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Abstract

Indoor temperature modeling is a crucial part of achieving higher efficiency Heating, Ventilation and Air Conditioning
(HVAC) systems. Completely data-driven black-box approaches have been an attractive way to develop such models
due to their unique feature of not requiring detailed knowledge about the target zone. Neural network-based approaches
have been taken in the literature with training models on raw data. But the noisy and non-linear nature of the
problem remained as a bottleneck for the predictors, especially in long prediction horizons. In this paper, we introduce
a Convolutional Neural Networks - Long Short Term Memory (CNN-LSTM) architecture to combine the exceptional
feature extraction trait of the convolutional layers with the Long Short Term Memory (LSTM)’s capability of learning
sequential dependencies. We experimentally collected a data set and developed Multi-Layer Perceptron (MLP), LSTM
and CNN-LSTM prediction models. Models are evaluated and compared in 1-30-60-120 minutes horizons with a closed-
loop prediction scheme. CNN-LSTM was able to outperform other employed methods in all prediction horizons and
showed stronger robustness against the error accumulation. It managed to predict room temperature with R? >0.9 in a

120-min prediction horizon.

Keywords: HVAC, indoor temperature modeling, CNN-LSTM, LSTM, MLP, closed-loop prediction, black-box

modeling

1. Introduction

HVAC has been the leading energy-consuming system
in the buildings. 73.3% of the total energy (around 200.8
millions of tonnes of oil equivalent, Mtoe) consumption
in the European Union (EU) industry accounts for heat-
ing and cooling [1]. Moreover, it is estimated that 10%
to 20% of the total energy consumption in the developed
countries is due to HVAC systems [2]. Thus, with the
increasing awareness about the carbon footprint and de-
pleting fossil-based resources, the development of higher-
efficiency HVAC systems has become an inevitable neces-
sity in order to reduce global energy consumption.

One of the most crucial steps to achieve this goal is the
development of accurate simulation models [3]. An accu-
rate simulation model enables the integration and valida-
tion of novel ideas without practical concerns. Since it is
not feasible nor safe to implement experimental ideas to
the actual buildings, simulation models play an important
role in the advancement of more efficient HVAC designs.
However, creating such models is not a straightforward
task. HVAC systems have highly non-linear dynamics and,
in addition, thermal characteristics are strongly affected
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by external factors such as outside temperature [4]. There
has been a significant effort in the literature to develop ac-
curate simulation models. Even though there are several
different simulation objectives for different levels of HVAC
systems [3], we will focus on indoor temperature modeling
as the scope of this paper.

The indoor temperature modeling approaches in the
literature can be categorized into three, i.e., white-box,
gray-box and black-box modeling. White-box models which
also known as physics-based models utilize mathematical
representations of the elements based on laws of physics to
develop predictive models [5]. The major shortcomings of
this approach are that it requires detailed knowledge about
the building/zone that one aims to model and the equa-
tions in the model usually include assumptions that do
not necessarily reflect actual behavior [6].Gray-box mod-
eling aims to narrow the gap between actual building and
white-box models by introducing data-driven techniques.
The most common approach is to start with a white-box
model and estimate model parameters with actual build-
ing data and by using data-driven techniques [7]. Even
though gray-box models showed promising results in the
literature, especially compared to pure white-box models,
the requirement of significant prior knowledge about the
target zone and mathematical assumptions made in the
models still have been a bottleneck to reach exceptionally
accurate models [8].

Lastly, black-box modeling caught significant atten-
tion from the literature. Ome of the defining attribute
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of data-driven black-box modeling is the ability to model
thermal dynamics without an explicit need for defining
zone-spesific characteristics such as heat capacity and size.
These characteristics are considered to be “baked” into the
other input variables and their relationships. Although
this situation leads more straightforward and convenient
training of the models they also makes them prone be very
specific to the zone they are trained for [9]. Since black-box
models don’t require any prior knowledge about the build-
ing itself, it became an attractive way to develop simula-
tion models. Furthermore, with advancements in machine
learning and deep learning, many completely data-driven
techniques are implemented for indoor thermal modeling.
Especially, Artificial Neural Network (ANN) based imple-
mentations have been widely used. Attoue et al. used
MLP to predict the indoor temperature [10]. The au-
thors used outdoor temperature characteristics and uti-
lized previous values of these features to develop a recur-
rent structure. They evaluated the models for 30 minutes
to 4 hours prediction horizons and reported coefficient of
correlation (R) of 0.9560 for 30 minutes to 0.8370 for 4
hours horizons. They also concluded that even though the
proposed method is usable in short-horizon predictions, its
performance decreases significantly as the prediction hori-
zon widens. Although MLP is capable of predicting tem-
perature dynamics, it does not inherently utilize the ”time-
dependency”. Thus, recurrent type ANN, Recurrent Neu-
ral Networks (RNN), also have been used to develop indoor
temperature models. Delcroix et al. implemented Neu-
ral Network-based Autoregressive Model with Exogenous
Inputs (NNARX) architecture to predict indoor tempera-
tures [11]. They used the logical state of heating and cool-
ing systems (on/off), indoor temperatures, outside tem-
peratures and relative occupancy as features. They re-
ported coefficient of determination (R?) values of 0.824.
Furthermore, LSTM has been the state-of-the-art for pre-
dicting sequential data, thus, it has been used for indoor
temperature prediction as well. Xu et al. proposed an

LSTM architecture and they compared to other black-box
modeling approaches such as Decision Trees and Support
Vector Machines [12]. They reported R? values of 0.8985
for 5 minutes and 0.7956 for 30 minutes prediction hori-
zons. Their architecture also outperformed the compared
methods for each prediction horizon. Mtibaa et al. con-
ducted a similar study where they proposed a sequence-
to-sequence, also known as many-to-many, LSTM archi-
tecture to forecast future indoor temperatures [13]. They
evaluated the models from 30 minutes to 6 hours predic-
tions horizons and compared them to other baseline al-
gorithms such as NNARX and many-to-one LSTM. They
reported lower error scores and more stable prediction per-
formance with the proposed architecture.

When the current state-of-the-art black-box modeling
approaches for indoor temperature modeling are concerned,
ANN-based techniques show reasonable predictive power.
Moreover, RNN-based techniques, especially LSTM, show
great capability for ”"learning” the dynamics of the prob-
lem. On the other hand, it is certain that black-box model-
ing is not a silver bullet to develop an accurate simulation.
In all of the mentioned studies, a significant drop in accu-
racy was observed as the prediction horizon widens. This
is a surely expected behavior since models use their own
prediction to forecast further into the future (closed-loop
prediction), thus, prediction errors accumulate over time.
But, it is not feasible to ignore a model’s long-term predic-
tion capabilities. It manifests the stability and robustness
of the model and allows us to investigate a portion of the
dynamics learned by the model and how biased it is to
training data [14]. Moreover, many modern controllers
including Reinforcement Learning (RL) and Model Pre-
dictive Controllers (MPC) utilize forecasting to plan and
optimize their control strategies [15, 16]. Thus, it is an im-
portant benchmark for the candidate simulation models.

In this paper, we propose including convolutional layers
to improve the prediction capability of a black-box model
for the indoor temperature prediction problem. We uti-



lize convolutional layers as a feature extractor for the raw
data and then the outputs are fed to an LSTM to gener-
ate predictions. This approach is known as CNN-LSTM
in the literature. Although CNN-LSTM is mainly used
in areas such as image captioning and natural language
processing [17, 18], it has been also used for time-series
tasks including energy consumption prediction [19] and
stock market predictions [20]. These studies reported an
increase in accuracy and stability as well as better gen-
eralization performance due to the feature extraction ca-
pability of the convolutional layers. To the best of our
knowledge, there are no studies that employ CNN-LSTM
architecture for the indoor temperature prediction prob-
lem. We experimentally collected a data set from a single
room in Building Z of the University of Antwerp, then
we employed MLP, LSTM and CNN-LSTM methods to
create temperature prediction models and compare their
performances. The models are evaluated on; 1-30-60-120
minutes prediction horizons. However, It should be noted
that, 120 minutes time horizon is not sufficient for every
temperature-effecting variable to be realized in the room,
especially the external factors aside from HVAC system
that can affect the temperature are concerned [21]. Thus,
similar to other black-box modeling studies, the proposed
methodology is more suitable for short-term predictions
and unexpected deviations are likely to happen in longer
prediction horizons (e.g. days). R?, Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) are used as
fitness metrics. Predictive powers and stabilities of each
model are discussed and compared.

2. Dataset Acquisition

The dataset used in this study was collected from a
room in the University of Antwerp’s Building Z. The sen-
sors are located; inside the room about the room’s thermal
measurements, outside of the room for weather measure-
ments and in the HVAC system to measure supply char-
acteristics. The measurements are recorded with 1 minute
sampling time and a total of 27349 samples (approx. 19
days) are collected for each sensor. Details about the mea-
sured variables and their statistical summaries are given
in Table 1.

Table 1: Statistical summary of the dataset

Measurements Min-Max Mean  Std.
Motion (Binary) 0-1 0.07 0.255
Set Point (°C) 10-22.1 1980  1.59
Air Flowrate (m®/h)  410.5 - 1247  638.33  352.56
Window (Binary) 0-1 0.006 0.08
Outside Temp. (°C) -6.38 - 20.713  6.11 6.46
Room Temp. (°C) 19.76 - 22.44  20.97 0.84

where, Motion is a logical motion detector that pro-
duces 1 when there is a movement in the room and 0,
otherwise. Set Point is the target temperature of the re-
heating battery which is controlled by a PID controller.

—— Room Temperature - Train
Room Temperature - Test

0.0 25 50 75 10.0 12.5 15.0 17.5

Days

Figure 1: Plot of the room temperature variable and the train/test
split

Air flowrate corresponds to the VAV flowrate. Window is
the position of the single window in the room; it is 1 when
open, 0 if it is closed. Outside Temp. and Room Temp.
are the temperatures outside of the room and inside of the
room, respectively. When the means and standard devia-
tions of the features are concerned, Motion and Window
provides very small variance in the dataset. This is due
to the building and the room was generally empty regard-
ing the COVID-19 restrictions during the measurements.
Even though given measurements play crucial roles regard-
ing the temperature dynamics of the room, there are other
variables such as solar radiation and possible interactions
of the occupants with the room. Although these variables
are not available in our dataset, they can have significant
impact on the temperature and should be considered for
addition if possible to further improve prediction accuracy.
For data integration purposes, Room temperature, as
the prediction target, is utilized as the output variable for
the developed models. The rest of the measurements are
merged to create a 27349 x 5 feature matrix. It should be
noted that since the temperature dynamics are recurrent,
previous values of the room temperature variable are also
utilized as features for the proposed models. The first 75%
of the data is split as a training set and the remaining por-
tion is used as a test set. The room temperature measure-
ments are given in Figure 1 with the legends clarifying the
train-test split. Moreover, visualizations of the remaining
variables are provided in the Supplementary Material.

3. Methods

Indoor temperature modeling problem can be consid-
ered as a time-series problem since the previous state of the
model has an effect on the predictions [22]. This situation
holds for input variables as well as for the output variable.
Firstly, we employed MLP as a baseline prediction algo-
rithm. Then, LSTM is used since its shown success for
indoor temperature modeling. As the final implementa-
tion, we proposed a CNN-LSTM architecture. It should be



noted that proposed neural network architectures are rela-
tively larger compared to similar studies we discussed pre-
viously. However, we included regularization techniques in
order to prevent possible overfitting scenarios. Details of
the regularization implementations are given in respective
sections. Moreover, since, neural networks are global func-
tion approximaters, it is safe to assume that given results
are not unique to the proposed architectures in this paper
and, possibly can be achieved by using different hyperpa-
rameter configurations such as number of layers/neurons
with appropriate adjustments. Details of the models are
given as follows:

3.1. Multi-Layer Perceptron

MLP has been considered as a ”bread and butter” tech-
nique for creating a prediction model in recent years. Its’
enhanced function approximation capabilities with the use
of hidden layers have been successfully used in many appli-
cations, including the indoor temperature prediction prob-
lem [23]. A prediction (y,) formulation of a single hidden
layer MLP can be defined as:

Yp = 0a(H - W, + ™) (1)
H =6,(X - W), +bD) (2)

where X is the feature matrix, Wj, and W, represent
the weights from the input layer to the hidden layer and
hidden layer to the output layer, respectively. d; and d
are the activation functions for hidden layer and output
layer, respectively. Finally, the b6® and (™ are the bias
terms for input and hidden layers. This recursive structure
can be repeated a desired amount of times to ”deepen” the
MLP architecture.

Although the feature matrix proposed in Section 2 con-
tains valuable information to represent the current state,
thus, to predict future temperature values, using only the
previous time (t—1) sample is not sufficient to describe the
temperature dynamics as explained in Section 1. More-
over, the MLP technique does not have an inherent way
of dealing with time-dependent data. Therefore, similar
to other studies that utilize MLP for time-series type of
data, we expand the feature matrix by adding the time-
delayed versions of the features. We used 60 minutes of
delay for each feature, thus, expanding the number of fea-
tures in the data set from 6 (five features from the feature
set, one from the delayed values of the output tempera-
ture) to 360. Inclusion of the delayed input vectors allows
the model to learn different dynamics of the system, which
can occur in varying periods. As stated in a review paper
from Afram and Janabi-Sharif [15], 1 minute and 60 min-
utes time intervals are optimal to capture slow and fast-
moving dynamics of an HVAC system, respectively. Thus,
we include delayed features up to 60 minutes to the pre-
diction model. It should be noted that, lower delay choices
can decrease the comprehensiveness of the learned dynam-
ics where redundant increase in delay can lead overfitting

o O
Q 2 == 4
Q e O
Q O 0
a Ze- @)
a, 3 < .
d O e
O 3 O.j:f-: O
o O
o ° o
@ ° e
o ° °
Input Layer Hidden Layer #1 Hidden Layer #2 Output Layer

(1 Neuron)

(360 Neurons) (1000 Neurons) (1000 Neurons)

Figure 2: Illustration of the proposed MLP architecture.

as discussed in various studies that propose data-driven
recurrent models [24]. For the architectural details of the
MLP, we used 2 hidden layers with 1000 neurons each and
ReLU activation function is used for of both them to intro-
duce non-linearity. In order to avoid over-fitting, Dropout
with the probability of 0.5 is added to the hidden layers
[25]. For the training of the model, MSE is used as a cost
function and Adam optimizer with weight decaying [26] is
used to update the weights. The weight decay parameter,
which corresponds to L2 regularization, is set to 0.01 to
further prevent over-fitting scenarios. The illustration of
the MLP architecture is given in Figure 2.

8.2. Long-Short Term Memory

Recurrent type of neural networks has been proposed
to natively integrate the time dependency into the neural
network architectures. The core idea is to expand the ca-
pability of typical ANN methods via introducing sequen-
tial structure dynamically [27]. Even though there are
many techniques to achieve such functionality, LSTM has
been shown to achieve exceptional success due to its capa-
bility of learning both short and long term dependencies
of the problem and also designed to deal with vanishing
gradient problem which most of the RNN architectures
suffer from [28]. Moreover, it is a well-fit for indoor tem-
perature modeling as well due to its inclusion of slow and
fast-moving phenomenons simultaneously [15].

The main information processing units in LSTM are
called "cells”. These cells can be considered as more so-
phisticated neurons in typical MLP. A cell includes several
gates to retain and regulate the flow of information over
the sequence with arbitrary length. This feature enables
LSTM to decide which information is useful in the long-
term and the short-term. Thus, making it very suitable
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Figure 3: An LSTM Cell.

for any type of sequential-type problem. An LSTM cell
can be defined as [29]:

iy = o(Wixy + by + Whihe—1 + bpy) (3)
Jr = 0o(Wigxy + big + Wighie—1 + biy) (4)
gt = tanh(Wigzy + big + Whghi—1 + brg) (5)
o = 0(Wioxt + bio + Whohi—1 + bno) (6)
c=fOc-1+iOg (7)

ht = o; © tanh(ct) (8)

where x and h are the input and the hidden state,
respectively.t represent the current time step. © is a element-
wise multiplication operation (Hadamard Product) and o
is a sigmoid activation function. g¢;, f:, i and o; are the
cell, forget, input and output gates in the current state,
respectively. Wy, and b, represents the learnable weights
and bias terms between gates x and y. In order to have
intuitive understanding about how the information flow
inside of an LSTM cell, one can see the illustration in Fig-
ure 3.

LSTM cells, similar to neurons, can be connected to
each other to carry temporal information and can be stacked
as in layers. In this paper, we used 60 previous values of
each feature. Each previous state is connected to an in-
dividual LSTM cell, thus creating a layer of 60 cells with
6 channels each. Then replica of this layer was added to
deepen the LSTM network into 2 layers. Finally, we flatten
the output of the LSTM layer and used a fully connected
layer to obtain a single prediction.

3.3. CNN-LSTM

In many machine learning applications, feature extrac-
tion is an important step to generate meaningful informa-
tion for the prediction model to enable it to make accurate
predictions [30]. Time-series problems are not an excep-
tion in this regard. They include many dynamics that need
to be clarified and tailored for the regression/classification
model, usually with the integration of expert opinion [31].

Furthermore, feature extraction is not only a time-consuming

procedure but also methodologies vastly differ from ap-
plication to application [32]. Especially in recent years,
researchers have been using convolution operations for au-
tomatic feature extraction rather than doing it manually.

This approach is popularized with CNN architectures with
ground-breaking results in computer vision problems [33].
But, its applicability is not restricted to image-type data
and can be defined for time-series data as [34]:

Cin—1
Y(Cout): Z W(COUt7i)*X(i)

=0

(9)

where, Y and X are the output and the input of the
convolution operation, respectively. W is the learnable
parameter matrix and * is the valid cross-correlation op-
erator. C, and L are the number of features and length
of the sequence, respectively. Therefore, with the con-
volution operation, one can create an automated feature
extraction framework and let the model learn "how” to
extract features via optimizing the weights (W).

For the specific problem we focus on in this paper, the
C variable corresponds to the number of features, 6, and
L selected as 60 (as in the LSTM architecture). Two con-
volutional layers are stacked with the number of kernels
of 64 and 128, and kernel sizes of 32 and 16, respectively.
A stride of 1 was used in both layers and max pooling is
applied at the end of each convolutional layer. All convolu-
tional operations are implemented with a TimeDistributed
layer to preserve temporal dimensions [35]. Therefore the
convolution part of the proposed architecture is completed.
After utilizing the spatial feature extraction capability of
the convolutional layers, we introduced the LSTM part for
the temporal progression of the data. The same LSTM ar-
chitecture given in the previous section has been used to
create the predictor including the flatten and fully con-
nected layer. Thus, we were able to combine the spatial-
ity feature extraction of CNN with LSTM’s capability of
understanding dependencies in sequential data. Final cas-
caded architecture is illustrated in Figure 4.

3.4. Fitness Metrics

In order to evaluate and compare the performances of
the implemented methods, we employed R?, MSE and
M AEFE error metrics. They can be defined as:

2 _ 4 221(%—?@‘)2
et [sz;xyiw]

iy (yi — Gi)?

m

(10)

RMSE = (11)

1 m
o 2l =i (12)
where, y and y are the model predictions and the actual
output, respectively. ¥ is the output mean and m is the
number of samples.

R? has been widely used in the literature about any
type of regression type prediction tasks including indoor
temperature prediction. Due to its mean-normalized def-
inition, the output of this metric lays between 0 and 1
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Figure 4: Proposed CNN-LSTM architecture, MaxPooling layers are not included in the illustration for clarity purposes.

where 1 corresponds to a perfect prediction. Since RMSFE
is calculated by squaring the error term, it is highly af-
fected by extreme values which gives us the opportunity
of evaluating outlier predictions and their effects. M AFE is
another important metric to directly compare the perfor-
mances without giving additional attention to the extreme
errors. Moreover, since the differences between the actual
temperature and prediction can easily lay between 0 and
1, these values tend to be ignored in RMSE calculation
but highly present in M AE. Thus, we employed these
three fitness metrics to conduct a more in-depth analysis
and interpretation of the results.

4. Results

The three different neural network architectures we em-
ployed in this paper, i.e., MLP, CNN and CNN-LSTM
have been used to create prediction models for indoor tem-
perature modeling. Although the input sizes differed de-
pending on the architecture, all models utilized 60 min of
historical data of all features and the output, thus, they
had access to the same information. All models trained to
predict a single variable which is the room temperature at
the next time step. All of the performance evaluations are
conducted on the test set which none of the models have
encountered during the training.

Firstly, the models are evaluated in 1 min prediction
horizon, also known as the one-step-ahead prediction. It
generally shows the model’s basic generalization capability
and whether the model is over-fitted to the training data.
But excellent one-step-ahead prediction performance is not
enough to show whether the model can be used as a sim-
ulator since actual use cases of such simulators usually
require relatively long-term predictions, thus, many step-
ahead predictions [36]. In order to assess each model’s
both short and long-term prediction capabilities, we also
used 30, 60 and 120-minute prediction horizons similar to
the other studies in the literature. The prediction with a
certain horizon corresponds to the closed-loop prediction
mechanism. The model uses its own output as the feature
for the predictions in further time-steps. An illustration of
the used closed-loop prediction scheme is given in Figure 5.

Repeat until the horizon

Test Set

\—» Feature Set (t-60tot) ———»

’—> Room Temp. (t-60tot) ———»

Prediction
Model

Room Temp.
(t+1) W

Figure 5: Illustration of the Closed-Loop Prediction Mechanism

Since the room temperature has a highly recurrent dy-
namic, previous values of the variable have a dramatic
effect on future predictions. Thus, performance decrease
with wider prediction horizons is inevitable because any
deviation between a prediction and original value will ac-
cumulate to further time-steps which creates a ”snowball”
error effect [37]. Therefore, long-term closed-loop predic-
tions provide us a solid way to determine a model’s stabil-
ity and robustness along with the prediction capability.

We evaluated the performance of the proposed models
on the whole test set with repeated horizon-based predic-
tions. In other words, the schematic given in Figure 5 has
been repeated for # of datapoints the test set/prediction
horizon times to cover all of the test set. Thus, the plots
given below can be considered as concatenated combina-
tions of the results. Predicted vs original temperature
plots are given in Figure 6, Figure 7, Figure 8, Figure 9 for
1, 30, 60 and 120 minutes prediction horizons, respectively.
R?, RMSE and MAE metrics are calculated between the
original values and predictions for the test set. These met-
rics are given in Table 2.

5. Discussion

When the one-step-head predictions of the models are
concerned, they performed satisfactorily well and very sim-
ilar. They all were able to reach R? >0.98 which indicates
strong predictive power. On the other hand, a problem-
atic trend between the day 2.5 and 3 can be observed in
Figure 6 for all of the models. They struggled to predict
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Table 2: Performance Evaluation of the Models (RMSE and MAE
values are presented in Celcius Degrees where R? has no unit)

Horizon Metric MLP LSTM CNN-LSTM
R? 0.984  0.989 0.992
1 min RMSE  0.03 0.029 0.028
MAE 0.025  0.019 0.015
R? 0.935 0.972 0.984
30 min RMSE  0.07 0.047 0.034
MAE 0.045  0.025 0.018
R? 0.763  0.911 0.967
60 min RMSE  0.158 0.061 0.042
MAE 0.074  0.048 0.029
R? 0.449 0.823 0.903
120 min  RMSE  0.325 0.121 0.052
MAE 0.112  0.087 0.045

that specific period and the error in that region is higher
than the rest of the test set. Because that period is identi-
cal for all models, it can be assumed that the temperature
dynamics in that period are vastly different compared to
the train set which the models trained on, in other words,
models were not exposed to that specific dynamics during
their training. It should also be noted that such strange
behaviors can be correlated with significant outlier con-
ditions and sensor malfunctions resulting in discontinuity
and/or mislogging of the data. Although these conditions
are not present in the data set we used in this study, they
can also be the source of similar unexpected prediction
patterns, thus, should be treated accordingly. Further-
more, it can be considered as an underwhelmingly pre-
dicted portion of the data by all models compared to the
other parts of the test set. Another difference between the
models is how they predicted the problematic part. MLP
and CNN-LSTM architectures made ”overshooting” pre-
dictions while LSTM was ”undershooting”. But this kind
of behavior can be surely depends on the randomness dur-
ing the training, such as the random seed, which does not
lead to any concrete deductions.

When the prediction horizon widens, the difference be-
tween models gets more significant. As previously men-
tioned, closed-loop prediction performance is a strong indi-
cator of how stable are a model’s predictions. For the pre-
dictions in 30-min horizons, the MLP started performed
more poorly compared to others. One can see a sharp
?zig-zag’ pattern starts to emerge in MLP predictions. It
shows that the predictions would diverge more dramat-
ically model will use more of its own outputs, in other
words, in wider prediction horizons. This is a typical low-
stability behavior where the model is not capable of handle
error (which caused by MLP’s previous predictions in this
case) successfully. For LSTM and CNN-LSTM their errors
are also amplified and the ”zig-zag” pattern can be also be
observed. But there are significant differences. Firstly, un-
like MLP, their predictions tend to stay on top of the line
and the errors are less "sharp”. This can further be seen

in the RMSE values in Table 2, since RMSE punishes the
higher average errors much more, the dramatic difference
between MLP and other methods shows that CNN-LSTM
and LSTM techniques responded similarly and more ro-
bustly to the increased horizon. Furthermore, MAE dif-
ference shows the overall errors of CNN-LSTM and LSTM
are considerably less than MLP.

Even though CNN-LSTM and LSTM architectures are
similar in 30-min horizon performance-wise, this situation
drastically changes with 60 and 120-min horizons. For the
60-min horizon, the error accumulation in the LSTM be-
comes predominant and it also shows signs of instability
with the increased error spiking especially on the days be-
tween 2.5 and 3. CNN-LSTM also shows a decline in per-
formance as expected, but it better copes with the error
accumulation with a maximum of < 0.2 Celcius degrees as
compared to LSTM’s roughly 0.5 Celcius degrees. Also,
the error spikes are smoother throughout all of the test
set. This situation shows that the convolutional part of
the CNN-LSTM architecture adds a significant value from
feature extraction and the amount of important informa-
tion perspective. It has been known that convolutional
layers are quite capable of extracting spatial features, but
also the inclusion of MaxPooling layers, it ensures that the
extracted information is the most valuable and as noise-
free as possible [38]. These layers force the model to under-
stand only the most valuable features which add the ability
to deal with uncertain data to the model [39]. This feature
of convolutional layers is well-shown in the days between
2.5 and 3 of the test set. Lastly, MLP’s performance signif-
icantly drops in 60-min horizon prediction with reaching
only R? value of 0.763, it strongly struggles with error
accumulation by reaching up to 2 Celcius degrees of er-
ror which can be considered as a red flag for any indoor
temperature model. As a last prediction horizon, 120-min
performances of the proposed techniques enhance the pre-
vious conclusions we drew. MLP provides predictions with
unacceptable performance especially in the days between
2.5 and 3. LSTM’s error spiking is much sharper with
strong signs of instability and lack of robustness. CNN-
LSTM, on the other hand, and managed to preserve R? >
0.9 even for such relatively wide horizon. Also between
days 2.5 and 3, error tend to stay < 0.3 Celcius degrees
with less of a sharpness. But it should be noted that the
increase in RMSE between 60-min and 120-min horizons
for CNN-LSTM is significantly larger than the increase
in MAE. This shows that the error in the ”problematic
part” of the data, which all models failed to accurately
predict starting from a 1-min horizon, is amplified much
more compared to the rest of test set. This is a generaliz-
able behavior for any type of black-box model such that;
despite the precautions against instability, the variance in
the data is a fundamental factor.

In order to have a deeper understanding of the perfor-
mance of CNN-LSTM, we compared its performance with
the state-of-the-art studies that utilize data from similar
building types and uses the same prediction horizons. The



Table 3: Performance comparison between the proposed CNN-LSTM
architecture (*) and other studies in the literature

Horizon Technique RMSE MAE R? Ref
MLP 0.03 0.08 - [13]
MLP 0.07 - - [10]
30 min LSTM 0.05 0.09 - [13]
LSTM 0.52 - 0.795 [12]
NNARX 0.05 0.08 - [13]
CNN-LSTM  0.028 0.015  0.992 *
MLP 0.152 - - 10]
MLP 0.04 0.13 - [13]
60 min LSTM 0.05 0.12 - [13]
NNARX 0.06 0.1 - [13]
CNN-LSTM  0.042 0.029  0.967 *
MLP 0.33 - - 10]
MLP 0.08 0.11 - [13]
120 min  LSTM 0.07 0.13 - [13]
NNARX 0.08 0.11 - 13]
CNN-LSTM  0.052 0.045  0.903 *

comparison table is given Table 3.

When the Table 3 is examined, a unique pattern be-
tween performance evaluations appears. CNN-LSTM ar-
chitecture managed to reach significantly lower MAE val-
ues compared to other techniques in the recent literature.
On the other hand, RMSE differences are much smaller
and the MLP architecture proposed in Ref. [13] slightly
outperformed the proposed one in the 30-min horizon. Be-
cause CNN-LSTM’s MAE is significantly lower than the
rest, it indicates the overall performance without giving
additional attention to outliers was much better. But since
our data contains a certain portion that has different dy-
namics compared to the rest, errors that occurred in the
portion cause a dramatic increase in RMSE value. This
can also be seen when the LSTM’s performance in Table 2
and Table 3 are compared. Although LSTM proposed in
this paper managed to get lower MAE values compared
to the literature results, it got significantly outperformed
when the RMSE values are concerned. CNN-LSTM man-
aged to keep up with the state-of-the-art RMSE values de-
spite being "handicapped” by the distribution of the data.
It should also be noted that, although the literature results
are obtained from similar buildings and features, various
different factors also affect the prediction capability such
as the employed architecture, software framework and data
processing. Thus, one should take only the results from
the methods developed in this paper as the ground truth
comparison.

The prediction performance of the CNN-LSTM was su-
perior compared to LSTM and MLP architectures devel-
oped in this paper. Similarly, it showed great promise for
increasing the general prediction capability compared to
other state-of-the-art models. CNN-LSTM was surely ex-
pected to outperform MLP due to its ability to inherently
deal with time-series types of data. But its elevated per-
formance compared to vanilla LSTM architecture shows
the importance and added value of the convolutional lay-

ers. One can conclude that the spatial feature extraction
capability of the convolutional layers strongly enhanced
the quality of the information passed to the LSTM layers
which leads to more stable and accurate predictions even
under uncertainty. Thus, CNN-LSTM showed that it is
a powerful type of black-box modeling method for indoor
temperature prediction and poses a strong potential for
other HVAC modeling tasks. However, it surely inherits
the well-known limitations of black-box modeling as well.
It is important to take a look at black-box modeling for in-
door temperature modeling in general to define our future
work.

Machine learning literature has been providing researchers

many powerful tools to create prediction models without
a need for prior knowledge about the building itself. Al-
though this is a favorable feature, it also adds limitations.
Most importantly, the reasonable variance in the data is
essential while building a black-box model. Since most
of the data from buildings are collected while the build-
ing is operational, the data range becomes quite limited
due to the requirement of ensuring thermal comfort and
safety of the people inside the building. Thus, the col-
lected data, especially temperature, lays within a limited
range as is the case in this study. Therefore, developed
models become applicable for certain working conditions
unless the data collection is performed with variance in
mind which is rarely the case. As our future work, we will
focus on finding a methodology to utilize white-box and
gray-box models to generate high variance data and com-
bine it with the actual building data effectively to provide
a more "wide” range of information. Thus, creating still
a completely data-driven CNN-LSTM model but with the
increased variance and smoother error distribution.
Lastly, we would like to discuss the potential applica-
tion of the proposed CNN-LSTM architecture and how its
enhanced stability and predictive power compared to other
black-box modeling techniques can be utilized. First ob-
vious application is for relatively short-term simulations.
Because HVAC systems in the buildings can be considered
as safety-critical, it is not possible to conduct experiments
on the actual system due to safety risks. Thus, predictive
models enable experimental implementations and “what
if” scenarios by serving as digital twin of the building. One
can manipulate the controllable parameters such as tem-
perature set points and air flow rate to observe their effects
for the target zone in order to develop more energy efficient
and more thermally comfortable strategies for its users.
However, we believe that the major contribution of the
proposed CNN-LSTM architecture is in modern controller
designs. In the current state, HVAC systems, especially in
industrial scale, have been generally using PID and rule-
based controllers. Meanwhile, academia have been chal-
lenging these conventional approaches by proposing mod-
ern controller designs. Most notably, MPC and RL-based
controllers have shown to create more sophisticated control
strategies that has significant potential to decrease energy
consumption over time, superior adaptation to changing



conditions, higher customizability depending on the de-
sired thermal conditions [15]. The main advantage of the
mentioned modern controllers is their ability to “plan” into
the future by utilizing predictive models. These predictive
models allow controllers to observe consequences of their
actions without interacting with the real environment and
optimize their strategy to achieve desired control objec-
tive(s). The main issue of these predictive models are the
computational complexity. Especially in real-time control
applications, the predictive model has to provide results
in short notice. Because black-box models has very low
computational burden to generate predictions once they
are trained, they are a perfect match as predictive mod-
els. On the other hand, the stability and robustness of the
black-box models are generally the focus of the criticism
against them [9]. With the increased stability and predic-
tive capability of the CNN-LSTM architecture compared
to other architectures employed in this study, it also shows
great potential to be used in modern controller designs.

6. Conclusion

In this study, we proposed a black-box CNN-LSTM ar-
chitecture for indoor temperature modeling and compared
its performance to MLP and LSTM. The dataset is col-
lected from a room in the University of Antwerp’s Build-
ing Z and included 6 types of measurements, i.e., motion
detector, set point temperature, air flowrate, window posi-
tion, outside temperature and room temperature. 60 mins
of previous data for each measurement are utilized while
developing the models. The dataset was divided into 75%
training and 25% testing sets. Firstly, we created an MLP
model where each feature and its previous values are fed
as separate outputs. Then an LSTM architecture is devel-
oped and the data is fed sequentially. Lastly, we proposed
a CNN-LSTM model where the convolutional part of the
architecture was used as a feature extractor before LSTM.
Results of the models are evaluated in 1-30-60 and 120
min prediction horizons in a closed-loop prediction fashion
where models used their own outputs to forecast further
into the future. In 1-min horizon predictions, all models
performed exceptionally well. But a certain portion of the
data was ”problematic” for all of the models. With the
increase in prediction horizons, MLP and LSTM showed
stability problems and their predictive capability dimin-
ished dramatically. This performance drop was much more
present in the ”problematic” part of the data. Although
CNN-LSTM’s performance also dropped due to accumu-
lating error of predictions, it showed less spiking error pat-
tern and more stability. It managed to stay R? > 0.9 in
a 120-min prediction horizon. Thus, the addition of the
convolutional layers is shown to add value to the model.
Feature extraction and noise reduction capabilities of these
layers managed to provide the most valuable information
to the LSTM layers with also the help of dropout layers.
Therefore, CNN-LSTM proved itself as a valuable black-
box modeling approach for indoor temperature modeling.
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On the other hand, its limitation due to the data variance
was clearly present. Even though it managed to cope with
the distribution differences on the data set very robustly,
it is still a limiting factor just like for all of the black-box
techniques. In future work, we will focus on; solving the
limitation of variance by incorporating other modeling ap-
proaches, increasing the models’ reliable predictive ranges
to matter of days for long term usability, thus, enabling
the use of CNN-LSTM architecture to its full potential.
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