

This item is the archived peer-reviewed author-version of:

Length of stay, hospitalisation costs and in-hospital mortality of methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia in Japan

Reference:

Tsuzuki Shinya, Yu J., Matsunaga N., Ohmagari N..- Length of stay, hospitalisation costs and in-hospital mortality of methicillin-susceptible and methicillinresistant Staphylococcus aureus bacteremia in Japan Public health / Society of Community Medicine [London]; Society of Public Health [Londen] - ISSN 1476-5616 - 198(2021), p. 292-296 Full text (Publisher's DOI): https://doi.org/10.1016/J.PUHE.2021.07.046 To cite this reference: https://hdl.handle.net/10067/1824490151162165141

uantwerpen.be

Institutional repository IRUA

Public Health

Length of stay, hospitalization cost, and in-hospital mortality of methicillin-susceptible

and methicillin-resistant Staphylococcus aureus bacteremia in Japan

Manuscript D	raft
--------------	------

Manuscript Number:	PUHE-D-21-01030R1	
Article Type:	Original Research	
Keywords:	MRSA; bacteremia; length of stay; hospitalization cost; Japan	
Corresponding Author:	Shinya Tsuzuki	
	Tokyo, JAPAN	
First Author:	Shinya Tsuzuki	
Order of Authors:	Shinya Tsuzuki	
	Jiefu Yu	
	Nobuaki Matsunaga	
	Norio Ohmagari	
Abstract:	Objectives To examine the length of stay, hospitalization cost, and case fatality of methicillin- susceptible and -resistant Staphylococcus aureus (MSSA and MRSA) bacteremia in Japan. Study design Retrospective cohort study. Patients with a diagnosis of Staphylococcus aureus bacteremia admitted to a tertiary care hospital (National Center for Global Health and Medicine [NCGM]) in Tokyo, Japan, between 1 st January 2016 and 31 st December 2020 . Methods We combined Japan Nosocomial Infections Surveillance data and Diagnosis Procedure Combination data at NCGM from 2016 to 2020. The data were stratified into MSSA and MRSA groups. Length of stay (LoS), LoS after submission of a blood culture specimen (LoS-after), hospitalization cost, hospitalization cost per day, and clinical outcome were compared after propensity score matching. Results Median LoS was 46 (IQR 28.5-64.5) days in the MSSA group and 66 (IQR 40-91) days in the MRSA group (p = 0.020). Median LoS-after was 38 (IQR 25-62.5) days and 45 (IQR 24-63) days (p = 0.691), respectively. Median hospitalization cost was significantly higher in the MRSA group (26.035 [IQR 18,154-47,362] USD) than in the MSSA group (19,823 [IQR 13,764-32,042] USD) (p = 0.036) but cost per day was not (MRSA: 528.9 [IQR 374.9-647.4] USD; MSSA: 455.6 [IQR 359.2-701.7] USD; p = 0.990). Case fatality rate was higher in the MRSA group than in the MSSA group (22/60 vs. 9/60, p = 0.012). Conclusions Patients with MRSA bacteremia had longer LoS and higher costs than those with MSSA bacteremia. However, LoS-after and hospitalization cost per day were not different. The longer LoS than that of other countries might contribute to the higher disease burden of S. aureus bacteremia in Japan.	

1	Length of stay, hospitalization cost, and in-hospital mortality of
2	methicillin-susceptible and methicillin-resistant Staphylococcus aureus
3	bacteremia in Japan
4	
5	Shinya Tsuzuki, MD, MSc ^{1, 2*} , Jiefu Yu, MSc ¹ , Nobuaki Matsunaga, MD, PhD ¹ , Norio
6	Ohmagari, MD, PhD ^{1,3}
7	
8	¹ AMR Clinical Reference Center, National Center for Global Health and Medicine,
9	Tokyo, Japan
10	² Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
11	³ Disease Control and Prevention Center, National Center for Global Health and
12	Medicine, Tokyo, Japan
13	
14	*Corresponding author
15	AMR Clinical Reference Center, National Center for Global Health and Medicine, 1-21-
16	1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
17	Tel: +81(0)332027181
18	Email: stsuzuki@hosp.ncgm.go.jp

19	Acknowledgments
20	Statements of ethical approval: This study was approved by the Ethics Committee of
21	National Center for Global Health and Medicine, Tokyo, Japan (approval number,
22	NCGM-G-003606-00).
23	
24	Funding: This study was supported by a Ministry of Health, Labour and Welfare
25	(MHLW) research grant of Japan (20HA2003).
26	
27	Competing interests: We declare no competing interests.
28	
29	<i>Data sharing:</i> Data used in this study are available from the corresponding author upon
30	reasonable request.
31	
32	Contributors: ST and NO conceived the study. JY collected and managed the data. ST
33	performed statistical analyses and drafted the first draft of the manuscript. NM, JY, and
34	NO critically reviewed the manuscript and all authors approved the final version of the
35	manuscript.

Resubmission Manuscript

Manuscript Number: PUHE-D-21-01030

Article Title: Length of stay, hospitalization cost, and in-hospital mortality of methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia in Japan

June 28, 2021

Andrew Lee, Joanne Morling

Editors-in-Chief

Public Health

Dear Drs. Lee and Morling,

Thank you very much for giving us the opportunity to revise our manuscript. We appreciate the reviewers' careful review and constructive suggestions. Please find our point-by-point responses to the comments below in blue italics. Changes made in the main body of the manuscript are indicated using Track Changes.

We hope that the manuscript is now suitable for publication in Public Health

and look forward to hearing from you.

Sincerely,

Shinya Tsuzuki, MD, MSc

AMR Clinical Reference Center,

National Center for Global Health and Medicine

stsuzuki@hosp.ncgm.go.jp

In addition to the reviewer comments below the Editor suggests that the methods section also needs to be revised to add more detail so that the analysis can be replicated by others (more detail on what analysis was carried out exactly). However, the Editor highlights that it also needs to be succinct.

We appreciate the Editor's suggestion and have substantially revised the "Methods". It is now divided into the following subsections: "Data source and curation", "Definition of cases", "Hospitalization cost", "Statistical analysis" and "Ethics approval". More detailed information was added to each subsection in response to the reviewers' comments. We have endeavoured to be as succinct as possible. In addition, we have uploaded the R code used in this study to enable readers to replicate the results. It is difficult for us to make our data publicly available due to ethical concerns, but the data will be available upon reasonable request to the corresponding author.

Reviewer #1: Abstract/ Methodology - Line 13 and Line 60 - please mention exact study dates Eg. 1st January 2016 - 31st December 2020

Thank you for your suggestion. Our study period ran from 1 January 2016 to 31 December 2020, as you expected.

Methodology:

Please provide what definition was used for MRSA and MSSA bacteremia in this study, were ICD-10 codes used? Or a clinical definition?

We appreciate your comment. We followed the definitions provided by the Japan Nosocomial Infections Survey (JANIS), which are based on those of the Clinical Laboratory Standards Institute (CLSI). The definitions have been detailed in the main manuscript text.

Mention more in detail about data linkage, how data was extracted and stored, who had access, was the data linkage key available, was data de-identified or not?

Please include a section on how costing was done to arrive at hospitalization costs

Thank you very much for your constructive suggestion. The data aggregation process has now been detailed in the "Data source and curation" subsection in the "Methods".

As for costing, please refer to the "Hospitalization cost" subsection in the "Methods", where we describe the component of cost in this study. It includes drug cost, treatment and operation cost, examination cost and accommodation cost.

Results:

I see that authors have reported costs in USD to allow for international comparison, would be good to have the same results mentioned in JPY as well for Japanese readers of the article.

We have made the appropriate change.

Discussion:

Lines 158, 160 - mentions case fatality risk - I would suggest using the term case fatality rate

We have used your suggested term.

Include which component of hospitalization cost in both groups was high - was it bed

charge, treatment cost, etc?? Would be a value add to the analysis which has been done, if this can be described

Thank you for your insightful comment. We have added a new figure (Figure 3) that shows the breakdown of the accumulated hospitalization cost between 2016 and 2020. Accommodation cost accounted for 59.1% of the total cost in the MSSA group. Similarly, the accommodation cost accounted for 52.6% of the total cost in the MRSA group.

Curious to know why Japan has such high LoS - I do acknowledge that authors have touched upon it briefly and recommended further research

We appreciate your suggestion. One of our key references (Tiessen et al., DOI: 10.1177/0951484813512287) stated that "non-clinical factors contribute to sustained international differences in length of stay. These factors may include professional or cultural norms, differing payment schemes and access to long-term care facilities". We agree with their viewpoint and have discussed this aspect in the revised manuscript.

Reviewer #2: Comments

1. The revised introduction should state the contribution of the paper to the earlier empirical literature.

Thank you for your insightful suggestion. We have added a more detailed explanation of the contribution of the present study. As described in the original manuscript, information on LoS and hospitalization cost is not widely available in Japan. This made it difficult for us to appropriately assess the burden of each disease. Our results might be used as an indicator in the evaluation of disease burden in the context of an international comparison.

2. The revised introduction should motivate the empirical context of the study.

As in our answer to the previous question, we have few data on LoS and hospitalization cost, which makes it difficult to estimate the precise burden of disease. For example, we know that our LoS is longer than in other countries by comparison with OECD evidence but we do not know to what extent. Our results elucidate to what extent the LoS of bacteremia is longer, which will enable us to more precisely estimate the disease burden of bacteremia.

3. What is the external validity of the findings that are presented in the paper?

We thank you for giving us an opportunity to discuss this issue. As we explained in the "Discussion", one of the limitations of our results is they are based on data from a single national centre hospital. The next step would be a multicenter study. Nevertheless, our results are the first step in elucidating the difference in LoS between Japan and other countries because other studies also found a longer LoS in Japan for other diseases compared with other countries. Furthermore, the causes of this difference would also be an interesting topic for further consideration.

4. Are all relevant (economic) costs captured in the study?

Thank you for giving us a chance to explain this aspect in more detail. We have added a "Hospitalization cost" subsection to the "Methods" and described the component of cost in this study. It includes drug cost, treatment and operation cost, examination cost,

accommodation cost and other expenses. In other words, "hospitalization cost" in this study refers to the cost paid by acute healthcare facilities and does not include the cost of long-term care and expenses paid by patients (e.g., transportation fees). As described in the original manuscript, "direct costs from the healthcare payer perspective" were captured in this study.

5. The paper should state more practical policy lessons that stem from the estimation results that are presented in the paper.

Thank you for your suggestion. As now stated in the last paragraph, we can reduce the disease burden of S. aureus bacteremia if the LoS in Japan is unnecessary longer than that in other countries. However, it will be important to examine why the LoS is so long in Japan to take appropriate countermeasures.

1			
2			
3			
4			
5			
67			
/			
o Q			
10	1	Length of stay, hospitalization cost, and in-hospital mortality of	
11			
12	2	methicillin-susceptible and methicillin-resistant Stanhylococcus aureus	
13			
14	2	hastaramia in Japan	
15	3	bacterenna in Japan	
16			
17	4	Summary	
18			
19	5	Objectives	
∠0 21			
21 22	6	To examine the length of stay, hospitalization cost, and case fatality of methicillin-	
23			
24	7	suscentible and resistant Stankylococcus auraus (MSSA and MRSA) bacteremia in	
25	,	susceptione and resistant supplytococcus unreas (MISBIX and MIKBIX) bacterenna m	
26	0		
27	8	Japan.	
28			
29	9	Study design	
30			
31	10	Retrospective cohort study.	
32			
33 21	11	Patients with a diagnosis of Stanhylococcus aurous bacteremia admitted to a tertiary	
35	11	r attents with a diagnosis of <i>Staphylococcus unreus</i> bacerenna admitted to a tertiary	
36	10		
37	12	care hospital (National Center for Global Health and Medicine [NCGM]) in Tokyo,	
38			Formatted: Superscript
39	13	Japan, between <u>1st January</u> 2016 and <u>31st December</u> 2020.	 Formatted: Superscript
40	I		
41	14	Methods	
42			
43	15	We combined Japan Nosocomial Infections Surveillance data and Diagnosis Procedure	
44	10		
45 46	16	Combination data at NCCM from 2016 to 2020. The data wars stratified into MSSA	
47	10	Combination data at INCOM from 2010 to 2020. The data were stratified into MSSA	
48			
49	17	and MRSA groups. Length of stay (LoS), LoS after submission of a blood culture	
50			
51	18	specimen (LoS-after), hospitalization cost, hospitalization cost per day, and clinical	
52			
53			
54 55		1	
55 56		*	
50 57			
58			
59			
60			
61			
62			
63			

outcome were compared after propensity score matching. Results Median LoS was 46 (IQR 28.5-64.5) days in the MSSA group and 66 (IQR 40-91) days in the MRSA group (p = 0.020). Median LoS-after was 38 (IQR 25-62.5) days and 45 (IQR 24-63) days (p = 0.691), respectively. Median hospitalization cost was significantly higher in the MRSA group (26,035 [IQR 18,154-47,362] USD) than in the MSSA group (19,823 [IQR 13,764-32,042] USD) (p = 0.036) but cost per day was not (MRSA: 528.9 [IQR 374.9-647.4] USD; MSSA: 455.6 [IQR 359.2-701.7] USD; *p* = 0. 990). Case fatality riskfatality rate was higher in the MRSA group than in the MSSA group (22/60 vs. 9/60, *p* = 0.012). Conclusions Patients with MRSA bacteremia had longer LoS and higher costs than those with MSSA bacteremia. However, LoS-after and hospitalization cost per day were not different. The longer LoS than that of other countries might contribute to the higher disease burden of Formatted: Font: Italic S. aureus bacteremia in Japan. Keywords: MRSA, bacteremia, Length of stay, hospitalization cost, Japan

Introduction

38	Staphylococcus aureus is one of the most important causes of bacteremia and poses a	
39	substantial burden to society. ^{1–6} Because S. aureus bacteremia requires long-term	
40	parenteral antibiotic therapy, its disease burden is not limited to high mortality but also	
41	extends to economic aspects. ^{7,8} In addition, methicillin-resistant strains (MRSA) might	
42	have a heavier burden than susceptible strains (MSSA).9 However, to our knowledge,	
43	there is no solid evidence on the difference in the disease burden of bacteremia between	
44	MRSA and MSSA.	
45	Length of stay (LoS) and hospitalization cost are important indicators for	Form
46	estimating the burden of diseases on healthcare facilities. According to the Organisation	
47	for Economic Co-operation and Development (OECD), there is wide international	
48	variation in LoS, with Japan showing a markedly longer LoS than the worldwide	
49	average (16.1 days vs 6.6 days in 2018). ¹⁰ Although we know that the disease burden	
50	due to LoS is larger in Japan than in other countries, few studies have investigated LoS	
51	in Japan in detail. For hospitalization cost, scarce evidence is available from Japan.	
52	Only a few previous studies have reported hospitalization costs in Japan but they	
53	focused on specific diseases other than bacteremia. ^{11–13} Consequently, it is difficult to	
54	estimate the actual disease burden of bacteremia in Japan and to compare it with that in	
	2	
	1	

atted: Indent: First line: 0.3"

55	other developed countries.	
56	The main objective of this study was to examine the outcomes of MRSA and	
57	MSSA bacteremia in terms of LoS, hospitalization cost, and case fatality in a tertiary	
58	care hospital in Japan. These results will provide novel evidence on LoS and	
59	hospitalization cost and permit comparisons in the area of infectious diseases. Such	
60	evidences will enable us to more precisely estimate the burden of each disease, and will	
61	be a good indicator for health policy decision makers.	
62		
63	Methods	
64	Data source and curation	
65	We obtained Japan Nosocomial Infections Surveillance (JANIS) ¹⁴ data <u>which include</u>	
66	information about microorganisms and Diagnosis Procedure Combination (DPC) data	
67	which includes information on patients' background, hospitalization cost, and LoS	
68	recorded between <u>1 January</u> 2016 and <u>31 December</u> 2020 from the National Center for	
69	Global Health and Medicine (NCGM).	
70	The data were stored on a hard disk in a locked cabinet and only the authors of	
71	this study had access to them. The data were de-identified and we extracted only cases	
72	with a diagnosis of blood stream infections and a detection record of <u>S. aureus</u> from a	Formatted: Font: Italic
•	4	

1			
2 3			
4			
5 6			
7			
8	I		
9	73	blood culture specimen during the same admission period. We next merged the JANIS	
.1			
.2	74	data and DPC data by sex, age, date of birth, date of admission, and date of discharge	
.3			
.5	75	and then stratified the merged data into MSSA and MRSA groups.	
.6	76	After extracting the data of patients diagnosed as having bacteramia and whose	Formatted: Indent: First line: 0.58"
. /	/0	After extracting the data of patients diagnosed as having bacterenna and whose	
.9	77	blood culture results were positive for S. aureus, we stratified cases into a methicillin-	
21	70		
22	78	susceptible (MSSA) group and a methicillin-resistant (MKSA) group.	
23 24	79		
25	15		
26	80	Definition of cases	
. / 28			Formatted: Font: Italic
29	81	Each <u>S. aureus</u> detected from blood specimen was counted as one case of blood stream	
30 31			
32	82	infections. To avoid duplication from the same patient, we included only one specimen	
33	82	from the same admission data (i.e. if one nationt use admitted twice for S. gursus	Formatted: Font: Italic
84 85	0.5	nom me same admission data (i.e. if one patient was admitted twice for <u>5</u> . <i>dureus</i>	
86	84	bacteremia in different years, they were counted as two cases).	
37 29			
39	85	The criteria for judging the antimicrobial susceptibility of each bacterium were	
0			
11 12	86	in accordance with the regulations of JANIS, which follows the criteria defined by the	
13	07	Oli instanton Stanlark Letter (CLSD) MDSA and L Carles S	Formatted: Font: Italic
4	87	Clinical Laboratory Standards Institute (CLSI) ⁴⁴ . MRSA was defined as <u>5</u> . aureus	
16	88	resistant to oxacillin and/or cefoxitin.	
17			
18 19	89		
50			
51	90	Hospitalization cost	
53	1		
54		<i>c</i>	
55 56		3	
57			
8			
9 50			
51			
52			
っく 54			

91	We defined hospitalization cost in this study as direct costs from the healthcare payer			
92	perspective and then obtained the hospitalization cost of each blood stream infection			
93	case through aggregation: 1) prescription cost of drugs; 2) treatment and operation cost;			
94	3) examination cost including image inspections; 4) accommodation cost; and 5) other			
95	expenses.			
96				
97	Statistical analysis			
98	LoS, LoS after submission of a blood culture specimen (LoS-after), total hospitalization	(Formatted: Indent: First line: 0"	
99	cost, hospitalization cost per day (direct costs from healthcare payer perspective), and			
100	clinical outcome were compared between the groups after propensity score matching			
101	(one-to-one nearest matching, caliper = 0.20) to adjust for the influence of age and			
102	sex. ^{16,17} An absolute standardized mean difference of each covariate (age and sex) above			
103	10% in matched data was regarded as a clinically significant difference, and all such			
104	differences were within 10%. In addition, we aggregated the data of all patients			
105	admitted to NCGM in the observation period to calculate the LoS and hospitalization			
106	cost for all causes of admission.			
107	Two-sided p values less than 0.05 were considered statistically significant. All			
108	statistical analyses were performed using R version 4.0.3. ¹⁸ _			
I				
	6			

)9	
10	Ethics approval
11	This study was approved by the Ethics Committee of National Center for Global Health
12	and Medicine, Tokyo, Japan (approval number, NCGM-G-003606-00).
13	
14	Results
15	Table 1 shows the LoS and hospitalization cost of all patients admitted to NCGM
16	between 2016 and 2020 (i.e., not limited to those with S. aureus bacteremia). In total,
17	median hospitalization cost per patient was 5,162 (interquartile range [IQR] 2,745-
18	10,142) USD and median LoS was 7 (IQR 3-15) days. Among all age groups, neonatal
19	patients had the highest hospitalization cost (median 14,432 USD; IQR 8,162-28,311
20	USD) and the longest LoS (median 13 days; IQR 8-29 days).
21	
22	(Table 1)
23	
24	In the population of interest, median LoS was 46 (IQR 28.5-64.5) days in the
25	MSSA group and 66 (IQR 40-91) days in the MRSA group. Median LoS-after was 38
26	(IQR 25–62.5) days in the MSSA group and 45 (IQR 24-63) days in the MRSA group.
	7

	1
	2
	3
	4
	5
	6
	7
	0
	8
	9
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	0
1	0
T	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	0
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
с 2	7
2 2	0
2 2	0
3	9
4	0
4	1
4	2
4	3
4	4
4	5
4	6
4	7
4	8
Л	a
т Б	0
5	1
5	T
5	2
5	3
5	4
5	5
5	6
5	7
5	8
5	9
6	0
د م	1
G G	エ つ
0	2
0	3
ь	4

127	Median hospitalization cost and cost per day were respectively 19,823 (IQR 13,764-	
128	32,042) USD and 455.6 (IQR 359.2–701.7) USD in the MSSA group and 26,035 (IQR	
129	18,154-47,362) USD and 528.9 (IQR 374.9-647.4) USD in the MRSA group.	
130	The Wilcoxon rank sum test revealed that LoS and hospitalization cost significantly	
131	differed between the groups ($p = 0.020$ and 0.036, respectively), unlike LoS-after and	Formatted: Font: Italic
132	hospitalization cost per day ($p = 0.691$ and 0.990, respectively). The case fatality rate	Formatted: Font: Italic
133	was higher in the MRSA group (22/60) than in the MSSA group (9/60) according to	
134	Fisher's exact test ($p = 0.012$). Table 2 shows the results before propensity score	Formatted: Font: Italic
135	matching, and Table 3 shows the results after matching. Figures 1 and 2 are violin plots	
136	of LoS and hospitalization cost by strain, respectively.	
137		
138	(Table 2)	
139		
140	(Table 3)	
141		
142	(Figure 1)	
143		
144	(Figure 2)	
	8	

Figure 3 describes the breakdown of hospitalization cost for each group.
(Figure 3)
Accommodation cost accounted for more than half of the total hospitalization
cost in both groups (59.1% in the MSSA group and 52.6% in the MRSA group). The
proportion of the treatment cost was higher in the MRSA group than in the MSSA group
(20.6% and 13.7%, respectively).
Discussion
To our knowledge, this is the first study examining the difference in LoS and
To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of
To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of all-cause admission was substantially shorter than reported by the OECD. ¹⁰ This
To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of all-cause admission was substantially shorter than reported by the OECD. ¹⁰ This difference might be due to the calculation methods used. While the OECD reported the
To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of all-cause admission was substantially shorter than reported by the OECD. ¹⁰ This difference might be due to the calculation methods used. While the OECD reported the average number of days spent by patients in hospital, which is generally measured by
 To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of all-cause admission was substantially shorter than reported by the OECD.¹⁰ This difference might be due to the calculation methods used. While the OECD reported the average number of days spent by patients in hospital, which is generally measured by dividing the total number of days stayed by all inpatients during a year by the number of
 To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of all-cause admission was substantially shorter than reported by the OECD.¹⁰ This difference might be due to the calculation methods used. While the OECD reported the average number of days spent by patients in hospital, which is generally measured by dividing the total number of days stayed by all inpatients during a year by the number of admissions or discharges, we used the median LoS of each patient. Therefore, the 16.1
To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of all-cause admission was substantially shorter than reported by the OECD. ¹⁰ This difference might be due to the calculation methods used. While the OECD reported the average number of days spent by patients in hospital, which is generally measured by dividing the total number of days stayed by all inpatients during a year by the number of admissions or discharges, we used the median LoS of each patient. Therefore, the 16.1
To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of all-cause admission was substantially shorter than reported by the OECD. ¹⁰ This difference might be due to the calculation methods used. While the OECD reported the average number of days spent by patients in hospital, which is generally measured by dividing the total number of days stayed by all inpatients during a year by the number of admissions or discharges, we used the median LoS of each patient. Therefore, the 16.1
To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of all-cause admission was substantially shorter than reported by the OECD. ¹⁰ This difference might be due to the calculation methods used. While the OECD reported the average number of days spent by patients in hospital, which is generally measured by dividing the total number of days stayed by all inpatients during a year by the number of admissions or discharges, we used the median LoS of each patient. Therefore, the 16.1

63	days reported by the OECD would be greatly influenced by outliers (i.e., the extremely
64	long LoS of some patients). Nevertheless, 7 days is longer than the average LoS
65	worldwide (6.6 days) and that inof the US (5.5 days). ¹⁰
66	Notably, the LoS of patients with S. aureus bacteremia in Japan is substantially
67	longer than that in other countries. Cosgrove and colleagues reported that the median
68	LoS for MSSA and MRSA bacteremia in the US was 7 and 9 days, respectively. ¹⁹
69	According to Thampi and colleagues, the median LoS of such patients in Canada was
70	14 and 22.5 days, respectively. ²⁰ Another study from the Greater Toronto area found a
71	median LoS for S. aureus bacteremia of 17 days. ²¹ In contrast, our results indicated that
72	patients with S. aureus bacteremia in Japan are hospitalized for a median 49 days, which
73	is about three times as long as that reported previously in other countries. Even when
74	the data are limited to LoS-after (i.e., LoS after submission of a blood culture), this
75	amounts to twice as long as that reported previously in other countries. Given these
76	results, it is not difficult to imagine that the disease burden of S. aureus bacteremia will
77	be greater in Japan than in other countries.
78	The cause of the considerable international differences in LoS is not clear, but,
79	Tiessen and colleagues have obtained some interesting results. ²² Although their study
80	examined the LoS of acute myocardial infarction, they observed a trend similar to that
	10

181	of our results. In their opinion, their results can be explained by nonclinical factors such
182	as professional/cultural norms and differences in healthcare schemes. For instance,
183	acute care hospitals in Japan are generally equipped with a larger supply of acute care
184	beds but, a small supply of long-term care beds. This combination should theoretically
185	result in longer acute care stays. In addition, hospital ownership in Japan would also
186	influence the results. Private for-profit organizations perhaps act to fill their capacity,
187	which is higher than that of their counterpart, to maximize revenues. These hypotheses
188	should be carefully examined in future work.
189	Meanwhile, we should also note that, although there was a difference in total LoS
190	between MSSA and MRSA in our study, there was no substantial difference in LoS-
191	after. This is a markedly different result from that of previous studies. ^{9,23} Generally
192	speaking, the presence of antibiotic resistance appears to increase LoS and
193	hospitalization costs. This phenomenon is probably related to Japanese healthcare
194	systems and customs. Because residence in a long-term care facility is one of the risk
195	factors of MRSA infection, ²⁴ the longer LoS might be attributable to an increase in
196	novel MRSA bacteremia because patients who tend to stay in the hospital longer also
197	tend to be infected with MRSA. It is possible that the long LoS in Japan is not only
198	unnecessary, but also increases the number of infected cases. Because the LoS-after in
	11

Japan is substantially longer than the appropriate duration of antibiotic therapy for S. aureus bacteremia,²⁵ the difference in the recommended duration of antibiotic therapy between MSSA and MRSA does not explain the difference in LoS-after between these strains. The hospitalization cost of S. aureus bacteremia in Japan is neither expensive nor cheap compared with other developed countries. Thampi and colleagues reported that S. aureus bacteremia costs about 12,000 USD per case in Canada.²⁰ In contrast, it costs more than 37,000 USD in the US.²³ As described above, the LoS in Japan is clearly longer than that in these countries, but the hospitalization cost per day in Japan may be less expensive. In addition, the hospitalization cost per day in Japan is not substantially different between MSSA and MRSA. This result is compatible with that of a recent study from the US,²⁶ although it contradicts the results of older studies.^{19,27–31}

In terms of the clinical outcome of *S. aureus* bacteremia, the case fatalityriskfatality rate of 24.5% in this study is also similar to that in previous studies.^{21,32} However, the difference in the case fatality riskfatality rate between MSSA and MRSA is clear in our study, in contrast to a recent study.²⁶ This can be attributed to the nature of our data, which are a combination of microbiological test results and patients' claim data and, which made it difficult to adjust for confounding factors associated with

prognosis.

The present study has several limitations. First, our results are based on data from a single facility. Although our facility is the largest medical center hospital in Japan in terms of infectious diseases, the number of bacteremia cases was limited and biases due to the characteristics of the facility cannot be removed. Therefore, representativeness will be a major concern for our results. Next, as explained in the previous paragraph, our data do not include the full characteristics of each patient. Although we adjusted for age and sex by propensity score matching, other confounding factors probably affected the results. Third, our claims data capture the cost incurred by the facility. Because the Japanese health insurance system adopts the Diagnosis Procedure Combination/Per-Diem Payment System, the claims data do not precisely reflect the actual cost paid by the government to the facility. In other words, our estimated hospitalization cost might be overestimated if we regard the "healthcare payer" as being the Japanese government. Despite these limitations, our results provide necessary evidence for international comparisons of the disease burden of S. aureus bacteremia. At our hospital in Japan, patients with MRSA bacteremia had longer hospital stays and higher costs than those with MSSA bacteremia. However, the LoS-after and hospitalization cost per day did not differ. Furthermore, the markedly longer LoS in Japan compared with other countries

	1
	2
	3
	4
	5
	6
	7
	<i>'</i>
	8
_	9
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	a
ר ר	ر م
2	1
2	T
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
2	0
2	1
с С	T T
3	2
3	3
3	4
3	5
3	6
3	7
3	8
3	9
4	0
Δ	1
7	2
4	2
4	2
4	4
4	5
4	6
4	7
4	8
4	9
5	0
5	1
5	2
5	3
5	Δ
5	ч 5
5	ے د
J F	0 7
с Г	1
5	8
5	9
6	0
6	1
6	2
6	3
6	4
6	5
-	

с 7 С			
3 9)	235	would be of major interest. Further studies of this long LoS in Japan and its reasons	
1 2	236	based on multicenter, national-level data are necessary because <u>a</u> longer LoS would be a	
5 4 5	237	major cause of heavier disease burden for the same disease in Japan compared with	
ร์ 7 ร	238	other countries. These novel findings might contribute to reduce the burden and medical	
9)	239	expenses of <u>S. aureus</u> bacteremia in Japan because the LoS in Japan may be	Formatted: For
1 2 3	240	unnecessarily longer than that in other countries and causes additional productivity loss	
4 5	241	and medical costs.	
5 7	242		
))	243	Acknowledgments	
1 2	244	Statements of ethical approval: This study was approved by the Ethics Committee of	
3 4 5	245	National Center for Global Health and Medicine, Tokyo, Japan (approval number,	
6 7	246	NCGM-G-003606-00).	
3 9 0	247		
1 2	248	Funding: This study was supported by a Ministry of Health, Labour and Welfare	
3 4 5	249	(MHLW) research grant of Japan (20HA2003).	
5 7	250		
3 9 1	251	Competing interests: We declare no competing interests.	
1 2	252		
3 4 5		14	
5 6 7			
3 Э			
1 2			

nt: Italic

3		
4		
5		
6		
7		
8		
9	252	Dete designed Determent in this study are surilable from the company diagonation of
10	233	Data sharing: Data used in this study are available from the corresponding author upon
11		
12	254	reasonable request.
13		
14	255	
15	235	
16		
17	256	Contributors: ST and NO conceived the study. JY collected and managed the data. ST
18		
19	257	performed statistical analyses and drafted the first draft of the manuscript NM IV and
20	207	
21		
22	258	NO critically reviewed the manuscript and all authors approved the final version of the
23		
24	259	manuscript.
25		1 I
26	260	
27	260	
28		
29	261	
30		
31	262	
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54 55		15
55 57		15
00 57		
50		
JQ		
53		
00 61		
01 60		
02 63		
03 61		
ю4		

5	
5	•
6	1
6	
6	•

1			
2			
3			
4			
5			
6			
/			
8	263		
9	205		
11	264		References
12	265		
13	265		
14	266	1.	Tsuzuki S, Matsunaga N, Yahara K, Gu Y, Hayakawa K, Hirabayashi A, et al.
15	267		National trend of blood-stream infection attributable deaths caused by
16	268		Staphylococcus aureus and Escherichia coli in Japan. J Infect Chemother, 2020
17	269		$\Delta \text{ pr:} 26(4) \cdot 367 - 71$
18	207		Apr,20(4).507 71.
19	270	2.	Diekema DJ. Pfaller MA. Shortridge D. Zervos M. Jones RN. Twenty-Year Trends
20	271		in Antimicrobial Suscentibilities Among Stanbulococcus aureus From the SENTRV
21	271		Antimierobial Susceptionnes Antiong Staphylococcus aureus From the SEATRE
22	212		Anumicrobial Surveillance Program. Open Forum Infect Dis. 2019 Mar 15;6(Suppl
23 24	273		1):S47–53.
24 25	074	2	
26	274	3.	Malani PN, Rana MM, Banerjee M, Bradley SF. Staphylococcus aureus
2.7	275		Bloodstream Infections: The Association Between Age and Mortality and
28	276		Functional Status. Journal of the American Geriatrics Society. 2008;56(8):1485–9.
29			
30	277	4.	Stewardson AJ, Allignol A, Beyersmann J, Graves N, Schumacher M, Meyer R, et
31	278		al. The health and economic burden of bloodstream infections caused by
32	279		antimicrobial-susceptible and non-susceptible Enterobacteriaceae and
33	280		Staphylococcus aureus in European hospitals, 2010 and 2011: a multicentre
34	281		retrospective cohort study. Euro surveillance : bulletin Europeen sur les maladies
35	282		transmissibles – European communicable disease hulletin 2016 Aug 21(33)
36	202		transmissiones – European communicable disease bunchin. 2010 Mag,21(55).
3/ 20	283	5	de Kraker MEA, Jarlier V, Monen JCM, Heuer OE, van de Sande N, Grundmann H
20 20	284	0.	The changing epidemiology of bacteraemias in Europe: trends from the European
40	204		Activitation of the second state of the second
41	285		Antimicrobial Resistance Surveillance System. Clin Microbiol Infect. 2013
42	286		Sep;19(9):860–8.
43	207	6	Wilson I Elephani S Livermore DM Cookson D Johnson A Longert T et al
44	207 200	0.	witson J, Eigenan S, Eivermore Divi, Cookson B, Jonnson A, Lamagni I, et al.
45	288		irends among pathogens reported as causing bacteraemia in England, 2004-2008.
46	289		Clin Microbiol Infect. 2011 Mar;17(3):451–8.
47	200	7	
48	290	1.	Hamad Y, Connor L, Bailey IC, George IA. Outcomes of Outpatient Parenteral
49	291		Antimicrobial Therapy With Ceftriaxone for Methicillin-Susceptible
50 51	292		Staphylococcus aureus Bloodstream Infections-A Single-Center Observational
52	293		Study. Open Forum Infectious Diseases. 2020 Sep 1;7(9):ofaa341.
53			
54			
55			16
56			
57			
58			
59			
60			
61			
62			

1			
2			
3			
4			
5			
7			
, 8			
9	294	8.	Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical
10	295		practice guidelines by the infectious diseases society of america for the treatment of
11	296		methicillin-resistant Staphylococcus aureus infections in adults and children:
12	297		executive summary. Clin Infect Dis. 2011 Feb 1:52(3):285–92.
13			······································
14	298	9.	Andreassen AES, Jacobsen CM, de Blasio B, White R, Kristiansen IS, Elstrøm P.
16	299		The impact of methicillin-resistant S. aureus on length of stay, readmissions and
17	300		costs: a register based case-control study of patients hospitalized in Norway.
18 19	301		Antimicrobial Resistance & Infection Control. 2017 Jul;6(1):74.
20	302	10.	OECD iLibrary. Length of hospital stay [Internet], [cited 2021 Mar 29]. Available
21	303		from: https://www.oecd-ilibrary.org/social-issues-migration-health/length-of-
22	304		hospital-stay/indicator/english 8dda6b7a-
23 24	305		en ⁹ narentId-httn%3&%2F%2Finstance metastore ingenta com%2Fcontent%2Fthe
2.5	206		matiogrouping%2E1a1aa024 on
26	500		mancgrouping %2r1a1ac034-cn
27	307	11.	Mizuno A, Iguchi H, Sawada Y, Hurley M, Nomura H, Hayashi K, et al. The impact
28	308		of carperitide usage on the cost of hospitalization and outcome in patients with acute
29	309		heart failure: High value care vs. low value care campaign in Japan. Int J Cardiol.
30	310		$2017 \text{ Aug 15} \cdot 241 \cdot 243 = 8$
32	510		2017 14g 15,211.215 0.
33	311	12.	Ito Y, Sakata Y, Yoshida H, Nonaka S, Fujii S, Tanaka Y, et al. High Cost of
34	312		Hospitalization for Colonic Diverticular Bleeding Depended on Repeated Bleeding
35	313		and Blood Transfusion: Analysis with Diagnosis Procedure Combination Data in
36	314		Japan, Digestion, 2017:96(2):76–80.
37			
20 29	315	13.	Sruamsiri R, Ferchichi S, Jamotte A, Toumi M, Kubo H, Mahlich J. Impact of patient
40	316		characteristics and treatment procedures on hospitalization cost and length of stay
41	317		in Japanese patients with influenza: A structural equation modelling approach.
42	318		Influenza Other Respir Viruses. 2017 Nov:11(6):543–55.
43			
44	319	14.	Tsutsui A, Suzuki S. Japan nosocomial infections surveillance (JANIS): a model of
45	320		sustainable national antimicrobial resistance surveillance based on hospital
40	321		diagnostic microbiology laboratories. BMC Health Services Research. 2018
48	322		Oct;18(1):799.
49			
50	323	15.	Clinical and Laboratory Standars Institute. Methods for Antimicrobial Dilution and
51	324		Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd ed.
52			
53			
55			17
56			
57			
58			
59			
60			
б1 62			
<u> </u>			

1			
2			
3			
4			
5			
6			
7			
8 9	325		CLSI guideline M45. Wayne, PA; 2015.
10	226	16	
11 12	326 327	16.	studies for causal effects. :15.
11	220	17	
15	328	17.	Austin PC. A comparison of 12 algorithms for matching on the propensity score.
16	329		Statistics in Medicine. 2014;33(6):1057–69.
17			
10	330	18.	R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
10 10	331		Austria: R Foundation for Statistical Computing; 2018.
20			I B,
20 21	332	19.	Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of
21	333		methicillin resistance in Stanhylococcus aureus hacteremia on patient outcomes:
22	224		methelitis langth of stars and hearital shares. Infast Cantral Hear Eridemial 2005
20	334		mortality, length of stay, and nospital charges. Infect Control Hosp Epidemiol. 2005
25	335		Feb;26(2):166–74.
26			
27	336	20.	Thampi N, Showler A, Burry L, Bai AD, Steinberg M, Ricciuto DR, et al.
2.8	337		Multicenter study of health care cost of patients admitted to hospital with
29	338		Staphylococcus aureus bacteremia: Impact of length of stay and intensity of care.
30	339		American Journal of Infection Control 2015 Jul 43(7):739–44
31	007		
32	340	21.	Bai AD, Showler A, Burry L, Steinberg M, Ricciuto DR, Fernandes T, et al. Impact
33	3/1		of Infectious Disease Consultation on Quality of Care Mortality and Length of Stay
34	240		in fine thous Disease Consultation on Quarty of Care, Mortanty, and Eengin of Stay
35	342		in Staphylococcus aureus Bacteremia: Results From a Large Multicenter Conort
36	343		Study. Clin Infect Dis. 2015 May 15;60(10):1451–61.
37			
38	344	22.	Tiessen J, Kambara H, Sakai T, Kato K, Yamauchi K, McMillan C. What causes
39	345		international variations in length of stay: A comparative analysis for two inpatient
40	346		conditions in Japanese and Canadian hospitals. Health Serv Manage Res. 2013
41	347		Aug:26(2-3):86-94
42	6.17		1.4 <u>8</u> ,20(2 0),000 y H
43	348	23.	Inagaki K, Lucar J, Blackshear C, Hobbs CV. Methicillin-susceptible and
44	340		Methicillin-resistant Stanhylococcus aureus Racteremia: Nationwide Estimates of
45	250		20 Day Deadmining In heartich Marchite Leasth CO
46	330		30-Day Readmission, in-nospital Mortanty, Length of Stay, and Cost in the United
4 /	351		States. Clinical Infectious Diseases [Internet]. 2019 Feb 11 [cited 2021 Jan 2];
48	352		Available from: https://academic.oup.com/cid/advance-
49	353		article/doi/10.1093/cid/ciz123/5315481
50 51			
51 51	354	24.	Spindel SJ, Strausbaugh LJ, Jacobson C. Infections caused by Staphylococcus
52			
57			
55			18
55			
57			
58			
59			
60			
61			
62			

1			
2			
3			
4			
5 6			
0 7			
2 2			
9	355		aureus in a Veterans' Affairs nursing home care unit: a 5-year experience. Infect
10	356		Control Hosp Enidemial 1005 Apr: 16(4):217-23
11	550		Control Hosp Epidemiol. 1995 Apr,10(4).217–25.
12	357	25	Fowler VG Sanders LL Sexton DL Kong L Marr KA Gonal AK et al Outcome
13	358	201	of Stanbulococcus surgue bacteramia according to compliance with
14	250		bi Staphylococcus aureus bacterenna according to compnance with
15	339		recommendations of infectious diseases specialists: experience with 244 patients.
16	360		Clin Infect Dis. 1998 Sep;27(3):478–86.
17	2(1	26	
18	301	26.	Klein EY, Jiang W, Mojica N, Iseng KK, McNeili K, Cosgrove SE, et al. National
19	362		Costs Associated With Methicillin-Susceptible and Methicillin-Resistant
∠0 21	363		Staphylococcus aureus Hospitalizations in the United States, 2010-2014. Clin Infect
21	364		Dis. 2019 Jan 1;68(1):22–8.
23			
24	365	27.	Shorr AF. Epidemiology and Economic Impact??of Meticillin-Resistant
25	366		Staphylococcus aureus: Review and Analysis of the Literature.
26	367		PharmacoEconomics. 2007;25(9):751–68.
27			
28	368	28.	Filice GA, Nyman JA, Lexau C, Lees CH, Bockstedt LA, Como-Sabetti K, et al.
29	369		Excess costs and utilization associated with methicillin resistance for patients with
30	370		Staphylococcus aureus infection. Infect Control Hosp Epidemiol. 2010
31	371		Anr:31(4):365–73
32	571		ripi,51(1).505 75.
33 24	372	29.	Rubin RJ, Harrington CA, Poon A, Dietrich K, Greene JA, Moiduddin A, The
34	373	_,.	economic impact of Stanbulococcus aureus infection in New York City hospitals
36	274		Emore Infact Dis 1000 Esh 5(1):0. 17
37	574		Emerg infect Dis. 1999 $Fe0, 5(1).9-17$.
38	375	30	Engemann II Carmeli V Cosgrove SE Fowler VG Bronstein MZ Trivette SL et
39	276	50.	al Advarsa alinical and according outcomes attributable to mathicillin registerio
40	270		al. Adverse clinical and economic outcomes autoutable to methemin resistance
41	3//		among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis.
42	378		2003 Mar 1;36(5):592–8.
43	270	21	Mallack CC, Dilas IW, Disk forstore and east source is the initial state of the state in the
44	319	31.	wichugi CG, Kiley Lw. Kisk factors and costs associated with methicillin-resistant
45	380		Staphylococcus aureus bloodstream infections. Infect Control Hosp Epidemiol.
40 17	381		2004 May;25(5):425–30.
48	202	22	
49	382	32.	wyllie DH, Crook DW, Peto TEA. Mortality after Staphylococcus aureus
50	383		bacteraemia in two hospitals in Oxfordshire, 1997-2003: cohort study. BMJ. 2006
51	384		Aug 5;333(7562):281.
52			
53			
54			10
55			19
56			
5/ E0			
50 50			
59			
61			
62			
63			
64			

Table 1. Cost and length of stay of all patients in the National Center for Global

			T () 6 (()		Formatted: Centered
Age group	Cost (USD*)	<u>Cost (JPY)</u>	Length of stay (days	5)	Formatted Table
	14432 (8162-	<u>1587565 (897835-</u>			Formatted: Centered
Neonates	28311)	<u>3114155)</u>	13 (8-29)	•	
Infonto	<i>4553 (3446 63</i> 00)	<u>500870 (379080-</u>	6 (1 8)	•	Formatted: Centered
mants	4333 (3440-0390)	<u>702890)</u>	0 (4-8)		
1-14 vears	5145 (3605-6921)	<u>566000 (396555-</u>	5 (3-7)	•	Formatted: Centered
11190015	5145 (5005-0921)	<u>761280)</u>			
15-64 vears	4808 (2529-9143)	<u>528882 (278230-</u>	7 (3 13)	•	Formatted: Centered
ie orgenis		<u>1005783)</u>	(6 10)		
65-89 vears	5219 (2696-11235)	<u>574105 (296603-</u>	8 (2-17)	•	Formatted: Centered
oe of jears		<u>1235814)</u>	0(217)		
90 years and	6969 (3706-13010)	<u>766628 (407668-</u>	12 (5-25)	•	Formatted: Centered
older	0707 (5700-15010)	<u>1431061)</u>	12 (0 20)		
Total	5162 (2745-10142)	<u>567800 (301936-</u>	7 (3-15)	-	Formatted: Centered
IUTAI	0102 (2770-101 7 2)	1115629)	/ (5-15)		

Health and Medicine, 2016-2020

Values are shown as the median (interquartile range).

1 2 3 4 5 6 7 8 9		
10 11	391	*1 USD = 110 JPY.
12 13	392	
14 15		
16 17		
18 19		
20 21 22		
22 23 24		
25 26		
27 28		
29 30 31		
31 32 33		
34 35		
36 37		
38 39 40		
40 41 42		
43 44		
45 46		
47 48 49		
50 51		
52 53		
54 55		
56 57 58		
59 60		
61 62		
63 64		

2016-2020

Table 2. Length of stay, hospitalization cost, and in-hospital mortality of patients

with S. aureus bacteremia in the National Center for Global Health and Medicine,

	MSSA (n=84)	MRSA (n=63)	Total (n=147)	-	Formatted: Centered
A = -	7 2 (50, 92)	76 (64.90)	74 (59.95)	-	Formatted: Centered
Age	72 (50-82)	76 (64-89)	74 (58-85)		
Male sex	44 (52.4)	35 (55.6)	79 (53.7)	•	- Formatted: Centered
LoS (days)	40 (27.5-64.5)	66 (37.5-87)	49 (29-76)	•	- Formatted: Centered
LoS-after (days)*	32 (22-59.5)	43 (23-62)	32 (17-56)	•	Formatted: Centered
Hospitalization cost	20884 (13880-	27798 (18252-	22902 (15699-	•	Formatted: Centered
(USD)**	33951)	47543)	43330)		
	<u>2297240</u>	<u>3057807</u>	<u>2519214</u>	•	Formatted: Centered
Hospitalization cost	<u>(1526856-</u>	<u>(2007727-</u>	<u>(1726905-</u>		
<u>(JPX)</u>	<u>3734595)</u>	<u>5229778)</u>	<u>4766352)</u>		
Hospitalization cost per				•	Formatted: Centered
day (USD)**	401 (150-1111)	496 (231-1215)	488 (374-719)		
Hospitalization cost per	<u>44085 (16527-</u>	<u>54518 (25374-</u>	<u>53651 (41181-</u>	•	- Formatted: Centered
<u>day (JPY)</u>	<u>122191)</u>	<u>133648)</u>	<u>79102)</u>		
In-hospital death	12 (14.3)	24 (38.1)	36 (24.5)	•	Formatted: Centered

MSSA, methicillin-susceptible *Staphylococcus aureus*; MRSARF, methicillin-resistant *Staphylococcus aureus*; LoS, length of stay.
Values are shown as the median (interquartile range) or number (percentage).
*Length of stay after blood culture submission.
**1 USD = 110 JPY.

Formatted: Centered MSSA (n=60) MRSA (n=60) p-value[†] Formatted Table Formatted: Centered 76.5 (65.5-89) Age 76 (66-83) 0.303 Formatted: Centered Male 33 (55.0) 32 (53.3) 1.0 Formatted: Centered 46 (28.5-64.5) 66 (40-91) 0.020 LoS (days) Formatted: Centered 0.691 LoS-after (days)* 38 (25-62.5) 45 (24-63) Formatted: Centered **Hospitalization cost** 19823 (13764-26035 (18154-0.036 (USD)** 32042) 47362) 2180493 2863872 Formatted: Centered **Hospitalization cost** (1514005-(1996922-<u>0.036</u> (JPY) <u>5209858)</u> <u>3524635)</u> Formatted: Centered Hospitalization cost per 456 (359-702) 529 (375-647) 0.990 day (USD)** Formatted: Centered **Hospitalization cost per** 50113 (39516-<u>58174 (41238-</u> <u>0.990</u> day (JPY) <u>77191)</u> <u>71212)</u> Formatted: Centered **In-hospital death** 9 (15.0) 22 (36.7) 0.012

Table 3. Comparison of length of stay, hospitalization cost, and in-hospital

402 mortality of MSSA and MRSA bacteremia after propensity score matching

403

MSSA, methicillin-susceptible Staphylococcus aureus; MRSARF, methicillin-resistant

25

404	Staphylococcus aureus; LoS, length of stay.	
405	Values are shown as median (interquartile range) or an absolute number (percentage).	
406	*Length of stay after blood culture submission.	
407	**1 USD = 110 JPY.	
408	[†] Mann-Whitney test for continuous variables and Fischer's exact test for binary	
409	variables.	
410 411		Formatted: Line spacing: single, Widow/Orphan contro
1		

1			
2			
3			
4			
6			
7			
8			
9	410		
10	412	Figure legends	
11			
12	413	Figure 1. Length of stay after blood culture submission by strain	
13			
14	414	MSSA, methicillin-susceptible Staphylococcus aureus; RF, methicillin-resistant	
16			
17	415	Staphylococcus aureus.	
18			
19	416		
20	110		
21	417	Figure 2. Hogenitalization cost non day by studie	
22	417	Figure 2. Hospitalization cost per day by strain	
23			
24 25	418	MSSA, methicillin-susceptible <i>Staphylococcus aureus</i> ; RF, methicillin-resistant	
26			
27	419	Staphylococcus aureus.	
28	1		
29	420		
30	121	Figure 3 Breakdown of the total beenitelization cost from 2016 to 2020	Formatted: Font: Bold
31	421	Figure 5. Breakdown of the jotal hospitalization cost from 2010 to 2020	Formatted: Font: Bold
32	422	The horizontal axis represents the accumulated hospitalization cost during the study	
33 34	100		
33 34 35	423	period.	
33 34 35 36	423	period.	
33 34 35 36 37	423	period.	
33 34 35 36 37 38	423	<u>period.</u>	
33 34 35 36 37 38 39	423	<u>period.</u>	
33 34 35 36 37 38 39 40	423	period.	
33 34 35 36 37 38 39 40 41	423	period.	
33 34 35 36 37 38 39 40 41 42 43	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45 46	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54	423	period.	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	423		
33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56	423	<text></text>	
33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 57	423	<text></text>	
33 34 35 36 37 38 40 41 42 43 44 45 46 48 49 51 23 55 55 55 55 57 8 55	423	period.	
334 35 36 37 38 30 41 42 43 44 45 46 47 49 51 23 55 55 55 55 55 55 55 55 55 55 55 55 55	423	period.	
334 35 36 37 39 41 42 44 45 47 49 51 23 45 55 56 58 90 1	423	period.	
334 3536 3739 401 4234 444 456 4749 51234 55555 5759 601 62	423		
33 34 35 36 37 38 40 42 43 44 45 47 48 40 51 23 55 57 59 60 12 63	423		
334 3536 3739 4042 444 4567 4890 5123 55555 57890 61236 61236 61236 61236 61236 61236 61236 61236 6126 612	423	<text></text>	

1		
2 3 4 5	1	Length of stay, hospitalization cost, and in-hospital mortality of
6 7 8	2	methicillin-susceptible and methicillin-resistant Staphylococcus aureus
9 10 11	3	bacteremia in Japan
12 13 14	4	Summary
15 16 17	5	Objectives
18 19 20	6	To examine the length of stay, hospitalization cost, and case fatality of
21 22 23 24	7	methicillin-susceptible and -resistant Staphylococcus aureus (MSSA and MRSA)
25 26 27	8	bacteremia in Japan.
28 29 30	9	Study design
31 32 33	10	Retrospective cohort study. Patients with a diagnosis of Staphylococcus aureus
34 35 36	11	bacteremia admitted to a tertiary care hospital (National Center for Global Health and
37 38 39	12	Medicine [NCGM]) in Tokyo, Japan, between 1st January 2016 and 31st December
40 41 42	13	2020.
43 44 45 46	14	Methods
47 48 49	15	We combined Japan Nosocomial Infections Surveillance data and Diagnosis Procedure
50 51 52	16	Combination data at NCGM from 2016 to 2020. The data were stratified into MSSA
53 54 55	17	and MRSA groups. Length of stay (LoS), LoS after submission of a blood culture
56 57 58	18	specimen (LoS-after), hospitalization cost, hospitalization cost per day, and clinical
59 60 61		
62 63 64 65		1

19 outcome were compared after propensity score matching.

20	Results
21	Median LoS was 46 (IQR 28.5-64.5) days in the MSSA group and 66 (IQR 40-91) days
22	in the MRSA group ($p = 0.020$). Median LoS-after was 38 (IQR 25-62.5) days and 45
23	(IQR 24-63) days ($p = 0.691$), respectively. Median hospitalization cost was
24	significantly higher in the MRSA group (26,035 [IQR 18,154-47,362] USD) than in the
25	MSSA group (19,823 [IQR 13,764-32,042] USD) ($p = 0.036$) but cost per day was not
26	(MRSA: 528.9 [IQR 374.9-647.4] USD; MSSA: 455.6 [IQR 359.2-701.7] USD; <i>p</i> =
27	0.990). Case fatality rate was higher in the MRSA group than in the MSSA group (22/60
28	vs. 9/60, <i>p</i> = 0.012).
29	Conclusions
30	Patients with MRSA bacteremia had longer LoS and higher costs than those with MSSA
31	bacteremia. However, LoS-after and hospitalization cost per day were not different. The
32	longer LoS than that of other countries might contribute to the higher disease burden of
33	S. aureus bacteremia in Japan.
34	
35	Keywords: MRSA, bacteremia, length of stay, hospitalization cost, Japan
36	
	2

37 Introduction

Staphylococcus aureus is one of the most important causes of bacteremia and poses a substantial burden to society.¹⁻⁶ Because *S. aureus* bacteremia requires long-term parenteral antibiotic therapy, its disease burden is not limited to high mortality but also extends to economic aspects.^{7,8} In addition, methicillin-resistant strains (MRSA) might have a heavier burden than susceptible strains (MSSA).⁹ However, to our knowledge, there is no solid evidence on the difference in the disease burden of bacteremia between MRSA and MSSA. Length of stay (LoS) and hospitalization cost are important indicators for estimating the burden of diseases on healthcare facilities. According to the Organisation for Economic Co-operation and Development (OECD), there is wide international variation in LoS, with Japan showing a markedly longer LoS than the worldwide average (16.1 days vs. 6.6 days in 2018).¹⁰ Although we know that the disease burden due to LoS is larger in Japan than in other countries, few studies have investigated LoS in Japan in detail. For hospitalization cost, scarce evidence is available from Japan. Only a few previous studies have reported hospitalization costs in Japan but they focused on specific diseases other than bacteremia.^{11–13} Consequently, it is difficult to estimate the actual disease burden of bacteremia in Japan and to compare it with that in

55 other developed countries.

56	The main objective of this study was to examine the outcomes of MRSA and
57	MSSA bacteremia in terms of LoS, hospitalization cost, and case fatality in a tertiary
58	care hospital in Japan. These results will provide novel evidence on LoS and
59	hospitalization cost and permit comparisons in the area of infectious diseases. Such
60	evidence will enable us to more precisely estimate the burden of each disease and will
61	be a good indicator for health policy decision makers.
62	
63	Methods
64	Data source and curation
65	We obtained Japan Nosocomial Infections Surveillance (JANIS) ¹⁴ data, which include
66	information on microorganisms, and Diagnosis Procedure Combination (DPC) data,
67	which include information on patients' background, hospitalization cost, and LoS
68	recorded between 1 January 2016 and 31 December 2020 from National Center for
69	Global Health and Medicine (NCGM).
70	The data were stored on a hard disk in a locked cabinet and only the authors of
71	this study had access to them. The data were de-identified and we extracted only cases
72	with a diagnosis of blood stream infection and a detection record of S. aureus from a
	4

73	blood culture specimen during the same admission period. We next merged the JANIS
74	data and DPC data by sex, age, date of birth, date of admission, and date of discharge
75	and then stratified the merged data into MSSA and MRSA groups.
76	
77	Definition of cases
78	Each S. aureus detected from a blood specimen was counted as one case of blood
79	stream infection. To avoid duplication from the same patient, we included only one
80	specimen from the same admission data (i.e., if one patient was admitted twice for S.
81	aureus bacteremia in different years, they were counted as two cases).
82	The criteria for judging the antimicrobial susceptibility of each bacterium were
83	in accordance with the regulations of JANIS, which follows the criteria defined by the
84	Clinical Laboratory Standards Institute (CLSI) ¹⁵ . MRSA was defined as S. aureus
85	resistant to oxacillin and/or cefoxitin.
86	
87	Hospitalization cost
88	We defined hospitalization cost in this study as direct costs from the healthcare payer
89	perspective and then obtained the hospitalization cost of each blood stream infection
90	case through aggregation: 1) prescription cost of drugs; 2) treatment and operation cost;
	5

3) examination cost, including image inspections; 4) accommodation cost; and 5) other expenses.

Statistical analysis LoS, LoS after submission of a blood culture specimen (LoS-after), total hospitalization cost, hospitalization cost per day, and clinical outcome were compared between the groups after propensity score matching (one-to-one nearest matching, caliper = 0.20) to adjust for the influence of age and sex.^{16,17} An absolute standardized mean difference of each covariate (age and sex) above 10% in matched data was regarded as a clinically significant difference, and all such differences were within 10%. In addition, we

aggregated the data of all patients admitted to NCGM in the observation period to

calculate the LoS and hospitalization cost for all causes of admission.

Two-sided *p* values less than 0.05 were considered statistically significant. All

statistical analyses were performed using R version 4.0.3.¹⁸

Ethics approval

This study was approved by the Ethics Committee of National Center for Global Health and Medicine, Tokyo, Japan (approval number, NCGM-G-003606-00).

109	
110	Results
111	Table 1 shows the LoS and hospitalization cost of all patients admitted to NCGM
112	between 2016 and 2020 (i.e., not limited to those with S. aureus bacteremia). In total,
113	median hospitalization cost per patient was 5,162 (interquartile range [IQR]
114	2,745-10,142) USD and median LoS was 7 (IQR 3-15) days. Among all age groups,
115	neonatal patients had the highest hospitalization cost (median 14,432 USD; IQR
116	8,162-28,311 USD) and the longest LoS (median 13 days; IQR 8-29 days).
117	
118	(Table 1)
119	
120	In the population of interest, median LoS was 46 (IQR 28.5-64.5) days in the
121	MSSA group and 66 (IQR 40-91) days in the MRSA group. Median LoS-after was 38
122	(IQR 25-62.5) days in the MSSA group and 45 (IQR 24-63) days in the MRSA group.
123	Median hospitalization cost and cost per day were respectively 19,823 (IQR
124	13,764-32,042) USD and 455.6 (IQR 359.2-701.7) USD in the MSSA group and 26,035
125	(IQR 18,154-47,362) USD and 528.9 (IQR 374.9-647.4) USD in the MRSA group.
126	The Wilcoxon rank sum test revealed that LoS and hospitalization cost significantly

127	differed between the groups ($p = 0.020$ and 0.036, respectively), unlike LoS-after and
128	hospitalization cost per day ($p = 0.691$ and 0.990, respectively). The case fatality rate
129	was higher in the MRSA group (22/60) than in the MSSA group (9/60) according to
130	Fisher's exact test ($p = 0.012$). Table 2 shows the results before propensity score
131	matching, and Table 3 shows the results after matching. Figures 1 and 2 are violin plots
132	of LoS and hospitalization cost by strain, respectively.
133	
134	(Table 2)
135	
136	(Table 3)
137	
138	(Figure 1)
139	
140	(Figure 2)
141	
142	Figure 3 shows the breakdown of the hospitalization cost for each group.
143	
144	(Figure 3)
	8

Accommodation cost accounted for more than half of the total hospitalization cost in both groups (59.1% in the MSSA group and 52.6% in the MRSA group). The proportion of the treatment cost was higher in the MRSA group than in the MSSA group (20.6% and 13.7%, respectively). Discussion To our knowledge, this is the first study examining the difference in LoS and hospitalization cost between MSSA and MRSA in Japan. In our results, median LoS of all-cause admission was substantially shorter than reported by the OECD.¹⁰ This difference might be due to the calculation methods used. While the OECD reported the average number of days spent by patients in hospital, which is generally measured by dividing the total number of days stayed by all inpatients during a year by the number of admissions or discharges, we used the median LoS of each patient. Therefore, the 16.1 days reported by the OECD would be greatly influenced by outliers (i.e., the extremely long LoS of some patients). Nevertheless, 7 days is longer than the average LoS worldwide (6.6 days) and that in the US (5.5 days).¹⁰ Notably, the LoS of patients with S. aureus bacteremia in Japan is substantially

163	longer than that in other countries. Cosgrove and colleagues reported that the median
164	LoS for MSSA and MRSA bacteremia in the US was 7 and 9 days, respectively. ¹⁹
165	According to Thampi and colleagues, the median LoS of such patients in Canada was
166	14 and 22.5 days, respectively. ²⁰ Another study from the Greater Toronto area found a
167	median LoS for S. aureus bacteremia of 17 days. ²¹ In contrast, our results indicated that
168	patients with S. aureus bacteremia in Japan are hospitalized for a median 49 days, which
169	is about three times as long as that reported previously in other countries. Even when
170	the data are limited to LoS-after (i.e., LoS after submission of a blood culture), this
171	amounts to twice as long as that reported in other countries. Given these results, it is not
172	difficult to imagine that the disease burden of S. aureus bacteremia will be greater in
173	Japan than in other countries.
174	The cause of the considerable international differences in LoS is unclear but
175	Tiessen and colleagues have obtained some interesting results. ²² Although their study
176	examined the LoS of acute myocardial infarction, they observed a trend similar to that
177	of our results. In their opinion, their results can be explained by nonclinical factors such
178	as professional/cultural norms and differences in healthcare schemes. For instance,
179	acute care hospitals in Japan are generally equipped with a large supply of acute care
180	beds but a small supply of long-term care beds. This combination should theoretically
	10

result in longer acute care stays. In addition, hospital ownership in Japan would also
influence the results. Private for-profit organizations perhaps act to fill their capacity,
which is higher than that of their counterpart, to maximize revenues. These hypotheses
should be carefully examined in future work.
Meanwhile, we should also note that, although there was a difference in total LoS

between MSSA and MRSA in our study, there was no substantial difference in LoS-after. This is a markedly different result from that of previous studies.^{9,23} Generally speaking, the presence of antibiotic resistance appears to increase LoS and hospitalization costs. This phenomenon is probably related to Japanese healthcare systems and customs. Because residence in a long-term care facility is one of the risk factors of MRSA infection,²⁴ the longer LoS might be attributable to an increase in novel MRSA bacteremia because patients who tend to stay in the hospital longer also tend to be infected with MRSA. It is possible that the long LoS in Japan is not only unnecessary, but also increases the number of infected cases. Because the LoS-after in Japan is substantially longer than the appropriate duration of antibiotic therapy for S. aureus bacteremia,²⁵ the difference in the recommended duration of antibiotic therapy between MSSA and MRSA does not explain the difference in LoS-after between these strains. The hospitalization cost of S. aureus bacteremia in Japan is neither expensive nor

199	cheap compared with other developed countries. Thampi and colleagues reported that S.
200	aureus bacteremia costs about 12,000 USD per case in Canada. ²⁰ In contrast, it costs
201	more than 37,000 USD in the US. ²³ As described above, the LoS in Japan is clearly
202	longer than that in these countries, but the hospitalization cost per day in Japan may be
203	less expensive. In addition, the hospitalization cost per day in Japan is not substantially
204	different between MSSA and MRSA. This result is compatible with that of a recent
205	study from the US, ²⁶ although it contradicts the results of older studies. ^{19,27–31}
206	In terms of the clinical outcome of S. aureus bacteremia, the case fatality rate of
207	24.5% in this study is also similar to that in previous studies. ^{21,32} However, the
208	difference in the case fatality rate between MSSA and MRSA is clear in our study, in
209	contrast to a recent study. ²⁶ This can be attributed to the nature of our data, which are a
210	combination of microbiological test results and patients' claim data and which made it
211	difficult to adjust for confounding factors associated with prognosis.
212	The present study has several limitations. First, our results are based on data from a
213	single facility. Although our facility is the largest medical center hospital in Japan in
214	terms of infectious diseases, the number of bacteremia cases was limited and biases due
215	to the characteristics of the facility cannot be removed. Therefore, representativeness
216	will be a major concern for our results. Next, as explained in the previous paragraph,
	12

217	our data do not include the full characteristics of each patient. Although we adjusted for
218	age and sex by propensity score matching, other confounding factors probably affected
219	the results. Third, our claims data capture the cost incurred by the facility. Because the
220	Japanese health insurance system adopts the Diagnosis Procedure
221	Combination/Per-Diem Payment System, the claims data do not precisely reflect the
222	actual cost paid by the government to the facility. In other words, our estimated
223	hospitalization cost might be overestimated if we regard the "healthcare payer" as being
224	the Japanese government.
225	Despite these limitations, our results provide necessary evidence for international
226	comparisons of the disease burden of S. aureus bacteremia. At our hospital in Japan,
227	patients with MRSA bacteremia had longer hospital stays and higher costs than those
228	with MSSA bacteremia. However, the LoS-after and hospitalization cost per day did not
229	differ. Furthermore, the markedly longer LoS in Japan compared with other countries
230	would be of major interest. Further studies of this long LoS in Japan and its reasons
231	based on multicenter, national-level data are necessary because a longer LoS would be a
232	major cause of heavier disease burden for the same disease in Japan compared with
233	other countries. These novel findings might contribute to reduce the burden and medical
234	expenses of S. aureus bacteremia in Japan because the LoS in Japan may be
	13

unnecessarily longer than that in other countries and cause additional productivity loss and medical costs. Acknowledgments Statements of ethical approval: This study was approved by the Ethics Committee of National Center for Global Health and Medicine, Tokyo, Japan (approval number, NCGM-G-003606-00). Funding: This study was supported by a Ministry of Health, Labour and Welfare (MHLW) research grant of Japan (20HA2003). Competing interests: We declare no competing interests. *Data sharing:* Data used in this study are available from the corresponding author upon reasonable request. Contributors: ST and NO conceived the study. JY collected and managed the data. ST performed statistical analyses and drafted the first draft of the manuscript. NM, JY, and

2 3 4	253	NO critically reviewed the manuscript and all authors approved the final version of the
5 6 7	254	manuscript.
8 9 10 11	255	
12 13 14	256	
15 16 17	257	
18 19 20		
21 22 23		
24 25 26		
27 28 29		
30 31 32		
33 34 35		
36 37 38		
39 40		
42 43		
45 46 47		
48 49 50		
50 51 52 53		
54 55 56		
57 58 59		
60 61 62		15
63 64 65		15

3	258		
4 5 6	259		References
7	260		
8 9	261	1.	Tsuzuki S, Matsunaga N, Yahara K, Gu Y, Hayakawa K, Hirabayashi A, et al.
10 11	262		National trend of blood-stream infection attributable deaths caused by
12	263		Staphylococcus aureus and Escherichia coli in Japan. J Infect Chemother. 2020
13 14 15	264		Apr;26(4):367–71.
15 16 17	265	2.	Diekema DJ, Pfaller MA, Shortridge D, Zervos M, Jones RN. Twenty-Year Trends
18	266		in Antimicrobial Susceptibilities Among Staphylococcus aureus From the
19 20	267		SENTRY Antimicrobial Surveillance Program. Open Forum Infect Dis. 2019 Mar
21 22	268		15;6(Suppl 1):S47–53.
23 24	269	3.	Malani PN, Rana MM, Banerjee M, Bradley SF. Staphylococcus aureus
25	270		Bloodstream Infections: The Association Between Age and Mortality and
20 27 28	271		Functional Status. Journal of the American Geriatrics Society. 2008;56(8):1485–9.
29 30	272	4.	Stewardson AJ, Allignol A, Beyersmann J, Graves N, Schumacher M, Meyer R, et
31	273		al. The health and economic burden of bloodstream infections caused by
32 33	274		antimicrobial-susceptible and non-susceptible Enterobacteriaceae and
34 35	275		Staphylococcus aureus in European hospitals, 2010 and 2011: a multicentre
36	276		retrospective cohort study. Euro surveillance : bulletin Europeen sur les maladies
37 38 20	277		transmissibles = European communicable disease bulletin. 2016 Aug;21(33).
40	278	5.	de Kraker MEA, Jarlier V, Monen JCM, Heuer OE, van de Sande N, Grundmann
41 42	279		H. The changing epidemiology of bacteraemias in Europe: trends from the
43	280		European Antimicrobial Resistance Surveillance System. Clin Microbiol Infect.
44 45 46	281		2013 Sep;19(9):860-8.
47	282	6.	Wilson J, Elgohari S, Livermore DM, Cookson B, Johnson A, Lamagni T, et al.
49	283		Trends among pathogens reported as causing bacteraemia in England, 2004-2008.
50 51 52	284		Clin Microbiol Infect. 2011 Mar;17(3):451–8.
53	285	7.	Hamad Y, Connor L, Bailey TC, George IA. Outcomes of Outpatient Parenteral
55	286		Antimicrobial Therapy With Ceftriaxone for Methicillin-Susceptible
56 57	287		Staphylococcus aureus Bloodstream Infections-A Single-Center Observational
58 59 60	288		Study. Open Forum Infectious Diseases. 2020 Sep 1;7(9):ofaa341.
61 62 63 64			16

- Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical 8. practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2011 Feb 1;52(3):285-92. Andreassen AES, Jacobsen CM, de Blasio B, White R, Kristiansen IS, Elstrøm P. 9. The impact of methicillin-resistant S. aureus on length of stay, readmissions and costs: a register based case-control study of patients hospitalized in Norway. Antimicrobial Resistance & Infection Control. 2017 Jul;6(1):74. 10. OECD iLibrary. Length of hospital stay [Internet]. [cited 2021 Mar 29]. Available from: https://www.oecd-ilibrary.org/social-issues-migration-health/length-of-hospital-sta y/indicator/english 8dda6b7a-en?parentId=http%3A%2F%2Finstance.metastore.in genta.com%2Fcontent%2Fthematicgrouping%2F1a1ac034-en 11. Mizuno A, Iguchi H, Sawada Y, Hurley M, Nomura H, Hayashi K, et al. The impact of carperitide usage on the cost of hospitalization and outcome in patients with acute heart failure: High value care vs. low value care campaign in Japan. Int J Cardiol. 2017 Aug 15;241:243-8. 12. Ito Y, Sakata Y, Yoshida H, Nonaka S, Fujii S, Tanaka Y, et al. High Cost of Hospitalization for Colonic Diverticular Bleeding Depended on Repeated Bleeding and Blood Transfusion: Analysis with Diagnosis Procedure Combination Data in Japan. Digestion. 2017;96(2):76–80. 13. Sruamsiri R, Ferchichi S, Jamotte A, Toumi M, Kubo H, Mahlich J. Impact of patient characteristics and treatment procedures on hospitalization cost and length of stay in Japanese patients with influenza: A structural equation modelling approach. Influenza Other Respir Viruses. 2017 Nov;11(6):543-55. 14. Tsutsui A, Suzuki S. Japan nosocomial infections surveillance (JANIS): a model of sustainable national antimicrobial resistance surveillance based on hospital diagnostic microbiology laboratories. BMC Health Services Research. 2018 Oct;18(1):799. 15. Clinical and Laboratory Standars Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd ed.

CLSI guideline M45. Wayne, PA; 2015. 16. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. :15. 17. Austin PC. A comparison of 12 algorithms for matching on the propensity score. Statistics in Medicine. 2014;33(6):1057-69. 18. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. 19. Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol. 2005 Feb;26(2):166-74. 20. Thampi N, Showler A, Burry L, Bai AD, Steinberg M, Ricciuto DR, et al. Multicenter study of health care cost of patients admitted to hospital with Staphylococcus aureus bacteremia: Impact of length of stay and intensity of care. American Journal of Infection Control. 2015 Jul;43(7):739-44. 21. Bai AD, Showler A, Burry L, Steinberg M, Ricciuto DR, Fernandes T, et al. Impact of Infectious Disease Consultation on Quality of Care, Mortality, and Length of Stay in Staphylococcus aureus Bacteremia: Results From a Large Multicenter Cohort Study. Clin Infect Dis. 2015 May 15;60(10):1451-61. 22. Tiessen J, Kambara H, Sakai T, Kato K, Yamauchi K, McMillan C. What causes international variations in length of stay: A comparative analysis for two inpatient conditions in Japanese and Canadian hospitals. Health Serv Manage Res. 2013 Aug;26(2-3):86-94. 23. Inagaki K, Lucar J, Blackshear C, Hobbs CV. Methicillin-susceptible and Methicillin-resistant Staphylococcus aureus Bacteremia: Nationwide Estimates of 30-Day Readmission, In-hospital Mortality, Length of Stay, and Cost in the United States. Clinical Infectious Diseases [Internet]. 2019 Feb 11 [cited 2021 Jan 2]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciz123/5315481 24. Spindel SJ, Strausbaugh LJ, Jacobson C. Infections caused by Staphylococcus

- ²/₃ 350 aureus in a Veterans' Affairs nursing home care unit: a 5-year experience. Infect
 ⁴/₅ 351 Control Hosp Epidemiol. 1995 Apr;16(4):217–23.
 - 352 25. Fowler VG, Sanders LL, Sexton DJ, Kong L, Marr KA, Gopal AK, et al. Outcome
 353 of Staphylococcus aureus bacteremia according to compliance with
 354 recommendations of infectious diseases specialists: experience with 244 patients.
 355 Clin Infect Dis. 1998 Sep;27(3):478–86.
- 26. Klein EY, Jiang W, Mojica N, Tseng KK, McNeill R, Cosgrove SE, et al. National Associated With Methicillin-Susceptible and Methicillin-Resistant Costs Staphylococcus aureus Hospitalizations in the United States, 2010-2014. Clin Infect Dis. 2019 Jan 1;68(1):22-8.
- 27. Shorr AF. Epidemiology and Economic Impact??of Meticillin-Resistant Staphylococcus aureus: Review Analysis and of the Literature. PharmacoEconomics. 2007;25(9):751-68.
- 363 28. Filice GA, Nyman JA, Lexau C, Lees CH, Bockstedt LA, Como-Sabetti K, et al.
 364 Excess costs and utilization associated with methicillin resistance for patients with
 365 Staphylococcus aureus infection. Infect Control Hosp Epidemiol. 2010
 366 Apr;31(4):365–73.
- 34
 35
 367
 368
 368
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
 360
- 370
 30. Engemann JJ, Carmeli Y, Cosgrove SE, Fowler VG, Bronstein MZ, Trivette SL, et
 371
 371
 372
 372
 373
 373
 373
 374
 374
 375
 373
 375
 373
 374
 375
 373
 375
 373
 374
 375
 373
 375
 374
 375
 375
 375
 376
 376
 376
 377
 378
 379
 379
 379
 370
 370
 370
 370
 370
 370
 370
 371
 373
 373
 373
 374
 374
 375
 375
 375
 376
 376
 376
 377
 378
 379
 379
 379
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 371
 371
 372
 373
 373
 373
 374
 374
 375
 375
 375
 376
 376
 377
 377
 378
 378
 378
 379
 379
 379
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
 370
- ⁴⁸ 374 31. McHugh CG, Riley LW. Risk factors and costs associated with
 ⁴⁹ 375 methicillin-resistant Staphylococcus aureus bloodstream infections. Infect Control
 ⁵¹ 376 Hosp Epidemiol. 2004 May;25(5):425–30.
- 377 32. Wyllie DH, Crook DW, Peto TEA. Mortality after Staphylococcus aureus
 378 bacteraemia in two hospitals in Oxfordshire, 1997-2003: cohort study. BMJ. 2006
 379 Aug 5;333(7562):281.

1	
2	
4	
5	
6 7	
8	
9	
11	
12	
13 14	
15	
16	
18	
19	
20	
22	
23	
24 25	
26	
27	
20 29	
30	
31 32	
33	
34	
35 36	
37	
38 39	
40	
41	
42 43	
44	
45 46	
47	
48	
49 50	
51	
52 53	
54	
55	
э6 57	
58	
59	
61	
62	
63	

Table 1. Cost and length of stay of all patients in the National Center for Global

382 Health and Medicine, 2016-2020

Age group	Cost (USD*)	Cost (JPY)	Length of stay (days)	
N	14432	1587565		
Neonates	(8162-28311)	(897835-3114155)	13 (8-29)	
	4553 (3446-6390)	500870		
Infants		(379080-702890)	6 (4-8)	
		566000	- /	
1-14 years	5145 (3605-6921)	(396555-761280)	5 (3-7)	
	4808 (2529-9143)	528882	7 (3-13)	
15-64 years		(278230-1005783)		
		574105		
65-89 years	5219 (2696-11235)	(296603-1235814)	8 (2-17)	
90 years and	6969 (3706-13010)	766628		
older		(407668-1431061)	12 (5-25)	
_		567800		
Total	5162 (2745-10142)	(301936-1115629)	7 (3-15)	

1	
2	
3 4	384
5	
6	385
7	
8	
10	
11	
12	
13	
14 15	
16	
17	
18	
19 20	
21	
22	
23	
24	
26	
27	
28	
29	
30 31	
32	
33	
34	
35 36	
37	
38	
39	
40 41	
42	
43	
44	
45 46	
47	
48	
49	
50 51	
52	
53	
54	
55 56	
57	
58	
59	
60 61	
62	
63	
64	

*1 USD = 110 JPY.

Table 2. Length of stay, hospitalization cost, and in-hospital mortality of patients

387 with S. aureus bacteremia in the National Center for Global Health and Medicine,

388 2016-2020

	MSSA (n=84)	MRSA (n=63)	Total (n=147)
Age	72 (50-82)	76 (64-89)	74 (58-85)
Male sex	44 (52.4)	35 (55.6)	79 (53.7)
LoS (days)	40 (27.5-64.5)	66 (37.5-87)	49 (29-76)
LoS-after (days)*	32 (22-59.5)	43 (23-62)	32 (17-56)
Hospitalization cost	20884	27798	22902
(USD)**	(13880-33951)	(18252-47543)	(15699-43330)
Hospitalization cost	2297240	3057807	2519214
(JPY)	(1526856-3734595)	(2007727-5229778)	(1726905-4766352)
Hospitalization cost per day (USD)**	401 (150-1111)	496 (231-1215)	488 (374-719)
Hospitalization cost	44085	54518	53651
per day (JPY)	(16527-122191)	(25374-133648)	(41181-79102)
In-hospital death	12 (14.3)	24 (38.1)	36 (24.5)

389 MSSA, methicillin-susceptible *Staphylococcus aureus*; MRSA, methicillin-resistant

Staphylococcus aureus; LoS, length of stay.

- 391 Values are shown as the median (interquartile range) or number (percentage).
- 392 *Length of stay after blood culture submission.

393 **1 USD = 110 JPY.

	MSSA (n=60)	MRSA (n=60)	<i>p</i> -valu
Age	76 (66-83)	76.5 (65.5-89)	0.30
Male sex	33 (55.0)	32 (53.3)	1.0
LoS (days)	46 (28.5-64.5)	66 (40-91)	0.02
LoS-after (days)*	38 (25-62.5)	45 (24-63)	0.69
Hospitalization cost	19823	26035	0.03
(USD)**	(13764-32042)	(18154-47362)	0.03
Hospitalization cost	2180493	2863872	0.03
(JPY)	(1514005-3524635)	(1996922-5209858)	0.03
Hospitalization cost	AEC (2E0 702)	500 (075 (47)	0.00
per day (USD)**	450 (359-702)	529 (375-647)	0.99
Hospitalization cost	50113	58174	0.00
per day (JPY)	(39516-77191)	(41238-71212)	0.99
In-hospital death	9 (15.0)	22 (36.7)	0.01
MSSA, methicillin-susceptible Staphylococcus aureus; MRSA, methicillin-resistan			
Staphylococcus aureus: I	oS length of stay		

398 Values are shown as median (interquartile range) or an absolute number (percentage).

- 399 *Length of stay after blood culture submission.
- 400 **1 USD = 110 JPY.
- 401 [†]Mann-Whitney test for continuous variables and Fischer's exact test for binary

402 variables.

1		
2 3 4 5	404	Figure legends
6 7 8	405	Figure 1. Length of stay after blood culture submission by strain
9 10 11	406	MSSA, methicillin-susceptible Staphylococcus aureus; RF, methicillin-resistant
12 13 14	407	Staphylococcus aureus.
15 16 17	408	
18 19 20	409	Figure 2. Hospitalization cost per day by strain
21 22 23 24	410	MSSA, methicillin-susceptible Staphylococcus aureus; RF, methicillin-resistant
25 26 27	411	Staphylococcus aureus.
28 29	412	
30 31 32	413	Figure 3. Breakdown of the total hospitalization cost from 2016 to 2020
33 34	414	The horizontal axis represents the accumulated hospitalization cost during the study
36 37 38 39 40 41 42 43 44 45 46 47 48 49 51 52 53 45 55 55 57 58	415	period.
59 60 61 62 63 64 65		27

R code

Click here to access/download **RDM Data Profile XML** LoS.R