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Abstract 90 

Research in global change ecology relies heavily on global climatic grids derived from 91 

estimates of air temperature in open areas at around 2 m above the ground. These climatic 92 

grids thus fail to reflect conditions below vegetation canopies and near the ground surface, 93 

where critical ecosystem functions are controlled and most terrestrial species reside. Here we 94 

provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–95 

5 and 5–15 cm depth. These maps were created by calculating the difference (i.e., offset) 96 

between in-situ soil temperature measurements, based on time series from over 1200 1-km² 97 

pixels (summarized from 8500 unique temperature sensors) across all of the world’s major 98 

terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an 99 

atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We 100 

show that mean annual soil temperature differs markedly from the corresponding 2 m 101 

gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across 102 

biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer 103 

(3.6 ± 2.3°C warmer than gridded air temperature), whereas soils in warm and humid 104 

environments are on average slightly cooler (0.7 ± 2.3°C cooler). The observed substantial and 105 

biome-specific offsets underpin that the projected impacts of climate and climate change on 106 

biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil 107 

temperature is used, especially in cold environments. The global soil-related bioclimatic 108 

variables provided here are an important step forward for any application in ecology and 109 

related disciplines. Nevertheless, we highlight the need to fill remaining global gaps by 110 

collecting more in-situ measurements of microclimate conditions to further enhance the 111 

spatiotemporal resolution of global soil temperature products for ecological applications. 112 

 113 

Keywords: microclimate, bioclimatic variables, soil temperature, global maps, temperature offset, 114 

soil-dwelling organisms, near-surface temperatures  115 
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Introduction 116 

With the rapidly increasing availability of big data on species distributions, functional traits 117 

and ecosystem functioning (Bond-Lamberty & Thomson, 2018, Bruelheide et al., 2018, 118 

Kissling et al., 2018, Kattge et al., 2019, Lenoir et al., 2020), we can now study biodiversity 119 

and ecosystem responses to global changes in unprecedented detail (Senior et al., 2019, 120 

Steidinger et al., 2019, Van Den Hoogen et al., 2019, Antão et al., 2020). However, despite 121 

this increasing availability of ecological data, most spatially-explicit studies of ecological, 122 

biophysical and biogeochemical processes still make use of the same global gridded 123 

temperature data (Soudzilovskaia et al., 2015, Van Den Hoogen et al., 2019, Du et al., 2020). 124 

Most of these gridded air temperature datasets are based on long-term climatologies of 125 

rather coarse spatiotemporal resolutions: monthly and annual means, or bioclimatic 126 

derivatives, based on 30-yr time series averaged within 1 km to 50 km grid cells. Additionally, 127 

these coarse temperature grids are constructed based on measurements from standard 128 

meteorological stations that record free-air temperature inside well-ventilated protective 129 

shields placed up to 2 m above-ground in open, shade-free habitats, where abiotic conditions 130 

may differ substantially from those actually experienced by most organisms (World 131 

Meteorological Organization, 2008, Lembrechts et al., 2020). 132 

Ecological patterns and processes often relate more directly to below-canopy soil 133 

temperature rather than to well-ventilated air temperature inside a weather station. Near-134 

surface, rather than air, temperature better predicts ecosystem functions like biogeochemical 135 

cycling (e.g., organic matter decomposition, soil respiration and other aspects of the global 136 

carbon balance) (Schimel et al., 2004, Pleim & Gilliam, 2009, Portillo-Estrada et al., 2016, 137 

Hursh et al., 2017, Gottschall et al., 2019, Davis et al., 2020, Perera-Castro et al., 2020). 138 

Similarly, the use of soil temperature in correlative analyses or predictive models may 139 

improve predictions of climate impacts on organismal physiology and behaviour, as well as 140 

on population and community dynamics and species distributions (Körner & Paulsen, 2004, 141 

Schimel et al., 2004, Ashcroft et al., 2008, Kearney et al., 2009, Scherrer et al., 2011, Opedal 142 

et al., 2015, Berner et al., 2020, Zellweger et al., 2020). Given the key role of soil-related 143 

processes for both aboveground and belowground parts of the ecosystem and their 144 

feedbacks to the atmosphere (Crowther et al., 2016), adequate soil temperature data are 145 

critical for a broad range of fields of study, such as ecology, biogeography, biogeochemistry, 146 
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agronomy, soil science and climate system dynamics. Nevertheless, existing global soil 147 

temperature products such as those from ERA5-Land (Copernicus Climate Change Service 148 

(C3S), 2019), with a resolution of 0.08 × 0.08 degrees (≈ 9 × 9 km at the equator), remain too 149 

coarse for most ecological applications.  150 

The direction and magnitude of the – often multi-degree – difference or offset between in-151 

situ soil temperature and coarse-gridded air temperature products result from a combination 152 

of two factors: (i) the (vertical) microclimatic difference between air and soil temperature, 153 

and (ii) the (horizontal) mesoclimatic difference between air temperature in flat, cleared 154 

areas (i.e., where meteorological stations are located) and air temperature within different 155 

vegetation types (e.g., below a dense canopy of trees) or topographies (e.g., within a ravine 156 

or on a ridge) (Lembrechts et al., 2020, De Frenne et al., 2021). In essence, the offset is thus 157 

the combination of both the vertical and horizontal differences that result from factors 158 

affecting the energy budget at the Earth’s surface, principally radiative energy: the ground 159 

absorbs radiative energy, which is transferred to the air by convective heat exchange, 160 

evaporation and spatial variation in net radiation, and lower convective conductance near the 161 

Earth’s surface results in horizontal and vertical variation in temperature (Richardson, 1922, 162 

Geiger, 1950). Both these vertical and horizontal differences in temperature vary significantly 163 

across the globe and in time as a result of environmental conditions affecting the radiation 164 

budget (e.g., as a result of topographic orientation, canopy cover or surface albedo), 165 

convective heat exchange and evaporation (e.g., foliage density, variation in the degree of 166 

wind shear caused by surface friction) and the capacity for the soil to store and conduct heat 167 

(e.g., water content and soil structure and texture) (Geiger, 1950, Zhang et al., 2008, Way & 168 

Lewkowicz, 2018, De Frenne et al., 2019).            169 

While the physics of soil temperatures have long been well-understood (Richardson, 1922, 170 

Geiger, 1950), the creation of high-resolution global gridded soil temperature products has 171 

not been feasible before, amongst others due to the absence of detailed global in-situ soil 172 

temperature measurements (Lembrechts & Lenoir, 2019, Lembrechts et al., 2020). Recently, 173 

however, the call for microclimate temperature data with spatiotemporal resolutions 174 

relevant to the studied organism and, most importantly, values representative of in-situ 175 

conditions (i.e., microhabitat) as experienced by these organisms has become more urgent 176 

(Bramer et al., 2018), while global data availability has rapidly increased (Lembrechts et al., 177 
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2020). In this paper, we mainly address the point on the representativeness of in-situ 178 

conditions by generating global gridded maps of below-canopy and near-surface soil 179 

temperature at 1-km² resolution (in line with most existing global air temperature products). 180 

These maps are representative of the habitat conditions experienced by organisms living 181 

under vegetation canopies, in the topsoil or near the soil surface. They were created using 182 

the abovementioned offset between gridded air temperature data and in-situ soil 183 

temperature measurements. We expect these soil temperature maps to be substantially 184 

more representative of actual microclimatic conditions than existing products – even though 185 

still at a relatively coarse spatial resolution of 1-km² and summarizing multi-decadal averages 186 

– as they capture relevant near- and below-ground abiotic conditions where ecosystem 187 

functions and processes operate (Daly, 2006, Bramer et al., 2018, Körner & Hiltbrunner, 188 

2018). Indeed, the offset between free-air (macroclimate) and soil (microclimate) 189 

temperature, and between cleared areas and other habitats, can easily reach up to ±10°C 190 

annually, even at the coarse 1-km² spatial resolution used here (Zhang et al., 2018, 191 

Lembrechts et al., 2019, Wild et al., 2019).  192 

To create the global gridded soil temperature maps introduced above, we used over 8500 193 

time series of soil temperature measured in-situ across the world’s major terrestrial biomes, 194 

compiled and stored in the SoilTemp database (Lembrechts et al., 2020) (Fig. 1a, 195 

Supplementary Material Fig. S1) and averaged into 1200 (or 1000 for the second soil layer) 196 

unique 1-km² pixels. First, to illustrate the magnitude of the studied effect, we visualized the 197 

global and biome-specific patterns in the mean annual offset between in-situ soil temperature 198 

(topsoil: 0–5 cm and second layer: 5–15 cm depth) and coarse-scale interpolated air 199 

temperature from ERA5-Land (soil temperature minus air temperature, hereafter called the 200 

temperature offset, sensu (De Frenne et al., 2021); elsewhere called the surface offset (Smith 201 

& Riseborough, 1996, Smith & Riseborough, 2002)) using the average within 1 × 1 km grid 202 

cells. Next, we used a machine learning approach with 31 environmental explanatory 203 

variables (including macroclimate, soil, topography, reflectance, vegetation and 204 

anthropogenic variables) to model the spatial variation in monthly temperature offsets at a 1 205 

× 1 km resolution for all continents except Antarctica (as absent in many of the used predictor 206 

variable layers). Using these offsets, we then calculated relevant soil-related bioclimatic 207 

variables (SBIO), mirroring the existing global bioclimatic variables for air temperature. 208 
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Finally, we compare our new global soil temperature product with a similar one calculated 209 

using coarser-resolution soil temperature data from ERA5-Land (Copernicus Climate Change 210 

Service (C3S), 2019). 211 

Methods 212 

Data acquisition 213 

Analyses are based on SoilTemp, a global database of microclimate time series (Lembrechts 214 

et al., 2020). We compiled soil temperature measurements from 9362 unique sensors (mean 215 

duration 2.9 years, median duration 1.0 year, ranging from 1 month to 41 years) from 60 216 

countries, using both published and unpublished data sources (Fig. 1, Supplementary Material 217 

Fig. S1). Each sensor corresponds to one independent time series.  218 

We used time series spanning a minimum of one month, with a temporal resolution of four 219 

hours or less. Sensors of any type were included (Supplementary Material Table S1), as long 220 

as they measured in situ. Sensors in experimentally manipulated plots, i.e., plots in which 221 

microclimate has been manipulated, were excluded. Most data (> 90%) came from low-cost 222 

rugged microclimate loggers such as iButtons (Maxim Integrated, USA) or TMS4-sensors (Wild 223 

et al., 2019), with measurement errors of around 0.5–1°C (note that we are using °C over K 224 

throughout, for ease of understanding), while in a minority of cases sensors with higher 225 

meteorological specifications such as industrial or scientific grade thermocouples and 226 

thermistors (measurement errors of less than 0.5°C) were used. Contributing datasets mostly 227 

consisted of short-term regional networks of microclimate measurements, yet also included 228 

a set (< 5%) of soil temperature sensors from long-term research networks equipped with 229 

weather stations (e.g., Pastorello et al., 2017). By combining these two types of data, a much 230 

higher spatial density of sensors and broader distribution of microhabitats could be obtained 231 

than by using weather station data only. 232 

About 68% of sensors measured in time intervals located between 2010 and 2020 and 93% 233 

between 2000 and 2020; we thus focus on the latter period in our analyses. Additionally, given 234 

the relatively short time frame covered by most individual sensors, we were not able to test 235 

for systematic differences in the temperature offset between old and recent data sets, and 236 

thus we did not correct for this in our models. We strongly urge future studies to assess such 237 
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temporal dynamics in the offset, once long-term microclimate data have become sufficient 238 

and more available. 239 

For each of the individual 9362 time series, we calculated monthly mean, minimum (5% 240 

percentile of all monthly values) and maximum (95% percentile) temperature, after checking 241 

all time series for plausibility and erroneous data. These monthly values, while perhaps not 242 

fully intercomparable between the northern and southern hemisphere, are those that have 243 

traditionally been used to calculate bioclimatic variables (Fick & Hijmans, 2017). Months with 244 

more than one day of missing data, either at the beginning or end of the measurement period, 245 

or due to logger malfunctioning during measurement, were excluded, resulting in a final 246 

subset of 380 676 months of soil temperature time series that were used for further analyses. 247 

For each sensor with more than twelve months of data, we calculated moving averages of 248 

annual mean temperature, using each consecutive month as a starting month and calculating 249 

the mean temperature including the next eleven months. We used these moving averages to 250 

make maximal use of the full temporal extent covered by each sensor, because each time 251 

series spanned a different time period, often including parts of calendar years only. Next, 252 

these moving averages were further summarized to one mean annual average per 1-km² pixel 253 

(see below, under ‘Global and biome-level analyses’). 254 

The selected dataset contained sensors installed strictly belowground, measuring 255 

temperature at depths between 0 and 200 cm below the ground surface. Sensors recording 256 

several measurements at the same site but located at different (vertical) depths were 257 

included separately (the 9362 unique sensors thus came from 7251 unique loggers). 258 

Sensors were grouped in different soil depth categories (0–5, 5–15, 15–30, 30–60, 60–100, 259 

100–200 cm, Supplementary Material Table S2) to incorporate the effects of soil temperature 260 

dampening. We limited our analyses to the topsoil (0–5 cm) and the second soil layer (5–15 261 

cm), as we currently lack sufficient global coverage to make trustworthy models at deeper 262 

soil depths (8519 time series, about 91%, came from the two upper depth layers). Due to 263 

uncertainty in identification of these soil depths between studies (e.g., due to litter layers), 264 

no finer categorisation is used. 265 
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We tested for potential bias in temporal resolution (i.e., measurement interval) by calculating 266 

mean, minimum and maximum temperature for a selection of 2000 months for data 267 

measured every 15 minutes, and the same data aggregated to 30, 60, 90, 120 and 240 268 

minutes. Monthly mean, minimum and maximum temperature calculated with any of the 269 

aggregated datasets differed on average less than 0.2°C from the ones with the highest 270 

temporal resolution. We were thus confident that pooling data with different temporal 271 

resolutions of 4 hours or finer would not significantly affect our results. 272 

Temperature offset calculation 273 

For each monthly value at each sensor location (see Supplementary Material Table S3 for 274 

number of data points per month), we extracted the corresponding monthly means of the 2 275 

m air temperature from the European Centre for Medium-Range Weather (ECMWF) 276 

Forecast’s 5th reanalysis (ERA5) (from 1979–1981) and ERA5-Land from 1981–2020 277 

(Copernicus Climate Change Service (C3S), 2019), hereafter called ERA5L. The latter dataset 278 

models the global climate with a spatial resolution of 0.08 × 0.08 degrees (≈ 9 × 9 km at the 279 

equator) with an hourly resolution, converted into monthly means using daily means for the 280 

whole month. Similarly, monthly minima and maxima were obtained from TerraClimate 281 

(Abatzoglou et al., 2018) for the period 2000 to 2020 at a 0.04 × 0.04 degrees (≈ 4 × 4 km at 282 

the equator) resolution. Monthly means for TerraClimate were not available, we therefore 283 

estimated them by averaging the monthly minima and maxima. Finally, we also obtained 284 

monthly mean temperatures from CHELSA (Karger et al., 2017a, Karger et al., 2017b) for the 285 

period 2000 to 2013 at a 30 × 30 arc second (≈ 1 × 1 km at the equator) resolution. In our 286 

modelling exercises (see section ‘Integrative modelling’ below), we opted to use the mean 287 

temperature offsets as calculated based on ERA5L rather than on CHELSA. While CHELSA’s 288 

higher spatial resolution is definitely an advantage, its time period (stopping in 2013) 289 

insufficiently overlapped with the time period covered by our in-situ measurements (2000 to 290 

2020), so  temperature offsets based on the CHELSA dataset were only used for comparative 291 

purposes. We used TerraClimate to model offsets in monthly minimum and maximum 292 

temperature. 293 
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We calculated moving annual averages of the gridded air temperature data similar to those 294 

we computed for soil temperature. These were used to create annual temperature offset 295 

values following the same approach as above. 296 

The offset between the in situ measured soil temperature in the SoilTemp database and the 297 

2 m free-air temperature obtained from the air-temperature grids (ERA5L, TerraClim and 298 

CHELSA, hereafter called ‘gridded air temperature’) was calculated by subtracting the 299 

monthly or annual mean air temperature from the monthly or annual mean soil temperature. 300 

Positive offset values indicate a measured soil temperature higher than gridded air 301 

temperature, while negative offset values represent cooler soils. Similarly, monthly minimum 302 

and maximum air temperature were subtracted from minimum and maximum soil 303 

temperature, respectively. Monthly minima and maxima of the soil temperature were 304 

calculated as, respectively, the 5% lowest and highest instantaneous measurement in that 305 

month, to correct for outliers, which can be especially pronounced at the soil surface (Speak 306 

et al., 2020). As a result, patterns in minima and maxima are more conservative estimates 307 

than if we had used the absolute lowest and highest values. 308 

Importantly, the temperature offset calculated here is a result of three key groups of drivers: 309 

(1) height effects (2 m versus 0–15 cm below the soil surface); (2) environmental or habitat 310 

effects (e.g., spatial variability in vegetation, snow or topography); and (3) spatial scale effects 311 

(resolution of gridded air temperature) (Lembrechts et al., 2020). We investigated the 312 

potential role of scale effects by comparing gridded air temperature data sources with 313 

different resolutions (ERA5L, TerraClimate and CHELSA, see below). Height effects and 314 

environmental effects are however not disentangled here, as the offset we propose 315 

incorporates both the difference between air and soil temperature (vertically), as well as the 316 

difference between free-air macroclimate and in situ microclimate (horizontally) in one 317 

measure (Lembrechts et al., 2020). While it can be argued that it would be better to treat 318 

both vertical and horizontal effects separately, this would require a similar database of 319 

coupled in-situ air and soil temperature measurements, which is not yet available. Using in 320 

situ measured air temperature could also solve spatial mismatches (i.e., spatially averaged air 321 

temperature represents the whole 1 to 81 km² pixel, depending on pixel size, not only the 322 

exact location of the sensor). However, coupled air and soil temperature measurements are 323 

not only rare, but the air temperature measurements also have large measurement errors, 324 
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especially in open habitats. These errors can be up to several degrees in open habitats when 325 

using non-standardized sensors, loggers and shielding (Maclean et al., 2021). Hence, using  in 326 

situ measured air temperature without correcting for these measurement errors would be 327 

misleading. 328 

Global and biome-level analyses 329 

For the purpose of visualization, annual offsets were first averaged in hexagons with a 330 

resolution of approximately 70 000 km², using the dggridR-package in R (Barnes et al., 2017) 331 

(Fig. 1). Next, we plotted mean, minimum and maximum annual soil temperature as a 332 

function of corresponding gridded air temperature from ERA5, TerraClimate and CHELSA and 333 

used generalized additive models (GAMs, package mgcv; Wood, 2012) to visualise deviations 334 

from the 1:1-line (i.e., temperature offsets deviating from zero, Supplementary Figs. S4-5). 335 

All annual and monthly values within each soil depth category and falling within the same 1-336 

km² pixel were aggregated as a mean, resulting in a total of c. 1200 unique pixels at 0–5 cm, 337 

and c. 1000 unique pixels at 5–15 cm each month, across the globe (Supplementary Material 338 

Table S3). This averaging includes summarizing the data over space, i.e., multiple sensors 339 

within the same 1-km² pixel, and time, i.e., data from multi-year time series from a certain 340 

sensor, to reduce spatial and temporal autocorrelation and sampling bias. We assigned these 341 

1-km² averages to the corresponding Whittaker biome of their georeferenced location, using 342 

the package plotbiomes in R (Fig. 1 c, d, Supplementary Material Table S4-5 (Stefan & Levin, 343 

2018)). We ranked biomes based on their offset and compared this with the mean annual 344 

precipitation in each biome (Fig. 1b). This was done separately for each air temperature data 345 

source (ERA5L, TerraClimate and CHELSA), soil depth (0–5 cm, 5–15 cm) and timeframe 346 

(ERA5L 1979–2020, 2000–2020), as well as for the offset between monthly minimum and 347 

maximum soil temperature and the minimum and maximum gridded air temperature from 348 

TerraClimate. Our analyses showed that patterns were robust to variation in spatial 349 

resolution, sensor depth, climate interpolation method and temporal scale (Supplementary 350 

Material Figs. S2–5). 351 

Acquisition of global predictor variables 352 
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To create spatial predictive models of the offset between in-situ soil temperature and gridded 353 

air temperature, we first sampled a stack of global map layers at each of the logger locations 354 

within the dataset. These layers included long-term macroclimatic conditions, soil texture and 355 

physiochemical information, vegetation, radiation and topographic indices as well as 356 

anthropogenic variables. Details of all layers, including descriptions, units, and source 357 

information, are described in Supplementary Data S1. In short, information about soil texture, 358 

structure and physiochemical properties was obtained from SoilGrids (version 1 (Hengl et al., 359 

2017)), limited to the upper soil layer (top 5 cm). Long-term averages of macroclimatic 360 

conditions (i.e., monthly mean, maximum and minimum temperature, monthly precipitation) 361 

was obtained from CHELSA (version 2017 (Karger et al., 2017a)), which includes climate data 362 

averaged across 1979–2013, and from WorldClim (version 2 (Fick & Hijmans, 2017)). Monthly 363 

snow probability is based on a pixel-wise frequency of snow occurrence (snow cover >10%) 364 

in MODIS daily snow cover products (MOD10A1 & MYD10A1 (Hall et al., 2002)) in 2001–2019. 365 

Spectral vegetation indices (i.e., averaged MODIS NDVI product MYD13Q1) and surface 366 

reflectance data (i.e., MODIS MCD43A4) were obtained from the Google Earth Engine Data 367 

Catalog (developers.google.com/earth-engine/datasets) and averaged from 2015 to 2019. 368 

Landcover and topographic information were obtained from EarthEnv (Amatulli et al., 2018). 369 

Aridity index (AI) and potential evapotranspiration (PET) layers were obtained from CGIAR 370 

(Zomer et al., 2008). Anthropogenic information (population density) was obtained from the 371 

EU JRC (ghsl.jrc.ec.europa.eu/ghs_pop2019.php). Aboveground biomass data were obtained 372 

from GlobBiomass (Santoro, 2018). Resolved ecoregion classifications were used to 373 

categorize sampling locations into biomes (Dinerstein et al., 2017). With this set of predictor 374 

variables, we included information on all different categories of drivers of soil temperature. 375 

An important variable that had to be excluded was snow depth, due to the lack of a relevant 376 

1-km² resolution global product. The final set of predictor variables included 24 ‘static’ 377 

variables and eight monthly layers (i.e., maximum, mean and minimum temperature, 378 

precipitation, cloud cover, solar radiation, water vapour pressure, and snow cover). As cloud 379 

cover estimates were not available for high-latitude regions in the Northern Hemisphere in 380 

January and December due to a lack of daylight, we excluded cloud cover as an explanatory 381 

variable for these months (i.e., 'EarthEnvCloudCover_MODCF_monthlymean_XX’, with XX 382 

representing the months in two-digit form Supplementary Data S1). 383 

https://developers.google.com/earth-engine/datasets/catalog/modis
https://ghsl.jrc.ec.europa.eu/ghs_pop2019.php
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All variable map layers were reprojected and resampled to a unified pixel grid in EPSG:4326 384 

(WGS84) at 30 arc-sec resolution (≈ 1 × 1 km at the equator). Areas covered by permanent 385 

snow or ice (e.g., the Greenland ice cap or glaciated mountain ranges, identified using 386 

SoilGrids) were excluded from the analyses. Antarctic sampling points were excluded from 387 

the modelling data set owing to the limited coverage of several covariate layers in the region. 388 

Integrative modelling 389 

To generate global maps of monthly temperature offsets (Fig. 2), we trained random forest 390 

(RF) models for each month, using the temperature offsets as the response variables and the 391 

global variable layers as predictors. We used a geospatial RF modelling pipeline as developed 392 

by van den Hoogen et al. (2021). RF models are particularly valuable here due to their capacity 393 

to uncover nonlinear relationships (e.g., due to increased decoupling of soil from air 394 

temperature in colder and thus snow-covered areas) and their ability to capture complex 395 

interactions among covariates (e.g., between snow and vegetation cover) (Olden et al., 2008). 396 

We performed a grid search procedure to tune the RF models across a range of 122 397 

hyperparameter settings (variables per split: 2–12, minimum leaf population: 2–12). During 398 

this procedure, we assessed each model’s performance using k-fold cross-validation (k = 10; 399 

folds assigned randomly, stratified per biome), for each of the 122 models. The models’ mean 400 

and standard deviation values were the basis for choosing the best of all evaluated models. 401 

This procedure was repeated for each month separately for the two soil depth layers (0–5 cm, 402 

5–15 cm), for offsets in mean, minimum and maximum temperature. The importance of 403 

explanatory variables was assessed using the variable importance and ordered by mean 404 

variable importance across all models. This variable importance adds up the decreases in the 405 

impurity criterion (i.e., the measure on which the local optimal condition is chosen) at each 406 

split of a node for each individual variable over all trees in the forest (van den Hoogen et al., 407 

2021). 408 

Soil bioclimatic variables 409 

The resulting global maps of the annual and monthly offsets between mean, minimum and 410 

maximum soil and air temperature were used to calculate relevant bioclimatic variables 411 

following the definition used in CHELSA, BIOCLIM, ANUCLIM and WorldClim (Xu & Hutchinson, 412 
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2011, Booth et al., 2014, Fick & Hijmans, 2017, Karger et al., 2017a) (Fig. 3–4). We calculated 413 

11 soil bioclimatic layers (SBIO, Table 1). First, we calculated monthly soil mean, maximum 414 

and minimum temperature by adding monthly temperature offsets to the respective CHELSA 415 

monthly mean, maximum and minimum temperature (Karger et al., 2017a). Next, we used 416 

these soil temperature layers to compute the SBIO layers (O’Donnell & Ignizio, 2012). Wettest 417 

and driest quarters were identified for each pixel based on CHELSA’s monthly values. 418 

Table 1: Overview of soil bioclimatic variables as calculated in this study. 419 

 420 

Model uncertainty 421 

To assess the uncertainty in the monthly models, we performed a stratified bootstrapping 422 

procedure, with total size of the bootstrap samples equal to the original training data (van 423 

den Hoogen et al., 2021). Using biomes as a stratification category, we ensured the samples 424 

included in each of the bootstrap training collections were proportionally representative of 425 

each biome’s total area. Next, we trained RF models (with the same hyperparameters as 426 

selected during the grid-search procedure) using each of 100 bootstrap iterations. Each of 427 

these trained RF models was then used to classify the covariate layer stack, to generate per-428 

pixel 95% confidence intervals and standard deviation for the modelled monthly offsets (Fig. 429 

5a, Supplementary Material Fig. S6a). The mean R² value of the RF models for the monthly 430 

mean temperature offset was 0.70 (from 0.64 to 0.78) at 0–5 cm and 0.76 (0.63–0.85) at 5 to 431 

Bioclimatic variable Meaning 

SBIO1 annual mean temperature 

SBIO2 mean diurnal range (mean of monthly (max temp - min temp)) 

SBIO3 isothermality (SBIO2/SBIO7) (×100) 

SBIO4 temperature seasonality (standard deviation ×100) 

SBIO5 max temperature of warmest month 

SBIO6 min temperature of coldest month 

SBIO7 temperature annual range (SBIO5-SBIO6) 

SBIO8 mean temperature of wettest quarter 

SBIO9 mean temperature of driest quarter 

SBIO10 mean temperature of warmest quarter 

SBIO11 mean temperature of coldest quarter 
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15 cm across all twelve monthly models. Mean RMSE of the models was 2.20°C (1.94–2.51°C) 432 

at 0–5 cm, and 2.06°C (1.67–2.35°C) at 5–15 cm. 433 

Importantly, model uncertainty as reported in Fig. 5a and Supplementary Material Fig. S6a 434 

comes on top of existing uncertainties in (1) in-situ soil temperature measurements and (2) 435 

the ERA5L macroclimate models as used in our models. However, both of those are usually 436 

under 1°C (Copernicus Climate Change Service (C3S), 2019, Wild et al., 2019). 437 

To assess the spatial extent of extrapolation, which is necessary due to the incomplete global 438 

coverage of the training data, we first performed a Principal Component Analysis (PCA) on the 439 

full environmental space covered by the monthly training data, including all explanatory 440 

variables as used in the models, and then transformed the composite image into the same PC 441 

spaces as of the sampled data (Van Den Hoogen et al., 2019). Next, we created convex hulls 442 

for each of the bivariate combinations from the first 10 to 12 PCs, covering at least 90% of the 443 

sample space variation, with the number of PCs depending on the month. Using the 444 

coordinates of these convex hulls, we assessed whether each pixel fell within or outside each 445 

of these convex hulls, and calculated the percentage of bivariate combinations for which this 446 

was the case (Fig. 5b, Supplementary Material Fig. S6b). This process was repeated for each 447 

month, and for each of the two soil depths separately.  448 

These uncertainty maps are important because one should be careful with extrapolation 449 

beyond the range of conditions covered by the environmental variables included in the 450 

original calibration dataset, especially in the case of non-linear patterns such as modelled 451 

here. The maps are provided as spatial masks to remove or reduce the weighting of the pixels 452 

for which predictions are beyond the range of values covered by the models during 453 

calibration. To assess this further, we used a spatial leave-one-out cross-validation analysis to 454 

test for spatial autocorrelation in the data set (Supplementary Material Fig. S7) (van den 455 

Hoogen et al., 2021). This approach trains a model for each sample in the data set on all 456 

remaining samples, excluding data points that fall within an increasingly large buffer around 457 

that focal sample. Results show lowest confidence for May to September at 5–15 cm, likely 458 

driven by uneven global coverage of data points. 459 
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Finally, we compared the modelled mean annual temperature (SBIO1, topsoil layer) with a 460 

similar product based on monthly ERA5L topsoil (0–7 cm) temperature with a spatial 461 

resolution of 0.1 × 0.1 degrees (Copernicus Climate Change Service (C3S), 2019). The 462 

corresponding SBIO1 based on ERA5L was calculated using the means of the monthly 463 

averages for each month over the period 1981 to 2016, and averaging these 12 monthly 464 

values into one annual product. We then visualized spatial differences between SBIO1 and 465 

ERA5, as well as differences across the macroclimatic gradient, to identify mismatches 466 

between both datasets. 467 

All geospatial modelling was performed using the Python API  in Google Earth Engine (Gorelick 468 

et al., 2017). The R statistical software, version 4.0.2 (R Core Team, 2020), was used for data 469 

visualisations. All maps were plotted using the Mollweide projection (which preserves relative 470 

areas) to avoid large distortions at high latitudes. 471 

Sources of uncertainty 472 

There is a temporal mismatch between the period covered by CHELSA (1979-2013) and our 473 

in-situ measurements (2000-2020), which prevented us from directly using CHELSA climate to 474 

calculate the temperature offsets used in our models. This temporal mismatch might affect 475 

the offsets calculated here because the relationship between temperature offset and 476 

macroclimate will change through time as the climate warms. However, we are confident that 477 

our results are sufficiently robust to withstand this mismatch, given that we found high 478 

consistency in offset patterns between the different timeframes and air temperature datasets 479 

examined (Supplementary Material Figs. S2–5). Nevertheless, we strongly urge future 480 

research to disentangle these potential temporal dynamics, especially given the increasing 481 

rate at which the climate is warming (Xu et al., 2018, GISTEMP Team, 2021).  482 

Similarly, a potential bias could result from the mismatch in method and resolution between 483 

ERA5L – used to calculate the temperature offsets – and CHELSA, which was used to create 484 

the bioclimatic variables. However, even though temperature offsets have slightly larger 485 

variation when based on the coarser-grained ERA5L-data than on the finer-grained CHELSA-486 

data, Supplementary Material Figs. S2–5 show that relationships between soil and air 487 

temperature are largely consistent in all biomes and across the whole global temperature 488 
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gradient. Therefore, the larger offsets created additional random scatter, yet no consistent 489 

bias.  490 

Finally, we acknowledge that the 1-km² resolution gridded products might not be 491 

representative of conditions at the in-situ measurement locations within each pixel. This issue 492 

could be particularly significant for different vegetation types (here proxied at the pixel level 493 

using total aboveground biomass (unit: tons/ha i.e., Mg/ha, for the year 2010; Santoro, 2018) 494 

and NDVI (MODIS NDVI product MYD13Q1, averaged over 2015–2019)). To verify this, we 495 

compared a pixel’s estimated aboveground biomass with the dominant in-situ habitat (forest 496 

versus open) surrounding the sensors in that  pixel (Supplementary Table S6). Importantly, all 497 

sensors installed in forests fell indeed in pixels with more than 1 ton/ha aboveground 498 

biomass. Similarly, 75% or more of sensors in open terrain fell in pixels with biomass estimates 499 

of less than 1 ton/ha. Only in the temperate woodland biome was the match between in-situ 500 

habitat estimates and pixel-level aboveground biomass lower, with less than 95% of sensors 501 

in forested locations correctly placed in pixels with more than 1 ton/ha biomass, and less than 502 

50% of open terrain sensors in pixels with less than 1 ton/ha biomass. While our predictions 503 

will thus not be accurate for locations within a pixel that largely deviate from average 504 

conditions (e.g., open terrain in pixels identified as largely forested, or vice versa), they should 505 

be largely representative for those pixel-level averages. 506 

Results 507 

Biome-wide patterns in the temperature offset 508 

We found positive and negative temperature offsets of up to 10°C between in situ measured 509 

mean annual topsoil temperature and gridded air temperature (mean = 3.0 ± 2.1°C standard 510 

deviation, Fig. 1, 0–5 cm depth; 5–15 cm is available in Supplementary Material Figs. S2, 5). 511 

The magnitude and direction of these temperature offsets varied considerably within and 512 

across biomes. Mean annual topsoil temperature was on average 3.6 ± 2.3°C higher than 513 

gridded air temperature in cold and/or dry biomes, namely tundra, boreal forests, temperate 514 

grasslands and subtropical deserts. In contrast, offsets were slightly negative in warm and wet 515 

biomes (tropical savannas, temperate forests and tropical rainforests) where soils were, on 516 

average, 0.7 ± 2.7°C cooler than gridded air temperature (Fig. 1b, Supplementary Material 517 
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Figs. S2 and 5; note, however, the lower spatial coverage in these biomes in Fig. 1a, c, d, 518 

Supplementary Material Table S4). Temperature offsets in annual minimum and maximum 519 

temperature amounted to c. 10°C maximum. While annual soil temperature minima were on 520 

average higher than corresponding gridded air temperature minima in all biomes, 521 

temperature offsets of annual maxima followed largely the same biome-related trends as 522 

seen for the annual means, albeit with the higher variability expected for temperature 523 

extremes (Supplementary Material Figs. S2g, h, S4g, h). Using different air temperature data 524 

sources did not alter the annual temperature offset and biome-related patterns (see Methods 525 

and Supplementary Material Figs. S2–5).  526 

Soils in the temperate seasonal forest biome were on average 0.8°C (± 2.2°C) cooler than air 527 

temperature within 1-km² grid cells of forested habitats, and 1.0°C (± 4.0°C) warmer than the 528 

air within 1-km² grid cells of non-forested habitats, resulting in a biome-wide average of 0.5°C 529 

(Supplementary Material Table S7). Similar patterns were observed in other biomes. 530 

 531 
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 532 

Figure 1: Temperature offsets between soil and air temperature differed significantly among 533 
biomes. (a) Distribution of in-situ measurement locations across the globe, coloured by the mean 534 
annual temperature offset (in °C) between in situ measured soil temperature (topsoil, 0–5 cm depth) 535 
and gridded air temperature (ERA5L). Offsets were averaged per hexagon, each with a size of 536 
approximately 70,000 km².  Mollweide projection. (b) Mean annual temperature offsets per Whittaker 537 
biome (adapted from Whittaker 1970, based on geographic location of sensors averaged at 1 km²; 0–538 
5 cm depth), ordered by mean temperature offset and coloured by mean annual precipitation. (c–d) 539 
Distribution of sensors in 2D climate space for the topsoil (c, 0–5 cm depth, N = 4530) and the second 540 
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layer (d, 5–15 cm depth, N = 3989). Colours of hexagons indicate the number of sensors at each climatic 541 
location, with a 40 × 40 km resolution. Grey dots in the background represent the global variation in 542 
climatic space (obtained by sampling 1 000 000 random locations from the CHELSA world maps). 543 
Overlay with grey lines depicts a delineation of Whittaker biomes. 544 

Temporal and spatial variation in temperature offsets 545 

Our random forest modelling approach highlighted a strong seasonality in monthly 546 

temperature offsets, especially towards higher latitudes (Fig. 2). High-latitude soils were 547 

found to be several degrees warmer than the air (monthly offsets of up to 25°C) during their 548 

respective winter months, and cooler (up to 10°C) in summer months, both at 0–5 cm (Fig. 2) 549 

and 5–15 cm (Supplementary Material Fig. S8) soil depths. In the tropics and subtropics, soils 550 

in dry biomes (e.g., in the Sahara desert or southern Africa) were predicted to be warmer than 551 

air throughout most of the year, whilst soils in mesic biomes (e.g., tropical biomes in South 552 

America, central Africa and Southeast Asia) were modelled to be consistently cooler, at both 553 

soil depths. These global gridded products were then used to create temperature-based 554 

global bioclimatic variables for soils (SBIO, Fig. 3, Supplementary Material Fig. S9). 555 

  556 
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 557 

Figure 2: Global modelled temperature offsets between soil and air temperature show strong 558 

spatiotemporal variation across months. Modelled annual (a) and monthly (b–m) temperature offset 559 

(in °C) between in situ measured soil temperature (topsoil, 0–5 cm) and gridded air temperature. 560 

Positive (red) values indicate soils that are warmer than the air. Dark grey represents regions outside 561 

the modelling area.  562 
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 563 

 564 
Figure 3: Soil bioclimatic variables. Global maps of bioclimatic variables for topsoil (0–5 cm depth) 565 
climate, calculated using the maps of monthly soil climate (see Fig. 2), and the bioclimatic variables for 566 
air temperature from CHELSA.  567 

 568 

Global variation in soil temperature 569 

We observed 17% less spatial variation in mean annual soil temperature globally (expressed 570 

by the standard deviation) than in air temperature, largely driven by the positive offset 571 

between soil and air temperature in cold environments (Fig. 4). Importantly, our machine 572 

learning models slightly (up to 1°C, or around 10% of variation) underestimated temperature 573 
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offsets at both extremes of the temperature gradient at the 1-km² resolution (Supplementary 574 

Material Fig. S10) and likely even more in comparison with finer-resolution products. 575 

Estimates of the reduction in variation across space are thus conservative, especially in the 576 

coldest biomes. The reduction in spatial temperature variation was observed in all cold and 577 

cool biomes, with tundra and boreal forests having both a significant positive mean 578 

temperature offset and a reduction of 20% and 22% in variation, respectively (Fig. 4c). In the 579 

warmest biomes (e.g., tropical savanna and subtropical desert), however, we found an 580 

increase in variation of, on average, 10%.  581 

 582 

Figure 4: Mean annual soil temperature shows significantly lower spatial variability than air 583 
temperature. (a) Global map of mean annual topsoil temperature (SBIO1, 0–5 cm depth, in °C), created 584 
by adding the monthly offset between soil and air temperature for the period 2000–2020 (Fig. 2) to 585 
the monthly air temperature from CHELSA. A black mask is used to exclude regions where our models 586 
are extrapolating (i.e., interpolation values in Fig. 5 are < 0.9, 18% of pixels). Dark grey represents 587 
regions outside the modelling area. (b–c) Density plots of mean annual soil temperature across the 588 
globe (b) and for each Whittaker biome separately (c) for SBIO1 (dark grey, soil temperature), 589 
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compared with BIO1 from CHELSA (light grey, air temperature), created by extracting 1 000 000 590 
random points from the 1-km² gridded bioclimatic products. The numbers in (c) represent the standard 591 
deviations of air temperature (light grey) and soil temperature (dark grey). Biomes are ordered 592 
according to the median annual soil temperature values from the highest temperature (subtropical 593 
desert) to the lowest (tundra). 594 

Our bootstrap approach to validate modelled monthly offsets indicated high consistency 595 

among the outcomes of 100 bootstrapped models (Fig. 5, Supplementary Material Fig. S6a), 596 

with standard deviations in most months and across most parts of the globe around or below 597 

±1°C. One exception to this was the temperature offset at high latitudes of the northern 598 

hemisphere during winter months (standard deviation up to ±5°C in the 0–5 cm layer). 599 

Predictive performance was comparable across biomes, although with large variation in data 600 

availability (Supplementary Material Fig. S11). 601 

 602 

Figure 5: Models of the temperature offset between soil and air temperature have low standard 603 
deviations and good global coverage. Analyses for the temperature offset between in situ measured 604 
topsoil (0–5 cm depth) temperature and gridded air temperature. (a) Standard deviation (in °C) over 605 
the predictions from a cross-validation analysis that iteratively varied the set of covariates 606 
(explanatory data layers) and model hyperparameters across 100 models and evaluated model 607 
strength using 10-fold cross-validation, for January (left) and July (right), as examples of the two most 608 
contrasting months. (b) The fraction of axes in the multidimensional environmental space for which 609 
the pixel lies inside the range of data covered by the sensors in the database. Low values indicate 610 
increased extrapolation.  611 

 612 

  613 
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The importance of explanatory variables in the RF models was largely consistent across 614 

months. Macroclimatic variables such as incoming solar radiation as well as long-term 615 

averages in air temperature and precipitation were by far the most influential explanatory 616 

variables in the spatial models of the monthly temperature offset (Supplementary Material 617 

Figs. S12, 13).  618 

We highlight that the current availability of in-situ soil temperature measurements is 619 

significantly lower in the tropics (Supplementary Material Table S5), where our model had to 620 

extrapolate temperatures beyond the range used to calibrate the model (Fig. 5b, 621 

Supplementary Material Fig. S6b). 622 

Finally, our comparison with a mean annual soil temperature product derived from the 623 

coarse-resolution ERA5L topsoil temperature showed that spatial variability, e.g., driven by 624 

topographic heterogeneity, is much better captured here than in the coarser resolution of the 625 

ERA5L-based product (Fig. 6c-e). Nevertheless, our predictions at the coarse scale showed to 626 

be condensed within a 5°C range of values from the ERA5L-predictions, for more than 95% of 627 

pixels globally. Noteworthy, our predictions resulted in consistently cooler soil temperature 628 

predictions than topsoil conditions provided by ERA5L across large areas, such as the boreal 629 

and tropical forest biomes (Fig. 6a, b). Additionally, our models predicted lower values for 630 

SBIO1 than ERA5L in all regions with mean annual soil temperature below 0°C, except for a 631 

few locations around Greenland and Svalbard (Fig. 6a, b). 632 
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 633 

Figure 6: The mean annual soil temperature (SBIO1, 1 x 1 km resolution) modelled here is 634 
consistently cooler than ERA5L (9 x 9 km) soil temperature in forested areas. (a) Spatial 635 
representation of the difference between SBIO1 based on our model and based on ERA5L soil 636 
temperature data. Negative values (blue colours) indicate areas where our model predicts cooler soil 637 
temperature. Dark grey areas (Greenland and Antarctica) are excluded from our models. Asterisk in 638 
Scandinavia indicates the highlighted area in panels d to f (see below). (b) Distribution of the difference 639 
between SBIO1 and ERA5L along the macroclimatic gradient (represented by SBIO1 itself)  based on a 640 
random subsample of 50 000 points from the map in a). Red line from a Generalized Additive Model 641 
(GAM) with k=4.  (c-e) High-resolution zoomed panels of an area of high elevational contrast in Norway 642 
(from 66.0-66.4° N, 15.0-16.0° E) visualizing SBIO1 (c), ERA5L (d) and their difference (e), to highlight 643 
the higher spatial resolution as obtained with SBIO1. 644 

  645 
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Discussion 646 

Global patterns in soil temperature 647 

We observed large spatiotemporal heterogeneity in the global offset between soil and air 648 

temperature, often in the order of several degrees annually and up to more than 20°C during 649 

winter months at high latitudes. These values are in line with empirical data from regional 650 

studies (Zhang et al., 2018, Lembrechts et al., 2019, Obu et al., 2019). Both annual and 651 

monthly offsets showed clear discrepancies between cold and dry versus warm and wet 652 

biomes. The modelled monthly offsets covaried strongly negatively with both long-term 653 

averages in free-air temperature and solar radiation, linking to the well-known decoupling of 654 

soil from air temperature due to snow (for cold extremes in cold and cool biomes) (Grundstein 655 

et al., 2005). However, the secondary importance of variables related to precipitation and soil 656 

structure hints to the additional distinction between wet and dry biomes at the warm end of 657 

the temperature gradient, where buffering due to shading, evapotranspiration and the 658 

specific heat of water (mostly against warm extremes in warm and wet biomes) results in 659 

cooler soil temperature (Geiger, 1950, Grundstein et al., 2005, Hennon et al., 2010, Wang & 660 

Dickinson, 2012, De Frenne et al., 2013, Grünberg et al., 2020), a less important process in 661 

warm and dry biomes (Wang & Dickinson, 2012, Greiser et al., 2018, Zhou et al., 2021). As 662 

such, these results highlight strong macroclimatic impacts on the soil microclimate across the 663 

globe (see also De Frenne et al., 2019), yet with soil temperature importantly non-linearly 664 

related to air temperature at the global scale. This confirms that the latter is not sufficient as 665 

a proxy for temperature conditions near or in the soil. With our soil-specific global bioclimatic 666 

products, we have provided the means to correct for these important region-specific, non-667 

linear differences between soil and air temperature at an unprecedented spatial resolution.  668 

Drivers of the temperature offset 669 

Our empirical modelling approach enabled us to accurately map global patterns in soil 670 

temperature. In doing so we did not aim to disentangle the mechanisms governing the 671 

temperature offset: such an endeavour would require modelling the biophysics of energy 672 

exchange at the soil surface across biomes (Kearney et al., 2019, Maclean et al., 2019, 673 

Maclean & Klinges, 2021). Importantly, many of the predictor variables used in our study (e.g., 674 

long-term averages in macroclimatic conditions or solar radiation) are unlikely to represent 675 
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direct causal relationships underlying the temperature offset, but may rather indirectly relate 676 

to many ensuing factors that affect the functioning of ecosystems at fine spatial scales which, 677 

in turn, feedback on local temperature offsets, such as energy and water balances, snow 678 

cover, wind intensity and vegetation cover (De Frenne et al., 2021). For example, while 679 

increased solar radiation itself would theoretically result in soils warming more than the air, 680 

high solar radiation at the global scale often coincides with high vegetation cover blocking 681 

radiation input to the soil, thus correlating with relatively cooler soils (De Frenne et al., 2021). 682 

Our results highlight, however, that the complex relationship between microclimatic soil 683 

temperature and macroclimatic air temperature is predictable across large spatial extents 684 

thanks to broad scale patterns, even if this is governed by a multitude of local-scale factors 685 

involving fine spatiotemporal resolutions. Nevertheless, the predictive quality of our models 686 

was lower in high latitude regions, where high variation in the in situ measured offsets – likely 687 

driven by the interactions between snow, local topography and vegetation – reduced 688 

predictive power of the models at the 1-km² resolution (Greiser et al., 2018, Way & 689 

Lewkowicz, 2018, Grünberg et al., 2020, Myers-Smith et al., 2020, Niittynen et al., 2020). 690 

Implications for microclimate warming 691 

Our results highlight clear biome-specific differences in mean annual temperature between 692 

air and soil temperatures, as well as a significant reduction in the spatial variation in 693 

temperature in the soil or near the soil surface, especially in cold and cool biomes (Fig. 4). 694 

These patterns remain even despite the presence of often strongly opposing monthly offset 695 

trends (Fig. 2). The observed correlation between long-term averages in macroclimatic 696 

conditions and the annual temperature offset illustrates that soil temperature is unlikely to 697 

warm at the same rate as air temperature when macroclimate warms. Indeed, one degree of 698 

air temperature warming could result in either a bigger or smaller soil temperature change, 699 

depending on where along the macroclimatic gradient this is happening. These effects might 700 

be seen in cold biome soils most strongly, as they not only experience the largest (positive) 701 

temperature offsets and reductions in climate range compared to air temperature (Fig. 4b, c), 702 

but they are also expected to experience the strongest magnitude of macroclimate warming 703 

(Cooper, 2014, Overland et al., 2014, Chen et al., 2021, GISTEMP Team, 2021). As a result, 704 

mean annual temperatures in cold climate soils can be expected to warm slower than the 705 

corresponding macroclimate as offsets shrink with increasing macroclimate warming.  706 
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Contrastingly, predicted climate warming in hot and dry biomes could be amplified in the 707 

topsoil, where we show soils to become increasingly warmer than the air at higher 708 

temperatures. Similarly, changes in precipitation regimes – and thus soil moisture – can 709 

significantly alter the relationship between air and soil temperature, with critical implications 710 

for soil moisture-atmosphere feedbacks, especially in hot biomes (Zhou et al., 2021). Indeed, 711 

as precipitation decreases, offsets could turn more positive and soil temperatures might 712 

warm even faster than the observed macroclimate warming. Therefore, future research 713 

should not only use soil temperature data as provided here to study belowground ecological 714 

processes (De Frenne et al., 2013, Lembrechts et al., 2020), it should also urgently investigate 715 

future scenarios of soil climate warming in light of changing air temperature and precipitation, 716 

at ecologically relevant spatial and temporal resolutions to incorporate the non-linear 717 

relationships exposed so far (Lembrechts & Nijs, 2020). 718 

Within-pixel heterogeneity 719 

We chose to use a 1-km² resolution spatial grid to model mismatches between soil and air 720 

temperature, aggregating all values from different microhabitats within the same 1-km² grid 721 

cell (e.g., sensors in forested versus open patches) as well as all daily and diurnal variation 722 

within a month. We are aware that higher spatiotemporal resolutions would likely reveal the 723 

importance of locally heterogeneous variables. Finer-scale factors that affect the local 724 

radiation balance and wind (e.g., topography, snow and vegetation cover, urbanization) at 725 

the landscape to local scales and those that directly affect neighbouring locations (e.g. 726 

topographic shading and cold-air drainage, Whiteman, 1982, Ashcroft & Gollan, 2012, 727 

Lembrechts et al., 2020) would probably have emerged as more important drivers at regional 728 

scales and with higher spatiotemporal resolutions than those used here (Supplementary 729 

Material Fig. S12). The latter is illustrated by the multi-degree Celsius difference in mean 730 

annual temperature between forested and non-forested locations within the same biome 731 

(Supplementary Material Table S7), as well as the lower accuracy obtained during winter 732 

months at high latitudes, where and when fine-scale spatial heterogeneity in snow cover and 733 

depth probably lowers models’ predictability at the 1-km² resolution. In-situ measurements 734 

were largely from areas with a representative vegetation type, supporting the reliability of 735 

our predictions for the dominant habitat type within a pixel. However, improved accuracy at 736 
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high latitudes will depend on the future development of high-resolution snow depth and/or 737 

snow water equivalent estimates (Luojus et al., 2010).  738 

The SoilTemp database (Lembrechts et al., 2020) will facilitate the necessary steps towards 739 

mapping soil temperature at higher spatiotemporal resolutions in the future, with its 740 

georeferenced time series of in situ measured soil and near-surface temperature and 741 

associated metadata. Nevertheless, when compared to existing soil temperature products 742 

such as those from ERA5L (Copernicus Climate Change Service (C3S), 2019), we emphasize 743 

that the increased resolution of our data products already provides a major technical 744 

advance, even though substantial finer within-pixel variation is still lost through 745 

spatiotemporal aggregation.  746 

Conclusions 747 

The spatial (biome-specific) and temporal (seasonally variable) offsets between air and soil 748 

temperature quantified here likely bias predictions of current and future climate impacts on 749 

species and ecosystems (Körner & Paulsen, 2004, Kearney et al., 2009, Cooper, 2014, Opedal 750 

et al., 2015, Graae et al., 2018, Zellweger et al., 2020, Bergstrom et al., 2021). Temperature 751 

in the topsoil rather than in the air ultimately defines the distribution and performance of 752 

most terrestrial species, as well as many ecosystem functions at or below the soil surface 753 

(Pleim & Gilliam, 2009, Portillo-Estrada et al., 2016, Hursh et al., 2017, Gottschall et al., 2019). 754 

As many ecosystem functions are highly correlated with temperature (yet often non-lineary, 755 

Johnston et al., 2021), soil temperature rather than air temperature should in those instances 756 

be the preferred predictor for estimating their rates and temperature thresholds (Rosenberg 757 

et al., 1990, Coûteaux et al., 1995, Schimel et al., 1996). Correcting for the non-linear 758 

relationship between air and soil temperature identified here is thus vital for all fields 759 

investigating abiotic and biotic processes relating to terrestrial environments (White et al., 760 

2020). Indeed, soil temperature, macroclimate and land-use change will interact to define the 761 

future climate as experienced by organisms, and high-resolution soil temperature data is 762 

needed to tackle current and future challenges.  763 

By making our global soil temperature maps and the underlying monthly offset data openly 764 

available, we offer gridded soil temperature data for climate research, ecology, agronomy 765 

and other life and environmental sciences. Future research has the important task of further 766 
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improving the spatial and temporal resolution of global microclimate products as 767 

microclimate operates at much higher temporal resolutions, with temporal variation over 768 

hours, days, seasons and years (Potter et al., 2013, Bütikofer et al., 2020), as well as to confirm 769 

accuracy of predictions in undersampled regions in the underlying maps (Lembrechts et al., 770 

2021). However, we are convinced that the maps presented here bring us one step closer to 771 

having accessible climate data exactly where it matters most for many terrestrial organisms 772 

(Ashcroft et al., 2014, Niittynen & Luoto, 2018, Lembrechts & Lenoir, 2019). We nevertheless 773 

highlight that there is still a long way to go towards global soil microclimate data with an 774 

optimal spatiotemporal resolution. We therefore urge all scientists to submit their 775 

microclimate time series to the SoilTemp database to fill data gaps and help to increase the 776 

spatial resolution until it matches with the scale at which ecological processes take place 777 

(Bütikofer et al., 2020, Lembrechts et al., 2020). 778 

 779 

Data availability 780 

All monthly data to train the models and reproduce the figures, sampled covariate data, and 781 

models are available at  https://doi.org/10.5281/zenodo.4558663. Soil bioclim layers SBIO1-782 

11 are also directly available in Google Earth Engine under 783 

projects/crowtherlab/soil_bioclim/soil_bioclim_0_5cm and 784 

projects/crowtherlab/soil_bioclim/soil_bioclim_5_15cm. 785 

 786 

Code availability 787 

All source code is available at https://doi.org/10.5281/zenodo.4558663. 788 
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Supplementary figures and tables 1486 

 1487 

 1488 

Fig. S1: Global distribution of the in-situ measurements. Distribution of all sensors in the topsoil (0–1489 

5 cm depth, (a), N = 4,530) and the second layer (5–15 cm depth, (b), N = 3,989). Background world 1490 

map in Mollweide projection, hexagons with a resolution of approximately 70,000 km². Note that 1491 

sensors appearing here and not in Fig. 1a or Fig. S3 covered time series of less than one year, and thus 1492 

were only used in the monthly models (see methods for details). 1493 
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 1494 
Fig. S2: Annual temperature offsets per biome (as in Fig. 1b), for the first (0–5 cm depth) and second 1495 

soil layer (5–15 cm depth) and for different air temperature data sources and time periods. Box- and 1496 

violin plots of the mean annual temperature offsets per Whittaker biome, ordered and coloured by 1497 

mean annual precipitation. As a standard, we used ERA5L (2000-2020, 9 km resolution) and the topsoil 1498 

(0–5 cm, (a), see also Fig. 1b). We compare now with the second soil layer (5–15 cm depth, b), with 1499 

TerraClimate (2000-2020, 4 km resolution, c) and CHELSA (2000-2013, 1 km resolution, d), with ERA5L 1500 

for the full period (1979-2020, e) and the period matching the bioclimatic variables (1979-2013, f). We 1501 

also calculate offsets between maximum (95th percentile, g) soil and air temperature, and minimum 1502 

(5th percentile, h) soil and air temperature, with maximum and minimum air temperature based on 1503 

TerraClimate. Panels (c) to (h) all use the topsoil data (0–5 cm depth). All panels show relatively 1504 
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consistent results (i.e. strongly positive offsets in tundra, boreal forests, subtropical deserts and 1505 

temperate grasslands, and weakly negative offsets in tropical savannas and temperate and tropical 1506 

rainforests). Only annual soil temperature minima were on average higher than corresponding air 1507 

temperature minima in all but one biomes. 1508 

  1509 



 

48 

 1510 

Fig. S3: Annual temperature offset maps (as in Fig. 1a), for the first (0–5 cm depth) and second soil 1511 

layer (5–15 cm depth), for different air temperature data sources and time periods, and for 1512 

maximum and minimum temperature. Distribution of sensors across the globe, coloured by the 1513 

annual offset (in °C) between in-situ measured soil temperature and modelled air temperature. As a 1514 

standard in Fig. 1a, we used ERA5L (2000-2020, 9 km² resolution) and the topsoil (0–5 cm, also here 1515 

in a). We compare now with the second soil layer (5–15 cm depth, b), with TerraClimate (2000-2020, 1516 

4 km² resolution, c) and CHELSA (2000-2013, 1 km² resolution, d) for the topsoil layer, and with 1517 

ERA5L for the full period (1979-2020,e) and the period matching the bioclimatic variables (1979-1518 
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2013, f). We also calculate offsets between maximum (95th percentile, g) soil and air temperature, 1519 

and minimum (5th percentile, h) soil and air temperature, with maximum and minimum air 1520 

temperature based on TerraClimate. Background world map in MollWeide projection, offsets 1521 

averaged per hexagon with a resolution of approximately 70,000 km², made using the dggridR-1522 

package in R. Conclusions about consistency between methods similar as in Fig. S2.   1523 
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 1524 

Fig. S4: Relationship between mean annual soil and air temperature at a 1 × 1 km resolution. Point 1525 

cloud of in-situ mean annual soil temperature (°C) as a function of gridded mean annual air 1526 

temperature for all in-situ measurements averaged at a 1 × 1 km resolution. As a standard, we used 1527 

ERA5L (2000-2020, 9 km² resolution) and the topsoil (0–5 cm depth, a). We compare this first with the 1528 

second soil layer (5–15 cm depth, b). We also compare with analyses for the top soil layer using 1529 

TerraClimate (2000-2020, 4 km² resolution, c) and CHELSA (2000-2013, 1 km² resolution, d), and with 1530 

ERA5L for the full period (1979-2020, e) and the period matching the bioclimatic variables (1979-2013, 1531 

f). We also plot offsets between maximum (95th percentile, g) soil and air temperature, and minimum 1532 

(5th percentile, h) soil and air temperature, with maximum and minimum air temperature based on 1533 



 

51 

TerraClimate. Straight dashed line indicate a thermal offset of 0°C, and the 1:1-relationship between 1534 

soil and air temperature, thick red lines the relationship based on generalized additive models, 1535 

indicating in all cases warmer soil than air temperatures in cold extremes, yet slightly cooler soils at 1536 

intermediate temperatures (except for h).  1537 
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 1538 

 1539 

Fig. S5: Relationship between mean annual soil and air temperature for ERA5L (grey) versus CHELSA 1540 

(red). Point cloud of in-situ mean annual soil temperature (°C) as a function of gridded mean annual 1541 

air temperature for all in-situ measurements averaged at 1 km², between 2000 and 2013, for ERA5L 1542 

(grey, 9-km² resolution) and CHELSA (dark red, 1 × 1 km resolution). Straight dashed line indicate a 1543 

thermal offset of 0°C, and the 1:1-relationship between soil and air temperature, grey and red lines 1544 

the relationship based on generalized additive models. As in Fig. S4, yet highlighting the strong overlap 1545 

in pattern when using CHELSA vs ERA5L.   1546 
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 1547 

Fig. S6: Predictive performance of the temperature offset models in the second soil layer (5–15 cm 1548 

depth). Analyses for the temperature offset between in-situ second soil layer (5–15 cm depth)  1549 

temperature and free-air temperature. (a) Predicted standard deviation from a cross-validation 1550 

analysis that iteratively varied the set of covariates (explanatory data layers) and model 1551 

hyperparameters (i.e., number of variables per split; minimum leaf population) across 100 models 1552 

and evaluated model strength using 10-fold cross-validation, for January (left) and July (right), as 1553 

examples of the two most contrasting months. (b) The fraction of axes in the multidimensional 1554 

environmental space for which the pixel lies inside the range of data covered by the sensors in the 1555 

database. Pixels with low values indicate that the model has to extrapolate for many of the 1556 

environmental layers for that specific pixel.   1557 
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 1558 

 1559 

Fig. S7: spatial leave-one-out cross-validation. R² of all monthly models at the two soil depths using 1560 

a spatial leave-one-out cross validation approach. This approach trains a model for each sample in 1561 

the dataset on all remaining samples, with an increasingly large buffer around that focal sample. 1562 

Note that a decrease in R² should be expected with increasing buffer size due to the removal of parts 1563 

of the environmental gradient from the training dataset. Nevertheless, results show that spatial 1564 

autocorrelation differs across the months, with uneven global data coverage likely causing lowest 1565 

confidence for May to September at 5–15 cm depth, where use of data outside of the environmental 1566 

gradient as covered by the data is thus particularlydiscouraged (see Fig 5b and Fig. S6b).   1567 
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 1568 

Fig. S8: Modelled mean temperature offset in the second soil layer (5–15 cm depth). Modelled 1569 

annual (a) and monthly (b-m) temperature offset (in °C) between in-situ measured soil temperature 1570 

(second soil layer, 5–15 cm depth) and modelled air temperature, in addition to the first soil layer (0–1571 

5 cm depth) used in Fig. 2.  1572 
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 1573 

Fig. S9: Bioclimatic variables for the second soil layer. Global maps of bioclimatic variables for the 1574 

second soil layer (5–15 cm depth) climate, calculated using the maps of monthly temperature offsets 1575 

(see Fig. 2, Fig. S8) and the bioclimatic variables for air temperature from CHELSA (4).  1576 
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 1577 

Fig. S10: Observed versus predicted temperature offsets. Correlative plots showing temperature 1578 

offsets – averaged at a 1 × 1 km resolution – as observed in the field, versus those as predicted by the 1579 

models, separately for each month. Colours show density of points (darker = higher point density). 1580 

Dashed lines from linear regressions; solid lines refer to the 1:1-line of perfect correlation between 1581 

predicted and observed offsets. 1582 

  1583 
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 1584 

Fig. S11: Observed versus predicted temperature offsets per biome. Correlative plots showing 1585 

temperature offsets – averaged at a 1 × 1 km resolution – as observed in the field, versus those as 1586 

predicted by the models, separately for each biome, for January (a) and July (b). Colours show density 1587 

of points (darker = high point density). Dashed lines from linear regressions; solid lines refer to the 1588 

1:1-line of perfect correlation between predicted and observed offsets.  1589 
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 1590 

Fig. S12: Relative importance of explanatory variables. Explanatory variables in all twelve monthly 1591 

analyses sorted by mean Variable Importance (computed based on the summed decrease of impurity 1592 

over all trees in the forest that results from the variable used at a node; higher for variables with a 1593 

higher importance) across all models of the first soil layer (0–5 cm depth) (first variable = ranked on 1594 

average most importantly across all twelve monthly models). Colours represent relative variable 1595 

importance (ranked from 1 to 31, with 1 the highest importance) within each monthly model for the 1596 

topsoil (0–5 cm depth). T = temperature, PET = potential evapotranspiration, SOC = soil organic 1597 

carbon, TRI = topographic roughness index, NDVI = normalized difference vegetation index. For full 1598 

details on all explanatory variable layers, see Data  S1.  1599 
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 1600 

Fig. S13: Partial dependency plots of main effects. Partial dependency plots of the 10 most important 1601 

variables (selection based on the mean Feature Importance from Fig. S12) for January (a; top) and July 1602 

(b; bottom), as examples of the two most contrasting months. Results for the first soil layer (0–5 cm 1603 

depth).   1604 
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Supplementary Tables 1605 

 1606 

Table S1: Number of sensors from the most common logger brands in the top soil (left, 0–5 cm 1607 

depth) and the second soil layer (right, 5–15 cm depth). Other sensors include among others 1608 

Decagon devices, GeoPrecision data loggers, thermocouples and TinyTags. 1609 

Logger brand Number of sensors 

 0–5 cm 5–15 cm 

iButton 1840  1685 

TOMST 512 1090 

HOBO 689 491 

Lascar 247 0 

Others 1025 587 

 1610 

 1611 

Table S2: Number of sensors in each soil layer 1612 

Depth of soil layer (cm) Number of sensors 

0–5 4530 

5–15 3989 

15-30 484 

30-60 294 

60-100 54 

100-200 11 

 1613 

 1614 

Table S3: Number of data points (in brackets the number of unique pixels after averaging at 1 × 1 km 1615 

pixel resolution) for each month as used in the models. 1616 

Month N° of data points (0–5 cm) N° of data points (5–15 cm) 

January 6674 (1212) 10130 (977) 

February 6649 (1223) 10214 (986) 

March 6527 (1184) 10345 (979) 

April 6439 (1093) 10266 (989) 

May 6611 (1150) 10510 (1003) 
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June 6537 (1154) 10546 (1011) 

July 6874 (1352) 10515 (1141) 

August 6960 (1383) 10950 (1098) 

September 6690 (1317) 10484 (1019) 

October 6991 (1299) 10429 (1018) 

November 6995 (1215) 10683 (996) 

December 6846 (1193) 10607 (988) 

 1617 

 1618 

  1619 
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Table S4: Number of unique pixels after averaging the annual data at 1 × 1 km pixel resolution for 1620 

each biome, as used in Fig. 1. The number of individual annual averages on which this number is 1621 

based is shown between brackets. 1622 

Biome N° of pixels (0–5 cm) 

Boreal forest 240 (10168) 

Sub-tropical desert 37 (802) 

Temperate grassland 66 (9558) 

Temperate rainforest 10 (27) 

Temperate seasonal forest 245 (21566) 

Tropical rainforest 2 (299) 

Tropical savanna 13 (2062) 

Tundra 29 (1584) 

Temperate woodland 224 (16952) 

 1623 

 1624 

 1625 

Table S5: Number of unique pixels after averaging the monthly data at a 1 × 1 km pixel resolution for 1626 

each biome as used in the models, averaged across all months. 1627 

 1628 

Biome N° of pixels (0–5 cm) N° of pixels (5–15 cm) 

Boreal forest 284 323 

Sub-tropical desert 46 4 

Temperate grassland 82 63 

Temperate rainforest 12 2 

Temperate seasonal forest 349 304 

Tropical rainforest 5 9 

Tropical savannah 26 31 

Tundra 35 34 

Temperate woodland 466 353 

 1629 

 1630 

 1631 

  1632 
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Table S6: Biome-specific quantile distribution of the estimated aboveground biomass at the 1 x 1 km 1633 

pixel level (unit: tons/ha i.e., Mg/ha, for the year 2010, Santoro, 2018) for each sensor identified as 1634 

either measuring in forests (top) or open vegetation (bottom), for all sensors for which the latter 1635 

information was available (numbers between brackets). Numbers in green indicate sensors under 1636 

aboveground biomass of 1.00 tons/ha or higher, here identified as forested.  1637 

 1638 

Biome 1% 5% 25% 50% 75% 95% 99% 

Forests        

Boreal forest (18) 53.70 60.50 77.50 84.50 106.00 114.15 114.83 

Subtropical desert (3) 2.00 2.00 2.00 2.00 38.00 66.80 72.56 

Temperate grassland (12) 3.00 3.00 16.00 45.00 86.00 98.00 98.00 

Temperate rain forest (7) 53.12 53.60 63.50 76.00 220.00 296.60 322.52 

Temperate seasonal for. (227) 17.00 32.50 63.00 101.00 177.00 291.00 431.00 

Tropical rain forest (6) 149.50 167.50 245.50 277.50 284.00 313.75 321.15 

Tropical savanna (17) 186.00 186.00 186.00 186.00 207.00 224.00 224.00 

Tundra (3) 8.04 8.20 9.00 10.00 12.00 13.60 13.92 

Temperate woodland (145) 0.00 0.20 8.00 24.00 120.00 218.00 242.36 

Open vegetation        

Boreal forest (463) 0.00 0.00 0.00 0.00 53.00 53.00 105.00 

Subtropical desert (13) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Temperate grassland (44) 0.00 0.00 0.00 0.00 0.00 32.00 107.00 

Temperate rain forest (0) - - - - - - - 

Temperate seasonal for. (89) 0.00 0.00 0.00 0.00 32.00 223.00 248.08 

Tropical rain forest (0) - - - - - - - 

Tropical savanna (0) - - - - - - - 

Tundra (75) 0.00 0.00 0.00 0.00 0.00 6.00 10.00 

Temperate woodland (93) 0.00 0.00 1.00 19.00 66.00 171.00 172.00 

 1639 

 1640 

Table S7: Difference in temperature offset between forested and unforested habitats. Mean and 1641 

standard deviation of offsets per Whittaker biome for all sensors, and for sensors in forested and 1642 

non-forested habitats separately. All values averaged at a 1 × 1 km resolution (number between 1643 

brackets = number of unique 1 × 1 km pixels), only biomes with sufficient number of loggers in 1644 

forested habitats are shown. Habitat assessment at the location of the sensor based on observations 1645 

by the contributors, whenever available (60% of sensors). 1646 
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 1647 

Biome All Forested Non-forested 

Boreal forest 2.47 ± 2.01 (240) 3.40 ± 1.64 (41) 3.12 ± 1.77 (105) 

Temperate grasslands 0.92 ±  2.13 (66) 1.39 ± 2.79 (4) 1.30 ± 2.79 (27) 

Temperate seasonal 

forests 

0.46 ± 2.79 (245) -0.82 ± 2.21 (53) 1.00 ± 3.95 (20) 

Temperate woodland -0.12 ± 3.38 (224) -0.71 ± 3.11 (31) 1.22 ± 4.31 (35) 

 1648 

 1649 

 1650 

Data S1. (separate file) 1651 

Final selection of global covariate layers used for geospatial modelling. A total of 31 global covariate 1652 

layers was used in our modelling approach. 1653 

 1654 


