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Optimal experiment design under parametric uncertainty:
a comparison of a sensitivities based approach versus a
polynomial chaos based stochastic approach

Philippe Nimmegeers®, Satyajeet Bhonsale®, Dries Telen®, Jan Van Impe®*

“KU Leuven, Department of Chemical Engineering, BioTeC+ € OPTEC, Belgium

Abstract

In order to estimate parameters accurately in nonlinear dynamic systems, experi-
ments that yield a maximum of information are invaluable. Such experiments can be
obtained by exploiting model-based optimal experiment design techniques, which
use the current guess for the parameters. This guess can differ from the actual
system. Consequently, the experiment can result in a lower information content
than expected and constraints are potentially violated. In this paper an efficient
approach for stochastic optimal experiment design is exploited based on polyno-
mial chaos expansion. This stochastic approach is compared with a sensitivities
based approximate robust approach which aims to exploit (higher order) derivative
information. Both approaches aim at a more conservative experiment design with
respect to the information content and constraint violation. Based on two simula-
tion case studies, practical guidelines are provided on which approach is best suited
for robustness with respect to information content and robustness with respect to
state constraints.

Keywords: Optimal experiment design, Stochastic dynamic optimization, Fisher
information matrix, Polynomial chaos expansion, Parametric uncertainty,
Approximate robust optimization

1 1. Introduction

2 Performing experiments (in a (bio)chemical setting) is usually costly (Bouvin
s et al., 2015) as measurements have to be taken and are often analyzed manually.
+  Furthermore, an accurate estimation of the parameters in nonlinear processes is
s not trivial. In order to reduce the experimental burden optimal experiment design
s (OED) approaches have been developed and applied in many different (bio)chemical
7 applications (Espie and Macchietto, 1989; Asprey and Macchietto, 2002; Jauberthie
s et al., 2006; Cappuyns et al., 2007; Schenkendorf et al., 2009; Telen et al., 2012b,
o 2014). So, the main aim of optimal experiment design is to design control in-

o puts and sampling schedules such that the experiment is as informative as possible.
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u  An overview of the state-of-the-art for nonlinear dynamic systems can be found

1 in Franceschini and Macchietto (2008).

1 In OED an experiment is planned to estimate the model parameters, however,
15 the model-based technique depends on these uncertain/unknown parameter values.
16 As a result, parametric uncertainty has two consequences. First, the information
7 obtained by performing the experiment must be ensured for all possible true system
18 parameter values. In this work, this is called robustness with respect to information
v content (Asprey and Macchietto, 2000). In literature, several approaches have been
2 explored to tackle this issue. A practical option is to iterate between the parame-
a1 ter estimation and subsequently compute the experiment design using the current
» parameter estimates, as in e.g., Walter and Pronzato (1997). Such approach is how-
23 ever time consuming and not necessarily robust in the sense that the experiment is
x ensured for all possible true system parameter values. A first approach to design
s robust experiments is to cast them in a max-min optimization problem (Pronzato
s and Walter (1988); Korkel et al. (2004); Rojas et al. (2007)). In Korkel et al. (2004)
27 the inner optimization loop is solved explicitly with a linear approximation. Welsh
s and Rojas (2009) proposed a scenario-based robust experiment design approach
2 which uses a probabilistic relaxation of the worst case robust paradigm. In this
3 case it is considered that robustness with respect to a large majority of situations is
a1 sufficient rather than against all possible situations. The number of scenarios is set
2 by the designer. A different approach is to compute the expected value of the scalar
;3 function of the Fisher information matrix over the parameter space if stochastic in-
s formation on the parameter uncertainty is available. This idea has been introduced
5 in Pronzato and Walter (1985) and was for the first time applied to a dynamic
s system for a Gaussian parameter distribution in Asprey and Macchietto (2002). In
s the latter work the expected value is computed by integrating numerically over the
;s parameter space. In the frame of computing the expected value of the scalar func-
» tion of the Fisher information matrix, Chu and Hahn (2008) presented an iterative
2 approach integrating parameter set selection and optimal experiment design under
a uncertainty in which a genetic algorithm is used to determine the set of param-

2 eters to be estimated and a simultaneous perturbation stochastic approximation

2
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s computes the experimental conditions. The parameters to be estimated and the
w experimental conditions are the optimization variables, yielding a mixed integer
s nonlinear programming problem. A collection of parameter sets is returned and
4 optimal experiment designs are computed for each of these sets. Bayesian robust
«  experiment design is another possibility, in which preliminary data are incorporated
s to maximize the expected value over the prior parametric uncertainty distribution
w0 of an objective function quantifying the information content e.g., Liepe et al. (2013).
so  Note that for the experiment design of multiple-input multiple-output systems, also
51 a robust experiment design based on the steady state gain matrix can be used as
»» outlined in Haggblom (2017). Although not accounting for dynamics, the reformu-
53 lation of Bruwer and MacGregor (2006) made it possible to include linear input and
s« output constraints in this approach.

55

ss A second consequence of the parametric uncertainty are the potential violations of
57 state constraints as the model parameters differ from the true system parameters.
ss S0, besides robustness with respect to the information content, the optimally de-
s signed experiment has to be robust with respect to state constraints. These issues are
o related to the field of stochastic/robust optimal control. If stochastic information
s is available, chance constraints can be formulated (Wendt et al., 2002; Srinivasan
e et al., 2003; Mitra, 2009; Galvanin et al., 2010; Recker et al., 2012; Mesbah et al.,
3 2014; Telen et al., 2015). It can be assumed that this stochastic information orig-
s inates from previous parameter identifications or a literature review (Walter and
s Pronzato, 1997; Franceschini and Macchietto, 2008; Hjalmarsson, 2009). In a dif-
e ferent set-up the parameters can be considered to lie within a given compact set. In
o7 this case, it is desirable to guarantee that all constraints are satisfied in all possible
s worst case situations and/or to know what is the possible performance loss. The
oo work of Houska et al. (2012) presents an approach for nonlinear optimal control
7 which guarantees to be robust if the uncertainties are bounded. In Telen et al.
7 (2013a), this approach is extended for optimal experiment design.

72

7z The definition of the expected value entails the computation of a multidimensional

= integral over the parameter space of the scalar function of the Fisher information

3
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75 matrix (Pronzato and Walter, 1985). In real (bio)chemical applications these multi-
7 dimensional integrals can often not be evaluated analytically as a function of the de-
77 cision variables and therefore they need to be approximated with a sampling-based
7z method, e.g. Gauss quadrature or Monte Carlo sampling (Asprey and Macchietto,
7o 2002),(Debusschere et al., 2004). Therefore, instead of computing this integral, the
s expected value is approximated in this article using polynomial chaos expansion
a (PCE) (Wiener, 1938). The main advantage of polynomial chaos expansion over
22 similar techniques as the unscented transformation or sigma point approach (Julier
&3 and Uhlmann, 1996; Kawohl et al., 2007; Telen et al., 2014) is its applicability
s+ to non-symmetric parametric uncertainty distributions (Wiener, 1938), (Xiu and
ss  Karniadakis, 2002), while the unscented transformation is restricted to symmetric,
s unimodal distributions. The basic idea of PCE is to approximate a function by a
& polynomial depending on the uncertain parameters. The coefficients of this polyno-
ss mial can subsequently be used to compute the statistical moments as the expected
» value and variance (Nagy and Braatz, 2007; Mesbah et al., 2014). These statisti-
o cal moments can be used for the objective or constraint functions and hence allow
a for a more robust probabilistic problem formulation (Galvanin et al., 2010). Re-
o cently, a novel arbitrary polynomial chaos expansion algorithm has been presented
e3 in Paulson et al. (2017), which does not require prior knowledge on the parametric
o uncertainty distribution but computes the orthogonal polynomial basis functions
s based on data (i.e., raw moments of the random variables).

%

o7 In summary, model-based optimal experiment techniques can be used to design ex-
e periments that yield a maximum of information to estimate parameters accurately
o in nonlinear dynamic systems. These techniques, however, use a current guess of
w0 the parameters which can be different from the actual system. Consequently, the
1w experiment can result in a lower information content than expected and constraints
102 are potentially violated. As mentioned above, different optimal experiment design
103 techniques exist to design experiments which are robust with respect to information
s content (optimality) and robust with respect to constraint violations (feasibility).
s The overall goal of this paper is to study and compare two optimal experiment

10 design approaches which can be used to design robust experiments: a sensitvities-

4
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7 based approximate robust approach (originating from a robust min-max optimal
s experiment design formulation) and a polynomial chaos expansion based stochastic
109 approach. Based on two simulation case studies, practical guidelines are provided on
uo  which approach is best suited for (i) robustness with respect to information content
w  and (#) robustness with respect to state constraints. The assessment of the different
12 OED approaches is based on the information content (i.e., the OED objective func-
us tion value), the number of constraint violations and the computational (CPU) time.
114

us  This paper is structured as follows. In Section 2 the mathematical formulation
us  of OED, robust OED and expected value OED are introduced. In Section 3 the
n7  actual OED optimization problems are presented, i.e., the approximate robust ap-
us proach of Korkel et al. (2004) and the PCE-based stochastic approach. Section 4
uo  introduces the case studies and describes the obtained numerical results. Section 5

1o summarizes the main conclusions of this paper.

121 2. Mathematical formulations

122 This section is structured as follows. First, OED is presented as an optimization
123 problem for nonlinear dynamic systems. The adaptations to the standard OED
s formulation in order to obtain a robust or a stochastic approach are presented in

15 subsections 2.2 and 2.3.

s 2.1. Optimal experiment design for dynamic systems

127 Optimal experiment design for parameter estimation (OED-PE) is used to design
s experiments that reduce the variance on the parameter estimates. The objective
1o function used in OED is a scalar function of the parameter estimation variance-
130 covariance matrix. Different techniques exist to compute the parameter estimation
131 variance-covariance matrix and a brief overview is presented below.

132

1 A first technique is based on the Fisher information matrix (FIM). The inverse
¢ of the Fisher information matrix approximates the Cramér-Rao bound, a measure
135 for the lower bound on the variance of estimators, assuming unbiased estimators

s (Ljung, 1999), (Walter and Pronzato, 1997). This is the most common technique

5
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17 and the technique used throughout this article.

138

130 Other methods exist to approximate the parameter estimation variance-covariance
1o matrix: Telen et al. (2013b) proposed a technique based on the solution of a Riccati
w  differential equation that allows to directly account for process noise and requires
12 a lower number of differential states than the Fisher information matrix approach.
143

u  The techniques of Heine et al. (2008) and Schenkendorf et al. (2009) both rely
1s on the sigma point method/unscented transformation which approximates a distri-
us bution with a fixed number of parameters, the sigma points. The method presented
w7 by Heine et al. (2008) uses a derivative free filter based on a polynomial interpo-
s lation with a maximum a posteriori update by a Bayesian formulation to compute
19 the parameter estimation variance-covariance matrix. The method presented by
o Schenkendorf et al. (2009) uses the sigma points to sample from the measurement
11 error distribution and add these errors to the output profiles for the current best
12 guess of the parameter values. This results in 2n,+1 measurement profiles on which
153 subsequently a separate parameter estimation procedure has to be performed. These
1 2n, + 1 parameter sets are then used to compute the expected value of the param-
155 eters and parameter estimation variance-covariance matrix.

156

157 Monte Carlo simulations can also be used to obtain an empirical estimate of the pa-
158 rameter distribution by simulating N realizations from the noise distribution, and
159 performing parameter estimation for each of the obtained datasets. This is com-
10 putationally inefficient as many realizations have to be taken to obtain sufficiently
11 accurate parameter estimation variance-covariance matrix computations, e.g.: 500
12 realizations in Balsa-Canto et al. (2008) and 10000 realizations in Schenkendorf
s et al. (2009).

16

s As in this article the Fisher information matrix method for computing the pa-
16 rameter estimation variance-covariance matrix is used, the mathematical problem
1w formulation with this method is introduced.

168

6
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1o The complete classic, dynamic OED problem formulation incorporating the required
o sensitivities and the Fisher information matrix is in this paper considered as follows
m (Telen et al., 2014):

D(F (1)) 1)

172 min
u(-),z(-),F(")

73 subject to:

wo %) = St with @(0) =, @)
d Oz _ Of ox af . Or, .  Oxg
e an? T aal e M 50=%" @)
d B Oz, +dh(z(t) " . dh(x(t)) Ox . -
176 aF(t) = w(t)%(t)TT Q(t) T%(t) with  F(0) =0,(4)
177 0 > Ci(.Z'(t), U(t), t), (5)

s The first equation denotes the objective function, which is in this article a scalar
o function ®(-) of the Fisher information matrix. Typically, this is one of the al-
10 phabetic criteria, i.e., A- (minimize trace of the inverse of the Fisher information
11 matrix), D- (maximize determinant of the Fisher information matrix) or E-criterion
12 (maximizing the smallest eigenvalue of the Fisher information matrix) (Walter and
183 Pronzato, 1997). Equation (2) describes the actual system dynamics with the states
e x(t) € R™ the controls u(t) € R™ and the parameters p € R". These parameters
185 are time-invariant but an experiment to determine their exact values based on mea-
s surements is required. Equations (3) and (4) are the required sensitivity equations
17 and the continuous formulation of the Fisher information matrix. Equation (3) re-
s quires the solution of n,ny additional ordinary differential equations. Computing
1w Equation (4) yields the Fisher information matrix. Therefore, the objective func-
10 tion which represents the total information content is evaluated at t¢, the final time.
w1 Here the function h(z(t)) denotes the measurement function which can depend non-
w2 linearly on the states x(t), w(t) € [0, 1] is a function indicating whether a sample is
103 taken (it is a relaxed function, avoiding that a mixed-integer optimization problem
19e needs to be solved) and Q(¢) denotes the measurement variance-covariance matrix.
15 Without loss of generality, these can also be computed based on a summation de-
s pending whether a discrete or a continuous measurement frame is employed. The

vy symmetry in F(t) can be exploited to reduce the number of ordinary differential

7
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np

s equations (and hence the number of states), i.e., % (np, + 1) instead of n2. Equa-
190 tion (5) denotes the present constraints ¢; € R™. Consequently, the total number

20 of states involved in OED (nogp) equals:
"p
201 nOEDznx+np-nx+7~(np+1). (6)

200 2.2. Robust optimal experiment design

203 Assume that the parameters p are normally distributed, with nominal parameter
20¢  value (mean value) pnom and variance ¥ . With a confidence quantile v, the following
205 ellipsoidal joint confidence region for the model parameters can be considered:

2
206 ”p - pnomHzfl <7, (7)

207

208
200 with the norm [|p||x-1 = (pTz—lp)(l/Z)‘

210

au Assuming that the parametric uncertainty is characterized by a normal distribu-

212 tion, the sum of squared parameter estimation errors,

2 T «—
213 Hp _pnomHE*l = (p _pnom) 2! (p _pnom) ) (8)

214

25 is x%(np) distributed, the objective and constraint functions in Equations (1) and
a6 (5) can be replaced by the following equations in a robust, dynamic OED problem

ar - formulation (Korkel et al., 2004):

max B(F(t¢)) 9)

218 min
u().2()F () [[p—pnom 12— <v

20 0>  max  c(z®),u),t) i=1,...,n (10)
lp—Paom 12,1 <7

21 Note that the problem formulation in Equations (9)-(10) is a conventional worst-
2 case approach as in e.g., Pronzato and Walter (1988). Contrary to standard robust
23 approaches, it is assumed in this article that the parameters can be described by
24 a known uncertainty distribution. To guarantee a solution to the inner maximiza-

25 tion problem for a closed set of model parameters, the sum of squared parameter

8
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26 estimation errors is limited to a certain preset quantile ~.

27 2.8. Stochastic optimal experiment design

28 Another approach to account for parametric uncertainty in optimal experiment
29 design is stochastic optimal experiment design. Stochastic optimization approaches
20 exploit knowledge on a known probability distribution of the uncertainty to for-
2 mulate expected values of the model responses, as e.g., the objective function, and
2 to formulate chance constraints (Nagy and Braatz, 2004). In this article, single
213 chance constraints are considered. The parametric uncertainty distribution (or at
2. least information on the moments) is propagated through the (nonlinear) dynamic
25 System to approximate the statistical moments (e.g., expected value and variance)
26 of the model’s states or response functions (e.g., objective function, outputs, con-
2w straint functions). Furthermore, chance constraints express that the probability of
2 a constraint to be violated is smaller than or equal to a preset probability €; (Wendt

a0 et al., 2002), (Mesbah and Streif, 2015):

240 ¢ > Pr [0 < ci(ac(t),u(t),t)] (11)

241

22 The preset probability ¢; is set based on how much constraint violations are accept-
23 able, the more critical the constraint, the lower the probability ¢; is set. In this
s article ¢ is set equal to 5%.

25 Stochastic optimization approaches exploit knowledge on a known probability
xs  distribution of the uncertainty to formulate expected values of the model responses,
2«7 as e.g., the objective function, and to formulate chance constraints (Nagy and
us  Braatz, 2004). In this dissertation, single chance constraints are considered. Sin-
29 gle chance constraints express that the probability of a constraint to be violated is
0 smaller than or equal to a preset probability €; (Wendt et al., 2002).

251 In a stochastic, expected value dynamic OED problem formulation with chance
22 constraints the objective function in Equation (1) and constraint functions in Equa-

23 tion (5), are replaced by Equations (12) and (13), respectively.

E[@(F(t))] (12)

254 min
u(-),2(-),F (")

9
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x5 subject to:

256 € > Pr [O < ci(x(t),u(t),t)} 1= 1, ey Ne (13)

257

253 Note that similarly to Asprey and Macchietto (2002) an expected value is used in
0 the objective function and this formulation ensures that the system is kept within

x0 a feasible region with specified probability as in e.g., Galvanin et al. (2010).

% 3. Reformulation to the actual OED problems

262 In this section, the approximate robust OED formulation is presented first in
%3 which the inner maximization problem is linearized. Subsequently, polynomial chaos
x4 expansion is applied to stochastic OED as in Mesbah and Streif (2015), Nimmegeers
s et al. (2017). Finally, the approximate robust and PCE based stochastic OED

%6 formulations are compared.

w7 3.1. Sensitivities based approximate robust OED reformulation

268 The approach of Koérkel et al. (2004) consists of calculating a first order Taylor
%0 Series approximation of the objective function, which transforms the inner non-
20 convex maximization problem to a convex maximization of a linear function (i.e.,
m O(F(tr)) + %@(F(tf))(p — Dnom)) Subject to a convex quadratic constraint (i.e.,
m |p— pnomHQE,l < 7). By taking these assumptions, the inner maximization prob-
a3 lem has the following solution (as derived in Appendix A) in contrast with what

xa has been derived in (Korkel et al., 2004):

B(F(e) + 7 | o) (14)

a6 Although the evaluation of this solution to the inner maximization problem seems
arr - straightforward, the implementation of the derivative of the Fisher information
e matrix with respect to the parameters is needed to compute dipq)(F (t¢)) in the
279 objective function of the approximate robust OED problem formulation. Differ-
20 ent mathematical approaches exist to implement the computation of the derivative
s of the Fisher information matrix elements with respect to the parameters as for

2 instance, finite differences or calculating second order sensitivities through tensor

10
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283 variational equations (Vassiliadis et al., 1999), (Balsa-Canto et al., 2001), (Telen
2 et al., 2012a). Therefore this method is referred to in this article as a sensitivities
25 based approximate robust approach. Moreover, advanced automatic differentiation
26 tools as e.g., casADi (Andersson et al., 2012) can be exploited to retrieve the Ja-
27 cobian of the Fisher information matrix efficiently without the need for additional
26 states. This last approach is followed in this paper. Note that /¥ H%CD(F(tf))H2
250 can be seen as an approximation of the standard deviation on the OED objective
20 function ®(F(tr)).

201 The same approach can be followed for the constraint function, i.e., the con-

22 straint should be satisfied in the worst case as shown in Equation (15).

203 0o > max  ¢(zi(t),u(t),t) i=1,...,nc. (15)
lp=Pnomllg—1

24 Similarly as for the objective function, a first order Taylor series approximation of
25 the constraint function can be made, resulting in a convex maximization of a linear
26 function (in this case ¢;(x;(t), u(t),t)), subject to a convex quadratic constraint (i.e.,

297 ||P — Prom||s;—1. This results in the following constraint:

0 > ci(x(t),u(m)+ﬁ.'jpci(x(t),u(t),t) (16)

by

20 The norm H dipc(x(t), u(t), t)..E can be seen as an approximation of the standard de-
s0  viation on the constraint function ¢;(z(t), u(t),t). Note that the required derivative
sn of the constraint function with respect to the parameters d%ci(x(t), u(t),t) can be

s easily computed from the sensitivity states.

_ (42 (da) pdada a7
272_ dp dx dx dp

ijcxx(t),u(t),t)

304

305
ws  Equation (17) equals the first order approximation of the constraint function’s
s7  variance-covariance matrix (Nagy and Braatz, 2004), (Telen et al., 2015).

308

300 Hence, for the sensitivities based approximate robust OED formulation the fol-

s lowing objective function and constraint function can be used to replace Equations

11
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au (1) and (5) in the formulation of the general OED problem (Equations (1)-(2)):

Buon (F(11)) = B(F (1)) + /7 H;‘;@(Fuf)) a8)

by

a1z subject to:

dz\ " (de\ " _de; dx
314 0 > c(z(t),ult),t)+7 (dp> <dx) Echchp’ i=1,...,nc (19)

ss 3.2. Polynomial chaos based stochastic OED formulation

316 In stochastic optimal experiment design, the constraints can be formulated as
a7 chance constraints. However, addressing these chance constraints in dynamic opti-
a8 mization is computationally challenging as pointed out in e.g., Mesbah et al. (2014).
a0 Cantelli-Chebyshev’s inequality can be used to reformulate these chance constraints
20 as the following equivalent deterministic constraints (Mesbah and Streif, 2015):

321 0>E [Ci] + o Var [Ci] (20)

322

23 In Equation (20), E [¢;] and Var [¢;] express the expected value and variance of the
;24 constraint function ¢, respectively. The coefficient a., is introduced as a backoff
w5 parameter (e.g., (Galvanin et al., 2010)) and can be seen as an uncertainty quantile
26 (Telen et al., 2015). Note that the objective function can also include a penalization
s7  term for large variations by adding a term accounting for the variance weighted with
s a backoff parameter:

329 IE[J]—I—QJ\/Var[J] (21)

330

s Polynomial chaos expansion (PCE) can be used for the computation of the variance
s and expected value of model responses (e.g., objective function, constraint function,
a3 ete.). Contary to other similar uncertainty propagation techniques as the unscented
14 transformation or sigma point approach (Julier and Uhlmann, 1996; Kawohl et al.,
a5 2007; Telen et al., 2014), PCE is not limited to symmetric, unimodal distribu-
16 tions but can also be applied to non-symmetric parametric uncertainty distributions

s (Wiener, 1938), (Xiu and Karniadakis, 2002). The rationale of polynomial chaos

12
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18 expansion is to approximate the model response (e.g., objective function, constraint
s function, etc.) as a sum of orthogonal polynomials (i.e., polynomials of which the
s inner product equals zero) through PCE collocation points. These polynomials are
s a function of the uncertain variable for which a probability distribution is assumed
s t0 be given (Mesbah and Streif, 2015),(Nimmegeers et al., 2016).

3

us  Consider the d-th order polynomial chaos expansion of the OED objective function
us  DP(F(te)), with a given distribution for the parameters p (with a given expectation

us value P and variance-covariance matrix Pyp) is defined in Equation (22):

L-1
O(F(te) = Y ag;T;(p). (22)
38 =0

ss  Here PCE is formulated using a term based index j (j =0,...,L —1). The symbol
= ag ; denotes the unknown PCE coefficients and Wj(y) the multivariate orthogonal
1 polynomials. The total number of terms L in the polynomial chaos expansion
2 of order d depends on the number of uncertain variables n and the order of the

33 expansion d:

_ (n+a)!
= ="t (23)
356 Intrusive and non-intrusive methods exist to estimate the unknown coefficients

357 affb’j. This distinction is based on the extent to which the problem needs to be

s reformulated. More specifically, intrusive methods develop a deterministic set of
0 equations for the coefficients aﬂi{)’j based on a Galerkin projection of the approxi-
0 mation error between the model response function (for instance the OED objective
s function ®(F(t¢))) and its polynomial chaos expansion. Note that for intrusive
2 methods the model response needs to be explicitly known and preferably the ex-
3 plicit model response function is a polynomial function. In non-intrusive methods
s the model is considered as a black box and exact expressions for the model response
s are not required. All non-intrusive methods can be considered as a weighted sum
s of model response evaluations in ns sampling points.

367 In this work a non-intrusive PCE method based on least squares regression is

s followed in order to determine the unknown coefficients aﬁl{, 5 The model is evaluated
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w0 in sampling points, which are selected from the roots of the higher order (i.e., d +
s 1) orthogonal polynomial for each uncertain parameter. For more details on the
sn computation of the PCE coefficients with this least squares regression approach,
sz the reader is referred to Nimmegeers et al. (2016).

373 In summary, the PCE coefficients are computed as a weighting of the function
s P(F(tr)) evaluated at the different sampling points m;. The objective function and

a5 constraints for the PCE based stochastic OED formulation are defined as:

L-1 9

376 q)PCE = afl{)70 + ap Z (a‘é,j) E [\I/JQ(]?)} (24)
j=1

asr - subject to:
L—-1 9

378 0 = afi,o + g, (ai,j) E {\Pf(p)} (25)

1

(-

s where E [\I’JQ (p)] is computed offline.

o 3.3. Comparison of the OED formulations

381 In Table 1 the objective function and constraint formulations are shown for the
s2 nominal (not accounting for uncertainty) optimal experiment design, sensitivities
;3 based approximate robust experiment design and the PCE based stochastic exper-
s iment design approaches. From Table 1 it can be seen that the approximate robust
ss  and PCE based stochastic OED approaches formulate the objective (or constraint)
s function as a sum of two terms in which the second term is an approximation
sr - of the variance on the objective (or constraint) function, weighted with a backoff
s parameter.

380 The major difference between the approximate robust OED formulation and the
s PCE based stochastic OED formulation is the number of required states. In the
s approximate robust OED formulation, the model is only evaluated in the nominal
2 parameter values. However, depending on the approach used for the evaluation of
33 the derivative of the Fisher information matrix with respect to the parameters, the
s« number of states differs. If tensor variational equations (Vassiliadis et al., 1999),
s (Balsa-Canto et al., 2001), (Telen et al., 2012a) are used, the number of states

s corresponds to Nyob tensor—approx = Nx + (Np + L)nxnp + (nxnp + 1)np(np, +1)/2. In
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37 case that an automatic differentiation tool as casADi is used, the number of states
s corresponds with nyob approx = MOED = Nx + NxNp + Np(np +1)/2. However, in the
s PCE based stochastic OED formulation the model is evaluated in the ngy sampling
w0 points, leading to a system of npcg = ns(nx+nxnp+np,(np+1))/2 states, which are
s much easier parallellized as they consist of copies of the same system only differing
w2 in the model parameters.

403 In the approximate robust OED formulation the worst-case objective function
wa is computed by a linearization of the inner maximization problem. The compu-
ws  tation of this worst-case objective function is related to the assumption of a nor-
ws mal distribution of the parametric uncertainty (hence a chi-square distribution of
wr || — Prom HQE,l ). This leads to two terms in which one term is the objective function
w8 evaluated in the nominal parameter values and the second term contains the first
wo order approximation of the variance on the objective function, weighted with the
a0 square root of a chi-square confidence quantile.

an In the PCE based stochastic OED formulation, an expected value objective
a2 function is formulated based on the parametric uncertainty distribution. To penalize
a3 for the variance on the objective function, a variance-related term can be added to
aa  the objective function, weighted with a backoff parameter. These terms are both
a5 based on the computation of a weighted sum of the objective function evaluated in
as  the different sampling points.

a7 Besides the difference in practical computation of these terms, the underlying
ais  reasoning is different for both methods. Similarly to the objective function, worst
a9 case constraint functions are computed in the approximate robust OED formulation.
20 In the PCE based stochastic OED formulation, chance constraints are considered
w21 expressing that the probability of a constraint to be violated is smaller than or equal
w22 to a certain value.

423 A final difference between the two formulations is the choice of the backoff
w20 parameters. In the approximate robust OED formulation these backoff parameters
w5 are based on the assumption that the sum of squared parameter estimation errors
w6 is chi-square distributed and «y corresponds to a chi-square quantile. For the PCE
w21 based stochastic approaches the choice of this parameter can be related to a quantile

w8 (if the distribution of the considered response (i.e., objective function or constraint
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xo function) is known) or based on Cantelli-Chebyshev’s inequality (Mesbah and Streif,
s0 2015). Telen et al. (2015) presents an iterative strategy for selecting this backoff

431 parameter.

2 4. Results

433 Two case studies are investigated in this work. The first case study is a Lotka
sa Volterra predator prey model augmented with a fishing term. In the second case
a5 study the jacketed tubular reactor is considered. In both case studies information
w6 optimality of the experiment design is studied. As a reactor temperature state con-
s straint is present in the second case study, the feasibility of the experiment design (in
s terms of constraint violations) is also studied more in depth in the second case study.
439

w0 From the formulation in (1)-(5), it is clear that OED is a type of dynamic op-
w1 timization problems. In dynamic optimization an optimal value for the control
w2 inputs has to be found for every ¢t € [0,¢]. OED for nonlinear dynamic models is
w3 a subclass of dynamic optimization which quickly leads to a high number of states.
ws These problems are solved in this work by discretizing the controls via single shoot-
ws ing using casADi (Andersson et al., 2012). The resulting NLP is solved with IPOPT
us  (Wachter and Biegler, 2006).

a7 Before starting with the case studies, firstly the indicators that are used for the

ws  assessment of the different OED approaches are introduced.

wmo  4.1. Assessment of the different OED approaches

450 The performance of the different OED approaches is assessed in terms of opti-
s mality (information content), feasibility (constraint violations) and computational
2 time. In this article two metrics are used for the information content: the E-criterion
ss3  and the D-criterion.

44

w5 The E-criterion aims at minimizing the largest eigenvalue of the variance-covariance
s matrix. Using the Fisher information matrix approach for OED, this corresponds
7 to maximizing the smallest eigenvalue of the Fisher information matrix. Geomet-

ss  rically, an E-optimal design minimizes the length of the largest axis of the joint
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w0 confidence region (Kiefer and Wolfowitz, 1959). Hence, the greater the smallest
wo eigenvalue of the Fisher information matrix, the higher the information content.
w1 This criterion is used in the first case study, the Lotka Volterra fishing problem.

a62

w3 The D-criterion minimizes the determinant of the variance-covariance matrix and
we 18 implemented in this article as the maximization of the determinant of the Fisher
ws information matrix. A D-optimal design minimizes the volume of the confidence
ws  region (Kiefer and Wolfowitz, 1959). Hence a high determinant of the Fisher infor-
w7 mation matrix corresponds with a high information content. This criterion is used
w8 in the second case study, the jacketed tubular reactor.

wo In order to assess the performance of the OED approaches Monte Carlo simula-
a0 tions have been executed in which parameter values are randomly taken from the
a1 parametric uncertainty distribution to simulate the system with the computed op-
w timal experimental inputs. The E-criterion values (for the first case study) abd
w3 D-criterion values (for the second case study) are evaluated and compared for the
ann different OED approaches.

a75

as  In the second case study, a reactor temperature state constraint is present and
a7 the feasibility of the experiment design (in terms of constraint violations) is also
s studied by means of Monte Carlo simulations. The lower the number of constraint
a0 violations the more robust it is with respect to constraint violations.

480

w1 Note that two parameters are typically set by the user; « for the PCE-based stochas-
w2 tic approach and v for the approximate robust approach. In the first case study,
3 emphasis is on robustness with respect to information content and as no state con-
e straints are present, robustness with respect to constraint violations is not studied.
w5 In the first case study « and v are selected based on quantiles as mentioned in
s subsection 4.2. In the second case study, emphasis is on robustness with respect to
w7 constraint violations due to the reactor temperature state constraint. In this case
w3 study a and 7 are seen as backoff parameters and as outlined by Telen et al. (2015)

s to reduce the number of constraint violations.
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wo 4.2. A Lotka Volterra fishing problem - robustness in information content

401 In this first case study a Lotka Volterra fishing problem (Sager, 2013; Telen
w2 et al., 2012b) is considered. The goal of this model is to track a predetermined
w3 steady state value for both the predator and prey states where typically the deci-
w4 sion to fish is considered to be binary. In the implementation of this case study, the
ws problem is solved in a relaxed version, i.e., u € [0, 1] and the strategy for connecting
w6 the optimal control values to binary values from Sager et al. (2009) is applied. Two
7 fish populations live in a pond: a prey and a predator population. In this case study
w8 the aim is to develop an optimal fishing strategy u(t) and sampling strategy w(t)
w0 (i.e., the population measurement by the diver) to estimate the parameters in the
so  prey and predator mass balances related to the interaction between predator and
so1  prey.

502

s The model equations are:

d

S0t % = T1 — P1T1T2 — 0.41'111,, (26)
d

505 % = —T2+ pP2axr1T2 — 0.2I2u, (27)

so where 1 is the biomass of the prey and zo the biomass of the predator. The
sov symbol w is the fishing control. The initial conditions are set to: z1(0) = 0.5 and
s 22(0) = 0.7, furthermore the final time is fixed at t; = 12. The assumed mean
s0 parameter values are p; = 1 and po = 1.

510 Both states are considered to be measurable. The parameter variance-covariance
su matrix is assumed to be

0.01 0
2 Vv = . (28)

0 0.01

513
su Remark: If the parameter distribution is not known (as is often the case), an
si5 assumption can be made regarding the parameter distribution, potentially based
s on available experimental data and from a parameter estimation procedure and
sz distribution fitting (often a normal distribution) or a conservative distribution as

sie e.g., uniform distribution can be taken. If V' contains correlation between the
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si9 parameters, then this can be accounted for in defining the sampling points by using
s0 arbitrary polynomial chaos (Paulson et al., 2017). Larger values in V elements,
sa result in greater uncertainty and hence more conservative experiment designs.

522 For this first case study, only the robustness with respect to the information
53 content is investigated as there are no critical state constraints which could lead to
s an infeasible situation of the system. Similarly, as for constraints, the variance with
s5  respect to the information content can also be taken into account in the stochastic
s optimal experiment design approaches by considering a backoff parameter « as in
s BEquation (21).

528 Furthermore, the number of measurements which is allowed to be taken is con-
s strained to 6 time units. This is motivated by experimental practice where the
s decision when to sample is usually one of the degrees of freedom in the experiment.
ss1. The goal in this case study is to maximize the information content as expressed by
s the minimum eigenvalue of the Fisher information matrix. This sampling strategy
s w(t) € [0,1] is implemented in a relaxed form instead of considering it as a binary
s decision variable and enters the OED system in the ODE for the Fisher information
s Iatrix:

AW <a”“°(t)> <dh(;;(t))> Q*lidhgx(t))%(t) (29)

538
s Three scenarios have been studied in this case study to investigate the influence
se0  Of accounting for the variance on the information content during the experiment
sa  design: nominal OED, PCE based stochastic OED (with expected value ED, i.e.,
so =0 and o = 1.65) and an approximate robust design in which a 95% confidence
ses region is considered (i.e., v = 6). In summary, the values for o and v have been
su selected in this case study as follows: a = 0 corresponds with an expected value
s approach, not accounting for the variance on the OED objective function, o = 1.65
sis corresponds with a 95% normal quantile taken from the OED objective function for
sz the stochastic approach while v = 6 corresponds with 95% chi-square quantile in
ses the approximate robust OED approach.

549

sso  Note that for this case study as well a normal as a uniform parametric uncer-
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ss1 tainty distribution are considered for the parameters p; and ps. Therefore, next to
2 a first order (PCE1) and second order (PCE2) polynomial chaos expansion based on
53 a normal parametric uncertainty distribution of p; and ps, a second order polyno-
ssa - mial chaos expansion has been derived based on a uniform parametric uncertainty
ss5  distribution (PCE2 Uniform). To illustrate the difference between the implemented
ss6  strategies, the control profiles for ag = 0 and ag = 1.65, i.e., the fishing control
ssv - u(t) and the sampling action w(t), are depicted in Figure 1 (a,b,c,d) and Figure 1
sss (e,f,g,h), respectively. The profiles for a second order polynomial chaos expansion
ss9  derived from a normal parametric uncertainty distribution (PCE2) and a second or-
s der polynomial chaos expansion derived from a uniform parametric uncertainty dis-
s tribution (PCE2 Uniform) are shown in Figure 1(c,d) and Figure 1(g,h) for ag =0
s2 and ag = 1.65, respectively. For ae = 1.65, both u(t) and w(t) profiles differ

s63  substantially.

see  4.2.1. Information content

565 The information content as measured by the smallest eigenvalue (i.e., E-criterion
ss  value) using the current best estimate for the parameters for « = 0 and o = 1.65
ss7 are presented in Table 2. Thus when the parameters of the system would be ex-
ses  act, there is a slight loss in information content (i.e., decrease in E-criterion value
s0  as indicated in Table 2) when using the stochastic approach compared with the
so  nominal case of approximately 5% (PCE2 approaches) and 10% (PCE1) for o =0
snand a loss in information content of approximately 32% (PCEL1), 3% (PCE2), 13%
sz (PCE2 uniform) for a = 1.65. The loss in information content when comparing the
s;3 - approximate robust approach with the nominal case is dramatic (approximately
s 80%). Evaluation of the norm H %@(F(tf)) HZ for the different approaches revealed
s5 that the approximate robust approach results in the smallest norm (i.e., 4.41 for the
s, approximate robust approach versus 16.09 in the nominal case). Since the approx-
s imate robust approach only considers the norm H%@(F (tf))HE evaluated at the
s nominal parameter values this approach results in a large backoff and dramatically

s low information content when compared to the other approaches.
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sso 4.2.2. Robustness in information content with respect to parametric uncertainty
581 In order to investigate the robustness of the designed experiments with respect
sz to the parameter influence 1000 parameter realizations are drawn from the as-
ss sumed normal/uniform distribution with the aforementioned mean and variance
ssa  values. Subsequently the mean smallest eigenvalue and quartiles are reported for
ss a = 1.65 a trade-off between information content and spread of the information
66 content (i.e., how close the values of the smallest eigenvalue are for the different
sv  parameter realizations) is made and the results are different: only the stochastic
sss  PCE2 approaches yield a higher information content as can be observed in the mean
se0  values and quartiles in Table 3, respectively. The spread is generally lower for the
s stochastic approach than for the nominal approaches. The approximate robust ap-
s proaches result in a very low information content, but also a very low spread on the
s2  information content. A possible explanation for this very low information content,
ss but very low spread on the information content for the approximate robust ap-
soe  proach lies in the linearization which holds when the uncertainty is small compared
ss  to the model curvature such that higher order terms can be neglected. Depending
ss on the case study, it can be different. Therefore this result cannot be generalized.
sov  Comparing this with the nominal and stochastic approaches, it is concluded that
se  the approximate robust designs are too conservative (approximately 4 times lower
so0 than the nominal approaches).

600

s The effect of the stochastic approach on the cost surface (i.e., the surface con-
2 structed by plotting the E-criterion value versus the parameter values) is visualized
603 in Figure 2. In the neighborhood of the nominal parameter values, the nominal de-
sa sign outperforms the stochastic approach, however, there is a distinct region where
65 the information content drops sharply for the nominal design while this totally ab-
ss sent in the stochastic approach. This exemplifies the goal of the stochastic optimal
s7 experiment design approach, i.e., the attempt to remain informative for a wide
es range of actual parameter realizations.

609

o0 The surfaces obtained in Figure 2(a) and 2(b) are also projected in the 2D figures in

su Figure 3. Here the dependency in each of the different parameters is depicted. For
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sz parameter pp, it is evident in Figure 3(a) and 3(c) that on average the stochastic
ss  approach performs better than the nominal design. In Figure 3(b) and 3(d), the
ea  difference is less pronounced, however, there is a distinct area where the stochastic
e1s approach outperforms the nominal design. Note also the strong dependency of the
ss  information content on parameter p; in Figure 3(a) and 3(c). To conclude, the
ev  variance on the information content is lower in case @ = 1.65 (as can be observed
s in Figure 3) and that this comes at the cost of a reduction in overall information

0 content when compared to @ = 0 (as can be observed in Figure 2).

o0 4.2.3. Computation times

621 A final aspect in which the nominal, approximate robust and stochastic ap-
2 proaches are evaluated is computation time (see Table 4). This computation time
¢3 1s closely related to the number of states in the considered OED approach. For
¢4 instance, it can be expected that the PCE2 approaches require a higher computa-
625 tion time (3869.12 s) than the other approaches due to the higher number of states
e involved in the system, i.e., six times the number of states in the nominal case. For
¢z the PCE1 approaches the computation time is higher than for the nominal approach
e (799.93 s), since three times the number of nominal states are evaluated. The ap-
&0 Pproximate robust approach on the other hand will need a higher computation time
e than the nominal approach due to the additional effort in automatic differentiation
e that is required for the computation (553.97 s) of d—"p@(F(tf)) The nominal OED

62 approach only requires 91.06 s.

o3 4.3. A jacketed tubular reactor - robustness in constraint violations

634 The second case study of this paper involves a jacketed tubular reactor under
e steady-state conditions. An irreversible first-order reaction takes place inside the
e reactor. Two coupled ordinary differential equations are obtained through the mass
e and energy balances. However, the steady-state scenario is described by an ordinary
s  differential equation in the dimensionless spatial coordinate z denoting the position

s along the reactor, as the time-dependence is eliminated (Logist et al., 2011).

d in w2

N % = Mg et (30)
d in6 T3 in

641 % B ak’U (1 o xl)€11=’°22 + 611() (u a I2)7 (31)
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ez and with initial conditions:

oa3 z(0) = (0,007, (32)

es and constraints:

Tmin - ﬂn Tm X ﬂn
645 T < IQ(Z) < aTi R (33)
T, min — ﬂn T, max j—;n
Semp T cu(z) < St (34)

sr  The two states are the dimensionless reactant concentration 1 = (Ci, — C)/Cin
ws and the dimensionless reactor temperature xo = (T — Ti,)/Tin. Here, Ty, and Ci,
&0 are the temperature and the reactant concentration of the feed stream, respectively.
0 The control u = (T — Tin)/Tin is a dimensionless version of the jacket temperature
et Ty. Both the reactor and jacket temperatures are constrained (Equations (33) and
2 (34)) while the differential equations are solved on the interval z € [0,1]. As OED
63 objective function the D criterion has been chosen. The number of equidistant
64 control intervals is set to 20 and both states are considered to be measurable. The
65 two parameters of interest for the optimal experiment design procedure are oy, =
oo 0.058 and Sy, = 0.2. The dimensionless version of the reactor jacket temperature
es7 1 is the only manipulated experimental input. Their assumed parameter variance-
ess  covariance matrix is:
0.01742 0

Vo= . (35)
0  0.062

so For the remaining expressions and parameter values, the reader is referred to (Logist
1 et al., 2011).

662 In a first simulation approach, the parameters are assumed to be normally dis-
o3 tributed. Subsequently, the parameters are assumed to be Beta(2,3) distributed
64 with the same mean and variance as the earlier studied normal distribution. There-
&5 fore, two stochastic OED approaches are investigated, a first and second order PCE
s approach based on a normal parametric uncertainty distribution (PCE1 and PCE2)

sv and a first and second order PCE approach based on a Beta(2,3) parametric un-
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s certainty distribution (PCE1 Beta and PCE2 Beta). In particular the following

60 constraints are considered:

Tmax - T}n
670 E[zo] + ay/Var[zy]) < ————, (36)

<
Tin
Tmin — T’in
o1 E[z2] — ay/Var [z3] > —7 (37)

ez For the stochastic PCE approaches « is chosen equal to 2 to reduce the number of
o3 constraint violations, while for the approximate robust approach a 95% quantile is

o considered (i.e., v = 6).

o5 4.3.1. Normally distributed parameters

676 When OED is performed the state and control profiles depicted in Figure 4 are
o7 obtained. Notice that in the nominal design the maximal temperature never reaches
es its constraints. The same holds for the approximate robust experiment design. Its
e corresponding control profile consists of a heating after which a cooling takes place
s0 for the remainder of the reactor length. There is a distinct difference between PCE1
sr and PCE2. The heating profile stops earlier for the PCE1 approach resulting in a re-
e2 actor temperature which is remarkably lower than the nominal and PCE2 approach.
e Also note that its upper confidence bound never reaches the state upper bound. In
e the remainder of the period a cooling takes place however there is a slight risk that
es the temperature could drop below the lower bound resulting in a reduced cooling
s effort towards the end of the reactor. For PCE2 the heating is slightly less compared
ez with the nominal case but for its upper confidence region the upper state constraint
es 1s active. Subsequently, cooling takes place but similar to the PCE1 approach this
e0 1S reduced at the end of the simulation interval. Hence, PCE1l a bit more seems
e0 conservative, similar to the approximate robust case. However, PCE1 and the ap-
s proximate robust approach lead to a significantly different result as discussed below.
692

693 In order to numerically validate the obtained experiments, 1000 parameter sam-
sa Pples are drawn from the assumed Gaussian distribution, subsequently the system
es 18 simulated with these parameter values. Given the presence of state bounds, the
es number of constraint violations is investigated. The simulation results are presented

eor in Table 5. Out of 1000 samples, the nominal D-design results in 15.7% violations.
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ss When the experiments obtained by the stochastic approaches are investigated, it
e 1is observed that the PCE1 approach for both the 20 bound results in 14.8%. This
w0 result is attributed to the fact that the PCEL is a coarse approximation of the
1 underlying function. If this does not suffice, the value for o can be increased itera-
72 tively or a value can be chosen based on the Cantelli-Chebyshev inequality (Mesbah
w3 et al., 2014; Telen et al., 2015). The latter holds no matter what is the underlying
s distribution of the state bounds. For the PCE2 approaches 5.6% violations are
s observed. The approximate robust approach results in 3.7% violations in case of
706 normally distributed parameters, which is more robust than most of the stochastic
o7 approaches with PCE2.

708

w0 In Figure 5(a), the valid experiments per designed experiments are illustrated in re-
70 lation with the sampled parameter values for the PCE2 approach. It clearly depicts
m  which parameter combinations of ay, and By, yield experiments which violate the
n2  state constraints. From the figure it is also clear that there is a set of parame-
73 ter combinations outside the 95% region which result for the 20 experiment in a

ma  temperature evolution which violates the state constraints.

s 4.3.2. Beta(2,3) distributed parameters

716 In the second simulation approach, the parameters are assumed to follow a Beta
77 distribution with the aforementioned mean and standard deviation. Besides mean
ns  and variance, a Beta distribution is described by two parameters oz and 83 which
7o determine the actual shape. For the following simulations ag = 2 and g = 3
720 which results in a distribution which is not symmetric with respect to its mean
=1 value and has bounded support. It is also apparent in the obtained sampling points
= to construct the mean and variance approximations as those sampling points are
=3 chosen with a higher probability. The same values for o and « are chosen as for
72¢  the normally distributed parameters. Note that ||p — pnom”;,l is no longer x%(n,)
s distributed and that the choice of the quantile v is in this case not fully correct and
76 only an approximation.

27

28  The obtained reactor and jacket temperature profiles are depicted in Figure 4. In

729 contrast with the profiles based on Gaussian distributed parameters from Figure 4,
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0 larger confidence intervals are predicted for the expected temperature evolution.
7 This is also evident from the longer extended period in which the confidence inter-
72 val bounds coincide with the state bounds. In line with the previous simulation,
13 the PCE2 approach reaches a higher reactor temperature and is more constrained
7 by the upper state bound while for PCE1 the lower bound is active. This differ-
735 ence is also apparent in the control action. Note that all Beta distribution based
s approaches start cooling quicker than the nominal and normally distributed param-
1w eters. Note also the difference between PCE1 and PCE2. In the PCE2 case the
78 cooling is not that extreme in order to maintain the upper confidence interval value
70 at the boundary value while PCE1 has some similarity with the observed profiles

=0 of the Gaussian case.

m2  Also for this approach, the obtained experiments are validated numerically by
3 sampling 1000 parameter combinations from the assumed Beta distributions. In
ne particular the potential violation of state constraints is once more of interest. The
s obtained simulation results are depicted in Table 5. For the nominal design viola-
s tions in 18.1% of the parameter values are observed. For the stochastic approaches,
7 the PCEL approach is overly robust as even not a single parameter combination
us resulted in a constraint violation. For the PCE2 approach this is respectively 5.9%
uo and 1.4%. In this second simulation case it is remarkable that the approximate
0 robust approach results in 2.7 % violations, which is less robust than most of the
1 stochastic approaches except the 2 o experiment with PCE2. Note that the ob-
2 served robustness of the PCE1 approach in this case study cannot be generalized,
73 1.e., this result is case study specific. From a theoretical point of view, one would
7 expect that lower order PCEs would provide a lower variance (as more positive
75 terms should increase the variance). However, in this case the PCE coefficients are
s computed with a non-intrusive least-squares apporach which results in an additional
7 source of error. This additional source of error could be on the positive side (i.e.,
s overly robust) or on the negative side (i.e., causing a higher percentage of constraint
70 violations). In this case study the error is on the positive side, such that this overly
wo robust PCE1 result is not problematic.

761 In Figure 5(b) the valid experiments are depicted for the PCE2 approach in
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w2 function of the parameter values. Remark here the bounded support for the param-
73 eter values. Similar to Figure 5(a) the area where the violations take place is the

764  Salle.

ws  4.3.3. Computation times

766 In terms of computation times, similar observations are made as in the Lotka-
7 Volterra case study: the PCE OED approaches require a higher computation time
s than the approximate robust and nominal OED approaches. The results are sum-
w0 marized in Table 5. Note the factor 2 difference in computation time between the
7o nominal and approximate robust OED approaches, which is most probably due to
m  the nonlinear state constraint. Also remark that PCEL is a linear approximation
2 but it is significantly more computationally expensive (more than a factor 3) than
73 the approximate robust OED approach. The approximate robust approach in this
m  case study is significantly less computationally expensive than in the Lotka-Volterra
s case study as the sensitivity states are directly exploited in the evaluation of the
776 robustified constraint. There is no need for additional automatic differentiation to
777 the Jacobian of the Fisher information matrix, as no robustified OED objective is

s used.

m 4.8.4. Robustness with respect to information content

780 Although the focus of this case study is on robustness with respect to constraint
7 violations (feasibility), it is interesting to have a look at the performance of the
w2 different OED approaches with respect to robustness with respect to information
73 content. In Table 6 the quartiles and interquartile (IQR) range of the D-criterion are
s depicted for the Monte Carlo simulations (i.e., the 1000 parameter samples that are
75 drawn from the normal and Beta(2,3) parametric uncertainty distribution, respec-
7 tively). Note that these quartiles are computed for all samples and that constraint
77 violations are not exclued from these. From this table the following observations
s can be made. Firstly, the nominal experiment design results in higher information
70 (i.e., higher quartile values) than the stochastic and approximate robust approaches.
0 However, it can be observed that the IQR is smaller than the IQR for the nomi-
71 nal experiment design for the stochastic and approximate robust approaches. This

2 means that in terms of spread of the information content, these approaches perform
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73 better than the nominal experiment design. The reduction in information content
7« that can be observed in as well the stochastic as approximate robust approaches
75 1s the price to pay for the increased robustness with respect to constraint viola-
6 tions. For this case study, the approximate robust approach performs better in
77 terms of information content than the PCE-based stochastic approaches in case of
s the Beta(2,3) distributed parametric uncertainty, while for the normally distributed
0 parametric uncertainty, the second order PCE-based approach performs better in
so terms of information content. Note, however, that for both the normally distributed
g1 parameters the number of constraint violations is lower for the approximate robust
92 approach and that in terms of trade-off between information content (optimality)
s3 and constraint violations (feasibility) the approximate robust OED approach is rec-

ss  ommended for this case study.

ss 4.4. What approach to use for a desired robust experiment design?

806 In the two presented case studies robustness in information content and robust-
g7 TNess in constraint violations have been studied. From the obtained results some
ss  guidelines can be formulated with respect to the method that is preferably used
g0 when accounting for parametric uncertainty. The guidelines are summarized in
a0 Figure 6.

811 In case that robustness in information content is an issue, the PCE based
si2  stochastic OED approach is preferred over the approximate robust OED approach.
a1z The results clearly indicate that the approximate robust approach is too conserva-
sia  tive and results in designs resulting in information content that is four times lower
a5 than a nominal OED approach. The stochastic PCE based approach on the other
a6 hand results in an improved information content when compared to the nominal and
si7  approximate robust approaches. Furthermore, the approximate robust approach re-
a8 quires an additional computational effort in calculating the second order sensitivities
a0 for the variance on the objective function. It needs to be noted that with increasing
220 order of PCE the PCE based stochastic OED approaches will have an increased
s computational cost. However, it is clear that in many cases (as in the presented
ez case studies in this article), a second order PCE is sufficient.

823 In case that robustness in constraint violations is required, the conclusion is not

ga  that clear. If computation time is an issue, then the approximate robust approach
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@5 is preferred over the stochastic PCE based approach as the sensitivity states are
a6 directly exploited in the evaluation of the robustified constraint. When considering
sz the percentage of constraint violations, PCE based stochastic OED results in a
@8 lower percentage of constraint violations than the approximate robust approach.
@9 For the jacketed tubular reactor case study, the reduction in constraint violations
s 18 sufficient such that the approximate robust OED approach is preferred in case of

g1 robustness in constraint violations.

s 4.9. Remark

833 Note that although the PCE approaches clearly perform worse in computation
s time than the approximate robust approach, the computation time of the stochastic
25 PCE approaches can be reduced by exploiting the sampling-based aspect of the PCE
ss  approaches. More specifically, the same dynamic OED system has to be evaluated in
s the different PCE sampling points. This allows to reformulate the stochastic OED
s problem with ALADIN (Houska et al., 2016) as a distributed optimization problem
s0 in which the different agents consist of the evaluation of the system at different
a0 sampling points and the different agents are coupled by the controls (Jiang et al.,
s 2017). Subject of future work will be on an ALADIN reformulation for stochastic
sz optimal control to reduce computational time and construct efficient stochastic

w3 optimal control algorithms.

ss . Conclusion

85 The impact of parametric uncertainty on the design of experiments has been
as  studied in this paper. Potential negative effects are an overestimation of the ex-
sz pected information content or experiments that violate operating constraints. In the
as  presented work, a computationally tractable approach based on polynomial chaos
a9 expansion has been investigated and compared with the approximate robust optimal
so  experiment design method of Korkel et al. (2004). The presented PCE based ap-
es1  proach allows the incorporation of a priori knowledge of the parameter distribution
g2 in the uncertainty propagation. In addition, the method allows for a formulation
ss3  where the expected value and corresponding variance are computed while avoiding

s a numerical complex integration over the parameter space. The main advantage
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ss  of the polynomial chaos expansion approach is that more information on the un-
s derlying parameter distribution can be incorporated in the optimization problem.
ss7  The presented PCE based methodology is illustrated with two different case studies
ss  with different types of distributions to illustrate the flexibility of the discussed ap-
g0 proach and the comparison with the approximate robust optimal experiment design
so approach of Korkel et al. (2004).

861

s2 For the Lotka-Volterra case study the presented PCE based methodology is less
g3 conservative than the approximate robust methodology and allows to compute
s« information-rich experiments while the variance on the information content is also
ss reduced. The approximate robust approaches lead to a significant loss in informa-
s tion content (almost 80% when compared with nominal experiment designs) and a
s7  very small variance on the information content. For the Lotka-Volterra case study,
w8 the PCE based stochastic OED formulation is more suitable than the approximate
g0 robust OED formulation, since both approaches require a high (and comparable)
s computation time and the PCE based stochastic OED approach results in a higher
sn  information content than the approximate robust approach. In the jacketed tubular
sz reactor case study the emphasis was on reducing constraint violations and gener-
ez ating practically feasible experiments. In case of a normal parametric uncertainty
s« distribution the approximate robust approach resulted in a better reduction of con-
a5 straint violations than most of the stochastic PCE based methodologies, except the
ss  second order PCE approach. However, for the Beta(2,3) approach the stochastic
s7 PCE based approaches outperformed the approximate robust approach in terms
ers  of constraint violations reduction. However, for the jacketed tubular reactor case
sro  study the approximate robust OED approach is more suited since the computation
g0 time is much lower than for the PCE based stochastic OED approaches and the
ss1  number of constraint violations is sufficiently low. The computation time for the
s2 approximate robust OED approach is lower than in the Lotka-Volterra case study
s3  as no derivative of the Fisher information matrix with respect to the parameters is
s needed.

885

ss A severe limitation of the PCE based stochastic OED formulations is the com-
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s7  putational cost which increases significantly for an increasing number of states and
ss  parameters. However, these formulations exhibit a particular structure originating
so from the multiple repetitions of the model equations. In future work, the aim is
so  to reformulate the stochastic OED as a distributed optimization problem, consist-
s ing of decoupled subsystems. A novel distributed optimization algorithm, ALADIN
s (Houska et al., 2016),(Jiang et al., 2017), will be used to decouple the large optimiza-
g3 tion problem and solve the stochastic optimal control problem in a computationally
sa  more efficient way. This should allow the application of sampling-based approaches
g5 of higher order and to cases with more uncertain parameters and more states. Note
ss however that OED is performed offline so computational time is a hindrance but
s not a critical issue. From the results obtained for the implemented case studies,
ss it is concluded that the PCE1 approach, due to its first order character, does not

s always lead to a consistent robustification and is therefore less preferred.
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e Tables

Table 1: Objective and constraint formulations for the nominal, approximate robust and PCE
based stochastic optimal experiment design approaches.

‘ Nominal OED Approximate robust OED PCE based stochastic OED
2
L-1( ,
dip(p(Fm))Hz ad, + uq,\/zj:l (a;,‘j) E [xpf(p)}

T T . . L1 2 .
£) () s a5 (o2, B [#20)]

Objective |  ®(F(tr)) D(F(t)) + \ﬁ|

Constraint | ¢;(z(t),u(t),t) ci(z(t),u(t),t) + /7

Table 2: E-criterion values obtained from simulating the model with the current best guess of the
parameter values and the controls from the nominal and expected E designs for the approximate
robust, PCE1 and PCE2 approaches (a = 1.65).

Nominal Robust PCE1 PCE2 PCE2 Uniform
Amin 45.55 8.90 30.97 44.31 39.62
Amin/Amin,nom 1 0.195 0.680 0.973 0.870

Table 3: Quartiles E-criterion value for Monte Carlo simulations with 1000 realizations from
normally, uniformly distributed parameters p; and ps with mean 1 and standard deviation 0.1 for
a = 1.65.

Nominal Robust PCE1 PCE2 PCE2 uniform
Q1 Normal  31.507 8.662 23.958 33.327 -
Q2 Normal  39.336 9.877 29.401 40.964 -
Q3 Normal  49.579 12.285  37.094 51522 -
Q1 Uniform 30.728 8.733 23.716 32.768 31.366
Q2 Uniform 38.728 10.342  29.550 41.094 39.695
Q3 Uniform 51.139 12.385  38.890 53.336 52.177

Table 4: Computation times for the Lotka-Volterra case study required for nominal OED, approx-
imate robust OED stochastic EV OED and stochastic robustified OED in seconds.

Nominal Robust PCE1 EV  PCE2 EV  PCE2 uniform EV

91.06 553.97  799.93 3869.12 3445.1
PCE1 1.65 PCE21.65 PCE2 uniform 1.65
4051.22 7355.3 4447.42

Table 5: Number and percentage of constraint violations, computation times and number of states
for the different experiment designs for the jacketed tubular reactor case study.

Normally distributed parameters

Nominal Robust PCE1 PCE2
Tviolations 157 37 148 56
% violations 15.7 3.7 14.8 5.6
CPU time 13.93 24.4 87.13 428.21

Beta(2,3) distributed parameters
Nominal Robust PCEl Beta PCE2 Beta

Tviolations 181 25 0 59
% violations 18.1 2.5 0 5.9
CPU time 13.93 24.4 115.67 447.92
38
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Table 6: Quartiles (Q1, Q2 and Q3) and interquartile range (IQR=Q3-Q1) D-criterion value for
Monte Carlo simulations with 1000 realizations from normally, Beta(2,3) distributed parameters.

Nominal Robust PCEl 20 PCE2 20

Q1 Normal 0.281 0.158 0.153 0.184
Q2 Normal 0.473 0.293 0.299 0.346
Q3 Normal 0.806 0.497 0.548 0.619
IQR Normal 0.525 0.339 0.395 0.434
Q1 Beta(2,3)  0.263 0.145  0.037 0.142
Q2 Beta(2,3) 0.470 0.283 0.085 0.264
Q3 Beta(2,3) 0.820 0.570 0.220 0.476
IQR Beta(2,3) 0.557 0.426 0.183 0.333
1062 Figures
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Figure 1: Fishing control u(¢) and sampling action w(t) profiles for the E-optimal, approximate
robust (Robust), and PCE-based stochastic (PCE1, PCE2 and PCE2 Uniform) experiment designs.
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Figure 2: Depiction of the two minimum eigenvalue surfaces for the nominal case and the PCE2
approach for a uniform distribution.
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Figure 3: The 2 two dimensional projections of Figure 2.
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Figure 4: Simulated reactor temperature evolution with 95% confidence bound and control actions
of the D-design and two stochastic OED designs for normally distributed parameters (a,b) and
Beta distributed parameters (c,d).

0.4

o Nominal

0.02

0.04 0.06

«

0.08

0.1

0.12

(a) Normally distributed parameters.

Figure 5: Depiction of valid experiments out of 1000 parameter samples for each of the different
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(b) Beta(2,3) distributed parameters.

designed experiments based on the PCE2 approach of the jacketed tubular reactor.

43

Journal homepage: https://www.journals.elsevier.com/chemical-engineering-science
Original file available at: https://doi.org/10.1016/j.ces.2020.115651

0.12



Postprint version of paper published in Chemical Engineering Science 2020, 115651.
The content is identical to the published paper, but without the final typesetting by the publisher.

Optimality/
Robustness in information PCE-based stochastic OED
content
Feasibility/ '
Robustness in constraint QOmPUFétIOH
violations time critical?

Sensitivities-based
approximate robust OED

Figure 6: Decision tree to select OED approach based on desired robustness, i.e., with respect to
information content (optimality) or with respect to constraint violations (feasibility).
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ws  Appendix A. Derivation of the solution for the linearized inner problem

Consider the inner maximization problem which is approximated with a first

order Taylor expansion in the variable p and reformulated as:

mgxq)(F(tf)) + dip@(F(tf))(p — Pnom) (A1)

subject t0: ||p — Puom |51 < (A.2)

It is clear from this formulation that the objective function of this maximiza-
tion problem is linear in the parameters p. Since ®(F(tf)) is evaluated in the
nominal parameter values pnom, the only relevant term for the maximization is

%@(F(tf))(p — Pnom)- Hence the maximization problem can be simplified to:

d
max dfq)(F(tf))(p - pnom) (A?’)

p ap
subject to: [[p — Puom|l51 < (A4)

Consider the Lagrangian L of Equation (A.3):

L= Q(F(tf)) + %Q(F(tf))(p _pnom) + )‘(’V - (p _prlorn)TZ_l(p _pnom))7 A>0

(A.5)

From differentiation with respect to the optimization variable p and the necessary

optimality condition % =0:

LB (1)) + 2 o — 2 71p) =0 (A6)

If A=0, %@(F(tf))(p — Pnom) would be independent of p. This is a contradiction
and would make the optimization problem irrelevant. Hence, A > 0. Consequently,
Equation (A.6) can be reformulated to an expression for p:

1 _.d
P = DPnom + ﬁz%q)(Foff)) (A?)
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Since Equation (A.1) is a linear, quadratic constrained problem in p and A > 0, the

optimal solution is at the boundary (Boyd and Vandenberghe, 2004), i.e.,

(p - pnom)Tzil(p - pnom) =7 (AS)

Substituting Equation (A.7) in Equation (A.8) results in the following expression:

:
(2&259(17(&))) S BB () =7 (A.9)

From Equation (A.9) and A > 0, an optimal solution for X is determined:

1 d T d
A= 2\ﬁ\/(dp@(zr(tf))) Ed—p{)(F(tf)) (A.10)

The optimal p is given by:

P = Pnom + */Z 2%@(1%{)) (A.11)
J(Bere) s gewa)

Evaluation of the objective function of the inner maximization problem in the op-

timal solution p leads to:

VI (P (1))

\/ (£oF) SLaE)

s = D(F(te) + %@(F(tf)) (A12)

- D(F(t)) + \/v;’;¢<F<tf>>z;;¢<F<tf>> (A13)

(A.14)

_ O(F(tr)) + WHCZ)MF(U)) .
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