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Optimal experiment design under parametric uncertainty:

a comparison of a sensitivities based approach versus a

polynomial chaos based stochastic approach

Philippe Nimmegeersa, Satyajeet Bhonsalea, Dries Telena, Jan Van Impea,∗

aKU Leuven, Department of Chemical Engineering, BioTeC+ & OPTEC, Belgium

Abstract

In order to estimate parameters accurately in nonlinear dynamic systems, experi-
ments that yield a maximum of information are invaluable. Such experiments can be
obtained by exploiting model-based optimal experiment design techniques, which
use the current guess for the parameters. This guess can differ from the actual
system. Consequently, the experiment can result in a lower information content
than expected and constraints are potentially violated. In this paper an efficient
approach for stochastic optimal experiment design is exploited based on polyno-
mial chaos expansion. This stochastic approach is compared with a sensitivities
based approximate robust approach which aims to exploit (higher order) derivative
information. Both approaches aim at a more conservative experiment design with
respect to the information content and constraint violation. Based on two simula-
tion case studies, practical guidelines are provided on which approach is best suited
for robustness with respect to information content and robustness with respect to
state constraints.

Keywords: Optimal experiment design, Stochastic dynamic optimization, Fisher
information matrix, Polynomial chaos expansion, Parametric uncertainty,
Approximate robust optimization

1. Introduction1

Performing experiments (in a (bio)chemical setting) is usually costly (Bouvin2

et al., 2015) as measurements have to be taken and are often analyzed manually.3

Furthermore, an accurate estimation of the parameters in nonlinear processes is4

not trivial. In order to reduce the experimental burden optimal experiment design5

(OED) approaches have been developed and applied in many different (bio)chemical6

applications (Espie and Macchietto, 1989; Asprey and Macchietto, 2002; Jauberthie7

et al., 2006; Cappuyns et al., 2007; Schenkendorf et al., 2009; Telen et al., 2012b,8

2014). So, the main aim of optimal experiment design is to design control in-9

puts and sampling schedules such that the experiment is as informative as possible.10
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An overview of the state-of-the-art for nonlinear dynamic systems can be found11

in Franceschini and Macchietto (2008).12

13

In OED an experiment is planned to estimate the model parameters, however,14

the model-based technique depends on these uncertain/unknown parameter values.15

As a result, parametric uncertainty has two consequences. First, the information16

obtained by performing the experiment must be ensured for all possible true system17

parameter values. In this work, this is called robustness with respect to information18

content (Asprey and Macchietto, 2000). In literature, several approaches have been19

explored to tackle this issue. A practical option is to iterate between the parame-20

ter estimation and subsequently compute the experiment design using the current21

parameter estimates, as in e.g., Walter and Pronzato (1997). Such approach is how-22

ever time consuming and not necessarily robust in the sense that the experiment is23

ensured for all possible true system parameter values. A first approach to design24

robust experiments is to cast them in a max-min optimization problem (Pronzato25

and Walter (1988); Körkel et al. (2004); Rojas et al. (2007)). In Körkel et al. (2004)26

the inner optimization loop is solved explicitly with a linear approximation. Welsh27

and Rojas (2009) proposed a scenario-based robust experiment design approach28

which uses a probabilistic relaxation of the worst case robust paradigm. In this29

case it is considered that robustness with respect to a large majority of situations is30

sufficient rather than against all possible situations. The number of scenarios is set31

by the designer. A different approach is to compute the expected value of the scalar32

function of the Fisher information matrix over the parameter space if stochastic in-33

formation on the parameter uncertainty is available. This idea has been introduced34

in Pronzato and Walter (1985) and was for the first time applied to a dynamic35

system for a Gaussian parameter distribution in Asprey and Macchietto (2002). In36

the latter work the expected value is computed by integrating numerically over the37

parameter space. In the frame of computing the expected value of the scalar func-38

tion of the Fisher information matrix, Chu and Hahn (2008) presented an iterative39

approach integrating parameter set selection and optimal experiment design under40

uncertainty in which a genetic algorithm is used to determine the set of param-41

eters to be estimated and a simultaneous perturbation stochastic approximation42
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computes the experimental conditions. The parameters to be estimated and the43

experimental conditions are the optimization variables, yielding a mixed integer44

nonlinear programming problem. A collection of parameter sets is returned and45

optimal experiment designs are computed for each of these sets. Bayesian robust46

experiment design is another possibility, in which preliminary data are incorporated47

to maximize the expected value over the prior parametric uncertainty distribution48

of an objective function quantifying the information content e.g., Liepe et al. (2013).49

Note that for the experiment design of multiple-input multiple-output systems, also50

a robust experiment design based on the steady state gain matrix can be used as51

outlined in Häggblom (2017). Although not accounting for dynamics, the reformu-52

lation of Bruwer and MacGregor (2006) made it possible to include linear input and53

output constraints in this approach.54

55

A second consequence of the parametric uncertainty are the potential violations of56

state constraints as the model parameters differ from the true system parameters.57

So, besides robustness with respect to the information content, the optimally de-58

signed experiment has to be robust with respect to state constraints. These issues are59

related to the field of stochastic/robust optimal control. If stochastic information60

is available, chance constraints can be formulated (Wendt et al., 2002; Srinivasan61

et al., 2003; Mitra, 2009; Galvanin et al., 2010; Recker et al., 2012; Mesbah et al.,62

2014; Telen et al., 2015). It can be assumed that this stochastic information orig-63

inates from previous parameter identifications or a literature review (Walter and64

Pronzato, 1997; Franceschini and Macchietto, 2008; Hjalmarsson, 2009). In a dif-65

ferent set-up the parameters can be considered to lie within a given compact set. In66

this case, it is desirable to guarantee that all constraints are satisfied in all possible67

worst case situations and/or to know what is the possible performance loss. The68

work of Houska et al. (2012) presents an approach for nonlinear optimal control69

which guarantees to be robust if the uncertainties are bounded. In Telen et al.70

(2013a), this approach is extended for optimal experiment design.71

72

The definition of the expected value entails the computation of a multidimensional73

integral over the parameter space of the scalar function of the Fisher information74
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matrix (Pronzato and Walter, 1985). In real (bio)chemical applications these multi-75

dimensional integrals can often not be evaluated analytically as a function of the de-76

cision variables and therefore they need to be approximated with a sampling-based77

method, e.g. Gauss quadrature or Monte Carlo sampling (Asprey and Macchietto,78

2002),(Debusschere et al., 2004). Therefore, instead of computing this integral, the79

expected value is approximated in this article using polynomial chaos expansion80

(PCE) (Wiener, 1938). The main advantage of polynomial chaos expansion over81

similar techniques as the unscented transformation or sigma point approach (Julier82

and Uhlmann, 1996; Kawohl et al., 2007; Telen et al., 2014) is its applicability83

to non-symmetric parametric uncertainty distributions (Wiener, 1938), (Xiu and84

Karniadakis, 2002), while the unscented transformation is restricted to symmetric,85

unimodal distributions. The basic idea of PCE is to approximate a function by a86

polynomial depending on the uncertain parameters. The coefficients of this polyno-87

mial can subsequently be used to compute the statistical moments as the expected88

value and variance (Nagy and Braatz, 2007; Mesbah et al., 2014). These statisti-89

cal moments can be used for the objective or constraint functions and hence allow90

for a more robust probabilistic problem formulation (Galvanin et al., 2010). Re-91

cently, a novel arbitrary polynomial chaos expansion algorithm has been presented92

in Paulson et al. (2017), which does not require prior knowledge on the parametric93

uncertainty distribution but computes the orthogonal polynomial basis functions94

based on data (i.e., raw moments of the random variables).95

96

In summary, model-based optimal experiment techniques can be used to design ex-97

periments that yield a maximum of information to estimate parameters accurately98

in nonlinear dynamic systems. These techniques, however, use a current guess of99

the parameters which can be different from the actual system. Consequently, the100

experiment can result in a lower information content than expected and constraints101

are potentially violated. As mentioned above, different optimal experiment design102

techniques exist to design experiments which are robust with respect to information103

content (optimality) and robust with respect to constraint violations (feasibility).104

The overall goal of this paper is to study and compare two optimal experiment105

design approaches which can be used to design robust experiments: a sensitvities-106
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based approximate robust approach (originating from a robust min-max optimal107

experiment design formulation) and a polynomial chaos expansion based stochastic108

approach. Based on two simulation case studies, practical guidelines are provided on109

which approach is best suited for (i) robustness with respect to information content110

and (ii) robustness with respect to state constraints. The assessment of the different111

OED approaches is based on the information content (i.e., the OED objective func-112

tion value), the number of constraint violations and the computational (CPU) time.113

114

This paper is structured as follows. In Section 2 the mathematical formulation115

of OED, robust OED and expected value OED are introduced. In Section 3 the116

actual OED optimization problems are presented, i.e., the approximate robust ap-117

proach of Körkel et al. (2004) and the PCE-based stochastic approach. Section 4118

introduces the case studies and describes the obtained numerical results. Section 5119

summarizes the main conclusions of this paper.120

2. Mathematical formulations121

This section is structured as follows. First, OED is presented as an optimization122

problem for nonlinear dynamic systems. The adaptations to the standard OED123

formulation in order to obtain a robust or a stochastic approach are presented in124

subsections 2.2 and 2.3.125

2.1. Optimal experiment design for dynamic systems126

Optimal experiment design for parameter estimation (OED-PE) is used to design127

experiments that reduce the variance on the parameter estimates. The objective128

function used in OED is a scalar function of the parameter estimation variance-129

covariance matrix. Different techniques exist to compute the parameter estimation130

variance-covariance matrix and a brief overview is presented below.131

132

A first technique is based on the Fisher information matrix (FIM). The inverse133

of the Fisher information matrix approximates the Cramér-Rao bound, a measure134

for the lower bound on the variance of estimators, assuming unbiased estimators135

(Ljung, 1999), (Walter and Pronzato, 1997). This is the most common technique136
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and the technique used throughout this article.137

138

Other methods exist to approximate the parameter estimation variance-covariance139

matrix: Telen et al. (2013b) proposed a technique based on the solution of a Riccati140

differential equation that allows to directly account for process noise and requires141

a lower number of differential states than the Fisher information matrix approach.142

143

The techniques of Heine et al. (2008) and Schenkendorf et al. (2009) both rely144

on the sigma point method/unscented transformation which approximates a distri-145

bution with a fixed number of parameters, the sigma points. The method presented146

by Heine et al. (2008) uses a derivative free filter based on a polynomial interpo-147

lation with a maximum a posteriori update by a Bayesian formulation to compute148

the parameter estimation variance-covariance matrix. The method presented by149

Schenkendorf et al. (2009) uses the sigma points to sample from the measurement150

error distribution and add these errors to the output profiles for the current best151

guess of the parameter values. This results in 2ny+1 measurement profiles on which152

subsequently a separate parameter estimation procedure has to be performed. These153

2ny + 1 parameter sets are then used to compute the expected value of the param-154

eters and parameter estimation variance-covariance matrix.155

156

Monte Carlo simulations can also be used to obtain an empirical estimate of the pa-157

rameter distribution by simulating N realizations from the noise distribution, and158

performing parameter estimation for each of the obtained datasets. This is com-159

putationally inefficient as many realizations have to be taken to obtain sufficiently160

accurate parameter estimation variance-covariance matrix computations, e.g.: 500161

realizations in Balsa-Canto et al. (2008) and 10000 realizations in Schenkendorf162

et al. (2009).163

164

As in this article the Fisher information matrix method for computing the pa-165

rameter estimation variance-covariance matrix is used, the mathematical problem166

formulation with this method is introduced.167

168
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The complete classic, dynamic OED problem formulation incorporating the required169

sensitivities and the Fisher information matrix is in this paper considered as follows170

(Telen et al., 2014):171

min
u(·),x(·),F (·)

Φ(F (tf)) (1)172

subject to:173

dx

dt
(t) = f(x(t), u(t), p, t) with x(0) = x0, (2)174

d

dt

∂x

∂p
(t) =

∂f

∂x

∂x

∂p
(t) +

∂f

∂p
with

∂x

∂p
(0) =

∂x0

∂p
, (3)175

d

dt
F (t) = w(t)

∂x

∂p
(t)⊤

dh(x(t))

dx

⊤

Q(t)−1 dh(x(t))

dx

∂x

∂p
(t) with F (0) = 0, (4)176

0 ≥ ci(x(t), u(t), t), (5)177

The first equation denotes the objective function, which is in this article a scalar178

function Φ(·) of the Fisher information matrix. Typically, this is one of the al-179

phabetic criteria, i.e., A- (minimize trace of the inverse of the Fisher information180

matrix), D- (maximize determinant of the Fisher information matrix) or E-criterion181

(maximizing the smallest eigenvalue of the Fisher information matrix) (Walter and182

Pronzato, 1997). Equation (2) describes the actual system dynamics with the states183

x(t) ∈ R
nx , the controls u(t) ∈ R

nu and the parameters p ∈ R
np . These parameters184

are time-invariant but an experiment to determine their exact values based on mea-185

surements is required. Equations (3) and (4) are the required sensitivity equations186

and the continuous formulation of the Fisher information matrix. Equation (3) re-187

quires the solution of npnx additional ordinary differential equations. Computing188

Equation (4) yields the Fisher information matrix. Therefore, the objective func-189

tion which represents the total information content is evaluated at tf , the final time.190

Here the function h(x(t)) denotes the measurement function which can depend non-191

linearly on the states x(t), w(t) ∈ [0, 1] is a function indicating whether a sample is192

taken (it is a relaxed function, avoiding that a mixed-integer optimization problem193

needs to be solved) and Q(t) denotes the measurement variance-covariance matrix.194

Without loss of generality, these can also be computed based on a summation de-195

pending whether a discrete or a continuous measurement frame is employed. The196

symmetry in F (t) can be exploited to reduce the number of ordinary differential197
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equations (and hence the number of states), i.e.,
np

2 (np + 1) instead of n2
p. Equa-198

tion (5) denotes the present constraints ci ∈ R
nc . Consequently, the total number199

of states involved in OED (nOED) equals:200

nOED = nx + np · nx +
np

2
· (np + 1) . (6)201

2.2. Robust optimal experiment design202

Assume that the parameters p are normally distributed, with nominal parameter203

value (mean value) pnom and variance Σ . With a confidence quantile γ, the following204

ellipsoidal joint confidence region for the model parameters can be considered:205

‖p− pnom‖2Σ−1 ≤ γ, (7)206

207

208

with the norm ‖p‖Σ−1 =
(

p⊤Σ−1p
)(1/2)

.209

210

Assuming that the parametric uncertainty is characterized by a normal distribu-211

tion, the sum of squared parameter estimation errors,212

‖p− pnom‖2Σ−1 = (p− pnom)
⊤
Σ−1 (p− pnom) , (8)213

214

is χ2(np) distributed, the objective and constraint functions in Equations (1) and215

(5) can be replaced by the following equations in a robust, dynamic OED problem216

formulation (Körkel et al., 2004):217

min
u(·),x(·),F (·)

max
‖p−pnom‖2

Σ−1≤γ
Φ(F (tf)) (9)218

219

0 ≥ max
‖p−pnom‖2

Σ−1≤γ
ci(x(t), u(t), t) i = 1, . . . , nc (10)220

Note that the problem formulation in Equations (9)-(10) is a conventional worst-221

case approach as in e.g., Pronzato and Walter (1988). Contrary to standard robust222

approaches, it is assumed in this article that the parameters can be described by223

a known uncertainty distribution. To guarantee a solution to the inner maximiza-224

tion problem for a closed set of model parameters, the sum of squared parameter225
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estimation errors is limited to a certain preset quantile γ.226

2.3. Stochastic optimal experiment design227

Another approach to account for parametric uncertainty in optimal experiment228

design is stochastic optimal experiment design. Stochastic optimization approaches229

exploit knowledge on a known probability distribution of the uncertainty to for-230

mulate expected values of the model responses, as e.g., the objective function, and231

to formulate chance constraints (Nagy and Braatz, 2004). In this article, single232

chance constraints are considered. The parametric uncertainty distribution (or at233

least information on the moments) is propagated through the (nonlinear) dynamic234

system to approximate the statistical moments (e.g., expected value and variance)235

of the model’s states or response functions (e.g., objective function, outputs, con-236

straint functions). Furthermore, chance constraints express that the probability of237

a constraint to be violated is smaller than or equal to a preset probability ǫi (Wendt238

et al., 2002), (Mesbah and Streif, 2015):239

ǫi ≥ Pr [0 < ci(x(t), u(t), t)] (11)240

241

The preset probability ǫi is set based on how much constraint violations are accept-242

able, the more critical the constraint, the lower the probability ǫi is set. In this243

article ǫi is set equal to 5%.244

Stochastic optimization approaches exploit knowledge on a known probability245

distribution of the uncertainty to formulate expected values of the model responses,246

as e.g., the objective function, and to formulate chance constraints (Nagy and247

Braatz, 2004). In this dissertation, single chance constraints are considered. Sin-248

gle chance constraints express that the probability of a constraint to be violated is249

smaller than or equal to a preset probability ǫi (Wendt et al., 2002).250

In a stochastic, expected value dynamic OED problem formulation with chance251

constraints the objective function in Equation (1) and constraint functions in Equa-252

tion (5), are replaced by Equations (12) and (13), respectively.253

min
u(·),x(·),F (·)

E [Φ(F (tf))] (12)254
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subject to:255

ǫi ≥ Pr [0 ≤ ci(x(t), u(t), t)] i = 1, . . . , nc (13)256

257

Note that similarly to Asprey and Macchietto (2002) an expected value is used in258

the objective function and this formulation ensures that the system is kept within259

a feasible region with specified probability as in e.g., Galvanin et al. (2010).260

3. Reformulation to the actual OED problems261

In this section, the approximate robust OED formulation is presented first in262

which the inner maximization problem is linearized. Subsequently, polynomial chaos263

expansion is applied to stochastic OED as in Mesbah and Streif (2015), Nimmegeers264

et al. (2017). Finally, the approximate robust and PCE based stochastic OED265

formulations are compared.266

3.1. Sensitivities based approximate robust OED reformulation267

The approach of Körkel et al. (2004) consists of calculating a first order Taylor268

series approximation of the objective function, which transforms the inner non-269

convex maximization problem to a convex maximization of a linear function (i.e.,270

Φ(F (tf)) +
d
dpΦ(F (tf))(p − pnom)) subject to a convex quadratic constraint (i.e.,271

‖p− pnom‖2Σ−1 ≤ γ). By taking these assumptions, the inner maximization prob-272

lem has the following solution (as derived in Appendix A) in contrast with what273

has been derived in (Körkel et al., 2004):274

Φ(F (tf)) +
√
γ

∥

∥

∥

∥

d

dp
Φ(F (tf))

∥

∥

∥

∥

Σ

(14)275

Although the evaluation of this solution to the inner maximization problem seems276

straightforward, the implementation of the derivative of the Fisher information277

matrix with respect to the parameters is needed to compute d
dpΦ(F (tf)) in the278

objective function of the approximate robust OED problem formulation. Differ-279

ent mathematical approaches exist to implement the computation of the derivative280

of the Fisher information matrix elements with respect to the parameters as for281

instance, finite differences or calculating second order sensitivities through tensor282
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variational equations (Vassiliadis et al., 1999), (Balsa-Canto et al., 2001), (Telen283

et al., 2012a). Therefore this method is referred to in this article as a sensitivities284

based approximate robust approach. Moreover, advanced automatic differentiation285

tools as e.g., casADi (Andersson et al., 2012) can be exploited to retrieve the Ja-286

cobian of the Fisher information matrix efficiently without the need for additional287

states. This last approach is followed in this paper. Note that
√
γ
∥

∥

∥

d
dpΦ(F (tf))

∥

∥

∥

Σ
288

can be seen as an approximation of the standard deviation on the OED objective289

function Φ(F (tf)).290

The same approach can be followed for the constraint function, i.e., the con-291

straint should be satisfied in the worst case as shown in Equation (15).292

0 ≥ max
‖p−pnom‖

Σ−1

ci(xi(t), u(t), t) i = 1, . . . , nc. (15)293

Similarly as for the objective function, a first order Taylor series approximation of294

the constraint function can be made, resulting in a convex maximization of a linear295

function (in this case ci(xi(t), u(t), t)), subject to a convex quadratic constraint (i.e.,296

‖p− pnom‖Σ−1 . This results in the following constraint:297

0 ≥ ci(x(t), u(t), t) +
√
γ

∥

∥

∥

∥

d

dp
ci(x(t), u(t), t)

∥

∥

∥

∥

Σ

(16)298

The norm
∥

∥

∥

d
dpc(x(t), u(t), t)

∥

∥

∥

Σ
can be seen as an approximation of the standard de-299

viation on the constraint function ci(x(t), u(t), t). Note that the required derivative300

of the constraint function with respect to the parameters d
dpci(x(t), u(t), t) can be301

easily computed from the sensitivity states.302

∥

∥

∥

∥

d

dp
ci(x(t), u(t), t)

∥

∥

∥

∥

2,Σ

=

√

(

dx

dp

)⊤ (

dci
dx

)⊤

Σ
dci
dx

dx

dp
(17)303

304

305

Equation (17) equals the first order approximation of the constraint function’s306

variance-covariance matrix (Nagy and Braatz, 2004), (Telen et al., 2015).307

308

Hence, for the sensitivities based approximate robust OED formulation the fol-309

lowing objective function and constraint function can be used to replace Equations310
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(1) and (5) in the formulation of the general OED problem (Equations (1)-(2)):311

Φrob(F (tf)) = Φ(F (tf)) +
√
γ

∥

∥

∥

∥

d

dp
Φ(F (tf))

∥

∥

∥

∥

Σ

(18)312

subject to:313

0 ≥ ci(x(t), u(t), t) +
√
γ

√

(

dx

dp

)⊤ (

dci
dx

)⊤

Σ
dci
dx

dx

dp
, i = 1, . . . , nc (19)314

3.2. Polynomial chaos based stochastic OED formulation315

In stochastic optimal experiment design, the constraints can be formulated as316

chance constraints. However, addressing these chance constraints in dynamic opti-317

mization is computationally challenging as pointed out in e.g., Mesbah et al. (2014).318

Cantelli-Chebyshev’s inequality can be used to reformulate these chance constraints319

as the following equivalent deterministic constraints (Mesbah and Streif, 2015):320

0 ≥ E [ci] + αci

√

Var [ci] (20)321

322

In Equation (20), E [ci] and Var [ci] express the expected value and variance of the323

constraint function ci, respectively. The coefficient αci is introduced as a backoff324

parameter (e.g., (Galvanin et al., 2010)) and can be seen as an uncertainty quantile325

(Telen et al., 2015). Note that the objective function can also include a penalization326

term for large variations by adding a term accounting for the variance weighted with327

a backoff parameter:328

E [J ] + αJ

√

Var [J ] (21)329

330

Polynomial chaos expansion (PCE) can be used for the computation of the variance331

and expected value of model responses (e.g., objective function, constraint function,332

etc.). Contary to other similar uncertainty propagation techniques as the unscented333

transformation or sigma point approach (Julier and Uhlmann, 1996; Kawohl et al.,334

2007; Telen et al., 2014), PCE is not limited to symmetric, unimodal distribu-335

tions but can also be applied to non-symmetric parametric uncertainty distributions336

(Wiener, 1938), (Xiu and Karniadakis, 2002). The rationale of polynomial chaos337
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expansion is to approximate the model response (e.g., objective function, constraint338

function, etc.) as a sum of orthogonal polynomials (i.e., polynomials of which the339

inner product equals zero) through PCE collocation points. These polynomials are340

a function of the uncertain variable for which a probability distribution is assumed341

to be given (Mesbah and Streif, 2015),(Nimmegeers et al., 2016).342

343

Consider the d-th order polynomial chaos expansion of the OED objective function344

Φ(F (tf)), with a given distribution for the parameters p (with a given expectation345

value p̄ and variance-covariance matrix Ppp) is defined in Equation (22):346

Φ(F (tf)) ≈
L−1
∑

j=0

adΦ,jΨj(p). (22)347

348

Here PCE is formulated using a term based index j (j = 0, . . . , L− 1). The symbol349

adΦ,j denotes the unknown PCE coefficients and Ψj(y) the multivariate orthogonal350

polynomials. The total number of terms L in the polynomial chaos expansion351

of order d depends on the number of uncertain variables n and the order of the352

expansion d:353

L =
(n+ d)!

n!d!
. (23)354

355

Intrusive and non-intrusive methods exist to estimate the unknown coefficients356

adΦ,j. This distinction is based on the extent to which the problem needs to be357

reformulated. More specifically, intrusive methods develop a deterministic set of358

equations for the coefficients adΦ,j based on a Galerkin projection of the approxi-359

mation error between the model response function (for instance the OED objective360

function Φ(F (tf))) and its polynomial chaos expansion. Note that for intrusive361

methods the model response needs to be explicitly known and preferably the ex-362

plicit model response function is a polynomial function. In non-intrusive methods363

the model is considered as a black box and exact expressions for the model response364

are not required. All non-intrusive methods can be considered as a weighted sum365

of model response evaluations in ns sampling points.366

In this work a non-intrusive PCE method based on least squares regression is367

followed in order to determine the unknown coefficients adΦ,j. The model is evaluated368
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in sampling points, which are selected from the roots of the higher order (i.e., d +369

1) orthogonal polynomial for each uncertain parameter. For more details on the370

computation of the PCE coefficients with this least squares regression approach,371

the reader is referred to Nimmegeers et al. (2016).372

In summary, the PCE coefficients are computed as a weighting of the function373

Φ(F (tf)) evaluated at the different sampling points πi. The objective function and374

constraints for the PCE based stochastic OED formulation are defined as:375

ΦPCE = adΦ,0 + αΦ

√

√

√

√

L−1
∑

j=1

(

adΦ,j

)2

E

[

Ψ2
j (p)

]

(24)376

subject to:377

0 ≥ adci,0 + αci

√

√

√

√

L−1
∑

j=1

(

adci,j

)2

E

[

Ψ2
j (p)

]

(25)378

where E
[

Ψ2
j (p)

]

is computed offline.379

3.3. Comparison of the OED formulations380

In Table 1 the objective function and constraint formulations are shown for the381

nominal (not accounting for uncertainty) optimal experiment design, sensitivities382

based approximate robust experiment design and the PCE based stochastic exper-383

iment design approaches. From Table 1 it can be seen that the approximate robust384

and PCE based stochastic OED approaches formulate the objective (or constraint)385

function as a sum of two terms in which the second term is an approximation386

of the variance on the objective (or constraint) function, weighted with a backoff387

parameter.388

The major difference between the approximate robust OED formulation and the389

PCE based stochastic OED formulation is the number of required states. In the390

approximate robust OED formulation, the model is only evaluated in the nominal391

parameter values. However, depending on the approach used for the evaluation of392

the derivative of the Fisher information matrix with respect to the parameters, the393

number of states differs. If tensor variational equations (Vassiliadis et al., 1999),394

(Balsa-Canto et al., 2001), (Telen et al., 2012a) are used, the number of states395

corresponds to nrob,tensor−approx = nx + (np +1)nxnp + (nxnp +1)np(np +1)/2. In396
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case that an automatic differentiation tool as casADi is used, the number of states397

corresponds with nrob,approx = nOED = nx + nxnp + np(np + 1)/2. However, in the398

PCE based stochastic OED formulation the model is evaluated in the ns sampling399

points, leading to a system of nPCE = ns(nx+nxnp+np(np+1))/2 states, which are400

much easier parallellized as they consist of copies of the same system only differing401

in the model parameters.402

In the approximate robust OED formulation the worst-case objective function403

is computed by a linearization of the inner maximization problem. The compu-404

tation of this worst-case objective function is related to the assumption of a nor-405

mal distribution of the parametric uncertainty (hence a chi-square distribution of406

‖p− pnom‖2Σ−1). This leads to two terms in which one term is the objective function407

evaluated in the nominal parameter values and the second term contains the first408

order approximation of the variance on the objective function, weighted with the409

square root of a chi-square confidence quantile.410

In the PCE based stochastic OED formulation, an expected value objective411

function is formulated based on the parametric uncertainty distribution. To penalize412

for the variance on the objective function, a variance-related term can be added to413

the objective function, weighted with a backoff parameter. These terms are both414

based on the computation of a weighted sum of the objective function evaluated in415

the different sampling points.416

Besides the difference in practical computation of these terms, the underlying417

reasoning is different for both methods. Similarly to the objective function, worst418

case constraint functions are computed in the approximate robust OED formulation.419

In the PCE based stochastic OED formulation, chance constraints are considered420

expressing that the probability of a constraint to be violated is smaller than or equal421

to a certain value.422

A final difference between the two formulations is the choice of the backoff423

parameters. In the approximate robust OED formulation these backoff parameters424

are based on the assumption that the sum of squared parameter estimation errors425

is chi-square distributed and γ corresponds to a chi-square quantile. For the PCE426

based stochastic approaches the choice of this parameter can be related to a quantile427

(if the distribution of the considered response (i.e., objective function or constraint428
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function) is known) or based on Cantelli-Chebyshev’s inequality (Mesbah and Streif,429

2015). Telen et al. (2015) presents an iterative strategy for selecting this backoff430

parameter.431

4. Results432

Two case studies are investigated in this work. The first case study is a Lotka433

Volterra predator prey model augmented with a fishing term. In the second case434

study the jacketed tubular reactor is considered. In both case studies information435

optimality of the experiment design is studied. As a reactor temperature state con-436

straint is present in the second case study, the feasibility of the experiment design (in437

terms of constraint violations) is also studied more in depth in the second case study.438

439

From the formulation in (1)-(5), it is clear that OED is a type of dynamic op-440

timization problems. In dynamic optimization an optimal value for the control441

inputs has to be found for every t ∈ [0, tf ]. OED for nonlinear dynamic models is442

a subclass of dynamic optimization which quickly leads to a high number of states.443

These problems are solved in this work by discretizing the controls via single shoot-444

ing using casADi (Andersson et al., 2012). The resulting NLP is solved with IPOPT445

(Wächter and Biegler, 2006).446

Before starting with the case studies, firstly the indicators that are used for the447

assessment of the different OED approaches are introduced.448

4.1. Assessment of the different OED approaches449

The performance of the different OED approaches is assessed in terms of opti-450

mality (information content), feasibility (constraint violations) and computational451

time. In this article two metrics are used for the information content: the E-criterion452

and the D-criterion.453

454

The E-criterion aims at minimizing the largest eigenvalue of the variance-covariance455

matrix. Using the Fisher information matrix approach for OED, this corresponds456

to maximizing the smallest eigenvalue of the Fisher information matrix. Geomet-457

rically, an E-optimal design minimizes the length of the largest axis of the joint458
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confidence region (Kiefer and Wolfowitz, 1959). Hence, the greater the smallest459

eigenvalue of the Fisher information matrix, the higher the information content.460

This criterion is used in the first case study, the Lotka Volterra fishing problem.461

462

The D-criterion minimizes the determinant of the variance-covariance matrix and463

is implemented in this article as the maximization of the determinant of the Fisher464

information matrix. A D-optimal design minimizes the volume of the confidence465

region (Kiefer and Wolfowitz, 1959). Hence a high determinant of the Fisher infor-466

mation matrix corresponds with a high information content. This criterion is used467

in the second case study, the jacketed tubular reactor.468

In order to assess the performance of the OED approaches Monte Carlo simula-469

tions have been executed in which parameter values are randomly taken from the470

parametric uncertainty distribution to simulate the system with the computed op-471

timal experimental inputs. The E-criterion values (for the first case study) abd472

D-criterion values (for the second case study) are evaluated and compared for the473

different OED approaches.474

475

In the second case study, a reactor temperature state constraint is present and476

the feasibility of the experiment design (in terms of constraint violations) is also477

studied by means of Monte Carlo simulations. The lower the number of constraint478

violations the more robust it is with respect to constraint violations.479

480

Note that two parameters are typically set by the user; α for the PCE-based stochas-481

tic approach and γ for the approximate robust approach. In the first case study,482

emphasis is on robustness with respect to information content and as no state con-483

straints are present, robustness with respect to constraint violations is not studied.484

In the first case study α and γ are selected based on quantiles as mentioned in485

subsection 4.2. In the second case study, emphasis is on robustness with respect to486

constraint violations due to the reactor temperature state constraint. In this case487

study α and γ are seen as backoff parameters and as outlined by Telen et al. (2015)488

to reduce the number of constraint violations.489
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4.2. A Lotka Volterra fishing problem - robustness in information content490

In this first case study a Lotka Volterra fishing problem (Sager, 2013; Telen491

et al., 2012b) is considered. The goal of this model is to track a predetermined492

steady state value for both the predator and prey states where typically the deci-493

sion to fish is considered to be binary. In the implementation of this case study, the494

problem is solved in a relaxed version, i.e., u ∈ [0, 1] and the strategy for connecting495

the optimal control values to binary values from Sager et al. (2009) is applied. Two496

fish populations live in a pond: a prey and a predator population. In this case study497

the aim is to develop an optimal fishing strategy u(t) and sampling strategy w(t)498

(i.e., the population measurement by the diver) to estimate the parameters in the499

prey and predator mass balances related to the interaction between predator and500

prey.501

502

The model equations are:503

dx1

dt
= x1 − p1x1x2 − 0.4x1u, (26)504

dx2

dt
= −x2 + p2x1x2 − 0.2x2u, (27)505

where x1 is the biomass of the prey and x2 the biomass of the predator. The506

symbol u is the fishing control. The initial conditions are set to: x1(0) = 0.5 and507

x2(0) = 0.7, furthermore the final time is fixed at tf = 12. The assumed mean508

parameter values are p1 = 1 and p2 = 1.509

Both states are considered to be measurable. The parameter variance-covariance510

matrix is assumed to be511

V =







0.01 0

0 0.01






. (28)512

513

Remark: If the parameter distribution is not known (as is often the case), an514

assumption can be made regarding the parameter distribution, potentially based515

on available experimental data and from a parameter estimation procedure and516

distribution fitting (often a normal distribution) or a conservative distribution as517

e.g., uniform distribution can be taken. If V contains correlation between the518
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parameters, then this can be accounted for in defining the sampling points by using519

arbitrary polynomial chaos (Paulson et al., 2017). Larger values in V elements,520

result in greater uncertainty and hence more conservative experiment designs.521

For this first case study, only the robustness with respect to the information522

content is investigated as there are no critical state constraints which could lead to523

an infeasible situation of the system. Similarly, as for constraints, the variance with524

respect to the information content can also be taken into account in the stochastic525

optimal experiment design approaches by considering a backoff parameter α as in526

Equation (21).527

Furthermore, the number of measurements which is allowed to be taken is con-528

strained to 6 time units. This is motivated by experimental practice where the529

decision when to sample is usually one of the degrees of freedom in the experiment.530

The goal in this case study is to maximize the information content as expressed by531

the minimum eigenvalue of the Fisher information matrix. This sampling strategy532

w(t) ∈ [0, 1] is implemented in a relaxed form instead of considering it as a binary533

decision variable and enters the OED system in the ODE for the Fisher information534

matrix:535

dF (t)

dt
= w(t)

(

∂x

∂p
(t)

)⊺ (

dh(x(t))

dx

)⊺

Q−1 dh(x(t))

dx

∂x

∂p
(t) (29)536

537

538

Three scenarios have been studied in this case study to investigate the influence539

of accounting for the variance on the information content during the experiment540

design: nominal OED, PCE based stochastic OED (with expected value ED, i.e.,541

α = 0 and α = 1.65) and an approximate robust design in which a 95% confidence542

region is considered (i.e., γ = 6). In summary, the values for α and γ have been543

selected in this case study as follows: α = 0 corresponds with an expected value544

approach, not accounting for the variance on the OED objective function, α = 1.65545

corresponds with a 95% normal quantile taken from the OED objective function for546

the stochastic approach while γ = 6 corresponds with 95% chi-square quantile in547

the approximate robust OED approach.548

549

Note that for this case study as well a normal as a uniform parametric uncer-550
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tainty distribution are considered for the parameters p1 and p2. Therefore, next to551

a first order (PCE1) and second order (PCE2) polynomial chaos expansion based on552

a normal parametric uncertainty distribution of p1 and p2, a second order polyno-553

mial chaos expansion has been derived based on a uniform parametric uncertainty554

distribution (PCE2 Uniform). To illustrate the difference between the implemented555

strategies, the control profiles for αΦ = 0 and αΦ = 1.65, i.e., the fishing control556

u(t) and the sampling action w(t), are depicted in Figure 1 (a,b,c,d) and Figure 1557

(e,f,g,h), respectively. The profiles for a second order polynomial chaos expansion558

derived from a normal parametric uncertainty distribution (PCE2) and a second or-559

der polynomial chaos expansion derived from a uniform parametric uncertainty dis-560

tribution (PCE2 Uniform) are shown in Figure 1(c,d) and Figure 1(g,h) for αΦ = 0561

and αΦ = 1.65, respectively. For αΦ = 1.65, both u(t) and w(t) profiles differ562

substantially.563

4.2.1. Information content564

The information content as measured by the smallest eigenvalue (i.e., E-criterion565

value) using the current best estimate for the parameters for α = 0 and α = 1.65566

are presented in Table 2. Thus when the parameters of the system would be ex-567

act, there is a slight loss in information content (i.e., decrease in E-criterion value568

as indicated in Table 2) when using the stochastic approach compared with the569

nominal case of approximately 5% (PCE2 approaches) and 10% (PCE1) for α = 0570

and a loss in information content of approximately 32% (PCE1), 3% (PCE2), 13%571

(PCE2 uniform) for α = 1.65. The loss in information content when comparing the572

approximate robust approach with the nominal case is dramatic (approximately573

80%). Evaluation of the norm
∥

∥

∥

d
dpΦ(F (tf))

∥

∥

∥

Σ
for the different approaches revealed574

that the approximate robust approach results in the smallest norm (i.e., 4.41 for the575

approximate robust approach versus 16.09 in the nominal case). Since the approx-576

imate robust approach only considers the norm
∥

∥

∥

d
dpΦ(F (tf))

∥

∥

∥

Σ
evaluated at the577

nominal parameter values this approach results in a large backoff and dramatically578

low information content when compared to the other approaches.579
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4.2.2. Robustness in information content with respect to parametric uncertainty580

In order to investigate the robustness of the designed experiments with respect581

to the parameter influence 1000 parameter realizations are drawn from the as-582

sumed normal/uniform distribution with the aforementioned mean and variance583

values. Subsequently the mean smallest eigenvalue and quartiles are reported for584

α = 1.65 a trade-off between information content and spread of the information585

content (i.e., how close the values of the smallest eigenvalue are for the different586

parameter realizations) is made and the results are different: only the stochastic587

PCE2 approaches yield a higher information content as can be observed in the mean588

values and quartiles in Table 3, respectively. The spread is generally lower for the589

stochastic approach than for the nominal approaches. The approximate robust ap-590

proaches result in a very low information content, but also a very low spread on the591

information content. A possible explanation for this very low information content,592

but very low spread on the information content for the approximate robust ap-593

proach lies in the linearization which holds when the uncertainty is small compared594

to the model curvature such that higher order terms can be neglected. Depending595

on the case study, it can be different. Therefore this result cannot be generalized.596

Comparing this with the nominal and stochastic approaches, it is concluded that597

the approximate robust designs are too conservative (approximately 4 times lower598

than the nominal approaches).599

600

The effect of the stochastic approach on the cost surface (i.e., the surface con-601

structed by plotting the E-criterion value versus the parameter values) is visualized602

in Figure 2. In the neighborhood of the nominal parameter values, the nominal de-603

sign outperforms the stochastic approach, however, there is a distinct region where604

the information content drops sharply for the nominal design while this totally ab-605

sent in the stochastic approach. This exemplifies the goal of the stochastic optimal606

experiment design approach, i.e., the attempt to remain informative for a wide607

range of actual parameter realizations.608

609

The surfaces obtained in Figure 2(a) and 2(b) are also projected in the 2D figures in610

Figure 3. Here the dependency in each of the different parameters is depicted. For611
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parameter p1, it is evident in Figure 3(a) and 3(c) that on average the stochastic612

approach performs better than the nominal design. In Figure 3(b) and 3(d), the613

difference is less pronounced, however, there is a distinct area where the stochastic614

approach outperforms the nominal design. Note also the strong dependency of the615

information content on parameter p1 in Figure 3(a) and 3(c). To conclude, the616

variance on the information content is lower in case α = 1.65 (as can be observed617

in Figure 3) and that this comes at the cost of a reduction in overall information618

content when compared to α = 0 (as can be observed in Figure 2).619

4.2.3. Computation times620

A final aspect in which the nominal, approximate robust and stochastic ap-621

proaches are evaluated is computation time (see Table 4). This computation time622

is closely related to the number of states in the considered OED approach. For623

instance, it can be expected that the PCE2 approaches require a higher computa-624

tion time (3869.12 s) than the other approaches due to the higher number of states625

involved in the system, i.e., six times the number of states in the nominal case. For626

the PCE1 approaches the computation time is higher than for the nominal approach627

(799.93 s), since three times the number of nominal states are evaluated. The ap-628

proximate robust approach on the other hand will need a higher computation time629

than the nominal approach due to the additional effort in automatic differentiation630

that is required for the computation (553.97 s) of d
dpΦ(F (tf)). The nominal OED631

approach only requires 91.06 s.632

4.3. A jacketed tubular reactor - robustness in constraint violations633

The second case study of this paper involves a jacketed tubular reactor under634

steady-state conditions. An irreversible first-order reaction takes place inside the635

reactor. Two coupled ordinary differential equations are obtained through the mass636

and energy balances. However, the steady-state scenario is described by an ordinary637

differential equation in the dimensionless spatial coordinate z denoting the position638

along the reactor, as the time-dependence is eliminated (Logist et al., 2011).639

dx1

dz
=

αkin

v
(1− x1)e

γx2
1+x2 , (30)640

dx2

dz
=

αkinδ

v
(1− x1)e

γx2
1+x2 +

βkin

v
(u− x2), (31)641
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and with initial conditions:642

x(0) = (0, 0)⊤ , (32)643

and constraints:644

Tmin − Tin

Tin
≤ x2(z) ≤

Tmax − Tin

Tin
, (33)645

Tw,min − Tin

Tin
≤ u(z) ≤ Tw,max − Tin

Tin
. (34)646

The two states are the dimensionless reactant concentration x1 = (Cin − C)/Cin647

and the dimensionless reactor temperature x2 = (T − Tin)/Tin. Here, Tin and Cin648

are the temperature and the reactant concentration of the feed stream, respectively.649

The control u = (Tw −Tin)/Tin is a dimensionless version of the jacket temperature650

Tw. Both the reactor and jacket temperatures are constrained (Equations (33) and651

(34)) while the differential equations are solved on the interval z ∈ [0, 1]. As OED652

objective function the D criterion has been chosen. The number of equidistant653

control intervals is set to 20 and both states are considered to be measurable. The654

two parameters of interest for the optimal experiment design procedure are αkin =655

0.058 and βkin = 0.2. The dimensionless version of the reactor jacket temperature656

u is the only manipulated experimental input. Their assumed parameter variance-657

covariance matrix is:658

V =







0.01742 0

0 0.062






. (35)659

For the remaining expressions and parameter values, the reader is referred to (Logist660

et al., 2011).661

In a first simulation approach, the parameters are assumed to be normally dis-662

tributed. Subsequently, the parameters are assumed to be Beta(2,3) distributed663

with the same mean and variance as the earlier studied normal distribution. There-664

fore, two stochastic OED approaches are investigated, a first and second order PCE665

approach based on a normal parametric uncertainty distribution (PCE1 and PCE2)666

and a first and second order PCE approach based on a Beta(2,3) parametric un-667
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certainty distribution (PCE1 Beta and PCE2 Beta). In particular the following668

constraints are considered:669

E [x2] + α
√

Var [x2] ≤ Tmax − Tin

Tin
, (36)670

E [x2]− α
√

Var [x2] ≥ Tmin − Tin

Tin
. (37)671

For the stochastic PCE approaches α is chosen equal to 2 to reduce the number of672

constraint violations, while for the approximate robust approach a 95% quantile is673

considered (i.e., γ = 6).674

4.3.1. Normally distributed parameters675

When OED is performed the state and control profiles depicted in Figure 4 are676

obtained. Notice that in the nominal design the maximal temperature never reaches677

its constraints. The same holds for the approximate robust experiment design. Its678

corresponding control profile consists of a heating after which a cooling takes place679

for the remainder of the reactor length. There is a distinct difference between PCE1680

and PCE2. The heating profile stops earlier for the PCE1 approach resulting in a re-681

actor temperature which is remarkably lower than the nominal and PCE2 approach.682

Also note that its upper confidence bound never reaches the state upper bound. In683

the remainder of the period a cooling takes place however there is a slight risk that684

the temperature could drop below the lower bound resulting in a reduced cooling685

effort towards the end of the reactor. For PCE2 the heating is slightly less compared686

with the nominal case but for its upper confidence region the upper state constraint687

is active. Subsequently, cooling takes place but similar to the PCE1 approach this688

is reduced at the end of the simulation interval. Hence, PCE1 a bit more seems689

conservative, similar to the approximate robust case. However, PCE1 and the ap-690

proximate robust approach lead to a significantly different result as discussed below.691

692

In order to numerically validate the obtained experiments, 1000 parameter sam-693

ples are drawn from the assumed Gaussian distribution, subsequently the system694

is simulated with these parameter values. Given the presence of state bounds, the695

number of constraint violations is investigated. The simulation results are presented696

in Table 5. Out of 1000 samples, the nominal D-design results in 15.7% violations.697
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When the experiments obtained by the stochastic approaches are investigated, it698

is observed that the PCE1 approach for both the 2σ bound results in 14.8%. This699

result is attributed to the fact that the PCE1 is a coarse approximation of the700

underlying function. If this does not suffice, the value for α can be increased itera-701

tively or a value can be chosen based on the Cantelli-Chebyshev inequality (Mesbah702

et al., 2014; Telen et al., 2015). The latter holds no matter what is the underlying703

distribution of the state bounds. For the PCE2 approaches 5.6% violations are704

observed. The approximate robust approach results in 3.7% violations in case of705

normally distributed parameters, which is more robust than most of the stochastic706

approaches with PCE2.707

708

In Figure 5(a), the valid experiments per designed experiments are illustrated in re-709

lation with the sampled parameter values for the PCE2 approach. It clearly depicts710

which parameter combinations of αkin and βkin yield experiments which violate the711

state constraints. From the figure it is also clear that there is a set of parame-712

ter combinations outside the 95% region which result for the 2σ experiment in a713

temperature evolution which violates the state constraints.714

4.3.2. Beta(2,3) distributed parameters715

In the second simulation approach, the parameters are assumed to follow a Beta716

distribution with the aforementioned mean and standard deviation. Besides mean717

and variance, a Beta distribution is described by two parameters αβ and ββ which718

determine the actual shape. For the following simulations αβ = 2 and ββ = 3719

which results in a distribution which is not symmetric with respect to its mean720

value and has bounded support. It is also apparent in the obtained sampling points721

to construct the mean and variance approximations as those sampling points are722

chosen with a higher probability. The same values for α and γ are chosen as for723

the normally distributed parameters. Note that ‖p− pnom‖2Σ−1 is no longer χ2(np)724

distributed and that the choice of the quantile γ is in this case not fully correct and725

only an approximation.726

727

The obtained reactor and jacket temperature profiles are depicted in Figure 4. In728

contrast with the profiles based on Gaussian distributed parameters from Figure 4,729
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larger confidence intervals are predicted for the expected temperature evolution.730

This is also evident from the longer extended period in which the confidence inter-731

val bounds coincide with the state bounds. In line with the previous simulation,732

the PCE2 approach reaches a higher reactor temperature and is more constrained733

by the upper state bound while for PCE1 the lower bound is active. This differ-734

ence is also apparent in the control action. Note that all Beta distribution based735

approaches start cooling quicker than the nominal and normally distributed param-736

eters. Note also the difference between PCE1 and PCE2. In the PCE2 case the737

cooling is not that extreme in order to maintain the upper confidence interval value738

at the boundary value while PCE1 has some similarity with the observed profiles739

of the Gaussian case.740

741

Also for this approach, the obtained experiments are validated numerically by742

sampling 1000 parameter combinations from the assumed Beta distributions. In743

particular the potential violation of state constraints is once more of interest. The744

obtained simulation results are depicted in Table 5. For the nominal design viola-745

tions in 18.1% of the parameter values are observed. For the stochastic approaches,746

the PCE1 approach is overly robust as even not a single parameter combination747

resulted in a constraint violation. For the PCE2 approach this is respectively 5.9%748

and 1.4%. In this second simulation case it is remarkable that the approximate749

robust approach results in 2.7 % violations, which is less robust than most of the750

stochastic approaches except the 2 σ experiment with PCE2. Note that the ob-751

served robustness of the PCE1 approach in this case study cannot be generalized,752

i.e., this result is case study specific. From a theoretical point of view, one would753

expect that lower order PCEs would provide a lower variance (as more positive754

terms should increase the variance). However, in this case the PCE coefficients are755

computed with a non-intrusive least-squares apporach which results in an additional756

source of error. This additional source of error could be on the positive side (i.e.,757

overly robust) or on the negative side (i.e., causing a higher percentage of constraint758

violations). In this case study the error is on the positive side, such that this overly759

robust PCE1 result is not problematic.760

In Figure 5(b) the valid experiments are depicted for the PCE2 approach in761
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function of the parameter values. Remark here the bounded support for the param-762

eter values. Similar to Figure 5(a) the area where the violations take place is the763

same.764

4.3.3. Computation times765

In terms of computation times, similar observations are made as in the Lotka-766

Volterra case study: the PCE OED approaches require a higher computation time767

than the approximate robust and nominal OED approaches. The results are sum-768

marized in Table 5. Note the factor 2 difference in computation time between the769

nominal and approximate robust OED approaches, which is most probably due to770

the nonlinear state constraint. Also remark that PCE1 is a linear approximation771

but it is significantly more computationally expensive (more than a factor 3) than772

the approximate robust OED approach. The approximate robust approach in this773

case study is significantly less computationally expensive than in the Lotka-Volterra774

case study as the sensitivity states are directly exploited in the evaluation of the775

robustified constraint. There is no need for additional automatic differentiation to776

the Jacobian of the Fisher information matrix, as no robustified OED objective is777

used.778

4.3.4. Robustness with respect to information content779

Although the focus of this case study is on robustness with respect to constraint780

violations (feasibility), it is interesting to have a look at the performance of the781

different OED approaches with respect to robustness with respect to information782

content. In Table 6 the quartiles and interquartile (IQR) range of the D-criterion are783

depicted for the Monte Carlo simulations (i.e., the 1000 parameter samples that are784

drawn from the normal and Beta(2,3) parametric uncertainty distribution, respec-785

tively). Note that these quartiles are computed for all samples and that constraint786

violations are not exclued from these. From this table the following observations787

can be made. Firstly, the nominal experiment design results in higher information788

(i.e., higher quartile values) than the stochastic and approximate robust approaches.789

However, it can be observed that the IQR is smaller than the IQR for the nomi-790

nal experiment design for the stochastic and approximate robust approaches. This791

means that in terms of spread of the information content, these approaches perform792
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better than the nominal experiment design. The reduction in information content793

that can be observed in as well the stochastic as approximate robust approaches794

is the price to pay for the increased robustness with respect to constraint viola-795

tions. For this case study, the approximate robust approach performs better in796

terms of information content than the PCE-based stochastic approaches in case of797

the Beta(2,3) distributed parametric uncertainty, while for the normally distributed798

parametric uncertainty, the second order PCE-based approach performs better in799

terms of information content. Note, however, that for both the normally distributed800

parameters the number of constraint violations is lower for the approximate robust801

approach and that in terms of trade-off between information content (optimality)802

and constraint violations (feasibility) the approximate robust OED approach is rec-803

ommended for this case study.804

4.4. What approach to use for a desired robust experiment design?805

In the two presented case studies robustness in information content and robust-806

ness in constraint violations have been studied. From the obtained results some807

guidelines can be formulated with respect to the method that is preferably used808

when accounting for parametric uncertainty. The guidelines are summarized in809

Figure 6.810

In case that robustness in information content is an issue, the PCE based811

stochastic OED approach is preferred over the approximate robust OED approach.812

The results clearly indicate that the approximate robust approach is too conserva-813

tive and results in designs resulting in information content that is four times lower814

than a nominal OED approach. The stochastic PCE based approach on the other815

hand results in an improved information content when compared to the nominal and816

approximate robust approaches. Furthermore, the approximate robust approach re-817

quires an additional computational effort in calculating the second order sensitivities818

for the variance on the objective function. It needs to be noted that with increasing819

order of PCE the PCE based stochastic OED approaches will have an increased820

computational cost. However, it is clear that in many cases (as in the presented821

case studies in this article), a second order PCE is sufficient.822

In case that robustness in constraint violations is required, the conclusion is not823

that clear. If computation time is an issue, then the approximate robust approach824
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is preferred over the stochastic PCE based approach as the sensitivity states are825

directly exploited in the evaluation of the robustified constraint. When considering826

the percentage of constraint violations, PCE based stochastic OED results in a827

lower percentage of constraint violations than the approximate robust approach.828

For the jacketed tubular reactor case study, the reduction in constraint violations829

is sufficient such that the approximate robust OED approach is preferred in case of830

robustness in constraint violations.831

4.5. Remark832

Note that although the PCE approaches clearly perform worse in computation833

time than the approximate robust approach, the computation time of the stochastic834

PCE approaches can be reduced by exploiting the sampling-based aspect of the PCE835

approaches. More specifically, the same dynamic OED system has to be evaluated in836

the different PCE sampling points. This allows to reformulate the stochastic OED837

problem with ALADIN (Houska et al., 2016) as a distributed optimization problem838

in which the different agents consist of the evaluation of the system at different839

sampling points and the different agents are coupled by the controls (Jiang et al.,840

2017). Subject of future work will be on an ALADIN reformulation for stochastic841

optimal control to reduce computational time and construct efficient stochastic842

optimal control algorithms.843

5. Conclusion844

The impact of parametric uncertainty on the design of experiments has been845

studied in this paper. Potential negative effects are an overestimation of the ex-846

pected information content or experiments that violate operating constraints. In the847

presented work, a computationally tractable approach based on polynomial chaos848

expansion has been investigated and compared with the approximate robust optimal849

experiment design method of Körkel et al. (2004). The presented PCE based ap-850

proach allows the incorporation of a priori knowledge of the parameter distribution851

in the uncertainty propagation. In addition, the method allows for a formulation852

where the expected value and corresponding variance are computed while avoiding853

a numerical complex integration over the parameter space. The main advantage854
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of the polynomial chaos expansion approach is that more information on the un-855

derlying parameter distribution can be incorporated in the optimization problem.856

The presented PCE based methodology is illustrated with two different case studies857

with different types of distributions to illustrate the flexibility of the discussed ap-858

proach and the comparison with the approximate robust optimal experiment design859

approach of Körkel et al. (2004).860

861

For the Lotka-Volterra case study the presented PCE based methodology is less862

conservative than the approximate robust methodology and allows to compute863

information-rich experiments while the variance on the information content is also864

reduced. The approximate robust approaches lead to a significant loss in informa-865

tion content (almost 80% when compared with nominal experiment designs) and a866

very small variance on the information content. For the Lotka-Volterra case study,867

the PCE based stochastic OED formulation is more suitable than the approximate868

robust OED formulation, since both approaches require a high (and comparable)869

computation time and the PCE based stochastic OED approach results in a higher870

information content than the approximate robust approach. In the jacketed tubular871

reactor case study the emphasis was on reducing constraint violations and gener-872

ating practically feasible experiments. In case of a normal parametric uncertainty873

distribution the approximate robust approach resulted in a better reduction of con-874

straint violations than most of the stochastic PCE based methodologies, except the875

second order PCE approach. However, for the Beta(2,3) approach the stochastic876

PCE based approaches outperformed the approximate robust approach in terms877

of constraint violations reduction. However, for the jacketed tubular reactor case878

study the approximate robust OED approach is more suited since the computation879

time is much lower than for the PCE based stochastic OED approaches and the880

number of constraint violations is sufficiently low. The computation time for the881

approximate robust OED approach is lower than in the Lotka-Volterra case study882

as no derivative of the Fisher information matrix with respect to the parameters is883

needed.884

885

A severe limitation of the PCE based stochastic OED formulations is the com-886
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putational cost which increases significantly for an increasing number of states and887

parameters. However, these formulations exhibit a particular structure originating888

from the multiple repetitions of the model equations. In future work, the aim is889

to reformulate the stochastic OED as a distributed optimization problem, consist-890

ing of decoupled subsystems. A novel distributed optimization algorithm, ALADIN891

(Houska et al., 2016),(Jiang et al., 2017), will be used to decouple the large optimiza-892

tion problem and solve the stochastic optimal control problem in a computationally893

more efficient way. This should allow the application of sampling-based approaches894

of higher order and to cases with more uncertain parameters and more states. Note895

however that OED is performed offline so computational time is a hindrance but896

not a critical issue. From the results obtained for the implemented case studies,897

it is concluded that the PCE1 approach, due to its first order character, does not898

always lead to a consistent robustification and is therefore less preferred.899

ACKNOWLEDGMENTS900

The research was supported by: PFV/10/002 (OPTEC), FWO-G.0930.13 and901

BelSPO: IAP VII/19 (DYSCO). SB holds a Baekeland PhD grant (03/2016 -902

03/2020) from the Agency for Innovation through Science and Technology in Flan-903

ders (IWT).904

References905

Andersson, J., Akesson, J., Diehl, M., 2012. CasADi - a symbolic package for auto-906

matic differentiation and optimal control. In: Proceedings of the 6th International907

Conference on Automatic Differentiation.908

Asprey, S., Macchietto, S., 2000. Statistical tools for optimal dynamic model build-909

ing. Computers and Chemical Engineering 24, 1261 – 1267.910

Asprey, S., Macchietto, S., 2002. Designing robust optimal dynamic experiments.911

Journal of Process Control 12 (4), 545 – 556.912

Balsa-Canto, E., Alonso, A., Banga, J., 2008. Computational procedures for optimal913

experimental design in biological systems. IET Systems Biology 2, 163–172.914

31

Postprint version of paper published in Chemical Engineering Science 2020, 115651.
The content is identical to the published paper, but without the final typesetting by the publisher.

Journal homepage: https://www.journals.elsevier.com/chemical-engineering-science
Original file available at: https://doi.org/10.1016/j.ces.2020.115651



Balsa-Canto, E., Banga, J., Alonso, A., Vassiliadis, V., 2001. Dynamic optimization915

of chemical and biochemical processes using restricted second-order information.916

Computers & Chemical Engineering 25 (4-6), 539–546.917

Bouvin, J., Cajot, S., D’Huys, P.-J., Ampofo-Asiama, J., Anné, J., Van Impe, J.,918
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Tables1061

Table 1: Objective and constraint formulations for the nominal, approximate robust and PCE
based stochastic optimal experiment design approaches.

Nominal OED Approximate robust OED PCE based stochastic OED

Objective Φ(F (tf)) Φ(F (tf)) +
√
γ
∥

∥

∥

d
dpΦ(F (tf))

∥

∥

∥

Σ
adΦ,0 + αΦ

√

∑L−1
j=1

(

adΦ,j

)2

E

[

Ψ2
j (p)

]

Constraint ci(x(t), u(t), t) ci(x(t), u(t), t) +
√
γ

√

(

dx
dp

)⊤
(

dci
dx

)⊤
Σdci

dx
dx
dp adci,0 + αci

√

∑L−1
j=1

(

adci,j

)2

E

[

Ψ2
j (p)

]

Table 2: E-criterion values obtained from simulating the model with the current best guess of the
parameter values and the controls from the nominal and expected E designs for the approximate
robust, PCE1 and PCE2 approaches (α = 1.65).

Nominal Robust PCE1 PCE2 PCE2 Uniform
λmin 45.55 8.90 30.97 44.31 39.62

λmin/λmin,nom 1 0.195 0.680 0.973 0.870

Table 3: Quartiles E-criterion value for Monte Carlo simulations with 1000 realizations from
normally, uniformly distributed parameters p1 and p2 with mean 1 and standard deviation 0.1 for
α = 1.65.

Nominal Robust PCE1 PCE2 PCE2 uniform
Q1 Normal 31.507 8.662 23.958 33.327 -
Q2 Normal 39.336 9.877 29.401 40.964 -
Q3 Normal 49.579 12.285 37.094 51.522 -
Q1 Uniform 30.728 8.733 23.716 32.768 31.366
Q2 Uniform 38.728 10.342 29.550 41.094 39.695
Q3 Uniform 51.139 12.385 38.890 53.336 52.177

Table 4: Computation times for the Lotka-Volterra case study required for nominal OED, approx-
imate robust OED stochastic EV OED and stochastic robustified OED in seconds.

Nominal Robust PCE1 EV PCE2 EV PCE2 uniform EV
91.06 553.97 799.93 3869.12 3445.1

PCE1 1.65 PCE2 1.65 PCE2 uniform 1.65
4051.22 7355.3 4447.42

Table 5: Number and percentage of constraint violations, computation times and number of states
for the different experiment designs for the jacketed tubular reactor case study.

Normally distributed parameters
Nominal Robust PCE1 PCE2

nviolations 157 37 148 56
% violations 15.7 3.7 14.8 5.6
CPU time 13.93 24.4 87.13 428.21

Beta(2,3) distributed parameters
Nominal Robust PCE1 Beta PCE2 Beta

nviolations 181 25 0 59
% violations 18.1 2.5 0 5.9
CPU time 13.93 24.4 115.67 447.92
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Table 6: Quartiles (Q1, Q2 and Q3) and interquartile range (IQR=Q3-Q1) D-criterion value for
Monte Carlo simulations with 1000 realizations from normally, Beta(2,3) distributed parameters.

Nominal Robust PCE1 2σ PCE2 2σ
Q1 Normal 0.281 0.158 0.153 0.184
Q2 Normal 0.473 0.293 0.299 0.346
Q3 Normal 0.806 0.497 0.548 0.619
IQR Normal 0.525 0.339 0.395 0.434
Q1 Beta(2,3) 0.263 0.145 0.037 0.142
Q2 Beta(2,3) 0.470 0.283 0.085 0.264
Q3 Beta(2,3) 0.820 0.570 0.220 0.476
IQR Beta(2,3) 0.557 0.426 0.183 0.333

Figures1062
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(a) αΦ = 0. (b) αΦ = 0.

(c) αΦ = 0. (d) αΦ = 0.

(e) αΦ = 1.65. (f) αΦ = 1.65.

(g) αΦ = 1.65. (h) αΦ = 1.65.

Figure 1: Fishing control u(t) and sampling action w(t) profiles for the E-optimal, approximate
robust (Robust), and PCE-based stochastic (PCE1, PCE2 and PCE2 Uniform) experiment designs.
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(a) α = 0. (b) α = 1.65

Figure 2: Depiction of the two minimum eigenvalue surfaces for the nominal case and the PCE2
approach for a uniform distribution.
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(a) Minimum eigenvalue surface in function of
parameter p1 for α = 0.

(b) Minimum eigenvalue surface in function of
parameter p2 for α = 0.

(c) Minimum eigenvalue surface in function of
parameter p1 for α = 1.65.

(d) Minimum eigenvalue surface in function of
parameter p2 for α = 1.65.

Figure 3: The 2 two dimensional projections of Figure 2.
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(a) Reactor temperature for normally dis-
tributed parameters.
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(b) Cooling jacket temperature for normally
distributed parameters.
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(c) Reactor temperature for Beta(2,3) dis-
tributed parameters.
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(d) Cooling jacket temperature for Beta(2,3)
distributed parameters.

Figure 4: Simulated reactor temperature evolution with 95% confidence bound and control actions
of the D-design and two stochastic OED designs for normally distributed parameters (a,b) and
Beta distributed parameters (c,d).

(a) Normally distributed parameters. (b) Beta(2,3) distributed parameters.

Figure 5: Depiction of valid experiments out of 1000 parameter samples for each of the different
designed experiments based on the PCE2 approach of the jacketed tubular reactor.
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Figure 6: Decision tree to select OED approach based on desired robustness, i.e., with respect to
information content (optimality) or with respect to constraint violations (feasibility).
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Appendix A. Derivation of the solution for the linearized inner problem1063

Consider the inner maximization problem which is approximated with a first

order Taylor expansion in the variable p and reformulated as:

max
p

Φ(F (tf)) +
d

dp
Φ(F (tf))(p− pnom) (A.1)

subject to: ‖p− pnom‖2Σ−1 ≤ γ (A.2)

It is clear from this formulation that the objective function of this maximiza-

tion problem is linear in the parameters p. Since Φ(F (tf)) is evaluated in the

nominal parameter values pnom, the only relevant term for the maximization is

d
dpΦ(F (tf))(p− pnom). Hence the maximization problem can be simplified to:

max
p

d

dp
Φ(F (tf))(p− pnom) (A.3)

subject to: ‖p− pnom‖2Σ−1 ≤ γ (A.4)

Consider the Lagrangian L of Equation (A.3):

L = Φ(F (tf)) +
d

dp
Φ(F (tf))(p− pnom) + λ(γ − (p− pnom)

⊤Σ−1(p− pnom)), λ ≥ 0

(A.5)

From differentiation with respect to the optimization variable p and the necessary

optimality condition dL
dp = 0:

d

dp
Φ(F (tf)) + 2λ(Σ−1pnom − Σ−1p) = 0 (A.6)

If λ = 0, d
dpΦ(F (tf))(p− pnom) would be independent of p. This is a contradiction

and would make the optimization problem irrelevant. Hence, λ > 0. Consequently,

Equation (A.6) can be reformulated to an expression for p:

p = pnom +
1

2λ
Σ

d

dp
Φ(F (tf)) (A.7)
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Since Equation (A.1) is a linear, quadratic constrained problem in p and λ > 0, the

optimal solution is at the boundary (Boyd and Vandenberghe, 2004), i.e.,

(p− pnom)
⊤Σ−1(p− pnom) = γ (A.8)

Substituting Equation (A.7) in Equation (A.8) results in the following expression:

(

1

2λ
Σ

d

dp
Φ(F (tf))

)⊤

Σ−1 1

2λ
Σ

d

dp
Φ(F (tf)) = γ (A.9)

From Equation (A.9) and λ > 0, an optimal solution for λ is determined:

λ =
1

2
√
γ

√

(

d

dp
Φ(F (tf))

)⊤

Σ
d

dp
Φ(F (tf)) (A.10)

The optimal p is given by:

p = pnom +

√
γ

√

(

d
dpΦ(F (tf))

)⊤

Σ d
dpΦ(F (tf))

Σ
d

dp
Φ(F (tf)) (A.11)

Evaluation of the objective function of the inner maximization problem in the op-

timal solution p leads to:

Jinner = Φ(F (tf)) +
d

dp
Φ(F (tf))

√
γΣ d

dpΦ(F (tf))
√

(

d
dpΦ(F (tf))

)⊤

Σ d
dpΦ(F (tf))

(A.12)

= Φ(F (tf)) +

√

γ
d

dp
Φ(F (tf))Σ

d

dp
Φ(F (tf)) (A.13)

= Φ(F (tf)) +
√
γ

∥

∥

∥

∥

d

dp
Φ(F (tf))

∥

∥

∥

∥

Σ

(A.14)
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