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Abstract 2 

Bitumen, also called asphalt binder, is the key component in asphalt mixtures. Studies to investigate the microstructure of this 3 

material show a rich morphology, especially the formation of bee structures in bitumen containing wax. Most research in this 4 

field has investigated these microstructures using commercial image processing software that needs a manual selection of these 5 

patterns to obtain certain characteristics. This study aims to construct a deep-learning-based object-detection model that can 6 

detect these bee patterns in the images acquired from bitumen samples using Confocal Laser Scanning Microscopy (CLSM). 7 

The CLSM images are then used to determine the morphological properties of the samples. The properties investigated are some 8 

typical roughness parameters and the wavelength calculated by a novel image processing technique based on the two-9 

dimensional fast Fourier transform. In addition, these developed methodologies are used to investigate the influence of short-10 

term and long-term ageing on the microstructure of a waxy bitumen. The results show that the trained deep learning model can 11 

be used to successfully detect the location, number, and area of the bee structures. The number of bee patterns and the area of 12 

the surface they cover are reduced upon ageing. Furthermore, some strong trends are found between the computed roughness 13 

parameters and the ageing level of the samples. Finally, the estimated wavelength of the bee patterns increases by ageing 14 

bitumen. The successful development and demonstration of these methods show their great potential in analyzing the 15 

microscopic images of bitumen taken by CLSM or atomic force microscopy and the enormous opportunities for future research. 16 

  17 

Keywords: Bitumen; Microstructure; Ageing; Confocal laser scanning microscopy; Image analysis; Deep learning 18 

 

1. Introduction  19 

Among the different products of crude oil distillation, bitumen, also known as asphalt binder, possesses a 20 

dominant role in road and roofing applications due to its superb binding and waterproofing performance [1]. 21 
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 2 

Although bitumen serves its purpose well as a viscoelastic material in road applications, the complexity of its 22 

composition made bitumen’s overall unmasking a point of consideration already for a long time [2]. Additionally, 23 

the organic nature of bitumen hinders the understanding of its fundamentals since it makes it prone to oxidation [3], 24 

with several physicochemical alterations taking place [4,5]. The latter is a phenomenon widely known as the ageing 25 

of bitumen, taking place in a two-stage fashion, namely during production and paving stages and later in-situ [6,7]. 26 

It is reasonable that many studies have focused on the consequences of this process in bitumen, since it’s the binding 27 

medium of asphalt and inevitably affects its performance with undesirable distresses. To name some of the most 28 

severe distress types, cracking and ravelling of asphalt are in the top list [8,9]. 29 

Not only the phenomenological behavior and chemical mechanisms of bitumen have received special attention 30 

but also the understanding of its interior labyrinth has generated much interest in the scientific community. 31 

Different theories concerning bitumen’s microstructure have been put forward, varying from a colloidal 32 

structure [10], to a dispersed fluid [11], to a modern agglomeration of the most polar bitumen constituents [12]. To 33 

reveal intrinsic information in the bulk of bitumen i.e. with respect to aromatic associations and their size, advanced 34 

tools are required, such as Small-Angle Neutron and X-Ray Scattering [13]. In addition, limited studies performing 35 

measurements in the bulk of bitumen showed that bitumen structures appear only on the surface and can reappear 36 

after reheating the fractured specimen representing the bulk [14–16]. The reliability of the surface microstructural 37 

patterns and their correlation with binder’s properties can in principle be valid since such structures can reappear 38 

upon heating of fractured specimens representing the bulk of the bitumen. Hence, a more simplistic approach being 39 

adopted more commonly is to understand, as a first step, changes that are depicted on bitumen’s surface or 40 

subsurface. An ally to achieve this goal is the improvement of microscopic techniques during the last decades [17–41 

19]. Different microscopic techniques have been used to see the annealing effects, the influence of thermal history 42 

as well as the effect of ageing on the surface microstructure of bitumen. Until now, Atomic Force Microscopy 43 

(AFM) has been proven one of the best candidates for such purposes [20–22] mainly due to its excellent resolution 44 

and the relatively undamaged surface after the measurements. Recently, the enhancement of Confocal Laser 45 

Scanning Microscopy (CLSM) in reflectance mode has resulted in resolution comparable to the AFM [23]. 46 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 3 

It has also been speculated that one of the main surface microstructural patterns that AFM can capture is related 47 

to one of the components of bitumen. These patterns have been established in the bitumen terminology as ‘bees’ 48 

since they were initially visualized in AFM as wrinkled bee-shaped structures [24]. Recently, these bee patterns 49 

have been reported to be observable by CLSM as well [23]. In parallel, strong debate existed regarding the origin 50 

of these bee patterns. Despite the widespread belief that these surface structures may be associated with the most 51 

polar constituents of bitumen known as asphaltenes [25], undeniable evidence was later provided by Differential 52 

Scanning Calorimetry (DSC), coupling the bee structures with the paraffinic wax present in bitumen’s 53 

composition [26,27]. Although natural wax is not apparent in all bitumen, when present, it may affect the 54 

performance of the waxy binders [28,29]. Thus, understanding the influence of waxes is essential for drawing 55 

certain conclusions in the effort to understand bitumen’s composition as well as the way to intervene with 56 

appropriate modifications or antiageing agents. 57 

Previous research tended to focus on the effect of ageing on the bee patterns investigating the surface of bitumen 58 

after artificial ageing in the lab. Commonly, the short-term ageing up to the paving stage is simulated in the lab 59 

with the Rolling Thin-Film Oven Test (RTFOT) [30], while the long-term ageing in service with the Pressurised 60 

Ageing Vessel (PAV) [31]. Challenges mainly arise concerning the convergence of the findings of different 61 

scholars when it comes to the influence of ageing in the area or the length of the bee patterns [32–34], whereas a 62 

few have reported the effect of ageing on other characteristics of the bees [35]. For the detection of these patterns, 63 

most of the studies have used commercial software packages which need a manual selection of the bees and have 64 

their limitations in terms of correct selection of the bee areas.  65 

What is still missing from the literature is a comprehensive study utilizing advanced image processing and deep-66 

learning algorithms. To that end, this study exploits some novel techniques on images acquired by a CLSM to 67 

analyze the effect of ageing after laboratory short- and long-term ageing for a waxy bitumen. In contrary to previous 68 

works, this paper makes use of a deep learning technique [36] to detect the location of the bee structures to 69 

investigate their surface roughness and proposes a new method based on two-dimensional fast Fourier transform 70 

(2-D FFT) [37] to identify in the most precise way the wavy characteristics of the bee structures. The analysis adds 71 
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 4 

to the existing literature a versatile image detection algorithm and serves towards overcoming a longstanding 72 

challenge with respect to the true impact of ageing on the bee structures. Finally, it describes the framework of the 73 

developed MATLAB algorithm in order to be reproducible by other researchers. 74 

 75 

2. Materials and methods 76 

2.1. Bitumen and ageing simulations 77 

Based on previous studies stressing the association of the formed bee patterns with paraffinic wax, a bitumen 78 

containing natural wax (crystallizable compounds) was selected. The unaged material was designated in the 79 

following as ‘waxy bitumen’ with the empirical properties and its performance grade provided in Table 1. It is 80 

worth mentioning that the selected bitumen was indicated to contain natural wax as was shown by its melting 81 

enthalpy calculated via DSC measurements, while wax-free bitumens present a melting enthalpy after 82 

heating/cooling DSC cycles of zero. With regard to the refinery process, the specific bitumen is produced after a 83 

visbreaking process which among others targets to reduce the viscosity of bitumen. 84 

Table 1: Empirical and wax properties of waxy bitumen 85 

Waxy bitumen Property Protocol 

 Penetration 25 oC (0.1 mm) 190 EN1426 

 Softening point (oC) 39.2 EN1427 

 Penetration index, PI -0.63 EN12591 

 Performance grade 52-22 AASHTO MP 1 

 Melting enthalpy (J/g) 9.6 [29] 

 86 

The waxy bitumen was aged in the lab for short-term ageing with RTFOT and long-term ageing with PAV 87 

according to the European standards [30,31]. Typically for the simulation of short-term ageing 35 grams of unaged 88 

material are poured in appropriate flasks after which they are placed in a rotating carousel at 163 °C and flushed 89 

with an airflow of 4 L/min for 75 minutes. To mimic the long-term ageing 50 grams of short-term aged material 90 

are placed on metallic pans in a chamber under a pressure of 2.1 MPa at 100 ºC for 20 hours. Finally, to distinguish 91 

between the different ageing states the nomenclature of ‘RTFOT’ or ‘PAV’ will follow the binder designation. 92 
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 5 

2.2. Sample preparation 93 

The microstructural properties of bitumen are strongly dependent on its thermal history. That is why sample 94 

preparation is a critical step in investigating bitumen using any type of microscopy. In this study, the samples 95 

preparation recommended by [38] was adopted to conduct the experiments. This procedure includes heating a small 96 

portion of bitumen for 30 min at 150 °C followed by a proper stirring to obtain a homogenous material. Then a 97 

drop of the material is placed on a microscopic slide placed horizontally on a heating plate at a temperature of 98 

150 °C. The microscopic slide is kept on the heating plate for 1 min to acquire a flat sample with sufficient thickness 99 

and a smooth surface. Finally, the sample is placed in a dust-free and dark environment for two hours to cool down 100 

to ambient temperature before the CLSM images are taken.  101 

2.3. Microscopic observation and surface characterizations 102 

The microscope used in this study was a Keyence CLSM with a VK-X1000 controller unit and a VK-X1050 103 

measurement head coupled with a Nikon EPI Plan Apo 150X lens. This microscope has a lateral resolution of 5 nm 104 

and axial resolution of 10 nm in the best conditions. The microscope uses two light sources. Laser light with a 105 

wavelength of 661 nm that scans the surface in the X, Y, and Z direction to capture the image containing the height 106 

information and white light to capture the color information from the sample surface. Moreover, a pinhole confocal 107 

optical system is used to eliminate all influences of ambient light and reflected light from any position other than 108 

the focal point. 109 

The images were taken with the VK-Viewer software and preprocessed using the VK-MultiFileAnalyzer 110 

software. The data recorded by the VK-Viewer that were used in this study were the height information of the 111 

sample surface and the images produced with the Differential Interference Contrast (DIC) imaging method. The 112 

preprocessing of the data with VK-MultiFileAnalyzer included a reference plane setting to level the surface and a 113 

surface shape correction using waveform removal with a correction strength of 5 to remove the curvature of the 114 

bitumen drop. Afterwards, the DIC images and the height measurements were exported to MATLAB for further 115 

analysis. 116 
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 6 

2.4. Surface roughness evaluation 117 

One advantage of CLSM to other microscopy techniques is its ability to provide high-resolution height 118 

measurements from the surface of the specimens. Using these height measurements, it is possible to calculate 119 

different surface roughness parameters of the samples at different conditions and compare the microstructures. In 120 

this research, five popular surface roughness parameters from the amplitude parameter group were calculated that 121 

can help quantify the changes in the height of the surface and explore the observed patterns. These parameters 122 

include arithmetic average height (Sa), root mean square height (Sq), maximum height (Sz), skewness (Ssk), and 123 

kurtosis (Sku), see Equations 1-4.  124 

Arithmetic average height (Sa), also known as the center line average, is the most typical roughness parameter 125 

used for general surface control. Sa expresses the differences in the height of each point compared to the arithmetical 126 

mean of the surface and is calculated according to Equation 1: 127 

 128 𝑆𝑎 =  1𝐴 ∬|𝑍(𝑥, 𝑦)|𝑑𝑥𝑑𝑦𝐴  

 

Equation 1 

with Z(x,y) the height of the surface at a point with x and y coordinates, and A the area of the investigated 129 

surface. 130 

Root mean square height (Sq) is the standard deviation of the distribution of the surface heights, calculated 131 

according to Equation 2. This parameter which describes the surface roughness using statistical methods is similar 132 

to Sa but more sensitive to large deviations from the mean line. 133 

 134 

𝑆𝑞 =  √1𝐴 ∬ 𝑍2(𝑥, 𝑦)𝑑𝑥𝑑𝑦𝐴  

 

Equation 2 

 135 

Maximum height (Sz) is defined as the sum of the largest peak height and the largest pit depth in the designated 136 

area. 137 

Skewness (Ssk), calculated using Equation 3, is a value that represents the degree of bias of the roughness shape. 138 

This parameter is sensitive to occasional deep valleys or high peaks. Ssk near zero points out symmetrical height 139 
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 7 

distribution around the mean plane. Negative or positive values of Ssk mean the height distribution is skewed above 140 

or below the mean plane. 141 

 142 𝑆𝑠𝑘 =  1𝑆𝑞3 [1𝐴 ∬ 𝑍3(𝑥, 𝑦)𝑑𝑥𝑑𝑦𝐴 ] 

 

Equation 3 

 143 

Kurtosis (Sku) is the fourth central moment of profile amplitude probability density function, computed using 144 

Equation 4. This value is representative of the sharpness of the probability density.  145 

 146 𝑆𝑘𝑢 =  1𝑆𝑞4 [1𝐴 ∬ 𝑍4(𝑥, 𝑦)𝑑𝑥𝑑𝑦𝐴 ] 

 

Equation 4 

Ssk and Sku are typically used to differentiate between surfaces that have different shapes but similar values of 147 

Sa. 148 

In this research, these values are calculated at four different random locations for each sample, and the average 149 

and standard deviation of the computed values are presented. 150 

2.5. Pattern detection using deep learning 151 

 Deep learning is a popular computational method that enables computers to learn from experience. Deep 152 

learning is a subset of machine learning that uses a hierarchical artificial neural network to carry out the desired 153 

tasks. This powerful technique has dramatically improved the state-of-the-art in many domains such as speech 154 

recognition, visual object recognition, and object detection [39]. In this research, deep learning was used to detect 155 

the so-called “bee patterns” on the surface of the bitumen microstructure. Several deep learning techniques exist 156 

for object detection purposes, including Region-based Convolutional Neural Network (R-CNN) [40], Fast R-CNN 157 

[41], Faster R-CNN [42], You Only Look Once (YOLO) [36] version 1 to 5, Single Shot Detector (SSD) [43], and 158 

EfficientDet [44]. In this study, a YOLOv3 [36] based algorithm developed in the MATLAB environment was 159 

trained and used. Contrary to many other methods, YOLOv3 applies a single neural network to the full image, and 160 

by dividing the image into multiple regions, it predicts bounding boxes and their probabilities for each region. 161 

These bounding boxes are weighted by the predicted probabilities.  162 
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 8 

As presented in Figure 1, the deep learning network structure in this research consists of the feature extraction 163 

network in SqueezeNet, followed by two detection heads at the end, with the second detection head able to detect 164 

smaller patterns. The resolutions of the input RGB images for the network were chosen 277*277, and all the images 165 

and the bounding boxes were resized accordingly. Next, with the help of the estimateAnchorBoxes function of 166 

MATLAB, the number of anchor boxes was selected equal to six, with the three larger ones used in the first 167 

detection head and the smaller ones assigned to the second detection head. Anchor boxes are a set of predefined 168 

bounding boxes of a certain height and width that can help improve the speed and efficiency of the detection portion 169 

of the network. Finally, the system was trained on GPU of a laptop with Intel Core(TM) i7-9850H with a clock 170 

speed of 2.60 GHz, 32.0 GB RAM, and a GPU of NVIDIA GeForce MX150. 171 

 172 

In this research, first, the bee patterns on 21 images were labeled using the Image Labeler application of 173 

MATLAB (see Figure 2-a). Each of these images had between 4 to 13 visible bee patterns. The images used for 174 

this purpose were the DIC images taken with the microscope and preprocessed using the VK-MultiFileAnalyzer 175 

software. Afterwards, using a data augmentation procedure including random rotation, up to 10% scaling of the 176 

images, and color jitter (with no saturation), the number of labeled patterns was increased. One example of an 177 

augmented image created using Figure 2-a is presented in Figure 2-b. This increases the variety of the training data, 178 

which can improve the accuracy of the trained network. The trained network was eventually able to automatically 179 

Output Input 

Feature extraction network 

(SqueezeNet) Detection heads 

Figure 1: Flow chart of the deep learning network 
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 9 

detect the bee patterns in the pictures acquired by the CLSM as presented in Figure 2-c and limit the user bias only 180 

to the labeling stage. 181 

 182 

The trained algorithm was then run for all the images captured from the bitumen surfaces detecting the present 183 

bee patterns. After detecting the bee patterns, the number and the area of the bounding boxes in each image were 184 

calculated and compared for bitumen in different ageing stages. 185 

2.6. Analysis of the patterns by developing advanced image processing techniques 186 

The next step after pattern detection is to identify some characteristics of these bee patterns to investigate if any 187 

change can be observed between the microstructure of the samples at different ageing stages. The first parameters 188 

calculated for this purpose were the surface roughness parameters such as Sa, Sq, and Sz. To calculate these 189 

parameters, the locations of the bees were detected on the DIC images using the trained deep learning algorithm, 190 

and the corresponding areas in the height images taken by the CLSM were marked (see Figure 3). Then using 191 

Equation 1 and Equation 2, the desired roughness parameters were calculated, and their averages were compared 192 

between different samples. 193 

[c] [b] [a] 

Figure 2: a) An example of a labeled image, b) Example of an augmented image, and c) Detected bee patterns from the trained algorithms 

including the certainty of detection 
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 194 

Another interesting parameter of these patterns is the distance between two consecutive heights called the 195 

wavelength (l). In the literature, this parameter is calculated by drawing a line along with the bee pattern and 196 

measuring the distance manually using any image processing software [16,45]. However, this method to estimate 197 

the wavelength is time-consuming and susceptible to human error. To automate this process and conduct it for all 198 

the bee patterns detected in all images, it is first necessary to develop a method that can estimate the orientation of 199 

a bee pattern (angle of the axis of the bee pattern with respect to the x-axis) in an image. This was done by 200 

developing an algorithm based on 2D-FFT. 2D-FFT in digital image processing is a tool allowing to decompose 201 

an image into its sine and cosine components. The output of this transformation represents the image in the 202 

frequency domain. Equation 5 shows the process of calculating 2D-FFT for an image f(x,y) in spatial domain with 203 

dimensions of M*N pixels [46]. 204 

  205  F (u, v) =  ∑ ∑ 𝑓(𝑥, 𝑦). 𝑒−𝑗2𝜋(𝑢𝑥𝑀 +𝑣𝑦𝑁 )𝑁−1
𝑦=0

𝑀−1
𝑥=0  

 

Equation 5 

with F(u,v) the image in the frequency domain. 206 

2D FFT is an efficient and popular method to remove periodic noise from digital images [46]. After applying a 207 

2D FFT on an image and plotting the magnitude of the output in the logarithmic scale in Figure 4-a, two spots with 208 

higher values along the direction of the bee pattern are clearly visible. All the main frequency contributors to this 209 

image in all directions were found by calculating the radially averaged power spectrum (see Figure 4-b). However, 210 

using this figure, it is not possible to obtain the main frequency contributing to the bee pattern in the desired 211 

Figure 3: [a] DIC image, and [b] height measurements of a single detected bee from the deep learning algorithm 

[b] [a] 
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 11 

direction. Therefore it is first necessary to find the direction of the bee pattern in an image. To find the direction of 212 

a bee pattern in the image, first, the image was rotated from 0 to 180 degrees. The averages of the spectrum of the 213 

middle 22 pixels (selected based on the range of the bee dimensions) on the x-axis were calculated for each rotation 214 

angle (see Figure 4-c). The maximum value, 16º for this image, shows the direction of the bee pattern for this 215 

example.  216 

 217 

After the bee pattern was rotated at an angle of 16° (shown in Figure 5-a), the values along the axis of the pattern 218 

were selected. Then, the spectrum of this height data was calculated using a 1D-FFT (see Figure 5-b). The 219 

maximum value of this figure in the expected region provides the dominant frequency and, consequently, this 220 

pattern’s wavelength. However, to make sure the zero values caused by the rotation of the image in MATLAB do 221 

not influence the spectrum, a hamming window was first applied to the pattern. The result of the FFT (spectrum) 222 

for this bee pattern is presented in Figure 5-b. By reversing the x-value at this peak, the wavelength of this bee 223 

pattern was estimated. Using this developed methodology, the wavelength of all detected bee patterns in all images 224 

were estimated and compared for bitumen with different ageing severity. 225 

Figure 4: a) Image of Figure 3-b in frequency domain (magnitude of the 2D FFT), b) Radially average power spectrum of this image, and 

c) Average of the middle 22 pixel values on the x-axis of the spectrum image rotated between 0 to 180 degrees. 

[b] [c] [a] 
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 12 

  226 

Figure 5: a) Height measurements of the detected bee pattern rotated to the horizontal position, 

b) Spectrum of the bee pattern along the x-axis after applying a Hamming window in time domain 
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3. Results and discussion 227 

The DIC images and height measurements acquired by the CLSM on one location of each sample are presented 228 

in Figure 6. A bee structure similar to the ones observed in the literature is present in the microstructure of all three 229 

specimens. The number of this pattern seems to decrease in the PAV aged sample, but instead, some larger wrinkles 230 

are formed around the remaining bee structures. To study these images systematically, the proposed methodologies 231 

explained in the previous section were employed, and multiple microscopic images from each sample were 232 

analyzed. The results of this investigation are presented in the following subsections.  233 

 234 
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Figure 6: DIC images (left) and height measurements (right) acquired by the CLSM for the bitumen sample in three different ageing stages 235 
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3.1. Overall surface roughness 236 

Average and standard deviation of different surface roughness parameters computed for four random locations 237 

on the surface of the three samples are presented in Figure 7 and Figure 8. These parameters were calculated for 238 

the whole measured areas and present information about the entire measured surfaces and not only the bee patterns. 239 

It can be seen that Sa and Sq did not follow a certain trend by ageing. This shows that the differences in the height 240 

of each point compared to the arithmetical mean of the surface are not sensitive to the ageing state of the bitumen. 241 

However, as it can be seen in Figure 7-c, Sz had a gradual decrease from more than 0.1 μm for the unaged sample 242 

to 0.92 μm and 0.08 μm for the RTFOT aged and PAV aged samples, respectively. This means that the difference 243 

between the peak height and the largest valley depth of the surface had a gradual decrease by ageing the sample.  244 

 245 

 246 

Since Sa and Sq do not follow a specific trend in the samples, Ssk and Sku are calculated. Figure 8-a shows that 247 

Ssk changes from less than -0.6 for the unaged state to about -0.48 for the RTFOT state and dramatically increases 248 

to more than 0.2 after PAV. This means that the height distribution on the surface of the samples is skewed above 249 

the mean plane in the unaged and RTFOT samples, but skewed below the mean plane for the PAV sample. This 250 

increasing trend hints that the surface contains fewer valleys and more peaks after the ageing procedures.  251 
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Figure 7: a) Arithmetic average height, b) root mean square height, and c) maximum height of bitumen surface at different ageing 

states 
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Figure 8-b illustrates the kurtosis of the samples. The relatively high kurtosis (Sku > 3) in all samples suggests 252 

there are quite some sharp peaks and valleys in these surfaces. This value has a slight decline by RTFOT ageing, 253 

and a rather sharp drop in the PAV aged sample, confirming the changes in Ssk. 254 

 255 

3.2. Bee detection 256 

Next, the trained deep learning algorithm was utilized to detect the bee patterns in all the acquired images. After 257 

detection of the patterns, their number, size, and the total area they cover in an image were computed and presented 258 

in Figure 9. As it can be observed in this figure, the number of the bee patterns in an area of 24.3*32.4 μm decreased 259 

by ageing the bitumen. This confirms the initial observations made in Figure 6. Furthermore, the average 260 

rectangular area of the bee patterns had a slight decrease with ageing. However, the standard deviation of this 261 

parameter is too large to draw any concrete conclusions. Finally, the total areas the bee patterns are covering (Figure 262 

9-c) decreased from more than 50 μm2 for the unaged state to about 37 μm2 for the RTFOT stare and less than 263 

20 μm2 after PAV. These values also had rather large standard deviations, which means even though the area that 264 

the bee patterns cover clearly declines by ageing, their density at different locations of the samples varies 265 

drastically. These observations can be linked with the crystallization phenomena in waxy bitumen. Since bitumen 266 

is considered to be affected from a chemical perspective by oxidation, it has been speculated that the compatibility 267 

of the waxes in the bitumen matrix is possible to alter with ageing. Waxes are considered in general unaffected by 268 

ageing, however, their compatibility in the bitumen matrix can, in principle, affect the melting point depression 269 

Figure 8: Skewness and kurtosis of the surface height measurements 
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and crystallization temperatures [47,48]. As such, the shift of the crystallization temperatures due to ageing may 270 

be a factor for these microstructural changes and the accompanying properties extracted with deep-learning for 271 

CLSM. The simultaneous restricted mobility of bitumen due to an increase in its viscosity with ageing may also 272 

influence the time-dependent crystallization and, therefore, microstructure. Finally, in another study, it has been 273 

shown, with high-resolution Time of Flight Secondary Ion Mass Spectrometry images, that the same waxy bitumen, 274 

used in this study, appeared to reduce the aliphatic fragments associated with waxes upon ageing [7]. This can be 275 

another reason for the reduction of the number and size of the bee structures, as observed in this paper. 276 

 277 

3.3. Properties of the bee patterns 278 

The roughness parameters calculated in subsection 3.1 represent not only the bee patterns but also the rest of the 279 

microstructures formed on the surface. In this subsection, about 100 detected bee patterns in 12 microscopic images 280 

taken from the three samples are separated and investigated without taking into account the rest of the surfaces. 281 

Figure 10 illustrates three roughness parameters Sa, Sq, and Sz. As it can be seen, Sa, Sq, and Sz of the bee patterns 282 

detected on the unaged sample are considerably larger than those of the other two samples. This proves that the bee 283 

patterns of the unaged sample are rougher and have higher peaks and valleys with respect to the other two samples. 284 

As for the comparison between the aged samples, the Sa values are too close to each other, and the standard 285 

deviations are too high to draw any conclusions. However, Sz and Sq which are more sensitive to large deviations 286 

Figure 9: a) Number of detected bees using the developed deep learning algorithm, b) averaged area of the estimated bounding boxes, 

and c) total area of the patterns on the surface of an image  
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from the mean line than Sa, have a slight decrease in the case of the PAV aged sample with respect to the RTFOT 287 

aged sample. Studying Figure 7 and Figure 10 together, it can be concluded that the wrinkles and structures other 288 

than the bee patterns are also playing a considerable role in the surface roughness of the samples. 289 

 290 

Another approach to evaluate the patterns on the surface of the specimen is a comparison between the 291 

wavelength of the bee patterns. At this step, the novel method introduced in subsection 2.5 was used to estimate 292 

the wavelength of about 100 bee patterns in the acquired images. The results of this analysis are presented in Figure 293 

11. In this figure, the horizontal lines inside the boxes show the mean values of the data, and the X marks on top 294 

of the lines show the median values (second quartile). Furthermore, the top of each box represents the third quartile, 295 

while the bottom of the box represents the first quartile. Moreover, the top and bottom lines, also referred to as the 296 

whiskers, indicate the variability outside the upper and lower quartiles. As illustrated in this figure, the mean and 297 

median wavelength of the bee patterns has a slight increase by RTFOT ageing, and a strong rise by PAV ageing. 298 

However, the interquartile range and variability of the data points are quite extensive for all three samples, 299 

especially for the PAV-aged sample. The values of the wavelength achieved by this method are comparable with 300 

the results of the wavelength of different types of bitumen found in the literature (0.560 μm in [16] and 0.550 μm 301 

in [45]). 302 

Figure 10: Roughness parameters Sa, Sq, and Sz calculated only in the areas with detected bee patterns 
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 303 

4. Conclusions 304 

While studies to observe the microstructure of waxy bitumen are available in the literature, a systematic analysis 305 

of the number of bees, their dimensions, and characteristics is still missing. In this study, some advanced image 306 

processing techniques are developed to detect and analyze the bee structures of a bituminous binder at three 307 

different ageing states: Unaged, RTFOT aged, and PAV aged. First, using the trained deep learning model the bee 308 

patterns are successfully detected in the images taken by the CLSM. Then, different characteristics of the surface 309 

and bee patterns are calculated and interesting trends between these parameters and ageing of bitumen samples are 310 

found. The main findings of this study are as follows: 311 

 The CLSM measurements on the bitumen surface show the bee structure similar to what has been 312 

observed in the literature (mostly by AFM). The observed bee structures vary in size, density, and 313 

surface properties.  314 

 By training a deep learning neural network model, these bee patterns can be detected in the microscopic 315 

images limiting the user bias only to the training step.  316 

Figure 11: Wavelength of the bee patterns calculated using the proposed method 
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 Using the height information recorded by the CLSM, multiple roughness parameters can be computed 317 

for the surface of the samples or on the regions of the detected bee patterns separately.  318 

 The novel method based on 2D-FFT proposed in this research can estimate the wavelength of the bee 319 

structures. This provides the possibility to easily study this parameter for a large number of bee patterns. 320 

 By increasing the ageing level of bitumen, the Sz and Sku parameters decrease while Ssk rises. This 321 

indicates the surface has a smaller maximum height and kurtosis, and larger skewness upon ageing the 322 

bitumen.  323 

 The number of bee patterns, their total area, and roughness parameters Sa, Sq, and Sz go down by ageing 324 

the bitumen sample. The decrease in these roughness parameters means that the bee patterns get 325 

smoother by ageing the bitumen. Furthermore, even though the variation of the wavelength of the bee 326 

patterns is very high, its average increases by ageing the bitumen sample. 327 

The novel methods proposed and employed in this research can radically advance the analysis of the 328 

microstructure of the bitumen to establish a correlation between these patterns and other properties of bitumen. 329 

Since the methods proposed in this study proved to be capable of analyzing the bee patterns and their properties, it 330 

is recommended that other researchers dealing with the microstructure of the bitumen use similar techniques. Future 331 

research must focus on using these techniques to analyze more types of bitumen and their microstructure after 332 

ageing, the effect of different types of wax on the microstructure of the bitumen, a comprehensive study on the 333 

relationship between the bee characteristics and chemical and rheological properties of bitumen, and to investigate 334 

other additives that are clearly distinguished in CLSM images. 335 
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