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Abstract

In this thesis, a first-principles research to tune the physical properties of group
III-V materials in the thinnest limit is carried out. Among the different methods
to tune the mechanical, electronic and magnetic properties of these graphene re-
lated materials, we use: two-dimensional (2D) multilayers, straintronics, hydrogen
functionalization, and transition metal adsorption. The first part of this research is
devoted to a complete characterization of the structural, electronic, mechanical and
vibrational properties of 2D group III-As monolayers, obtained from density func-
tional theory. Our findings are used to understand the contribution of the 𝜎 and 𝜋
bonding in the most stable geometry (planar or buckled) for 2D ℎ-III-As systems.
Structural and electronic properties of ℎ-III-As systems, as a function of the number
of layers, have also been studied. In the second part of this thesis, the electronic
properties of graphene and GaAs, in the graphene/GaAs bilayer heterostructure,
are tuned, under both uniaxial stress along the 𝑐-axis and different planar strain
distributions. Here, the tunable graphene bandgap, not only by the strength but
also by the direction of the strain, enhances the potential for strain engineering of
ultrathin group-III-V electronic devices hybridized by graphene. In the third part of
this study, the structural and electronic properties, as well as the energy and dynam-
ical stability of 2D hydrogenated GaAs sheets, are studied taking into account three
different geometric configurations: chair, zigzag-line and boat. The hydrogenation
of 2D-GaAs tunes the bandgap of pristine 2D-GaAs, which makes it a potential
candidate for optoelectronic applications in the blue and violet ranges of the vis-
ible electromagnetic spectrum. Finally, the tunability of the magnetic properties
by spin-orbit coupling, on both magnetic anisotropy and Dzyaloshinskii-Moriya in-
teraction, for two-dimensional gallium arsenide when single transition metal (TM)
atoms are adsorbed (Mn, Co, Mo and Os), is investigated. The obtained results
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indicate novel pathways towards two-dimensional chiral magnetic materials by de-
sign, tailored for desired applications in magneto-electronics. The present work will
bring new theoretical insights to the research of the thinnest materials, opening the
possibility for further investigations in atomically thin III-As materials.

Abstract−Nederlandse versie
In dit proefschrift wordt een eerste-principe onderzoek uitgevoerd om de fysis-
che eigenschappen van atomair dunne groep III-V-materialen te beschrijven. On-
der de verschillende methoden om de mechanische, elektronische en magnetische
eigenschappen van deze grafeengerelateerde materialen te besturen, gebruiken we:
2D-meerlagen, straintronica, waterstoffunctionalisatie en overgangsmetaaladsorptie.
Het eerste deel van dit onderzoek is gewijd aan het uitvoeren van een volledige karak-
terisering van de structurele, elektronische, mechanische en vibratie-eigenschappen
van 2D groep III-As monolagen, met behulp van dichtheidsfunctionaaltheorie. Onze
bevindingen worden gebruikt om de bijdrage van de 𝜎 en 𝜋 en binding in de meest
stabiele geometrie (planair of geknikt) voor 2D ℎ-IIIAs-systemen te begrijpen. Struc-
turele en elektronische eigenschappen van ℎ-IIIAs-systemen, als functie van het aan-
tal lagen, zijn ook bestudeerd. In het tweede deel van dit proefschrift worden de
elektronische eigenschappen van grafeen en GaAs in de grafeen/GaAs dubbellaag
heterostructuur bestudeerd, zowel onder uniaxiale spanning langs de c-as als on-
der verschillende vlakke vervormingsverdelingen. Hierdoor vergroot de instelbare
bandkloof van grafeen, niet alleen door de sterkte maar ook door de richting van
de spanning. Deze eigenschap vergroot het potentieel van de spanningstechniek bij
het gebruik van ultradunne groep-III-V elektronische apparaten gehybridiseerd door
grafeen. In het derde deel van deze thesis worden de structurele en elektronische
eigenschappen, evenals de energie en dynamische stabiliteit van 2D gehydrogeneerde
GaAs-membranen, bestudeerd rekening houdend met drie verschillende geometrische
configuraties: stoel, zigzaglijn en boot. De hydrogenering van 2D-GaAs verkleint
de bandafstand van ongerepte 2D-GaAs, waardoor het een potentiële kandidaat
wordt voor opto-elektronische toepassingen in het blauwe en violette bereik van het
zichtbare elektromagnetische spectrum. Ten slotte wordt de afstembaarheid van
de magnetische eigenschappen door de spin-orbit-koppeling, zowel op magnetische
anisotropie als op Dzyaloshinskii-Moriya-interactie, voor tweedimensionaal galliu-
marsenide onderzocht wanneer enkele transitie metaal (TM) atomen worden geab-
sorbeerd (Mn, Co, Mo en Os). De verkregen resultaten duiden op nieuwe wegen
naar tweedimensionale chirale magnetische materialen die afgestemd kunnen wor-
den voor gewenste toepassingen in magneto-elektronica. Het huidige werk brengt
nieuwe theoretische inzichten in het onderzoek van de dunste materialen, en opent
de mogelijkheid voor verder onderzoek in atomair dunne III-As-materialen.
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"There are great hopes that the ex-

ceptional properties of graphene can

be utilised in many areas"

Physics Nobel award ceremony

speech, 2010

Chapter 1

Introduction

The influence of 3D group III-V materials in the development of the current tech-

nology, and the emergent research in two-dimensional graphene related materials,

which will determine the roadmap for future technology, led us to question not only

about the physical properties of new atomically thin materials based on group III-V

materials, but also of those ones of hybrid materials using III-V group materials and

graphene. The answer is this thesis, which focuses on the study of the tunability

properties of III-As materials (III = B, Ga and In) in the thinnest limit:

single layer and 2D-heterostructures, using Density Functional Theory (DFT).

To give clarity and insight to the reader about what this thesis covers, this section

will be divided in three main topics: Two-dimensional materials overview, relevance

of the design of new atomically thin materials based on group III-V materials, and

the scope and organization of the thesis. The first topic is initially devoted to

acknowledge the efforts of the giant scientists, whose previous research paved the way

and motivated others to continue exploring the atomically thin world. Afterwards,

the astonishing properties of two-dimensional materials will be highlighted, following

with a brief summary of principal experimental methods to synthesize them. Lastly,

the main methods to tune the properties of graphene related materials, and their

applications, will be described. The second part will be aimed at highlighting the

impact of designing thin layer semiconductors using 3D group III-V semiconductors.

In the last part of this section, the scope and the organization of the thesis will be

presented.
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Chapter 1. Introduction 1.1. Two-dimensional materials

1.1 Two-dimensional materials

1.1.1 Historical overview

Even though graphene was worldwide known in 2004 when it was isolated by exfo-

liation from graphite by Andre Geim and Konstantin Novoselov [16], who in 2010

were awarded the Physics Nobel Prize for this transcendental discovery, there are

some earlier pioneering theoretical and experimental researches regarding graphene

[17]. In 1947, Phil Russell Wallace first calculated theoretically its band struc-

ture as a first approximation to understand the electronic properties of 3D graphite

[18]. The earliest experimental observation of few-layer graphite was made by G.

Ruess and F. Vogt in 1948 using transmission electron microscopy (TEM) [19]. In

1962, Hanns-Peter Boehm and Hofmann were the first to isolate and identify sin-

gle graphene sheets by TEM [20]. Later, in 1986, Boehm et al authored the term

graphene [21]. In a 2007 paper titled: “Citation errors concerning the first report on

exfoliated graphite" [22], Boehm attributes the discovery of exfoliation of graphite

to Schafhaeutl in 1840 [23].

Between 1970 and 1992 there were several studies on epitaxial growth of graphitic

films on metal substrates [24, 25, 26, 27, 28], as described below:

In 1970, Blakely et al and Grant et al reported, almost simultaneously, graphitic

films on Ni(100) [24], and Ru(0001) and Rh(111) surfaces [25], respectively, by using

low energy electron diffraction (LEED) and Auger electron spectroscopy (AES).

In 1983 Rosei et al [26] determined experimentally the structural parameters of

the graphitic carbon overlayer on a Ni(111) substrate. They also found that graphite

overlayer floats at 2.80 Å above the Ni(111) face, and the substrate is not affected

by the growth of the graphitic overlayer.

In 1986, McConville et al [27] compared the results of Angle-resolved ultravi-

olet photoelectron spectroscopy (ARUPS) measurements of the valence-electronic

structure of the Ni [100](2x2)C structure with the ones of self-consistent density-

functional calculations of the two-dimensional band structure for a (2x2)C overlayer

on Ni[100]. They found excellent qualitative agreement for the dispersion energies of

the C-2𝑠 and C-2𝑝 states between experiment and calculation results, although the
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absolute magnitude of these dispersions appears to be somewhat overestimated in

the calculation results. This is attributed to the difficulty to describe the Ni 𝑑-band

width.

In 1992, Land et al [28] determined by scanning tunneling microscopy (STM)

studies that hydrocarbon (ethylene) decomposition at elevated temperatures results

in the formation of a single layer of graphite on the Pt(111) surface.

Graphite has also been grown epitaxially on insulating substrates (SiC). The

most important researches using this technique are described below:

In 1975, van Bommel et al [29] were the first to grow epitaxially a monolayer of

graphite on SiC (0001) surface. The grown film was analyzed by LEED and AES.

In 1993, Nagashima et al [30] investigated the electronic structure of monolayer

graphite formed on TiC(lll), TiC(100), and TaC(100) surfaces by X-ray photoelec-

tron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and LEED.

They revealed that monolayer graphite on the (111) surfaces of transition-metal

carbides differs substantially from bulk graphite in its lattice constant and phonon

dispersion, while those of monolayer graphite on (100) surfaces are hardly modi-

fied. These large changes are caused not by charge transfer but mainly by orbital

hybridization between the graphite overlayer and the (111) surface.

Monolayer micrographite (200nm) was grown by chemical vapor deposition on

TiC(111) surface in 1998 by Terai et al [31]. Its electronic structure was studied

by LEED, XPS and ARUPS. They found no differences in the observed spectra of

micrographite on TiC(111) surface from the bulk one, which can be explained by

the size of the micrographite.

In addition to the TEM observations and the epitaxial growth of graphene, be-

tween 1990 and 2003 there were some attempts to obtain ultra-thin films of graphite

by cleavage [32, 33, 34, 35], similar to what Geim and Novoselov did in 2004.

In 1990, free-standing films obtained by peeling optically thin layers from a

master sample with transparent tape was used by Seibert et al to study carrier

dynamics in graphite [32].

In 1995, Ebbesen et al [33] reported nano graphite origami obtained by scanning

tunneling microscope (STM) and atomic force microscopy (AFM) on top of highly
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oriented pyrolitic graphite (HOPG). They observed that the folding and bends in

the graphite sheet should be separated by angles that are multiples of 30∘.

In 1999, Lu et al [34] gave an important step towards manufacturing graphene

single sheets by nanofabrication techniques. Nanometred-size graphene sheets were

obtained by peeling graphite islands from HOPG, and then manipulated with AFM

tips.

In 1999, Beyer et al [36] were the first to report STM results on monolayers of

graphene spread on a graphite surface and rotated by a known angle. In order to

do this, a monolayer of HOPG on HOPG at a known rotation angle was prepared.

In 2003, Yang Gan et al [35] reported graphene monolayers by using STM for

their cleavage on top of HOPG.

Theoretically, graphene has been studied since 1947, when, as mentioned before-

hand, Phil Wallace first calculated its band structure using the tight binding method

as a first approximation in the study of graphite [18].

In 1956 McClure calculated the conduction-electron magnetic susceptibility of

graphite using the Wallace two-dimensional band structure by the method of Lut-

tinger and Kohn[37].

In 1958, JC Slonczewski and PR Weiss studied the band structure of graphite

using tight-binding calculations and a two-dimensional model of the graphite lattice

[38].

In 1984, G. W. Semenoff, using tight binding model, was the first to describe

the electrons of a graphite monolayer by an equation that is formally equivalent to

the massless Dirac equation, where the electrons and holes are called Dirac fermions

[39].

In 1988, F. D. M. Haldane proposed the first model of the anomalous quantum

Hall effect (AQHE) in two-dimensional (2D) electron systems using the model pre-

sented by Semenoff. In this effect the Hall conductance becomes quantized in unit

of 𝑒2/ℎ, in the absence of an external magnetic field, which is known as the Haldane

model [40].

In 1992, Saito et al predicted the electronic structure for graphene monolayer

tubules as a function of the diameter and helicity of the constituent graphene tubules
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[41].

In 2002, Gorbar et al developed a theory of the magnetic-field driven metal-

insulator phase transition in planar systems, based on reduced Quantum Electrody-

namics (QED) [42].

So far, we have highlighted the most relevant experimental and theoretical works

on graphene before 2004. In the next section, we will review the current state of the

art related to: the unique crystal and electronic structure properties of graphene-

like materials, the drawbacks of graphene, as well as a description of 2D-materials

beyond graphene.

1.1.2 Properties of 2D graphene-like materials

Two-dimensional (2D) materials present exceptionally different physical and chem-

ical properties compared with conventional bulk materials. Bonding in the latter

can be mainly metallic, covalent, ionic and vdW, while 2D-materials are character-

ized by intralayer covalent (∼200-6000 meV) [43] and interlayer weak vdW bonding

(∼40-70 meV) [43]. The unique crystal structure and electronic structure enable

2D materials to possess ultralow weight, high Young’s modulus, high strength, high

anisotropy between the in-plane and out-of-plane mechanical properties, as well as

outstanding electrical properties compared with their 3D counterparts [44].

Graphene, one of the most representative 2D materials, stands out in the flexible

electronics field due to its combination of high electron mobility, high thermal con-

ductivity, high specific surface area, high optical transparency, excellent mechanical

flexibility, and environmental stability [45]. It is a semimetal whose conduction and

valence bands, in neutral graphene, meet at the Dirac points (the K point in the

Brillouin zone), see Figure 1-2(a). In the vicinity of the K-points the energy depends

linearly on the wave vector, similar to an ultra-relativistic particle [39]. As a result,

around the Dirac point K (K’), at low energies near the Fermi level, the electrons can

be described by an equation that is formally equivalent to the relativistic massless

Dirac equation:
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̂︀𝐻 = ~𝑣𝐹

⎛⎝ 0 𝑘𝑥 − 𝑖𝑘𝑦

𝑘𝑥 + 𝑖𝑘𝑦 0

⎞⎠ = ~𝑣𝐹−→𝜎 ·
−→
𝑘 , (1.1)

and around the K’ as

̂︀𝐻 = ~𝑣𝐹

⎛⎝ 0 𝑘𝑥 + 𝑖𝑘𝑦

𝑘𝑥 − 𝑖𝑘𝑦 0

⎞⎠ = ~𝑣𝐹−→𝜎 ·
−→
𝑘 , (1.2)

Where
−→
𝑘 is the wave vector, −→𝜎 the 2D Pauli matrix, and 𝑣𝐹 is the Fermi velocity,

which replaces the speed of light in the Dirac theory. For this reason, the electrons

are called massless Dirac fermions [39], except for the fact that in graphene the

Dirac fermions move with a speed 𝑣𝐹 , which is 300 times smaller than the speed

of light 𝑐 (𝑣𝐹 ∼ 106 m/s). Therefore, many of the unusual properties of quantum

electrodynamics (QED) can show up in graphene but at much smaller speeds [1].

The Dirac equation is a direct consequence of graphene´s crystal symmetry. Its

carbon atoms are tightly packed into a flat two-dimensional (2D) honeycomb lattice.

Its honeycomb lattice is made up of two equivalent carbon sublattices A and B, as

shown in Figure 1-1 [16]. Figure 1-2 displays the electronic band structure for 2D-

graphene and bulk graphite for comparison. We can notice the notable difference

between them, especially around the K point.

Even though graphene exhibits interesting physical properties such as high charge

carrier mobility, high thermal conductivity, infrared optical adsorption and total im-

permeability to any gas [46], which makes it desirable for technological applications,

the absence of bandgap limits its use in the manufacture of electronic devices [8].

This bandgap limitation has motivated scientists to look for new 2D-materials be-

yond graphene [47]. Among the literature about the study of the large family of

2D-materials beyond graphene, we find monolayers: X-enes (X=B, Si, Ge, Sn, P,

Bi), X-anes (Graphane, Silicane, Germanane, Stanane), fluorinated X-enes [48]; few

layers crystal: hexagonal boron nitride (ℎ-BN), transition metal oxides (TMOs:

LaVO3,LaMnO3), transition metal chalcogenides (NbSe3, TaSe3), transition metal

dichalcogenides, which are compounds composed of transition metal elements and el-

ements of group-VI, also called chalcogen elements (S, Se, or Te), e.g., MoS2, MoSe2,
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Figure 1-1: (a) The honeycomb lattice of graphene. (b) The Brillouin zone of a
graphene unit cell. (c) Left: Electronic dispersion in the honeycomb lattice. Right:
Zoom in the energy bands close to one of the Dirac points [1]

Figure 1-2: Comparison between electronic band structure for (a) graphene, and (b)
graphite [2]
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WS2, WSe2, among others; as well as 2D-heterostructures [3, 7, 9, 49, 50]. The fam-

ily of the layered 2D-materials library is summarized in the chart of Figure 1-3.

In the X-ene systems, the atoms are arranged in a honeycomb structure similar to

graphene [48, 51, 52, 53, 54, 55, 56, 57]. When in the X-ene system is added hydrogen

or fluor, the new configuration is labeled as X-ane (Graphane, Silicane, Germanane,

Stanane), and fluorinated X-enes (fluro-X-enes or X-enes fluoride), respectively [48].

Figure 1-3: Chart summary of the layered 2D-materials family, where hBN means
hexagonal boron nitride; BCN is 2D nanocomposite containing boron, carbon and
nitrogen; BSCCO is bismuth strontium calcium copper oxide [3]

Importantly, the 2D materials family exhibits a wide spectrum of electronic prop-

erties covering metals, semimetals, semiconductors with various energy band gaps,

and also insulators. Figure 1-4 illustrates the evolution of the family of 2D materials

as a function of time (horizontal axis) and their respective band gap values (vertical

axis). Materials with yellow color represent the 2D metal oxides, which cover a band

gap energy range from ∼2.3 to 4.9 eV [3].

Regarding the experimental or theoretical studies of III-V (111)-binary com-

pounds in the thinnest limit, the literature is scarce, even though the materials

in question are rather accessible and readily used in technological applications. In
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Figure 1-4: Family of 2D materials as a function of time (horizontal axis) and their
respective band gap values (vertical axis). Materials with yellow color represent the
2D metal oxides, which cover a band gap energy range from ∼2.3 to 4.9 eV) [3].

section 1.2 and chapter 3 of this thesis, we will focus on the study of the main

properties of group III-V materials.

Another important field that has stimulated immense interest in the scientific

community for application of 2D-materials beyond graphene is spintronics. Nano-

magnetic materials are potential candidates for next-generation devices having faster

processing, large data storage capacity, and nanometric size. Although most 2D-

materials are nonmagnetic in their pristine form, which restricts their applications

in magneto-electronics, magnetism can be tuned in them through defects like vacan-

cies, adatoms, doping, and dangling bonds. Other mechanisms to tune magnetism

are strain, layered compounds, and application of an external magnetic field. The

main source of magnetism in 2D-materials is magnetic anisotropy (MA), and the

spin-orbit coupling (SOC) is the microscopic source of magnetic anisotropy. Hence,

tuning the orbital and spin moment of a crystal is fundamental; as an illustration,
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the magnetic anisotropy in a 2D material can be induced by doping with transition

metals, among other ways of manipulating the SOC of a crystal [58, 59, 60, 61].

In Chapter 6 of this thesis we will get back with this fundamental topic, such as

the study of magnetism in 2D-materials. We will also investigate both the mag-

netic anisotropy and Dzyaloshinskii-Moriya interaction induced by transition metal

adsorbed on two-dimensional gallium arsenide (TM= Mn, Co, Mo and Os).

The outstanding properties of 2D-materials, beforehand mentioned, make them

attractive materials with potential industrial applications, often different from their

3D counterpart, and for studying unexplored fundamental science. These applica-

tions will be treated in section 1.1.5. In the next section, we will briefly review

the main experimental methods to synthesize 2D-materials.

1.1.3 Brief summary on principal experimental methods to

synthesize 2D-materials

In this section we will provide a brief summary on principal experimental methods

to synthesize 2D-materials. The reliable synthesis of single- and few-layer 2D mate-

rials is an essential first step for characterizing the layer dependent changes in their

properties, as well as providing pathways for their integration into a multitude of

applications [43]. According to the type of chemical bonds, there are three main clas-

sification of crystalline structures that can be synthesized as a single- and few-layer

2D materials: van der Waals solids, layered ionic solids and nonlayered materials

[43]. They are mainly obtained by two methodologies: top-down synthesis from bulk

solids, i.e., micromechanical cleavage and liquid-phase exfoliation; and bottom-up

synthesis, such as physical vapour deposition (PVD) and chemical vapour deposition

(CVD), as shown in Figure 1-5 [4]. The former is limited to materials derived from

layered structures; the latter is not.

Micromechanical cleavage

This was the original method by which Andre Geim and Konstantin Novoselov iso-

lated one carbon atom thick graphene sheets in 2004. They used Scotch tape to
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Figure 1-5: Three principal experimental techniques to synthesize 2D materials: a)
micromechanical cleavage, b) physical vapour deposition (PVD), and c) chemical
vapour deposition (CVD) [4]

separate the graphene sheets from graphite flakes. Thus, the mechanical exfolia-

tion technique is used to separate single and few-layer sheets from bulk crystals

by exfoliation. This method is limited to materials with a layered, bulk allotrope,

which exhibit weak van der Waals (vdW) interactions between layers, with binding

energies of ∼ 40−70 meV, facilitating the exfoliation of these layers e.g., graphite

exfoliation into graphene, ℎ-BN, MoS2, NbSe2 [4].

This method requires repeatedly peeling of layered materials followed by the

transfer of the peeled sample on top of a surface. The main features of this technique

are [62]:

• It is an easy and fast way of obtaining highly crystalline atomically thin

nanosheets.

• The resulting 2D sheets are stable under ambient conditions

• The peeled samples exhibit high crystal quality, and are continuous on a macro-

scopic scale

• The reported thickness of nanosheets obtained from their layered phases rang-

ing from 1 to 10 atomic layers.

Although this method has been successful in isolating some thin nanosheets e.g.,

BN and MoS2, its usage has been limited due to its excessively low efficiency. In

addition, this technique produces a larger quantity of thicker sheets in comparison
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to those of monolayer ones. Thus, this method is not scalable to mass production

for potential engineering applications [62].

Chemical exfoliation

The scalability of mechanical exfoliation is enhanced by chemically derived exfolia-

tions, also regarded as wet methods, such as liquid-phase exfoliation.

Liquid-phase exfoliation refers to a group of approaches that exfoliate single layer

or few layers from those layered crystals directly in the liquid media; i.e., exfoliation

in organic solvents and exfoliation in aqueous solutions. This method sonicates the

layered bulk materials either in solvents, whose surface energy matches that of the

energy required to overcome the vdW forces of bulk materials, or in water with

surfactants, and then exfoliating the resultant dispersions into separated thin layers

with assistance of centrifugation. The quality of yielded materials depends heavily

on solution-processing parameters such as sonication time and centrifugation rate

[62].

In the case of exfoliation in aqueous solutions, it is necessary to add surfactants,

e.g., Sodium dodecylbenzene sulfonate (SDBS). This is because the surface tension

of water is too high to exfoliate laminated materials alone. Therefore, the use of

surfactants is essential to lower the surface tension of water and allow the exfoli-

ation, and for the single layers to be stable in solution. The surfactant technique

has been used for the production of graphene by exfoliation of graphite [63]. The

drawbacks of this method are the difficulty to wash away the surfactants and the

low yield of single layers [63, 64]. Even though exfoliation in organic solvents has

been demonstrated to effectively isolate single layer and few layers from those thicker

structures in large quantities e.g., N-Methyl-2-pyrrolidone (NMP) and Dimethylfor-

mamide (DMF) have been selected as good solvents for exfoliation, organic solvents

can be toxic, expensive and difficult to remove once exfoliation has occurred [64].

Physical vapour deposition

Physical vapor deposition (PVD) is a vaporization coating technique, where thermal

energy is imparted to atoms in a liquid or solid source such that their temperature
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is raised to the point where they either efficiently evaporate or sublime. The most

common physical vapor deposition processes are sputtering and evaporation. In

sputtering, atoms are ejected from source surfaces usually maintained at room tem-

perature, through the impact of gaseous ions [65].

The PVD process involves the following sequence of steps. (i) The material to

be deposited is converted into a vapor by physical means, e.g. evaporation (high-

temperature vacuum), or collisional impact (gaseous plasma), (ii) the vapor is trans-

ported to a region of low pressure from its source to the substrate, and (iii) the vapor

undergoes condensation on the substrate to form a thin film [5]. Typically, PVD

processes are used to deposit films with thicknesses in the range of a few nanometers

to thousands of nanometers. However, they can also be used to form multilayer coat-

ings, graded composition deposits, very thick deposits, and freestanding structures

[45]. A typical PVD process is shown in Figure 1-6 [5].

Figure 1-6: Schematic illustration of the physical vapor deposition process (PVD)
[5].

PVD has several advantages including: (i) coatings formed by PVD may have

improved properties compared to the substrate material; (ii) all types of inorganic
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materials and some types of organic materials can be used; (iii) the process is en-

vironmentally friendly. However, PVD has also some disadvantages including: (i)

problems with coating complex shapes; (ii) high process cost and low output; (iii)

complexity of the process [66].

Chemical vapour deposition

Chemical vapour deposition (CVD) is a coating process that uses thermally induced

chemical reactions at the surface of a heated substrate, with reagents supplied in

gaseous form. The main difference between CVD and PVD is the way by which

the material to be deposited (precursors) is introduced to the reaction chamber. In

CVD the precursors are in gaseous form, whereas in PVD, the precursors start out

in solid form.

When comparing the final products obtained by mechanical exfoliation and

chemical exfoliation methods, the former ones present higher quality but lower ef-

ficiency than those of the latter. CVD, on the other hand, presents much higher

efficiency than for mechanical exfoliation, and the quality control is better than

liquid phase routes. This method offers a compromise between quality, efficiency

consistency, and control over the process. Hence, CVD has been recognized re-

cently as a reliable route for preparing high quality two-dimensional (2D) materials

[67]. The CVD is able to synthesize mono- or few-layered graphene with superior

quality. For instance, in 2009, the synthesis of single layer graphene was achieved

by low-pressure CVD on copper foils with methane as the carbon source [68]. In

addition, single- and few-layer 2D TMD and BN nanosheets can be obtained by

chemical vapor deposition (CVD) [67]. The drawback of this method is the high

cost of its manufacturing conditions. This method requires high vacuum and high

temperature.

1.1.4 Tuning physical properties of 2D-materials

Tuning method provides new pathways to yield novel properties in two-dimensional

materials by design, e.g., mechanical, electronic and magnetic properties, tailored for

desired applications in electronics devices. The physical and chemical properties of
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2D Materials can be tuned by Size Control, Heterostructuring, Strain Engineering,

Eletric Field Modulation, Doping, and Functionalization. As mentioned in section

1.1.2, most of 2D-materials are nonmagnetic in their pristine form, which restricts

their applications in magneto-electronics. However, magnetism can be tuned by

applying strain, in layered compounds, and by application of an (even tiny) external

magnetic field [69, 70]. It can also be induced by defects like vacancy, adatom,

doping, and dangling bonds [58, 59, 60, 61].

As discussed in section 1.1.2, graphene presents technological restriction due

to the absence of a band gap. A crucial point for the graphene band gap tai-

loring is to break the inversion symmetry of the equivalent sublattice of pristine

graphene. There are several ways to achieve this: Cutting the 2D graphene into

one-dimensional (1D) graphene nanoribbons (GNRs), doping, and functionaliza-

tion. Theoretical and computational approaches such as density functional theory

(DFT) are invaluable in determining the electronic band structure of 2D materials

and its dependence on factors such as the number of layers, doping, electric field, or

strain [71].

Now, some of the main methods to tune the physical and chemical properties of

2D Materials, such as: Size Control, Heterostructuring, Strain Engineering, Eletric

Field Modulation, Doping, and Functionalization, will be briefly discuss.

Size Control: Graphene Nanoribbons

One of the most effective ways to achieve a sizable bandgap in graphene, is to

decrease the dimension of graphene into one-dimensional nanoribbons by cutting

the exfoliated graphene [72]. Cutting the 2D graphene into one-dimensional (1D)

graphene nanoribbons (GNRs) can open a band gap in graphene due to electron

confinement and the presence of edge states. The electronic properties of GNRs

are highly dependent on their width and edge topologies, varying from metals to

semiconductors as their widths decrease, especially below 10 nm. Depending on

the atomic arrangement along their edges, GNRSs can be classified as armchair

or zigzag, as shown in Figure 1-7. Armchair and zigzag edges can be stabilized by

hydrogen saturation. The electronic and magnetic properties of armchair and zigzag
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edges are sensitive to the modulation of an external field and the orientation of the

spins of hydrogen [62, 73, 74, 75].

Figure 1-7: Schematic illustration of (a) zigzag and (b) armchair edges in graphene
nanoribbons (GNRs). Bold line indicates the edge, where the A and B-site denote
the carbon atoms, respectively [6].

Heterostructures

Heterostructures are designed by stacking one monolayer on top of another mono-

layer, assembled in a chosen sequence, as Lego blocks, as shown in Figure 1-8. By

these stacking combinations, new hybrid materials with different properties to those

of their individuals’ constituents can be manufactured, revealing unusual properties

and new phenomena. The in-plane stability of these structures comes from their

strong in-plane bond (𝜎), while the weak van-der-Waals-like forces, keep the stack

together [7].

2D-heterostructures have attracted the attention to tune the band gap width

of semiconductors [7, 49, 50], which make them promising candidates for the man-

ufacture of solar cells due to the complete adsorption of light by successive layers

[8, 76, 77]. Figure 1-9 (a) depicts a solar cells device designed by multilayers of

Graphene, BN and NbSe2. From the top down, we can see one layer of graphene,

16



Chapter 1. Introduction 1.1. Two-dimensional materials

Figure 1-8: Analogy for building van der Waals heterostructures using different set
of materials as lego blocks [7]

Figure 1-9: (a) Schematic representation of solar cells designed by multi layers:
Graphene, BN and NbSe2 [8]. (b) Introducing local strain in graphene by an atomic
force microscopy tip [8]
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two layers of BN, another layer of graphene, and a TMDC (NbSe2). The sand-

wiched BN layers serve as a tunneling barrier to graphene. The graphene layer next

to TMDC gets doped due to the difference between their work functions. Thus, a

built-in electric field is created between the two graphene layers. Because of the

electron-hole pair induced by the electric field and an incoming photon, a photocur-

rent is created [8].

Zhang et al tuned the bandgap of graphene bilayer from 0 to 250 meV by ap-

plying an electrical field perpendicular to the layers. This perpendicularly applied

electric field breaks the symmetry in graphene, which generates a band gap. The

electrostatic band gap control suggests novel nanoelectronic and nanophotonic de-

vice applications based on graphene. This findings could be used for infrared light

sources and sensors for biological measurements [78]. It has also been found that

heterostructures based on graphene can improve the optoelectronic, mechanical and

electrical properties of their constituent [8]. For instance, it has been found that

layering sheets of graphene and hexagonal boron nitride (ℎ-BN), molybdenum disul-

fide (MoS2), or tungsten disulfide (WS2) allows operation of tunneling transistors

[79].

Strain Engineering

Strain engineering is an effective method used in semiconductor device manufactur-

ing to tune their physical properties and improve their performance.

Most 2D materials display a remarkable strain limit due to both their strong

in-plane bonding (𝜎) and flexibility produced by the out-plane bonds (𝜋), which

provides a straightforward, effective means of tuning electronic, mechanical, optical

and magnetic properties. The strains can be either intrinsic, such as corrugations,

distortion, lattice mismatch with substrates [80, 81, 82] ; or external, which can

be induced by different techniques, e.g., by an atomic force microscope tip [83], as

shown in Figure 1-9 (a) [8], by transferring the material to a piezoelectric substrate

and then the substrate can be shrank or elongated by applying a bias voltage [84].

In addition, uniform strains can be applied to the layered materials from flexible

substrate, on which the layered materials are fabricated [85], and the mismatch gen-
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erated by thermal expansion effect of the substrate in layered materials [86]. The

latter method is useful for applying strain to graphene, because it has a negative

thermal expansion coefficient. Thus, by selecting a substrate with a positive ther-

mal expansion coefficient, such as SiO2, the graphene will experience a tensile or

compressive biaxial strain when heating or cooling the substrate [87].

Strain can be induced in graphene by the methods mentioned above. It has been

reported that strain can modify the electronic structure of graphene and soften the

optical-phonon branches [88]. Uniaxial and shear strains shift the Dirac cones away

from K and K’ below different threshold strain values: ∼ 20% and ∼ 16%, respec-

tively. Above these values both methods open a gap in graphene, the maximum

value obtained is 0.72 meV [89]. In contrast, bilayer strain neither shifts the Dirac

points nor opens a gap. It keeps the crystal symmetry of graphene; however, it

changes the slope of the Dirac cones and hence the Fermi velocity [87].

Among the amazing physical phenomena induced by strain in graphene, we can

highlight the shifting of the Dirac cones, the red shift and splitting of characteristic

Raman modes, the enhancement of the electron–phonon (e–ph) coupling, supercon-

ductivity, quantizing pseudomagnetic field and the zero-field quantum hall effect

[87].

Electric Field Modulation

The application of an external electric field offers an effective way of tuning the

electronic properties of 2D-materials. The applied electric field not only affects the

bandgaps of 2D multilayers but also leads to the charge redistribution because of

the induced potential difference. The bandgaps of most 1D nanoribbons and 2D

hetrostructures can be reduced by the external electric field, and after a threshold

value the materials can be metallic [72]. For instance, theoretical calculations predict

that electric fields larger than 2 V/Å decrease the band gap in monolayer group 6

TMDCs, and for values larger than 4.5 V/Å, the material becomes metallic [71].

The effect on tuning the bandgap of applied electric field on graphene is less than

in TMDCs, and even varies from one TMDC to another. This effect depends on the

direction of the electric field and the number of layers [90].
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On the other hand, it has been theoretically reported that the in-plane and out-

of-plane dielectric constants of graphene are tunable by the value of applied electric

field. The dielectric constant of a material is used to characterize its electrostatic

properties such as capacitance, charge screening, and energy storage capability [91].

They reported that both the in-plane and out-of-plane dielectric constants are almost

constant (∼ 1.8 and ∼ 3, respectively) at a low field strength of less than 0.01 V/Å,

but increase and become dependent on the number of layers under higher electric

field. It has also been reported that MoS2 multilayer is more electrically polarizable

than graphene [72].

Doping

The electronic properties of low-dimensional nanomaterials can also be tuned by

doping. Graphene can be doped by using substrates, electrical gating, and chemical

species such as atoms and molecules [62]. The electronic coupling between the

underlying substrate and graphene modifies its electronic properties; e.g., when

graphene is grown epitaxially on SiC, a small gap of 0.26 eV is opened. For the case

of SiO2 substrate, the type of doped graphene charge is controlled by the contact

potential difference at the interface, and the charge transfer between them depends

strongly on the interface geometry. In the case of metal substract (Al, Ag, Cu, Au,

and Pt), the work function difference and the chemical interaction between graphene

and the metal, shift the Fermi level with respect to the conical point by ∼ 0.5 eV

[62, 92, 93]. Graphene band gap can be experimentally induced from zero to 250

meV when a gapless bilayer graphene is subjected to an external electric field [78].

Substitutional doping such as B, N, and transition metal [94, 95, 96]; and surface

metal adsorption with higher electron affinities (Bi, Sb and Au) [97], are other ways

to tune the electronic structure of graphene.

Functionalization

Band gap in graphene can be tuned by functionalization with H (graphane or hy-

drogenated graphene) and F (fluorographene or fluorinated graphene). Ab-initio

calculations predicted graphene to be a wide bandgap material when doped with
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H and F [98]. Furthermore, scanning tunneling microscopy (STM) experiments,

complemented by first-principles calculations, show that isolated hydrogen atoms

absorbed on graphene are predicted to induce magnetic moments [99].

The surface of 2D group III-V materials could be chemically modified by hydro-

genation [48, 100, 101]. It has been found both theoretically and experimentally

that hydrogen passivation stabilizes two dimensional buckled III-V sheets [102]. Re-

cently, two-dimensional buckled gallium nitride was synthesized by hydrogen surface

passivation and graphene encapsulation [102]. Chen et al reported that surface hy-

drogenation tunes the electronic and magnetic properties of 2D-BN [103]. Hydroge-

nization causes the 2D-BN sheet to have a smaller energy bandgap than the pristine

one, while semihydrogenated BN is a ferromagnetic metal [104]. The configuration

in which the hydrogen atoms are adsorbed on III-V devices plays an important role

in their electronic properties.

According to our results, see chapter 5, two−dimensional buckled gallium ar-

senide is a good candidate to be synthesized by hydrogen surface passivation as its

group III−V partners two-dimensional buckled gallium nitride and boron nitride.

1.1.5 Applications

Technology based on semiconductor devices plays a transcendental role in our mod-

ern society. Since scientists, such as Shockley, Brattain and Bardeen, Nobel Prize in

physics in 1956, invented the transistor [105, 106], a large effort has been devoted by

the manufacturing industry to develop new semiconductor materials with enhanced

electronic features. Therefore, the challenge has been not only to reduce the size

and price of these electronic devices but also to increase their performance to obtain

characteristics such as high speed and low power dissipation. Moore’s law establishes

a limit for the future implementation of the current technology based on traditional

3D semiconductor materials. Moore’s law states that the number of transistors on

a microchip will double roughly every two years, which means that next technolog-

ical generation will be led by electronic devices manufactured by atomically thin

materials.

The remarkable properties of 2D materials, beforehand mentioned, together with
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the experimental and computational methods available today, which allow their syn-

thesis and characterization, as well as tuning their physical and chemical properties,

makes them attractive materials, not only limited for developing new physics and

materials science, but with potential technological and industrial applications. For

instance, the combination of high breaking strain, low thickness, and semiconduct-

ing properties of TMDCs (MoS2, WS2, WSe2) and BP allow them to be used in

flexible transistors [107].

A sequential logical roadmap, since the identification of new 2D-materials until

their application, could be as follows [10]:

• Identification and assessment of the potential application of new layered mate-

rials: synthesis and characterization; Engineering Science to tune the desired

physical and chemical properties by: Straintronics, size control, multilayered

materials, among others.

• Large scale production of 2DM attending the needs of a specific application

field, e.g., component technologies, electronic, spintronic, optoelectronic, sen-

sors, energy application, medical application.

• The identification of 2DM for the design of technological electronic compo-

nents, and the integration of these 2DM to the new system, in order to develop

enhanced and novelty electronic devices.

The outstanding physical properties of graphene make them suitable for diverse

technological applications. It is well known that the absence of a band gap limits its

applications in electronics. However, as mentioned in section 1.1.4, there are nu-

merous methods that allow the improvement of this graphene drawback. In addition,

materials engineering allows its layering assembly with other materials, which im-

proves the properties of the heterostructure constituent materials. Thus, nowadays,

the scientist community interest is focused on developing new materials based on

graphene, it means 2D hybrid systems, with enhanced properties beyond graphene.

Among the potential application areas of these hybrid systems we can highlight [10]:

Fundamental research, information and communications technology, health and en-

vironment, electronic devices, spintronics, photonics and optoelectronics, sensors,
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flexible electronics, energy storage and generation, biomedical applications, new

functional light-weight composites to be applied in new airplanes, buses, cars, etc.

Figure 1-10 depicts some potential applications of graphene related materials.

Figure 1-10: Potential applications of graphene and beyond materials [9]

Among many other applications of 2D-materials, we can highlight its application

in field-effect transistors, valleytronics, chiral magnetic materials, Janus materials,

thermoelectrics, and topological insulators [43].

Finally, it is expected that the next generation of atomically thin materials will

disrupt the industry and technology in the upcoming years, since scientist commu-

nity is using the obtained theoretical and experimental knowledge in atomically thin

materials during the last years as platform to explore areas less studied, such as un-

conventional superconductivity in small-angle twisted heterostructures [108, 109],

and unconventional tunability of two-dimensional quantum materials, e.g., elec-

tronic properties of moiré heterostructures [110, 111, 112, 113], phonon modes of

few-layered structures [114]. Figure 1-11 summarizes a chart highlighting graphene

related materials as platform for studying physics’ new phenomena, and designing

new technologies and applications, as well as the social impact [10].
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Figure 1-11: Graphene related materials as platform for studying physics new phe-
nomena, and designing new technologies and applications [10]

1.2 From 3D group III-V to 2D group III-V semi-

conductors.

The electronic properties of group III-V semiconductors such as BAs, GaAs and

InAs, have been widely studied in the bulk both theoretically and experimentally

due to their interesting physical properties, such as high carrier transport, direct

and wide band gap, good thermal conductivity, relative hardness, high resistivity

and high melting point, which makes them promising materials in manufacturing

24



Chapter 1. Introduction 1.2. From 3D group III-V to 2D group III-V semiconductors.

Figure 1-12: The hexagonal primitive cell (right-hand side), with one B, Ga or In
atom (Blue color) and one As atom (Red color), was constructed from the zinc-
blende structure (left-hand side) in the (111) plane. The hexagonal unit cell is also
highlighted with a red line in the (111) plane.

of optoelectronic devices that can perform at high temperature and high power

[115, 116, 117, 118, 119, 120, 121]. As illustration, they are suitable materials for

fabrication of optical (lasers, diodes) and ultra-high frequency analog devices, and

their integration on a Si platform will add new functionalities for optical networks,

communication and microelectronic applications [122]. Because of the aforemen-

tioned reasons, and the great interest shown by the scientist community in the

research of 2D materials during the last decade, it is worth asking not only if group

III-V based-two-dimensional materials are dynamically and mechanically stable, but

also about their potential application in engineering science.

The fact that zinc-blende III-As structures are semiconductors, display a hexag-

onal structure in the (111) surface and exhibit melting point above 1000∘C, makes

them potential candidates to be stable in their 2D hexagonal structure counterpart

[7]. Indeed, the 2D hexagonal primitive cell, with one III-group atom (B, Ga or In)

and one As atom, can be constructed from the zinc-blende structure in the (111)

plane, as illustrated in Figure 1-12. Regarding the stability of 2D single layer of

group III-V with large ionicity, there are theoretical [123, 124] and experimental

[102] studies that have predicted and validated it. H. Sahin et al. predicted the sta-

bility of III-As and III-N binary compounds by first-principles calculations. Z. Y. Al

Balushi et al. reported the synthesis of 2D gallium nitride (GaN) by experimental
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technique utilizing epitaxial graphene.

On the other hand, it has been found that 3D III-V semiconductors and 2D

III-V materials can improve the optoelectronic properties of heterostructures based

on 2D MoS2 [11] and graphene [8], respectively. As mentioned beforehand, 2D-

heterostructures [7, 49, 50] have attracted the attention to tune the band gap

width of semiconductors, which is desirable for diverse optoelectronic applications

[8, 76, 77]. Furthermore, the fact that the industry of electronic devices based on

3D conventional materials, such as Si and group III-V semiconductors is stable and

well-known, and the remarkable physical properties of 2D materials, offers an ex-

cellent opportunity to combine 3D group III-V semiconductors with 2D nanolayers

to explore fundamental charge-transport phenomena at their interfaces, and exploit

them for manufacturing new and enhanced electronic devices [125]. This approach

could be applied to design field effect transistors. Moreover, this scheme presents

the advantages of passivating the surface of bulk semiconductors and using the

properties of 2D integrated materials to design gate-tunable diode in van der Waals

heterostructure [126]. Miao et al manufactured a p-n heterojunction consisting of

a 2D/3D (IIIV) vdW heterostructure between a 2D MoS2 (n-type) laid upon Si

(p-doped) and GaN. They reported that this device exhibits over 7 orders of mag-

nitude modulation in rectification ratios and conductance [11]. The authors suggest

that this 2D/3D (III-V) vdW opens up possibilities for novel heterojunction device

architectures, which can exceed the performance of “all-2D” vdW heterojunctions.

Figure 1-13 displays a schematic illustration of this tunneling field-effect transistor

designed by Miao et al.

III-V hexagonal structures have also been reported suitable as substrates for two

dimensional materials such as graphene, MoS2 and GaN based devices [127, 128].

C. R. Dean et al [127] reported the fabrication and characterization of high-quality

exfoliated mono- and bilayer graphene devices on single-crystal ℎ-BN substrates, by

using a mechanical transfer process.

There is a lack of information in the literature about experimental and theoretical

studies of 2D III-V (111)-binary compounds. Even though there is a theoretical

research about the electronic properties of two-dimensional III-As (BAs, GaAs and
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Figure 1-13: Schematic diagram of a tunneling field-effect transistor based on a
vertical heterostructure of 2D MoS2, and 3D Si and Group III-V semiconductors
[11].

InAs) graphene-like structures [123], authors did not take into account 𝑑 orbitals of

Ga, In and As atoms. It is important to know the physical interactions of 𝑝-𝑑 orbitals

in order to understand the magnetic nature when these 2D III-As systems are doped

with metal transition impurities. They also used the Local Density Approximation

(LDA) to study these 𝑑 depending systems. It is well known that the LDA approach

can not accurately describe strongly correlated systems.

Experimental or theoretical studies of 2D III-V (111)-binary compounds are

scarce. Even though the materials in question are rather accessible and readily

used in technological applications. In that sense, the present work will bring new

theoretical insights to the research of 2D materials, opening the possibility for further

investigations in 2D ℎ-IIIAs materials.
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1.3 Scope and organization of the thesis.

Despite the interest devoted by the scientific community during the last decade to

find and characterize new two-dimensional materials has increased exponentially,

the research of 2D group III-As materials is scarce. This is in contrast with the

application of 3D group III-V materials in the engineering science. The target of

this research on studying the physical properties of 2D group III-As materials is to

bring new theoretical insights to the research of 2D group III-V semiconductors and

their potential for future electronic applications.

Since the main focus of this thesis is to tune the physical properties of the ma-

terials of group III-As in the thinnest limit, it is important to carry out a complete

characterization of the structural, electronic, mechanical and vibrational properties

of pristine monolayers as a benchmark for evaluating the tuning properties. There-

fore, the first objective of this thesis is to study theoretically, by Density

Functional theory (DFT), the dynamical and mechanical stability of two-

dimensional group III-V semiconductors (BAs, GaAs, and InAs), as well

as their structural, electronic and mechanical properties. Here, the unit

hexagonal cell for our three 2D systems will be first constructed. Then, the dynam-

ical and mechanical stability of our systems will be tested. Next, their structural,

electronic and mechanical properties will be analyzed. Lastly, the structural and

electronic properties of few-layer ℎ-IIIAs structures will be studied in order to com-

pare them with those of the pristine ones. Because the study of these three materials

is too ambitious, and taking into account the relevance of technological applications

of 3D-GaAs semiconductor in engineering science, we decided to focus our research

on 2D-GaAs (from chapter four on). The study carried out on 2D BAs and InAs in

chapter 3, will be the basis for future research once the study of 2D GaAs is finished,

as will be discussed in the outlook section.

Taking into account that Graphene-group III-V heterostructures have been stud-

ied in bilayer [129] and multilayer systems [130, 131] in order to tune the graphene

band gap for optoelectronic applications, our second objective is to investigate

the stability, and the structural, electronic and mechanical properties of
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graphene and GaAs in a graphene/GaAs bilayer heterostructure under

both uniaxial stress along c axis and different planar strain distributions.

On the other hand, it has been reported that the adsorption of hydrogen on

2D materials modifies their structural, optical, magnetic and mechanical properties

[48, 100], generating other new crystals with different geometries and different phys-

ical properties from their pristine parent material. It has also been found both the-

oretically and experimentally that hydrogen passivation stabilizes two dimensional

buckled III–V sheets [102]. Recently, 2D buckled gallium nitride was synthesized

by hydrogen surface passivation and graphene encapsulation [102]. Therefore, the

third objective of our research is to investigate the stability, structural

and electronic properties of two-dimensional (2D) hydrogenated GaAs

sheets with three possible geometries: chair, zigzag-line and boat config-

urations.

The recent experimental confirmation of magnetism in atomically thin magnetic

crystals, which took place in 2017 [69, 132], paved the way in the search for promising

2D materials for low-dimensional magneto-electronic applications. Therefore, the

final aim of our research is to investigate the physical effect of the spin-

orbit coupling on both magnetic anisotropy and Dzyaloshinskii-Moriya

interaction for two-dimensional gallium arsenide when single and pair

TMs are adsorbed (Mn, Co, Mo and Os).

The central question of this thesis can thus be summarized as:

Are 2D group III-As binary systems, and their combination with

graphene, hydrogen and transition metal, stable materials with physi-

cal properties suitable for technological applications?

To address this central question, the thesis is organized as follows:

Chapter 2: Theoretical Framework. The theoretical framework of first princi-

ples electronic structure theory is detailed. The most important topics dealed

in this section are: the quantum many-body problem and the foundations

of density functional theory, i.e, Hohenberg-Kohn theorems, the exchange-

correlation functionals used in this research and its practical implementation.
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Chapter 3: Single layer and heterostructures of 2D Group III-V. Here, we

first examine the structural, mechanical and electronic properties of 2D single-

layer ℎ-IIIAs (BAs, GaAs, and InAs) systems, and then the structural and

electronic properties of few-layer ℎ-IIIAs structures taking into consideration

𝑑 orbitals of Ga, In and As atoms.

Chapter 4: Graphene/GaAs bilayer. In this chapter, we first study the struc-

tural properties and dynamical stability of graphene/GaAs bilayer, then its

electronic and mechanical properties and, finally, the effect of both uniaxial

stress along the c axis and different planar strain distributions on the electronic

properties.

Chapter 5: 2D hydrogenated GaAs sheets. The structural and electronic prop-

erties, as well as the energy and dynamical stability of 2D hydrogenated GaAs

sheets will be studied taking into account three different geometric configura-

tions: chair, zigzag-line and boat.

Chapter 6: Transition-metal adatoms on 2D-GaAs. In this section, we will

investigate the physical effect of spin-orbit coupling on both magnetic anisotropy

and Dzyaloshinskii-Moriya interaction for two-dimensional gallium arsenide

when single and pair TMs are adsorbed (TM: Mn, Co, Mo and Os).

Chapter 7: Summary and outlook. In the last chapter, a summary of the achieved

results together with an outlook for future work is given.
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"Nature uses only the longest

threads to weave her patterns, so

that each small piece of her fabric

reveals the organization of the en-

tire tapestry."

Richard P. Feynman

Chapter 2

Theoretical framework

The quote chosen as the epigraph to start this chapter tells us that if we want to

understand why a certain material has specific physical and chemical properties,

we must go down to study its quantum world. Therefore, we need to apply the

theoretical principles of quantum mechanics, which is the area of the science that

studies the physical laws that govern atoms and electrons.

In this research, a first-principles (or ab-initio) calculation method based on the

Density Functional Theory (DFT) is used to investigate the properties of group

III-As in the thinnest limit. This method is named first-principles because it does

not use any fitting parameters from experimental data, it is based solely on the

laws of quantum mechanics. Hence, this chapter is devoted to give physical insights

about the theoretical backgrounds implemented in this work. To do that, the many-

body quantum problem is first introduced, as well as the approximation schemes

implemented to solve the Schrödinger equation. Next, the foundations of Density

Functional Theory will be presented. Then, the most crucial term in DFT, the

exchange-correlation functional, will be briefly introduced. Afterwards, some prac-

tical considerations in order to implement DFT in numerical computation for real

systems, will be explained. Finally, the method applied in this thesis to obtain the

magnetic exchange interactions between two adsorbed metal atoms will be studied.
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2.1 The quantum many-body problem

If we are interested in knowing the physical and chemical properties of matter, e.g.,

our two-dimensional system based on group III-V materials, we need to study it

at the atomic scale. Matter at small scale obeys the laws of quantum mechanics.

Furthermore, these systems are made up of many electrons and nuclei whose motions

are coupled by Coulomb interactions. Thus, this is a quantum mechanical many-

body problem. A theoretical model that pretends to describe these systems must

take into account the interaction of a very large number of particles, i.e., the order

of Avogadro’s number 6.023 x 1023. This is an extremely complex task to solve,

even with the current computing power available. Despite this, there are methods

called first-principles (or ab-initio), e.g., the calculation methods based on quantum

mechanics, which can describe with a very good approximation the results for these

systems. They do not depend on any external parameters except the atomic numbers

of the constituent atoms to be simulated. In other words, they do not use any fitting

parameters from experimental data and are based solely on the basic laws of physics.

The quantum mechanical many-body problem in a solid is described by the

time-independent Schrödinger equation,

̂︀𝐻Ψ(r𝑖, 𝜎𝑖,R𝐼) = 𝐸Ψ(r𝑖, 𝜎𝑖,R𝐼), (2.1)

where ̂︀𝐻 is the Hamiltonian operator of the system of electrons and nuclei, Ψ is the

many-body wave function, dependent on the positions of the electrons, r𝑖, the spin

of the electrons 𝜎𝑖, and the positions of the nuclei, R𝐼 .

The Hamiltonian operator, ̂︀𝐻, is a sum of all energy terms involved: kinetic

energies of the nuclei (̂︀𝑇𝑛) and electrons (̂︀𝑇𝑒) , and potential energies coming from

nucleus-nucleus (̂︀𝑉𝑛), electron-electron (̂︀𝑉𝑖𝑛𝑡), and electron-nucleus (̂︀𝑉𝑒𝑥𝑡) Coulomb

interactions:

̂︀𝐻 = ̂︀𝑇𝑛 + ̂︀𝑇𝑒 + ̂︀𝑉𝑛 + ̂︀𝑉𝑖𝑛𝑡 + ̂︀𝑉𝑒𝑥𝑡, (2.2)

or, more concrete:
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̂︀𝐻 = −
𝑁𝑛∑︁
𝐼=1

~2

2𝑀𝐼

∇2
𝐼 −

𝑁𝑒∑︁
𝑖=1

~2

2𝑚
∇2

𝑖 +
1

2

𝑒2

4𝜋𝜖0

𝑁𝑛∑︁
𝐼=1

𝑁𝑛∑︁
𝐽 ̸=𝐼

𝑍𝐼𝑍𝐽

|R𝐼 − R𝐽 |

+
1

2

𝑒2

4𝜋𝜖0

𝑁𝑒∑︁
𝑖=1

𝑁𝑒∑︁
𝑗 ̸=𝑖

1

|r𝑖 − r𝑗|
− 𝑒2

4𝜋𝜖0

𝑁𝑛∑︁
𝐼=1

𝑁𝑒∑︁
𝑖=1

𝑍𝐼

|R𝐼 − r𝑖|
, (2.3)

where R𝐼 and r𝑖 are the 𝑁𝑛 nuclear coordinates and 𝑁𝑒 electronic coordinates,

respectively; 𝑚 and M𝐼 are the masses of electrons and nuclei, respectively; and 𝑍𝐼𝑒

the nuclear charges.

To reduce the notation, Equation 2.3 can be written by using atomic units, i.e.,

4𝜋𝜖0 = 𝑒 = 𝑚𝑒 = ~ = 1, as follows:

̂︀𝐻 = −
𝑁𝑛∑︁
𝐼=1

1

2𝑀𝐼

∇2
𝐼 −

𝑁𝑒∑︁
𝑖=1

1

2
∇2

𝑖 +
𝑁𝑛∑︁
𝐼=1

𝑁𝑛∑︁
𝐽>𝐼

𝑍𝐼𝑍𝐽

|R𝐼 − R𝐽 |

+
𝑁𝑒∑︁
𝑖=1

𝑁𝑒∑︁
𝑗>𝑖

1

|r𝑖 − r𝑗|
−

𝑁𝑛∑︁
𝐼=1

𝑁𝑒∑︁
𝑖=1

𝑍𝐼

|R𝐼 − r𝑖|
. (2.4)

This many-body problem is in fact an extremely complex one that can be solved

only for hydrogen-like systems. Unless some approximations on the model are done,

Equation 2.4 has no use in practice.

2.1.1 Born-Oppenheimer approximation

A first approximation to simplify Equation 2.4 is the Born-Oppenheimer approxi-

mation (Max Born and J. Robert Oppenheimer, 1927) (BO) [133], which decouples

the electronic degrees of freedom from the nuclear degree. The argument for doing

this is that the nuclei move “slowly” compared to the electrons because of its heavier

mass (1836 times for hydrogen and about 10,000 times for semiconductors), i.e., the

kinetic-energy contribution is negligible, and hence a classical approximation is rea-

sonable [134]. The operators ̂︀𝑇𝑛 and ̂︀𝑉𝑛 are reduced to classical energies 𝑇𝑛 and 𝑉𝑛.

The BO approximation allows the decomposition of the many-body wave function

Ψ into an electronic wave function 𝜓𝑒 and a nuclear wave function 𝜓𝑛, as follows:
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Ψ(r𝑖, 𝜎𝑖,R𝐼) = 𝜓𝑒(r𝑖, 𝜎𝑖; R𝐼)𝜓𝑛(R𝐼). (2.5)

The electronic wave function depends only on the electronic positions r𝑖, with the

nuclear positions R𝐼 as parameters, since the electrons respond instantaneously as

the nuclear positions are altered and always occupy the ground state of that nuclear

configuration. The electrons are considered to move in the field of stationary nuclei.

Thus, the electronic wave function must satisfy the time-independent Schrödinger

equation for a static configuration of the nuclei:

̂︀𝐻𝑒𝜓𝑒(r𝑖, 𝜎𝑖; R𝐼) = 𝐸𝑒(R𝐼)𝜓𝑒(r𝑖, 𝜎𝑖; R𝐼), (2.6)

where the energy 𝐸𝑒(R𝐼) only depends on the nuclear coordinates and not on the

electronic ones. 𝐸𝑒(R𝐼) can be found by solving Equation 2.6 for different R𝐼 , where

R𝐼 varies in little steps.

The electronic Hamiltonian can be written as:

̂︀𝐻𝑒 = ̂︀𝑇𝑒 + ̂︀𝑉𝑖𝑛𝑡 + ̂︀𝑉𝑒𝑥𝑡, (2.7)

or, explicitly:

̂︀𝐻𝑒 = −
𝑁𝑒∑︁
𝑖=1

1

2
∇2

𝑖 +
𝑁𝑒∑︁
𝑖=1

𝑁𝑒∑︁
𝑗>𝑖

1

|r𝑖 − r𝑗|
−

𝑁𝑛∑︁
𝐼=1

𝑁𝑒∑︁
𝑖=1

𝑍𝐼

|R𝐼 − r𝑖|
. (2.8)

On the other hand, the Hamiltonian that describes the nuclei motions in the

average field generated by the electrons (⟨𝐸𝑒({R𝐼})⟩) is:

̂︀𝐻𝑛 = ̂︀𝑇𝑛 + ̂︀𝑉𝑛 + ⟨𝐸𝑒({R𝐼})⟩ , (2.9)

or, more concrete:

̂︀𝐻𝑛 = −
𝑁𝑛∑︁
𝐼=1

1

2𝑀𝐼

∇2
𝐼 +

𝑁𝑛∑︁
𝐼=1

𝑁𝑛∑︁
𝐽>𝐼

𝑍𝐼𝑍𝐽

|R𝐼 − R𝐽 |
+ ⟨𝐸𝑒({R𝐼})⟩. (2.10)
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(𝑉𝑛 + ⟨𝐸𝑒({R𝐼})⟩) is named potential energy surface (PES). ⟨𝐸𝑒({R𝐼})⟩ is the

contribution of electrons to the potential energy of ions and determines the poten-

tial energy curves necessary to describe the ion movement. It means, in the BO

approximation the nuclei motion are independent from the electrons ones, following

the potential energy surface of Equation 2.10 (𝑉𝑛 + ⟨𝐸𝑒({R𝐼})⟩).

The total energy of the many-body system in the BO approximation is

𝐸𝑇 = 𝐸𝑒 + 𝐸𝑛, (2.11)

where, 𝐸𝑒 represents the total energy of the electrons, and 𝐸𝑛 represents the classical

kinetic energy and the classical electrostatic energy of the nuclei.

The issue now lies in solving the electronic problem, which involves a large num-

ber of degrees of freedom and a large number of interactions between electrons, i.e.,

the wave equation is a partial differential equation that depends on the 3𝑁 coordi-

nates of 𝑛 electrons. In this research, the solution to the electronic problem will be

addressed using the Density Functional Theory (DFT), which will be studied in the

next section.

2.2 Density Functional Theory (DFT)

Density Functional theory is considered currently the core of computational ma-

terials science. The electronic problem (Equation 2.7) is solved in DFT by using

the electron density instead of 3𝑁 -dimensional equation. Now, there are no single

electrons but just a three-dimensional density of electrons, 𝑛(r). The goal of DFT

is to reformulate the quantum mechanical theory in terms of the electron density

instead of the wave function. The many body problem is reduced because 𝑛(r) is an

observable that does not depend on the number of electrons after it is constructed

in a system, but only on the three spacial coordinates (x,y,z), which will reduce the

computational cost.

The DFT foundations are based on the theorems formulated by Hohenberg-Kohn

35



Chapter 2. Theoretical framework 2.2. Density Functional Theory (DFT)

(HK) (1964) [135] and Kohn-Sham (KS) (1965) [136].

2.2.1 The Hohenberg-Kohn theorems

Theorem 1 The external potential 𝑉𝑒𝑥𝑡(r), for any system of interacting electrons,

is univocally determined by the ground state electronic density, 𝑛0(r), besides

a trivial additive constant [135].

As a consequence of the first HK theorem, the following corollary is stated:

Corollary 1 The expectation value of any observable, �̂�, in the ground state is a

unique functional of the ground state electronic density. This is,

⟨Ψ|�̂�|Ψ⟩ = 𝑋[𝑛0(r)]. (2.12)

Therefore, the first HK theorem proves that the ground state properties of any

electronic system are uniquely determined by an electronic density that depends on

only three spatial coordinates.

Theorem 2 Considering ̂︀𝑋 the Hamiltonian operator ̂︀𝐻, the total energy functional

of the ground state, 𝐸[𝑛(r)], can be expressed as [135]

𝐸[𝑛(r)] = ⟨Ψ|�̂�|Ψ⟩ = ⟨Ψ|(𝑇𝑒 + 𝑉𝑖𝑛𝑡)|Ψ⟩ + ⟨Ψ|𝑉𝑒𝑥𝑡|Ψ⟩, (2.13)

or, respectively:

𝐸[𝑛(r)] = 𝑇𝑒[𝑛(r)] + 𝐸𝑖𝑛𝑡[𝑛(r)] + 𝐸𝑒𝑥𝑡[𝑛(r)], (2.14)

where ⟨𝐹𝐻𝐾 [𝑛(r)]⟩ = ⟨Ψ|(𝑇𝑒 + 𝑉𝑖𝑛𝑡)|Ψ⟩ = 𝑇𝑒[𝑛(r)] + 𝐸𝑖𝑛𝑡[𝑛(r)], is a universal func-

tional for any many-electron system. The minimum of this functional, 𝐸[𝑛(r)], is

the ground state energy and the density that minimizes the functional is the exact

ground state density, 𝑛0(r), for the external potential 𝑉𝑒𝑥𝑡.

The second HK theorem defines an energy functional for the system and demon-

strates that the correct ground state electron density minimizes this energy func-

tional.
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Though the HK theorems give a physical frame of reference to find both the

electron density and energy of the ground state of a many-body system, they tell

nothing about how to calculate them. In 1965 Walter Kohn and Lu Jeu Sham

established a method to simplify the many-body problem within DFT.

2.2.2 The Kohn-Sham auxiliary system

Kohn and Sham (KS) (1965) proposed an alternative approach in order to overcome

the many body problem. In the development of KS method, the authors make the

following main assumptions [136]:

For a system of interacting electrons, exists an equivalent or auxiliary system

of non-interacting electrons, with the same ground state electron density of the real

system, moving in an effective potential.

The kinetic energy of the interacting electrons (𝑇𝑒) is replaced with that of the

equivalent non-interacting system or reference system (𝑇0), and all the interactions

are placed in the exchange correlation energy 𝐸𝑥𝑐[𝑛(r)].

Then, the total energy functional 𝐸[𝑛(r)] (Equation 2.13) is rewritten by a KS

total energy functional 𝐸𝐾𝑆[𝑛(r)], as follows:

𝐸𝐾𝑆[𝑛(r)] = 𝑇0[𝑛(r)] + 𝐸𝐻 [𝑛(r)] + 𝐸𝑒𝑥𝑡[𝑛(r)] + 𝐸𝑥𝑐[𝑛(r)], (2.15)

where, 𝑛(r) is the electron density that minimizes 𝐸𝐾𝑆[𝑛(r)], 𝑇0[𝑛(r)] is the electrons

kinetic energy functional in the non-interacting system, 𝐸𝐻 [𝑛(r)] is the Hartree

potential energy, the classical Coulomb repulsion between electrons, 𝐸𝑒𝑥𝑡[𝑛(r)] is

the external potential, ion-electron interaction, and 𝐸𝑥𝑐[𝑛(r)] is the the exchange-

correlation energy, which includes all the interaction energies not taken into account

in the other terms, and can be expressed as:

𝐸𝑥𝑐[𝑛(r)] = 𝐸𝑖𝑛𝑡[𝑛(r)] + 𝑇𝑒[𝑛(r)] − 𝑇0[𝑛(r)] − 𝐸𝐻 [𝑛(r)]. (2.16)

𝐸𝑥𝑐[𝑛(r)] can also be expressed as the sum of the exchange energy functional and

the correlation energy functional:
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𝐸𝑥𝑐[𝑛(r)] = 𝐸𝑥[𝑛(r)] + 𝐸𝑐[𝑛(r)]. (2.17)

𝐸𝑐[𝑛(r)] is the correlation energy representing the correlating part of the kinetic and

electron–electron interaction terms. The correlation energy comes from the spatial

separation between electrons due to the nature of their negative charges, thus the

movement of an electron is always correlated to the surrounding electrons. The

exchange energy, 𝐸𝑥[𝑛(r)], comes from the exchange interaction between spins of

fermions [137]. Like-spin electrons always repel each other keeping some distance

between them and thus reduce the corresponding repulsive energy (Pauli exclusion

principle).

Kohn and Sham decomposed the energy of the 𝑛-electron system (interacting)

into that of 𝑛 one-electron systems (non-interacting) by the following one-electron

KS equations [137]:

̂︀ℋ𝐾𝑆(𝑖)𝜓𝑖(r) = 𝜖𝑖𝜓𝑖(r), (2.18)

[︂
−1

2
∇2

𝑖 + 𝑣𝐾𝑆(ri)

]︂
𝜓𝑖(r) = 𝜖𝑖𝜓𝑖(r), (2.19)

where, 𝜓𝑖(r) and 𝜖𝑖 are the KS orbitals and KS eigenvalues, respectively; 𝑣𝐾𝑆 is the

KS effective potential that is felt by the non-interacting electrons due to the other

electrons and ions, and can be expressed as

𝑣𝐾𝑆(ri) = 𝑣𝐻(ri) + 𝑣𝑥𝑐(ri) + 𝑣𝑒𝑥𝑡(ri). (2.20)

The ground state density 𝑛0(r) is related to the KS orbitals by

𝑛0(r) =
𝑁∑︁
𝑖=1

|𝜓𝑖(r)|2. (2.21)

The constraint is that the KS auxiliary system must yield the same electron density

of the real system. Furthermore, the total number of electrons must be obtained

when adding up all the KS electron densities over the whole space,
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∫︁
𝑛(r)𝑑r = 𝑁. (2.22)

The solution of the Schrödinger equation

̂︀𝐻Ψ(r) = 𝐸Ψ(r), (2.23)

for a non-interacting system, is a Slater determinant Ψ = |𝜓1, 𝜓2, 𝜓3, ..., 𝜓𝑁 |; where

𝜓𝑖 are orbitals with the lowest eigenvalues [134]. KS method solves decoupled equa-

tions of form (Equation 2.18), instead of one coupled equation of many electrons.

The KS total energy functional (Equation 2.15) can be expressed as

𝐸𝐾𝑆[𝑛(r)] = ⟨Ψ|�̂�|Ψ⟩ = 𝑇0[𝑛(r)] + 𝐸𝐻 [𝑛(r)] + 𝐸𝑒𝑥𝑡[𝑛(r)] + 𝐸𝑥𝑐[𝑛(r)], (2.24)

or, explicitly

𝐸𝐾𝑆[𝑛(r)] = − 1

2

𝑁∑︁
𝑖=1

∫︁
𝜓*
𝑖 (r)∇2

𝑖𝜓𝑖(r)𝑑r +
1

2

∫︁ ∫︁
𝑛(r)𝑛(r

′
)

|𝑟 − 𝑟′|
𝑑r𝑑r

′

+

∫︁
𝑣𝑒𝑥𝑡(r)𝑛(r)𝑑r +

∫︁
𝜖𝑥𝑐[𝑛(r)]𝑛(r)𝑑r. (2.25)

𝑣𝐻 [𝑛(r)] and 𝑣𝑥𝑐[𝑛(r)] can be obtained from 𝐸𝐻 [𝑛(r)] and 𝐸𝑥𝑐[𝑛(r)], respectively, as

follows

𝑣𝐻 [𝑛(r)] =
𝛿𝐸𝐻 [𝑛(r)]

𝛿𝑛(r)
=

∫︁
𝑛(r

′
)

|𝑟 − 𝑟′|
𝑑r

′
, (2.26)

𝑣𝑥𝑐[𝑛(r)] =
𝛿𝐸𝑥𝑐[𝑛(r)]

𝛿𝑛(r)
= 𝜖𝑥𝑐[𝑛(r)] +

𝜕𝜖𝑥𝑐[𝑛(r)]

𝜕𝑛(r)
𝑛(r). (2.27)

𝑣𝐻 [𝑛(r)] requires an integral on r
′ for the evaluation of the Hartree potential at r.

By comparing Equation 2.20, 2.25, 2.26 and 2.27 the following expression for the

KS effective potential 𝑣𝐾𝑆 or reference potential is obtained:
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𝑣𝐾𝑆[𝑛(r)] = 𝑣𝑒𝑥𝑡(r) +

∫︁
𝑛(r

′
)

|𝑟 − 𝑟′|
𝑑r

′
+ 𝑣𝑥𝑐(r). (2.28)

In practice, the electronic density and the ground state energy are found by

selfconsistent calculations: the cycle starts with an initial (trial) electron density

obtained from the KS orbitals; the electron density and a given XC functional cal-

culate the KS Hamiltonian; the KS Hamiltonian calculates the new KS orbitals,

which lead to a new electron density and total energy, and so on; the cycle is re-

peated until selfconsistency is reached. Therefore, to achieve meaningful results, we

have to find a set of KS orbitals that leads to a KS Hamiltonian whose solutions are

the KS orbitals we started with. KS orbitals, electron densities, and Hamiltonian are

all interrelated during the course of the calculation: This is called self-consistency

[134]. Thus, in order to find 𝜓𝑖(r), we need to know the Hamiltonian which depends

on the electronic density, which in turn depends on 𝜓𝑖(r). In real calculations, self-

consistency is reached by taking into account the total energy convergence. The

cycle stops when the difference between the last two calculated energies is less than

a prior chosen criterion. Afterwards, total energies and forces are calculated.

The total energy of electrons cannot be expressed directly as the sum of the

KS eigenvalues 𝜖𝑖, due to the double counting error involved in the energy terms

when calculating 𝜖𝑖, one by one, in terms of electron density 𝑛(r), any electron is

included in all other electrons, and results in an unphysical self-interaction. The

sum of 𝜖𝑖 thus becomes the actual total energy after double counting terms have

been subtracted [138]

𝐸[𝑛(r)] =
𝑁∑︁
𝑖=1

𝜖𝑖 − 𝐸𝐻 [𝑛] + 𝐸𝑋𝐶 [𝑛] −
∫︁
𝑉𝑋𝐶𝑛(r)𝑑r,

𝑜𝑟,

𝐸[𝑛(r)] =
𝑁∑︁
𝑖=1

𝜖𝑖 −
1

2

∫︁ ∫︁
𝑛(r)𝑛(r

′
)

|𝑟 − 𝑟′ |
𝑑r𝑑r

′ −
∫︁
𝜕𝜖𝑥𝑐[𝑛(r)]

𝜕𝑛(r)
𝑛(r)𝑑r. (2.29)

Here, from Equation 2.27 and definition of 𝐸𝑋𝐶 [𝑛], −
∫︀ 𝜕𝜖𝑥𝑐[𝑛(r)]

𝜕𝑛(r)
𝑛(r)𝑑r =

∫︀
(𝜖𝑥𝑐[𝑛(r)]−
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𝑉𝑋𝐶)𝑛(r)𝑑r. The main challenge in KS scheme is to find reliable and practical ap-

proximations for the exchange-correlation functional 𝐸𝑋𝐶 (Equation 2.17). This

topic will be addressed in section 2.3.

2.2.3 DFT to spin spin-polarized system (SDFT)

Spin-polarized systems are also studied with Kohn-Sham theory. This method is

known as spin density functional theory (SDFT). SDFT considers the electronic

density as composed by two independent spin densities [137],

𝑛(r) = 𝑛↑(r) + 𝑛↓(r), (2.30)

both 𝑛↑(r) and 𝑛↓(r) are built up with the KS spin orbitals, according to

𝑛𝑠(r) =
𝑁𝑠∑︁
𝑖=1

|𝜓𝑖,𝑠(r)|2, (2.31)

where the subindex 𝑠 indicates the spin component (↑ or ↓), and 𝑁𝑠 represents the

number of occupied spin orbitals with spin projection 𝑠.

𝑛𝑠(r) must satisfy the self-consistent KS equations

[︂
−1

2
∇2

𝑖,𝑠 + 𝑣𝐾𝑆,𝑠(ri)

]︂
𝜓𝑖,𝑠(r) = 𝜖𝑖,𝑠𝜓𝑖,𝑠(r). (2.32)

In SDFT the total energy is written as:

𝐸𝐾𝑆[𝑛↑, 𝑛↓] = − 1

2

2∑︁
𝑠=1

𝑁𝑠∑︁
𝑖=1

∫︁
𝜓*
𝑖,𝑠(r)∇2

𝑖𝜓𝑖,𝑠(r)𝑑r +
1

2

∫︁ ∫︁
𝑛(r)𝑛(r

′
)

|𝑟 − 𝑟′|
𝑑r𝑑r

′

+

∫︁
𝑣𝑒𝑥𝑡(r)𝑛(r)𝑑r + 𝐸𝑥𝑐[𝑛↑, 𝑛↓]. (2.33)

The total electronic density 𝑛(r) is given by Equation 2.30, while the magneti-

zation or spin-polarization density, by the expression

𝜁(r) = 𝑛↑(r) − 𝑛↓(r). (2.34)
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As in the case of non-spin-polarized systems, double counting terms have to be

subtracted from the total energy.

2.3 Exchange-correlation functionals

The most relevant exchange-correlation (𝐸𝑥𝑐) approximations will be briefly re-

viewed in this section: LDA, GGA, and hybrid functionals.

2.3.1 Local Density Approximation (LDA)

The Local Density Approximation (LDA) assumes that the spatial distribution of

the electronic density varies smoothly, so that it can be considered locally like a

uniform or homogeneous electron gas (HEG) of 𝑛(r), as was proposed by Kohn and

Sham [136]. In this approximation the exchange-correlation energy functional is

given by

𝐸𝐿𝐷𝐴
𝑥𝑐 [𝑛(r)] =

∫︁
𝑛(r)𝜀𝐻𝐸𝐺

𝑥𝑐 (𝑛(r))𝑑r, (2.35)

where 𝜀𝐻𝐸𝐺
𝑥𝑐 (𝑛(r)) is the XC energy functional of an electron in a HEG of density

(𝑛(r)). It depends only on the local density at point r, and can be expressed as

follows:

𝜀𝐻𝐸𝐺
𝑥𝑐 [𝑛(r)] = 𝜀𝐻𝐸𝐺

𝑥 [𝑛(r)] + 𝜀𝐻𝐸𝐺
𝑐 [𝑛(r)], (2.36)

where 𝑥 and 𝑐 are the exchange and correlation contributions.

The exchange energy is exactly given by Dirac’s expression [139]:

𝜀𝐻𝐸𝐺
𝑥 [𝑛(r)] = −3

4

(︂
3

𝜋

)︂ 1
3

𝜌(r)
1
3 . (2.37)

Within LDA the 𝜖𝑥𝑐[𝑛(r)] is given by the Monte Carlo simulations of Ceperley

and Alder [140] for a homogeneous electron gas, and parameterized by Perdew and

Zunger [141] as:
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𝜀𝐻𝐸𝐺
𝑐 [𝑛(r)] = 𝐴+𝐵 𝑙𝑛𝑟𝑠 + 𝑟𝑠(𝐶 +𝐷 𝑙𝑛𝑟𝑠), (2.38)

where A, B, C and D are constants; 𝑟𝑠 is the mean inter-electronic distance (Wigner–Seitz

radius), and can be calculated by the radius of a sphere containing solely one elec-

tron:

𝑟𝑠 =

(︂
3

4𝜋𝑛(r)

)︂ 1
3

𝑟𝑠 ≤ 1. (2.39)

LDA works well for systems where the electronic density is rather homogeneous,

e.g., bulk metals. Nonetheless, it has been found that it underestimates the lattice

parameters (overbinds), bandgaps, and the spin and orbital moments. It overesti-

mates the cohesive energy and bulk modulus of solids [134]. Furthermore, it does

not work well for materials that involve weak hydrogen bonds or van der Waals

attraction, e.g., atoms and molecules. LDA also fails to describe systems where the

electronic density is inhomogeneous such as transition metals or strongly correlated

systems. For these systems, the Generalized-Gradient Approximation (GGA) works

better.

2.3.2 Generalized-gradient approximation (GGA)

The Generalized-gradient approximation (GGA) defines the exchange-correlation

energy in the following form

𝐸𝐺𝐺𝐴
𝑥𝑐 [𝑛, |∇𝑛|] =

∫︁
𝑛(r)𝜀𝐺𝐺𝐴

𝑥𝑐 (𝑛(r), |∇𝑛(r)|,∇2(r), ...)𝑑r. (2.40)

GGA incorporates the spatial variation in the local density by including an ex-

pansion of the density in terms of the gradient and higher order derivatives in the

XC functional. Perdew-Burke-Ernzerhof (PBE) functional [142] has been one of the

most widely used GGA functionals. It is noticed in Equation 2.40 that only the

gradient at the same coordinate is taken into account in the XC functional, thus

GGA is a semi-local approximation.

Contrary to LDA, GGA overestimates (underestimates) the lattice constants and
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bond length (cohesive energy) within 1 % − 3 %. Both LDA and GGA underesti-

mate the band gaps of insulators and semiconductors. The physics reason can be

trace back to the fact that, in the local and semi-local approximations, the self-

interaction present in the Hartree term of the energy is not completely removed in

the exchange-correlation term [137]. Furthermore, the excitation energies are not

exactly described by the KS-system in the local and semi-local approximations.

The true band gaps is defined as:

𝐸𝑔 = 𝜀𝑁+1(𝑁 + 1) − 𝜀𝑁(𝑁), (2.41)

while the KS band gap is defined in terms of the eigenvalues of the same number of

electrons, as:

𝐸𝐾𝑆
𝑔 = 𝜀𝑁+1(𝑁) − 𝜀𝑁(𝑁). (2.42)

This DFT band gap problem is largely solved by hybrid functional method.

2.3.3 Hybrid functionals

Hybrid functional method (𝐸𝐻𝑦𝑏
𝑥𝑐 ) combines Hartree-Fock exchange energy (𝐸𝐻𝐹

𝑥 )

and DFT correlation energy (𝐸𝐺𝐺𝐴
𝑐 ) :

𝐸𝐻𝑦𝑏
𝑥𝑐 = 𝐶𝐸𝐻𝐹

𝑥 + (1 − 𝐶)𝐸𝐷𝐹𝑇
𝑥 + 𝐸𝐷𝐹𝑇

𝑐 , (2.43)

where the coefficient 𝐶 is either chosen to assume a specific value such as 1/2, or is

fitted to some properties of a molecular database [137].

The success of hybrid functional approach in describing the band gap of semicon-

ductors and insulators lies on the cancellation of error. While HF calculations over-

estimate the band gap, DFT underestimates it. Therefore, to correct the band-gap

values obtained by GGA in this thesis, hybrid functional Heyd-Scuseria-Ernzerhof

(HSE) calculations are carried out [143].
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2.4 Density functional theory implementation

So far, we have argued that the many body problem is a quantum mechanics prob-

lem. Solving it is an extremely difficult task, thus it is necessary to do some approx-

imations in order to deal with it. Born-Oppenheimer approximation decouples the

electron motion from the nuclear one, while DFT, based on the Hohenberg-Khon

and Kohn-Sham theorems, used the electron density to solve the electronic issue.

The most crucial term in DFT is the exchange-correlation energy. In order to imple-

ment DFT in numerical computation for real systems, some practical considerations

must be taken into account. These ones will be dealt in the next sections.

2.4.1 Bloch’s theorem

The materials studied in this thesis are crystalline solids where atoms are periodically

repeated. Felix Bloch took advantage of this periodic feature of crystalline solids

[144], and connected the properties of the electrons in a periodic infinite system with

those of the electrons in the unit cell [137].

The Bloch’s theorem states :

The wave function of an electron in an external periodic potential 𝑣(r) = 𝑣(r+R)

can be written as a product of a plane wave and a periodic function with the same

periodicity as the lattice [144].

The wave function is given by

𝜓𝑖k(r) = 𝑒𝑖k·r𝑢𝑖k(r), (2.44)

where 𝑒𝑖k·r is a plane wave with wave vector k, and

𝑢𝑖k(r) = 𝑢𝑖k(r + R), (2.45)

is a periodic function which is repeated from one unit cell to another. Here, R is

the real lattice vector defined by

R = 𝑛1a1 + 𝑛2a2 + 𝑛3a3, (2.46)
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where 𝑛𝑖 is any integer number and a𝑖 are unit cell vectors.

The wave function can also been written as

𝜓𝑖k(r + R) = 𝑒𝑖k·(r+R)𝑢𝑖k(r + R) = 𝜓𝑖k(r)𝑒𝑖k·R. (2.47)

It means that the real electrons in a crystal can be considered as perturbed free

electrons.

Therefore, the Bloch’s theorem is the first consideration employed by DFT for

describing electronic real systems: It reduces the infinite number of atoms (electrons)

in the whole system to a small number in the unit cell using the periodic nature of

solids.

2.4.2 Plane wave expansions

In order to solve the KS equation (Equation 2.19), it is important to find out a

particular basis set that allows us to expand the KS orbital 𝜓𝑖(r). As shown in the

previous section, one of the best ways is using a plane wave basis set,

𝑢𝑖𝑘(r) =
1√
Ω

∑︁
G

𝑐𝑖k(G)𝑒𝑖G·r, (2.48)

where 𝑐𝑖k(G) are the Fourier expansion coefficients, and Ω is the unit cell volume

Ω = a1 · (a2 × a3), (2.49)

the summation runs over all reciprocal lattice vectors G

G = 𝑚1b1 +𝑚2b2 +𝑚3b3, (2.50)

with a𝑖 and b𝑗 the primitive vectors of direct and reciprocal lattice, respectively,

which satisfy the relation

a𝑖 · b𝑗 = 2𝜋𝛿𝑖𝑗. (2.51)

Replacing Equation 2.48 in Bloch’s theorem (Equation 2.44), the KS electronic
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wave functions are

𝜓𝑛,k(r) =
1√
Ω

∑︁
G

𝑐𝑛,k(G)𝑒𝑖(k+G)·r, (2.52)

where k is a vector of the primitive cell in the reciprocal lattice space (first Brillouin

zone), and the index 𝑛 refers to the 𝑛− 𝑡ℎ energy band.

The reciprocal space is the Fourier transform of real space. Fast Fourier trans-

formation (FFT) allows us to move from real (reciprocal) to reciprocal (real) space

in an efficient way.

Replacing Equation 2.52 in the KS equation (Equation 2.19), transforms the KS

equations into a general matrix eigenvalue problem [137]

∑︁
G′

{1

2
|k + G|2𝛿G,G′ + 𝑉𝑒𝑓𝑓 (G,G′)}𝑐𝑛,𝑘(G′) = 𝜖𝑛,𝑘𝑐𝑛,𝑘(G), (2.53)

where

𝛿G,G′ = ⟨𝜑G|𝜑′
G⟩, (2.54)

and

𝜑G(r) =
1√
Ω
𝑒𝑖G·r, (2.55)

while 𝑉𝑒𝑓𝑓 (G,G′) is the Fourier transform of the potential

𝑉𝑒𝑓𝑓 (G,G′) = ⟨𝜑k
G|𝑉 |𝜑k

G′⟩, (2.56)

with

𝜑k
G(r) =

1√
Ω
𝑒𝑖(k+G)·r. (2.57)

The ground-state energy (the lowest energy of each KS orbital) can be found

by solving the matrix eigenvalue (Equation 2.53). In practice, the PW expansion

(Equation 2.52) can be adequately set at a limited number of plane waves with the

constraint that their kinetic energy be lower than some energy cutoff 𝐸𝑐𝑢𝑡:
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1

2
|k + G|2 ≤ 𝐸𝑐𝑢𝑡. (2.58)

The cutoff energy must be optimized for each system in order to improve the accu-

racy and computational cost of calculations.

2.4.3 First Brillouin zone

The first Brillouin zone is a primitive cell of the reciprocal lattice, like a Wigner-

Seitz cell in the direct lattice. Due to the fact that the reciprocal lattice is periodic,

any k′ point outside the first BZ can be refolded into the first BZ by the reciprocal

lattice vector G

k = k′ −G, (2.59)

which means that the solutions of the KS equations can be fully represented by the

occupied states of the first BZ, or in the irreducible Brillouin zone (IBZ) when the

symmetries of the system are taken into account, by the folding mechanism in the

reciprocal lattice. Thus, in addition to selecting a suitable base for the expansion

of the wave functions, the integration of k points in the Brillouin zone (BZ) is

a fundamental factor in the accuracy and computational cost of the calculations.

In practice, due to finite computer resources, the integration is substituted by a

summation over a finite set of k-points [145], it means:

1

Ω𝐵𝑍

∫︁
𝐵𝑍

𝑓(k)𝑑k =
∑︁
k

𝑤k𝑓(k), (2.60)

where Ω𝐵𝑍 is the volume of the Brillouin zone and 𝑤k is the weight factor of each

k point that depends on the symmetry of the unit cell. Monkhorst−Pack (MP)

[146] method is one of the most efficient for the generation of k points and their

corresponding weights. In this approach, a mesh of k points is spaced evenly along

each axis of the reciprocal space. The k𝑛1,𝑛2,𝑛3 mesh is defined by three integer

numbers 𝑁𝑖 (𝑖 = 1, 2, 3), where 𝑁𝑖 (𝑖 = 1, 2, 3) is the number of points in the mesh

along each axis:
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k𝑛1,𝑛2,𝑛3 =
3∑︁

𝑖=1

2𝑛𝑖 −𝑁𝑖 − 1

2𝑁𝑖

b𝑖, (2.61)

where 𝑛𝑖 varies from 1 to 𝑁𝑖, and b𝑖 are the primitive vectors of reciprocal space.

For instance, it can be seen that if 𝑁𝑖 = 3 this gives −1/3, 0, 1/3, and if 𝑁𝑖 = 4 this

gives −3/8, −1/8, 1/8 and 3/8. In these examples, the set of k points are 3× 3× 3

and 4 × 4 × 4, respectively.

For solid state applications, a set of coupled KS equations (Equation 2.19) has

to be solved, one for each k-point included in the BZ sampling [137], where the

electronic density is expressed as a BZ average

𝑛(r) =
∑︁
k∈𝐵𝑍

𝜔k

𝑁k∑︁
𝑖=1

𝑓
(k)
𝑖 |𝜓(k)

𝑖 (r)|2, (2.62)

where 𝑁k is the number of electronic states occupied at each k-point, and 𝑓
(k)
𝑖 the

occupation number of band 𝑖 at wave vector k. If the system is insulating, then

𝑓
(k)
𝑖 =1 is independently of 𝑖 and k, and 𝑁k = 𝑁 . If there is spin degeneracy the

sum is carried up to 𝑁/2, and then multiplied by a degeneracy factor 𝑓 (k)
𝑖 =2.

In the case of metallic systems with Fermi surfaces of no uniform shape, the

integration of the band-structure energy,

∑︁
𝑖

1

Ω𝑍𝐵

∫︁
𝐵𝑍

𝜖
(k)
𝑖 𝑓

(k)
𝑖 (𝜖

(k)
𝑖 − 𝜖𝐸𝐹

)𝑑k =
∑︁
𝑖

𝑤k𝜖
(k)
𝑖 𝑓

(k)
𝑖 (𝜖

(k)
𝑖 − 𝜖𝐸𝐹

), (2.63)

over the Brillouin zone for the curved Fermi surface is a delicate issue due to the

discontinuity of partial filling of the energy bands. In this case, the convergence is

too slow due to the occupancies jump from 1 to 0 at the Fermi-level and the high

number of k-points included [145].

Among the methods used to solve this situation, are the finite temperature ap-

proaches or smearing methods, where the step function is replaced by a smooth

function e.g. Fermi-Dirac function [147]

49



Chapter 2. Theoretical framework 2.4. Density functional theory implementation

𝑓
(k)
𝑖 (

𝜖
(k)
𝑖 − 𝜖𝐸𝐹

𝜎
) =

1

𝑒𝑥𝑝
𝜖
(k)
𝑖 −𝜖𝐸𝐹

𝜎
+ 1

, (2.64)

or a Gauss like function [148]

𝑓
(k)
𝑖 (

𝜖
(k)
𝑖 − 𝜖𝐸𝐹

𝜎
) =

1

2
(1 − 𝑒𝑟𝑓 [

𝜖
(k)
𝑖 − 𝜖𝐸𝐹

𝜎
]). (2.65)

The name of these methods comes from the fact that they mimic the effect of

temperature in Fermi-Dirac statistics. Here 𝜎 = 𝐾𝐵𝑇𝑒, is a broadening energy pa-

rameter that is adjusted to avoid instabilities in the convergence of the self-consistent

procedure. Due to the analogy with the true Fermi distribution, this parameter is

sometimes called the electronic Fermi temperature, but it has to be kept in mind

that this is just a technical issue [137] .

There is an improved method called Methfessel-Paxton which presents a sam-

pling method for Brillouin-zone integration in metals as well as integrals over the

occupied part of the Brillouin zone precisely, using a smooth approximation to the

step functions which are constructed to give the exact result when integrating Her-

mite polynomials [149]. This method converges exponentially with the number of

sampling points.

2.4.4 Pseudopotentials and PAW

The basis of the pseudopotential approach (PP) lies on substituting the strong ionic

potential (valence electron wave functions) near the core region with a smoother

nodeless pseudopotential (pseudo-wave functions). This is a practical way of re-

ducing the huge number of PW produced by the rapid oscillations (nodes) of the

true valence electron orbitals near the core due to the orthogonality of the valence

orbitals with respect to the core orbitals. The use of nodeless pseudo-wave functions

reduces the computational cost. Pseudopotential scheme is based on the frozen-core

approximation which classifies electrons according to their contribution to the chem-

ical bonding as core and valence electrons. The core electrons are tightly bound to

the nucleus and do not contribute directly to the chemical bonding, while valence
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electrons are responsible for chemical bonding.

The construction steps of pseudopotentials are as follows:

First, the following all-electron radial Schrödinger equation for the atom at the

reference configuration is solved, usually at the fundamental state of the neutral

atom, finding the energy and wave functions of electronic states :

− 1

𝑟

𝑑2

𝑑𝑟2
(𝑟𝜓𝑛𝑙(𝑟)) +

𝑙(𝑙 + 1)

𝑟2
𝜓𝑛𝑙(𝑟) + 𝑉𝑠𝑐𝜓𝑛𝑙(𝑟) = 𝜀𝑛𝑙(𝑟)𝜓𝑛𝑙(𝑟). (2.66)

Once the KS orbitals are obtained, an arbitrary distinction between valence and

core states is made, choosing a core radius (𝑟𝑐). Then a DFT precalculation for the

core electrons is performed, and they are kept frozen for the remaining calculations,

and are assumed to have transferable properties. The core effect is replaced by the

pseudopotential obtained from the DFT precalculation in the atomic configuration.

With the new potential, the valence states are made softer. Thus, the KS orbital 𝜓

that satisfies Equation 2.19, is expressed as:

𝜓 = 𝜑𝑇𝑣 +
∑︁
𝑐

𝑎𝑐𝜑𝑐, (2.67)

where 𝜑𝑇𝑣 is the true valence wave function outside 𝑟𝑐, in the zone of chemical bonds,

and 𝜑𝑐 represents the core states. As shown in Figure 2-1, at 𝑟 > 𝑟𝑐 the pseudo-wave

function (red line) coincides with the all electron wave function (blue line), while for

the 𝑟 < 𝑟𝑐, core part, the pseudo-wave function Ψ𝑝𝑠𝑒𝑢𝑑𝑜 is nodeless and smoother.

At 𝑟 = 𝑟𝑐 the first and second derivatives of Ψ𝑝𝑠𝑒𝑢𝑑𝑜 and Ψ are the same. After-

wards, the pseudopotential 𝑉𝑠𝑐 is found inverting the radial Schrödinger equation

(Equation 2.66) using the constructed pseudo-wave functions. The inversion is done

because of the nodeless condition. Finally, the KS equation is rewritten in terms of

the pesudopotential and pseudo-wave functions.

Since Phillips and Kleinman [150] proposed for the first time the pseudopotential

approach, a lot of effort has been devoted by the scientist community in developing

new and more efficient ones using different theoretical frameworks. Among the

methods beyond PP, the Projector Augmented Wave (PAW) [151] is one of the most

accurate ones used in DFT because it preserves the AE features of the wavefunctions.
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Figure 2-1: Schematic illustration of the comparison between a real wave function Ψ
(Coulomb potential 𝑉 ) and a pseudo-wave function Ψ𝑝𝑠𝑒𝑢𝑑𝑜 (pseudopotential 𝑉𝑝𝑠𝑒𝑢𝑑𝑜).
The real and the pseudo wavefunction and potentials match above a certain cutoff
radius 𝑟𝑐.

It is implemented in the Vienna Ab-initio Simulation Package (VASP) [152, 153],

which is the computational program used to carry out this research.

PAW is a generalization of both the pseudopotential method and the linear

augmented-plane-wave (LAPW) methods. Blöchl in his original paper [151] obtained

the AE wave function Ψ from the smooth pseudo-wave function Ψ̃ by the following

relation

|Ψ⟩ = |Ψ̃⟩ +
∑︁
𝑖

(|𝜑𝑖⟩ − |𝜑𝑖⟩)⟨𝑝𝑖|Ψ̃⟩ 𝑤𝑖𝑡ℎ ⟨𝑝𝑖|𝜑𝑗⟩ = 𝛿𝑖𝑗, (2.68)

which means that the all-electron wavefunction is rebuilt from the smooth pseudo-

wave function by correcting for the differences between the AE partial orbitals 𝜑𝑖

and the pseudo partial waves 𝜑𝑖 of the atoms. The true partial orbitals 𝜑𝑖 of the

isolated atom are obtained from an AE calculation and coincides with the pseudo

partial ones for 𝑟 > 𝑟𝑐. They also match continuously for 𝑟 < 𝑟𝑐. Therefore, PAW

method has the efficiency of PP scheme and the accuracy of AE methods.
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2.4.5 Spin-Orbit Coupling

Since in our study the spin-orbit interaction (SOC) for 551-Graphene/331-GaAs

bilayer heterostructure has been taken into account, in this section we will review

the most important concepts about the spin-orbit interaction.

Spin-orbit coupling is a relativistic interaction between moving electrons with

v=p/m and a local electric field E= −1
𝑞

𝑑𝑉 (𝑟)
𝑑𝑟

r
𝑟

in their rest frame created by the

proton, where q is the charge of the moving electrons and V(r)=− 𝑒2

𝑟
is the electro-

static energy of the electron. Special relativity indicates that in the electron frame,

a magnetic field appears, described by [154]

B = − 1

𝑐2
(v × E), (2.69)

where B is equivalent to:

B = −(
𝑒2

𝑞𝑚𝑒𝑐2𝑟3
)L. (2.70)

Here, L = r×P represents the electron orbital angular momentum. Due to the

interaction of B with the electron intrinsic magnetic moment m𝑠, given by:

m𝑠 =
𝑞

𝑚𝑒

S, (2.71)

and by Zeeman effect, the orbital energy levels are splitted, which can lead to dif-

ferent transition levels with energy:

𝐻𝑠𝑜 = −m𝑠 · B. (2.72)

From Equation 2.70, 2.71 and 2.72, 𝐻𝑠𝑜 can be rewritten as:

𝐻𝑠𝑜 = 𝜉(𝑟)L · S, (2.73)

where 𝜉 (r)= 𝑒2/2𝑚2
𝑒𝑐

2r3 contains the entire radial dependence of the SOC Hamilto-

nian operator [155]. The factor 1/2 is due to the fact that the electron spin rotates

with respect to the laboratory reference frame [154]. L and S are the electron orbital
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and spin angular momentum, respectively. The total angular momentum is J = L+

S. When the orbital angular momentum of 𝑝-graphene orbital (𝑙=1) interacts with

its spin intrinsic momentum, the electron states can be 𝑗 = |𝑙± 1/2|, i.e. either 3/2

(2𝑃 3/2) or 1/2 (2𝑃 1/2), depending on the case if L and S are parallel or antiparallel,

respectively, as shown in Figure 2-2.

Figure 2-2: Orbital angular momentum of 𝑝-graphene state (𝑙=1) with (a) no cou-
pling, and (b) coupling with its spin intrinsic momentum.

Special relativity theory states that for electrons with large average speeds the

mass increases, while the radius decreases. In the weakly relativistic domain, the

SOC effect is specially noticed for massive atoms of the periodic table. There are

some pioneering studies [156, 157] indicating splitting of electron and hole energy

bands by spin-orbit coupling (SOC) in 2D-GaAs heterostructures. Pyykk𝑜 [158]

compared the relativistic (Dirac) and nonrelativistic (Schrödinger) dynamics for the

valence electron in a given atomic potential, to study the importance of the direct

relativistic effect on atomic orbitals. They found a relativistic radial contraction

and energetic stabilization for 𝑠 and 𝑝 shells, spin-orbit splitting and the relativistic

radial expansion and energetic destabilization of the 𝑑 and all 𝑓 outer shells. They

also reported that all three effects were of the same order of magnitude and grow

roughly like 𝑍2.

Dirac used quantum mechanics combined with special relativity to obtain an

equation that describes the electron spin. For this purpose, the energy dispersion

relation given by special relativity [159]

𝜖2 = (𝑐𝑝)2 + (𝑚𝑐2)2, (2.74)
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was factorized

(︀
𝜖+ 𝑐𝛼 · p + 𝛽𝑚𝑐2

)︀ (︀
𝜖− 𝑐𝛼 · p − 𝛽𝑚𝑐2

)︀
= 0, (2.75)

to obtain a first-order time-differential equation

(︀
𝜖− 𝑐𝛼 · p − 𝛽𝑚𝑐2

)︀
Ψ(r, 𝑡) = 0, (2.76)

where the coefficients 𝛼 and 𝛽 should satisfy the following relations

𝛼2
𝑖 = 𝛽2 = 1 (𝑖 = 𝑥, 𝑦, 𝑧),

𝛼𝑖𝛼𝑗 + 𝛼𝑗𝛼𝑖 = 0 (𝑖 ̸= 𝑗),

𝛼𝑖𝛽 + 𝛽𝛼𝑖 = 0,

(2.77)

here 𝛼 and 𝛽 are, at least, 4 × 4 matrices. The expressions for 𝛼 and 𝛽 are not

unique. One possible combination of 𝛼 and 𝛽, called the Dirac representation, in

terms of Pauli matrices 𝜎𝑖, that satisfies Equation 2.76 is:

𝜎𝑥 =

⎛⎝ 0 1

1 0

⎞⎠ , 𝜎𝑦 =

⎛⎝ 0 −𝑖

𝑖 0

⎞⎠ , 𝜎𝑧 =

⎛⎝ 1 0

0 −1

⎞⎠ ,

𝛼𝑖 =

⎛⎝ 0 𝜎𝑖

𝜎𝑖 0

⎞⎠ , 𝛽 =

⎛⎝ 𝐼 0

0 −𝐼

⎞⎠ ,

(2.78)

where I is the 2×2 identity matrix.

Substituting the momentum operator

̂︀p = −𝑖~̂︀∇, (2.79)

and the energy operator

̂︀𝜖 = 𝑖~
𝑑

𝑑𝑡
, (2.80)

in Equation 2.74, one obtains a relativistic expansion of the Schrödinger equation

for a free electron, called the Dirac equation
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𝑖~
𝜕Ψ(r, 𝑡)
𝜕𝑡

+ 𝑖~𝑐𝛼 · ∇Ψ(r, 𝑡) − 𝛽𝑚𝑐2 = 0. (2.81)

Since 𝛼 and 𝛽 are 4 × 4 matrices, a solution Ψ(r, 𝑡) that describes particles of

spin 1/2 has four components:

Ψ(r, 𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎝
Ψ1(r, 𝑡)

Ψ2(r, 𝑡)

Ψ3(r, 𝑡)

Ψ4(r, 𝑡)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎝ Ψ𝐴(r, 𝑡)

Ψ𝐵(r, 𝑡)

⎞⎠ , (2.82)

here, Ψ𝐴(r, 𝑡) and Ψ𝐵(r, 𝑡) are two component spinors.

Since the total angular momentum J

J = L + S, (2.83)

must be conserved, where L and S are the electron orbital and spin angular mo-

mentum, respectively, J commutes with the Hamiltonian:

[J,ℋ] = [L,ℋ] + [S,ℋ] = 0. (2.84)

Consider now an electron with charge −𝑒 placed in an electromagnetic field. The

operators in Equation 2.76 are changed by replacing p with p+𝑒A and adding the

electrostatic potential −𝑒𝜑, resulting in

[𝑖~
𝜕

𝜕𝑡
+ 𝑒𝜑− 𝑐𝛼 · (p + 𝑒A) − 𝛽𝑚𝑐2]Ψ(r, 𝑡) = 0, (2.85)

here, A and 𝜑 are the vector and electric (scalar) potential, respectively.

For practical applications in DFT-calculations, the relativistic effects are incor-

porated directly into the PAW or pseudopotential schemes. Relativistic corrections

are made only in the core region, due to the high energies of electrons of heavy atoms

in the deepest shells. The exchange-correlation functional should also be modified to

account for relativistic effects. This can be done by multiplying the exchange energy

density and potential for quite high densities, e.g. those deep into the atomic core
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by density-dependent correction factors[137].

2.4.6 Vienna Ab-initio Simulation Package (VASP)

This research has been carried out using the Vienna Ab-initio Simulation Package

(VASP) because this computational program has demonstrated high efficiency and

accuracy in the theoretical study of electronic systems using DFT. VASP was de-

veloped by Kresse and Furthmüller in 1996 [152, 153] and differs from others com-

putational packages, e.g. QUANTUM-ESPRESSO, SIESTA, ABINIT, CASTEP,

WIEN2K, GAUSSIAM, in the selecting basis functions, pseudopotentials, and the

algorithms used for diagonalization of the KS Hamiltonian.

The following are the main features of VASP [12]:

− Needs four input files for starting running, i.e. INCAR, POSCAR, POTCAR,

and KPOINTS: and gives, among others, the following output files: OUTCAR,

CHGCAR, CONTCAR.

− Expands the KS orbitals and potentials with the PW basis set, and employing

PP or PAW schemes for treating the electron-ion interaction for all elements. The

PP or PAW information is located at the POTCAR file.

Figure 2-3: Scheme of the self-consistent cycle of the Kohn−Sham equations em-
ployed by VASP [12].
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− Uses a self-consistency cycle to carry out the electronic and ionic minimiza-

tion, as shown in Figure 2-3 [12]. In order to do that, first a trial 𝑛(𝑟) is constructed

from orbitals of isolated atoms, and PP or PAW. Then, from this trial 𝑛(𝑟) and XC

functional the energy terms of the KS Hamiltonian in real and reciprocal spaces,

via fast Fourier transformations (FFT), are calculated. VASP provides several XC

functionals for DFT, e.g. LDA, LDA+U, PW91, GGA, hybrids, and van der Waals

functionals, among others. Third, the KS equations, a matrix eigenvalue equation,

are solved by an iterative diagonalization in the real and reciprocal spaces. In this

step new KS orbitals are calculated. The block Davidson algorithm is used for the

diagonalization of the KS Hamiltonian, which is considered among the fastest meth-

ods nowadays available. Next, with the newly calculated orbitals, a new electron

density is generated, and the process is repeated until self-consistency is reached.

Later, after electronic minimization is achieved, the forces on atoms are calculated

and the atoms are moved to new positions of lower forces. This is the ionic minimiza-

tion process. The forces can be calculated using the Hellmann-Feynman theorem

[137]. The electronic and ionic minimization is repeated in series until the energy-

convergence criterion is achieved.

− VASP can be run in a parallel mode for any system including atoms, molecules,

bulk solids, surfaces, clusters, etc.

2.4.7 Phonons

Just as photons are the quantized normal modes of electromagnetic waves, phonons

are the quantized normal modes of the lattice vibration in a crystalline solid. Thus,

the phonon energy levels (eigenvalues) are quantized for each wave vector, q (lattice

displacement). The dependence of the frequency, 𝜔, on the wave vector, q, is known

as the phonon dispersion, i.e. 𝜔(q). A large number of physical properties can

be understood in terms of phonons, e.g. specific heat, thermal expansion, heat

conduction; and physical phenomena related to electron-phonon interactions, such

as resistivity, and superconductivity.

In order to give a phonon description of lattice vibrations, some approximations

are made. The harmonic approximation assumes that the amplitude of atomic
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displacements is small compared to interatomic distances, and the mean equilibrium

position of each ion, i, is a Bravais lattice site, R𝑖. The results given by this theory

are often in excellent agreement with experimental ones. However, for the study of

physical properties of systems at elevated temperature the harmonic approximation

fails. Thus, for these cases it is necessary to use the anharmonic theory [160].

In order to find a mathematical model that describes the lattice vibration, let’s

assume that the total potential energy of the crystal U is the sum of the potential

energy contributions 𝜑(r) of all distinct pairs of ions located at r(R) and r(R’) [160]

𝑈 =
1

2

∑︁
RR’

𝜑(r(R) − r(R’)), (2.86)

where the relation between the Bravais lattice vector R, the instantaneous position

r(R) of the ion that oscillates about R, and the lattice displacement u(R), is:

r(R) = R + u(R), (2.87)

and so for

r(R’) = R’ + u(R’). (2.88)

Inserting Equation 2.87 and Equation 2.88, in Equation 2.86, we obtain:

𝑈 =
1

2

∑︁
RR’

𝜑(R − R’ + u(R) − u(R’)). (2.89)

Applying now the three-dimensional form of Taylor’s theorem

𝑓(r + a) = 𝑓(r) + a · ∇𝑓(r) +
1

2
(a · ∇)2𝑓(r) +

1

3!
(a · ∇)3𝑓(r) + ....... (2.90)

to Equation 2.89 with r = R−R’, and a = u(R)−u(R’), and vanishing the linear

term because the system is in equilibrium, and there is no net force applied to any

atom, the first non-vanishing correction, i.e., the quadratic term, to the equilibrium

potential energy represents the harmonic approximation
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𝑈ℎ𝑎𝑟𝑚 =
1

4

∑︁
RR’

[(u(R) − u(R’)) · ∇]2𝜑(R − R’), (2.91)

where the equilibrium potential energy is given by the first term of Equation 2.90:

𝑈 𝑒𝑞 =
1

2

∑︁
RR’

𝜑(R − R’) =
𝑁

2

∑︁
R̸=0

𝜑(R). (2.92)

The terms that represent the third and fourth corrections to 𝑈 are known as anhar-

monic terms, and they are treated as small perturbations on the harmonic term.

In the Brillouin zone, at each wave vector, q, there are 3𝑁 vibrational modes,

where three are acoustic (A) modes, and the rest ones, 3𝑁 − 3, optical (O) modes.

The acoustic name comes from the fact that their dispersion relation at small values,

near the Γ point, is linear, which is the feature of sound waves. The optical modes

are called in that way because they are responsible for the optical behavior of some

crystals when interacting with electromagnetic radiation. Furthermore, all ions in a

primitive cell move in (out of) phase in the acoustic mode (optical mode).

Lattice vibrations can be classified based on the relationship between the orien-

tation of the polarization vector, and the propagation direction, q, as longitudinal

(L), in the case of parallel orientation, and transverse (T) modes, for perpendicular

orientation. Therefore, phonons can be classified for acoustic (optical) modes as LA

(LO) and TA (TO). For instance, in the case of 3D-GaAs (N=2 atoms), there are 6

phonon modes (3N): 3A and 3O (3N−3). For the A modes, 1 is LA and 2 are TA;

and, for the O modes, 1 is LO (N−1) and 2 are TO (2N−2).

On the other hand, phonons in 2D materials present different types of modes

when compared to those of 3D. This is because atoms in 2D-materials are in-plane,

thus they have no out-plane neighbor atoms to interact with. As we are interested in

studying 2D group III−V materials, we analyze here the calculated phonon disper-

sion curves for 2D−BAs semiconductor in the hexagonal primitive cell with GGA

scheme, as shown in Figure 2-4. We can see that the planar structure 2D ℎ-BAs

can be stable, because there are no imaginary frequencies in the phonon dispersion.

It means, there are no soft modes and, as a consequence, there is no sign of any

dynamical instability. There are six phonon dispersion bands because the unit cell
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Figure 2-4: Phonon dispersion curves for 2D−BAs semiconductor in the hexagonal
primitive cell with GGA scheme.

of 2D ℎ-III-As contains two atoms, A (cation) and B (anion). The three vibrational

branches, which are zero at the Γ point, correspond to the acoustic modes (A). The

other three frequency values (3N-3) correspond to the optical modes (O). Depending

on if vibrations of cation-anion atoms directions are parallel or perpendicular, the

phonon modes are classified as longitudinal (L) or transversal (T). From downward

to upward modes, listed in order of increasing energy, they can be classified as:

out-of plane mode (ZA), in-plane transversal mode (iTA) and in-plane longitudinal

mode (iLA) for the acoustic modes. The (ZA) mode shows a q2 energy dispersion

relation near to the Γ point and the other two (iTA and iLA), a q linear dependence.

The remaining three branches (3N−3) correspond to optical modes, (N−1) out-of

plane mode (1 ZO), (N−1) in-plane transversal mode (1 iTO) and (N−1) in-plane

longitudinal mode (1 iLO).

Phonons can be calculated by computational methods using Density functional

Theory via interatomic force constants. The most common first principles phonon

calculation methods are finite displacement method (FDM) [161, 162] and den-

sity functional perturbation theory (DFPT) [163]. In the linear response methods
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(DFPT), the dynamical matrix is expressed in terms of the inverse dielectric matrix

describing the response of the valence electron density to a periodic perturbation of

the crystalline lattice [161].

In this thesis, the study of the dynamical stability of 2D group III-V semiconduc-

tors have been carried out using supercell and finite displacement approaches, be-

cause for semiconductors and transition metals, the realization of the linear-response

approach is much more difficult, since the full dielectric matrix must be calculated

in terms of the electronic eigenfunctions and eigenvalues of the perfect crystal [161].

The finite displacement approach uses the analysis of the forces on the atoms

induced by the displacements of other atoms in the supercell to study phonon fre-

quencies. The forces on all atoms in the supercell increase if an atom of the supercell

is displaced from its equilibrium position. The difference in the energies of the per-

turbed and unperturbed crystal lattices is used to calculate the energy of a periodic

distortion of the crystalline lattice (phonon).

The ab-initio force constant technique (FDM) is based on periodically repeated

supercells. From the displacement of a single atom in each supercell, FDM calculates

the forces and crystal force constants on all supercell atoms. The number of super-

cells, atomic displacement, depends on the crystal symmetry. For instance, cubic

NiAl only needs two displacements along single direction Z, one for each Al and Ni

atom. The forces are called Hellmann-Feynman forces (H−F), because they are ob-

tained from the Hellmann− Feynman theorem [164, 165]. This theorem states that

the variation of the electronic energy E(𝜆) with respect to an external parameter 𝜆

can be calculated as the expectation value of the variation of the Hamiltonian:

𝜕𝐸

𝜕𝜆
= ⟨𝜓|𝜕�̂�

𝜕𝜆
|𝜓⟩, (2.93)

here |𝜓⟩ is an eigenstate of the Hamiltonian. From the Hellmann−Feynman theorem

the forces acting on a given nucleus can be obtained. For instance, the 𝑧-component

of the force acting on a given nucleus is equal to the negative of the derivative of the

total energy with respect to that coordinate. Employing the Hellmann–Feynman

theorem this is equal to
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F𝑧 = −𝜕𝐸
𝜕z

= −⟨𝜓|𝜕�̂�
𝜕z

|𝜓⟩. (2.94)

One important application of H−F is the calculation of equilibrium geometries,

i.e. the nuclear coordinates where the forces acting upon the nuclei, due to the

electrons and other nuclei, vanish. Thus, the derivative of the total energy with

respect to the atomic position is zero

F𝐼 = − 𝜕𝐸

𝜕R𝐼

= −⟨𝜓| 𝜕�̂�
𝜕R𝐼

|𝜓⟩ = 0. (2.95)

As shown in Equations (2.86−2.92) the total crystal potential energy U is

a function of the displacement and can be expanded by Taylor’s theorem. Now,

we suppose that atoms (𝑙𝑘), where 𝑙 and 𝑘 are the labels of unit cells and atoms

in each unit cell, respectively, move around their equilibrium positions r(𝑘𝑙) with

displacements u(𝑙𝑘). Thus, U can be rewritten as follows [166]:

𝑈 = 𝑈0 +
∑︁
𝑙𝑘

∑︁
𝛼

𝜑𝛼(𝑙𝑘)u𝛼(𝑙𝑘) +
1

2

∑︁
𝑙𝑙′𝑘𝑘′

∑︁
𝛼𝛽

𝜑𝛼𝛽(𝑙𝑘, 𝑙′𝑘′)u𝛼(𝑙𝑘)u𝛽(𝑙′𝑘′)

+
1

3!

∑︁
𝑙𝑙′𝑙′′𝑘𝑘′𝑘′′

∑︁
𝛼𝛽𝛾

𝜑𝛼𝛽𝛾(𝑙𝑘, 𝑙′𝑘′, 𝑙′′𝑘′′)u𝛼(𝑙𝑘)u𝛽(𝑙′𝑘′)u𝛾(𝑙′′𝑘′′) + · · · (2.96)

where 𝛼, 𝛽 and 𝛾 are the Cartesian indices. The coefficients of the series expansion,

𝑈0, 𝜑𝛼(𝑙𝑘), 𝜑𝛼𝛽(𝑙𝑘, 𝑙′𝑘′), 𝜑𝛼𝛽𝛾(𝑙𝑘, 𝑙′𝑘′, 𝑙′′𝑘′′) are the zeroth, first, second, and third

order force constants, respectively.

The force acting on an atom (𝑙, 𝑘) is:

F𝛼(𝑙𝑘) = − 𝜕𝑈

𝜕u𝛼(𝑙𝑘)
= −1

2

∑︁
𝑙′𝑘′

∑︁
𝛽

𝜑𝛼𝛽(𝑙𝑘, 𝑙′𝑘′)u𝛽(𝑙′𝑘′), (2.97)

which physically means that the displacement of a single atom (𝑙′𝑘′) in the supercell

by a vector u𝛽(𝑙′𝑘′) induces forces F𝛼(𝑙𝑘) acting on the surrounding atoms.

On the other hand, from Equation 2.97 we can find the interatomic force con-

stant:
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𝐶𝛼𝛽
𝑙𝑘,𝑙′𝑘′ = − 𝜕F𝛼(𝑙𝑘)

𝜕u𝛽(𝑙′𝑘′)
= 𝜑𝛼𝛽(𝑙𝑘, 𝑙′𝑘′) =

𝜕2𝑈

𝜕u𝛼(𝑙𝑘)𝜕u𝛽(𝑙′𝑘′)
= −𝜕F𝛽(𝑙′𝑘′)

𝜕u𝛼(𝑙𝑘)
. (2.98)

Equation 2.97 is the key equation of the FDM, and for simplicity only a single

atomic displacement is applied. This displacement u𝛽(𝑙′𝑘′) is an input for the ab-

initio calculations, while the Hellmann-Feynman forces F𝛼(𝑙𝑘) are found as a result

of a single ionic loop of optimization in ab initio calculations. The solution of

Equation 2.95 is not simple, since the number of known and unknown variables is

different, and the space group of the crystal requires to impose on Equation 2.97

additional symmetry constrains [162].

The Fourier transform of these interatomic force constants is the dynamical ma-

trix,

𝐷𝛼𝛽
𝑘,𝑘′(q) =

∑︁
𝑙′

𝐶𝛼𝛽
0𝑘,𝑙′𝑘′√
𝑚𝑘𝑚𝑘′

𝑒𝑖q·[r(𝑙
′𝑘′)−r(0𝑘)]. (2.99)

Dynamical property of atoms in the harmonic approximation is obtained by

solving the eigenvalue problem of the dynamical matrix:

∑︁
𝛽𝑘′

𝐷𝛼𝛽
𝑘,𝑘′(q)𝑒𝛽𝑘

′

q𝜈 = 𝜔2
q𝜈𝑒

𝛼𝑘
q𝜈 , (2.100)

where 𝑚𝑘 is the mass of the atom 𝑘; q is the wave vector, and 𝜈 is the band index

or phonon branch. 𝜔q𝜈 and 𝑒q𝜈 give the phonon frequency and polarization vector

of the phonon mode labeled by a set (q, 𝜈), respectively. Due to Equation 2.100 is

an Hermitian matrix, its eigenvalues, 𝜔2
q𝜈 , are real.

From the eigenvalue (Equation 2.100), the phonon dispersion 𝜔q𝜈 and polariza-

tion vector (𝑒q𝜈) can be determined.

2.4.8 Supercell model

The supercell model allows to study non periodic systems, e.g. surface, defects,

molecules, and isolated atoms, using a set of plane waves with periodic boundary

conditions (PBC) [167] in three dimensions. In this approach, the system we want
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to study is simulated using a supercell which is made up of several unit cells. In

the case of molecules or surfaces an optimized 𝑧-distance (vacuum region) between

the adjacent supercells must be included to avoid significant interactions between

initial supercell and its periodic images [137]. In the case of defects, e.g. vacancy,

the supercell size must be optimized in order to be sure that interactions between

the vacancy and its images in neighboring supercells are negligible [134].

Due to Bloch’s theorem, the wave function has the same periodicity of the unit

cell in a supercell [137] ,

Ψk(r + 𝑛a𝑖) = 𝑒𝑖𝑛k·a𝑖Ψk(r), (2.101)

if

k · a𝑖 =
2𝜋𝑚

𝑛
, (2.102)

where 𝑚 and 𝑛 𝜖 Z.

The non-equivalent k−vectors compatible with PBC in a supercell made of 𝑛

replicas of the unit cell along the direction of the lattice vector a𝑖 are [137]

k = 0,±b𝑖

𝑛
,±2b𝑖

𝑛
, · · ·,±(𝑛/2 − 1)b𝑖

𝑛
,
b𝑖

2
. (2.103)

For instance, for 𝑛 = 4, Equation 2.103, the allowed k−vectors are 0, ± b𝑖

4
, and b𝑖

2
.

Where the primitive vectors in reciprocal space, b𝑗, are defined in terms of the

primitive lattice vectors in real space by the relations

a𝑖 · b𝑗 = 2𝜋𝛿𝑖𝑗, (2.104)

b1 = 2𝜋
a2 × a3

Ω
, b2 = 2𝜋

a3 × a1

Ω
, b3 = 2𝜋

a1 × a2

Ω
. (2.105)

Here, Ω is the volume of the unit cell. The volume at the reciprocal space, Ω𝑅, is

called the first Brillouin zone or Brillouin zone (BZ), and is defined by

Ω𝑅 = b1 · (b2 × b3) =
(2𝜋)3

Ω
. (2.106)
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On the other hand, the electronic density is the same in each unit cell, since the

system is periodic,

𝑛k(r+R) = 𝑛k(r), (2.107)

with R=𝑛1a1 + 𝑛2a2 + 𝑛3a3 (𝑛𝑖 𝜖 Z).

2.5 Magnetic exchange interaction

Magnetic exchange interactions address the behavior of magnetic materials. Hence,

the understanding of magnetic interactions on nanoscale magnetic materials, is of vi-

tal importance for tuning their magnetic properties, not only to explore new physics

phenomena, but to create disruptive commercial devices based on the transport and

manipulation of the electron spin [13].

In a 1966 paper titled: “Absence of Ferromagnetism or Antiferromagnetism in

one- or two-dimensional isotropic Heisenberg models" [168], Mermin and Wagner

claimed that thermal fluctuations strongly suppress long-range magnetic order in

two-dimensional materials at any non-zero temperature, even if those materials are

intrinsically magnetic in 3D bulk form. Therefore, the scientific community believed

that ferromagnetism could not be an intrinsic property of two dimensional materials,

although two-dimensional (2D) materials have been intensely studied theoretically

and experimentally since 2004 [9, 10, 54, 169, 170, 171, 172, 173]. Fortunately for

science, the first pioneering experimental confirmations of magnetism in CrI3 [132]

and CrGeTe3 atomically-thin crystals were observed in 2017 [69], which opened an

entirely new field of ultra-thin magnetic materials, that does not cease to surprise

[70].

What are the physical reasons of this astonishing finding?

The detrimental effect of thermal fluctuations on magnetism in low-dimensional

materials can be neutralized by the presence of magnetic anisotropy (MA). The

spin-orbit coupling (SOC) is the microscopic source of magnetic anisotropy, e.g.,

in the case of monolayer CrI3, the MA due to the SOC on I, non-magnetic atoms,

removes the Mermin-Wagner constraints.
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Figure 2-5: (a) The chirality of domain walls in the presence of spatial inversion
asymmetry and the spin Hall effect − with a mechanism that conserves spin angu-
lar momentum, that is, Slonczewski spin-transfer torques (HSL: Slonczewski field
induced by edge spin accumulation) [13]. (b) Skyrmions in a 2D ferromagnet [14].
(c) DMI at the interface between a ferromagnetic metal (grey) and a metal with a
strong SOC (blue) [15].

Another important consequence of SOC, and lack of spatial inversion symmetry,

is the Dzyaloshinskii-Moriya interaction (DMI) [174, 175]. DMI is an antisymmetric

magnetic exchange interaction that aligns the neighbouring spins orthogonally to

each other, with a unique sense of rotation, instead of the parallel or antiparallel

spin alignments obtained by the usual Heisenberg exchange interaction [176]. DMI

is essential for creating non-collinear long-range spin order in ultra-thin magnetic

films, and is responsible for the creation, stabilisation and manipulation of skyrmions

and chiral domain walls as bearers of attractive applications in novel spintronic,

memory and logic devices [15, 177]. As illustration, a schematic representation of

the potential effects of DMI is shown in Figure 2-5. In Figure 2-5 (a), the chirality

of domain walls in ultrathin ferromagnetic films that are in contact with normal

metals is depicted. This is induced by the presence of spatial inversion asymmetry

and the spin Hall effect [13]. Figure 2-5 (b) depicts a special magnetic texture named

skyrmions. Skyrmions are originated from chiral Dzyaloshinskii–Moriya interactions

[14, 15], either due to lack of inversion symmetry in lattices; or, by the breaking of

inversion symmetry at the interface of magnetic films on metals (see Figure 2-5 (c)),

e.g., Fe monolayers on Ir(111) [178]. Conversely, when symmetry is preserved, for

instance in pristine magnetic 2D materials, the net DMI is zero, no matter the strong

spin-orbit coupling on non-magnetic atoms. DMI can only arise in systems where
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the spatial inversion symmetry is broken and hold a strong SOC. Hence, tuning

the orbital and spin moment of a crystal, and spatial symmetry breaking, either

by doping with transition metal, or any other method, is fundamental for inducing

DMI. For instance, the magnetic anisotropy in a 2D material can be induced by

doping with transition metals, among other ways of manipulating the SOC of a

crystal [58, 59, 60, 61].

2.5.1 The four-state mapping methodology

In this thesis, the four-state energy mapping methodology (4SM) [179, 180] was

used in order to obtain magnetic exchange interactions between two adsorbed metal

atoms. In this scheme, Heisenberg spin Hamiltonian is considered in the form:

𝐻 =
∑︁
𝑖<𝑗

S𝑖 · J𝑖𝑗 · S𝑗, (2.108)

where S𝑖 = (𝑆𝑥
𝑖 , 𝑆

𝑦
𝑖 , 𝑆

𝑧
𝑖 ) is a vector; and J𝑖𝑗 is a 3×3 matrix describing the magnetic

exchange interaction between two magnetic sites (i,j):

J𝑖𝑗 =

⎡⎢⎢⎢⎣
𝐽𝑥𝑥
𝑖𝑗 𝐽𝑥𝑦

𝑖𝑗 𝐽𝑥𝑧
𝑖𝑗

𝐽𝑦𝑥
𝑖𝑗 𝐽𝑦𝑦

𝑖𝑗 𝐽𝑦𝑧
𝑖𝑗

𝐽𝑧𝑥
𝑖𝑗 𝐽𝑧𝑦

𝑖𝑗 𝐽𝑧𝑧
𝑖𝑗

⎤⎥⎥⎥⎦ = J𝑆𝐸
𝑖𝑗 + J𝐴𝐸

𝑖𝑗 , (2.109)

where J𝑆𝐸
𝑖𝑗 and J𝐴𝐸

𝑖𝑗 are the symmetric exchange matrix and anti-symmetric exchange

matrix, respectively. They can be obtained by the following arrays:

J𝑆𝐸
𝑖𝑗 =

⎡⎢⎢⎢⎣
𝐽𝑥𝑥
𝑖𝑗

1
2
(𝐽𝑥𝑦

𝑖𝑗 + 𝐽𝑦𝑥
𝑖𝑗 ) 1

2
(𝐽𝑥𝑧

𝑖𝑗 + 𝐽𝑧𝑥
𝑖𝑗 )

1
2
(𝐽𝑥𝑦

𝑖𝑗 + 𝐽𝑦𝑥
𝑖𝑗 ) 𝐽𝑦𝑦

𝑖𝑗
1
2
(𝐽𝑦𝑧

𝑖𝑗 + 𝐽𝑧𝑦
𝑖𝑗 )

1
2
(𝐽𝑥𝑧

𝑖𝑗 + 𝐽𝑧𝑥
𝑖𝑗 ) 1

2
(𝐽𝑦𝑧

𝑖𝑗 + 𝐽𝑧𝑦
𝑖𝑗 ) 𝐽𝑧𝑧

𝑖𝑗

⎤⎥⎥⎥⎦ , (2.110)

J𝐴𝐸
𝑖𝑗 =

⎡⎢⎢⎢⎣
0 𝐷𝑧

𝑖𝑗 −𝐷𝑦
𝑖𝑗

−𝐷𝑧
𝑖𝑗 0 𝐷𝑥

𝑖𝑗

𝐷𝑦
𝑖𝑗 −𝐷𝑥

𝑖𝑗 0

⎤⎥⎥⎥⎦ , (2.111)

D𝑥
𝑖𝑗, D

𝑦
𝑖𝑗, and D𝑦

𝑖𝑗, represent the DMI components, and can be calculated from the
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following equations:

D𝑥
𝑖𝑗 =

1

2
(𝐽𝑦𝑧

𝑖𝑗 − 𝐽𝑧𝑦
𝑖𝑗 ),

D𝑦
𝑖𝑗 =

1

2
(𝐽𝑧𝑥

𝑖𝑗 − 𝐽𝑥𝑧
𝑖𝑗 ),

D𝑧
𝑖𝑗 =

1

2
(𝐽𝑥𝑦

𝑖𝑗 − 𝐽𝑦𝑥
𝑖𝑗 ). (2.112)

Therefore, J𝑖𝑗 may be formally decomposed into 3 components: the diagonal

part, i.e. the isotropic exchange; the antisymmetric component, also known as

the Dzyaloshinskii–Moriya interaction (DMI), whose vector D is made from off-

diagonal elements of the antisymmetric exchange, and the off-diagonal elements of

the isotropic exchange.

In order to determine the magnetic exchange interaction between two neighboring

spins, all nine components of the exchange interaction matrix J𝑖𝑗 must be calculated.

Thus, replacing S𝑖 = (𝑆𝑥
𝑖 , 𝑆

𝑦
𝑖 , 𝑆

𝑧
𝑖 ) and S𝑗 = (𝑆𝑥

𝑗 , 𝑆
𝑦
𝑗 , 𝑆

𝑧
𝑗 ) in Equation 2.108, H can be

written as follows:

𝐻 =
∑︁
𝑖<𝑗

S𝑖 · J𝑖𝑗 · S𝑗 =
∑︁
𝑖<𝑗

[S𝑥
𝑖 · J𝑥𝑥

𝑖𝑗 · S𝑥
𝑗 + S𝑥

𝑖 · J
𝑥𝑦
𝑖𝑗 · S𝑦

𝑗 + S𝑥
𝑖 · J𝑥𝑧

𝑖𝑗 · S𝑧
𝑗

+S𝑦
𝑖 · J

𝑦𝑥
𝑖𝑗 · S𝑥

𝑗 + S𝑦
𝑖 · J

𝑦𝑦
𝑖𝑗 · S𝑦

𝑗 + S𝑦
𝑖 · J

𝑦𝑧
𝑖𝑗 D

𝑧
𝑖𝑗

+S𝑧
𝑖 · J𝑧𝑥

𝑖𝑗 · S𝑥
𝑗 + S𝑧

𝑖 · J
𝑧𝑦
𝑖𝑗 · S𝑦

𝑗 + S𝑧
𝑖 · J𝑧𝑧

𝑖𝑗 · S𝑧
𝑗 ]. (2.113)

Then, two spin sites, labeled i = 1 and j = 2, are chosen. The Hamiltonian can

be written as

𝐻 = S1 · J12 · S2 +
∑︁
𝑗 ̸=2

S1 · J1𝑗 · S𝑗 +
∑︁
𝑖 ̸=1

S𝑖 · J𝑖2 · S2 +
∑︁

𝑖 ̸=1,𝑗 ̸=2

S𝑖 · J𝑖𝑗 · S𝑗. (2.114)

If we now introduce 𝛼 and 𝛽 =x, y, z; H can be written into cartesian components

as

69



Chapter 2. Theoretical framework 2.5. Magnetic exchange interaction

𝐻 =
∑︁
𝛼,𝛽

S𝛼
1 · J𝛼𝛽

12 · S𝛽
2 +

∑︁
𝑗 ̸=2

∑︁
𝛼,𝛽

S𝛼
1 · J𝛼𝛽

1𝑗 · S𝛽
𝑗

+
∑︁
𝑖 ̸=1

∑︁
𝛼,𝛽

S𝛼
𝑖 · J𝛼𝛽

𝑖2 · S𝛽
2 +

∑︁
𝑖 ̸=1,𝑗 ̸=2

∑︁
𝛼,𝛽

S𝛼
𝑖 · J𝛼𝛽

𝑖𝑗 · S𝛽
𝑗 . (2.115)

Now, a practical example of application of Equation 2.115 will be given. As

illustration, the parameter 𝐽𝑥𝑦
12 will be calculated (𝛼=x, and 𝛽=y); all other elements

can be determined in the same manner

In order to isolate 𝐽𝑥𝑦
12 , the energies of four different magnetic configurations for

the spin states need to be obtained in (x,y): 𝐸1, 𝐸2, 𝐸3, and 𝐸2, with the following

criteria:

Configuration 1: S𝑖 = (+S, 0, 0) S𝑗 = (0, +S, 0),

Configuration 2: S𝑖 = (−S, 0, 0) S𝑗 = (0, +S, 0),

Configuration 3: S𝑖 = (+S, 0, 0) S𝑗 = (0, −S, 0),

Configuration 4: S𝑖 = (−S, 0, 0) S𝑗 = (0, 0, −S),

and for all the rest, S𝑖 ̸=1,2 = (0, 0, +S) or S𝑖 ̸=1,2 = (0, 0, −S) for all four states.

The four energies for each configuration will be:

𝐸1 = S · J𝑥𝑦
12 · S +

∑︁
𝑗 ̸=2

S · J𝑥𝑧
1𝑗 · S𝑗 +

∑︁
𝑖 ̸=1

S · J𝑧𝑦
𝑖2 · S2 +

∑︁
𝑖 ̸=1,𝑗 ̸=2

S · J𝑧𝑧
𝑖𝑗 · S, (2.116)

𝐸2 = −S · J𝑥𝑦
12 · S−

∑︁
𝑗 ̸=2

S · J𝑥𝑧
1𝑗 · S𝑗 +

∑︁
𝑖 ̸=1

S · J𝑧𝑦
𝑖2 · S2 +

∑︁
𝑖 ̸=1,𝑗 ̸=2

S · J𝑧𝑧
𝑖𝑗 · S, (2.117)

𝐸3 = −S · J𝑥𝑦
12 · S +

∑︁
𝑗 ̸=2

S · J𝑥𝑧
1𝑗 · S𝑗 −

∑︁
𝑖 ̸=1

S · J𝑧𝑦
𝑖2 · S2 +

∑︁
𝑖 ̸=1,𝑗 ̸=2

S · J𝑧𝑧
𝑖𝑗 · S, (2.118)

𝐸4 = S · J𝑥𝑦
12 · S−

∑︁
𝑗 ̸=2

S · J𝑥𝑧
1𝑗 · S𝑗 −

∑︁
𝑖 ̸=1

S · J𝑧𝑦
𝑖2 · S2 +

∑︁
𝑖 ̸=1,𝑗 ̸=2

S · J𝑧𝑧
𝑖𝑗 · S. (2.119)

As we are interested in determining the value of 𝐽𝑥𝑦
12 , if we choose the following ar-

rangement for the energies obtained from equation Equation 2.116 to Equation 2.119
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: (𝐸1 + 𝐸4) - (𝐸2+𝐸3), we obtain 4𝑆2 ·J𝑥𝑦
12 ; it means,

(𝐸1 + 𝐸4) − (𝐸2 + 𝐸3) = 4S2 · J𝑥𝑦
12 , (2.120)

J𝑥𝑦
12 =

(𝐸1 + 𝐸4) − (𝐸2 + 𝐸3)

4𝑆2
. (2.121)

Figure 2-6: (a) Side view of interacting TM atoms on 2D-monolayer located at the
nearest side (i,j) for 𝐽𝑧𝑧

𝑖𝑗 magnetic interaction. (b) J𝑖𝑗 is a 3 × 3 matrix describing
the magnetic exchange interaction between two magnetic sites (i,j). (c) Four spin
configurations for calculating the 𝐽𝑧𝑧

𝑖𝑗 component of exchange interaction matrix.

As illustration, see Figure 2-6, if we are interested in obtain one of the exchange

interaction vector, in this case J𝑧𝑧
𝑖𝑗 component of exchange interaction matrix, we

need to consider 4 configurations for S vector:

(1) S𝑖 = (0,0,+S) S𝑗 = (0,0,+S),

(2) S𝑖 = (0,0,−S) S𝑗 = (0,0,+S),

(3) S𝑖 = (0,0,+S) S𝑗 = (0,0,−S),

(4) S𝑖 = (0,0,−S) S𝑗 = (0,0,−S).

Where J𝑧𝑧
𝑖𝑗 can be obtained from the following equation:

71



Chapter 2. Theoretical framework 2.5. Magnetic exchange interaction

J𝑧𝑧
𝑖𝑗 =

((𝐸1 + 𝐸4) − (𝐸2 + 𝐸3))

4𝑆2
. (2.122)

The energies E1, E2, E3, and E4, are obtained from calculations for configurations

(1), (2), (3) and (4), respectively.

The magnetocrystalline anisotropy energy (MAE) of TM on 551−GaAs was cal-

culated using the following expression

𝑀𝐴𝐸 = 𝐸‖ − 𝐸⊥, (2.123)

where 𝐸‖ and 𝐸⊥ are the total energies for the in-plane and out of-plane magneti-

zation directions with respect to the surface of the 2D crystal, respectively [61].

In chaper 6, we investigate the physical effect of spin-orbit coupling on both

magnetic anisotropy and Dzyaloshinskii-Moriya interaction for two-dimensional gal-

lium arsenide when single and pair TM are absorbed (TM: Mn, Co, Mo and Os).
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Chapter 3

Structural, mechanical and electronic

properties of two-dimensional

structure of III-arsenide (111) binary

compounds: An ab-initio study

Structural, mechanical and electronic properties of two-dimensional single-layer hexag-

onal structures in the (111) crystal plane of IIIAs-ZnS systems (III=B, Ga and In)

are studied by first-principles calculations based on density functional theory (DFT).

Elastic and phonon dispersion relation display that 2D ℎ-IIIAs systems (III=B, Ga

and In) are both mechanical and dynamically stable. Electronic structures analysis

show that the semiconducting nature of the 3D-IIIAs compounds is retained by their

2D single layer counterpart. Furthermore, density of states reveals the influence of

𝜎 and 𝜋 bonding in the most stable geometry (planar or buckled) for 2D ℎ-IIIAs sys-

tems. Calculations of elastic constants show that the Young’s modulus, bulk modulus

and shear modulus decrease for 2D ℎ-IIIAs binary compounds as we move down on

the group of elements of the periodic table. In addition, as the bond length between

the neighboring cation-anion atoms increases, the 2D ℎ-IIIAs binary compounds dis-

play less stiffness and more plasticity. Our findings can be used to understand the

contribution of the 𝜎 and 𝜋 bonding in the most stable geometry (planar o buckled)
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for 2D ℎ-IIIAs systems. Structural and electronic properties of ℎ-IIIAs systems as

a function of the number of layers have been also studied. It is shown that ℎ-BAs

keeps its planar geometry while both ℎ-GAs and ℎ-InAs retained their buckled ones

obtained by their single layers. Bilayer ℎ-IIIAs present the same bandgap nature of

their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap

width for layered ℎ-IIIAs decreases until they become semimetal or metal. Inter-

estingly, these results are different to those found for layered ℎ-GaN. The results

presented in this study for single and few-layer ℎ-IIIAs structures could give some

physical insights for further theoretical and experimental studies of 2D ℎ-IIIV-like

systems.

3.1 Introduction

Technology based on semiconductor devices plays a transcendental role in our mod-

ern society. Since Scientists, such as Shockley, Brattain and Bardeen, Nobel Prize

in physics in 1956, invented the transistor [105, 106], a large effort has been de-

voted by the manufacturing industry to develop new semiconductor materials with

enhanced electronic features. Therefore, the challenge has been not only to reduce

the size and price of these electronic devices but also to increase their performance

to obtain characteristics such as high speed and low power dissipation. Since 2004,

when graphene was isolated by exfoliation from graphite [16], much attention has

been given by the scientific community to find and characterize new two-dimensional

(2D) materials both theoretically and experimentally. In 2010 Andre Geim and Kon-

stantin Novoselov were awarded the Physics Nobel Prize for this transcendental dis-

covery. The remarkable electronic and mechanical properties of these materials such

as, electron mobility, covalently in-plane bonded structures, weak out-of-plane inter-

actions and high mechanical strength make them attractive materials with potential

industrial applications [4]. Even though graphene exhibits interesting physical prop-

erties such as high charge carrier mobility, high thermal conductivity, infrared optical

adsorption and total impermeability to any gas [46], which makes it desirable for

technological applications, the absence of bandgap limits its use in the manufacture
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of electronic devices [8]. This bandgap limitation has motivated Scientists to look

for new 2D-materials beyond it [47]. Ab-initio calculations predicted graphene to

be a wide bandgap material when doped with H and F [98]. Among the literature

about the study of 2D-materials beyond graphene, we find X-enes (X=B, Si, Ge,

Sn, P, Bi), X-anes (graphane, silicane, germanane, stanane) [48], and fluorinated

X-enes. In the X-ene systems, the atoms are arranged in a honeycomb structure

similar to graphene [48, 51, 52, 53, 54, 55, 56, 57]. When hydrogen or fluor is added

to the X-ene system, the new configuration is labeled as X-ane (graphane, silicane,

germanane, stanane) [48], and fluorinated X-enes (fluro-X-enes or X-enes fluoride),

respectively [48].

The electronic properties of group III-V semiconductors such as BAs, AlAs GaAs

and InAs, have been widely studied in the bulk both theoretically and experimen-

tally due to their applications in electronic devices [115, 116, 117, 118, 119, 120, 121].

All of them are semiconductors that crystallize in the zinc-blende structure (F43m

space group) at ambient conditions [116]. BAs and AlAs have an indirect bandgap

of 0.67 (Γ-∆𝑚𝑖𝑛) [117, 118] and 2.24 𝑒𝑉 (Γ-𝑋) [119], respectively. While GaAs and

InAs have a direct band gap of 1.42 [120] and 0.42 𝑒𝑉 [119], respectively, both at

the Γ point. The fact that zinc-blende III-As structures both display a hexagonal

structure in the (111) surface and exhibit melting point above 1000∘C make them

potential candidates to be stable in their 2D hexagonal structure counterpart [7]. H.

Sahin et al [123] determined that two-dimensional graphene-like structure of group

III-As (BAs, GaAs and InAs) are stable semiconductors using first-principles. 2D

materials have been studied for their remarkable electronic properties suitable for

the electronic industry, so a thorough and comprehensive study on their mechanical

properties will give the physical knowledge for potential applications in engineer-

ing science [181]. Mechanical properties of 2D graphene-like materials have been

researched by first principles calculations [181]. Rita et al [181] reported the me-

chanical properties of two dimensional group IV graphene-like structures by using

density functional theory. 2D-heterostructures [7, 49, 50] have attracted the atten-

tion to tune the bandgap width of semiconductors which makes them promising

candidates for the manufacture of solar cells due to the complete adsorption of light
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by successive layers [8, 76, 77]. It has been found that 2D ℎ-III V materials can

improve the optoelectronic properties of heterostructures based on graphene [8]. In

addition, III-V hexagonal structures have been reported suitable as substrates for

two dimensional materials such as graphene, MoS2 and GaN based devices [127, 128].

C. R. Dean et al [127] reported the fabrication and characterization of high-quality

exfoliated mono- and bilayer graphene devices on single-crystal ℎ-BN substrates, by

using a mechanical transfer process. Experimental or theoretical studies of 2D III-V

(111)-binary compounds are scarce. Even though there is theoretical research on

the electronic properties of two-dimensional III-As (BAs, GaAs and InAs) graphene-

like structures [123], authors did not take into account 𝑑 orbitals of Ga, In and As

atoms. It is important to know the physical interactions of 𝑝-𝑑 orbitals in order to

understand the magnetic nature when these 2D III-As systems are doped with metal

transition impurities. They also used Local Density Approximation (LDA) to study

these 𝑑 depending systems. It is well known that LDA approach can not describe well

strongly correlated systems. Therefore, in this research, we first examine the struc-

tural, mechanical and electronic properties of 2D single-layer ℎ-IIIAs systems and

subsequently we study the structural and electronic properties of few-layer ℎ-IIIAs

structures taking into account the 𝑑 orbitals of Ga, In and As atoms. In addition,

we used the Generalized Gradient Approximation (GGA) as described by Perdew et

al. [142] for the exchange and correlation potentials, which is found to correct most

of the overbinding problems of LDA. It can be expected that the present work will

bring new theoretical insights to the research of 2D ℎ-IIIAs materials for electronic

applications.

3.2 Computational methods

The calculations were performed using the first principles pseudo-potential method

in the framework of density-functional theory. Exchange and correlation effects were

treated with generalized gradient approximation (GGA) implemented in the Perdew-

Burke-Ernzerhof functional (PBE) [142]. The core electrons were described by the

projector augmented wave (PAW) method [151, 182] wherein the 𝑑 states for Ga, In

76



Chapter 3. Structural, mechanical and electronic properties of two-dimensional structure of
III-arsenide (111) binary compounds: An ab-initio study 3.2. Computational methods

and As were included as valence electrons. The valence electron configurations for

B, Ga, In and As are 2𝑠22𝑝1, 3𝑑104𝑠24𝑝1, 4𝑑105𝑠25𝑝1 and 3𝑑104𝑠24𝑝3, respectively.

The calculations were performed using Vienna Ab-initio Simulation Package (VASP)

[152, 153]. The electron wave function was expanded in plane waves up to a cutoff

energy of 500 eV for the structural and phonon calculations. A gamma-centered

grid of 25×25×1 k -point has been used to sample the irreducible Brillouin zone

in the Monkhorst-Pack special scheme [146] for all calculations. Methfessel-Paxton

smearing technique with a smearing width of 0.10 𝑒𝑉 was adopted [149]. These

parameters ensure a convergence better than 1 𝑚𝑒𝑉 for the total energy. The

hexagonal primitive cell, with one III-group atom (B, Ga or In) and one As atom,

was constructed from the zinc-blende structure in the (111) plane, as illustrated in

Figure 3-1. Phonon calculations have been performed by taking into account the

interactions in 7×7×1 supercells consisting of 49 III-group atoms (B, Ga or In) and

49 As atoms. In addition, a 20 Å vacuum spacing between the adjacent supercells

is kept to avoid interactions. Stress-based approach is implemented [183, 184] to

study the mechanical properties. The elastic tensor is determined by performing

finite distortions of the optimized lattice and deriving the elastic constants from

the strain-stress relationship (Hooke’s law) [183, 184]. The plane wave cutoff needs

to be sufficiently large to converge the stress tensor. Thus, to find the elastic con-

stants, the electron wave function was gradually expanded in plane waves up to a

cutoff energy of 950 eV. It is well known that the exchange-correlation energy of

PBE underestimates the energy gap in semiconductors [185]. Therefore, to correct

the band-gap values obtained by GGA, hybrid functional Heyd-Scuseria-Ernzerhof

(HSE) calculations are carried out [143].

The elastic constants for 2D ℎ-IIIAs structures are taken from a 3D hexagonal

structure. For a 3D hexagonal structure, five independent elastic constants C𝑖𝑗 are

found. In Voigt notation they are: C11 , C12, C13, C33, and C44. A 3D hexagonal

structure is mechanically stable if it satisfies the Born stability criteria [186], which

are given as C11 >0, C11-C12>0, C44>0, (C 11+C12) C33- 2C2
13>0 and C66=(C11-

C12)/ 2. For a 2D hexagonal structure, there are four independent elastic constants:

C11, C12, C22 and C66. For a 2D hexagonal structure the C13, C33 and C44 elastic
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constants can be ignored for the following physical reasons. C33, due to the inter-

action minimization along the z axis, which must be almost zero. C13 and C44 are

also very small due to in a perfect 2D structure both elastic constants appear to

fail the Born stability criteria [181]. Therefore, in the stress-strain relation for a 2D

hexagonal structure only two independent elastic constants C11 , C12 are considered.

Therefore, Hooke’s law (𝜎𝑖 = C𝑖𝑗 𝜖𝑗, where 𝜎𝑖 and 𝜖𝑗, i and j are integers, represent

the stress and strain, respectively) for 2D hexagonal materials can be expressed in

the following matrix form [187]:

⎡⎢⎢⎢⎣
𝜎1

𝜎2

𝜎3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑐11 𝑐12 0

𝑐12 𝑐11 0

0 0 𝑐11−𝑐12
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜖1

𝜖2

𝜖3

⎤⎥⎥⎥⎦ . (3.1)

The bulk 𝐵𝑉 and shear𝐺𝑉 moduli [188], in terms of the Voigt approximation, the

in-plane Young’s modulus 𝑌𝑠 and Poison’s ratio 𝜈 [189] are obtained, respectively,

from the calculated elastic constants as:

𝐵𝑉 = (2(𝐶11 + 𝐶12) + 4𝐶13 + 𝐶33)/9,

𝐺𝑉 = (𝐶11 + 𝐶12 + 2𝐶33 − 4𝐶13 + 12𝐶44 + 12𝐶66)/30,

𝑌𝑠 = (𝐶2
11 − 𝐶2

12)/𝐶11,

𝜈 = 𝐶12/𝐶11.

(3.2)

3.3 Results and discussion

3.3.1 Structural Properties and phonon dynamical stability

The hexagonal primitive cells, with one III-group atom (B, Ga or In) and one As

atom, were constructed from the zinc-blende structure in the (111) plane, as shown

in Figure 3-1. They present a threefold rotation symmetry C3. The ideal lattice

parameter (𝑎𝑖𝑑𝑒𝑎𝑙=
√

2/2)𝑎𝑒𝑥𝑝−3𝐷 (Å) [190] for 2D ℎ-BAs, GaAs and InAs (hexag-

onal primitive cell) are, respectively, 3.38, 4.00 and 4.27 Å. As shown in Table 3.1,

the calculated lattice constant 𝑎 for 2D BAs, GaAs and InAs hexagonal structures

are, respectively, slightly larger than the ideal values: 3.38, 4.05 and 4.36 Å. In
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Figure 3-1: The hexagonal primitive cell (right figure), with one B, Ga or In atom
(blue color) and one As atom (red color), was constructed from the zinc-blende
structure (left figure) in the (111) plane. The hexagonal unit cell is also highlighted
with a red line in the (111) plane in the middle figure.

Table 3.1, we also present the cohesive energy (𝐸𝐶𝑜ℎ (eV)) for 2D BAs, GaAs and

InAs hexagonal structures. H. Sahin et al [123] studied the structural properties of

2D graphene-like structure of group III-As (BAs, GaAs and InAs) by local density

approximation (LDA).

Table 3.1: Calculated lattice constant (𝑎 (Å)), ideal lattice constant (𝑎𝑖𝑑𝑒𝑎𝑙=
√
2/2)𝑎𝑒𝑥𝑝−3𝐷 (Å)),

angle between neighboring bonds (𝜃), Planar (PL) or Low-Buckled (LB) geometry (G),buckling
parameter (Δ (Å)), nearest-neighbor distance (𝑑), interlayer distance (𝑑𝐿 ), cohesive energy (𝐸𝐶𝑜ℎ

(eV)), bandgap value (𝐸𝐺), effective charge cation/anion (𝑍𝑐/𝑍𝑎), Poisson’s ratio (𝜈); Young’s
(𝑌𝑠), Bulk (𝐵𝑣) and Shear (𝐺𝑣) modules for 2D BAs, GaAs and InAs binary compounds.

𝑎 𝑎𝑖𝑑𝑒𝑎𝑙(Å) 𝜃 G ∆ 𝑑 𝐸𝐶𝑜ℎ 𝐸𝐺 (eV) 𝐸𝐺 (eV) 𝐸𝐺 (eV) 𝑍𝑐/𝑍𝑎 𝜈 𝑌𝑠 𝐵𝑣 𝐺𝑣

(Å) (
√

2/2)𝑎𝑒 (∘) (Å) (Å) (eV) (Exp-3D) (GGA) (HSE) (J/m2) (J/m2) (J/m2)

BAs 3.38 3.38 [115] 120.00 PL 0.00 1.95 10.70 0.67 Γ∆𝑚𝑖𝑛 0.76 𝐾𝐾 1.15 𝐾𝐾 2.70/15.30 0.27 117.09 35.66 23.77
[123] 3.35 - 120.00 PL 0.00 1.93 11.00 - 0.71 𝐾𝐾 - - 0.29 119.0 - -
GaAs 4.05 4.00 [115] 114.30 LB 0.55 2.41 7.42 1.42 ΓΓ 1.08 Γ𝐾 1.87 Γ𝐾 12.40/15.60 0.32 44.38 14.54 8.90
[123] 3.97 - 114.7 LB 0.55 2.38 8.48 - 1.29 Γ𝐾 - - 0.35 48.0 - -
InAs 4.36 4.27 [115] 114.10 LB 0.65 2.60 6.86 0.42 ΓΓ 0.79 ΓΓ 1.46 ΓΓ 12.40/15.60 0.41 29.24 9.36 4.83
[123] 4.28 - 113.80 LB 0.62 2.55 7.85 - 0.86 ΓΓ - - 0.43 33.00 - -

Our results with generalized gradient approximation (GGA) overestimate (un-

derestimate) their reported lattice constant (cohesive energy) values. These results

confirm that the GGA approach tends to overestimate (underestimate) the lattice

constant (cohesive energy) values. The 2D structures of both ℎ-GaAs and ℎ-InAs

exhibit buckling distortions while ℎ-BAs presents a 2D planar one. This is due to the

fact that the 𝜋 bonds in 2D ℎ-GaAs and ℎ-InAs are weaker than their counterpart

in 2D ℎ-BAs [191]. The buckling parameter for 2D ℎ-GaAs is lower than that of
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ℎ-InAs. Furthermore, the bond length between the neighboring cation-anion atoms

increases from 2D ℎ-BAs to InAs in the present study, as shown in Table 3.1. On the

contrary, the angle between neighboring bonds and the cohesive energy decreases.

The planar atoms belong to sublattice 1 while the buckled atoms to sublattice 2.

The above mentioned results follow the same qualitative trend as those reported by

H. Sahin et al [123].

Regarding the stability of 2D single layer of group III-V with large ionicity,

there are theoretical [123, 124] and experimental [102] studies that have predicted

and validated it. H. Sahin et al. predicted the stability of III-As and III-N binary

compounds by first-principles calculations. Z. Y. Al Balushi et al. reported the

synthesis of 2D gallium nitride (GaN) by experimental technique utilizing epitaxial

graphene. The calculated phonon dispersion curves for 2D BAs, GaAs and InAs

semiconductors in the hexagonal primitive cell with GGA scheme are shown in

Figure 3-2. We can see that the planar structure 2D ℎ-BAs and the low buckled 2D

ℎ-GaAs and InAs can be stable, because all frequencies of the phonon dispersion

are real. It means, there are no soft modes and, as consequence, there is no sign

of any dynamical instability, in agreement with the theoretical result from the LDA

approach, with the difference that those authors did not take into account the 𝑑

orbitals of As, Ga and In atoms, while we did this in our research [123].

Figure 3-2: Phonon dispersion curves for 2D BAs, GaAs and InAs semiconductors
in the hexagonal primitive cell with GGA scheme.

There are six phonon dispersion bands because the unit cell of 2D ℎ-III-As con-

tains two atoms, A (cation) and B (anion). The three vibrational branches, which
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are zero at the Γ point, correspond to the acoustic modes (A). The other three fre-

quency values correspond to the optical modes (O). If the vibrations of cation-anion

atoms are parallel or perpendicular, the phonon modes are classified as longitudinal

(L) or transversal (T). From downward to upward modes, listed in order of increas-

ing energy, they can be classified as: out-of plane mode (ZA), in-plane transversal

mode (iTA) and in-plane longitudinal mode (iLA) for the acoustic modes. The (ZA)

mode shows a q2 energy dispersion relation near to the Γ point and the other two

(iTA and iLA), a q linear dependence. The remaining three branches correspond

to optical modes, out-of plane mode (ZO), in-plane transversal mode (iTO) and

in-plane longitudinal mode (iLO). When comparing the phonon dispersions of BAs,

GaAs and InAs systems, it is seen from Figure 3-2 that the ZO mode falls in the

frequency range of acoustical vibration modes. It is also noted that the value of the

high frequency mode is decreasing with increasing both atomic mass and nearest

neighbor distance.

3.3.2 Electronic and mechanical properties

Figure 3-3: The band structures and the majority density of states for 2D BAs,
GaAs and InAs semiconductors in the hexagonal primitive cell with GGA scheme.
The dashed line indicates the Fermi level, which is taken to be zero.

Regarding the electronic properties, the semiconducting nature of the 3D-IIIAs

compounds is retained by their 2D counterpart, as illustrated in Figure 3-3 and

Figure 3-4, and Table 3.1. 3D-BAs (3D-GaAs) has an Γ-∆𝑚𝑖𝑛 indirect (Γ-Γ direct)

experimental bandgap of 0.67 (1.42) 𝑒𝑉 [117, 118]. In our results, 2D ℎ-BAs (ℎ-
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Figure 3-4: The majority density of states for 2D BAs, GaAs and InAs semicon-
ductors in the hexagonal primitive cell with GGA-HSE approach. The dashed line
indicates the Fermi level, which is taken to be zero.

GaAs) changes to a 𝐾-𝐾 direct (Γ-𝐾 indirect) bandgap of 0.76 (1.08) 𝑒𝑉 . On the

other hand, the Γ-Γ direct semiconducting nature of 3D-InAs (0.42 𝑒𝑉 ) is retained

for its 2D counterpart (1.46 𝑒𝑉 ). As shown in Table 3.1, the corrected bandgap

values for 2D ℎ-BAs,GaAs and BAs with HSE method are higher than those ones

for 3D BAs, GaAs and InAs, by 71.6, 31.7 and 247.6 % respectively. Figure 3-3

displays the electronic band structure and the density of states (DOS) along the

high symmetry directions Γ, 𝑀 , 𝐾, Γ, in the first Brillouin zone for 2D ℎ-BAs,

GaAs and InAs, respectively. We can see in Figure 3-1(a), unhybridized 𝑝𝑧 orbitals

near the Fermi level both in the valence bands, from 0 to -1.8 𝑒𝑉 (𝜋 orbitals), and in

the conduction bands, from 0.8 to 2.4 𝑒𝑉 (𝜋* orbitals). From -1.8 to -8.0 𝑒𝑉 , some

𝑠, 𝑝 and 𝑑 mixed orbitals are shown, with a major contribution of the 𝑝 orbital. In

the valence bands of the partial density of states, from -11.2 to -13.2 𝑒𝑉 , localized

𝑠 orbital are present. Therefore, the 𝑠, 𝑝𝑥 and 𝑝𝑦 orbitals in the valence bands do

not contribute to the electronic properties. In the partial density of states of the

conduction bands, from 2.5 to 14.0 𝑒𝑉 , 𝑠, 𝑝 and 𝑑 mixed unoccupied orbitals are

shown. These correspond to a mixture of 𝜋*, 𝜎* and 𝑑 states. Contrary to what

is observed in Figure 3-3(a) (BAs), Figure 3-3(b) (GaAs) and Figure 3-3(c) (InAs)

display 𝑠 and 𝑝 mixed orbitals near the Fermi level both in the valence and in the
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conduction bands. Buckling reduces (increases) the overlap between 𝑝𝑧 (𝑝𝑧 and

planar 𝑠) orbitals. As a result, the 𝑠𝑝2 hybridization becomes weaker, while the 𝑠𝑝3

hybridization is stronger. Therefore, as the ionic radius increases, the free nature of

𝑝𝑧 orbitals is reduced, increasing the effective mass. It is also noted from Figure 3-

3(a), Figure 3-3(b) and Figure 3-3(c) that the energy along the Γ direction decreases

(increases) in conduction (valence) bands as the ionic radius increases. This makes

the states be more localized and, in turn, their peaks increases. Qualitative similar

results were found by R. John et al. for two dimensional materials of IV-group

by first principles study [181]. Figure 3-4 depicts the majority density of states

for 2D BAs, GaAs and InAs semiconductors in the hexagonal primitive cell with

GGA-HSE approach. We can see a qualitative similar behavior for the 𝑝𝑧, 𝑝𝑥𝑦, 𝑠

and 𝑑 orbitals as the ones displayed for the DOS in Figure 3-3 with GGA approach.

The main difference is the band-gap value, which is bigger for GGA-HSE approach.

Table 3.1 shows the band-gap values for 2D ℎ-BAs, GaAs and InAs with both GGA

and GGA-HSE schemes. An increase of 51.32, 73.15 and 86.10 % is observed for

the bandgap values of 2D ℎ-BAs, GaAs and InAs, respectively, with GGA-HSE

scheme when compared to their counterpart with GGA. To date, we could not

find any experimental data relating the structural and electronic properties for 2D

single-layer ℎ-IIIAs. Therefore, in order to evaluate the accuracy of our research

methodology, we have found both the lattice constants and bandgap size for 2D

single-layer ℎ-BN, which belongs to the group III-V, with GGA and GGA-HSE,

and compared them with their experimental values. Our calculated lattice constant

𝑎 and the obtained bandgap size with GGA (HSE) are 2.51 Å (2.49 Å) and 𝐾-𝐾

direct 4.55 𝑒𝑉 (5.65 𝑒𝑉 ), respectively. Their experimental values are 2.50 Å [192]

and 5.97 𝑒𝑉 [193], respectively. Hence, GGA (HSE) overestimates (underestimates)

the lattice constant by ∼ 0.4 % and underestimates the bandgap size by ∼ 24 %

(∼ 5 %). Therefore, GGA-HSE functional improves the bandgap size by ∼ 24 %

when compared to GGA approach. Sahin et al [123] reported a bandgap size for

2D ℎ-BN of 4.61 𝑒𝑉 (6.57 𝑒𝑉 ) by LDA (𝐺𝑊0) approach, which underestimates

(overestimates) the experimental bandgap by ∼ 23 % (∼ 10 %). Our bandgap size

result for 2D ℎ-BN with GGA-HSE is close to the experimental value.
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In Table 3.1 we can also find the ratio between the charge on cation and anion

(𝑍𝑐/𝑍𝑎) in order to see the charge transferred from cation to anion. This charge

transfer was calculated using the Bader analysis [194, 195, 196] where we included

the 𝑑 orbitals of Ga, In and As. Physically, it gives insight about the direction

of charge transfer and ionicity of the 2D ℎ-III-V systems. We can see that the

charge transfer increases with increasing row number, which means that ionicity

increases as the atomic radii of cation increases. On the other hand, our elastic

constant results satisfy the Born stability criteria [186] for mechanically stable 2D

hexagonal crystals mentioned in section 3.2. The calculated elastic moduli are

tabulated in Table 3.1. It is shown that the Young’s modulus, bulk modulus and

shear modulus decrease for 2D ℎ-IIIAs binary compounds as we move down on the

group of elements of the periodic table. It is found that ℎ-BAs is ∼ 250 % (∼

400%) times stiffer along the in-plane direction than ℎ-GaAs (ℎ-InAs). This can be

explained by bonding features. Bond length is inversely proportional to the bond

strength. On the contrary, we find that the Poisson’s ratio increases with increasing

row number of elements. It means, as we move down on the group of elements, the

2D ℎ-IIIAs binary compounds display less stiffness and more plasticity.

In order to study the physical effect of including 𝑣𝑑𝑊 correction on the me-

chanical properties of 2D single-layer ℎ-IIIAs, we calculated their elastic constants

taking into consideration the 𝑣𝑑𝑊 interaction. When including 𝑣𝑑𝑊 , the Young’s

modulus, bulk modulus, and shear modulus for BAs and GaAs (InAs) overestimate

those ones without 𝑣𝑑𝑊 interaction by 3.6 % and 2.5 % (4.50 % ), 3.8 % and 8.4 %

(21.9 %), 3.5 % and 11.4 % (7.1 % ), respectively.

3.3.3 Few-layer h-IIIAs structures

In order to study how the structural and electronic properties of ℎ-IIIAs evolve

with increasing number of layers, we first determine the optimal stacking sequence

from five possible stacking types for ℎ-BAs, ℎ-GaAs and ℎ-InAs bilayer (𝑏-IIIAs), as

shown in Figure 3-5. For AA (AB) stacking, the cation (anion) is placed above the

cation, and the anion (cation) above the anion in the adjacent plane; for AC (AD)

stacking, the cations (anions) are atop each other while anions (cations) are inside
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Figure 3-5: Top view of five possible stacking sequences for ℎ-IIIAs bilayer. Blue
atoms are B, Ga or In, and red atoms refer to As.

the hexagonal unit cell, exchanging 𝑥 and 𝑦 coordinates in adjacent planes. In the

case of AE stacking, the cation is atop the anion, while the other anion and cation,

respectively, are inside the unit cell exchanging 𝑥 and 𝑦 coordinates. Next, we find

the most energetic stacking sequence for three (𝑡-IIIAs) and four (𝑓 -IIIAs)-layered ℎ-

BAs, ℎ-GaAs and ℎ-InAs structures. We expect the cohesive energy of AA to be the

smallest of all stackings. This can be explained by ionic repulsion between adjacent

planes. The cohesive energy takes its minimum value for AA stacking because the

cation is placed above the cation and the anion above the anion in analogous adjacent

planes. It is also expected the most energetic stable configuration to be either AB

or AE. In AB configuration cations (anions) of one plane are directly above anions

(cations) in the similar adjacent planes. This minimizes the ionic repulsion between

adjacent planes, hence the system will be more stable. Besides AB, AE stacking has

a high probability of being the most stable configuration. In this stacking, the fact

that cations and anions are above/below the hole of the adjacent hexagonal unit

cell results in a delocalization of the valence electrons. As a result, their volume

increases, lowering the kinetic energy and the total energy of the system [197].

Indeed, N. Ooi et al. used DFT and reported that the two most likely stackings

for ℎ-BN were the AB and AE configurations. They concluded that AB maximizes
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the ionic attraction between adjacent planes and AE displays both interplanar ionic

attraction and delocalization as found in graphite. In addition, by first-principles

calculations, C. Bacaksiz et al. and A. Onen et al. predicted that AB corresponds

to the ground-state stacking order for ℎ-AlN and ℎ-GaN, respectively [124, 198].

Table 3.2: Calculated lattice constant (𝑎(Å)), interlayer distance (𝑑𝐿𝐿 (Å)), buckling parameter
(Δ (Å)), cohesive energy per cation-anion pair (𝐸𝐶𝑜ℎ (eV)) and band-gap value (𝐸𝐺) for 2,3 and
4-layer ℎ-BAs, ℎ-GAs and ℎ-InAs systems with GGA approach.

BAs-Type AC GaAs-Type AB InAs-Type AB
𝑎 𝑑𝐿𝐿 ∆ 𝐸𝐶𝑜ℎ 𝐸𝐺 (eV) 𝑎 𝑑𝐿𝐿 ∆ 𝐸𝐶𝑜ℎ 𝐸𝐺 (eV) 𝑎 𝑑𝐿𝐿 ∆ 𝐸𝐶𝑜ℎ 𝐸𝐺 (eV)

(Å) (Å) (Å) (eV) (GGA) (Å) (Å) (Å) (eV) (GGA) (Å) (Å) (Å) (eV) (GGA)

2 Layers 3.38 3.35 0.00 10.71 0.11 𝐾Λ 3.98 2.83 0.86 8.23 1.62 ΓΓ 4.31 3.15 0.88 7.83 0.12 ΓΓ

3 Layers 3.37 3.39 0.00 10.75 0.02 𝐾Λ 3.99 3.26 0.77 8.18 metallic 4.33 3.35 0.79 7.81 semimetal

4 Layers 3.37 3.37 0.00 10.77 semimetal 3.98 3.13 0.85 8.34 metallic 4.32 3.30 0.86 7.98 semimetal

Table 3.2 shows that the most stable structure for 𝑏-BAs could be either AC or

AE stacking, while for both 𝑏-GaAs and 𝑏-InAs it is AB. The different stackings can

be arranged from the most energetic stacking sequence to the less one as follows:

BAs: AC(10.71 𝑒𝑉 ) > AE(10.70 𝑒𝑉 ) > AB (10.68 𝑒𝑉 ) > AD (10.66 𝑒𝑉 ) > AA

(10.65 𝑒𝑉 )

GaAs: AB(8.23 𝑒𝑉 ) > AC(7.91 𝑒𝑉 ) > AE (7.87 𝑒𝑉 ) > AD (7.80 𝑒𝑉 ) > AA

(7.78 𝑒𝑉 )

InAs: AB(7.83 𝑒𝑉 ) > AC(7.44 𝑒𝑉 ) > AE (7.41 𝑒𝑉 ) > AD (7.35 𝑒𝑉 ) > AA (7.28

𝑒𝑉 )

From these results we can see that for all bidimensional systems, the cohesive

energy of AA is the smallest of all stackings. Similar results were found for BN, AlN

and GaN [124, 197, 198]. It is also noticed for 𝑏-BAs that cohesive energy for AC

and AE configurations differs only by 10 𝑚𝑒𝑉 , which means that any of them could

be the stable configuration. The interlayer distance for AC (3.415 Å) is almost the

same as the AE (3.423 Å) and it is the smallest one of all stackings. This latter

result is followed by the most stable configurations of both 𝑏-GaAs and 𝑏-InAs. On

the other hand, even though for AC and AD configurations atoms of the same nature

are both atop of each other, the fact that the mass of As atoms are almost seven

times larger than B atoms in b-BAs, causes that B atoms can be closer to each other
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in AC stacking than As atoms in AD, making AC a more stable configuration.

Figure 3-6: Comparison of the band structures for 2, 3 and 4-layer ℎ-BAs, ℎ-GAs
and ℎ-InAs structures in their most energetic favorable stacking sequence with GGA
approach.

For both 𝑏-GaAs and 𝑏-InAs the most energetic stable configuration is AB, as was

found for 𝑏-AlN and 𝑏-GaN [124, 198]. The stacking sequences (cohesive energy) that
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stabilizes 𝑡-BAs and 𝑓 -BAs are ACA (10.75 𝑒𝑉 ) and ACAC (10.77 𝑒𝑉 ), respectively.

The energetically most favorable stackings for 𝑡-GaAs (𝑡-InAs) and 𝑓 -GaAs (𝑓 -InAs)

are AB and ABAB, respectively. Their corresponding cohesive energies are shown in

Table 3.2. In addition, Table 3.1 and Table 3.2 display that the buckling parameter

and the lattice parameter for each layer increases as we move from ℎ-BAs to ℎ-

InAs. Conversely, the cohesive energy decreases. When we compare results found

for the bond lengths between the neighboring cation-anion atoms for each layer,

from ℎ-BAs to ℎ-InAs, we found that these increase. Therefore, as in the monolayer

case, the 𝑏-𝑡- and 𝑓 -IIIAs layered binary compounds display less stiffness and more

plasticity as we move from ℎ-BAs to ℎ-InAs. On the other hand, as we move from

two to four layers for each ℎ-IIIAs binary compound, it is noticed in Table 3.2 that

the interlayer distance is bigger for the three layers case in comparison to two and

four layered systems. It means that for the odd layered ℎ-IIIAs systems the ionic

repulsion increases when compared to the even ones. Furthermore, for the 𝑓 -IIIAs

systems the ionic repulsion is larger than that of 𝑏-IIIAs.

To determine the energy vdW correction, we compared the found cohesive energy

values per cation-anion pair with and without vdW interaction. It was found that

the energy vdW corrections for 𝑏-BAs, 𝑡-BAs and 𝑓 -BAs are 325 𝑚𝑒𝑉 , 259 𝑚𝑒𝑉

and 227 𝑚𝑒𝑉 . The energy vdW corrections for 𝑏-GaAs (𝑏-InAs), 𝑡-GaAs (𝑡-InAs)

and 𝑓 -GaAs (𝑓 -InAs) are 424 𝑚𝑒𝑉 (553 𝑚𝑒𝑉 ), 473𝑚𝑒𝑉 (600𝑚𝑒𝑉 ), 513 𝑚𝑒𝑉 (670

𝑚𝑒𝑉 ). It is noticed that for buckled ℎ-GaAs and ℎ-InAs systems the vdW correction

is larger than those for planar ℎ-BAs.

Regarding the electronic properties of 2, 3 and 4-layered ℎ-BAs, ℎ-GaAs and

ℎ-InAs, we can infer from Table 3.1, Table 3.2 and Figure 3-6, the following trends:

𝑖) 𝑏-BAs, 𝑏-GaAs and 𝑏-InAs present the same bandgap nature of their coun-

terpart ones in the bulk. For instance, the bandgap of 𝑏-BAs has an indirect 𝐾-Λ

nature as BAs in the bulk. 𝑖𝑖) As the number of layers increase, from 𝑏-IIIAs to

𝑓 -IIIAs systems, their bandgap decreases until they become semimetal or metal.

Interestingly, these results are different to those found for ℎ-GaN [124]. The authors

reported that from two to four layered ℎ-GaN, the systems are semiconductors and

have different semiconducting nature that GaN in the bulk, even though the width
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of their bandgaps decrease as the number of layers increase. 𝑖𝑖𝑖) One possible reason

of the difference to the tendency of ℎ-GaAs to be metallic as the number of layers

increases when compared to the retained semiconducting nature of ℎ-GaN could be

the bonding strength difference between their cations and anions. The larger the

bonding strength, the larger the bandgap size. For instance, the interlayer distance

and bond length for 𝑏-GaAs, 𝑡-GaAs and 𝑓 -GaAs are, respectively, 2.83 Å and 2.45

Å, 3.26 Å and 2.43 Å, and 3.16 Å and 2.45 Å. Instead for 𝑏-GaN, 𝑡-GaN and 𝑓 -GaN

are, respectively, 2.52 Å and 1.88 Å, 2.49 Å and 1.89 Å, and 2.44 Å and 1.91 Å.

The interlayer distances for each layer of ℎ-GaAs are higher than the counterpart

ones for ℎ-GaN. As a result, the ionic repulsion between planes, the interplanar ionic

bonding and the bandgap sizes are smaller for ℎ-GaAs in comparison to ℎ-GaN.

3.4 Conclusions

We have studied the mechanical and dynamic stability of the 2D single-layer ℎ-IIIAs

(III=B, As, and Ga) by computing their elastic constants and phonon dispersion

relation within density functional theory. We have found that these 2D ℎ-IIIAs

systems are both mechanical and dynamically stable. Results show that 2D ℎ-BAs

is found to be a stable planar structure; while 2D ℎ-GaAs and ℎ-InAs exhibit a

low-buckled geometry. In addition, bond length (cohesive energy) increases (de-

creases) from 2D ℎ-BAs to 2D ℎ-InAs in the present study. Calculations of elastic

constants show that Young’s modulus, bulk modulus and shear modulus decrease

for 2D ℎ-IIIAs binary compounds as we move down on the group of elements of

the periodic table. It is found that ℎ-BAs is ∼ 250 % (∼ 400%) times stiffer along

the in-plane direction than ℎ-GaAs (ℎ-InAs). This can be explained by the nature

of the bonding. Bond length is inversely proportional to bond strength. On the

contrary, we find that the Poisson’s ratio increases with increasing row number of

elements. It means, as we move down on the group of elements, the 2D ℎ-IIIAs

binary compounds display less stiffness and more plasticity. Regarding the elec-

tronic properties, the semiconducting nature of the 3D-IIIAs compounds is retained

by their 2D counterpart. ℎ-BAs (ℎ-GaAs) changes from Γ-∆𝑚𝑖𝑛 indirect (Γ-Γ di-
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rect) to 𝐾-𝐾 direct (Γ-𝐾 indirect) bandgap, while ℎ-InAs maintains its Γ-Γ direct

bandgap nature. Density of states reveals the influence of 𝜎 and 𝜋 bonding in the

most stable geometry (planar or buckled) for 2D ℎ-IIIAs systems. In the 2D ℎ-GaAs

and InAs buckled structures, it is noted a weaker both 𝜋 bonding and 𝜎 bonding

than those in 2D ℎ-BAs planar geometry. It means, buckling reduces the overlap be-

tween 𝑝𝑧 (𝜋 bonding) and increases the overlap between 𝑝𝑧 and planar 𝑠 orbitals. As

a result, 𝑠𝑝2 hybridization (𝜎 bonding) becomes weaker, and the 𝑠𝑝3 one, stronger.

Since graphene was isolated, the search for new 2D candidates has increased. Metal-

lic 2D candidates are less likely to be stable due to their high reactivity. Therefore,

semiconducting 2D crystals, such as 2D single-layer ℎ-III-As, are promising materi-

als for the design of new electronic and optoelectronic devices. We have also studied

the structural and electronic properties for 2, 3 and 4 layered ℎ-IIIAs systems. For

the bilayer structures, ℎ-BAs prefers AC and AE stackings as the most energetic

stable structures, while both ℎ-GAs and ℎ-InAs chose AB. In addition, bilayer ℎ-

IIIAs present the same bandgap nature of their counterpart in 3D. As the number

of layers increases from 2 to 4, the bandgap width for layered ℎ-IIIAs decreases until

they become semimetal or metal. Interestingly, these results are different to those

found for layered ℎ-GaN. All of these few-layer structures for ℎ-BAs and ℎ-GaAs

(ℎ-InAs) retain, respectively, the planar or buckled geometries of the counterpart

single-layer. We hope this study provides relevant physical knowledge for further

theoretical and experimental studies of 2D ℎ-IIIV systems.
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Chapter 4

Tunable 2D-Gallium Arsenide and

Graphene bandgaps in

Graphene/GaAs heterostructure: an

ab-initio study

The nature of 2D-GaAs bandgap and the opening of graphene bandgap have been

investigated in unexplored Graphene/GaAs bilayer van der Waals heterostructure

under both uniaxial stress along c axis and different planar strain distributions using

a 551/331 supercell geometry by DFT-vdW-Tkatchenko-Scheffler method and spin-

orbit coupling. The 2D-GaAs bandgap nature changes from Γ-𝐾 indirect in isolated

monolayer to Γ-Γ direct in Graphene/GaAs bilayer heterostructure. In the same

latter physical conditions, graphene displays a bandgap of 5.0 meV. Uniaxial stress

strongly influences the graphene electronic bandgap. Symmetrical in-plane strain

does not open a bandgap in graphene. Nevertheless, it induces remarkable changes

on the GaAs bandgap width around the Fermi level. However, when applying asym-

metrical in-plane strain to graphene/GaAs, the graphene sublattice symmetry is bro-

ken, and the graphene bandgap is opened at the Fermi level to a maximum width of

814 meV. This value is much larger than that reported for graphene under asymmet-

rical strain. The Γ-Γ direct nature of GaAs remains unchanged in Graphene/GaAs
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under different types of applied strain. Phonon dispersion and elastic constants

analysis display the dynamical and mechanical stability of Graphene/GaAs system,

respectively. The calculated mechanical properties for the bilayer heterostructure

are better than those of their constituent monolayers. This latter finding, together

with the tunable graphene bandgap from the use and direction of the strain, feature

the likelihood of enhancing the physical characteristics of potential graphene-based

group-IIIV electronic devices by strain engineering.

4.1 Introduction

The unique physical properties of two-dimensional graphene related materials (2D-

GRM), such as low dimensionality, flexibility, high mechanical strength, lightness,

in-plane covalent bonding and dangling-bond-free lattice, make them relevant for

a variety of potential applications, for instance: catalysis, biomedicine, conductive

ink, sensors, coating, light emitting devices, composites, storage and production of

energy, touch panels and high frequency electronics, among others [9, 54, 170, 172,

192, 199, 200, 201]. Therefore, during the last ten years, the scientific community has

developed an intense research on 2D nanomaterials, e.g., graphene [16], X-enes (X =

B, Si, Ge, Sn, P, Bi) [51, 52, 53, 54, 55, 56, 57, 202, 203], X-anes (graphane, silicane,

germanane, stanane) [48, 98], fluro-X-enes [98], MXenes [204], IIIV systems [102,

115, 123, 124, 171, 205], transition metal dichalcogenides (TMDs) [206, 207, 208,

209], layered oxides [210], layered double hydroxides (LDHs) [211], metal-organic

frameworks (MOFs) [212, 213], covalent organic frameworks (COFs) [214], polymers

[215, 216, 217] and metals [218, 219, 220, 221].

Recently, theoretical and experimental research have focused on the study of van

der Waals heterostructures by controlled multi-stacking of diverse layering materials

such as metals, semiconductors or insulators [9, 49, 127, 222]. These novel materi-

als will display interesting structural, electronic, optical and mechanical properties

different from those of the 2D materials they are built of. Hence, they can be used

to design new electronic and optoelectronic devices with unprecedented features or

unique functionalities, such as tunnelling transistors, barristors, flexible electronics,
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photodetectors, photovoltaics and light-emitting devices [49]. Due to the astonish-

ing physical properties of graphene, e.g., its electrons display ballistic transport,

graphene is likely the most common component in future van der Waals graphene-

based electronic devices [7]. Unfortunately, graphene lacks a bandgap, which is

essential for controlling the conductivity by electronic means [223].

The absence of a gap in graphene, together with the linear dispersion of the bands

at the 𝐾 point and the equivalence of the two carbon sublattices, restrains the Dirac

fermions from getting a finite mass, which constrains the use of graphene in electronic

devices. The importance of inducing a bandgap in graphene relies on generating an

effective mass for the Dirac fermions, which offers the potential to improve the

characteristics of graphene-based field effect transistors (FETs) [129]. This bandgap

drawback has motivated scientists to look for new 2D-materials beyond graphene.

It has been found in these studies that a graphene bandgap can be induced by

adsorption of H and F [98, 223], and by graphene-based heterostructures [127, 222,

224, 225]. Strain can modify the interatomic distances and relative positions of atoms

within a material, and consequently the electronic structure of a heterostructure can

be tuned by applying strain [12]. Among these heterostructures, those with lateral

graphene display higher electronic quality [127, 222, 225].

Graphene-based group IIIV heterostructures have been studied in bilayer [129]

and multilayer systems [130, 131] in order to tune the graphene bandgap for op-

toelectronics and optics applications. Giovannetti et al. [129] studied graphene on

top of a single layer BN by density functional calculations. They found that the

presence of ℎ-BN breaks the sublattice symmetry of graphene, inducing a bandgap

of 53 𝑚𝑒𝑉 . Direct growth of graphene on ℎ-BN and vice versa has been achieved by

CVD methods [54, 196, 226]. Using first principle calculations, Kaloni et al. [130]

predicted finite and tunable bandgaps for superlattices in which a single graphene

layer alternates with ℎ-BN slabs of variable thickness. In addition, heterostructures

where one, two or more graphene (or other 2D-systems) layers sandwiched between

two other 2D-systems (graphene) have been studied [131, 227, 228].

The following scientific findings motivated us to carry out this study:

i) There are some pioneering studies [156, 157] indicating splitting of electron
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and hole energy bands by spin-orbit coupling (SOC) in 2D-GaAs heterostructures.

Rashba et al. [229] were motivated by these 2D studies to investigate the SOC

contribution to the electron Hamiltonian, a term currently known as the Rashba

term.

ii) Recently, 2D ℎ-GaAs has been reported as a mechanical and dynamically

stable semiconductor by first-principles studies [123, 171].

iii) Theoretical and experimental studies state the importance of graphene-based

group III−V heterostructures to modulate the bandgap of graphene for electronic

applications [54, 129, 130, 131, 196, 226, 227, 228].

iv) There is some theoretical and experimental research that highlight the im-

portance of Graphene/GaAs systems for future practical applications in plasmonic

and photonic technology [230, 231, 232, 233, 234]

v) To the best of our knowledge, there are no previous studies about tuning the

bandgap in Graphene/GaAs bilayer heterostructures.

In this paper, we study first the structural properties and dynamical stability

of Graphene/GaAs bilayer heterostructure. Then, its electronic and mechanical

properties and, finally, the effect of both uniaxial stress along c axis and different

planar strain distributions on the electronic properties of Graphene/GaAs. This

research has been carried out using vdW-Tkatchenko-Scheffler (DFT-TS) method

[235] and SOC within the DFT framework [135, 136]. Our results predict a novel

2D graphene-based heterostructure for potential electronic applications.

4.2 Computational and theoretical details

The calculations were performed using the Vienna Ab-initio Simulation Package

(VASP) [152, 153] employing the first principles pseudo-potential method in the

framework of the DFT [135, 136]. VdW-Tkatchenko-Scheffler (DFT-TS) method

[235] and the spin-orbit coupling (SOC) have also been taken into account in our

calculations. Exchange and correlation effects were treated with the generalized

gradient approximation (GGA) implemented in the Perdew-Burke-Ernzerhof func-

tional (PBE) [142]. The core electrons were described by the projector augmented
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wave (PAW) method [151, 182] wherein the 𝑑 states for Ga and As were included

as valence electrons in their PAW pseudo-potentials. The valence electron configu-

rations for C, Ga and As are 2𝑠22𝑝2, 3𝑑104𝑠24𝑝1 and 3𝑑104𝑠24𝑝3, respectively. The

hexagonal primitive cell, with one Ga atom and one As atom, see Figure 4-2(b),

was constructed from the zinc-blende structure in the (111) plane [171]. In order

to reduce the mismatch between graphene and 2D-GaAs hexagonal monolayers in

Graphene/2D-GaAs bilayer heterostructure, a 551/331 supercell geometry was used

in this study, as shown in Figure 4-2(a), Figure 4-2(b) and Figure 4-2(c), respec-

tively. The electron wave function was expanded in plane waves up to a cutoff energy

of 500 eV for all the calculations. A Γ-centered grid of 25×25×1 k -point has been

used to sample the irreducible Brillouin zone in the Monkhorst-Pack special scheme

[146] for calculations, except for 551-Graphene/331-GaAs bilayer heterostructure

where a 8×8×1 k -point was used. Phonon calculations were performed by tak-

ing into account the interactions in a 10×10×1-Graphene/6×6×1-GaAs supercell

[166]. The PYPROCAR code was used to plot the electronic bands of Graphene/-

GaAs bilayer heterostructure [236]. In addition, a 20 Å vacuum spacing between

the adjacent supercells is kept to avoid interactions. The opimized parameters for

graphene, 2D-GaAs monolayers, and 551-Graphene/331-GaAs bilayer heterostruc-

ture are depicted in Table 4.1. Stress-based approach is implemented [183, 184] to

study the mechanical properties. The elastic tensor is determined by performing

finite distortions of the optimized lattice and to derive the elastic constants from

the strain-stress relationship (Hooke’s law) [183, 184].

In our study, the spin-orbit interaction for 551-Graphene/331-GaAs bilayer het-

erostructure has been taken into account. Spin-orbit coupling is a relativistic in-

teraction between moving electrons with v=p/m and a local electric field E= −1
𝑞

𝑑𝑉 (𝑟)
𝑑𝑟

r
𝑟

in their rest frame created by the proton, where q is the charge of the moving

electrons and V(r)=− 𝑒2

𝑟
is the electrostatic energy of the electron. Special relativity

indicates that, in the electron frame, a magnetic field appears, described by [154]

B = − 1

𝑐2
(v × E), (4.1)

where B is equivalent to:
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B = −(
𝑒2

𝑞𝑚𝑒𝑐2𝑟3
)L, (4.2)

where L = r×P represents the electron orbital angular momentum. Due to the

interaction of B with the electron intrinsic magnetic moment Ms, given by:

Ms =
𝑞

𝑚𝑒

S, (4.3)

and by the Zeeman effect, the orbital energy levels are split, which can lead to

different transition levels with energy:

𝐻𝑠𝑜 = −Ms · B. (4.4)

From equations (4.2), (4.3) and (4.4), 𝐻𝑠𝑜 can be rewritten as:

𝐻𝑠𝑜 = 𝜉(𝑟)L · S, (4.5)

where 𝜉 (r)= 𝑒2/2𝑚2
𝑒𝑐

2r3 contains the entire radial dependence of the SOC Hamil-

tonian operator [155]. The factor 1/2 is due to the fact that the electron spin rotates

with respect to the laboratory reference frame [154]. L and S are the electron orbital

and spin angular momentum, respectively. When the orbital angular momentum of

𝑝-graphene orbital interacts with its spin intrinsic momentum, the electron states

can be either 3/2 (2𝑃 3/2) or 1/2 (2𝑃 1/2), depending on the case if L and S are

parallel or antiparallel, respectively, as shown in Figure 4-1(b).

The special relativity theory states that for electrons with large average speeds

the mass increases, while the radius decreases. In the weakly relativistic domain,

the SOC effect is specially noticed for massive atoms of the periodic table. There are

some pioneering studies [156, 157] indicating splitting of electron and hole energy

bands by spin-orbit coupling (SOC) in 2D-GaAs heterostructures. Pyykk𝑜 [158]

compared the relativistic (Dirac) and nonrelativistic (Schrodinger) dynamics for the

valence electron in a given atomic potential, and studied the importance of the direct

relativistic effect on atomic orbitals. They found a relativistic radial contraction and

energetic stabilization for 𝑠 and 𝑝 shells, spin-orbit splitting and the relativistic radial
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Figure 4-1: Orbital angular momentum of 𝑝-graphene state (𝑙=1) with (a) no cou-
pling and (b) coupling with its spin intrinsic momentum

expansion and energetic destabilization of the 𝑑 and all 𝑓 outer shells. They also

reported that all three effects were of the same order of magnitude and increase

roughly like 𝑍2.

In order to study some mechanical properties that give physical insights into

the potential applications of 551-Graphene/331-GaAs bilayer heterostructures in

engineering science, we calculated its C11, C12, C22 and C66 elastic constants. Due

to hexagonal symmetry, C11 = C22 and (C11 − C12)/2 = C66 , only two independent

elastic constants C11 and C12 have to be calculated in the stress-strain relation for

a 2D hexagonal structure. Therefore, Hooke’s law (𝜎𝑖 = C𝑖𝑗 𝜖𝑗, where 𝜎𝑖 and 𝜖𝑗, i

and j are integers, represent the stress and strain, respectively) for 2D hexagonal

materials can be expressed in the matrix form [187]:

⎡⎢⎢⎢⎣
𝜎1

𝜎2

𝜎3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝐶11 𝐶12 0

𝐶12 𝐶11 0

0 0 𝐶11−𝐶12

2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜖1

𝜖2

𝜖3

⎤⎥⎥⎥⎦ . (4.6)

The Poison’s ratio 𝜈, the in-plane Young’s modulus 𝑌𝑠, the 2D layer modulus 𝐵2𝐷

and shear 𝐺𝑉 modulus are obtained, from the calculated C11 and C12 elastic con-

stants, and multiplied later by the corresponding optimized unit-cell 𝑧 distance.

Their respective equations are [189, 237]:
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𝜈 = 𝐶12/𝐶11, (4.7)

𝑌𝑠 = (𝐶2
11 − 𝐶2

12)/𝐶11, (4.8)

𝐵2𝐷 = (𝐶11 + 𝐶12)/2, (4.9)

𝐺 = (𝐶11 − 𝐶12)/2. (4.10)

The calculated elastic constants and the above mentioned mechanical properties

for graphene and 2D-GaAs monolayers, and 551-Graphene/331-GaAs bilayer het-

erostructure are depicted in Table 4.2. The Poisson’s ratio represents the plasticity

of the material, the 2D layer modulus gives physical insight on the resilience of a

material to stretching, and the shear and in-plane Young’s moduli indicate the 2D

structure stiffness. Gonzalez et al [171] reported for 2D ℎ-IIIAs binary compounds

that as one moved down on the group of elements of the periodic table, the bond

length between the neighboring cation-anion atoms increases and the materials dis-

play less stiffness and more plasticity.

4.3 Results and discussion

4.3.1 Structural properties and dynamical stability

Honeycomb unit cells for graphene and 2D-GaAs monolayers are shown in Fig-

ure 4-2(a) and Figure 4-2(b). Graphene monolayer displays a planar geometry while

2D-GaAs presents a buckled one. The TS-vdW optimized parameters for graphene

and 2D-GaAs hexagonal monolayers, as well as for graphene and 2D-GaAs in 551-

Graphene/331-GaAs bilayer heterostructures (Figure 4-2(c)), are shown for compar-

ison in Table 4.1. Our results for 2D-GaAs and graphene monolayers are in good

agreement with previous theoretical DFT studies. The lattice parameter value of

graphene monolayer is 39.1 % shorter than that of 2D-GaAs monolayer. Using a
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Figure 4-2: Honeycomb unit cells for (a) Graphene, (b) 2D-GaAs monolayers, and
(c) 551-Graphene/331 GaAs bilayer crystal heterostructure.

computational method Kumar et al reported that lattice mismatch between two

different bilayers causes elastic strains, which significantly affects their electronic

properties [238]. In order to reduce this mismatch, 551-Graphene and 331-GaAs

geometries were chosen. These selected geometries reduced the mismatch to 1.49 %

between 551-Graphene and 331-GaAs sheets.

The vdW interlayer interaction between 551-graphene and 331-GaAs layers re-

duces the lattice constant of graphene by 0.24 % and increases that of GaAs by 1.01

% compared to the respective ones from their pristine monolayers. As a result, the

initial mismatch between 551-Graphene and 331-GaAs is reduced from 1.49 % to

0.18 %, which increases the mechanical and dynamical stability of our system, as

will be shown in the next sections. The optimized DFT-TS interlayer spacing (𝑑𝐿)

between 551-graphene and 331-GaAs sheets is 3.476 Å. This value is higher than

that found for graphene-BN bilayer, 3.34 Å [129], and reasonably comparable to that

of 551-graphene/441-Mo𝑆2 heterostructures, 3.40 Å [239]. The interlayer distance is

sensible to the vdW flavour used in the calculatations. So, it is of vital importance
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Table 4.1: Calculated lattice constant (𝑎 (Å)), angle between neighboring bonds (𝜃), Planar
(PL) or Low-Buckled (LB) geometry (G),buckling parameter (Δ (Å)),nearest-neighbor distance
(𝑑), interlayer distance (𝑑𝐿), and bandgap value (𝐸𝐺) for 2D grapgene and GaAs monolayers, and
graphene and GaAs in 551-Graphene/331-GaAs bilayer heterostructure.

𝑎 (Å) 𝜃 G ∆ (Å) 𝑑 (Å) 𝑑𝐿 (Å) 𝐸𝐺 (𝑒𝑉 )

Graphene 2.465 120 PL 0 1.423 - 0
2.460 [123] 120 [123] PL [123] 0 [123] 1.420 [123] - 0 [123]

2D-GaAs 4.048 114.4 LB 0.577 2.407 - 1.03 Γ𝐾
4.050 [171] 114.3 [171] LB [171] 0.550 [171] 2.410 [171] 1.08 Γ𝐾 [171]
3.970 [123] 114.7 [123] LB [123] 0.550 [123] 2.380[123] 1.29 Γ𝐾 [123]

551-Graphene/ 331-GaAs

Graphene 2.459 120 PL 0.001 1.419 3.476 0.049 𝐾𝐾 height
GaAs 4.091 115.8 L.B 0.501 2.427 - 0.729 ΓΓ

the correct vdW flavour choice [239]. Singh et al. reported that the Tkatchenko-

Scheffler method efficiently evaluates the long-range vdW interactions and accurately

predicts interlayer spacing between 551-graphene and 441-Mo𝑆2 sheets [239]. Their

reported interlayer distance agrees with the experimental one (3.40 Å) [240]. On

the other hand, theoretical [123, 124] and experimental [102] research has predicted

and validated the stability of 2D buckled single layer of group III−V with ionicity.

Balushi et al. experimentally reported that graphene plays a critical role in stabi-

lizing ionic 2D buckled group III−V structure. Their results provide a foundation

for the discovery and stabilization of 2D group III−V materials that are difficult

to prepare via traditional synthesis [102]. Using Bader analysis [194], we found a

charge transfer of 5.3 electrons from Ga to As for 551-Graphene/331-GaAs bilayer

heterostructure, indicating a significant ionicity in the interplanar binding. However,

no charge transfer from Ga to C atoms was found.

Figure 4-3 depicts the calculated phonon dispersion curves for the 551-Graphene/

331-GaAs bilayer heterostructure. We see that the 551-Graphene/331-GaAs system

is stable, because there are no imaginary frequencies in the phonon dispersion. Some

few imaginary frequencies plotted as negative frequencies near the Γ point are shown.

This feature has been found in other 2D-systems [239, 241, 242, 243] and highlights

the flexural acoustic mode of 2D-systems. They are often present in theoretical

calculations due to inadequate numerical convergence close to the Γ point [239].
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Figure 4-3: Phonon dispersion curves for the 551-Graphene/331-GaAs bilayer het-
erostructure

4.3.2 Electronic structure and Mechanical properties

Figure 4-4: Electronic band structure for the 551-Graphene/331-GaAs bilayer crys-
tal heterostructure without strain. The brown lines represent the contributions of
Ga-4𝑠 and As-4𝑝𝑧 orbitals, while the green one the contribution of C-2𝑝𝑧 orbitals.

The TS-vdW + SOC electronic band structure for the 551-graphene/331-GaAs

bilayer crystal heterostructure without strain is displayed in Figure 4-4. The brown

lines represent the contributions of Ga-4𝑠 and As-4𝑝𝑧 orbitals, while the green one
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Table 4.2: Calculated 2D Poissons ratio (𝜈); Young’s (𝑌𝑠), layer (𝐵𝑣) and Shear (𝐺𝑣) moduli for
2D graphene and GaAs monolayers, and 551-Graphene/331-GaAs bilayer heterostructure.

𝐶11 (J/m2) 𝐶12 (J/m2) 𝜈 𝑌𝑆 (J/m2) 𝐵2𝐷 (J/m2) 𝐺𝑉 (J/m2)

Graphene 352.8 62.8 0.18 341.7 207.8 145.0
352.7 [237] 60.9 [237] 0.17 [237] 342.2 [237] 206.6 [237] 145.9 [237]

2D-GaAs 49.6 16.1 0.32 44.4 32.9 17.1
- - 0.35[123] 48.0 [123] - -

551-Graphene/ 331-GaAs 384.7 70.0 0.18 372.1 227.4 157.0

the contribution of C-2𝑝𝑧 orbitals. We can see the semiconductor Γ-Γ direct bandgap

nature for 331-GaAs layer, with a bandgap size of 0.72 eV, and a near semimetallic

nature of 5.0 meV at the K point for 551-graphene layer. This electronic behavior for

331-GaAs (Γ-Γ direct) is different from that one reported for 2D-GaAs monolayer

(Γ-𝐾 indirect) [123, 171]. Thus, the presence of graphene on GaAs layer induces an

indirect to direct bandgap transition of the GaAs layer, which makes it potential

candidate for optoelectronic applications and field-effect transistors. This bandgap

transition can be physically explained by the vdW interaction between the localized

C-2𝑝𝑧 and As-4𝑝𝑧 orbitals at the 𝐾 point, which shifts this latter orbital down-

ward in the VBM. Singh et al. [239] reported that Mo𝑆2 undergoes a direct to

indirect (direct) bandgap transition in 441-graphene/331-Mo𝑆2 (551-graphene/441-

Mo𝑆2) bilayer heterostructure. Authors state that these bandgap transitions, when

changing the layer geometries, are imposed by the strain between the layers. Lattice

mismatch between two different bilayers causes elastic strains, which significantly

affects their electronic properties [238]. The change from indirect to direct of 2D-

GaAs bandgap nature is physically important because heterostructures can present

high photoluminescence [239]. On the other hand, we found that the proximity ef-

fects of GaAs with SOC open a bandgap of 5.0 𝑚𝑒𝑉 at the Dirac point in graphene

for the Graphene/GaAs heterostructure. Our result agrees with those found for

graphene/BN. It has been reported that strain opens the graphene/BN bandgap

in the range of 4 meV to 14 meV [244, 245]. Sing et al. found that the SOC and

proximity effects of Mo𝑆2 open a direct bandgap in graphene of 0.4 meV and 1.1

meV for different Graphene/Mo𝑆2 geometries [239].
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The elastic constants for graphene and 2D-GaAs monolayers, as well as for 551-

Graphene/331-GaAs bilayer system, are tabulated in Table 4.2. Our results for the

monolayer constituents of Graphene/GaAs are in excellent agreement with those

reported in previous theoretical and experimental studies. It is noteworthy that

C11 >0 and C11−C12>0, which means that all our systems satisfy the Born stabil-

ity criteria [186] for mechanically stable 2D hexagonal structures. The calculated

Poisson’s ratio for 551-Graphene/331-GaAs bilayer system is less (equal) than that

of 2D-GaAs (graphene) monolayer. On the contrary, the 2D Young’s (𝑌𝑠), layer

(𝐵2𝐷) and Shear (𝐺𝑉 ) moduli for the bilayer heterostructure are larger when com-

pared to those of their constituent monolayer. Therefore, 551-graphene/331-GaAs

is a stronger material than graphene but with the same plasticity, which makes it

attractive for potential applications in engineering science.

4.3.3 Tuning Graphene and 2D-GaAs bandgaps

Stress applied on heterostructure materials changes the interatomic distances and

the relative positions of the atoms, which influences the electronic structure with po-

tential optical applications [246]. Therefore, we have investigated the impact on the

electronic properties of graphene and GaAs in graphene/GaAs bilayer hetrostructure

under uniaxial stress along c axis and different planar strain distributions.

In order to study the effect of uniaxial stress along 𝑐 axis on the electronic prop-

erties of 551-Graphene/331-GaAs bilayer crystal heterostructure, the equilibrium

interlayer distance between 551-Graphene and 331-GaAs layers was modified by X

=−6.0%, −4.0%, −2.0%, +2.0%, +4.0% and +6.0%. During each expansion (X>0)

and compression (X< 0) process, the vertical coordinate was kept fixed at each sep-

aration while atoms were allowed to relax in the plane of the layers. Figure 4-5(i)

displays the electronic structures for all these configurations. For X= +2.0%, +4.0%

and +6.0% expansion cases, the 551-Graphene bandgap (331-GaAs) is opened by

26.0% (4.2%), 68.0% (8.3%) and 68.0% (5.6%).

For the uniaxial compression along 𝑐 axis, the graphene (GaAs) bandgap in-

creases from 7.3 meV (0.75 eV) to 9.4 meV (0.78 eV) as the strain increases from

−2.0% to −4.0% before decreasing to 5.2 meV (0.67 eV) for −6.0%. From the results
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Figure 4-5: Electronic structures for i) uniaxial stress along c−axis, ii) biaxial sym-
metrical strain, and iii) uniaxial asymmetrical strain along perpendicular C−C bond
for x =−6.0%, −4.0%, −2.0 %, +2.0 %, +4.0% and +6.0 % configurations of 551-
Graphene/331 GaAs bilayer crystal heterostructure.
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found for the uniaxial strain along 𝑐 axis, we can infer that interlayer distance plays

an important role for tuning both the graphene and GaAs bandgap in Graphene/-

GaAs bilayer heterostructure. The graphene bandgap opening could be attributed

to the enhanced SOC of graphene due to the proximity of the GaAs-buckled effective

potential. Using first-principles method, Youngbin et al. [12] studied the effect of

strain on the bandgap characteristics of MXene semiconductors for useful optical

devices. They reported that this material experiences an indirect to direct bandgap

transition with variation of the bandgap size at a relatively small critical strain of

about 2%.

For symmetrical strain distribution, the system undergoes in-plane biaxial stretch-

ing and compression of 2.0%, 4.0% and 6.0% from its optimized lattice parameter

value. Then, the lattice structure was optimized, the lattice vectors were set to

be fixed at their strained values while only the atomic coordinates were allowed to

relax. Figure 4-5(ii) shows the band structure of the graphene/GaAs systems with

X= −6.0%, −4.0%, −2.0%, +2.0%, +4.0% and +6.0% for symmetrical strain. We

find that there is no bandgap opening around the Fermi level for graphene for any

strength of symmetrical tensile or compressive strain. Nevertheless, strain results

in a remarkable change of the GaAs bandgap width around the Fermi level. As

shown in Figure 4-5(iii), strain results in a decrease in the GaAs bandgap width

until becoming metallic, while compressive strain leads to an increase in the GaAs

bandgap width.

In the asymmetrical strain distribution, graphene/GaAs bilayer supercell un-

dergoes uniaxial stretching and compression in one direction, perpendicular to C−C

bonds, of 2%, 4% and 6% from its optimized lattice parameter value, and unstrained

along the other direction. Figure 4-5(iii) displays the electronic structures for X=

−6.0%, −4.0%, −2.0%, +2.0%, +4.0% and +6.0% configurations. For X=+2.0%

and +4.0%, the 551-Graphene bandgap (331-GaAs) is opened (narrowed) by 267

and 541 meV (0.502 and 0.286 eV). As the expansion is increased to +6.0% the

system becomes slightly metallic. For X=+2% and +4%, graphene has a bandgap

located at the left side of the K point; while for 6%, at the K point. Gui et al.

found similar results for asymmetrical strain distributions in graphene, though they
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reported direct and indirect graphene bandgap nature depending on the compression

value [247]. On the other hand, Figure 4-5(iii) displays that the graphene (GaAs)

bandgap width increases to 91 (0.95), 248 (1.05) and 814 (1.04 eV) meV for X=

−2.0% , −4.0% and −6.0%, respectively. Notice that GaAs bandgap keeps its di-

rect nature at the Γ point. Gui et al. reported that for the asymmetrical strain

distribution perpendicular to C−C bonds in graphene, the bandgap increases from

0 to 170 meV as the strain increases to 4.91% before decreasing [247]. The authors

reported that lattice symmetry breaking results in the opening of graphene bandgap

at the Fermi level. From Figure 4-5(iii) we notice that the valence-band maximum

for GaAs is shifted upward, closer to the Fermi level as compression increases, while

the graphene valence-band maximum is shifted downward, farther from the Fermi

level. One physical reason for this is that as the compression reaches a value larger

than 4%, the repulsion between the charge accumulation around the C atoms be-

comes stronger so the 𝑝-C orbitals are shifted downward farther from the Fermi level.

For the case of GaAs, as compression increases, due to the electronegative difference

between their atoms, the attraction between the charge accumulation around the

Ga and As atoms becomes stronger which shifts the GaAs orbitals near each other.

From the above mentioned results, obtained for the symmetrical and asymmet-

rical strain applied to graphene/GaAs system, we can conclude that the nature for

both GaAs and graphene electronic band structures depends on its lattice symme-

try. The lattice symmetry breaking results in a bandgap opening of graphene at

the Fermi level. Our findings are important to tune the electronic properties of

551-graphene/331-GaAs heterostructure by strain engineering for potential optical

applications.

4.4 Conclusions

DFT-vdW-Tkatchenko-Scheffler method and spin-orbit coupling have been used to

investigate the physical effects on the electronic band structures of 2D-GaAs and

graphene monolayer constituents in Graphene/GaAs bilayer heterostructure using

a 551/331 supercell geometry. It was found that the bandgap nature of 2D-GaAs
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changes from Γ−𝐾 indirect in isolated monolayer to Γ−Γ direct in bilayer het-

erostructure. This bandgap transition can be physically explained by the vdW

interaction between the localized C-2𝑝𝑧 and As-4𝑝𝑧 orbitals at the 𝐾 point, which

shifts this latter orbital downward of the VBM. The uniaxial stress along the c-axis

strongly influences the graphene electronic bandgap. The interlayer distance plays

an important role for tuning both the graphene and GaAs bandgap in Graphene/-

GaAs bilayer heterostructure. The bandgap opening of graphene could be attributed

to the enhanced SOC of graphene due to proximity of the GaAs-buckled effective

potential. Γ−Γ direct bandgap of 2D-GaAs in 551-Graphene/331-GaAs is not al-

tered with varying interlayer distance. These are extremely important findings for

potential optical applications by strain engineering. Symmetrical in-plane strain

does not open the graphene bandgap. Nevertheless, it induces remarkable changes

on the GaAs bandgap width around the Fermi level. When applying asymmetri-

cal in-plane strain to graphene/GaAs, the graphene sublattice symmetry is broken,

and the graphene bandgap is opened at the Fermi level to a maximum width of

814 meV. We can conclude that the nature for both GaAs and graphene electronic

band structures depends on its lattice symmetry. The lattice symmetry breaking

results in a bandgap opening of graphene at the Fermi level. Our findings are impor-

tant to tune the electronic properties of 551-graphene/331-GaAs heterostructure by

strain engineering for potential optical applications. Phonon dispersion and elastic

constants analysis display, respectively, the dynamical and mechanical stability of

551-Graphene/331-GaAs bilayer vdW-heterostructure. The calculated 2D Young’s

(𝑌𝑠), layer (𝐵2𝐷) and Shear (𝐺𝑉 ) moduli for bilayer heterostructure are higher than

those of its monolayer constituents, which indicates that our studied bilayer material

displays more in-plane stiffness than its monolayer constituents. Our findings feature

the likelihood of enhancing the physical characteristics of potential graphene-based

group-IIIV optoelectronic devices by strain engineering.
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Chapter 5

Two-dimensional hydrogenated

buckled gallium arsenide:

An ab-initio study

First-principles calculations have been carried out to investigate the stability, struc-

tural and electronic properties of two−dimensional hydrogenated GaAs with three

possible geometries: chair, zigzag−line and boat configurations. The effect of van

der Waals interactions on 2D H−GaAs systems has also been studied. These config-

urations were found to be energetic and dynamic stable, as well as having a semicon-

ducting character. Although two−dimensional GaAs adsorbed with H tends to form

a zigzag−line configuration, the energy differences between chair, zigzag−line and

boat are very small which implies the metastability of the system. Chair and boat

configurations display a Γ−Γ direct bandgap nature, while pristine 2D−GaAs and

zigzag−line are indirect semiconductors. The bandgap sizes of all configurations are

also hydrogen dependent, and wider than that of pristine 2D−GaAs with both PBE

and HSE functionals. Even though DFT−vdW interactions increase the adsorption

energies and reduce the equilibrium distances of H−GaAs systems, it presents, qual-

itatively, the same physical results on the stability and electronic properties of our

studied systems with PBE functional. According to our results, two−dimensional

buckled gallium arsenide is a good candidate that can be synthesized by hydrogen
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surface passivation as its group III−V partners two-dimensional buckled gallium ni-

tride and boron nitride. The hydrogenation of 2D-GaAs tunes the bandgap of pristine

2D-GaAs, which makes it a potential candidate for optoelectronic applications in the

blue and violet ranges of the visible electromagnetic spectrum.

5.1 Introduction

Electronic properties of 2D materials can be tuned by chemical functionalization

[173, 248]. When radical atoms are adsorbed on the 2D surface they can form cova-

lent, ionic or van der Waals bonds with the in-plane atoms. These atoms change the

2D-material hybridization from 𝑠𝑝2 to 𝑠𝑝3, which leads to the opening of a bandgap,

e.g., graphene, a gapless semimetal, becomes a wide bandgap semiconductor when

it is fully hydrogenated [249]. Furthermore, adsorption of hydrogen on 2D materials

modifies their structural, optical, magnetic and mechanical properties [48, 100].

Chemical adsorption of hydrogen atoms on two-dimensional materials generates

other new crystals with different geometries. Therefore, new hydrogen-based two-

dimensional crystals are built with different physical properties from their pristine

parent material. Among the several ordering patterns of adatoms on the pristine

2D-material, the most studied metastable geometries are chair, zigzag-line and boat

[48, 98, 173, 250, 251]. As shown in Figure 5-1, in the chair (boat) geometry the

hydrogen atoms alternate singly (pairwise) on either side of the GaAs plane, while

in the zigzag-line configuration the hydrogen atoms of one hexagon alternate three-

up and three-down on the GaAs plane. For the chair configuration the unit cell is

hexagonal, while for the other two cases the unit cell is rectangular.

Shu et al [48] found that hydrogenated germanene tends to form chair and zigzag-

line configurations, where its electronic and optical properties show close geometry

dependence. They also reported that chair (zigzag-line) hydrogenated configura-

tion is a direct (indirect) bandgap semiconductor. The authors highlight that the

zigzag-line germanane could be used as a good optical linear polarizer due to highly

anisotropic optical responses. In other theoretical study of germanane, Rivera−Julio

et al [173] reported that the presence of various isomers in a mostly chair conforma-
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Figure 5-1: Schematic representation for : (a) 2D-GaAs hexagonal unit cell, (b) 2D
H-GaAs chair configuration, (c) 2D H-GaAs rectangular unit cell, (d) 2D H-GaAs
boat configuration, (e) 2D H-GaAs zigzag-line configuration, and (f) high symmetry
points in the Brillouin zone for the rectangular unit cell of 2D H-GaAs.

tion material is expected due to the very small energy difference between the chair,

z-line, and boat configurations. Sofo et al reported that graphane has two favorable

conformations: a chair and boat geometry. Both of them present a direct bandgap

at the gamma point with 3.5 𝑒𝑉 (3.7 𝑒𝑉 ) for the chair (boat) configuration [249].

The surface of 2D group III-V materials could be chemically modified by hydro-

genation [48, 100, 101]. It has been found both theoretically and experimentally

that hydrogen passivation stabilizes two dimensional buckled III-V sheets [102].

Recently, two-dimensional buckled gallium nitride was synthesized by hydrogen sur-

face passivation and graphene encapsulation [102]. Chen et al reported that surface

hydrogenation tunes the electronic and magnetic properties of 2D-BN [103]. Hydro-

genation causes the 2D-BN sheet to have a smaller energy bandgap than the pristine

one, while semihydrogenated BN is a ferromagnetic metal [104]. The configuration

in which the hydrogen atoms are adsorbed on III-V devices plays an important role

in their electronic properties. The fully hydrogenated 2D-BN prefers the zigzag-line

configuration rather than the boat or chair configuration [252, 253]. All three hy-

111



Chapter 5. Two-dimensional hydrogenated buckled gallium arsenide:
An ab-initio study 5.1. Introduction

drogenated 2D-BN geometries: chair, zigzag-line and boat, are direct wide-bandgap

semiconductors, where, their bandgap sizes are also hydrogen geometry dependent.

The hydrogenation of 2D III-V materials could be of great interest not only to be

stabilized and synthesized [102] but also to be used in a wide range of applica-

tions such as hydrogen storage, biosensors and bandgap tuning for manufacturing

nanoelectronic devices [100].

Recently, 2D GaAs has been theoretically predicted to be a mechanically and

dynamically stable semiconductor with buckled geometry not only in its pristine

hexagonal unit cell but also forming a graphene-GaAs van der Waals heterostructure

[123, 169, 171]. The authors also reported that electronic properties of GaAs and

graphene can be modulated in a graphene-GaAs heterostructure [169]. In addition,

some theoretical and experimental research highlight the importance of graphene/-

GaAs systems for future practical applications in plasmonic and photonic technology

[230, 231, 232, 233, 234]. However, to the best of our knowledge, there are no pre-

vious studies about two-dimensional hydrogenated buckled GaAs system.

Although the dynamical stability of pristine 2D-GaAs has already been studied

theoretically by first-principles calculations [123, 169, 171], this material has never

been synthesized. The fact that some two-dimensional group III-V materials have

been grown by functionalization with hydrogen passivation [102, 254, 255], moti-

vated us to study the stability of two-dimensional hydrogenated buckled gallium

arsenide. Thus, in order to explore a possible path towards the synthesis of 2D-

GaAs, we have studied the dynamic stability of 2D-GaAs when it is functionalized

with hydrogen. We have also determined the structural, mechanical and electronic

properties of both materials to evaluate if hydrogen passivation improves these prop-

erties with respect to the pristine material. We will also contrast our results with

other ab-initio theoretical studies of two-dimensional hydrogenated materials that

have already been synthesized; indeed some of their physical properties are similar

to those displayed by 2D-HGaAs, such as 2D-HBN and 2D-germanane. Finally, we

will present potential applications for 2D-HGaAs taking into account the physical

properties found in this study.

Therefore, the structural and electronic properties, as well as the energy and dy-
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namical stability of 2D hydrogenated GaAs sheets will be studied in this work tak-

ing into account three different geometric configurations: chair, zigzag-line and boat

using the Perdew-Burke-Ernzerhof functional (PBE) [142] within DFT framework

[135, 136]. Furthermore, in order to study the effect of van der Waals interactions on

energy stability, and both structural and electronic properties of 2D hydrogenated

GaAs, long range electronic correlations will be treated by the Grimme’s method

(DFT−D2) [256].

5.2 Computational details

The calculations were performed using Vienna Ab-initio Simulation Package (VASP)

[152, 153] employing the first principles projected augmented wave (PAW) method

in the framework of the DFT [135, 136]. Exchange and correlation effects were

treated with the generalized gradient approximation (GGA) implemented in the

Perdew-Burke-Ernzerhof functional (PBE) [142]. Core electrons were described by

the projector augmented wave (PAW) method [151, 182] wherein 𝑑 states for Ga and

As were included as valence electrons in their PAW pseudo-potentials. The valence

electron configurations for H, Ga and As are 1𝑠1, 3𝑑104𝑠24𝑝1 and 3𝑑104𝑠24𝑝3, respec-

tively. The 2D-GaAs buckled hexagonal primitive cell, with one Ga atom and one

As atom, see Figure 5-1(a), was constructed from the zinc-blende structure in the

(111) plane [171]. The electron wave function was expanded in plane waves up to a

cutoff energy of 500 𝑒𝑉 for all the calculations. A gamma-centered grid of 25×25×1

k -point has been used to sample the irreducible Brillouin zone in the Monkhorst-

Pack special scheme for calculations [146]. Phonon calculations have been performed

by taking into account the interactions in a 8×8×1 2D H-GaAs supercell [166]. The

PYPROCAR code was used to plot the electronic bands of 2D H-GaAs [236]. In

addition, a 20 Å vacuum spacing between the adjacent supercells is kept to avoid in-

teractions. For comparison, in order to study the effect of van der Waals interactions

on energy stability, and both structural and electronic properties of 2D H−GaAs

systems, calculations were also performed using Grimme’s method (DFT−D2) [256].

To correct the bandgap values obtained by GGA-PBE and DFT-D2, hybrid func-
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tional Heyd-Scuseria-Ernzerhof (HSE) [143] band-calculations are carried out on the

relaxed structures obtained with GGA-PBE and DFT-D2, respectively.

5.3 Results and discussion

5.3.1 Energetic and dynamic stability

In order to study the 2D hydrogenated GaAs stability in the chair, boat and zigzag-

line configurations, the adsorption energy was calculated. The adsorption energy is

defined by:

𝐸𝑎𝑑 = 𝐸𝐻−𝐺𝑎𝐴𝑠 − 𝐸𝐺𝑎𝐴𝑠 − 𝑛𝐻𝐸𝐻 , (5.1)

where 𝐸𝐻−𝐺𝑎𝐴𝑠 and 𝐸𝐺𝑎𝐴𝑠 are the energies of the hydrogenated and pristine 2D-

GaAs layers, 𝑛𝐻 is the number of isolated spin-polarized hydrogen atoms, and 𝐸𝐻 is

the energy of a single isolated H atom. Table 5.1 displays these energies for compar-

ison. The values obtained for chair, boat and zigzag-line configurations are -1.180

eV/atom (-1.200 eV/atom), -1.179 eV/atom (-1.204 eV/atom) and -1.182 eV/atom

(-1.214 eV/atom), respectively, with PBE (DFT-D2) functional. We can see that

all configurations are energetically stable with both PBE and DFT-D2 functionals.

The adsorption energy value found for the chair geometry is of the same order of

that reported for H-BN (-1.04 eV/atom) in the same geometry [104]. As H-BN chair

configuration, the 2D hydrogenated GaAs presents an exothermic reaction and it

could be obtained by the reaction of GaAs layers with H atoms. The zigzag-line

configuration is energetically more favorable than the chair and the boat by 2 𝑚𝑒𝑉

(14 𝑚𝑒𝑉 ) and 3 𝑚𝑒𝑉 (4 𝑚𝑒𝑉 ), respectively, with PBE (DFT-D2) functional. These

tiny energy differences with both PBE and DFT-D2 indicate the metastability of 2D

hydrogenated GaAs system. We can see that the adsorption energy is more negative

with DFT-D2 when compared to that of PBE functional for each configuration by

20 𝑚𝑒𝑉 (chair), 25 𝑚𝑒𝑉 (boat) and 32 𝑚𝑒𝑉 (zigzag-line). Using first principles

density functional calculations, Bhattacharya et al reported that 2D hydrogenated

BN prefers the zigzag-line configuration rather than the boat or chair configuration
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[252]. Tang et al found similar results for H-BN by dispersion-corrected density

functional theory computations (DFT-D2) [253]. Regarding graphane, theoretical

studies found that the chair configuration is the most stable one [98, 251, 257]. The

energy stability order of our studied configurations was zigzag-line (zigzag-line),

chair (boat) and boat (chair) with PBE (PBE-D2) functional. The reported energy

stability order for H-BN and H-Ge was zigzag-line, boat and chair [173, 252, 253].

Authors also stated the metastability of these systems. For graphane, the reported

configurations order was chair, zigzag-line and boat [257].

Table 5.1: Structural parameters for the pristine 2D-GaAs and three different configurations of
2D H-GaAs obtained by using PBE and vdW-Grimme method (DFT-D2) for comparison. The
bandgap (𝐸𝑔(eV)) was calculated with PBE and HSE functional. The adsorption (𝐸𝑎𝑑(eV/atom))
and formation (𝐸𝑓 (eV/atom)) energies were calculated with PBE functional and vdW-Grimme
method (DFT-D2) for comparison.

Hex-unit cell Rect-unit cell GaAsH-Configurations
𝑇𝑒𝑜 𝑇𝑒𝑜 𝑇𝑒𝑜 𝑇𝑒𝑜 𝐶ℎ𝑎𝑖𝑟 𝐶ℎ𝑎𝑖𝑟 Boat Boat Zigzag-line Zigzag-line

𝑣𝑑𝑊 𝑣𝑑𝑊 𝑣𝑑𝑊 𝑣𝑑𝑊 𝑣𝑑𝑊

𝑎ℎ𝑒𝑥(Å) 4.05 4.00 – – 4.08 4.01 – – – –
3.97 [123]
4.05 [171]

𝑎𝑟𝑒𝑐𝑡(Å) – – 7.01 6.93 – – 6.74 6.49 5.96 5.55
𝑏𝑟𝑒𝑐𝑡(Å) – – 4.04 4.00 – – 4.06 3.99 4.06 3.99
𝑑𝐺𝑎−𝐴𝑠(Å) 2.41 2.39 2.41 2.39 2.48 2.45 2.49 2.46 2.48 2.45
𝑑𝐺𝑎−𝐻(Å) – – – – 1.56 1.56 1.56 1.56 1.56 1.55
𝑑𝐴𝑠−𝐻(eV) – – – – 1.52 1.51 1.52 1.51 1.52 1.51
buckling(Å) 0.58 0.60 0.51 0.60 0.79 0.80 0.88 0.92 0.86 0.86

0.55 [123]
0.58 [169]

𝐸𝑔𝑃𝐵𝐸
(eV) 1.09 Γ𝐾 1.35 Γ𝐾 – – 1.68 ΓΓ 1.87 ΓΓ 2.16 ΓΓ 2.20 ΓΓ 2.23 Γ𝐷 2.30 Γ𝐷

1.29 Γ𝐾 [123]
1.08 Γ𝐾[171]

𝐸𝑔𝐻𝑆𝐸
(eV) 1.89 Γ𝐾 2.18 Γ𝐾 – – 2.51 ΓΓ 2.73 ΓΓ 2.98 ΓΓ 3.00 ΓΓ 3.19Γ𝐷 3.32 Γ𝐷

𝐸𝑎𝑑𝑃𝐵𝐸
(eV/atom) – – – – -1.180 -1.200 -1.179 -1.204 -1.182 -1.214

𝐸𝑓𝑃𝐵𝐸
(eV/atom) – – – – -0.046 -0.066 -0.045 -0.070 -0.048 -0.080

In order to compare the stability of H-GaAs with respect to other hydrogenated

2D systems, we calculated the 2D H-GaAs formation energies by the following math-

ematical expression:

𝐸𝑓 = 𝐸𝐻−𝐺𝑎𝐴𝑠 − 𝐸𝐺𝑎𝐴𝑠 − 𝑛𝐻𝐸
*
𝐻 , (5.2)

where 𝐸𝐻−𝐺𝑎𝐴𝑠 and 𝐸𝐺𝑎𝐴𝑠 are the energies of the hydrogenated and pristine 2D-

GaAs layers, 𝑛𝐻 is the number of hydrogen atoms, and 𝐸*
𝐻 is the energy of a

𝐻2 molecule divided by two. From Table 5.1, the energy values obtained for the

chair, boat and zigzag-line configurations are, respectively, -0.046 eV/atom (-0.066
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eV/atom), -0.045 eV/atom (-0.070 eV/atom) and -0.048 eV/atom (-0.080 eV/atom)

with PBE (DFT-D2) functional. The formation energies of our systems are nega-

tive, which physically means that hydrogenation of 2D-GaAs is feasible to occur.

Sofo et al [249] reported a formation energy of -0.15 eV/atom and -0.10 eV/atom

for graphane chair and boat configurations, respectively. Indeed, graphane has al-

ready been experimentally synthesized by various methods such as hydrogen plasma

exposure of graphene, thermal exfoliation of graphene oxides, STM-assisted hydro-

genation of graphene, plasma-enhanced CVD and electron-induced dissociation of

HSQ on graphene [257, 258]. In addition, the fact that both thermal stability of

hydrogenated boron nitride adsorbed on Ni(111) has been found experimentally

[254, 255] and two-dimensional buckled gallium nitride has been synthesized by hy-

drogen surface passivation and graphene encapsulation on SiC(0001) [102], paves the

way for the synthesis of other potential 2D group III−V materials such as buckled

2D-GaAs.

In order to study the dynamical stability of our systems, we have calculated the

phonon dispersion around the Γ point by a frozen phonon approach. Figure 5-2

displays the phonon dispersion curves for pristine 2D-GaAs, and chair, boat and

zigzag-line configurations with DFT-PBE functional. It proves the dynamical sta-

bility of the studied system, since there are no imaginary frequencies in the phonon

dispersion. Some negative frequencies, i.e., they are actually imaginary frequency,

near the Γ point are visible as well. This feature has been found in other 2D-systems

[211, 239, 241, 242, 243] and highlights the flexural acoustic mode of 2D-systems.

They are often present in theoretical calculations due to finite numerical and con-

vergence accuracy close to the Γ point [239]. The highest frequency modes, corre-

sponding to H bond stretching modes, occur at 65.1 THz (2170 𝑐𝑚−1) for the boat

configuration, and at 64.8 THz (2160 𝑐𝑚−1) and 64.7 THz (2157 𝑐𝑚−1) for the chair

and zigzag-line configurations, respectively. These results are in accordance with

those found for the energy stability of our systems. The vibrational frequency is

lowest (highest) for the most (less) stable configuration. Therefore, the zigzag-line

(boat) configuration has the highest (lowest) stability and the lowest (highest) mode

of vibration. The reported highest frequency modes for graphane in the boat (3026
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Figure 5-2: Phonon dispersion curves for (a) pristine 2D-GaAs, (b) 2D H-GaAs chair
configuration, (c) 2D H-GaAs boat configuration, and (d) 2D H-GaAs zigzag-line
configurations with DFT-PBE functional.

𝑐𝑚−1) and chair (2919 𝑐𝑚−1) configurations are larger than those reported in this

work. This suggests a more covalent character for the H-C bond in graphane as

compared to that of H-GaAs.

5.3.2 Structural properties

To study the structural properties of pristine 2D-GaAs, and compare them to those

found for chair, boat and zigzag-line configurations, we have first optimized the

structural parameters of 2D-GaAs hexagonal primitive cell. Then, from the ob-

tained values, the 2D-GaAs rectangular unit cell has been constructed and relaxed

(Figure 5-2(c)). The longer side length (𝑎𝑟𝑒𝑐𝑡) of this latter unit cell is three times
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the Ga-As shortest distance (𝑑𝐺𝑎−𝐴𝑠) of the hexagonal unit cell, while the other side

(𝑏𝑟𝑒𝑐𝑡) is equal to the lattice parameter of the hexagonal primitive cell (𝑎ℎ𝑒𝑥). Finally,

from these optimized hexagonal and rectangular unit cells, the chair (Figure 5-2(b)),

and boat (Figure 5-2(c)) and zigzag-line (Figure 5-2(d)) configurations were built

and relaxed, respectively.

The optimized parameters for 2D-GaAs monolayers: hexagonal and rectangular

unit cells, and chair, boat and zigzag-line configurations are depicted in Table 5.1.

Our results for hexagonal 2D-GaAs unit cell are in good agreement with previous

theoretical ones reported by DFT. Although the average Ga-As distance is almost

the same for the three configurations, a slight difference in H atoms bonding of the

chair, boat and zigzag-line configurations is found. Different from chair configura-

tion, both boat and zigzag-line have two different GaAs bond lengths. In the former

configuration, the GaAs distances are equal because all GaAs bonds connect with

H atoms attached at opposite sides of the sheet. On the contrary, for both latter

configurations, the length of the GaAs distance, where Ga and As bonding the H

atoms lying on the opposite side of the plane, is shorter than those ones bonding

the H atoms on the same side of the plane. For boat (zigzag-line) configuration

the shortest Ga-As distance was 2.483 Å (2.483 Å); while the largest, due to H-H

repulsion, was 2.493 Å (2.485 Å). Regarding to GaH and AsH bonds, we can see

that, due to the charge repulsion, GaH bond lengths are larger than those of AsH

in all three configurations. The GaH (AsH) bond lengths in all three configurations

are almost the same, but larger than those found for BH (NH) in H-BN [252] and

CH in graphane [249].

A comparison of structural results shows that both unit cell lattice parame-

ters (hexagonal and rectangular) and cation-anion distance (𝑑𝐺𝑎−𝐴𝑠 and 𝑑𝐴𝑠−𝐻) de-

crease when we go from the DFT-D2 functional to PBE, while cation-cation distance

(𝑑𝐺𝑎−𝐻) is the same for both functionals.

The average Ga-As distance (𝑑𝐺𝑎−𝐴𝑠) for chair, boat and zigzag-line configura-

tions are larger than the one found for pristine 2D-GaAs by 2.90% (2.51%), 3.32%

(2.93%) and 2.90% (2.51%), respectively, when using PBE (vdW) functional, as

shown in Table 5.1. In order to get physical insight on the plasticity and stiffness
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of pristine 2D-GaAs when hydrogenated, the mechanical properties for hexagonal

pristine 2D-GaAs and hexagonal 2D-HGaAs chair configuration are compared. We

found that in-plane Young’s modulus (Poisson’s ratio) for pristine 2D-GaAs is larger

(smaller) than that of 2D-HGaAs chair configuration when using PBE functional by

125% (31.92%), which means that the pristine 2D-GaAs material displays less stiff-

ness and more plasticity when hydrogenated. The values found for the in-plane

Young’s modulus (Poisson’s ratio) for pristine 2D-GaAs and 2D-HGaAs materials

are 44.4 Jm−2 (0.32) and 19.7 Jm−2 (0.47), respectively. The Poison’s ratio 𝜈 and

the in-plane Young’s modulus 𝑌 are obtained from the calculated C11 and C12 elastic

constants and multiplied later by the corresponding optimized unit-cell z distance.

Their respective definitions are [237]:

𝜈 = 𝐶12/𝐶11, (5.3)

𝑌 = (𝐶2
11 − 𝐶2

12)/𝐶11, (5.4)

5.3.3 Electronic structure and Bader charge transfer analysis

The electronic band structures for the pristine 2D-GaAs sheet, and chair, boat and

zigzag-line configurations for 2D H-GaAs obtained with the PBE functional are dis-

played in Figure 5-3. The red lines represent the contributions of GaAs-4𝑝𝑧 orbitals,

the black lines represent the contributions of GaAs-4𝑝𝑥𝑦 mixed orbitals, while the

yellow ones the contribution of either GaAs-4𝑠 (pristine 2D-GaAs) or GaAs-4𝑠 and

H-1𝑠 mixed orbitals (2D H-GaAs). We can see in Figure 5-3(a), for the pristine

2D-GaAs sheet, that hybridized 4𝑝𝑧 and 4𝑝𝑥𝑦 orbitals are near the Fermi level in the

valence bands, and 4𝑠 and 4𝑝 mixed unoccupied orbitals in the conduction bands.

In addition, 4𝑠 orbital can be seen at the bottom of the conduction band. From

band structures for the chair, boat and zigzag-line configurations (Figure 5-3(b),

Figure 5-3(c) and Figure 5-3(d), respectively) we can see in the valence bands an in-

creased overlap between 𝑝𝑧 and both planar 𝑝𝑥𝑦 and 𝑠 orbitals when compared to the

ones for pristine 2D-GaAs sheet (Figure 5-3(a)). As a result, the 𝑠𝑝2 hybridization
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Figure 5-3: Electronic band structure for (a) the pristine 2D-GaAs sheet, and (b)
chair, (c) boat, and (d) zigzag-line configurations for 2D H-GaAs, with DFT-PBE
functional. The red lines represent the contributions of GaAs-4𝑝𝑧 orbitals, the black
lines the contributions of GaAs-4𝑝𝑥𝑦 mixed orbitals, and the yellow lines represent
the contributions either of the GaAs-4𝑠 orbitals (pristine 2D-GaAs) or GaAs-4𝑠 and
H-1𝑠 mixed orbitals (2D H-GaAs).

becomes weaker, and the 𝑠𝑝3 one, stronger. Therefore, the average Ga-As atoms

bond length (𝑑𝐺𝑎−𝐴𝑠) for all three configurations is much larger than that of pristine

2D-GaAs, as shown in Table 5.1. Furthermore, in comparison to pristine 2D-GaAs

band structure, an extra 𝑠 orbital, due to H contribution, is shown in the bottom of
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the valence bands for all three configurations.

From Figure 5-3(a), Figure 5-3(d) and Figure 5-1(f), we can see that pristine

2D-GaAs and zigzag-line configurations are Γ-𝐾 and Γ-𝐷 indirect semiconductors,

respectively; while, from Figure 5-3(b) and Figure 5-3(c), the chair and boat config-

urations display a Γ-Γ direct bandgap nature. As shown in Table 5.1, the corrected

bandgap values for chair, boat and z-line configurations with HSE method are larger

than those ones found by DFT-PBE (DFT-D2) for chair, boat and z-line, by 49.40%

(46.00%), 37.96% (36.36%) and 43.05% (44.35%), respectively. The bandgap sizes

of all studied configurations are also hydrogen dependent, and wider than that of

pristine 2D-GaAs with PBE, PBE-vdW and HSE functionals, as shown in Table 5.1.

Thus, the presence of H on 2D-GaAs layer opens the bandgap of 2D-GaAs layer,

which makes it a potential candidate for optoelectronic applications in the visible

range. A qualitatively similar bandgap opening effect of H on graphene has been

reported by Sofo et al [249]. On the contrary, hydrogenation of 2D-BN sheet leads

to a smaller bandgap than the pristine one [104].

The bandgap energy for pristine 2D-GaAs changes from 1.89 𝑒𝑉 (red light) to

2.51 𝑒𝑉 (blue light), 2.98 𝑒𝑉 (violet light), and 3.19 𝑒𝑉 (violet light) for chair, boat,

and zigzag configurations, respectively, with the HSE approach when hydrogenated.

It can be noticed from Table 5.1 that hydrogen tunes the Γ-𝐾 indirect bandgap of

pristine 2D-GaAs to Γ-Γ direct one for both chair and boat configurations, while the

zigzag configuration remains indirect. Moreover, given that the energy differences for

all three configurations are tiny, ∼ 2-3𝑚𝑒𝑉 with PBE functional, our results indicate

that 2D-HGaAs is metastable in the chair, boat, and zigzag-line configurations, and

thus the synthesis of these phases could be feasible by using the appropriate growth

conditions and/or a specific substrate. Hence, the hydrogenation of 2D-GaAs tunes

the bandgap of 2D-GaAs, which makes it a potential candidate for optoelectronic

applications in the blue and violet ranges of the visible electromagnetic spectrum.

In order to get physical insight about the direction of charge transfer and ionicity

of the studied 2D H-GaAs configurations, we have calculated the charge transference

by Bader analysis [195]. For pristine 2D-GaAs a charge transfer of −0.60e (−0.59e)

from Ga to As atoms with PBE (DFT-vdW) functional was found, as shown in
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Table 5.2: Bader charge state of Ga, As, 𝐻𝐺𝑎 and 𝐻𝐴𝑠 atoms in chair, boat and zigzag-line
configurations for 2D H-GaAs systems with PBE and DFT-D2 functionals.

Bader charge state
Pristine 2D-GaAs Chair Boat Zigzag-line

(𝑒) (𝑒) (𝑒) (𝑒)

Ga +0.60 +0.84 +0.72 +0.70
vdW +0.59 +0.84 +0.70 +0.67
As −0.60 −0.21 −0.23 −0.20

vdW −0.59 −0.20 −0.20 −0.16
𝐻𝐺𝑎 – −0.37 −0.32 −0.31
vdW – −0.37 −0.31 −0.31
𝐻𝐴𝑠 – −0.26 −0.17 −0.19
vdW – −0.26 −0.17 −0.19

Table 5.2. This charge transference is larger than that of −0.34e found in 2D H-BN

[252], which means that our system is more ionic. For other configurations of H

atoms, due to the charge conservation principle, the electron lost by the Ga atoms

is gained by As, 𝐻𝐺𝑎 and 𝐻𝐴𝑠 atoms of the corresponding unit cell. For instance,

we see in Table 5.2, for the chair configuration, a positive charge for Ga of +0.84e,

while the net negative charge for As (-0.21e), 𝐻𝐺𝑎 (-0.37e) and 𝐻𝐴𝑠 (-0.26e) atoms

is -0.84e.

The Bader analysis of Ga, As and H atoms in the three 2D H-GaAs configura-

tions displays that in all configurations As, 𝐻𝐴𝑠 and 𝐻𝐺𝑎 acquire a negative charge

state, gain electrons, while Ga acquires a positive charge state, looses electrons, as

shown in Table 5.2. Physically, this takes place due to the electronegative difference

between Ga, As and H atoms. We can also see that in all configurations the charge

transference is larger than that of pristine 2D-GaAs sheet, which means that ionic-

ity increases. This result agrees with the increased 𝑠𝑝3 hybridization found in the

band structure analysis for all configurations. The charge transference order for our

systems is chair > boat > zigzag-line. Table 5.2 also shows that the charge transfer-

ence in all configurations is slightly minor with DFT-vdW when compared to that

with PBE functional, but follow the same qualitative trend. This effect cannot be

directly attributed to van der Waals interactions since the DFT-D2 method is not

self-consistent; rather, it is due to both the small change in atomic positions with

respect to the ones obtained from PBE and the short range electronic interactions.
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5.4 Conclusions

The ground state structure, stability, structural and electronic properties of two-

dimensional hydrogenated GaAs with chair, boat and zigzag configurations have

been studied by first-principles calculations with PBE and DFT-vdW functionals.

To correct the bandgap values obtained by GGA-PBE, calculations with the hybrid

functional Heyd-Scuseria-Ernzerhof (HSE) are carried out. The formation energy

and phonon dispersion analysis display that all three hydrogenated configurations

are stable semiconductors, where the most stable configuration is the zigzag, followed

with a slight energy difference by chair (boat) and boat (chair) configurations with

PBE (DFT-vdW) functional. Our results indicate that 2D-HGaAs is metastable in

the chair, boat and zigzag-line configurations, and thus the synthesis of these phases

could be feasible by using the appropriate growth conditions and/or a specific sub-

strate. On the other hand, DFT-vdW interactions increase the adsorption energies

and reduce the equilibrium distances when compared with PBE functional for the

three configurations, but display qualitatively the same physical results on their sta-

bility and electronic properties. The calculated mechanical properties indicate that

pristine 2D-GaAs displays less stiffness and more plasticity when it is hydrogenated.

Electronic structure analysis shows that hydrogen reduces the in-plane 𝑠𝑝2 (𝜎 bond-

ing) hybridization, and increases the 𝑠𝑝3 hybridization when compared with pristine

sheet. As a result, the 2D hydrogenated GaAs layers have a larger bandgap than

the pristine one with both PBE and HSE functionals. In addition, zigzag is a Γ−𝐷

indirect semiconductor, while chair and boat are Γ−Γ direct semiconductors.

The bandgap energy for pristine 2D-GaAs changes from red to violet (blue)

range for boat and zigzag (chair) configurations, with the HSE approach when hy-

drogenated. Our findings indicate that the presence of H on 2D-GaAs tunes the

bandgap of pristine 2D-GaAs, which makes 2D-HGaAs a potential candidate for

optoelectronic applications in the blue and violet ranges of the visible electromag-

netic spectrum. Moreover, they suggest that 2D buckled-GaAs could be a good

candidate to be synthesized by hydrogen surface passivation.
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Chapter 6

Transition-metal adatoms on

2D-GaAs: a route to chiral magnetic

2D materials by design

Using relativistic density-functional calculations, we examine the magneto-crystalline

anisotropy and exchange properties of transition-metal atoms adsorbed on 2D-GaAs.

We show that single Mn and Mo atoms (Co and Os) strongly bind on 2D-GaAs, and

induce local out-of-plane (in-plane) magnetic anisotropy. When a pair of TM atoms

is adsorbed on 2D-GaAs in a close range from each other, magnetisation properties

change (become tunable) depending on concentration and ordering of the adatoms. In

all cases, we reveal the presence of strong Dzyaloshinskii-Moriya interaction (DMI).

These results indicate novel pathways towards 2D chiral magnetic materials by de-

sign, tailored for desired applications in magneto-electronics.

6.1 Introduction

Two-dimensional (2D) materials are nowadays being intensely studied both the-

oretically and experimentally due to their unique physical properties [9, 10, 54,

169, 170, 171, 172, 173]. Most of them are nonmagnetic in their pristine form,

which restricts their applicability in magneto-electronics. According to the Mermin-

Wagner-Hohenberg theorem [168, 259], thermal fluctuations strongly suppress long-
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range magnetic order in two-dimensional materials at any non-zero temperature,

even if those materials are intrinsically magnetic in 3D bulk form; nonetheless,

such detrimental effect of fluctuations can be neutralized by the presence of mag-

netic anisotropy (MA). The pioneering experimental confirmations of magnetism in

CrI3 [132] and CrGeTe3 [69] in 2017 opened an entirely new field of atomically-thin

magnetic crystals, that does not cease to surprise [70]. For example, the criti-

cal temperature of CrGeTe3 tends to zero when material is reduced in thickness

to the monolayer limit. However, when anisotropy is introduced in the CrGeTe3

system, by application of an (even tiny) external magnetic field, a non-zero mag-

netisation establishes at finite temperature [69, 70]. Zhang et al. reported robust

intrinsic ferromagnetism and half semi-conductivity in two-dimensional single-layer

chromium trihalides. They found a magnetocrystalline anisotropy energy (MAE)

of 685.5 𝜇eV and 185.5 𝜇eV for 2D-CrI3 and 2D-CrB3 [260], respectively. The au-

thors state that 2D-chromium trihalides systems are promising candidates for low-

dimensional magneto-electronic applications. For comparison, these values of MAE

are higher than those found for ferromagnetic materials such as bulk Fe, Ni and Co,

which present a MAE per atom of 1.4 𝜇eV, 2.7 𝜇eV and 65 𝜇eV [261], but lower

for transition metal monolayers [262], magnetic atoms on metal surface [263] and

ferromagnetic-semiconductor interface [264], whose MAE per atom are on the order

of meV.

The spin-orbit coupling (SOC) is the microscopic source of magnetic anisotropy.

Hence, tuning the orbital and spin moment of a crystal is fundamental; as an il-

lustration, the magnetic anisotropy in a 2D material can be induced by doping

with transition metals, among other ways of manipulating the SOC of a crystal

[58, 59, 60, 61]. Long-range ferromagnetic ordering and high magnetic anisotropy

have been found in manganese-doped 2D systems [260, 265, 266]. Using density func-

tional theory (DFT) calculations, Mishra et al. reported long-range ferromagnetic

ordering in Mn-doped two-dimensional dichalcogenides [265]. Sun et al. demon-

strated that the MnX3 (X = F, Cl, Br, I) are dynamically and thermodynamically

stable up to high temperatures, and exhibit large magnetic moments (4 𝜇𝐵), high

Curie temperatures, and large in-plane magnetic anisotropy energies [266].
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On the other hand, diluted magnetic semiconductors (DMSs) based on III–V

group materials have been of great interest in 3D systems due to their potential

applications in spintronic devices [267, 268, 269, 270, 271]; in particular bulk Mn-

doped GaAs has attracted significant interest in that respect [269, 270, 271]. The

question arises: how the magnetic anisotropy properties of the Mn-GaAs system

evolve in the ultrathin limit of that material? Lan et al. investigated from first

principles the magnetic properties of 2D (Ga,Mn)As but did not study the magnetic

anisotropy of this material, nor covered the magnetic exchange in sufficient detail.

[272].

Recent theoretical [61, 273] and experimental [274] works have reported that the

adsorption or doping of Os and Co on/in 2D monolayer systems can induce a large

magnetic anisotropy (MA). Sivek et al. showed by an ab-initio study that transition-

metal atoms (Os and Co) adsorbed on MoS2 and fluorographene monolayers can

cause a huge magnetocrystalline anisotropy to arise [273]. Furthermore, Torun et

al. found a high MAE in Co on graphene and Os-doped MoTe2. They reported

an out-of-plane and in-plane easy-axis direction of Co-on-graphene and Os-doped

MoTe2 systems, respectively [61].

Another important consequence of relativistic effects i.e., spin-orbit coupling

combined with a broken spatial inversion symmetry, is the appearance of Dzyaloshinskii-

Moriya interaction (DMI) [174, 175]. DMI, characterized by a Dzyaloshinskii-Moriya

vector D acting on a pair of spins, is an antisymmetric magnetic exchange interac-

tion that aligns the neighbouring spins orthogonally to each other, with a unique

sense of rotation, instead of the parallel or antiparallel spin alignments obtained by

the usual Heisenberg exchange interaction [176]. DMI is essential for creating non-

collinear long-range spin order in ultra-thin magnetic films, and is responsible for

the creation, stabilisation and manipulation of skyrmions and chiral domain walls

as bearers of attractive applications in novel spintronic, memory and logic devices

[15, 177]. Thin-film heterostructures consisting of transition metal layers have been

investigated on the basis of first-principles calculations in combination with spin-

polarised scanning tunnelling microscopy (SP-STM), to report how DMI influences

their magnetic structure, and changes standard perception of magnetic properties
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[178, 275, 276, 277].

Motivated by the above developments, and by recent theoretical reports about

the dynamical and mechanical stability of 2D-GaAs semiconductor [123, 171], here

we investigate both the magnetic anisotropy and Dzyaloshinskii-Moriya interaction

induced by transition metals adsorbed on two-dimensional gallium arsenide (TM=

Mn, Co, Mo and Os). Experimental and theoretical studies of induced MA and

DMI in such systems are entirely lacking at present, despite the materials in ques-

tion being rather accessible and readily used in technological applications. The

understanding of physical conditions for a given TM adatom to induce magnetic

anisotropy, exchange and DMI in a given 2D material will pave the way for the

creation of 2D magnetic materials at will, as required for a specific application in

magneto-electronic technologies.

6.2 Computational and theoretical details

The calculations were performed using Vienna Ab-initio Simulation Package (VASP)

[152, 153] employing the first-principles pseudo-potential method in the framework

of the DFT [135, 136]. Exchange and correlation effects were treated with the

generalized-gradient approximation implemented in the Perdew–Burke–Ernzerhof

functional [142]. The core electrons were described by the projector augmented

wave (PAW) method [151, 182] wherein the 𝑑 states for Ga and As were included

as valence electrons in their PAW pseudo-potentials. The hexagonal primitive cell,

with one Ga atom and one As atom was constructed from the zinc-blende structure

in the (111) plane [171]. The systems under study are composed of a 551−GaAs

supercell in which a single transition metal atom (Mn, Co, Mo and Os) is adsorbed

on top of the hexagonal Ga-As tile, as shown in Figure 6-1(a). This is equivalent to

4% coverage of TM atoms per Ga or As atoms. This supercell was constructed using

the optimised 2D-GaAs unit-cell, and then relaxed. The optimised placements for

Mn, Co, Mo and Os atoms are shown in Figure 6-1(b), Figure 6-1(c), Figure 6-1(e),

and Figure 6-1(f), respectively.

In order to study the magnetic interaction between neighbouring TM atoms,
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Figure 6-1: Oblique view of the considered systems: (a) top view of a transition-
metal adatom at the hollow site of 551−GaAs supercell, and side views of the op-
timised placements for the adsorbed (b) Mn, (c) Co, (e) Mo, and (f) Os atoms at
such a site. For comparison, panel (d) shows relaxed buckling of 551−GaAs at the
hollow site in absence of an adatom.

identical TM atoms were considered adsorbed on 2D-GaAs in close proximity to

each other, as shown in Figure 6-5.

The electron wave function was expanded in plane waves up to a cutoff energy of

500 eV in all the calculations. A Γ-centered grid of 25×25×1 𝑘-points was used to

sample the irreducible Brillouin zone in the Monkhorst–Pack special scheme [146],

except for the 551−GaAs supercell where a 8×8×1 𝑘-point grid was used. Grimme’s

method (DFT-D2) was implemented to treat long-range electronic correlations [256].

The PYPROCAR code was used to plot the electronic bands of both 2D-GaAs pris-

tine unit-cell and TM on 551−GaAs supercell [236]. In addition, a 20 Å vacuum was

kept as vertical spacing between the adjacent supercells to avoid interactions. The

optimised parameters for 2D-GaAs monolayer, and the TM adsorbed on 551−GaAs

are given in Table 6.1. We have calculated the charge transference by Bader anal-

ysis [195]. In our study, the spin-orbit interaction for TM on 551−GaAs supercell

has been taken into account. Spin-orbit coupling is a relativistic interaction between

moving electrons and a local electric field E created in their rest frame. From special

relativity we know that in the electron frame a magnetic field B is created. Due to

the interaction of B with the electron intrinsic magnetic moment, and the Zeeman

effect, the orbital energy levels are split, which can lead to different transition levels

with energy:

𝐻𝑠𝑜 = 𝜉(𝑟)L · S, (6.1)
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Table 6.1: Calculated lattice constant (𝑎0 (Å)), angle between neighbouring bonds (𝜃), buck-
ling parameter (Δ𝐴𝑠−𝐺𝑎 (Å)), vertical Ga−TM distance (Δ𝐺𝑎−𝑇𝑀 (Å)), adsorption energy per
TM atom (𝐸𝑎𝑑𝑠), bandgap value (𝐸𝐺), magnetic moment per TM atom (𝜇), charge located on
the adatom (Δ𝜌), and magnetocrystalline anisotropy energy (MAE) per TM atom, for 2D-GaAs
monolayers and TM on 551−GaAs supercell (TM = Mn, Co, Mo and Os). The positive (negative)
value of the MAE implies that the easy magnetisation axis is out-of-plane (in-plane) to the surface
of the 2D structure.

𝑎0 𝜃 𝑑𝐴𝑠−𝐺𝑎 ∆𝐴𝑠−𝐺𝑎 ∆𝐴𝑠−𝑀𝑇 𝐸𝑎𝑑𝑠 𝐸𝐺 𝜇 ∆𝜌 MAE
(Å) (∘) (Å) (Å) (Å) (eV) (eV) (𝜇𝐵) (e) (meV)

2D-GaAs 4.048 114.4 2.407 0.577 − − 1.060 Γ𝐾 − − −
(4.050)[171] 114.3 2.410 0.550 − − 1.080 Γ𝐾 − − −
(3.970)[123] 114.7 2.380 0.550 − − 1.290 Γ𝐾 − − −

Mn 3.999 114.6 2.522 0.893 1.255 2.166 0.583 Γ Γ 3.000 0.532 0.530
Co 3.997 111.8 2.491 0.872 0.959 3.539 0.672 ΓM 1.000 0.043 −0.950
Mo 4.000 117.6 2.556 0.903 1.469 2.799 Halfmetal 4.000 0.427 3.460
Os 3.991 100.8 2.706 1.337 0.916 4.967 0.156 MM 2.000 −0.411 −6.930

where 𝜉 (r)= 𝑒2/2𝑚2
𝑒𝑐

2𝑟3 contains the entire radial dependence of the SOC Hamil-

tonian operator [154, 155]. L and S are the electron orbital and spin angular mo-

mentum, respectively.

The magnetocrystalline anisotropy energy (MAE) of single TM on 551−GaAs

was calculated using the following expression

𝑀𝐴𝐸 = 𝐸‖ − 𝐸⊥, (6.2)

where 𝐸‖ and 𝐸⊥ are total energies for the in-plane and out-of-plane magnetisation

directions with respect to the surface of the 2D crystal, respectively [61]. Table 6.1

displays the calculated magnetocrystalline anisotropy energy (MAE) per TM atom

of our systems.

To obtain magnetic exchange interactions between two adsorbed metal atoms,

we employed the four-state energy mapping methodology [179, 180]. Heisenberg

spin Hamiltonian is considered in the form:

𝐻 =
1

2

∑︁
𝑖,𝑗

S𝑖J𝑖𝑗S𝑗, (6.3)

where S𝑖 = (𝑆𝑥
𝑖 , 𝑆

𝑦
𝑖 , 𝑆

𝑧
𝑖 ) is a vector. J𝑖𝑗 is 3 × 3 matrix describing the magnetic

exchange interaction between two magnetic sites. J𝑖𝑗 may be formally decomposed

into 3 components: the diagonal part, i.e. the isotropic exchange; the antisymmet-

ric component, also known as the Dzyaloshinskii–Moriya interaction (DMI), whose
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vector D is made from off-diagonal elements of the antisymmetric exchange, and

the off-diagonal elements of the isotropic exchange. Since off-diagonal elements of

the isotropic exchange part are small, in this work, we will focus on the two first

components: the isotropic exchange and DMI. The DMI components, i.e., 𝐷𝑥
12,

𝐷𝑦
12 and 𝐷𝑧

12, were calculated by the following equations: 𝐷𝑥
12 = 1

2
(𝐽𝑦𝑧

12 − 𝐽𝑧𝑦
12 ),

𝐷𝑦
12 = 1

2
(𝐽𝑧𝑥

12 − 𝐽𝑥𝑧
12 ), and 𝐷𝑧

12 = 1
2
(𝐽𝑥𝑦

12 − 𝐽𝑦𝑥
12 ). All nine elements of the matrix

(𝐽 𝑖𝑗
12), as well as the DMI parameters, are listed in Table 6.2. In order to obtain the

ground state spin configuration of two adatom cases, the Heisenberg spin Hamil-

tonian, which is constructed with the obtained magnetic exchange interaction via

DFT, is solved iteratively.

Literature suggests an alternative (LKAG) approach to find the magnetic ex-

change parameter for ferromagnetic metals and alloys [278], however this method

does not yield information about anisotropic interactions and DMI. We therefore use

4SM method, due to our interest extended beyond the isotropic magnetic exchange

interactions, also to the induced DMI when TM adatoms are adsorbed on 2D-GaAs

semiconductor and inversion symmetry is broken. 4SM method has been shown to

be particularly effective for this purpose [279].

6.3 Results and discussion

6.3.1 Energetic stability and structural properties

We first calculated the adsorption energy of a single TM adatom (Mn, Co, Mo and

Os) on a 551-GaAs supercell and examined the stability of our systems using the

following expression

𝐸𝑎𝑑 = 𝐸(𝐺𝑎𝐴𝑠) + 𝐸(𝑇𝑀) − 𝐸(𝑇𝑀−𝐺𝑎𝐴𝑠), (6.4)

where E(𝑇𝑀−𝐺𝑎𝐴𝑠) and E(𝐺𝑎𝐴𝑠) are the total energies of the system with adsorbed

TM atom and 551−GaAs supercell respectively, and E(𝑇𝑀) is the energy of a single

isolated TM atom. More stable structures have a larger adsorption energy. We found

that the preferential location of all the TM adatoms studied in our work is the hollow
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site (within the hexagonal Ga-As tile), followed by the site on top of As as the second

most favourable. Os atom is metastable on both sites, with an energy difference of

∼ 284 meV. We have chosen the hollow site as the location for adsorption of the TM

atoms, because it combines the best energetic and structural stability. Table 6.1

displays the adsorption energies on hollow site for comparison. The energy stability

order of our studied configurations is as follows: Os (4.967 eV/adtom), Co (3.539

eV/adatom), Mo (2.799 eV/adatom), and Mn (2.166 eV/adatom). We note that all

configurations exhibit comfortably large energetic stability.

Subsequently, we investigated the local structural distortions introduced by the

adatom in the supercell. The optimised structural parameters for pristine 2D-GaAs

crystal structure and TM on 551−GaAs are given in Table 6.1. In addition, Fig-

ure 6-1 depicts a top view for TM centred above one hollow site (middle of Ga-As

hexagonal tile) of the 551−GaAs supercell (Figure 6-1(a)), as well as the side view

of the relaxed buckling for Ga and As atoms (∆𝐴𝑠−𝐺𝑎) located at the hollow site

for 551−GaAs supercell in absence of any adatom (Figure 6-1(d)). Furthermore,

the optimised placements for Mn, Co, Mo and Os atoms (∆𝐺𝑎−𝑇𝑀) are shown in

Figure 6-1(b), Figure 6-1(c), Figure 6-1(e), and Figure 6-1(f), respectively. One sees

from Table 6.1 that the optimised structural parameters for pristine 2D-GaAs (𝑎0)

are in good agreement with previous theoretical reports [123, 171]. When one TM

atom is adsorbed on the 551−GaAs supercell, the relaxed unit-cell lattice parameter

of TM on 551−GaAs system (𝑎′
0=𝑎𝑠𝑢𝑝/5) is reduced slightly when compared with

the one of pristine unit-cell, i.e. by 1.21, 1.26, 1.19, and 1.41 %, for Mn, Co, Mo and

Os adatom, respectively. This can be explained by the larger buckling parameter

(∆𝐴𝑠−𝐺𝑎) for TM adsorbed on 551−GaAs when compared with the one of pristine

2D-GaAs. The nearest As−Ga bond (𝑑𝐴𝑠−𝐺𝑎) is larger for TM on 551-GaAs than

the one in pristine 2D-GaAs by 4.78, 3.94, 6.19, and 12.42 %, for Mn, Co, Mo and

Os atom, respectively.

From the analysis above, one can see that Os (Z=76) and Mo (Z=42) atoms,

which have higher atomic numbers and are larger, result in a larger buckling (∆𝐴𝑠−𝐺𝑎)

and extend As-Ga bonding length (𝑑𝐴𝑠−𝐺𝑎) compared to the cases of Mn (Z=25)

and Co (Z=27). The optimised placements for Mn, Co, Mo and Os atoms (∆𝐺𝑎−𝑇𝑀)
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are shown in Figure 6-1(b), Figure 6-1(c), Figure 6-1(e), and Figure 6-1(f), respec-

tively. The Mn and Mo atoms remain above the hollow site at a vertical distance

of, respectively, 0.362 Å and 0.566 Å from the Ga−plane, while Co is almost in

the Ga−plane (0.087 Å from Ga−plane) and Os is located between As−plane and

Ga−plane, nearer to the Ga−plane (∆𝑂𝑠−𝐺𝑎=0.421 Å and ∆𝐴𝑠−𝑂𝑠=0.916 Å). These

differences in TM distance from Ga−plane (As−plane) can be intuitively explained

by the electronegativity difference between TM and Ga (As) atoms. Mo (Os) and

Mn (Co) are the most (least) electropositive atoms, thus Ga−Ga (As−As) in-plane

distance increases (decreases) due to charge repulsion (attraction) when a more

electropositive atom is adsorbed. This expansion (contraction) of Ga−Ga (As−As)

in-plane distance can be evidenced by the increase (decrease) of the angle between

neighbouring bonds (𝜃𝐺𝑎𝐴𝑠𝐺𝑎) for Mo (2.797 %) and Mn (0.175 %) (Os: -11.888 %

and Co: -2.797 %) when compared to the one of the pristine system, as shown in

Table 6.1. As a result, Mo and Mn atoms experience a lower net electrostatic force

towards the Ga−plane (As−plane) when compared to Co and Os atoms. In Ta-

ble 6.1 we also give the charge located on the TM adatom (∆𝜌), which is consistent

with the difference of electronegativity between the constituent elements.

6.3.2 MAE and electronic properties

As shown in Table 6.1, the adsorbed single adatom induces a magnetic ground

state in the nonmagnetic 2D-GaAs system, with a net magnetic moment of 3.0

𝜇𝐵, 1.0 𝜇𝐵, 4.0 𝜇𝐵, and 2.0 𝜇𝐵 per TM atom for the case of Mn, Co, Mo and

Os adatom, respectively. Table 6.1 also shows the calculated magnetocrystalline

anisotropy energy (MAE) per TM atom of our systems. The positive (negative)

value of the MAE implies that the easy magnetisation axis is out-of-plane (in-plane)

to the surface of the 2D structures. One sees that Os atom induces the largest MAE

(-6.930 meV), followed by Mo (3.460 meV), Co (-0.950 meV), and Mn (0.530 meV).

However, as would be expected, we find that a higher magnetic moment does not

necessarily lead to a higher MAE, e.g., Os with a moment of 2.00 𝜇𝐵 has a higher

MAE than Mo (4.00 𝜇𝐵) and Mn (3.00 𝜇𝐵). The physical reasons that lead to MA

in 2D TM-adsorbed GaAs will be analyzed in the next paragraphs. For Os adsorbed
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Figure 6-2: Parametric orbital projected band structure of pristine 2D-GaAs. The
colour intensity corresponds to the degree of overlap of 𝑠𝑝 orbitals between Ga and
As atoms. Fermi energy is set to 0 eV.

on the metastable As-top site, we found a strikingly large MAE of -28 meV.

In order to provide fundamental insights into the interaction of a TM adatom

with the 2D-GaAs host semiconductor (TM = Mn, Co, Mo and Os), and how

those interactions can induce magnetocrystalline anisotropy, both the electronic

band structure of pristine 2D-GaAs, and the ones of Mn, Co, Mo and Os adsorbed

on the hollow site of 2D-GaAs were calculated for comparison. The parametric

projected electronic band structures for both the pristine 2D-GaAs sheet and the

adsorbed TM on 2D-GaAs are shown in Figure 6-2 and Figure 6-3, respectively.

Notice in Figure 6-2 that 2D-GaAs has a K−Γ indirect band gap of 1.06 𝑒𝑉 . In the

projected plots, the colour intensity corresponds to the degree of overlapping of 𝑠𝑝

orbitals between Ga and As atoms. The yellow lines, near and below the Fermi level,

represent the contributions of As-4p𝑧 orbitals. The empty band, near and above the

Fermi level (green lines), represents the contribution of Ga-4𝑝𝑧 and Ga-4𝑠 orbitals.

The buckling reduces the 𝑠𝑝2 (𝑝𝑧 orbitals) hybridization, and increases the 𝑠𝑝3 one

(𝑝𝑧 and planar 𝑠). Figure 6-3 displays the parametric orbital projected electronic
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Figure 6-3: Parametric orbital projected band structure of TM on 2D-GaAs, calcu-
lated with SOC included. The colour intensity corresponds to the degree of contri-
bution of the 𝑑 orbital of a TM adatom. Fermi energy is set to 0 eV.

structure for TM on 2D-GaAs (TM = Mn (a), Co (b), Mo (c) and Os (d)). Elec-

tronic structure analysis shows that the semiconducting nature of pristine 2D-GaAs

is retained by Mn (Γ−Γ), Co (M−Γ) and Os (M−M) systems, with bandgap energy

reduced by 45%, 37 % and 85 %, respectively. On the other hand, adsorption of Mo

on 2D-GaAs changes its nature to a half-metallic one. One sees in Figure 6-3 that

the TM adatom creates localised states near the Fermi level. In the projected plots,

the colour intensity corresponds to the degree of contribution of the 𝑑-electrons of

the TM adatom. The Ga and As atoms surrounding the adatom lead to a crystal

field splitting of the 𝑑 orbitals of the TM adatom. Due to the buckling of 2D-GaAs,

and the different electronegativities and atomic numbers between TM, Ga and As

atoms, the crystal-field splitting of the 𝑑 orbitals of the TM on 2D-GaAs deviates
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from the known planar trigonal-level splitting. In the case of crystal-field splitting

of trigonal planar geometry, if the ligand atoms lie in the 𝑥 − 𝑦 plane, the 𝑑𝑥𝑦 and

𝑑𝑥2−𝑦2 orbitals have the highest energy because their electron density is concentrated

in the 𝑥− 𝑦 plane. The 𝑑𝑧2 orbital has higher energy than the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals.

The physical reason of this feature is the ring of electron density that 𝑑𝑧2 orbital

has in the 𝑥− 𝑦 plane. The 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals of the central TM adatom have the

lowest energies because they have all their electron density out-of-plane.

For the cases of Co and Os, which exhibit magnetisation in the in-plane direction,

the orbitals of higher energy levels are 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 , as shown in Figure 6-3(b) and

Figure 6-3(d), respectively. Due to different vertical position of Co and Os adatom

with respect to the Ga-plane and As-plane, see Figure 6-1(c) and Figure 6-1(f),

respectively, the energies for 𝑑𝑧2 and 𝑑𝑥𝑧 (𝑑𝑦𝑧) orbitals differ. While the 𝑑𝑧2 orbital

for Co has a somewhat higher energy than that of the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals, for Os we

find the opposite, the energies for 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals are higher than that of 𝑑𝑧2 .

Another difference between these cases is the large overlap among the 𝑑𝑥𝑧 and 𝑑𝑦𝑧

orbitals of Co and 4-𝑝𝑥𝑝𝑦𝑝𝑧-GaAs orbitals as compared with those for Os, as shown

in Figure 6-3(b) by green lines. This can be explained by the closer distance between

Co and Ga-planes as compared to the distance of Os to the Ga-plane. Regarding

the electronic structure of Mn and Mo on 2D-GaAs, one notices in Figure 6-3(a)

and Figure 6-3(c), respectively, that 𝑑𝑥𝑧 and 𝑑𝑦𝑧 are the occupied states of higher

energy, followed by 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 . This can explain the out-of-plane magnetisation

axis for both those TM adatoms on 2D-GaAs.

SOC plays a fundamental role in the magnetic behavior of the TM-adsorbed on

2D-GaAs semiconductor. The SOC mechanism works as follows: Figure 6-2 displays

𝑠 and 𝑝 mixed orbitals of pristine 2D-GaAs near the Fermi level, both in the valence

and in the conduction bands. Structural buckling reduces the overlap between 𝑝𝑧

orbitals. As a result, the 𝑠𝑝3 hybridization near Fermi level becomes stronger than

𝑠𝑝2. On the other hand, the outermost 𝑑-orbital of TM ions are half-filled and,

by Hund’s rule, they are aligned parallel. When TM ion is adsorbed on 2D-GaAs

semiconductor, the local magnetic moment of 𝑑-TM states hybridizes with the 𝑠𝑝

bands near the Fermi level of 2D-GaAs (spin-orbit interaction). Therefore, the 𝑠𝑝-𝑑
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Figure 6-4: Calculated electronic spin-charge density for systems with the easy
magnetisation axis in-plane ((a) Os and (b) Co) or out-of-plane ((c) Mn and (d) Mo)
to the surface of the 2D structure. The colour intensity represents the spin–charge
density, where blue and red indicate high and low electronic spin-charge density,
respectively.

exchange interaction between the 𝑠𝑝 band electrons of 2D-GaAs and the 𝑑 electrons

associated with the TM atoms, as well as the lack of inversion symmetry of the

crystal environment, are responsible for the magnetic behavior of TM-adsorbed on

2D-GaAs semiconductor.

The calculated electronic spin-charge density for systems with the easy magneti-

sation axis parallel ((a) Os and (b) Co) and perpendicular ((c) Mn and (d) Mo) to

the surface of the considered 2D structures is shown in Figure 6-4. The colour in-

tensity represents the spin–charge density, where blue and red indicate high and low

density, respectively. The magnetic moment in each of these systems mainly origi-

nates from the adatom, i.e. 63, 95, 68 and 53 % of total magnetisation for Mn, Co,

Mo and Os atom, respectively. Conversely, the magnetic moment stemming from

the nearest neighbours at the hexagonal Ga-As tile where adatom resides is smaller

than that found in adatom case, i.e. 4.9, 4.5, 10 and 37 % of total magnetisation for

Mn, Co, Mo and Os system, respectively. Thus, according to our results, the MA

of TM on 2D-GaAs system depends robustly on the broken crystal symmetry, the
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Figure 6-5: Top and side view of interacting TM adatoms on 2D-GaAs: Mn (a,b),
Co (c,d), and Mo (e,f) atoms, located at the hollow sites of a 551−GaAs supercell.
DMI vector D12 (blue), showing non-trivial magnetic exchange interaction between
the two TM adatoms is also shown, together with their spins (vectors in gold) at
ground state for facilitated sense of orientation.

orbital character of the states in the vicinity of the Fermi level, and the magnitude

of the interaction of the spins with the field generated by the electron orbital motion

in the crystal.

6.3.3 Magnetic Exchange Interaction

During experimentally performed adsorption, one expects multiple adatoms to reside

in close proximity to each other. The study of small clusters is of special scientific

interest due to their unique magnetic properties that can be tailored for desired

applications in magneto-electronics by choosing a special size or composition of the

cluster. That in turn opens questions about the nature of magnetic interaction

arising between the adsorbed atoms in a close range from each other.

Modern DFT-based calculations are able to describe the electronic and magnetic

properties of the transition metal clusters in excellent agreement with the value ob-

tained from the experimental ones. For instance, the experimental study of magnetic

properties of Co atoms adsorbed on graphene [280] agrees very well with the ones

predicted by DFT [281]. In addition, A. Stroppa et al. reported that computa-

tional images of Mn defects on GaAs predicted by DFT are consistent with the

experimental ones [282].
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Table 6.2: Calculated exchange matrix parameters (𝐽 𝑖𝑗
12) between two TM atoms of the same

type adsorbed on a 2D-GaAs (TM = Mn, Co and Mo), as well as the DMI components 𝐷𝑥
12, 𝐷

𝑦
12,

𝐷𝑧
12, the total DMI parameter |𝐷|, the ratio between |𝐷| and the average of diagonal exchange

parameters 𝐽𝑥𝑥
12 , 𝐽𝑦𝑦

12 and 𝐽𝑧𝑧
12 , and the calculated magnetocrystalline anisotropy energy (MAE), all

defined with respect to the TM pair. The positive (negative) value of the MAE implies that the
easy magnetisation axis is out-of-plane (in-plane) to the surface of the 2D structures.

𝐽𝑥𝑥
12 𝐽𝑦𝑦

12 𝐽𝑧𝑧
12 𝐽𝑦𝑧

12 𝐽𝑧𝑦
12 𝐽𝑧𝑥

12 𝐽𝑥𝑧
12 𝐽𝑥𝑦

12 𝐽𝑦𝑥
12 𝐷𝑥

12 𝐷𝑦
12 𝐷𝑧

12 |𝐷| |𝐷|/|𝐽𝑑𝑖𝑎𝑔| MAE
(meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV)

Mn −4.54 −4.55 −4.56 −0.27 −1.56 1.46 0.55 −0.04 0.04 0.64 0.46 −0.04 0.79 0.17 1.03
Co −8.05 −0.01 −6.73 −0.22 −0.53 2.08 −2.04 −0.20 0.47 0.15 2.06 −0.33 2.09 0.42 −0.54
Mo 3.50 3.49 3.54 0.11 −0.09 −0.07 0.06 −0.28 0.27 0.10 −0.06 −0.27 0.30 0.09 2.89

We therefore set out to determine the magnetic exchange interaction between two

neighbouring transition-metal adatoms on 2D-GaAs, by calculating the generalised

3×3 matrix according to equation (6.3). We will primarily focus on two components

of the magnetic exchange interaction: the isotropic exchange and the DMI.

In order to examine the magnetic exchange interaction between two adsorbed

transition metal atoms in close proximity to each other, we first relaxed the struc-

tures for the first (4.05 Å) and second nearest distance (7.01 Å) between TM atoms

(MnMn, CoCo, and MoMo) adsorbed on 2D-GaAs. The second nearest distance

was chosen as subject of this study, as shown in Figure 6-5, instead of the nearest

one, because its geometry was not distorted at the hexagon site after relaxation as

for the nearest case. Then, we calculate the magnetic exchange parameters for the

most stable geometry (𝐽 𝑖𝑗
12) using DFT methodology described in Section II. All nine

elements of the matrix (𝐽 𝑖𝑗
12), as well as the DMI parameters 𝐷𝑥

12, 𝐷
𝑦
12, 𝐷𝑧

12, the total

DMI parameter |𝐷|, and the ratio between |𝐷| and the average of the diagonal ex-

change parameters 𝐽𝑥𝑥
12 , 𝐽𝑦𝑦

12 and 𝐽𝑧𝑧
12 , are listed in Table 6.2. Ratio |𝐷|/|𝐽𝑑𝑖𝑎𝑔| gives

one insight in how strong D is as compared to the isotropic exchange J (yielding

standard (A)FM behaviour).

Our results show that the total magnetisation obtained for Co (1 𝜇𝐵/adatom)

is smaller than those for Mn (3 𝜇𝐵/adatom) and Mo (4 𝜇𝐵/adatom) atoms. The

pairwise distances between Co, Mn and Mo adatoms after relaxation are, respec-

tively, 6.68 Å, 6.77 Å, and 7.16 Å. One can see that for our three magnetic systems,

the magnetic exchange interaction is stronger as the TM adatoms reside closer to

each other. The optimised position of the two adatoms has the same physical ten-
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dency as for the single adatom cases. The Mn and Mo atoms remain above the

hollow site to a vertical distance of 0.469 Å (0.362 Å) and 0.611 (0.566 Å) from the

Ga-plane, respectively, while Co resides in the Ga-plane (0.087 Å from Ga-plane).

The values given in parenthesis represent the corresponding distances for the case

of a single adatom, for comparison. When two TM atoms are adsorbed on the

551−GaAs supercell, the relaxed unit-cell lattice parameter of TM on 551−GaAs

system (𝑎′
0=𝑎𝑠𝑢𝑝/5) is reduced slightly when compared with the one of the pristine

unit-cell, i.e. by 1.48 (1.21), 1.58 (1.26) and 1.24 (1.19) %, for Mn, Co and Mo

atoms, respectively (the values in parenthesis are for single adatom cases). The

optimised structural parameters for a pair of adatoms therefore exhibit the same

physical tendencies as the previous single-adatom cases.

As shown in Table 6.2, the magnetic interaction between adjacent TM adatoms

significantly changes the emergent magnetic properties. One sees that Co prefers

the FM ground state, with the magnetisation along the x-axis, and exhibits a strong

FM interaction in both x and z directions, as 𝐽𝑥𝑥
12 = −8.05 meV and 𝐽𝑧𝑧

12= −6.73 meV.

Such difference of diagonal elements points to strong anisotropy. Regarding the Mn

system, FM interaction is also found. The difference between all diagonal elements

differs only by 0.01 meV, meaning there is almost no anisotropy. On the other hand,

there is an AFM interaction found between two Mo atoms on 2D-GaAs, with a slight

anisotropy favouring the z-(out-of-plane)direction. We found for all three systems

that 𝐽𝑥𝑦
12 ̸= 𝐽𝑦𝑥

12 , 𝐽𝑦𝑧
12 ̸= 𝐽𝑧𝑦

12 , and 𝐽𝑥𝑧
12 ̸= 𝐽𝑧𝑥

12 , which indicates that the matrix 𝐽12 is

antisymmetric. Furthermore, the off-diagonal elements of the exchange matrix are

all different from zero, in agreement with the antisymmetry considerations by Moriya

[175]. The consequent magnitudes of |𝐷| for Mn, Co, and Mo pairs of adatoms

are, respectively, ∼ 17%, ∼ 42%, and ∼ 9% of the average symmetric exchange

interaction, as shown in Table 6.2. Hence, DMI is both stronger and more influential

in the case of Co adatoms, compared to Mn and Mo adatoms. While having a weaker

magnetic moment, Co hosts larger spin-orbit coupling and therefore enhances the

DMI interaction. Table 6.2 also displays the calculated MAE with respect to the TM

pair of our systems. The positive (negative) value of the MAE implies that the easy

magnetization axis is out-of-plane (in-plane) to the surface of the 2D structures. We
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can see that Mo atom induces the largest MAE (2.89 meV), followed by Mn (1.03

meV) and Co (-0.54 meV). As for the single adatom cases, the easy magnetization

axis of Co and Mo (Mn) atoms in two adatom cases remains in-plane and out-

of-plane, respectively. Figure 6-5 depicts orientation vectors for both the spins at

ground state (gold color) and DMI (blue color) of the magnetic exchange interaction

for each studied pair of TM atoms adsorbed on 2D-GaAs. The ground state spin

configurations are obtained by solving Heisenberg spin Hamiltonian iteratively. We

note once more that D vector tends to align the neighbouring spins orthogonally to

each other, instead of the parallel or antiparallel spin alignments obtained by the

usual Heisenberg exchange interaction. The direction of the induced magnetisation

on 2D-GaAs semiconductor can be selectively manipulated depending on chosen

TM adatoms. The induced DMI in the TM-adsorbed GaAs monolayer causes spins

of adjacent TM atoms to deviate from perfect (anti)ferromagnetic alignment. As

a consequence, spins prefer non-collinear, chiral magnetic ordering, enabling spin

textures unattainable otherwise. That is in turn attractive for the development of

spintronic devices, for example those based on special properties of spin-waves, with

dispersion tailored by local DMI

Finally we observe that Os adatoms in close proximity to each other the mag-

netisation vanishes on each Os atom, and the system goes to a non-magnetic state.

Therefore, Os atoms coupling neither FM nor AFM in a close range from each other.

This result strongly differs from our calculations for single Os adatom, where the

system is comfortably magnetic with 2 𝜇𝐵 magnetisation. It is therefore clear from

these results that magnetic properties of adatoms strongly depend on the density of

adatoms, and that more studies are needed to fully characterize the magnetic prop-

erties of specific patterns and densities of TM adatoms on 2D-GaAs. Furthermore,

taking into consideration that the magnetic interactions may change drastically with

distance [283], the study of the distance dependent magnetic exchange interaction

of TM-adsorbed 2D-GaAs will be explored in further research.
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6.4 Conclusions

We investigated the structural and electronic properties, as well as the magneto-

crystalline anisotropy energy and magnetic exchange interactions of different tran-

sition metal adatoms (Mn, Co, Mo and Os) on 2D-GaAs using first-principles and

the four-state energy mapping methodologies based on DFT. Electronic structures

analysis upon structural relaxation revealed that the indirect K−Γ semiconduct-

ing nature of the pristine 2D-GaAs can be tuned by adsorption of transition metal

atoms. We also found that the transition metal adatom leads to a magnetic ground

state in otherwise nonmagnetic 2D-GaAs system. More specifically, even a single

TM adatom gives rise to high magneto-crystalline anisotropy energy, exhibiting ei-

ther in-plane (e.g. Os, 6.93 meV) or out-of-plane MAE (e.g. Mo, 3.46 meV) for

TM adsorbed on the central site above a hexagonal Ga-As tile. MAE can increase

dramatically for TM adatoms trapped at a metastable site, as demonstrated in case

of Os on As−top site leading to a giant in-plane MAE of 28 meV. According to our

results the arising magnetic anisotropy of TM on 2D-GaAs stems from the broken

crystal symmetry, the orbital character of the states in the vicinity of the Fermi level

and the spin–orbit interactions in the crystal. One notices however that same ar-

guments can be put forward to justify the appearance of the Dzyaloshinskii-Moriya

interaction (DMI), crucial for the appearance of non-collinear magnetic textures

beyond the standard ferro-antiferro dichotomy. For that reason, we examined in

detail the magnetic interactions between a pair of identical transition-metal atoms

adsorbed on 2D-GaAs. For Co adatoms, we found a FM ground state with in-plane

magnetic anisotropy, as well as strong DMI. For either Mn and Mo adatoms placed

on adjacent adsorption sites, almost no anisotropy is found. Still, Mn retains FM

interaction, while Mo adatoms exhibit AFM interaction. On the other hand, a pair

of Os adatoms, in same locations as other TM pairs, fall into a non-magnetic ground

state (despite the single adatoms being strongly magnetic). This clearly indicates

that both the concentration and ordering of TM adatoms play a crucial role in their

induced magnetic features in 2D-GaAs. Bearing in mind the versatility of mag-

netic features we reported in the case of different TMs, and the need for magnetic
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textures by design for applications in e.g. magnonics, our findings provide a useful

foundation for further theoretical and experimental tuning of 2D magnetic materials

based on III-V systems (the latter already being a proven commodity in spintronic

applications).
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Chapter 7

Summary and outlook

7.1 Summary

The aim of this thesis is to tune the physical properties of the materials of group III-

As in the thinnest limit by ab initio DFT-based calculations. Besides, it is expected

that the results obtained in this study bring new theoretical insights to the research

of 2D group III-V semiconductors for future electronic applications.

To accomplish this goal, this work has been organized into seven chapters, in-

cluding this section. The first and second chapters, respectively, are devoted to

highlighting the growing impact of two-dimensional materials in the nano- techno-

logical revolution of the 21st century, as well as providing readers with physical

insights into the theoretical foundations that supported this research. In the first

chapter is also pointed out the scarce research in the literature about the study of

group III-As at the atomic level, which is contradicted with the applications of 3D

group III-As materials in the engineering science.

Chapters three to six are dedicated to presenting the results related to the tuning

of the mechanical, electronic and magnetic properties of these group III-As materials

in the atomic level using nano-multilayers, straintronics, hydrogen functionalization,

and transition metal adsorption.

As a platform to build the entire scaffolding of this research, a complete charac-

terization of the structural, electronic, mechanical and vibrational properties of the

pristine monolayers for two-dimensional group III-V semiconductors (BAs, GaAs,
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and InAs), was carried out in chapter 3. Moreover, the structural and electronic

properties of few-layer ℎ-IIIAs structures have been studied and compared to those

of pristine monolayers.

Our initial findings reveal the mechanical and dynamical stability of 2D ℎ-IIIAs

systems (III = B, Ga and In). They also show the tunability of their mechanical

properties by varying the bond length between the neighboring cation-anion atoms.

As the bond length between the neighboring cation-anion atoms increases, the 2D

ℎ-IIIAs binary compounds display less stiffness and more plasticity. Moreover, our

results indicate the semiconducting nature of these systems, like their 3D counter-

part, and give physical insights about the contribution of the 𝜎 and 𝜋 bonding in

their most stable geometry (planar for BAs and buckled for GaAs and InAs).

In our results, the Γ-∆𝑚𝑖𝑛 indirect semiconducting nature of 3D-BAs (0.67 𝑒𝑉 )

is tuned to 𝐾-𝐾 direct bandgap (1.15 𝑒𝑉 ) for its 2D-BAs counterpart. Similarly,

the Γ-Γ direct semiconducting nature of 3D-GAs (1.42 𝑒𝑉 ) is tuned to Γ-𝐾 indirect

bandgap (1.87 𝑒𝑉 ) for its 2D-GAs counterpart. While the Γ-Γ direct semiconducting

nature of 3D-InAs (0.42 𝑒𝑉 ) is retained for its 2D-InAs counterpart (1.46 𝑒𝑉 ).

On the other hand, it is found that when increasing the numbers of layers, ℎ-BAs

keeps its planar geometry, while both ℎ-GAs and ℎ-InAs retain their buckled ones

obtained by their single layers. Bilayer ℎ-IIIAs present the same bandgap nature of

their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap

width for layered ℎ-IIIAs decreases until they become semimetal or metal.

The findings found in chapter 3 motivated us to continue exploring the tunability

of the properties of III-As systems at the atomic level for nanoelectronic applications.

Furthermore, taking into account that Graphene-group III-V heterostructures have

been studied in bilayer [129] and multilayer systems [130, 131], in order to tune

the graphene band gap for optoelectronic applications, in chapter 4, the structural,

mechanical and vibrational properties of graphene/GaAs bilayer are investigated;

as well as the effect of both uniaxial stress along c axis and different planar strain

distributions on the electronic properties.

The analysis of the results found in chapter 4 lead to the dynamical and me-

chanical stability of the graphene/GaAs system. Electronic structure analysis after
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structural relaxation revealed that the indirect Γ-𝐾 semiconducting nature of pris-

tine 2D-GaAs can be tuned to Γ-Γ direct in Graphene/GaAs bilayer heterostructure.

Under the same latter physical conditions, graphene displays a bandgap of 5.0 meV.

In addition, our results show that the uniaxial stress strongly affects the graphene

electronic bandgap, while symmetric in-plane strain does not open a bandgap in

graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width

around the Fermi level. However, when applying asymmetric in-plane strain to

graphene/GaAs, the graphene sublattice symmetry is broken, and the graphene

bandgap is opened at the Fermi level to a maximum width of 814 meV. This value

is much larger than that reported for just graphene under asymmetric strain. The

Γ-Γ direct nature of GaAs remains unchanged in graphene/GaAs under different

types of applied strain. It is also found that the mechanical properties for bilayer

heterostructure are better than those of their constituent monolayers. This finding,

together with the tunable graphene bandgap not only by the strength but also by

the direction of the strain, enhances the potential for strain engineering of ultrathin

group-III-V electronic devices hybridized by graphene. It is important to highlight

that the lattice mismatch between two different bilayers causes elastic strains, which

significantly affects their electronic properties. Therefore, the electronic structure

of the graphene/GaAs bilayer will be sensitive to the chosen supercells for graphene

and GaAs.

Motivated by recent reports in the literature about the tuning of the structural,

optical, magnetic and mechanical properties of pristine 2D materials by hydrogen

adsorption [48, 100], and the fact that hydrogen passivation stabilizes two dimen-

sional buckled III–V sheets [102], in chapter 5, the stability, structural and electronic

properties of two-dimensional (2D) hydrogenated GaAs with three possible geome-

tries: chair, zigzag-line and boat configurations were analyzed. The results found in

chapter 5, reveal that the hydrogenation of 2D-GaAs tunes the bandgap of pristine

2D-GaAs, which makes it a potential candidate for optoelectronic applications in

the blue and violet ranges of the visible electromagnetic spectrum.

Finally, motivated by the recent experimental confirmation of magnetism in

atomically thin magnetic crystals, which took place in 2017 [69, 132], and the fact
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that chiral magnetism can be induced in a 2D material by doping with transition

metals [58, 59, 60, 61], in chapter 6, the physical effect of spin-orbit coupling on

both magnetic anisotropy and Dzyaloshinskii-Moriya interaction in two-dimensional

gallium arsenide when single and pair TMs are absorbed (TM: Mn, Co, Mo and

Os), is investigated. The results found in chapter 6 show that single Mn and Mo

atom (Co and Os) strongly bind on 2D-GaAs, and induce local out-of-plane (in-

plane) magnetic anisotropy. When a pair of TM atoms is adsorbed on 2D-GaAs

at close range from each other, magnetisation properties change (become tunable)

deoending on concentration and ordering of the adatoms. In all cases, we reveal the

presence of strong Dzyaloshinskii-Moriya interaction (DMI). These results indicate

novel pathways towards 2D chiral magnetic materials by design, tailored for desired

applications in magneto-electronics.

7.2 Outlook

As mentioned in chapter 1, our initial aim of tuning the properties of group III-

As (III=B, Ga and In) in the thinnest limit was too ambitious to be covered in

four years. Even thought, in chapter 3, we studied the structural, mechanical,

electronic, and vibrational properties of 2D single-layer ℎ-IIIAs (BAs, GaAs, and

InAs) systems, as well as the structural and electronic properties of few-layer ℎ-

IIIAs structures; from chapter 4 on, we only focused our attention in tuning the

mechanical, electronic and magnetic properties of 2D-GaAs semiconductor system

by using 2D-multilayers, straintronics, hydrogen functionalization, and transition

metal adsorption approaches, respectively. Thus, now, after finishing the study

of 2D-GaAs system, and with the knowledge and expertise obtained during this

process, we will continue our research to tune the physical properties of group IIIAs

at the atomic level, but now focusing our attention on 2D-BAs and InAs. It could

be interesting to contrast the physical results obtained for planar 2D-BAs structure

to those of buckled 2D-GaAs and InAs structures. Moreover, the fact that BAs,

GaAs and InAs have a different semiconducting nature, makes the research more

interesting from the point of view of their physical properties and their potential
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applications in nano-electronics.

As shown in the introduction section of this thesis, 2D-heterostructures are an

efficient way of tuning the bandgap width of semiconductors, which makes them

promising candidates for the manufacture of solar cells due to the complete ad-

sorption of light by successive layers. The remarkable tunable properties of 2D-

heterostructures, together with the development of experimental and computational

methods for their synthesis and characterization, makes them attractive materials

for technological and industrial applications.

The study of 2D-heterostructures based on BAs, GaAs and InAs layered mate-

rials could be of great interest due to their tunable bandgaps, which makes them

potential candidates for different functional optoelectronic devices. In addition, the

assembly of hybrid multilayer using different stacking possibilities of BAs, GaAs,

InAs and graphene layers, could be technologically interesting due to the large opti-

cal window in 2D atomic scale thickness. We will conduct these studies taking into

account the dipolar corrections for comparison.

On the other hand, we consider that more work must be done in the study of

magnetic properties of TM on/in III-V ultrathin limit. In chapter 6 the presence of

strong Dzyaloshinskii-Moriya interaction (DMI) in transition-metal atoms adsorbed

on 2D-GaAs was revealed, indicating novel pathways towards 2D chiral magnetic

materials by design, tailored for desired applications in magneto-electronics. Fur-

thermore, recent studies have shown that ultrathin ferromagnets sandwiched be-

tween normal metals can have chiral domain walls, which move surprisingly quickly

in response to currents. This finding could be used in magnetic memory devices,

spin logic devices and nanoscale magnetic spin-torque oscillators [284, 285].

Taking into account our findings and those of references [284, 285], our results

can be considered as the starting point for a detailed analysis of nonconventional

magnetism in nano-multilayer systems using ferromagnetic monolayers and group

III-V single layers.

Finally, I will continue researching into the fascinating field of ultrathin materials,

doing my best to find and theoretically characterize new nanomaterials, providing

theoretical insights into their potential nanotechnological applications.
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Abbreviations 

 

2D Two-dimensional 
4SM Four-State energy Mapping 
III-V Elements from group III and V of the periodic table 
AE All Electron 

AES Auger Electron Spectroscopy 
AFM Atomic Force Microscopy 

AQHE Anomalous Quantum Hall Effect 
ARUPS Angle-Resolved Ultraviolet Photoelectron Spectroscopy 

BCN 2D nanocomposites containing Boron, Carbon and Nitrogen 
BO Born-Oppenheimer 

BSCCO Bismuth Strontium Calcium Copper Oxide 
BZ Brillouin Zone 

CVD Chemical Vapor Deposition 
DFPT Density Functional Perturbation Theory 
DFT Density Functional Theory 
DMI Dzyaloshinskii-Moriya Interaction 
DOS Density Of States 

Exc Exchange-correlation Energy Functional 
FHK Universal Functional 

FDM Finite Displacement Method 
FFT Fast Fourier Transform 

GGA Generalized Gradient Approximation 
GNRs Graphene Nanoribbons 
h-BAs Hexagonal Boron Arsenide 
h-BN Hexagonal Boron Nitride 
HEG Homogeneous Electron Gas 
HF Hartree-Fock 
H-F Hellmann-Feynman 

h-GaAs Hexagonal Gallium Arsenide 
h-III-As Hexagonal III-Arsenide 
h-InAs Hexagonal Indium Arsenide 

HK Hohenberg-Kohn 
HOPG Highly Oriented Pyrolitic Graphite 

HSE Heyd-Scuseria-Ernzerhof 
IBZ Irreducible Brillouin Zone 
KS Kohn-Sham 

LDA Local Density Approximation 
LEED Low Energy Electron Difraction 



 
MA 

 
Magnetic Anisotropy 

MAE Magnetocrystalline Anisotropy Energy 
MP Monkhorst Pack 

PAW Projector Augmented Wave 
PBC Periodic Boundary Conditions 
PBE Perdew-Burke-Ernzerof 

PDOS Projected Density Of States 
PES Potential Energy Surface 
PP Four-State energy Mapping 

PVD Physical Vapor Deposition 
PW Plane Wave 

QED Quantum Electrodynamics 
SDBS Sodium Dodecyl Benzene Sulfonate 
SDFT Spin Density Functional Theory 
SOC Spin-Orbit Coupling 
STM Scanning Tunneling Microscopy 
TEM Transmission Electron Microscopy 
TM Transition Metal 

TMDCs Transition Metal Dichalcogenides 
TMOs Transition Metal Oxides 
UPS Ultraviolet Photoelectron Spectroscopy 

VASP Vienna Ab-initio Simulation Package 
vdW Van der Waals 

X-anes X-ene system with adsorbed hydrogen 
X-enes Honeycomb  structure similar to graphene 

XPS X-ray photoelectron spectroscopy 
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