the other 358 

hand, the two-step method results in the prediction of much wider confidence bounds 359 

and has high variation on this prediction. Similar as for the confidence bounds on the 360 

model parameters, the two-step method leads to a less precise and less accurate linear 361 

approximation of the prediction uncertainty. 362 

Based on these results, it can be said that the use of the one-step method was most 363 

suitable with respect to the calculation of model prediction uncertainty. Even though 364 

the experimental data was limited (i.e., only 8 experiments, each containing 8 sampling 365 

points), the one-step method resulted in low variation on the calculated 95% confidence 366 
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bounds on the model prediction through the linear approximation. Taking into account 367 

that the linear approximation is the most commonly used method to calculate the model 368 

prediction uncertainty, this parameter estimation method is preferred. It is worth 369 

nothing that in practice other sources of variation (e.g., strain variability) that lead to 370 

uncertainty on the model predictions have to be taken into account as well (Den Besten 371 

et al., 2017).   372 

 373 

3.2 Assessing the uncertainty propagation method 374 

After determining the effect of the parameter estimation method, the different 375 

methods to estimate the model prediction uncertainty are compared, taking into account 376 

the uncertainty on the experimental measurements. For this comparison, Monte Carlo 377 

simulations with 5000 iterations were performed with an assessment of the model 378 

prediction uncertainty in each iteration with all four techniques listed in Section 2.3. 379 

These simulations start again from randomly simulated experimental data. As such, the 380 

variation in the results obtained with these techniques due to the experimental 381 

uncertainty is studied. Unlike the previous section, in these simulations the model 382 

prediction uncertainty was assessed for a specific temperature profile of a hypothetical 383 

food product as explained in Section 2.1. The simulations were performed using an 384 

initial cell density n0 of 0 ln (CFU/mL) and the lag phase and stationary phase were 385 

omitted.  386 

 387 

Linear approximation  388 

The first method discussed here is the linear approximation. This method resulted 389 

in an accurate determination of the model prediction uncertainty when used in 390 

combination with the one-step parameter estimation method in the previous section. 391 
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The main advantage of this method is the relatively low computational burden required. 392 

For the current case study, the Jacobian matrix (J) of the vector of model outputs (𝒏) 393 

was calculated numerically using the symmetric derivative. Numerical differentiation 394 

was chosen as it is easy to implement. As such, a single column of J (Ji) is approximated 395 

as follows: 396 Ji = ∂𝒏∂xi ≈ n(xi+hi)−n(xi−hi)2hi   (25) 397 

In the above equation, the model output sensitivity is calculated with respect to 398 

the model parameter or input (xi) by changing it with a finite difference (hi). In the 399 

current case study, hi was 1/1000 times the nominal parameter value. To calculate the 400 

model output, 13 parameters are required, i.e., 4 parameters of the secondary model and 401 

9 parameters of the temperature profile. As such, the numerical differentiation required 402 

that the model output was calculated 26 times. Including the calculation of the model 403 

output at the nominal values of all parameters, the model output was calculated 27 times 404 

for the linear approximation. It should be noted that when using a left or right hand 405 

difference quotient (instead of the symmetric difference quotient) the required number 406 

of calculations of the model output could be reduced to a total of 14. However, the 407 

symmetric difference quotient was preferred as it is more accurate than the left and right 408 

hand difference quotients.  409 

The results of the linear approximation method are presented in Fig. 4a. Overall, 410 

the linear approximation resulted in an accurate calculation of the model prediction 411 

uncertainty. Moreover, the calculation only shows limited variation due to the 412 

experimental uncertainty, as indicated by the narrow 95% error bands around the 95% 413 

confidence bounds. However, the 95% confidence bounds have a peak at about 104 414 

hours during the simulation. Comparing the model prediction uncertainty according to 415 

the linear approximation to that of the other methods (Fig. 4) shows that this peak is an 416 
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anomaly. The high uncertainty at this point in the simulation is caused by the high 417 

sensitivity of the temperature (and consequently of the model output) to the duration of 418 

all steps of the profile and the temperature during transport to the customer’s home. 419 

When using the linear approximation, the uncertainty that is calculated is an 420 

extrapolation of these sensitivities and as such, an overestimation of the true 421 

uncertainty.  422 

Based on the current results, it can be said that the linear approximation can give 423 

good results for a variety of cases but can also lead to large errors in other cases. Even 424 

though the error of the current simulation can be exceptional, the linear approximation 425 

is not seen as a reliable method. 426 

 427 

 Sigma point method 428 

For the sigma point method, 27 combinations of model parameters were calculated 429 

and used to calculate the model output. As such, the computational load of the sigma 430 

point method is similar to that of the linear approximation (when using the symmetric 431 

derivative). The results of the sigma point method are illustrated in Fig. 4b. The sigma 432 

point method resulted in low variation in the (mean) predicted values and prediction 433 

uncertainty for the full range of the simulation. The method appears to give a robust 434 

approximation of the prediction uncertainty with respect to the uncertainty on the 435 

experimental measurements. This finding is in agreement with the work of Telen et al. 436 

(2014) who noted that the calculation of a variance-covariance matrix through the sigma 437 

point method was robust. The robustness of this method is considered to be a significant 438 

advantage, definitely when considering that mathematical models will often be much 439 

more complex than the model used here (e.g., multiple influencing environmental 440 

conditions). It is also important to note that this method did not result in an 441 
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overestimation of the uncertainty as seen with the linear approximation (peak in Fig. 442 

4a) and can therefore be considered as more reliable.  443 

 444 

Monte Carlo method 445 

A common difficulty when working with Monte Carlo methods is that the user 446 

needs to determine the number of iterations that is required to obtain an accurate 447 

estimate of the model output distribution. Several publications (e.g., Bukaçi et al. 2016) 448 

explain methods for calculating the required number of iterations in a Monte Carlo 449 

method. These methods rely on the calculation of the variance of the mean model output 450 

(σy̅2) through a known variance of the model output (σy2) for a number of iterations νi:  451 

σy̅2 = σy2 νi (26) 452 

However, as σy̅2 is generally not known, these calculations are not useful in 453 

practice. Consequently, in the current research the effect of the number of iterations 454 

was taken into account when assessing the Monte Carlo method. Initially, the Monte 455 

Carlo method was carried out with 27 iterations, the same number as required for the 456 

linear approximation and sigma point method. The results of this simulation are 457 

presented in Fig. 4c. It is clear that the results of the Monte Carlo simulation with just 458 

27 iterations are characterised by high variation. This means that the results of the 459 

Monte Carlo method with a limited number of iterations is markedly dependent on the 460 

experimental measurements (or their uncertainty). Comparing Fig. 4b and Fig. 4c 461 

demonstrates that, even though the same number of calculations of the model response 462 

were used, the Sigma Point method is clearly influenced less by the experimental 463 

uncertainty than the Monte Carlo method. Increasing the number of iterations of the 464 

Monte Carlo method will make the results more robust. Consequently, the effect of the 465 

number or iterations on the width of the 95% errors was tested, starting from 50 466 
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iterations and increasing in steps of 50 (results not shown). It was found that over 500 467 

iterations were needed for the Monte Carlo method to reduce the variation to the same 468 

level as that of the sigma point method. 469 

 470 

Polynomial chaos expansion 471 

The final method tested here is PCE. The first order PCE required just 14 472 

calculations of the model output. As such, the computational load is about half of that 473 

of the sigma point method. The resulting model prediction uncertainty and its variation 474 

is presented in Fig. 4d. Comparing Fig. 4b with Fig. 4d demonstrates that there is only 475 

minor difference between the model prediction uncertainty calculated by the sigma 476 

point method and the first order PCE. As such, PCE delivered good accuracy 477 

calculations of the model prediction uncertainty at a low computational cost. However, 478 

the main downside experienced when applying this method was that it is by far the most 479 

complex to implement, out of the four techniques compared here. As such, PCE is 480 

regarded as a beneficial technique when implemented in, e.g., a software package. On 481 

the other hand, when the algorithms are implemented manually for specific case studies, 482 

the sigma point method would be preferred in the field of predictive microbiology. 483 
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4 Conclusions 484 

The current research discusses the selection of methods for parameter estimation 485 

and uncertainty propagation for building secondary models in predictive microbiology 486 

to obtain reliable calculations of the model prediction uncertainty. The results 487 

demonstrated that the one-step parameter estimation method was more suitable than the 488 

two-step method to obtain precise and accurate calculations of the model prediction 489 

uncertainty. The linear approximation was found to be susceptible to extrapolations of 490 

the sensitivity equations and will therefore not always lead to reliable results. The sigma 491 

point method gave overall good results with a low computational effort. The Monte 492 

Carlo method is the most basic method and therefore easy to implement. However, it 493 

was found to be very computationally intensive compared to the other methods. It can 494 

be said that the systematic selection of model inputs in the sigma point method gives it 495 

a significant advantage over the basic Monte Carlo random sampling. Finally, 496 

polynomial chaos expansion resulted in a robust calculation of the output uncertainty 497 

with respect to the experimental uncertainty at even lower computational effort than the 498 

sigma point method. The main disadvantage of this method was that is more complex 499 

to implement, mostly with respect to the calculation of the collocation points. As such, 500 

polynomial chaos expansion is not seen as an appropriate technique for the application 501 

and target audience considered for research. To conclude, the sigma point method is the 502 

most attractive method for the application studied in this publication because (i) it is 503 

computationally efficient, (ii) is robust with respect to experimental uncertainty and 504 

(iii) is easily implemented.    505 
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Figures 589 

 590 

Fig. 1: Temperature profile of the environment (—) and the food product (—591 

) resulting from the mean values of the parameters in Table 2 and Eq. 4. 592 

 593 

  594 

Fig. 2: Illustration of the uncertainty on the parameters of the CTMI as 595 

estimated with the (a) one-step and (b) two-step method. The 95% confidence 596 

bounds determined with the Monte Carlo method (X) are considered to represent 597 

the real variability of the parameter estimates. The 95% confidence bounds 598 

calculated through the linear approximation (X) are provided with 95% error 599 

bars. For the parameters Tmin, Topt and Tmax the confidence bounds are expressed 600 

in °C and for the parameter μopt they are expressed in h−1. 601 
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  602 

Fig. 3: Prediction uncertainty of the doubling time [h] calculated with the 603 

CTMI is presented as the width of its 95% confidence bounds as estimated with 604 

the (a) one-step and (b) two-step method. The 95% confidence bounds on the 605 

predictions determined with the Monte Carlo method (—) is considered to 606 

represent the real variability of the predictions. The 95% confidence bounds 607 

calculated through the linear approximation (---) are provided with 95% errors 608 

(⋅-⋅). 609 

  610 
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  611 

  612 

Fig. 4: Model predictions (—) with average 95% confidence bounds (—) for 613 

the temperature profile in Table 2 according to: (a) the linear approximation, (b) 614 

the sigma point method, (c) a Monte Carlo simulation with 27 iterations and (d) a 615 

first order polynomial chaos expansion. 95% errors caused by experimental 616 

uncertainty are provided for both the model predictions (⋅⋅⋅) and confidence 617 

bounds (⋅⋅⋅).  618 
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Tables 619 

Parameters Values 

Tmin [°C] 2.3 

Topt [°C] 40.6 

Tmax [°C] 45.5 

µopt [h-1] 0.623 

n0 [ln(CFU/mL)] 7.00 

q0 [-] -1.00 

nmax [ln(CFU/mL)] 22.55 

 620 

Table 1: Nominal parameter values of the CTMI and the model of Baranyi and 621 

Roberts (1994). 622 

 623 

Description Temperature 

[°C] 

Time [h],  

uniform distribution 

Time [h], 

approximate normal 

distribution 

Storage after 

production 

𝑁(6.0, 1.5)  𝑈(10.00, 22.00)  𝑁(16.00, 3.462)  

Transportatio

n to shops 

𝑁(10.0, 1.0)  𝑈(0.50, 4.00)  𝑁(2.25, 1.012)  

Storage in 

shops 

𝑁(6.0, 1.0)  𝑈(1.00, 168.00)  𝑁(84.50, 48.212)  

Transport to 

customer’s 
home 

𝑁(20.0, 2.0)  𝑈(0.08, 1.00)  𝑁(0.54, 0.262)  

Storage at 

home 

𝑁(7.0, 1.0)  Remaining time 

of total 240 h 

 

 624 

Table 2: Five different steps of the temperature profile used to simulate microbial 625 

growth as a function of time with prediction uncertainty. Normal distributions are 626 

marked with their mean and variance and uniform distributions with their lower and 627 

upper bound.  628 
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